Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

how to convert mnet.25.prototxt and mnet.25.caffemodel to mnet-deconv.prototxt and mnet-deconv.caffemodel #4

Open
Royzon opened this issue Sep 3, 2019 · 7 comments

Comments

@Royzon
Copy link

Royzon commented Sep 3, 2019

Thanks for your sharing. I convert mnet.25 mxnet model to caffe model successfully by your tools, but I find this caffe model can't used in your project directly, so may you pleasure to help me solve it?

@clancylian
Copy link
Owner

what's your problems?

@Royzon
Copy link
Author

Royzon commented Sep 5, 2019

the error message is here:
[100%] Linking CXX executable retinaface
[100%] Built target retinaface
batchSize:1, channel:3, netHeight:416, netWidth:288.
Caffe Parser: Invalid axis in crop layer - only spatial cropping is supported
error parsing layer type Crop index 143
retinaface: retinaface/tensorrt/trtnetbase.cpp:279: void TrtNetBase::caffeToTRTModel(const string&, const string&, nvcaffeparser1::IPluginFactory*): Assertion `blobNameToTensor != nullptr' failed.
Aborted (core dumped)

and I find there are many differences, why the converted model can not be used directly?
$ diff mnet25.prototxt mnet-deconv-0517.prototxt
7c7
< shape: { dim: 1 dim: 3 dim: 416 dim: 288 }

shape: { dim: 1 dim: 3 dim: 320 dim: 320 }

1208a1209

  bias_term: true

1247a1249

  bias_term: true

1279a1282

  bias_term: true

1318a1322

  bias_term: true

1350a1355

  bias_term: true

1389a1395

  bias_term: true

1437a1444

  bias_term: true

1448,1453c1455,1460
< dim: 2
< dim: -1
< dim: 0
< }
< axis: 1
< }

  dim:0
  dim:2
  dim:-1
  dim:0
 }

}
1470,1475c1477,1482
< dim: 4
< dim: -1
< dim: 0
< }
< axis: 1
< }


  dim:0
  dim:4
  dim:-1
  dim:0
 }

}
1487a1495
bias_term: true
1500a1509
bias_term: true
1513a1523
bias_term: true
1544,1545d1553
< bottom: "rf_c3_lateral_relu"
< top: "rf_c3_upsampling"
1547a1556,1557
bottom: "rf_c3_lateral_relu"
top: "rf_c3_upsampling"
1549,1556c1559,1566
< num_output: 64
< kernel_size: 4
< stride: 2
< pad: 1
< group: 64
< bias_term: false
< weight_filler: {
< type: "bilinear"


  kernel_size: 4
  stride: 2
  pad: 1
  num_output: 64
  group: 64
  bias_term: false
  weight_filler {
 type: "bilinear"

1558a1569

param { lr_mult: 0 decay_mult: 0 }
1568,1569c1579
< axis: 1
< offset: 0


  axis: 2

1593a1604

  bias_term: true

1632a1644

  bias_term: true

1664a1677

  bias_term: true

1703a1717

  bias_term: true

1735a1750

  bias_term: true

1774a1790

  bias_term: true

1822a1839

  bias_term: true

1833,1838c1850,1855
< dim: 2
< dim: -1
< dim: 0
< }
< axis: 1
< }

  dim:0
  dim:2
  dim:-1
  dim:0
 }

}
1855,1860c1872,1877
< dim: 4
< dim: -1
< dim: 0
< }
< axis: 1
< }


  dim:0
  dim:4
  dim:-1
  dim:0
 }

}
1872a1890
bias_term: true
1885a1904
bias_term: true
1898a1918
bias_term: true
1929,1930d1948
< bottom: "rf_c2_aggr_relu"
< top: "rf_c2_upsampling"
1932a1951,1952
bottom: "rf_c2_aggr_relu"
top: "rf_c2_upsampling"
1934,1941c1954,1961
< num_output: 64
< kernel_size: 4
< stride: 2
< pad: 1
< group: 64
< bias_term: false
< weight_filler: {
< type: "bilinear"


  kernel_size: 4
  stride: 2
  pad: 1
  num_output: 64
  group: 64
  bias_term: false
  weight_filler {
 type: "bilinear"

1943a1964

param { lr_mult: 0 decay_mult: 0 }
1953,1954c1974
< axis: 1
< offset: 0


  axis: 2

1978a1999

  bias_term: true

2017a2039

  bias_term: true

2049a2072

  bias_term: true

2088a2112

  bias_term: true

2120a2145

  bias_term: true

2159a2185

  bias_term: true

2207a2234

  bias_term: true

2218,2223c2245,2250
< dim: 2
< dim: -1
< dim: 0
< }
< axis: 1
< }

  dim:0
  dim:2
  dim:-1
  dim:0
 }

}
2240,2245c2267,2272
< dim: 4
< dim: -1
< dim: 0
< }
< axis: 1
< }


  dim:0
  dim:4
  dim:-1
  dim:0
 }

}
2257a2285
bias_term: true
2270a2299
bias_term: true

@clancylian
Copy link
Owner

can you use caffe model directly instead of use tensorRT model ?
if caffe model is not occur error , you should set shape in .prototxt the same as the code.

@flazerain
Copy link

can you use caffe model directly instead of use tensorRT model ?
if caffe model is not occur error , you should set shape in .prototxt the same as the code.

我自己训的模型怎么能变成mnet-deconv那样,转换的时候报错:
Caffe Parser: Invalid axis in crop layer - only spatial cropping is supported

@nuanxinqing
Copy link

@Royzon Hi where did you download the mobilenet25 mxnet model?could you give me the website?thank u

@JaydonChion
Copy link

@clancylian , I encountered this error when I tried using your mnet25.caffemodel and ment25.prototxt to do inferencing on DeepStream. Deepstream auto convert the caffe model to tensorRT by generating engine plan file. The caffe model itself is working fine, the error occurs when it comes to tensorRT. Any thoughts on what might be the reason? Thanks

@qustions
Copy link

@JaydonChion have you solve this?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

6 participants