Skip to content

Latest commit

 

History

History
 
 

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 

Step-by-Step

This document is used to list steps of reproducing TensorFlow Intel® Neural Compressor tuning zoo result of Transformer-LT. This example can run on Intel CPUs and GPUs.

Prerequisite

1. Installation

# Install Intel® Neural Compressor
pip install neural-compressor

2. Install Tensorflow

pip install tensorflow

Note: Validated TensorFlow Version.

3. Install Intel Extension for Tensorflow

Quantizing the model on Intel GPU(Mandatory to install ITEX)

Intel Extension for Tensorflow is mandatory to be installed for quantizing the model on Intel GPUs.

pip install --upgrade intel-extension-for-tensorflow[xpu]

Please refer to the Installation Guides for latest Intel GPU driver installation. For any more details, please follow the procedure in install-gpu-drivers.

Quantizing the model on Intel CPU(Optional to install ITEX)

Intel Extension for Tensorflow for Intel CPUs is experimental currently. It's not mandatory for quantizing the model on Intel CPUs.

pip install --upgrade intel-extension-for-tensorflow[cpu]

Note: The version compatibility of stock Tensorflow and ITEX can be checked here. Please make sure you have installed compatible Tensorflow and ITEX.

4. Prepare Dataset & Pretrained model

wget https://storage.googleapis.com/intel-optimized-tensorflow/models/v2_2_0/transformer-lt-official-fp32-inference.tar.gz
tar -zxvf transformer-lt-official-fp32-inference.tar.gz
cd transformer-lt-official-fp32-inference
tar -zxvf transformer_lt_official_fp32_pretrained_model.tar.gz

Dataset is in data folder, pretrained model is in graph folder.

Automatic dataset & model download

Run the prepare_dataset_model.sh script located in examples/tensorflow/nlp/transformer_lt/quantization/ptq.

cd examples/tensorflow/nlp/transformer_lt/quantization/ptq
bash prepare_dataset_model.sh

Run Command

python main.py --input_graph=/path/to/fp32_graphdef.pb --inputs_file=/path/to/newstest2014.en --reference_file=/path/to/newstest2014.de --vocab_file=/path/to/vocab.txt --tune

Details of enabling Intel® Neural Compressor on transformer-lt for Tensorflow.

This is a tutorial of how to enable transformer-lt model with Intel® Neural Compressor.

User Code Analysis

  1. User specifies fp32 model, calibration dataset q_dataloader, evaluation dataset eval_dataloader and metric in tuning.metric field of model-specific yaml config file.

  2. User specifies fp32 model, calibration dataset q_dataloader and a custom eval_func which encapsulates the evaluation dataset and metric by itself.

For transformer-lt, we applied the latter one because we don't have dataset and metric for transformer-lt. The task is to implement the q_dataloader and eval_func.

q_dataloader Part Adaption

Below dataset class uses getitem to provide the model with input.

class Dataset(object):
    def __init__(self, *args):
        # initialize dataset related info here
        ...

    def __getitem__(self, index):
        data = self.batch[index]
        label = self.ref_lines[index]
        return data[0], label

    def __len__(self):
        return len(self.batch)

Evaluation Part Adaption

We evaluate the model with BLEU score, its source: https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/bleu_hook.py

Quantization Config

The Quantization Config class has default parameters setting for running on Intel CPUs. If running this example on Intel GPUs, the 'backend' parameter should be set to 'itex' and the 'device' parameter should be set to 'gpu'.

config = PostTrainingQuantConfig(
    device="gpu",
    backend="itex",
	inputs=['input_tensor'],
    outputs=['model/Transformer/strided_slice_19'],
    ...
    )

Here we set the input tensor and output tensors name into inputs and outputs args. In this case we calibrate and quantize the model, and use our calibration dataloader initialized from a 'Dataset' object.

Code update

After prepare step is done, we add tune code to generate quantized model.

Tune

    from neural_compressor import quantization
    from neural_compressor.data import DataLoader
    from neural_compressor.config import PostTrainingQuantConfig
    ds = Dataset(FLAGS.inputs_file, FLAGS.reference_file, FLAGS.vocab_file)
    calib_dataloader = DataLoader(dataset=ds, collate_fn=collate_fn, \
                                    batch_size=FLAGS.batch_size, framework='tensorflow')
    conf = PostTrainingQuantConfig(inputs=['input_tensor'],
                                    outputs=['model/Transformer/strided_slice_19'],
                                    calibration_sampling_size=[500])
    q_model = quantization.fit(graph, conf=conf, calib_dataloader=calib_dataloader,
                eval_func=eval_func)
    try:
        q_model.save(FLAGS.output_model)
    except Exception as e:
        print("Failed to save model due to {}".format(str(e)))

Benchmark

    from neural_compressor.benchmark import fit
    from neural_compressor.config import BenchmarkConfig
    if FLAGS.mode == 'performance':
        fit(graph, conf=BenchmarkConfig(), b_func=eval_func)
    elif FLAGS.mode == 'accuracy':
        eval_func(graph)

The Intel® Neural Compressor quantization.fit() function will return a best quantized model under time constraint.