-
Notifications
You must be signed in to change notification settings - Fork 87
/
POA.h
773 lines (624 loc) · 18.4 KB
/
POA.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
#ifndef __POA_PARSER__
#define __POA_PARSER__
#define __STDC_LIMIT_MACROS
#include <stdint.h>
#include "Hash_Table.h"
#include "Process_Read.h"
typedef struct
{
long long beg;
///end is the index of next input data, instead of the index of last data
long long end;
long long length;
long long size;
long long* buffer;
} Queue;
inline void init_Queue(Queue* q)
{
q->beg = 0;
q->end = 0;
q->length = 0;
q->size = 20;
q->buffer = (long long*)malloc(sizeof(long long)*q->size);
}
inline void clear_Queue(Queue* q)
{
q->beg = 0;
q->end = 0;
q->length = 0;
}
inline void destory_Queue(Queue* q)
{
free(q->buffer);
}
inline int is_empty_Queue(Queue* q)
{
///end is the index of next input data, instead of the index of last data
if(q->beg == q->end)
{
return 1;
}
else
{
return 0;
}
}
inline int is_full_Queue(Queue* q)
{
///end is the index of next input data, instead of the index of last data
if(q->end < q->size)
{
return 0;
}
else
{
return 1;
}
}
inline void push_to_Queue(Queue* q, long long nodeID)
{
if(is_full_Queue(q))
{
long long move_length = q->beg;
///end is the index of next input data, instead of the index of last data
long long current_length = q->end - q->beg;
///recalloc directly
if(move_length == 0)
{
q->size = q->size * 2;
q->buffer = (long long*)realloc(q->buffer, q->size*sizeof(long long));
}
else
{
///won't overlap
if(current_length <= move_length)
{
memcpy(q->buffer, q->buffer+q->beg, sizeof(long long)*current_length);
}
else///may overlap
{
memmove(q->buffer, q->buffer+q->beg, sizeof(long long)*current_length);
}
q->beg = 0;
q->end = current_length;
}
}
q->buffer[q->end] = nodeID;
q->end++;
}
inline int pop_from_Queue(Queue* q, long long* nodeID)
{
if(is_empty_Queue(q))
{
(*nodeID) = -1;
return 0;
}
else
{
(*nodeID) = q->buffer[q->beg];
q->beg++;
return 1;
}
}
typedef struct
{
uint64_t in_node;
uint64_t out_node;
///0 is match,1 is mismatch,2 means y has more bases, 3 means x has more bases
uint64_t weight;
uint64_t num_insertions;
uint64_t length;
uint64_t self_edge_ID;
uint64_t reverse_edge_ID;
} Edge;
typedef struct
{
Edge* list;
uint64_t size;
uint64_t length;
uint64_t delete_length;
} Edge_alloc;
#define Real_Length(X) ((X).length - (X).delete_length)
#define Input_Edges(Node) ((Node).insertion_edges)
#define Output_Edges(Node) ((Node).deletion_edges)
#define G_Node(G, Node) ((G).g_nodes.list[(Node)])
#define If_Node_Exist(Node) ((Node).base != 'D')
#define If_Edge_Exist(E) ((E).out_node != (uint64_t)-1)
#define Visit(E) (E).length
typedef struct
{
long long index;
} RSet;
inline void clear_RSet(RSet* set)
{
set->index = 0;
}
typedef struct
{
uint64_t ID;
uint64_t weight;
///number of deletion end with current node
uint64_t num_insertions;
char base;
Edge_alloc mismatch_edges;
Edge_alloc deletion_edges;
Edge_alloc insertion_edges;
} Node;
typedef struct
{
uint64_t* list;
uint8_t* visit;
uint64_t size;
uint64_t length;
uint64_t* iterative_buffer;
uint8_t* iterative_buffer_visit;
uint64_t iterative_i;
} topo_Sorting_buffer;
typedef struct
{
///has a indivial start node 0
Node* list;
topo_Sorting_buffer sort;
uint64_t size;
uint64_t length;
uint64_t delete_length;
} Node_alloc;
typedef struct
{
uint64_t g_n_nodes;
uint64_t g_n_edges;
uint64_t g_next_nodeID;
Node_alloc g_nodes;
Queue node_q;
char* seq;
uint64_t seqID;
uint64_t s_start_nodeID;
uint64_t s_end_nodeID;
} Graph;
int add_and_check_bi_direction_edge(Graph* graph, Node* in_node, Node* out_node, uint64_t weight, uint64_t flag);
void add_bi_direction_edge(Graph* graph, Node* in_node, Node* out_node, uint64_t weight, uint64_t flag);
int remove_and_check_bi_direction_edge_from_nodes(Graph* graph, Node* in_node, Node* out_node);
int remove_and_check_bi_direction_edge_from_edge(Graph* graph, Edge* e);
inline int Pop_Node(Graph* DAGCon, Node** node)
{
long long nodeID = 0;
int return_flag = pop_from_Queue(&(DAGCon->node_q), &nodeID);
(*node) = &(G_Node(*DAGCon, nodeID));
return return_flag;
}
inline int Push_Node(Graph* DAGCon, Node** node)
{
push_to_Queue(&(DAGCon->node_q), (**node).ID);
return 1;
}
inline int getInputNodes(RSet* set, Graph* graph, Node* node, Node** get_Node)
{
if(set->index >= (long long)Input_Edges(*node).length)
{
return 0;
}
///skip all deleted edges
while (
set->index < (long long)Input_Edges(*node).length
&&
!(If_Edge_Exist(Input_Edges(*node).list[set->index]))
)
{
set->index++;
}
if(
set->index < (long long)Input_Edges(*node).length
&&
If_Edge_Exist(Input_Edges(*node).list[set->index])
)
{
(*get_Node) = &(G_Node((*graph), Input_Edges(*node).list[set->index].in_node));
set->index++;
return 1;
}
else
{
return 0;
}
}
inline int getInputEdges(RSet* set, Graph* graph, Node* node, Edge** get_Edge)
{
if(set->index >= (long long)Input_Edges(*node).length)
{
return 0;
}
///skip all deleted edges
while (
set->index < (long long)Input_Edges(*node).length
&&
!(If_Edge_Exist(Input_Edges(*node).list[set->index]))
)
{
set->index++;
}
if(
set->index < (long long)Input_Edges(*node).length
&&
If_Edge_Exist(Input_Edges(*node).list[set->index])
)
{
(*get_Edge) = &(Input_Edges(*node).list[set->index]);
set->index++;
return 1;
}
else
{
return 0;
}
}
inline int getOutputNodes(RSet* set, Graph* graph, Node* node, Node** get_Node)
{
if(set->index >= (long long)Output_Edges(*node).length)
{
return 0;
}
///skip all deleted edges
while (
set->index < (long long)Output_Edges(*node).length
&&
!(If_Edge_Exist(Output_Edges(*node).list[set->index]))
)
{
set->index++;
}
if(set->index < (long long)Output_Edges(*node).length &&
If_Edge_Exist(Output_Edges(*node).list[set->index]))
{
(*get_Node) = &(G_Node((*graph), Output_Edges(*node).list[set->index].out_node));
set->index++;
return 1;
}
else
{
return 0;
}
}
inline int getOutputEdges(RSet* set, Graph* graph, Node* node, Edge** get_Edge)
{
if(set->index >= (long long)Output_Edges(*node).length)
{
return 0;
}
///skip all deleted edges
while (
set->index < (long long)Output_Edges(*node).length
&&
!(If_Edge_Exist(Output_Edges(*node).list[set->index]))
)
{
set->index++;
}
if(set->index < (long long)Output_Edges(*node).length &&
If_Edge_Exist(Output_Edges(*node).list[set->index]))
{
(*get_Edge) = &(Output_Edges(*node).list[set->index]);
set->index++;
return 1;
}
else
{
return 0;
}
}
inline void get_bi_direction_edges(Graph* DAGCon, Edge* edge, Edge** e_forward, Edge** e_backward)
{
long long in_node = edge->in_node;
long long out_node = edge->out_node;
if(
edge->self_edge_ID < Output_Edges(G_Node(*DAGCon, in_node)).length
&&
(long long)Output_Edges(G_Node(*DAGCon, in_node)).list[edge->self_edge_ID].in_node == in_node
&&
(long long)Output_Edges(G_Node(*DAGCon, in_node)).list[edge->self_edge_ID].out_node == out_node
)
{
(*e_forward) = &(Output_Edges(G_Node(*DAGCon, in_node)).list[edge->self_edge_ID]);
(*e_backward) = &(Input_Edges(G_Node(*DAGCon, out_node)).list[edge->reverse_edge_ID]);
}
else
{
(*e_forward) = &(Output_Edges(G_Node(*DAGCon, in_node)).list[edge->reverse_edge_ID]);
(*e_backward) = &(Input_Edges(G_Node(*DAGCon, out_node)).list[edge->self_edge_ID]);
}
}
inline long long get_bi_Edge(Graph* DAGCon, Node* inNode, Node* outNode, Edge** e_forward, Edge** e_backward)
{
Edge* e;
RSet iter;
clear_RSet(&iter);
if(If_Node_Exist(*inNode) && If_Node_Exist(*outNode))
{
//find in-edge of outNode
while(getInputEdges(&iter, DAGCon, outNode, &e))
{
if(e->in_node == inNode->ID)
{
get_bi_direction_edges(DAGCon, e, e_forward, e_backward);
return 1;
}
}
}
return 0;
}
inline long long get_Edge_Weight(Graph* DAGCon, Node* inNode, Node* outNode)
{
Edge* e_forward = NULL;
Edge* e_backward = NULL;
get_bi_Edge(DAGCon, inNode, outNode, &e_forward, &e_backward);
return e_forward->weight;
}
void init_Edge_alloc(Edge_alloc* list);
void clear_Edge_alloc(Edge_alloc* list);
void destory_Edge_alloc(Edge_alloc* list);
void append_Edge_alloc(Edge_alloc* list, uint64_t in_node, uint64_t out_node, uint64_t weight, uint64_t length);
void init_Node_alloc(Node_alloc* list);
void destory_Node_alloc(Node_alloc* list);
void clear_Node_alloc(Node_alloc* list);
uint64_t append_Node_alloc(Node_alloc* list, char base);
uint64_t* get_Topo_Sort_Order(Node_alloc* list, int need_sort);
void init_Graph(Graph* g);
void addUnmatchedSeqToGraph(Graph* g, char* g_read_seq, long long g_read_length, long long* startID, long long* endID);
void addmatchedSeqToGraph(Graph* backbone, long long currentNodeID, char* x_string, long long x_length,
char* y_string, long long y_length, window_list *cigar_idx, window_list_alloc *cigar_s, long long backbone_start, long long backbone_end);
void destory_Graph(Graph* g);
void clear_Graph(Graph* g);
void Perform_POA(Graph* g, overlap_region_alloc* overlap_list, All_reads* R_INF, UC_Read* g_read);
uint64_t inline add_Node_Graph(Graph* g, char base)
{
return append_Node_alloc(&g->g_nodes, base);
}
inline Node* add_Node_DAGCon(Graph* g, char base)
{
return &(G_Node(*g, append_Node_alloc(&g->g_nodes, base)));
}
///to delete a node
///1. set the corresponding base to be 'D'
///2. remove all related edges
///2. clear all related edges
///3. g_nodes.delete_length++, please do not substract g_nodes.length
uint64_t inline delete_Node_DAGCon(Graph* g, Node* node)
{
g->g_nodes.delete_length++;
g->g_nodes.list[(*node).ID].base = 'D';
g->g_nodes.list[(*node).ID].num_insertions = (uint64_t)-1;
g->g_nodes.list[(*node).ID].weight = (uint64_t)-1;
RSet iter;
Edge* e;
clear_RSet(&iter);
while (getOutputEdges(&iter, g, node, &e))
{
remove_and_check_bi_direction_edge_from_edge(g, e);
}
clear_RSet(&iter);
while (getInputEdges(&iter, g, node, &e))
{
remove_and_check_bi_direction_edge_from_edge(g, e);
}
clear_Edge_alloc(&(g->g_nodes.list[(*node).ID].insertion_edges));
clear_Edge_alloc(&(g->g_nodes.list[(*node).ID].mismatch_edges));
clear_Edge_alloc(&(g->g_nodes.list[(*node).ID].deletion_edges));
return 1;
}
///just for mimatch edges
inline void add_mismatchEdge_weight(Graph* g, uint64_t in_node, char base, int last_operation)
{
long long i = 0;
long long nodeID;
Edge_alloc* edge = &(g->g_nodes.list[in_node].mismatch_edges);
for (i = 0; i < (long long)edge->length; i++)
{
nodeID = edge->list[i].out_node;
if(g->g_nodes.list[nodeID].base == base)
{
edge->list[i].weight++;
///if last operation is insertion
if (last_operation == 2)
{
edge->list[i].num_insertions++;
}
break;
}
}
///there are no such edge
if (i == (long long)edge->length)
{
nodeID = add_Node_Graph(g, base);
///the length of match edge is 0, while the length of mismatch edge is 1
append_Edge_alloc(edge, in_node, nodeID, 1, 1);
///if last operation is insertion
if (last_operation == 2)
{
edge->list[edge->length - 1].num_insertions++;
}
///add the mismatch_edges of new node to the backbone
append_Edge_alloc(&(g->g_nodes.list[nodeID].mismatch_edges), nodeID, in_node + 1, 1, 0);
}
}
inline void add_single_deletionEdge_weight(Graph* g, long long alignNodeID, long long nextNodeID, uint64_t edge_length)
{
long long i = 0;
long long nodeID;
Edge_alloc* edge = &(g->g_nodes.list[alignNodeID].deletion_edges);
for (i = 0; i < (long long)edge->length; i++)
{
nodeID = edge->list[i].out_node;
if(nodeID == nextNodeID)
{
edge->list[i].weight++;
break;
}
}
///there are no such edge
if (i == (long long)edge->length)
{
append_Edge_alloc(edge, alignNodeID, nextNodeID, 1, edge_length);
}
}
inline void add_deletionEdge_weight(Graph* g, long long alignNodeID, long long deletion_length)
{
long long i;
for (i = 0; i < deletion_length; i++)
{
add_single_deletionEdge_weight(g, alignNodeID + i, alignNodeID + i + 1, 0);
}
}
inline int getEdge(Graph* g, Edge_alloc* edge, uint64_t edge_length, char base)
{
long long i = 0;
long long nodeID;
for (i = 0; i < (long long)edge->length; i++)
{
if (edge->list[i].length == edge_length)
{
nodeID = edge->list[i].out_node;
if(g->g_nodes.list[nodeID].base == base)
{
return i;
}
}
}
return -1;
}
inline int get_insertion_Edges(Graph* g, Edge_alloc* edge, uint64_t edge_length, char* bases)
{
long long i = 0;
long long nodeID;
long long edgeID;
if (edge_length < 1)
{
return -1;
}
edgeID = getEdge(g, edge, edge_length, bases[0]);
long long return_edgeID = edgeID;
if(edgeID == -1)
{
return -1;
}
Edge_alloc* new_edge = edge;
for (i = 1; i < (long long)edge_length; i++)
{
nodeID = new_edge->list[edgeID].out_node;
new_edge = &(g->g_nodes.list[nodeID].insertion_edges);
edgeID = getEdge(g, new_edge, edge_length - i, bases[i]);
if(edgeID == -1)
{
return -1;
}
}
/****************************may have bugs********************************/
return return_edgeID;
/****************************may have bugs********************************/
}
inline int create_insertion_Edges(Graph* g, long long alignNodeID, uint64_t edge_length, char* bases)
{
long long i = 0;
long long nodeID;
///should link back to the intial node
///long long backboneID = alignNodeID + 1;
long long backboneID = alignNodeID;
if (edge_length < 1)
{
return -1;
}
nodeID = add_Node_Graph(g, bases[0]);
///add the new node to alignNodeID by insertion_edges
append_Edge_alloc(&(g->g_nodes.list[alignNodeID].insertion_edges), alignNodeID, nodeID, 1, edge_length);
alignNodeID = nodeID;
for (i = 1; i < (long long)edge_length; i++)
{
nodeID = add_Node_Graph(g, bases[i]);
///add the new node to alignNodeID by insertion_edges
append_Edge_alloc(&(g->g_nodes.list[alignNodeID].insertion_edges), alignNodeID, nodeID, 1, edge_length - i);
alignNodeID = nodeID;
}
append_Edge_alloc(&(g->g_nodes.list[alignNodeID].insertion_edges), alignNodeID, backboneID, 1, 0);
return 1;
}
inline void extract_path(Graph* backbone, int debug_node_in_backbone, int path_i, char* pre)
{
int step = G_Node(*backbone, debug_node_in_backbone).insertion_edges.list[path_i].length;
int string_i = 0, preNode = 0, j = 0;
if(step != 0)
{
string_i = 0;
preNode = G_Node(*backbone, debug_node_in_backbone).insertion_edges.list[path_i].out_node;
for (j = 0; j < step; j++)
{
pre[string_i++] = G_Node(*backbone, preNode).base;
preNode = G_Node(*backbone, preNode).insertion_edges.list[0].out_node;
}
}
pre[string_i] = '\0';
}
inline int get_insertion_Edges_new(Graph* backbone, int debug_node_in_backbone, uint64_t edge_length, char* bases)
{
int path_i, j, step, preNode;
for (path_i = 0; path_i < (long long)G_Node(*backbone, debug_node_in_backbone).insertion_edges.length; path_i++)
{
step = G_Node(*backbone, debug_node_in_backbone).insertion_edges.list[path_i].length;
if(step != (long long)edge_length)
{
continue;
}
if(step != 0)
{
preNode = G_Node(*backbone, debug_node_in_backbone).insertion_edges.list[path_i].out_node;
for (j = 0; j < step; j++)
{
if(G_Node(*backbone, preNode).base != bases[j])
{
break;
}
preNode = G_Node(*backbone, preNode).insertion_edges.list[0].out_node;
}
if(j == step)
{
return path_i;
}
}
}
return -1;
}
inline void add_insertionEdge_weight(Graph* g, long long alignNodeID, char* insert, long long insert_length)
{
long long nodeID;
long long edgeID;
Edge_alloc* edge = &(g->g_nodes.list[alignNodeID].insertion_edges);
if (insert_length == 1)
{
edgeID = getEdge(g, edge, 1, insert[0]);
if (edgeID != -1)
{
edge->list[edgeID].weight++;
}
else ///there is no such edge
{
nodeID = add_Node_Graph(g, insert[0]);
append_Edge_alloc(edge, alignNodeID, nodeID, 1, 1);
///add the new node to alignNodeID by insertion_edges
//should link to the initial node, instead of the next node of the initial node
///append_Edge_alloc(&(g->g_nodes.list[nodeID].insertion_edges), nodeID, alignNodeID + 1, 1, 0);
append_Edge_alloc(&(g->g_nodes.list[nodeID].insertion_edges), nodeID, alignNodeID, 1, 0);
}
}
else
{
///edgeID = get_insertion_Edges(g, edge, insert_length, insert);
edgeID = get_insertion_Edges_new(g, alignNodeID, insert_length, insert);
if (edgeID != -1)
{
///just one outdegree
edge->list[edgeID].weight++;
}
else
{
create_insertion_Edges(g, alignNodeID, insert_length, insert);
}
}
}
#endif