forked from enormandeau/Scripts
-
Notifications
You must be signed in to change notification settings - Fork 0
/
fastqgz_subsampling.py
executable file
·64 lines (56 loc) · 1.76 KB
/
fastqgz_subsampling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
#!/usr/bin/env python
"""Extract n random sequences from a fastq file.
Usage:
%program input_file proportion output_file
input_file: name of the gzip compressed fastq file to treat
eg: sequences.fastq.gz
proportion: between 0 and 1, the proportion of reads to randomly keep
output_file: name of the gzip compressed fastq file to output to
"""
# Importing modules
import random
import gzip
import sys
import re
# Defining classes
class Fastq(object):
"""Fastq object with name and sequence
"""
def __init__(self, name, seq, name2, qual):
self.name = name
self.seq = seq
self.name2 = name2
self.qual = qual
def write_to_file(self, handle):
handle.write("@" + self.name + "\n")
handle.write(self.seq + "\n")
handle.write("+" + self.name2 + "\n")
handle.write(self.qual + "\n")
# Defining functions
def fastq_iterator(input_file):
"""Takes a fastq file infile and returns a fastq object iterator
"""
with gzip.open(input_file) as f:
while True:
name = f.readline().strip()[1:]
if not name:
break
seq = f.readline().strip()
name2 = f.readline().strip()[1:]
qual = f.readline().strip()
yield Fastq(name, seq, name2, qual)
# Parsing user input
try:
fastq_file = sys.argv[1] # Input fastq file
proportion = float(sys.argv[2]) # Number of sequences wanted
result_file = sys.argv[3] # Output fastq file
except:
print __doc__
sys.exit(0)
# Main
if __name__ == '__main__':
fastq_sequences = fastq_iterator(fastq_file)
with gzip.open(result_file, "w") as outf:
for seq in fastq_sequences:
if random.random() < proportion:
seq.write_to_file(outf)