Skip to content

Latest commit

 

History

History
94 lines (82 loc) · 2.4 KB

78_Indexed_geo_shapes.asciidoc

File metadata and controls

94 lines (82 loc) · 2.4 KB

在查询中使用已索引的形状

对于那些经常会在查询中使用的形状,可以把它们索引起来以便在查询中可以方便地直接引用名字。以之前的阿姆斯特丹中部为例,我们可以把它存储成一个类型为 neighborhood 的文档。

首先,我们仿照之前设置 landmark 时的方式建立映射:

PUT /attractions/_mapping/neighborhood
{
  "properties": {
    "name": {
      "type": "string"
    },
    "location": {
      "type": "geo_shape"
    }
  }
}

然后我们索引阿姆斯特丹中部对应的形状:

PUT /attractions/neighborhood/central_amsterdam
{
  "name" : "Central Amsterdam",
  "location" : {
      "type" : "polygon",
      "coordinates" : [[
        [4.88330,52.38617],
        [4.87463,52.37254],
        [4.87875,52.36369],
        [4.88939,52.35850],
        [4.89840,52.35755],
        [4.91909,52.36217],
        [4.92656,52.36594],
        [4.93368,52.36615],
        [4.93342,52.37275],
        [4.92690,52.37632],
        [4.88330,52.38617]
      ]]
  }
}

形状索引好之后,我们就可以在查询中通过 indextypeid 来引用它了:

GET /attractions/landmark/_search
{
  "query": {
    "geo_shape": {
      "location": {
        "relation": "within",
        "indexed_shape": { (1)
          "index": "attractions",
          "type":  "neighborhood",
          "id":    "central_amsterdam",
          "path":  "location"
        }
      }
    }
  }
}
  1. 指定 indexed_shape 而不是 shape ,Elasticesearch 就知道需要从指定的文档和 path 检索出对应的形状了。

阿姆斯特丹中部这个形状没有什么特别的。同样地,我们也可以在查询中使用已经索引好的达姆广场。这个查询可以找出与达姆广场有交集的临近点:

GET /attractions/neighborhood/_search
{
  "query": {
    "geo_shape": {
      "location": {
        "indexed_shape": {
          "index": "attractions",
          "type":  "landmark",
          "id":    "dam_square",
          "path":  "location"
        }
      }
    }
  }
}