-
Notifications
You must be signed in to change notification settings - Fork 0
/
README.Rmd
67 lines (48 loc) · 1.91 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
output: github_document
---
<!-- README.md is generated from README.Rmd. Please edit that file -->
```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "man/figures/README-",
out.width = "100%"
)
```
# phylepic
<!-- badges: start -->
[![r-universe status](https://cidm-ph.r-universe.dev/badges/phylepic)](https://cidm-ph.r-universe.dev)
[![R-CMD-check](https://github.com/cidm-ph/phylepic/actions/workflows/R-CMD-check.yaml/badge.svg)](https://github.com/cidm-ph/phylepic/actions/workflows/R-CMD-check.yaml)
[![CRAN
status](https://www.r-pkg.org/badges/version/phylepic)](https://CRAN.R-project.org/package=phylepic)
<!-- badges: end -->
Phylepic contains tools for visualisations that are useful for genomic epidemiology
of pathogens, designed for a public health setting.
## Installation
You can install phylepic like so:
``` r
# CRAN release
install.packages('phylepic')
# development version
install.packages('phylepic', repos = c('https://cidmp-ph.r-universe.dev', 'https://cloud.r-project.org'))
```
## Example
This is an example of a very minimal phylepic chart.
```{r example, fig.width=7, fig.height=4, eval = F}
library(ape)
library(phylepic)
tree <- read.tree(text = "((D:0.3,C:0.4):0.5,B:0.1,A:0.2);")
metadata <- data.frame(
ID = c("A", "B", "C", "D"),
date = as.Date(c("2024-01-10", "2024-01-12", "2024-01-21", "2024-01-23")),
country = factor(c("Australia", "Australia", NA, "New Zealand"))
)
phylepic(tree, metadata, ID, date) |> plot()
```
Refer to [the package vignette](https://cidm-ph.github.io/phylepic/articles/phylepic.html) for a more complete example.
## Citation
See `citation("phylepic")`.
Suster CJE, Watt AE, Wang Q, Chen SC, Kok J, Sintchenko V (2024).
“Combined visualization of genomic and epidemiological data for outbreaks.”
_Epidemiology & Infection_ 152: e110. [doi:10.1017/S0950268824001092](https://doi.org/10.1017/S0950268824001092),