This example load a language translation model and confirm its accuracy and speed based on GLUE data.
pip install neural-compressor
pip install -r requirements.txt
Note: Validated ONNX Runtime Version.
Supported model identifier from huggingface.co:
Model Identifier |
---|
Intel/bert-base-uncased-mrpc |
Intel/roberta-base-mrpc |
Intel/xlm-roberta-base-mrpc |
Intel/camembert-base-mrpc |
distilbert-base-uncased-finetuned-sst-2-english |
Alireza1044/albert-base-v2-sst2 |
Intel/MiniLM-L12-H384-uncased-mrpc |
philschmid/MiniLM-L6-H384-uncased-sst2 |
bert-base-cased-finetuned-mrpc |
Intel/electra-small-discriminator-mrpc |
M-FAC/bert-mini-finetuned-mrpc |
Intel/xlnet-base-cased-mrpc |
Intel/bart-large-mrpc |
Intel/deberta-v3-base-mrpc |
python prepare_model.py --input_model=Intel/bert-base-uncased-mrpc --output_model=bert-base-uncased-mrpc.onnx
Download the GLUE data with prepare_data.sh
script.
export GLUE_DIR=/path/to/glue_data
export TASK_NAME=MRPC # or SST
bash prepare_data.sh --data_dir=$GLUE_DIR --task_name=$TASK_NAME
Static quantization with QOperator format:
bash run_quant.sh --input_model=/path/to/model \ # model path as *.onnx
--output_model=/path/to/model_tune \
--dataset_location=path/to/glue/data \
--quant_format="QOperator"
bash run_benchmark.sh --input_model=path/to/model \ # model path as *.onnx
--dataset_location=path/to/glue/data \
--batch_size=batch_size \
--mode=performance # or accuracy