From be17dce310fc62c1b1429e84de401fd34a813210 Mon Sep 17 00:00:00 2001
From: veena
Date: Sun, 28 Jul 2024 16:10:48 +0530
Subject: [PATCH 1/3] updated exercises
---
exercises.md | 175 ++++++++++++++++++++++++++++++++++++++++++++++-----
1 file changed, 158 insertions(+), 17 deletions(-)
diff --git a/exercises.md b/exercises.md
index ae40576..c484ace 100644
--- a/exercises.md
+++ b/exercises.md
@@ -1,32 +1,173 @@
--
+May 4th 2024
- Question: [(0,"x"), (1, 12), (0, 34), (1,90), (1,89), (0,"s"), (1, "7")]
+ Q1. create a Base X (eg:- 12,14,18) numering system.
+ - Write two digit numbers in that number system.
+ - Perform Sigle digit addition
+ - Perform double digit addition.
+ - Multipliaction table for 1-10 in this number system.
+ - Perform double digit multiplication.
+ - Convert from Base X to Base 10
+ - Convert from Base 10 to Base X
+--
+May 11th and 12th 2024
+
+ Q1. Calculate grosspay given hours and rate
+ Q2. Rewrite the pay computation to give the employee 1.5 times the hourly rate for hours worked above 40 hours
+ Q3. Write a program to compute the total amount after compounded interest
- Move all zeros to the begining and all 1s to end without using another list in
- order of n
- Input: [(0,"x"), (1, 12), (0, 34), (1,90), (1,89), (0,"s"), (1, "7")]
- Expected Output: [(0,"x"), (0, 34), (0,"s"), (1,89), (1,90), (1, 12), (1, "7")]
+ Principle: Rate: Time (year):
+ Print the total amount after applying compound interest.
+ Total = Principle * (1 + rate/100)**years
+ Q4. Print all strings that can be generated from a list of letters.
+ Input: abc
+ Output:
+ abc
+ acb
+ bac
+ bca
+ cab
+ cba
+ Q5. BLEU Score. Code it
+
+ Bleu(N) =Brevity Penalty * Geometric Average Precision scores
+ c= predicted length
+ r= target length
+ Brevity Penalty
+ =1 , if c>r
+ =e**(1-r/c) , if c<=r
+
+ Geometric Average Precision scores = p1**(1/4) * p2**(1/4) *p3**(1/4) * p4**(1/4)
+ Q6. Code multiplication without using * or loops
--
+May 18th and 19th 2024
+
+ Q1. Code Tower of Hanoi Problem
+ Q2. Write a wild card character matcher. * matches 0 or more chars. ? matches only one character.
+
+ a* -> abc, ab, ax, a
+ a? -> a1, a2, aa,
+ a*b -> axyzb, a123b, ab
+ a*b*c -> abc, abbbc, a1b1c
+ aa?b*:
+ match: aa1b, aaxby, aa1bcdeffgshshshsh
+ not match: aab, ab,
+ def ismatch(pat, text):
+ return True/False
+
+ Q3. Given two vectors (arrays or list of numbers)
+
+ return the difference of the two vectors
+ diff([1,2,3], [2,3,4]) => [-1, -1, -1]
+ Q4. Given two vectors (arrays or list of numbers). Find absolute distance between them. L1 Distance.
+
+ abs_distance([1,2,3], [2, 3, 4]) -> 3
+ abs_distance([5,4,1], [2, 3, 4]) -> 3+1+3 = 7
+ Q5. Given two 2D vectors representing two points, find the distance between two points.
+
+ distance([1,2], [3,5]) -> sqrt((3 - 1)**2 + (5-2)**2)
+ sqrt(13) = 3.605551275463989
+ Q6. Given two 3D vectors representing two points, find the distance between two points. distance3d([1, 2, 3], [2,3,4] ) -> math.sqrt(3)
- Counting Sort:
- Q: Sort the numbers containing age of people. Billion numbers.
+ Q7. Generalize problem Q4 for n dimensions.
+--
+May 25th and 26th 2024
- I maintain an array of 200 numbers. 0th index is for people with 0 yrs....
- 200th elements contains count of people with 200 age.
+ Q1. Coin Toss: Create a function that return 0 or 1 with equal probability. Hint: random.random()
+ Q2. Coin Toss: Create a function that return 0, 1, 2 with equal probability.
+ Q3. Create a n faced die which generates number from 0 to n - 1 with equal probability.
+ Q4. Unfair Coin:
+ def coin_toss(p1, p2): # p1 /(p1 + p2), p2/(p1+p2) # return 0 p1 probability # return 1 with p2 probability
+ Q5. coin_toss, takes three probability p1, p2, p3 as arguments.
+ Return 0 with p1 probability. 1 with p2 probability. 2 with p3 probability. coin_toss_3(0.7, 0.2, 0.1) # 0 - 70% of times, 1 - 20% of time, 2 - 10% of time
+ Q6. Generalize coin_toss, takes n probability p1, p2, p3..pn-1 as arguments.
+--
+June 1st and 2nd 2024
+ Q1. Code the SQRT
+ Q2. Code the 1/4 power?
+ Q3. Code the 1/5 power
+ Q4. Convert to probability
+ 10, 20, 30 -> 10/(10+20+30), 20/(10+20+30), 30/(10+20+30)
+ Q5: Softmax
+ [1,2,3] -> 10^1, 10^2, 10^3 -> convert_to_prob
--
+June 7th and 8th 2024
- Check problem.pdf
+ Q1. Given array of sorted numbers, check if a number exists in them. Mention the time complexity
+ - using loops
+ - using recursion
+ Q2. You have a list of 0s and 1s....find the count of 0s. the array is sorted. Mention the time complexity
+ count_zeros([0,0,0,0,0,1,1,1,1,1,1]) -> 5
+ Q3. Count 1s in a sorted array of numbers. Mention complexity
+ count_ones([0,0,0,0,0,1,1,1,1,1,1,1.1, 1.2, 2]) ->6
+ Q4. Given a number represented as string convert it integer. Mention time Complexity
+ to_num("145") -> 145
+ Q5. You have two lists of numbers:
+ First list: 100 numbes. not sorted m
+ Second List: Millions of numbers. not sorted n
+ Find all numbers which are common in these two lists
+ Mention time complexity.
+--
+June 14th and 15th 2024
+ Q1. Rewrite this code to make it using circular buffer
+ read a line
+ append a line
+ if size of the buffer is > 10, knock out the first
+ last_n_lines(file_name, num=10)
+
+ Q2. Write a program to simulate circular buffer
+ circle_append(lst, element)
+
+ Q3. Find Longest Line in the file
+ Q4. Implement last_n_lines method using traversing
+ Q5. Find the frequency of words in a file
+ Q6. Checkout the animations and try to code them and calculate their complexity.
+ - BubbleSort
+ - Insertion Sort
+ - MergeSort
+ - QuickSort
+--
+June 22nd and 23rd 2024
+ Q1. Write code to solve equations
+
--
- Code the Bubble Sort: https://yongdanielliang.github.io/animation/web/BubbleSortNew.html
- Insertion Sort
- Quick Sort - Version with O(n) space complexity.
- Merge Sort
+July 6th and 7th 2024
+ Q1. [(0,"x"), (1, 12), (0, 34), (1,90), (1,89), (0,"s"), (1, "7")]
+ Move all zeros to the begining and all 1s to end without using another list in order of n
+ Input: [(0,"x"), (1, 12), (0, 34), (1,90), (1,89), (0,"s"), (1, "7")]
+ Expected Output: [(0,"x"), (0, 34), (0,"s"), (1,89), (1,90), (1, 12), (1, "7")]
+
+ Q2. Counting Sort:
+ Sort the numbers containing age of people. Billion numbers.
+ I maintain an array of 200 numbers. 0th index is for people with 0 yrs....
+ 200th elements contains count of people with 200 age.
+ Q3. Attempt the encode and decorder problem in problem.pdf
+ - dictionary approach
+ - without dictionary approach
+--
+July 13th and 14th 2024
+ Q1. Implement Binary Search Tree Delete (Insert and Find done in class)
+
+--
+July 20th and 21st 2024
+
+ https://docs.python.org/3/library/heapq.html
+ Q1. Check out Traversal of Tree
+ - Depth first
+ - Breath First
+ Q2.Implement a simple pattern matcher that matches . with single character and * with any number (0 or more) of any character
+ Q3: Write regular expression to match email address
+ Q4: Write regular expression to match URL
+ Q5: Build a regular expression to extract URLs from the server logs 'access.log.41'
--
- Question: Implement Deletion in Binary Search Tree
- Look at animation: https://www.cs.usfca.edu/~galles/visualization/BST.html
- Look at implementaiton in Jul 13 Notebook
+July 27th and 28th 2024
+ Go through the below blog on sentiment Analysis
+ https://cloudxlab.com/blog/understanding-embeddings-and-matrices-with-the-help-of-sentiment-analysis-and-llms-hands-on/
+
+ code available in below repo
+ https://github.com/cloudxlab/Hands-On-LLMs-with-OpenAI-and-Langchain/blob/main/Sentiment%20Analysis%20with%20LLMs/Sentiment%20Analysis%20with%20LLMs.ipynb
\ No newline at end of file
From bd6a7a9a2905c198e7aa7c43fcd3ca4cc212b33b Mon Sep 17 00:00:00 2001
From: VeenaGindo <87847023+VeenaGindo@users.noreply.github.com>
Date: Sun, 28 Jul 2024 22:57:47 +0530
Subject: [PATCH 2/3] formatted exercises.md
---
exercises.md | 7 ++++++-
1 file changed, 6 insertions(+), 1 deletion(-)
diff --git a/exercises.md b/exercises.md
index c484ace..c9d18c4 100644
--- a/exercises.md
+++ b/exercises.md
@@ -111,6 +111,7 @@ June 7th and 8th 2024
Mention time complexity.
--
June 14th and 15th 2024
+
Q1. Rewrite this code to make it using circular buffer
read a line
append a line
@@ -130,10 +131,12 @@ June 14th and 15th 2024
- QuickSort
--
June 22nd and 23rd 2024
+
Q1. Write code to solve equations
--
July 6th and 7th 2024
+
Q1. [(0,"x"), (1, 12), (0, 34), (1,90), (1,89), (0,"s"), (1, "7")]
Move all zeros to the begining and all 1s to end without using another list in order of n
Input: [(0,"x"), (1, 12), (0, 34), (1,90), (1,89), (0,"s"), (1, "7")]
@@ -148,6 +151,7 @@ July 6th and 7th 2024
- without dictionary approach
--
July 13th and 14th 2024
+
Q1. Implement Binary Search Tree Delete (Insert and Find done in class)
--
@@ -164,10 +168,11 @@ July 20th and 21st 2024
--
July 27th and 28th 2024
+
Go through the below blog on sentiment Analysis
https://cloudxlab.com/blog/understanding-embeddings-and-matrices-with-the-help-of-sentiment-analysis-and-llms-hands-on/
code available in below repo
https://github.com/cloudxlab/Hands-On-LLMs-with-OpenAI-and-Langchain/blob/main/Sentiment%20Analysis%20with%20LLMs/Sentiment%20Analysis%20with%20LLMs.ipynb
-
\ No newline at end of file
+
From 1baa6a9376aa6faec7e47b44b16050e2c8f2d640 Mon Sep 17 00:00:00 2001
From: VeenaGindo <87847023+VeenaGindo@users.noreply.github.com>
Date: Sat, 19 Oct 2024 11:10:30 +0530
Subject: [PATCH 3/3] Created using Colab
---
1_Reference_EDA.ipynb | 3253 +++++++++++++++++++++++++++++++++++++++++
1 file changed, 3253 insertions(+)
create mode 100644 1_Reference_EDA.ipynb
diff --git a/1_Reference_EDA.ipynb b/1_Reference_EDA.ipynb
new file mode 100644
index 0000000..1f75ecc
--- /dev/null
+++ b/1_Reference_EDA.ipynb
@@ -0,0 +1,3253 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "view-in-github",
+ "colab_type": "text"
+ },
+ "source": [
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "zb2OPLAEoc29"
+ },
+ "source": [
+ "# DonorsChoose"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "TnzJ7Nkqoc2_"
+ },
+ "source": [
+ "\n",
+ "DonorsChoose.org receives hundreds of thousands of project proposals each year for classroom projects in need of funding. Right now, a large number of volunteers is needed to manually screen each submission before it's approved to be posted on the DonorsChoose.org website.\n",
+ "
\n",
+ "\n",
+ " Next year, DonorsChoose.org expects to receive close to 500,000 project proposals. As a result, there are three main problems they need to solve:\n",
+ "
\n",
+ "\n",
+ " How to scale current manual processes and resources to screen 500,000 projects so that they can be posted as quickly and as efficiently as possible \n",
+ " How to increase the consistency of project vetting across different volunteers to improve the experience for teachers \n",
+ " How to focus volunteer time on the applications that need the most assistance \n",
+ " \n",
+ "
\n",
+ "\n",
+ "The goal of the competition is to predict whether or not a DonorsChoose.org project proposal submitted by a teacher will be approved, using the text of project descriptions as well as additional metadata about the project, teacher, and school. DonorsChoose.org can then use this information to identify projects most likely to need further review before approval.\n",
+ "
"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "0LUPgFS9oc3A"
+ },
+ "source": [
+ "## About the DonorsChoose Data Set\n",
+ "\n",
+ "The `train.csv` data set provided by DonorsChoose contains the following features:\n",
+ "\n",
+ "Feature | Description\n",
+ "----------|---------------\n",
+ "**`project_id`** | A unique identifier for the proposed project. **Example:** `p036502` \n",
+ "**`project_title`** | Title of the project. **Examples:**Art Will Make You Happy!
First Grade Fun
\n",
+ "**`project_grade_category`** | Grade level of students for which the project is targeted. One of the following enumerated values: Grades PreK-2
Grades 3-5
Grades 6-8
Grades 9-12
\n",
+ " **`project_subject_categories`** | One or more (comma-separated) subject categories for the project from the following enumerated list of values: Applied Learning
Care & Hunger
Health & Sports
History & Civics
Literacy & Language
Math & Science
Music & The Arts
Special Needs
Warmth
**Examples:** Music & The Arts
Literacy & Language, Math & Science
\n",
+ " **`school_state`** | State where school is located ([Two-letter U.S. postal code](https://en.wikipedia.org/wiki/List_of_U.S._state_abbreviations#Postal_codes)). **Example:** `WY`\n",
+ "**`project_subject_subcategories`** | One or more (comma-separated) subject subcategories for the project. **Examples:** Literacy
Literature & Writing, Social Sciences
\n",
+ "**`project_resource_summary`** | An explanation of the resources needed for the project. **Example:** My students need hands on literacy materials to manage sensory needs!
\n",
+ "**`project_essay_1`** | First application essay* \n",
+ "**`project_essay_2`** | Second application essay* \n",
+ "**`project_essay_3`** | Third application essay* \n",
+ "**`project_essay_4`** | Fourth application essay* \n",
+ "**`project_submitted_datetime`** | Datetime when project application was submitted. **Example:** `2016-04-28 12:43:56.245` \n",
+ "**`teacher_id`** | A unique identifier for the teacher of the proposed project. **Example:** `bdf8baa8fedef6bfeec7ae4ff1c15c56` \n",
+ "**`teacher_prefix`** | Teacher's title. One of the following enumerated values: \n",
+ "**`teacher_number_of_previously_posted_projects`** | Number of project applications previously submitted by the same teacher. **Example:** `2`\n",
+ "\n",
+ "* See the section Notes on the Essay Data for more details about these features.\n",
+ "\n",
+ "Additionally, the `resources.csv` data set provides more data about the resources required for each project. Each line in this file represents a resource required by a project:\n",
+ "\n",
+ "Feature | Description\n",
+ "----------|---------------\n",
+ "**`id`** | A `project_id` value from the `train.csv` file. **Example:** `p036502` \n",
+ "**`description`** | Desciption of the resource. **Example:** `Tenor Saxophone Reeds, Box of 25` \n",
+ "**`quantity`** | Quantity of the resource required. **Example:** `3` \n",
+ "**`price`** | Price of the resource required. **Example:** `9.95` \n",
+ "\n",
+ "**Note:** Many projects require multiple resources. The `id` value corresponds to a `project_id` in train.csv, so you use it as a key to retrieve all resources needed for a project:\n",
+ "\n",
+ "The data set contains the following label (the value you will attempt to predict):\n",
+ "\n",
+ "Label | Description\n",
+ "----------|---------------\n",
+ "`project_is_approved` | A binary flag indicating whether DonorsChoose approved the project. A value of `0` indicates the project was not approved, and a value of `1` indicates the project was approved."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "4nXezp54oc3B"
+ },
+ "source": [
+ "### Notes on the Essay Data\n",
+ "\n",
+ "\n",
+ "Prior to May 17, 2016, the prompts for the essays were as follows:\n",
+ "__project_essay_1:__ \"Introduce us to your classroom\" \n",
+ "__project_essay_2:__ \"Tell us more about your students\" \n",
+ "__project_essay_3:__ \"Describe how your students will use the materials you're requesting\" \n",
+ "__project_essay_3:__ \"Close by sharing why your project will make a difference\" \n",
+ " \n",
+ "\n",
+ "\n",
+ "\n",
+ "Starting on May 17, 2016, the number of essays was reduced from 4 to 2, and the prompts for the first 2 essays were changed to the following: \n",
+ "__project_essay_1:__ \"Describe your students: What makes your students special? Specific details about their background, your neighborhood, and your school are all helpful.\" \n",
+ "__project_essay_2:__ \"About your project: How will these materials make a difference in your students' learning and improve their school lives?\" \n",
+ " For all projects with project_submitted_datetime of 2016-05-17 and later, the values of project_essay_3 and project_essay_4 will be NaN.\n",
+ " \n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 17
+ },
+ "id": "lDzTpG88oc3D",
+ "outputId": "113ac5a6-8381-4219-f29a-382434086caa"
+ },
+ "outputs": [
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/html": [
+ " \n",
+ " "
+ ]
+ },
+ "metadata": {}
+ }
+ ],
+ "source": [
+ "%matplotlib inline\n",
+ "import warnings\n",
+ "warnings.filterwarnings(\"ignore\")\n",
+ "\n",
+ "import sqlite3\n",
+ "import pandas as pd\n",
+ "import numpy as np\n",
+ "import nltk\n",
+ "import string\n",
+ "import matplotlib.pyplot as plt\n",
+ "import seaborn as sns\n",
+ "from sklearn.feature_extraction.text import TfidfTransformer\n",
+ "from sklearn.feature_extraction.text import TfidfVectorizer\n",
+ "\n",
+ "from sklearn.feature_extraction.text import CountVectorizer\n",
+ "from sklearn.metrics import confusion_matrix\n",
+ "from sklearn import metrics\n",
+ "from sklearn.metrics import roc_curve, auc\n",
+ "from nltk.stem.porter import PorterStemmer\n",
+ "\n",
+ "import re\n",
+ "# Tutorial about Python regular expressions: https://pymotw.com/2/re/\n",
+ "import string\n",
+ "from nltk.corpus import stopwords\n",
+ "from nltk.stem import PorterStemmer\n",
+ "from nltk.stem.wordnet import WordNetLemmatizer\n",
+ "\n",
+ "from gensim.models import Word2Vec\n",
+ "from gensim.models import KeyedVectors\n",
+ "import pickle\n",
+ "\n",
+ "from tqdm import tqdm\n",
+ "import os\n",
+ "\n",
+ "from chart_studio import plotly\n",
+ "import plotly.offline as offline\n",
+ "import plotly.graph_objs as go\n",
+ "offline.init_notebook_mode()\n",
+ "from collections import Counter"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "from google.colab import files\n",
+ "files.upload()\n"
+ ],
+ "metadata": {
+ "colab": {
+ "resources": {
+ "http://localhost:8080/nbextensions/google.colab/files.js": {
+ "data": "Ly8gQ29weXJpZ2h0IDIwMTcgR29vZ2xlIExMQwovLwovLyBMaWNlbnNlZCB1bmRlciB0aGUgQXBhY2hlIExpY2Vuc2UsIFZlcnNpb24gMi4wICh0aGUgIkxpY2Vuc2UiKTsKLy8geW91IG1heSBub3QgdXNlIHRoaXMgZmlsZSBleGNlcHQgaW4gY29tcGxpYW5jZSB3aXRoIHRoZSBMaWNlbnNlLgovLyBZb3UgbWF5IG9idGFpbiBhIGNvcHkgb2YgdGhlIExpY2Vuc2UgYXQKLy8KLy8gICAgICBodHRwOi8vd3d3LmFwYWNoZS5vcmcvbGljZW5zZXMvTElDRU5TRS0yLjAKLy8KLy8gVW5sZXNzIHJlcXVpcmVkIGJ5IGFwcGxpY2FibGUgbGF3IG9yIGFncmVlZCB0byBpbiB3cml0aW5nLCBzb2Z0d2FyZQovLyBkaXN0cmlidXRlZCB1bmRlciB0aGUgTGljZW5zZSBpcyBkaXN0cmlidXRlZCBvbiBhbiAiQVMgSVMiIEJBU0lTLAovLyBXSVRIT1VUIFdBUlJBTlRJRVMgT1IgQ09ORElUSU9OUyBPRiBBTlkgS0lORCwgZWl0aGVyIGV4cHJlc3Mgb3IgaW1wbGllZC4KLy8gU2VlIHRoZSBMaWNlbnNlIGZvciB0aGUgc3BlY2lmaWMgbGFuZ3VhZ2UgZ292ZXJuaW5nIHBlcm1pc3Npb25zIGFuZAovLyBsaW1pdGF0aW9ucyB1bmRlciB0aGUgTGljZW5zZS4KCi8qKgogKiBAZmlsZW92ZXJ2aWV3IEhlbHBlcnMgZm9yIGdvb2dsZS5jb2xhYiBQeXRob24gbW9kdWxlLgogKi8KKGZ1bmN0aW9uKHNjb3BlKSB7CmZ1bmN0aW9uIHNwYW4odGV4dCwgc3R5bGVBdHRyaWJ1dGVzID0ge30pIHsKICBjb25zdCBlbGVtZW50ID0gZG9jdW1lbnQuY3JlYXRlRWxlbWVudCgnc3BhbicpOwogIGVsZW1lbnQudGV4dENvbnRlbnQgPSB0ZXh0OwogIGZvciAoY29uc3Qga2V5IG9mIE9iamVjdC5rZXlzKHN0eWxlQXR0cmlidXRlcykpIHsKICAgIGVsZW1lbnQuc3R5bGVba2V5XSA9IHN0eWxlQXR0cmlidXRlc1trZXldOwogIH0KICByZXR1cm4gZWxlbWVudDsKfQoKLy8gTWF4IG51bWJlciBvZiBieXRlcyB3aGljaCB3aWxsIGJlIHVwbG9hZGVkIGF0IGEgdGltZS4KY29uc3QgTUFYX1BBWUxPQURfU0laRSA9IDEwMCAqIDEwMjQ7CgpmdW5jdGlvbiBfdXBsb2FkRmlsZXMoaW5wdXRJZCwgb3V0cHV0SWQpIHsKICBjb25zdCBzdGVwcyA9IHVwbG9hZEZpbGVzU3RlcChpbnB1dElkLCBvdXRwdXRJZCk7CiAgY29uc3Qgb3V0cHV0RWxlbWVudCA9IGRvY3VtZW50LmdldEVsZW1lbnRCeUlkKG91dHB1dElkKTsKICAvLyBDYWNoZSBzdGVwcyBvbiB0aGUgb3V0cHV0RWxlbWVudCB0byBtYWtlIGl0IGF2YWlsYWJsZSBmb3IgdGhlIG5leHQgY2FsbAogIC8vIHRvIHVwbG9hZEZpbGVzQ29udGludWUgZnJvbSBQeXRob24uCiAgb3V0cHV0RWxlbWVudC5zdGVwcyA9IHN0ZXBzOwoKICByZXR1cm4gX3VwbG9hZEZpbGVzQ29udGludWUob3V0cHV0SWQpOwp9CgovLyBUaGlzIGlzIHJvdWdobHkgYW4gYXN5bmMgZ2VuZXJhdG9yIChub3Qgc3VwcG9ydGVkIGluIHRoZSBicm93c2VyIHlldCksCi8vIHdoZXJlIHRoZXJlIGFyZSBtdWx0aXBsZSBhc3luY2hyb25vdXMgc3RlcHMgYW5kIHRoZSBQeXRob24gc2lkZSBpcyBnb2luZwovLyB0byBwb2xsIGZvciBjb21wbGV0aW9uIG9mIGVhY2ggc3RlcC4KLy8gVGhpcyB1c2VzIGEgUHJvbWlzZSB0byBibG9jayB0aGUgcHl0aG9uIHNpZGUgb24gY29tcGxldGlvbiBvZiBlYWNoIHN0ZXAsCi8vIHRoZW4gcGFzc2VzIHRoZSByZXN1bHQgb2YgdGhlIHByZXZpb3VzIHN0ZXAgYXMgdGhlIGlucHV0IHRvIHRoZSBuZXh0IHN0ZXAuCmZ1bmN0aW9uIF91cGxvYWRGaWxlc0NvbnRpbnVlKG91dHB1dElkKSB7CiAgY29uc3Qgb3V0cHV0RWxlbWVudCA9IGRvY3VtZW50LmdldEVsZW1lbnRCeUlkKG91dHB1dElkKTsKICBjb25zdCBzdGVwcyA9IG91dHB1dEVsZW1lbnQuc3RlcHM7CgogIGNvbnN0IG5leHQgPSBzdGVwcy5uZXh0KG91dHB1dEVsZW1lbnQubGFzdFByb21pc2VWYWx1ZSk7CiAgcmV0dXJuIFByb21pc2UucmVzb2x2ZShuZXh0LnZhbHVlLnByb21pc2UpLnRoZW4oKHZhbHVlKSA9PiB7CiAgICAvLyBDYWNoZSB0aGUgbGFzdCBwcm9taXNlIHZhbHVlIHRvIG1ha2UgaXQgYXZhaWxhYmxlIHRvIHRoZSBuZXh0CiAgICAvLyBzdGVwIG9mIHRoZSBnZW5lcmF0b3IuCiAgICBvdXRwdXRFbGVtZW50Lmxhc3RQcm9taXNlVmFsdWUgPSB2YWx1ZTsKICAgIHJldHVybiBuZXh0LnZhbHVlLnJlc3BvbnNlOwogIH0pOwp9CgovKioKICogR2VuZXJhdG9yIGZ1bmN0aW9uIHdoaWNoIGlzIGNhbGxlZCBiZXR3ZWVuIGVhY2ggYXN5bmMgc3RlcCBvZiB0aGUgdXBsb2FkCiAqIHByb2Nlc3MuCiAqIEBwYXJhbSB7c3RyaW5nfSBpbnB1dElkIEVsZW1lbnQgSUQgb2YgdGhlIGlucHV0IGZpbGUgcGlja2VyIGVsZW1lbnQuCiAqIEBwYXJhbSB7c3RyaW5nfSBvdXRwdXRJZCBFbGVtZW50IElEIG9mIHRoZSBvdXRwdXQgZGlzcGxheS4KICogQHJldHVybiB7IUl0ZXJhYmxlPCFPYmplY3Q+fSBJdGVyYWJsZSBvZiBuZXh0IHN0ZXBzLgogKi8KZnVuY3Rpb24qIHVwbG9hZEZpbGVzU3RlcChpbnB1dElkLCBvdXRwdXRJZCkgewogIGNvbnN0IGlucHV0RWxlbWVudCA9IGRvY3VtZW50LmdldEVsZW1lbnRCeUlkKGlucHV0SWQpOwogIGlucHV0RWxlbWVudC5kaXNhYmxlZCA9IGZhbHNlOwoKICBjb25zdCBvdXRwdXRFbGVtZW50ID0gZG9jdW1lbnQuZ2V0RWxlbWVudEJ5SWQob3V0cHV0SWQpOwogIG91dHB1dEVsZW1lbnQuaW5uZXJIVE1MID0gJyc7CgogIGNvbnN0IHBpY2tlZFByb21pc2UgPSBuZXcgUHJvbWlzZSgocmVzb2x2ZSkgPT4gewogICAgaW5wdXRFbGVtZW50LmFkZEV2ZW50TGlzdGVuZXIoJ2NoYW5nZScsIChlKSA9PiB7CiAgICAgIHJlc29sdmUoZS50YXJnZXQuZmlsZXMpOwogICAgfSk7CiAgfSk7CgogIGNvbnN0IGNhbmNlbCA9IGRvY3VtZW50LmNyZWF0ZUVsZW1lbnQoJ2J1dHRvbicpOwogIGlucHV0RWxlbWVudC5wYXJlbnRFbGVtZW50LmFwcGVuZENoaWxkKGNhbmNlbCk7CiAgY2FuY2VsLnRleHRDb250ZW50ID0gJ0NhbmNlbCB1cGxvYWQnOwogIGNvbnN0IGNhbmNlbFByb21pc2UgPSBuZXcgUHJvbWlzZSgocmVzb2x2ZSkgPT4gewogICAgY2FuY2VsLm9uY2xpY2sgPSAoKSA9PiB7CiAgICAgIHJlc29sdmUobnVsbCk7CiAgICB9OwogIH0pOwoKICAvLyBXYWl0IGZvciB0aGUgdXNlciB0byBwaWNrIHRoZSBmaWxlcy4KICBjb25zdCBmaWxlcyA9IHlpZWxkIHsKICAgIHByb21pc2U6IFByb21pc2UucmFjZShbcGlja2VkUHJvbWlzZSwgY2FuY2VsUHJvbWlzZV0pLAogICAgcmVzcG9uc2U6IHsKICAgICAgYWN0aW9uOiAnc3RhcnRpbmcnLAogICAgfQogIH07CgogIGNhbmNlbC5yZW1vdmUoKTsKCiAgLy8gRGlzYWJsZSB0aGUgaW5wdXQgZWxlbWVudCBzaW5jZSBmdXJ0aGVyIHBpY2tzIGFyZSBub3QgYWxsb3dlZC4KICBpbnB1dEVsZW1lbnQuZGlzYWJsZWQgPSB0cnVlOwoKICBpZiAoIWZpbGVzKSB7CiAgICByZXR1cm4gewogICAgICByZXNwb25zZTogewogICAgICAgIGFjdGlvbjogJ2NvbXBsZXRlJywKICAgICAgfQogICAgfTsKICB9CgogIGZvciAoY29uc3QgZmlsZSBvZiBmaWxlcykgewogICAgY29uc3QgbGkgPSBkb2N1bWVudC5jcmVhdGVFbGVtZW50KCdsaScpOwogICAgbGkuYXBwZW5kKHNwYW4oZmlsZS5uYW1lLCB7Zm9udFdlaWdodDogJ2JvbGQnfSkpOwogICAgbGkuYXBwZW5kKHNwYW4oCiAgICAgICAgYCgke2ZpbGUudHlwZSB8fCAnbi9hJ30pIC0gJHtmaWxlLnNpemV9IGJ5dGVzLCBgICsKICAgICAgICBgbGFzdCBtb2RpZmllZDogJHsKICAgICAgICAgICAgZmlsZS5sYXN0TW9kaWZpZWREYXRlID8gZmlsZS5sYXN0TW9kaWZpZWREYXRlLnRvTG9jYWxlRGF0ZVN0cmluZygpIDoKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgJ24vYSd9IC0gYCkpOwogICAgY29uc3QgcGVyY2VudCA9IHNwYW4oJzAlIGRvbmUnKTsKICAgIGxpLmFwcGVuZENoaWxkKHBlcmNlbnQpOwoKICAgIG91dHB1dEVsZW1lbnQuYXBwZW5kQ2hpbGQobGkpOwoKICAgIGNvbnN0IGZpbGVEYXRhUHJvbWlzZSA9IG5ldyBQcm9taXNlKChyZXNvbHZlKSA9PiB7CiAgICAgIGNvbnN0IHJlYWRlciA9IG5ldyBGaWxlUmVhZGVyKCk7CiAgICAgIHJlYWRlci5vbmxvYWQgPSAoZSkgPT4gewogICAgICAgIHJlc29sdmUoZS50YXJnZXQucmVzdWx0KTsKICAgICAgfTsKICAgICAgcmVhZGVyLnJlYWRBc0FycmF5QnVmZmVyKGZpbGUpOwogICAgfSk7CiAgICAvLyBXYWl0IGZvciB0aGUgZGF0YSB0byBiZSByZWFkeS4KICAgIGxldCBmaWxlRGF0YSA9IHlpZWxkIHsKICAgICAgcHJvbWlzZTogZmlsZURhdGFQcm9taXNlLAogICAgICByZXNwb25zZTogewogICAgICAgIGFjdGlvbjogJ2NvbnRpbnVlJywKICAgICAgfQogICAgfTsKCiAgICAvLyBVc2UgYSBjaHVua2VkIHNlbmRpbmcgdG8gYXZvaWQgbWVzc2FnZSBzaXplIGxpbWl0cy4gU2VlIGIvNjIxMTU2NjAuCiAgICBsZXQgcG9zaXRpb24gPSAwOwogICAgZG8gewogICAgICBjb25zdCBsZW5ndGggPSBNYXRoLm1pbihmaWxlRGF0YS5ieXRlTGVuZ3RoIC0gcG9zaXRpb24sIE1BWF9QQVlMT0FEX1NJWkUpOwogICAgICBjb25zdCBjaHVuayA9IG5ldyBVaW50OEFycmF5KGZpbGVEYXRhLCBwb3NpdGlvbiwgbGVuZ3RoKTsKICAgICAgcG9zaXRpb24gKz0gbGVuZ3RoOwoKICAgICAgY29uc3QgYmFzZTY0ID0gYnRvYShTdHJpbmcuZnJvbUNoYXJDb2RlLmFwcGx5KG51bGwsIGNodW5rKSk7CiAgICAgIHlpZWxkIHsKICAgICAgICByZXNwb25zZTogewogICAgICAgICAgYWN0aW9uOiAnYXBwZW5kJywKICAgICAgICAgIGZpbGU6IGZpbGUubmFtZSwKICAgICAgICAgIGRhdGE6IGJhc2U2NCwKICAgICAgICB9LAogICAgICB9OwoKICAgICAgbGV0IHBlcmNlbnREb25lID0gZmlsZURhdGEuYnl0ZUxlbmd0aCA9PT0gMCA/CiAgICAgICAgICAxMDAgOgogICAgICAgICAgTWF0aC5yb3VuZCgocG9zaXRpb24gLyBmaWxlRGF0YS5ieXRlTGVuZ3RoKSAqIDEwMCk7CiAgICAgIHBlcmNlbnQudGV4dENvbnRlbnQgPSBgJHtwZXJjZW50RG9uZX0lIGRvbmVgOwoKICAgIH0gd2hpbGUgKHBvc2l0aW9uIDwgZmlsZURhdGEuYnl0ZUxlbmd0aCk7CiAgfQoKICAvLyBBbGwgZG9uZS4KICB5aWVsZCB7CiAgICByZXNwb25zZTogewogICAgICBhY3Rpb246ICdjb21wbGV0ZScsCiAgICB9CiAgfTsKfQoKc2NvcGUuZ29vZ2xlID0gc2NvcGUuZ29vZ2xlIHx8IHt9OwpzY29wZS5nb29nbGUuY29sYWIgPSBzY29wZS5nb29nbGUuY29sYWIgfHwge307CnNjb3BlLmdvb2dsZS5jb2xhYi5fZmlsZXMgPSB7CiAgX3VwbG9hZEZpbGVzLAogIF91cGxvYWRGaWxlc0NvbnRpbnVlLAp9Owp9KShzZWxmKTsK",
+ "ok": true,
+ "headers": [
+ [
+ "content-type",
+ "application/javascript"
+ ]
+ ],
+ "status": 200,
+ "status_text": ""
+ }
+ },
+ "base_uri": "https://localhost:8080/",
+ "height": 73
+ },
+ "id": "rjK9wg5AU_Gn",
+ "outputId": "68ad995e-5a3b-4622-f80c-e857f2252351"
+ },
+ "execution_count": null,
+ "outputs": [
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ ""
+ ],
+ "text/html": [
+ "\n",
+ " \n",
+ " \n",
+ " Upload widget is only available when the cell has been executed in the\n",
+ " current browser session. Please rerun this cell to enable.\n",
+ " \n",
+ " "
+ ]
+ },
+ "metadata": {}
+ },
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "Saving train_data.csv to train_data.csv\n"
+ ]
+ }
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "9GiSAGzAoc3R"
+ },
+ "source": [
+ "## 1.1 Reading Data"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 346
+ },
+ "id": "pSrg84iHoc3T",
+ "outputId": "48919635-a94d-4519-e31d-65b2c5e56f27"
+ },
+ "outputs": [
+ {
+ "output_type": "error",
+ "ename": "FileNotFoundError",
+ "evalue": "ignored",
+ "traceback": [
+ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
+ "\u001b[0;31mFileNotFoundError\u001b[0m Traceback (most recent call last)",
+ "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mproject_data\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpd\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mread_csv\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'train_data.csv'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0mresource_data\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpd\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mread_csv\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'resources.csv'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+ "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/pandas/util/_decorators.py\u001b[0m in \u001b[0;36mwrapper\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 309\u001b[0m \u001b[0mstacklevel\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mstacklevel\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 310\u001b[0m )\n\u001b[0;32m--> 311\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mfunc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 312\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 313\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mwrapper\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+ "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/pandas/io/parsers/readers.py\u001b[0m in \u001b[0;36mread_csv\u001b[0;34m(filepath_or_buffer, sep, delimiter, header, names, index_col, usecols, squeeze, prefix, mangle_dupe_cols, dtype, engine, converters, true_values, false_values, skipinitialspace, skiprows, skipfooter, nrows, na_values, keep_default_na, na_filter, verbose, skip_blank_lines, parse_dates, infer_datetime_format, keep_date_col, date_parser, dayfirst, cache_dates, iterator, chunksize, compression, thousands, decimal, lineterminator, quotechar, quoting, doublequote, escapechar, comment, encoding, encoding_errors, dialect, error_bad_lines, warn_bad_lines, on_bad_lines, delim_whitespace, low_memory, memory_map, float_precision, storage_options)\u001b[0m\n\u001b[1;32m 584\u001b[0m \u001b[0mkwds\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mupdate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkwds_defaults\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 585\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 586\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0m_read\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfilepath_or_buffer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 587\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 588\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
+ "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/pandas/io/parsers/readers.py\u001b[0m in \u001b[0;36m_read\u001b[0;34m(filepath_or_buffer, kwds)\u001b[0m\n\u001b[1;32m 480\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 481\u001b[0m \u001b[0;31m# Create the parser.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 482\u001b[0;31m \u001b[0mparser\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mTextFileReader\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfilepath_or_buffer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 483\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 484\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mchunksize\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0miterator\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+ "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/pandas/io/parsers/readers.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, f, engine, **kwds)\u001b[0m\n\u001b[1;32m 809\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0moptions\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"has_index_names\"\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mkwds\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"has_index_names\"\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 810\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 811\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_engine\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_make_engine\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mengine\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 812\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 813\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mclose\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+ "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/pandas/io/parsers/readers.py\u001b[0m in \u001b[0;36m_make_engine\u001b[0;34m(self, engine)\u001b[0m\n\u001b[1;32m 1038\u001b[0m )\n\u001b[1;32m 1039\u001b[0m \u001b[0;31m# error: Too many arguments for \"ParserBase\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1040\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mmapping\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mengine\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mf\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0moptions\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;31m# type: ignore[call-arg]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1041\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1042\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_failover_to_python\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+ "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/pandas/io/parsers/c_parser_wrapper.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, src, **kwds)\u001b[0m\n\u001b[1;32m 49\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 50\u001b[0m \u001b[0;31m# open handles\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 51\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_open_handles\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msrc\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 52\u001b[0m \u001b[0;32massert\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mhandles\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 53\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
+ "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/pandas/io/parsers/base_parser.py\u001b[0m in \u001b[0;36m_open_handles\u001b[0;34m(self, src, kwds)\u001b[0m\n\u001b[1;32m 227\u001b[0m \u001b[0mmemory_map\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mkwds\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"memory_map\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 228\u001b[0m \u001b[0mstorage_options\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mkwds\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"storage_options\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 229\u001b[0;31m \u001b[0merrors\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mkwds\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"encoding_errors\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"strict\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 230\u001b[0m )\n\u001b[1;32m 231\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
+ "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/pandas/io/common.py\u001b[0m in \u001b[0;36mget_handle\u001b[0;34m(path_or_buf, mode, encoding, compression, memory_map, is_text, errors, storage_options)\u001b[0m\n\u001b[1;32m 705\u001b[0m \u001b[0mencoding\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mioargs\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mencoding\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 706\u001b[0m \u001b[0merrors\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0merrors\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 707\u001b[0;31m \u001b[0mnewline\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m\"\"\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 708\u001b[0m )\n\u001b[1;32m 709\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+ "\u001b[0;31mFileNotFoundError\u001b[0m: [Errno 2] No such file or directory: 'train_data.csv'"
+ ]
+ }
+ ],
+ "source": [
+ "project_data = pd.read_csv('train_data.csv')\n",
+ "resource_data = pd.read_csv('resources.csv')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "ga6SAgwKoc3Z",
+ "outputId": "65842885-302d-4b5b-b8c7-55defe1448b2"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Number of data points in train data (109248, 17)\n",
+ "--------------------------------------------------\n",
+ "The attributes of data : ['Unnamed: 0' 'id' 'teacher_id' 'teacher_prefix' 'school_state'\n",
+ " 'project_submitted_datetime' 'project_grade_category'\n",
+ " 'project_subject_categories' 'project_subject_subcategories'\n",
+ " 'project_title' 'project_essay_1' 'project_essay_2' 'project_essay_3'\n",
+ " 'project_essay_4' 'project_resource_summary'\n",
+ " 'teacher_number_of_previously_posted_projects' 'project_is_approved']\n"
+ ]
+ }
+ ],
+ "source": [
+ "print(\"Number of data points in train data\", project_data.shape)\n",
+ "print('-'*50)\n",
+ "print(\"The attributes of data :\", project_data.columns.values)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "JJG7pF0yoc3f",
+ "outputId": "c30e2577-12e3-46b1-eb67-0858be479499"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Number of data points in train data (1541272, 4)\n",
+ "['id' 'description' 'quantity' 'price']\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " id \n",
+ " description \n",
+ " quantity \n",
+ " price \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " p233245 \n",
+ " LC652 - Lakeshore Double-Space Mobile Drying Rack \n",
+ " 1 \n",
+ " 149.00 \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " p069063 \n",
+ " Bouncy Bands for Desks (Blue support pipes) \n",
+ " 3 \n",
+ " 14.95 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " id description quantity \\\n",
+ "0 p233245 LC652 - Lakeshore Double-Space Mobile Drying Rack 1 \n",
+ "1 p069063 Bouncy Bands for Desks (Blue support pipes) 3 \n",
+ "\n",
+ " price \n",
+ "0 149.00 \n",
+ "1 14.95 "
+ ]
+ },
+ "execution_count": 6,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "print(\"Number of data points in train data\", resource_data.shape)\n",
+ "print(resource_data.columns.values)\n",
+ "resource_data.head(2)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "5Vn9_hV9oc3m"
+ },
+ "source": [
+ "# 1.2 Data Analysis"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "9thzW3Bxoc3p",
+ "outputId": "c2159997-a047-4281-ba7a-1cc101a37f31"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Number of projects thar are approved for funding 92706 , ( 84.85830404217927 %)\n",
+ "Number of projects thar are not approved for funding 16542 , ( 15.141695957820739 %)\n"
+ ]
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeAAAAFuCAYAAABZbss9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAA/DElEQVR4nO3deZgU1b3/8feBGUYEHERxQYUyGhSUEVFADCpqAGPFXLdo3Je4EFeSaFK5JjrmerVuYqJRcEvUxA1xCxjbmF9cEBcUohhFUCNSgDuyDAyiwMz5/VEFNMPMMDDTfaq7P6/n6Wemt6pPV3fXt0/VqVPGWouIiIjkVzvXAUREREqRCrCIiIgDKsAiIiIOqACLiIg4oAIsIiLigAqwiIiIAyrAOWKMGWaM+dDh/I8xxsw3xtQaY/bN8bxOMcb8v1zOY1MZY840xrzoOofEjDGTjDHn5GE+njHGGmPKcj2vYmeMqTbG3Oc6RzFTAU4YYyJjzGfGmE5Zt51jjJnkMFZrXA9cZK3tbK2dnssZWWvvt9aOaM00WrPibOuVrusfT1k5OiU/oJ50nENFDUiWwe6uc7RUsk77tusc0rQNvlA9e/Z8tnPnzj1dhMmV2traefPmzTusBQ8tAy4Frs1xpE1ijCmz1q7exKf1At52OH9JtGL5HQ98DYwwxuxorf2kjaOJiEvW2vUuffr0ed8WmeQ1bfBasy9ABATAIqBrcts5wKSsx1jgAuA/wDLgf4DdgCnAUuAhoEPy2GHAh8B/A18k0z8la1oVxK3UecBnwG1AxwbP/TnwKXBvI3nbAb8E5gKfA/cAlcl0a5Osy4HZTbxeC1wCfJDk+y3QLrnvTOAl4IZkeVyTTPseYEEyz182ePyLWdPeE/hn8tx3gROy7usI/C6ZRg3wYnLbvCRTbXIZAuwOPJ887gtgfBOvpbHnnplM+3pgMTAH+E7Wc84CZiXv4wfA+cntnYAVQH3W9Ho0Mk8fmJ687/OB6qz7vCTPD5Nsk5Pbz07muRj4B9BrI5/JZ4H/BV4HLmtw31DgZWBJMv8zm1u+yX0HZD3n38CwrOlNAq4DpibPmwh0a2r5buz1AMOBd5JpjUnex3OaeJ2DiL9DS4BPksd3aPBZHUX8vVsMjAVMcl/75D3+InkfL0weX9bM9/wy4M0k23hgi6z7zwXeJ/7sPr7mvQcms+47VQuc2Mi0d0ves4VJnvtJ1iXJ/bsAjxF/hxYCYxrMd83ncSYwILm9B/Bo8pw5wCVZz6kGHklew7Lkc7JPct+9xJ/hFUnen7XgM7Br8j4tI/7+jgHu29i6U5fNv2xwQ4kX4G8nX5BrktsaK8CPA1sBexG3Tp4BvkFcoGYCZySPHQasBn5PXBQPSb68eyT335hMqxvQBfgbcF2D5/5f8tyOjeQ9O1lRfAPonOS+t0HW3Zt5vRZ4Lpl/T+A9khUkcfFaDVxMvFWgI3HxnZhk9ZLH/zDr8S8m/3ciLghnJc8dQLwy2iu5fyzxyn4n4pXngclr9Giw4gTGAVcQ/9jYAhjaxGtp7LlnAquIV2ztgR8BH7Nuxe0TrzBN8t58ybqV3jDgw418XoYB/ZJsVcQ/oo5ukOeeZHl0BI5O3q8+yXL5JfByM9PvSbwC7Qv8FHizwX3LgJOAcmAboP9Glu9OxCv9I5PMw5Pr3ZPnTQI+AvZOMj9KsvJtYvk2+XqAbYl/mByf5Psx8eepqQK8H3FhKEvmNQsY3eCz+gTQNXntC4AjkvtGERf6XYg/y881zNrI93wqcWHrlsxrVHLfYcSf1QHJMruZ5MdTC79TuyfLtQLoTly0b0zua09c8G5Ilu/azzPw/WTZDyT+PO5OvAWrHfAacCXQgfi7/gEwMnleNfFnfM1yvoy4SJdnr9Oy8m3sMzCFdeurg4k/YyrAObxscIMKMHsT/zLuTuMF+FtZ118Dfp51/XdZX7hhyUqnU9b9DwG/Sr5ky4Hdsu4bAszJeu5Ksn6ZN5L3GeCCrOt7JF/GsqysGyvAR2RdvwB4Jvn/TGBe1n3tiX9s9M267fw1y4b1C/CJwAsN5nU7cFXypV9B8iu9wWM8NlzJ3wPcAey8kfeuseeeCbyfdX3L5DE7NDGNCcClWcu/2QLcyPNvBG5okOcbWff/neQHS3K9HXHR79XE9H4JvJH83wOoA/ZNrv8C+Gsjz2lu+f6cBltSiFutZyT/TwLCrPv6Jp/B9k0s3yZfD3A68ErWfYZ4i06jBbiRrKOzX18y76FZ1x8CguT/Z0kKaHJ9RMOsDaYdAadmXf8NcFvy/53Ab7Lu60z8nfJa8p1qZF5HA9OT/4cQ/3DYIFfyPlzayO2DyfoeZr33dyf/VzdYzu2ItyAclPVaswtwk58B4h82DddXD6ACnNNLizph/fWvf8UYwzvvvNOSh7fatddu+i7YP//5z1x00UWtnre1dgbxr+2giYd8lvX/ikaud866vthauzzr+lzilWl34oLwmjFmiTFmCfBUcvsaC6y1XzUTtUcyvexplwHbN/OchuY3kq2x+7Yl/gXecH47NTLNXsDgNa8reW2nADsk09kCmN3CfD8jXnlPNca8bYw5u4XPW+PTNf9Ya79M/u0MYIz5jjHmFWPMoiTjkUm+FjHGDDbGPGeMWWCMqSFuiTV8fvYy7AX8IWuZLEpeW2PLEOIidn+S/WPiTYNnJPftQuPLsLnl2wv4foP3ZSiwYxN55xK3qppaJs29nh7Z07Lx2nx+YxMBMMb0NsY8YYz51BizlLgPRsP5fpr1/5es+56tNy/W/4w2pblprX2+tbaWuIXY1Hu0HmPMdsaYB40xHyWv4z7WvY5dgLm28b4ATb2fvYAeDd6z/2b973j2cq4n/qHTg8Y19xnoQePrK8mhFhXgcePGMXToUB588MFc5wE2rwC3sauIN1226IvXjK2ze1UT/8r8mHgz1wrizbJdk0ultTa7eNuNTPtj4i9U9rRXs/4Pgo3ZpZFsjc3/C+KWQMP5fdTINOcDz2e9rq427on9o2Q6XxFv+m1og9drrf3UWnuutbYHcYv7liZ6oW5sWa3HGFNBvIn1emB7a21X4EniAtLS6T1AvAthF2ttJfE+fNPgMdnTmU+8nzl7uXS01r7cSL4DgW8Cv0iK0qfEraGTkp7I82l8GTa3fOcTt36y59/JWhtmPabh52FVMs3Glkdzr+eT7GkZY0yDaTd0K/Fm5G9aa7ciLjINl2VT1ptXkntzrfedSr6729D457wx1xEvq6rkdZzKutcxH+jZRE/ypt7P+cRbxbKXcRdr7ZFZj8lezu2AnVn3PW74vjX3GfiExtdXkkMbLcC1tbW89NJL3HnnnWsLcF1dHZdddhn9+vWjqqqKm2++GYBp06Zx4IEHss8++zBo0CCWLVtGXV0dl19+OQMHDqSqqorbb78dgEmTJnHwwQdzzDHH0LdvX0aNGkV9fT1BELBixQr69+/PKaecAsB9993HoEGD6N+/P+effz51dXUA3H333fTu3ZtDDjmEl156qc0WirX2feKODZe0weSuNsZ0MMYcBHwXeDj5pfpH4AZjzHYAxpidjDEjN2G644AfG2N2NcZ0Jm41jG/iF3ZTLjfGbG2M2YW49/f4xh5kra0j3uz3v8aYLsaYXsBPiH/hN/QE0NsYc5oxpjy5DDTG9Ele913A740xPYwx7Y0xQ5KCuIB4n+c31kzIGPN9Y8zOydXFxCuUukbmucFzN6ID8X6uBcBqY8x3iDddrvEZsI0xprKZaXQBFllrvzLGDAJO3sg8byMuqHsBGGMqjTHfb+KxZxB3gukL9E8uexNvNfkOccv428aYE4wxZcaYbYwx/TeyfO8DjjLGjExu3yI53GrnrPmeaozpa4zZEvg18Ejy3je2fJt7PRlgL2PMsUnBuYR4C0hTuhDvM641xuxJvL++pR4CLjHG7GyM2Zqmt1y1xAPAWcaY/skyuxZ41VobJfd/RvOfsS7EHZ6WGGN2Ai7Pum8qcZELk8PLtjDGfCu570/AZcaY/Uxs9+Q7NhVYaoz5uTGmY/K+7W2MGZg13f2ylvNo4l1FrzSRt8nPgLV2LvAv1q2vhgJHtXjJyWbZ6HF9EyZM4IgjjqB3795069aN119/nVdffZU5c+Ywffp0ysrKWLRoEStXruTEE09k/PjxDBw4kKVLl9KxY0fuvPNOKisrmTZtGl9//TXf+ta3GDEiXtdNnTqVmTNn0qtXL4444ggee+wxwjBkzJgxvPHGGwDMmjWL8ePH89JLL1FeXs4FF1zA/fffz/Dhw7nqqqt47bXXqKys5NBDD2XffZsebyJZUTS3jbob8Rf5uOR6BXHHqm8aY27NetzVyeYliH+1nm6MGZxcHwR0TB7fg7g1chDxPuXVxF+MS+MGAe2T579vjNmCeJ/w28aYo5Pndm0w38YsBt5KpjUfeKGZrI2pIN7M1IG4BTIgef4ewG4NpvV18vo+Jy6CM4m//Ps18viXiHtO30HcAvgCeNkYszDJ2p24E1c74i/9SGvtl8aY/wVeMsaUA0cQd0q5MSmEnxHvJ5vT8EU08dwmWWuXGWMuIV55VxB3gHs86/53jDHjgA+MMe2J931/3GAyFwC/M8as6eH7EHEnoabm+dfkh9KDycq1hrjIPpz9uOSzcAJwurX20wb33Uu8z/Z4Y8yRxC34PyXT+iXwBnFHnOuAacSbVv9NvHznG2P+i3if5zji93Aq6xe7e4E/E/dif37NfY0t3+Zej7X2i6QY3wTcnUy3uV/IlxF/Vn5G3LN8PHGHqJb4I9A7eZ1Lk2XS0ueux1r7jDHmV8RbR7Ym7i38g6yHVAN/McZ0BM6z1j7UYBJXE/dbqCHuoHYvcQc0rLV1xpijiJfJml7lDwAvWWsfNsZsk1zfiXjf7WnW2rnJc35H3Lmqgviogl9mzXMicb+LvyTzPNZauyq57zrgZmPMb4g7ll6/kc/Aycl0FhF3yLqHZj7T0npreoSu1bdv3/dnzpy5dnOI7/uMHj2a4cOHc9NNNzF//nw++OADRo0axfDhw9c+76233mLUqFEbtESPP/543nzzTbbccksAampquP322+nQoQNXXnklkydPBuCuu+7izTff5MYbb6Rz587U1tYCMGbMGK699lq22247AFasWMFJJ51E//79eeyxx7jnnnsAuOmmm3jvvfcYM2bMBi+yb9++s2fNmnUw8F+tXWBF5BbiTe0L2mBaQ4g3kd64Cc8pJ16h9bLWLmuDDNIKJh5w5j5r7Z9cZ5GWMcZUE3cKO9V1Ftk8zbaAFy5cyLPPPsuMGTMwxlBXV4cxhv3224+kFbeWtXaD29bcfvPNNzNy5PpbVydNmrTB45t6/hlnnMF111233u0TJkxo9PFNSVowG2tRlgxjzC3AA8nm9tZOa3fiXtCbtHyNMQcDpxH/GBARKSnN7gN+5JFHOP3005k7dy5RFDF//nx23XVXBgwYwG233cbq1fHuxkWLFrHnnnvy8ccfM23aNACWLVvG6tWrGTlyJLfeeiurVsVbRd577z2WL4872k2dOpU5c+ZQX1/P+PHjGTp0KADl5eVrH3/44YfzyCOP8Pnnn6+d19y5cxk8eDCTJk1i4cKFrFq1iocfXm9LnuSJMWYC8Sbf323G08cCF5lN+SUlIlIkmm0Bjxs3jiBYv0/Dcccdx6xZs+jZsydVVVWUl5dz7rnnctFFFzF+/HguvvhiVqxYQceOHXn66ac555xziKKIAQMGYK2le/fuTJgwAYAhQ4YQBAFvvfXW2g5ZAOeddx5VVVUMGDCA+++/n2uuuYYRI0ZQX19PeXk5Y8eO5YADDqC6upohQ4aw4447MmDAgLWds2TjrLVtUvSstUe34umTiPeFDSMeQEEcsdYOc51BNo21ttp1Bmmdje4DzpVJkyZx/fXX88QTT+R6VvTt23f2zJkzC2YQ9VJijLkAOMxae7zrLCIi+aSzIYlr9wKHNTgcRkSk6DkrwMOGDctL61fSLekBfT/xQBsiIiVDLWBJg1uAc5PBD0RESsIGnbBqa2vn9e3b10WWnKmtrZ3nOoM0zVo7yxgzAziOeDACEZGit0EnLBEXjDHHEJ/z9lsbfbCISBHQJmhJi78Buxhjmh5PVESkiKgASyokJ5G4DbjQdRYRkXzQJmhJDROfGepd4hPZL3adR0Qkl9QCltSw1n5OfCq7s1xnERHJNbWAJVWMMQcQn7e0d3J+WxGRoqQWsKTNq8TnUx25sQeKiBQyFWBJFRtvkhmLOmOJSJHTJmhJHWNMR2AeMNha+4HrPCIiuaAWsKSOtXYF8GfgR46jiIjkjFrAkkrGmG8Q7w/uZa390nUeEZG2phawpFKy6flV4Aeus4iI5IIKsKTZWOBCY4xxHUREpK2pAEua/QOoBAa7DiIi0tZUgCW1koE4bgEucp1FRKStqROWpJoxZmvgA2CPZKhKEZGioBawpFpyUoZHgXNcZxERaUtqAUvqJecInkh8lqTVrvOIiLQFtYAl9ay104H5wFGus4iItBUVYCkUGh9aRIqKNkFLQTDGdCAeH/pQa+0s13lERFpLLWApCNbalcAfgQtcZxERaQtqAUvBMMbsDLxJPD70Mtd5RERaQy1gKRjW2g+BZ4HTXGcREWktFWApNBofWkSKggqwFJpJyd9DXIYQEWktFWApKDbutDAWjQ8tIgVOnbCk4BhjugBzgapkv7CISMFRAZaCZIwZAyyy1l7pOktreUGmE9AFaA+saniJQr/eYTwRyREVYClIxpg+xD2ieyXHCKeGF2S2BHonl55Ad2AbYNvksg2wFXHR7cTGdwXVs35RXgksBD4GPkr+Nvz/kyj0NW62SIqpAEvBMsY8A/zJWjsu3/P2gkw58A3iIvtN1hXc3kAPwHUv7XpgAfEY2m8DbwDTgTei0K9xmEtEEirAUrCMMccCP7HWDs3lfLwgY4A+wNDkMpi4+Jblcr45FJFVkImL8jyHeURKkgqwFCxjTBkwBzjKWvtGW03XCzIdgP1ZV3APJN5sXMwWAdOA54BngNe171kkt1SApaAZY64APGvtuZs7DS/IlBEfV3w4ccEdCGzRNgkL1mLiY66fBv4ehf4ct3FEio8KsBQ0Y8z2wDvAN6y1i1v6vKSVOxw4Dvgexd/Cba1ZwJNABngxCv1VjvOIFDwVYCl4xpj7gNettb9v7nFekOkIfIe46H6XuCeybLoa4DHgHuD5KPS1EhHZDCrAUvCMMUOAe4He1tr19lt6QaYLcbE9jrj4bpn/hEUtAu4D7olC/z+Os4gUFBVgKXjJiRn+B/j1mmOCvSAzBDgfOAHo6DBeKZlC3CoeH4V+i3cHiJQqFWApGl6Q2Qo4lbjwVjmOU8q+Bv4G/IW4A1ed4zwiqaQCLAXPCzK9gUuAM4DOjuPI+j4AfgfcHYX+CtdhRNJEBVgKlhdkRgCXEu/bdT3ylDTvc+Am4BZtnhaJqQBLQUlGpToWqAb2dptGNkMtcAfw+yj0P3IdRsQlFWApGF6QOQK4BtjPdRZptZXA/cBvotB/x3UYERdUgCX1vCBzEHAt8ShVUlwsMBG4Igr9ma7DiOSTCrCklhdk9idu8Y50nUVybjVwO3BVFPoLXYcRyQcVYEkdL8j0JS68x7jOInm3GLgaGKvzGUuxUwGW1PCCzNbA/wE/ZOMnqZfi9g5wWRT6GddBRHJFBVhSwQsyPwBuBLZ3HEXS5R/AT7R/WIqRCrA45QWZXsCtxMfyijRmzf7hK6PQX+Q6jEhbUQEWJ7wg0x4YTby/r5PbNFIgPgNGRaE/wXUQkbagAix55wWZAcAfgQGus0hBegC4WK1hKXQqwJI3XpDpBPyaePjI9o7jSGH7DDg/Cv2JroOIbC4VYMkLL8jsAzwMfNN1FikqdwGXRKG/3HUQkU2lQz0k57wgcx7wCiq+0vbOBt7wgswg10FENpVawJIzySbn24FTXGeRoreauEPfdTr/sBQKFWDJCS/I7E28yXlP11mkpDwNnKgOWlIItAla2pwXZM4CXkXFV/Lv28CryXCmIqmmFrC0GS/IbAmMBc50HEVkGXByFPpPuA4i0hS1gKVNeEFmd2AqKr6SDl2AiV6Q+YXrICJNUQtYWs0LMgcCjwPbuM4i0ohxwA+j0F/hOohINrWApVW8IPN94BlUfCW9TgJe8ILMzq6DiGRTAZbN5gWZy4HxwBaus4hsxH7ANC/IDHEdRGQNbYKWTeYFGUN86sBLHEcR2VQrgGOi0P+H6yAiKsCySbwgUwb8GQ2uIYXra+D7Uej/zXUQKW0qwNJiXpDpCDwCHOk6i0grrQJOikL/UddBpHSpAEuLeEGmEsgA33KdRaSN1AGnR6H/gOsgUprUCUs2ygsynYGnUPGV4tIeuDcZuU0k71SApVlekKkAJgIHuM4ikgPtgDu9IDPKdRApPSrA0qSkw9XDwGGus4jkkAFu9YLMaNdBpLSoAEujvCDTDrgHOMp1FpE8ucELMj9xHUJKhwqwNOU24hGERErJ9V6QOdF1CCkN6gUtG/CCzO8AtQSkVH0NDI9C/wXXQaS4qQUs6/GCzFWo+EppqwAmeEFmD9dBpLipBSxreUHmUuIhJkUE5gAHRKH/uesgUpxUgAUAL8h8B3gCbRURyTYNGBaF/peug0jxUQEWvCCzG/AvoKvjKCJp9DjxCRzqXQeR4qLWTolLRrmagIqvSFO+B/zBdQgpPirAcjewt+sQIil3kRdkfuw6hBQXbYIuYV6QCYDrXOcQKRB1wGFR6E92HUSKgwpwifKCzEjgSbQVRGRTfAzsq57R0ha08i1BXpD5BjAOvf8im6oH8EAyVKtIq+hDVGK8INOJuNPV1o6jiBSqw4GrXIeQwqcCXHrGAv1chxApcL/0gsww1yGksGkfcAnxgsxRxMc0ikjrfQhURaG/2HUQKUxqAZcIL8hsDdzuOodIEdkZuMN1CClcKsCl42ZgR9chRIrM8V6QOdt1CClM2gRdArwgczTwV9c5RIrUcqBfFPpzXAeRwqIWcJHzgsw2wG2uc4gUsU7EW5hENokKcPEbA2zvOoRIkfO9IHOs6xBSWLQJuoh5QeY44BHXOURKxIdAnyj0a10HkcKgFnCR8oLMtsAtrnOIlJCdgatdh5DCoQJcvH4PbOc6hEiJucQLMvu4DiGFQZugi5AXZAYDUwDjOotICZoCfCsKfa1cpVlqARcZL8gY4pOHq/iKuDEEONd1CEk/tYCLjBdkTgXudZ1DGvUVMBt4L7l8CHyRXGqAWuBLoAwoz7p0ALYBdiI+G8+av7sCvYH2+XwR0iKLgT2i0F/gOoikV5nrANJ2vCCzJRC6ziEArABeBV4EXgZmAfOi0K9vy5l4QaYj8ck1+ieXAcB+6Lvt2tbAb4CzXAeR9FILuIh4QeZK1AvTlXriYvs34AXg9Sj0V7kI4gWZLsDBwHDAB3Z3kUOoB/aOQn+W6yCSTirARcILMt2JN292cZ2lhKwGngMeBSZEof+Z4zyN8oJMb+AHwGmoGOfb+Cj0f+A6hKSTCnCR8ILMH4BLXOcoEW8Tn1nq/ij0F7kOsym8IHMgcAZwAtDVbZqSUA/sE4X+DNdBJH1UgIuAF2R2Bd4h7qwjuVEHTAD+EIX+C46ztJoXZLYATgUuJ+7IJbnzSBT633cdQtJHBbgIeEHmXuKVqbS91cBdwLVR6M91HaateUGmHXAM8HNgoOM4xcoC/aPQf9N1EEkXFeACl7R+/4MORWlr9cADQHUU+rNdh8kHL8gcBlwHDHKdpQj9NQp9naxB1qOBOArfaFR829pEoCoK/dNKpfgCRKH/LHAAcDrwseM4xeZoL8js6zqEpItawAXMCzJbA/OAzq6zFIm5wAVR6D/pOohrXpDpRLxZ+jKgo+M4xeLxKPT/y3UISQ+1gAvbKFR820IdcAOwl4pvLAr95VHoXwn0BZ51nadIfM8LMvu5DiHpoRZwgfKCTAcgAnZ0HKXQvQmcHYX+a66DpFUyvvgo4HpgS8dxCp32BctaagEXrpNR8W2t24HBKr7Ni0LfRqF/K/Ewl1pWrfM9L8js5DqEpIMKcOH6iesABawWOCUK/VFR6H/lOkyhiEL/XeIz/Yx1naWAtUdnSpKENkEXIC/IjASecp2jQM0Ajk+KiWwmL8icS1yIy11nKUAfAb2i0K9zHUTcUgu4MF3mOkCBygAHqPi2XhT6fwQOB3S6vU23E/Bd1yHEPRXgAuMFmX7At13nKEC3A/8Vhf5y10GKRTIk5/7AW66zFKBRrgOIeyrAhedM1wEK0NXJ/l5t8mtjUejPA4ahzlmbakQyip2UMBXgApKM26tTm22aS6PQr3YdopglZ4Q6HHjFdZYC0g44z3UIcUsFuLAMA3q4DlFALo9C/ybXIUpBFPo1wAig4M8UlUdne0FGndhKmApwYTnFdYACck0U+te7DlFKotBfBhwBvOg6S4HYjvhMVFKiVIALhBdkKoDjXOcoEDdFof8r1yFKURT6XwL/Bainecuc4zqAuKMCXDh8oNJ1iAJwL/EZosSRZJ/wd4DPXWcpAId6QWZb1yHEDRXgwqHNzxs3FTg3Cn2NLuNYFPpziI91/dJ1lpQrI95iICVIBbgAeEGmkrgFLE37DDguCv2vXQeRWBT604jHLNcPouYd7zqAuKECXBiOAypch0ixVcD3o9D/0HUQWV8U+hOB37rOkXKHe0Gmq+sQkn8qwIXhZNcBUu4nyahMkk5XoJ7RzSkHjnIdQvJPBTjlvCCzFXCI6xwp9mQU+mNch5CmRaG/mrgPwxLHUdJMBbgEqQCn3yHEHTVkQ0vQaEIFIRmyUuMfN22EBuUoPSrA6acTLzRtdBT6H7kOIS0Thf54YKLrHClVCRzkOoTklwpw+h3uOkBKPRGF/l9ch5BNdgmgM1I1Tkc6lBgV4BTzgswOwF6uc6RQLXC+6xCy6ZJN0Ve7zpFSKsAlRgU43dT6bdx1Ueh/7DqEbLYbgBmuQ6TQHl6Q2d51CMkfFeB00/7fDUXA712HkM2X9Iq+wHWOlBriOoDkjwpwuqkFvKFfRaH/lesQ0jrJcdv/cJ0jhVSAS4gKcEp5QaY3sIvrHCnzb+B+1yGkzVzlOkAKqQCXEBXg9FLrd0O/1okWikcU+q8CT7rOkTL763jg0qECnF7DXAdImdnABNchpM1Vuw6QMh2BfVyHkPxQAU6vAa4DpMwNUejXuw4hbSs5Y5L2Ba9Pm6FLhApwCiXjP+/mOkeKLALudh1CcuZW1wFS5gDXASQ/VIDTaR/AuA6RIrdGoa8TuxevJwCdSnIdtYBLhApwOvV3HSBFLHCH6xCSO1Ho1wF/cp0jRXbVgBylQQU4nfq7DpAiLyTDF0px+xNQ5zpEigxyHUByTwU4nfZ2HSBFdNxvCUjOavV31zlSZHfXAST3VIDTqY/rACmxEnjEdQjJG73X66gTZglQAU4ZL8jsDHRxnSMlnopCf5HrEJI3E4FVrkOkhApwCVABTp++rgOkyGOuA0j+RKG/BJjsOkdKqACXABXg9NHm53WecR1A8u4J1wFSopcXZLR+LnJ6g9PnG64DpMS7Uejr2NDSk3EdICU6oJOxFD0V4PTZwXWAlFDrtwRFof8f4HPXOVJCm6GLnApw+ugA/NjTrgOIM6+4DpASKsBFTgU4fdQCjj3vOoA4M8V1gJTQ7qgipwKcPmoBw1wdflTSVIBjagEXORXgFPGCTAXQ1XWOFJjuOoA4NQ1Y7TpECuzsOoDklgpwuqj1G3vLdQBxJznzVeQ6RwpoQJ4ipwKcLirAsZmuA4hzs10HSIGtXAeQ3FIBThcV4Ngs1wHEORVgtYCLngpwuqgAx+a7DiDOfeA6QAqoABc5FeB0UQGOB+Nf7DqEOKcWMJR5QWYL1yEkd1SA06Wz6wAp8HkU+tZ1CHFOW0FiagUXMRXgdNH7AZ+5DiCpsNR1gJRQAS5iWuGni94P+NR1AEmFZa4DpIR6QhcxrfDTRe8H1LgOIKmgFnBMLeAiphV+uuj9gHrXAcS9ZDCOOtc5UkAFuIhphZ8uej9UgGWdWtcBUqDcdQDJHa3w08W4DpACKsCyhr4PGhO7qKkAp4veDxVgWafMdYAUWOU6gOSOVvjpovdDZB1tflULuKhphZ8uej90OkYBvCDTARVgUAEualrhp4v2ecE2rgNIKmhUuNhK1wEkd1SA00W9PmFb1wEkFbq5DpASy10HkNxRAU6XL1wHSAG1gAWgp+sAKaECXMRUgNNloesAKaACLAC7uA6QEtoqVsRUgNNFBTg+BdsOrkOIc2oBx1SAi5gKcLpoE3Sst+sA4pwKMNQnQ3JKkVIBThe1gGMqwNLLdYAUWOA6gOSWCnC6qAUc6+s6gDjX33WAFJjvOoDklgpwuixyHSAl+rkOIO54QaYn0N11jhSY5zqA5JYKcIpEob8KnQcV1Popdfu7DpASagEXORXg9NFmaNjWCzLaDF269nMdICXUAi5yKsDpo44XsUNcBxBnVIBjKsBFTgU4fea4DpASKsAlKDkJw1DXOVJCm6CLnApw+vzHdYCUUAEuTYcAnVyHSAm1gIucCnD6vOc6QErs4AWZPq5DSN4d6TpASqwEPnUdQnJLBTh91AJe5xjXASTvVIBjH0Whb12HkNxSAU4ftYDXOdF1AMkfL8jshkZBW0Obn0uACnDKRKG/GPjMdY6UqPKCzB6uQ0jeHOs6QIq86TqA5J4KcDq95TpAiqgVXDpOdx0gRf7lOoDkngpwOqkAr6MCXAK8ILMvsLfrHCnymusAknsqwOk0w3WAFOnrBRkdF1r8znUdIEWWA7Nch5DcUwFOJ7WA13ep6wCSO16Q2RI4xXWOFHkjCv161yEk91SA02kGsMp1iBQ5JjlDjhSn04GtXIdIEe3/LREqwCkUhf4KtA8oW3vgQtchpO15QaYM+LnrHCmj736JUAFOr+ddB0iZc5NNlVJcTgY81yFSRi3gEqECnF6TXAdIma2Bi12HkLbjBZl2wC9c50iZWuBd1yEkP1SA0+sloM51iJT5mRdktK+weBwL7Ok6RMpMVwes0qECnFJR6C8DXnedI2W6AZe7DiGt5wWZcuDXrnOk0CuuA0j+qACn2yTXAVLoJ16Q2cl1CGm1iwGd7WpDT7kOIPmjApxu6oi1oS2Ba12HkM3nBZntgatc50ihZcALrkNI/qgAp9uLaD9wY073gsy3XYeQzRai434b83QU+jr+v4SoAKdYFPo1wBuuc6TUHV6Q6eQ6hGwaL8gMBs5wnSOlnnQdQPJLBTj9JrkOkFK7Av/rOoS0XHIc918A4zpLSqkAlxgV4PTLuA6QYhd7QeYA1yGkxX4P6PzOjft3FPofuw4h+aUCnH7PA5+6DpFS7YB7dGxw+nlB5ijgfNc5Ukyt3xKkApxyyUH5j7rOkWLfBO52HUKalvR6vtN1jpRTAS5BKsCFYbzrACl3rBdkNEBHCnlBpj1wH9DddZYUWwxMcR1C8k8FuDC8CGj/UPOu84LMIa5DyAZ+B+iQseb9vyj0dbhhCVIBLgBR6FvgYdc5Uq49MN4LMr1cB5HYkqt6nFllZh/pOkcBeNB1AHFDBbhwPOQ6QAHYHvinF2S0udO16sojuprlf5zY4Vc7HN/++amu46TYQrT/t2SpABeOKcB81yEKwDeBp7wg08V1kJJVXbkv8RabMmPo8tuy2/e/puxODavauPFR6K90HULcUAEuENoMvUkGABO9IFPhOkjJqa7ci7hF13nNTcbQ7tSyZw55vMMVL5SxWkMtru8e1wHEHRXgwqLN0C13KPCgF2Q6uA5SMqorBwKTgR0au7uq3ZyDplZc+HZXli3Ob7DUejcK/VddhxB3VIALSPJlfcd1jgJyNDDBCzIdXQcpetWVw4BniM/Z3KRuZln/qRUXLN3DzJuTl1zpdpfrAOKWCnDhudl1gALzHeJ9wpWugxSt6sqjgL8DLdrv3sHU9XqqQ9DtyHavvp7bYKm2Cviz6xDilgpw4fkLsMR1iAJzMPCCF2R2ch2k6FRXngw8BmyxKU8zhsqx5X+o+kXZ/ZNzEyz1Jkah/7nrEOKWCnCBiUJ/ORrWb3P0A17VyRvaUHXlaOBeoGxznm4MZeeXZQ4e3+HXz7ejvtQGorjDdQBxTwW4MI0BSm2F1RZ2Ap73gsyFroMUtOrKramufAy4gTZYhwxu984hr1RcNL0Ly2taH64gfAA87TqEuGesta4zyGbwgsxfiTsZyea5Dzg/Cv0vXQcpKNWVBwLjgJ5tPemvbfnsI1ZeVz7H9mjzaafMpVHo3+Q6hLinFnDh+oPrAAXuVOAVL8j0cx2kIFRXtqO68r+JT4+ZkwJZYVbt9kyHyzsd2m76v3Mx/ZT4HPij6xCSDmoBFzAvyLwB7OM6R4FbBVwH/K9GJGpCdeX2xFsM8nJSBWtZecPq46feVHfs0HzML8+CKPT/z3UISQe1gAubNmO1XjlwJfCaF2QGug6TKtWV7amuHAXMII9nNDKGDj8pf2ToX8rDSYb6+nzNNw8WA7e4DiHpoQJc2B4AvnAdokjsDUzxgswNXpBpdjCJklBdOQJ4A7gV2NZFhEPavznshYrR07bkq+Uu5p8DN0ehv8x1CEkPbYIucF6Q+SXwP65zFJkaIAT+EIX+Ctdh8qq6ck/ic/im5jSCX9oO745Y+dsuH9ruPVxnaYVaoFcU+otcB5H0UAEucMlZfz7AUSulyH0EVAN3F/0J06sruwFXA6PYzON6c6nOms9PW/WLBS/X772X6yyb6foo9C93HULSRQW4CHhB5jLgt65zFLHZwI3AXUV32FJ15e7ApcBZQCfHaZplLV9ds/rU1++sO/JA11k20VfArlHof+o6iKSLCnARSE42MBvY0XWWIreIeBSyW6LQjxxn2XzVlQYYDlwAHEWB9QV5sm7Q8xesuvRgMMZ1lhYaG4X+Ra5DSPqoABcJL8hcAIx1naNE1BOPZPQg8Nco9Je4jdNC1ZU9iFu6PwR2dZymVT6o32HKkSuv6/8VFWk/09UqYPco9Oe5DiLpowJcJLwgUw7MBHZ3naXErAT+AYwHHk9VL9fqynbAIOIzQh0J7AcUSqtxo2rtFjO//fX123xKt+1dZ2nGb6PQ/5nrEJJOKsBFxAsyxwGPuM5RwlYD/wImJZcXk5Nn5E91ZXfgCOKiOwLYJq/zz7PVtt0nJ6y8suZ123tP11ka8QmwR6p+lEmqqAAXGS/IvAh8y3UOAeKC/BrwFvHWiZnAzCj057d6ytWVXYA9gT5A3+RvH+ItIEXTym0Ja1l+xeqz33qg7ttpO9PV6VHo3+s6hKSXCnCRSU63N8V1DmnWUmAu8Nkx7V5444YOt1YQH3tck9xXAWyZXDo1+L8rceHdOf+x08ta7KP1Bz9/2apRw1xnSbwMDI1CXytYaZIKcBHygsyDwImuc8jGXVY2/oWLyiYe5DpHsZhV3/PF7628ZtAqyjo4jFEPDIxC/3WHGaQAFNThB9JiPwaWuA4hG7ejWVRMYx0716fdvKHTKn70TjdqFjqMcaeKr7SECnARikL/E0Cj7hSA7VnsOkLR6WqWV71acdGXe5k57zuY/RLgvx3MVwqQCnCRikL/T8CzrnNI87Y1Nakb9rEYlJu6XZ7ocMV2R7d78V95nvWVUejrBCnSIirAxe1coLiGTiwyXU1thesMxcoYtrqh/JZ9ry67e3KeZjkDnW5QNoEKcBGLQv8D4Feuc0jTOrNiS9cZipkxtD+j7J8HT+jwqxfaU7c6h7OqA84t+pN2SJtSAS5+NwKvug4hjatgVRfXGUpB/3azD5paccFbldQuydEsrolC/5UcTVuKlApwkYtCv5547N+VrrPIhsqo6+o6Q6nYxizbd1rFBYt7m/lRG0/6FXRObtkMKsAlIAr9t4FrXeeQ9ZWzeqUxqAWcRx3M6l2f6vDzriPbTZ3eRpOsBU7VpmfZHCrApeNa4iERJSW6s2SR6wylqJ2h623lN/a7vOzBF9pgcpdEoT+7DaYjJUgFuEREob8KOAnI78kBpEnbmSVLXWcoVcZQdmHZ4weNK79mcjvqN7f1+mgU+ne3aTApKSrAJSTZFH2u6xwS28Es0o8hx4a0n3nwyxUXv96ZLzf1x9BHwHm5yCSlQwW4xEShPw4Y4zqHQA+z8CvXGQR2MIsH/qviR5/3Mp9+2MKnWODMKPS1C0FaRQW4NP2EuOemONTDLFzlOoPEtjCrdn+uw0+3OLjdv99swcNvjEL/6ZyHkqKnAlyCkv3B3wcWuM5SynY0C3UqshRpZ+y2fyn/vz0vbD/hxWYe9hIQ5CuTFDcV4BIVhf6HxJ2ydPiEI9uZJcZ1BlmfMXS4vPyhoXeW/3YSbHCu1g+B46LQ1zH10iZUgEtYFPrPAFe6zlGqurG03HUGadzh7acPm9xh9Ktb8tWajnIrgKOj0P/MZS4pLirAch3wN9chSlGlWb6F6wzStJ7tFhzwr4ofzd+JBZ8AP4xC/zXXmaS4GLvBVhYpNV6Q6QpMAfZ0HKWkzKw4890tzco9XOeQ5i23FVd1uvrzX7vOIcVHLWAhCv0lwEjifVySJxWsrnSdQTbqoU7ma43zLDmhAiwARKE/j7gI69jGPGlH/dauM0izpgBnUF2jzYSSEyrAslYU+jOBI9FwlTnXiRW1xlDhOoc0aRbwPaprNFiK5IwKsKwnCv1XgeMADRKRQ93NkiWuM0iT5gDDqa75wnUQKW4qwLKBKPT/AZxOPOSe5MD2LNaJGNLpY+DbVNd85DqIFD8VYGlUFPoPApe4zlGsepiFX7rOIBv4grj4fuA6iJQGFWBpUhT6YwAdfpEDPczCr11nkPXUACOprpnlOoiUDhVgaVYU+lcBN7nOUWx2NAtXu84gay0HfKprXncdREqLCrBsVBT6lwKh6xzFZAez2HUEiS0h7nD1kusgUnpUgKVFotD/BXCF6xzFortZou+ee58Bw6iumeI6iJQmrQSkxaLQvxa4FPWObrWtWaYTMbg1DziI6pp/uw4ipUsFWDZJFPo3AWcC2ofZCluZL7d0naGEvQcMpbrmP66DSGlTAZZNFoX+PcBRaMSszdaRrzu7zlCi3iBu+c53HUREBVg2SxT6TwGHAgtcZylE5dTpRAz59w/ifb6fuw4iAirA0gpR6E8DDgRmu85SSAz19Qbb1XWOEvMH4kONalwHEVlDBVhaJQr994FBwFOusxSKrtQuMYb2rnOUiFXAeVTXjKa6ps51GJFsKsDSalHoLwJ84lGz1EN6I7Y3S9QKy4+FwAiqa/7oOohIY1SApU1EoV+fjJr1XUCjTDRje7Oo1nWGEjALGEx1zSTXQUSaogIsbSoK/SeB/Yh7m0ojepiFK1xnKHIPAgdQXaO+CZJqKsDS5qLQnwMMAf7sOEoq7WgWrnSdoUh9CZxDdc1JVNfodI+SeirAkhNR6H8Vhf5ZwPmAzvyTpYdZpEFM2t4MYCDVNXe6DiLSUirAklNR6N8BHAS87zpLWmzPIuM6Q5G5AxhEdc1M10FENoUKsORccrxwFfA7oOQPBdnW1JS5zlAkFgMnUl1zPtU12q8uBUcFWPIiCv0VUehfRjxwx9uu87jU1dR2cJ2hCDwK9KG65iHXQUQ2lwqw5FUU+lOBAcTHDK9yHMeJznylEzFsvk+B46iuOZ7qms9chxFpDWOtxk0QN7wgUwXcCezvOks+/afitHnlpq6n6xwF6G7gp1TX6DhzKQpqAYszUei/CRwA/Bz4ynGcvCmjbmvXGQpMRDyi1dkqvlJM1AKWVPCCTG/gJmCk6yy5VM7qlf/Z4nTtA26ZWuA64PdU15TMDzQpHSrAkipekDkM+A3xaFpFZ0cWfjZli4u3d50j5eqJB3G5guqaTx1nEckZbYKWVIlC/1lgIPADivA0h9uZJRqhqXmTgP2prvmhiq8UOxVgSZ0o9G0U+uOBPsDFwALHkdrMDmbRctcZUuo94Fiqaw6luma66zAi+aACLKkVhf6qKPTHALsRH7ZU8GcR6mG+0IAR65sJnEJ8TO9fXYcRyScVYEm9KPSXJac63B0YSwH3mO5hFpbksc+NeAs4AehHdc0DVNfUuw4kkm8qwFIwotD/LAr9i4CexC3iLxxH2mQ7mkWl3utxOnAssA/VNQ+r8EopUy9oKVhekOkInAH8BPim4zgt8lCHqycPavfuwa5z5JkF/g7cRHXNP1yHEUkLFWApeF6QMcARwEXJ39Ru2Xm6w09f3r3dJwe6zpEnS4G/ADdTXfMf12FE0kYFWIqKF2R2A34EnA2kbsSpf1WMen1bs3SA6xw59hpwGzCO6hr1+hZpggqwFCUvyGwBfIf4eOLvAqk4AcLMijPf29Ks7O06Rw58BDwIPEB1zetrbjTGHA/sZ639hbNkIimlAixFzwsynYiL8InERXkLV1lmV5z6aXtTv4Or+bexRcSnBXwAmNxYhypjzM7Am0Ava+2yPOcTSTUVYCkpXpDpAhxNXIxHAOX5nP+cipO/MsbdD4A2sIS4Q9U44CmqazZ6WJUx5hHgWWvtLTnOJlJQVIClZHlBZmvgGOBI4GCgey7ntyUrls/c4oedcjmPHLDEhw79Pbm8QnVN3aZMwBhzKDAG2NtqhSOylgqwCGt7Uu8FDEsuhwDbtuU8eplPP3y+4ic7t+U0c+QL4BnigvuP1o7JbIwxwAzgQmvtpNbHEykOKsAijchFQR5sZs4cX3FN31aHa1t1xKNSTVl7qa55v61nYoy5ADjMWnt8W09bpFCpAIu0QFKQ9wT2BvoSnyiiL9AbqGjJNI5u9+K/buxwy/45C7lxK4B3gFnELdIpwLR8HCpkjOkCzAWqrLUf5np+IoWgzHUAkUIQhb4lLlyzsm/3gkx74pNF9M269CEet3qr7MfuaBZ+nYeoXwKfAB8Tn2FoVtZlrquhH621y4wxDwDnAVe6yCCSNmoBi+RIMlTm9sAOwA4Xt3+s00/LH+kFdCMeJKQr0IG4J3Y58Q/i8qwLxAX1S2B51v9rri8iLrRrCu7HVNfU5OO1bQ5jTB/gWeJDkla6ziPimgqwiOSNMeYZ4E/W2nGus4i4ltoxc0WkKI0FLnQdQiQNVIBFJJ8eB3oZY/q7DiLimgqwiOSNtXY18Yka1AqWkqd9wCKSV8aY7YkPh/qGtXax6zwirqgFLCJ5Za39DMgAZ7nOIuKSWsAiknfGmCHAvUBva62TY5NFXFMLWERceAVYSnxGKpGSpAIsInmXnBVpDHCR6ywirmgTtIg4YYzZknh86EHW2jmu84jkm1rAIuKEtfZL4C/Aj1xnEXFBLWARccYYsxvx/uCe1toVrvOI5JNawCLijLV2NjAV+IHrLCL5pgIsIq6NBS4yxhjXQUTySQVYRFx7ivjUjIMd5xDJKxVgEXEqGYjjFjQ+tJQYdcISEeeMMd2A2cAe1trPXecRyQe1gEXEOWvtIuBR4BzXWUTyRS1gEUkFY8y+wETisyStdp1HJNfUAhaRVLDWTgc+BL7rOotIPqgAi0iaaHxoKRnaBC0iqWGMqSAeH3qYtfYd13lEckktYBFJDWvt18CfgAtcZxHJNbWARSRVjDG7AP8Gellrl7nOI5IragGLSKpYa+cDzwGnus4ikksqwCKSRmOBCzU+tBQzFWARSaPniNdPh7gOIpIrKsAikjo27pwyFo0PLUVMnbBEJJWMMVsBEdDPWvuR4zgibU4tYBFJJWvtUuAB4HzXWURyQS1gEUktY0xf4BniQ5JWus4jTevZs+eznTt37uk6R5rV1tbOmzdv3mFrrpe5DCMi0hxr7UxjzCzgWOBB13mkaZ07d+45c+bM3VznSLO+ffuud12boEUk7TQ+tBQlFWARSbvHgV7GmH1cBxFpSyrAIpJqybmBb0eHJBUUYww//elP116//vrrqa6ubvY5EyZMYObMmc0+Zp999uGkk05qi4gtMmnSJF5++eVNfp7neXzxxRfNPkYFWEQKwR+B7xtjtnYdRFqmoqKCxx57bKNFKNvGCvCsWbOor69n8uTJLF++vC1ibtTmFuCWUAEWkdSz1n4GPAmc6TiKtFBZWRnnnXceN9xwwwb3zZ07l8MPP5yqqioOP/xw5s2bx8svv8zjjz/O5ZdfTv/+/Zk9e/YGz3vggQc47bTTGDFiBI8//vja26dNm8aBBx7IPvvsw6BBg1i2bBl1dXVcdtll9OvXj6qqKm6++WYAXnvtNQ455BD2228/Ro4cySeffALAsGHDGD16NAceeCB77703U6dOJYoibrvtNm644Qb69+/PCy+8wIIFCzjuuOMYOHAgAwcO5KWXXgJg4cKFjBgxgn333Zfzzz+flhxhpF7QIlIoxgITjDGHbfSRki/LgVOT3QQbuPDCC6mqquJnP/vZerdfdNFFnH766ZxxxhncddddXHLJJUyYMIHvfe97fPe73+X4449vdGbjx4/nn//8J++++y5jxozhpJNOYuXKlZx44omMHz+egQMHsnTpUjp27Mgdd9zBnDlzmD59OmVlZSxatIhVq1Zx8cUXM3HiRLp378748eO54ooruOuuu+IXs3w5L7/8MpMnT+bss89mxowZjBo1is6dO3PZZZcBcPLJJ/PjH/+YoUOHMm/ePEaOHMmsWbO4+uqrGTp0KFdeeSWZTIY77rhjowtPBVhECsUU4Digq+Mcsk4tUNfUnVtttRWnn346N910Ex07dlx7+5QpU3jssccAOO200zYo0I2ZNm0a3bt3p1evXuy8886cffbZLF68mA8//JAdd9yRgQMHrp0nwNNPP82oUaMoK4vLXLdu3ZgxYwYzZsxg+PDhANTV1bHjjjuunceafcsHH3wwS5cuZcmSJRvkePrpp9fbTL506VKWLVvG5MmT174m3/fZeuuN7y1RARaRgpCMD/2C6xyyaUaPHs2AAQM466yzmnxMS056NW7cON555x08zwPiwvfoo48yaNCgRp9vrd3gdmste+21F1OmTGlRjsamW19fz5QpU9b7QbEpryOb9gGLiEjOdOvWjRNOOIE777xz7W0HHnggDz4Yj6ty//33M3ToUAC6dOnCsmXLNphGfX09Dz/8MG+++SZRFBFFERMnTmTcuHHsueeefPzxx0ybNg2AZcuWsXr1akaMGMFtt93G6tXx1vFFixaxxx57sGDBgrUFeNWqVbz99ttr5zN+/HgAXnzxRSorK6msrNwg04gRIxgzZsza62+88QYQt5rvv/9+AP7+97+zePHijS8ca60uuuiiiy66tOrSp0+f922WTp06rf3/008/tR07drRXXXWVtdbaOXPm2EMPPdT269fPHnbYYXbu3LnWWmtffPFF26dPH9u/f3/7/vvrJvfcc8/ZwYMHZ0/erl692u6www72448/tlOnTrWDBw+2VVVVdvDgwXbZsmV21apV9sc//rHt06ePraqqsjfffLO11trp06fbgw46yFZVVdm+ffvaO+64w1pr7SGHHGKDILBDhgyxe+21l3311Vettda+++67tl+/fnafffaxkydPtgsWLLAnnHCC7devn+3Tp489//zzrbXWfvHFF3b48OF23333taNHj7Y9e/a0CxYsWC9zsozWLjONBS0iIq3Wt2/f9wt5KMphw4Zx/fXXs//+++dsHn379p09c+bM3ddc1yZoERERB9QJS0RESt6kSZPyPk+1gEVERBxQC1hERFqttrZ2XsPT7cn6amtr52VfVycsERERB7QJWkRExAEVYBEREQf+PxEmc/GqBR/OAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# this code is taken from\n",
+ "# https://matplotlib.org/gallery/pie_and_polar_charts/pie_and_donut_labels.html#sphx-glr-gallery-pie-and-polar-charts-pie-and-donut-labels-py\n",
+ "\n",
+ "\n",
+ "y_value_counts = project_data['project_is_approved'].value_counts()\n",
+ "print(\"Number of projects thar are approved for funding \", y_value_counts[1], \", (\", (y_value_counts[1]/(y_value_counts[1]+y_value_counts[0]))*100,\"%)\")\n",
+ "print(\"Number of projects thar are not approved for funding \", y_value_counts[0], \", (\", (y_value_counts[0]/(y_value_counts[1]+y_value_counts[0]))*100,\"%)\")\n",
+ "\n",
+ "fig, ax = plt.subplots(figsize=(6, 6), subplot_kw=dict(aspect=\"equal\"))\n",
+ "recipe = [\"Accepted\", \"Not Accepted\"]\n",
+ "\n",
+ "data = [y_value_counts[1], y_value_counts[0]]\n",
+ "\n",
+ "wedges, texts = ax.pie(data, wedgeprops=dict(width=0.5), startangle=-40)\n",
+ "\n",
+ "bbox_props = dict(boxstyle=\"square,pad=0.3\", fc=\"w\", ec=\"k\", lw=0.72)\n",
+ "kw = dict(xycoords='data', textcoords='data', arrowprops=dict(arrowstyle=\"-\"),\n",
+ " bbox=bbox_props, zorder=0, va=\"center\")\n",
+ "\n",
+ "for i, p in enumerate(wedges):\n",
+ " ang = (p.theta2 - p.theta1)/2. + p.theta1\n",
+ " y = np.sin(np.deg2rad(ang))\n",
+ " x = np.cos(np.deg2rad(ang))\n",
+ " horizontalalignment = {-1: \"right\", 1: \"left\"}[int(np.sign(x))]\n",
+ " connectionstyle = \"angle,angleA=0,angleB={}\".format(ang)\n",
+ " kw[\"arrowprops\"].update({\"connectionstyle\": connectionstyle})\n",
+ " ax.annotate(recipe[i], xy=(x, y), xytext=(1.35*np.sign(x), 1.4*y),\n",
+ " horizontalalignment=horizontalalignment, **kw)\n",
+ "\n",
+ "ax.set_title(\"Nmber of projects that are Accepted and not accepted\")\n",
+ "\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "6-A5ffngoc3w"
+ },
+ "source": [
+ "### 1.2.1 Univariate Analysis: School State"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "978IRWUsoc3y",
+ "outputId": "036fc87d-2bcd-4194-add4-3facaed61ef6"
+ },
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.plotly.v1+json": {
+ "config": {
+ "linkText": "Export to plot.ly",
+ "plotlyServerURL": "https://plot.ly",
+ "showLink": false
+ },
+ "data": [
+ {
+ "autocolorscale": false,
+ "colorbar": {
+ "title": {
+ "text": "% of pro"
+ }
+ },
+ "colorscale": [
+ [
+ 0,
+ "rgb(242,240,247)"
+ ],
+ [
+ 0.2,
+ "rgb(218,218,235)"
+ ],
+ [
+ 0.4,
+ "rgb(188,189,220)"
+ ],
+ [
+ 0.6,
+ "rgb(158,154,200)"
+ ],
+ [
+ 0.8,
+ "rgb(117,107,177)"
+ ],
+ [
+ 1,
+ "rgb(84,39,143)"
+ ]
+ ],
+ "locationmode": "USA-states",
+ "locations": [
+ "AK",
+ "AL",
+ "AR",
+ "AZ",
+ "CA",
+ "CO",
+ "CT",
+ "DC",
+ "DE",
+ "FL",
+ "GA",
+ "HI",
+ "IA",
+ "ID",
+ "IL",
+ "IN",
+ "KS",
+ "KY",
+ "LA",
+ "MA",
+ "MD",
+ "ME",
+ "MI",
+ "MN",
+ "MO",
+ "MS",
+ "MT",
+ "NC",
+ "ND",
+ "NE",
+ "NH",
+ "NJ",
+ "NM",
+ "NV",
+ "NY",
+ "OH",
+ "OK",
+ "OR",
+ "PA",
+ "RI",
+ "SC",
+ "SD",
+ "TN",
+ "TX",
+ "UT",
+ "VA",
+ "VT",
+ "WA",
+ "WI",
+ "WV",
+ "WY"
+ ],
+ "marker": {
+ "line": {
+ "color": "rgb(255,255,255)",
+ "width": 2
+ }
+ },
+ "text": [
+ "AK",
+ "AL",
+ "AR",
+ "AZ",
+ "CA",
+ "CO",
+ "CT",
+ "DC",
+ "DE",
+ "FL",
+ "GA",
+ "HI",
+ "IA",
+ "ID",
+ "IL",
+ "IN",
+ "KS",
+ "KY",
+ "LA",
+ "MA",
+ "MD",
+ "ME",
+ "MI",
+ "MN",
+ "MO",
+ "MS",
+ "MT",
+ "NC",
+ "ND",
+ "NE",
+ "NH",
+ "NJ",
+ "NM",
+ "NV",
+ "NY",
+ "OH",
+ "OK",
+ "OR",
+ "PA",
+ "RI",
+ "SC",
+ "SD",
+ "TN",
+ "TX",
+ "UT",
+ "VA",
+ "VT",
+ "WA",
+ "WI",
+ "WV",
+ "WY"
+ ],
+ "type": "choropleth",
+ "z": [
+ 0.8405797101449275,
+ 0.8547105561861521,
+ 0.8312678741658722,
+ 0.8383791336748952,
+ 0.8581362100337926,
+ 0.8415841584158416,
+ 0.8689116055321707,
+ 0.8023255813953488,
+ 0.8979591836734694,
+ 0.8316895715440582,
+ 0.8400201867272269,
+ 0.8560157790927022,
+ 0.8528528528528528,
+ 0.8354978354978355,
+ 0.8528735632183908,
+ 0.8450381679389313,
+ 0.8391167192429022,
+ 0.8634969325153374,
+ 0.8312447786131997,
+ 0.8601925491837589,
+ 0.8388375165125496,
+ 0.8475247524752475,
+ 0.8453021195824106,
+ 0.8576158940397351,
+ 0.8548136645962733,
+ 0.8450491307634165,
+ 0.8163265306122449,
+ 0.8550383028874484,
+ 0.8881118881118881,
+ 0.8414239482200647,
+ 0.8735632183908046,
+ 0.8439874832364774,
+ 0.8599640933572711,
+ 0.8536942209217264,
+ 0.859661109592785,
+ 0.8751520064856101,
+ 0.8347978910369068,
+ 0.8502415458937198,
+ 0.8549372788678031,
+ 0.8526315789473684,
+ 0.860010162601626,
+ 0.84,
+ 0.8501184834123223,
+ 0.8131422390481341,
+ 0.8365106874638937,
+ 0.8503667481662591,
+ 0.8,
+ 0.87617823479006,
+ 0.8456486042692939,
+ 0.8548707753479126,
+ 0.8367346938775511
+ ]
+ }
+ ],
+ "layout": {
+ "geo": {
+ "lakecolor": "rgb(255, 255, 255)",
+ "projection": {
+ "type": "albers usa"
+ },
+ "scope": "usa",
+ "showlakes": true
+ },
+ "template": {
+ "data": {
+ "bar": [
+ {
+ "error_x": {
+ "color": "#2a3f5f"
+ },
+ "error_y": {
+ "color": "#2a3f5f"
+ },
+ "marker": {
+ "line": {
+ "color": "#E5ECF6",
+ "width": 0.5
+ },
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "bar"
+ }
+ ],
+ "barpolar": [
+ {
+ "marker": {
+ "line": {
+ "color": "#E5ECF6",
+ "width": 0.5
+ },
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "barpolar"
+ }
+ ],
+ "carpet": [
+ {
+ "aaxis": {
+ "endlinecolor": "#2a3f5f",
+ "gridcolor": "white",
+ "linecolor": "white",
+ "minorgridcolor": "white",
+ "startlinecolor": "#2a3f5f"
+ },
+ "baxis": {
+ "endlinecolor": "#2a3f5f",
+ "gridcolor": "white",
+ "linecolor": "white",
+ "minorgridcolor": "white",
+ "startlinecolor": "#2a3f5f"
+ },
+ "type": "carpet"
+ }
+ ],
+ "choropleth": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "choropleth"
+ }
+ ],
+ "contour": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "contour"
+ }
+ ],
+ "contourcarpet": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "contourcarpet"
+ }
+ ],
+ "heatmap": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "heatmap"
+ }
+ ],
+ "heatmapgl": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "heatmapgl"
+ }
+ ],
+ "histogram": [
+ {
+ "marker": {
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "histogram"
+ }
+ ],
+ "histogram2d": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "histogram2d"
+ }
+ ],
+ "histogram2dcontour": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "histogram2dcontour"
+ }
+ ],
+ "mesh3d": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "mesh3d"
+ }
+ ],
+ "parcoords": [
+ {
+ "line": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "parcoords"
+ }
+ ],
+ "pie": [
+ {
+ "automargin": true,
+ "type": "pie"
+ }
+ ],
+ "scatter": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatter"
+ }
+ ],
+ "scatter3d": [
+ {
+ "line": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatter3d"
+ }
+ ],
+ "scattercarpet": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattercarpet"
+ }
+ ],
+ "scattergeo": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattergeo"
+ }
+ ],
+ "scattergl": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattergl"
+ }
+ ],
+ "scattermapbox": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattermapbox"
+ }
+ ],
+ "scatterpolar": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterpolar"
+ }
+ ],
+ "scatterpolargl": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterpolargl"
+ }
+ ],
+ "scatterternary": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterternary"
+ }
+ ],
+ "surface": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "surface"
+ }
+ ],
+ "table": [
+ {
+ "cells": {
+ "fill": {
+ "color": "#EBF0F8"
+ },
+ "line": {
+ "color": "white"
+ }
+ },
+ "header": {
+ "fill": {
+ "color": "#C8D4E3"
+ },
+ "line": {
+ "color": "white"
+ }
+ },
+ "type": "table"
+ }
+ ]
+ },
+ "layout": {
+ "annotationdefaults": {
+ "arrowcolor": "#2a3f5f",
+ "arrowhead": 0,
+ "arrowwidth": 1
+ },
+ "autotypenumbers": "strict",
+ "coloraxis": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "colorscale": {
+ "diverging": [
+ [
+ 0,
+ "#8e0152"
+ ],
+ [
+ 0.1,
+ "#c51b7d"
+ ],
+ [
+ 0.2,
+ "#de77ae"
+ ],
+ [
+ 0.3,
+ "#f1b6da"
+ ],
+ [
+ 0.4,
+ "#fde0ef"
+ ],
+ [
+ 0.5,
+ "#f7f7f7"
+ ],
+ [
+ 0.6,
+ "#e6f5d0"
+ ],
+ [
+ 0.7,
+ "#b8e186"
+ ],
+ [
+ 0.8,
+ "#7fbc41"
+ ],
+ [
+ 0.9,
+ "#4d9221"
+ ],
+ [
+ 1,
+ "#276419"
+ ]
+ ],
+ "sequential": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "sequentialminus": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ]
+ },
+ "colorway": [
+ "#636efa",
+ "#EF553B",
+ "#00cc96",
+ "#ab63fa",
+ "#FFA15A",
+ "#19d3f3",
+ "#FF6692",
+ "#B6E880",
+ "#FF97FF",
+ "#FECB52"
+ ],
+ "font": {
+ "color": "#2a3f5f"
+ },
+ "geo": {
+ "bgcolor": "white",
+ "lakecolor": "white",
+ "landcolor": "#E5ECF6",
+ "showlakes": true,
+ "showland": true,
+ "subunitcolor": "white"
+ },
+ "hoverlabel": {
+ "align": "left"
+ },
+ "hovermode": "closest",
+ "mapbox": {
+ "style": "light"
+ },
+ "paper_bgcolor": "white",
+ "plot_bgcolor": "#E5ECF6",
+ "polar": {
+ "angularaxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ },
+ "bgcolor": "#E5ECF6",
+ "radialaxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ }
+ },
+ "scene": {
+ "xaxis": {
+ "backgroundcolor": "#E5ECF6",
+ "gridcolor": "white",
+ "gridwidth": 2,
+ "linecolor": "white",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "white"
+ },
+ "yaxis": {
+ "backgroundcolor": "#E5ECF6",
+ "gridcolor": "white",
+ "gridwidth": 2,
+ "linecolor": "white",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "white"
+ },
+ "zaxis": {
+ "backgroundcolor": "#E5ECF6",
+ "gridcolor": "white",
+ "gridwidth": 2,
+ "linecolor": "white",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "white"
+ }
+ },
+ "shapedefaults": {
+ "line": {
+ "color": "#2a3f5f"
+ }
+ },
+ "ternary": {
+ "aaxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ },
+ "baxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ },
+ "bgcolor": "#E5ECF6",
+ "caxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ }
+ },
+ "title": {
+ "x": 0.05
+ },
+ "xaxis": {
+ "automargin": true,
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": "",
+ "title": {
+ "standoff": 15
+ },
+ "zerolinecolor": "white",
+ "zerolinewidth": 2
+ },
+ "yaxis": {
+ "automargin": true,
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": "",
+ "title": {
+ "standoff": 15
+ },
+ "zerolinecolor": "white",
+ "zerolinewidth": 2
+ }
+ }
+ },
+ "title": {
+ "text": "Project Proposals % of Acceptance Rate by US States"
+ }
+ }
+ },
+ "text/html": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# Pandas dataframe grouby count, mean: https://stackoverflow.com/a/19385591/4084039\n",
+ "\n",
+ "temp = pd.DataFrame(project_data.groupby(\"school_state\")[\"project_is_approved\"].apply(np.mean)).reset_index()\n",
+ "# if you have data which contain only 0 and 1, then the mean = percentage (think about it)\n",
+ "temp.columns = ['state_code', 'num_proposals']\n",
+ "\n",
+ "# How to plot US state heatmap: https://datascience.stackexchange.com/a/9620\n",
+ "\n",
+ "scl = [[0.0, 'rgb(242,240,247)'],[0.2, 'rgb(218,218,235)'],[0.4, 'rgb(188,189,220)'],\\\n",
+ " [0.6, 'rgb(158,154,200)'],[0.8, 'rgb(117,107,177)'],[1.0, 'rgb(84,39,143)']]\n",
+ "\n",
+ "data = [ dict(\n",
+ " type='choropleth',\n",
+ " colorscale = scl,\n",
+ " autocolorscale = False,\n",
+ " locations = temp['state_code'],\n",
+ " z = temp['num_proposals'].astype(float),\n",
+ " locationmode = 'USA-states',\n",
+ " text = temp['state_code'],\n",
+ " marker = dict(line = dict (color = 'rgb(255,255,255)',width = 2)),\n",
+ " colorbar = dict(title = \"% of pro\")\n",
+ " ) ]\n",
+ "\n",
+ "layout = dict(\n",
+ " title = 'Project Proposals % of Acceptance Rate by US States',\n",
+ " geo = dict(\n",
+ " scope='usa',\n",
+ " projection=dict( type='albers usa' ),\n",
+ " showlakes = True,\n",
+ " lakecolor = 'rgb(255, 255, 255)',\n",
+ " ),\n",
+ " )\n",
+ "\n",
+ "fig = go.Figure(data=data, layout=layout)\n",
+ "offline.iplot(fig, filename='us-map-heat-map')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "IjU9Eai_oc34",
+ "outputId": "0d0e0ad1-5edc-40a3-9b52-c74ae3d82a98"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "States with lowest % approvals\n",
+ " state_code num_proposals\n",
+ "46 VT 0.800000\n",
+ "7 DC 0.802326\n",
+ "43 TX 0.813142\n",
+ "26 MT 0.816327\n",
+ "18 LA 0.831245\n",
+ "==================================================\n",
+ "States with highest % approvals\n",
+ " state_code num_proposals\n",
+ "30 NH 0.873563\n",
+ "35 OH 0.875152\n",
+ "47 WA 0.876178\n",
+ "28 ND 0.888112\n",
+ "8 DE 0.897959\n"
+ ]
+ }
+ ],
+ "source": [
+ "# https://www.csi.cuny.edu/sites/default/files/pdf/administration/ops/2letterstabbrev.pdf\n",
+ "temp.sort_values(by=['num_proposals'], inplace=True)\n",
+ "print(\"States with lowest % approvals\")\n",
+ "print(temp.head(5))\n",
+ "print('='*50)\n",
+ "print(\"States with highest % approvals\")\n",
+ "print(temp.tail(5))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "-Htj_Ldkoc3-"
+ },
+ "outputs": [],
+ "source": [
+ "#stacked bar plots matplotlib: https://matplotlib.org/gallery/lines_bars_and_markers/bar_stacked.html\n",
+ "def stack_plot(data, xtick, col2='project_is_approved', col3='total'):\n",
+ " ind = np.arange(data.shape[0])\n",
+ "\n",
+ " plt.figure(figsize=(20,5))\n",
+ " p1 = plt.bar(ind, data[col3].values)\n",
+ " p2 = plt.bar(ind, data[col2].values)\n",
+ "\n",
+ " plt.ylabel('Projects')\n",
+ " plt.title('% of projects aproved state wise')\n",
+ " plt.xticks(ind, list(data[xtick].values))\n",
+ " plt.legend((p1[0], p2[0]), ('total', 'accepted'))\n",
+ " plt.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "ilYj-EPyoc4F"
+ },
+ "outputs": [],
+ "source": [
+ "def univariate_barplots(data, col1, col2='project_is_approved', top=False):\n",
+ " # Count number of zeros in dataframe python: https://stackoverflow.com/a/51540521/4084039\n",
+ " temp = pd.DataFrame(project_data.groupby(col1)[col2].agg(lambda x: x.eq(1).sum())).reset_index()\n",
+ " print(temp.head(20))\n",
+ " # Pandas dataframe grouby count: https://stackoverflow.com/a/19385591/4084039\n",
+ " temp['total'] = pd.DataFrame(project_data.groupby(col1)[col2].agg({total:'count'})).reset_index()\n",
+ " temp['Avg'] = pd.DataFrame(project_data.groupby(col1)[col2].agg({Avg:'mean'})).reset_index()['Avg']\n",
+ "\n",
+ " temp.sort_values(by=['total'],inplace=True, ascending=False)\n",
+ "\n",
+ " if top:\n",
+ " temp = temp[0:top]\n",
+ "\n",
+ " stack_plot(temp, xtick=col1, col2=col2, col3='total')\n",
+ " print(temp.head(5))\n",
+ " print(\"=\"*50)\n",
+ " print(temp.tail(5))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "7YGSvPWSoc4K",
+ "outputId": "23455f42-50f9-4613-ff29-909a45ed758b"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " school_state project_is_approved\n",
+ "0 AK 290\n",
+ "1 AL 1506\n",
+ "2 AR 872\n",
+ "3 AZ 1800\n",
+ "4 CA 13205\n",
+ "5 CO 935\n",
+ "6 CT 1445\n",
+ "7 DC 414\n",
+ "8 DE 308\n",
+ "9 FL 5144\n",
+ "10 GA 3329\n",
+ "11 HI 434\n",
+ "12 IA 568\n",
+ "13 ID 579\n",
+ "14 IL 3710\n",
+ "15 IN 2214\n",
+ "16 KS 532\n",
+ "17 KY 1126\n",
+ "18 LA 1990\n",
+ "19 MA 2055\n"
+ ]
+ },
+ {
+ "ename": "NameError",
+ "evalue": "name 'total' is not defined",
+ "output_type": "error",
+ "traceback": [
+ "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
+ "\u001b[1;31mNameError\u001b[0m Traceback (most recent call last)",
+ "\u001b[1;32m~\\AppData\\Local\\Temp/ipykernel_3772/2430464069.py\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0munivariate_barplots\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mproject_data\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;34m'school_state'\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;34m'project_is_approved'\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;32mFalse\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m",
+ "\u001b[1;32m~\\AppData\\Local\\Temp/ipykernel_3772/3603038413.py\u001b[0m in \u001b[0;36munivariate_barplots\u001b[1;34m(data, col1, col2, top)\u001b[0m\n\u001b[0;32m 4\u001b[0m \u001b[0mprint\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mtemp\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mhead\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;36m20\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 5\u001b[0m \u001b[1;31m# Pandas dataframe grouby count: https://stackoverflow.com/a/19385591/4084039\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 6\u001b[1;33m \u001b[0mtemp\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m'total'\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mpd\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mDataFrame\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mproject_data\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mgroupby\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mcol1\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mcol2\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0magg\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m{\u001b[0m\u001b[0mtotal\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;34m'count'\u001b[0m\u001b[1;33m}\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mreset_index\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 7\u001b[0m \u001b[0mtemp\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m'Avg'\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mpd\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mDataFrame\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mproject_data\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mgroupby\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mcol1\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mcol2\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0magg\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m{\u001b[0m\u001b[0mAvg\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;34m'mean'\u001b[0m\u001b[1;33m}\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mreset_index\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m'Avg'\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 8\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n",
+ "\u001b[1;31mNameError\u001b[0m: name 'total' is not defined"
+ ]
+ }
+ ],
+ "source": [
+ "univariate_barplots(project_data, 'school_state', 'project_is_approved', False)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "ulA_DTSOoc4O"
+ },
+ "source": [
+ "__Every state is having more than 80% success rate in approval__"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "FtUHgSzdoc4Q"
+ },
+ "source": [
+ "### 1.2.2 Univariate Analysis: teacher_prefix"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "u3eGSWoPoc4R",
+ "outputId": "16d855f6-e1bf-4cda-d4a7-f2fcca03b79e"
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABKIAAAE/CAYAAAB1pGuwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xm4ZlV5J+zfI4iFykyJSqmQljYiUgSKKbQ4oAjqF/jSEsG0oLFDxyFN0mkjJjEaNQkmRoIdh4tEItggaGyVRhTBAUUEKQyogIZCK6HEAShEcECBp/94d5FDcWqi6uxTw31f17nOu9dee7/Pfk9tTtWPtdau7g4AAAAAzLSHzHYBAAAAAGwaBFEAAAAAjEIQBQAAAMAoBFEAAAAAjEIQBQAAAMAoBFEAAAAAjEIQBQCMqqreUlW3VNX3Rniv36yqT830+2yMqqqr6omzXce6UFVPq6pvznYdAIAgCgCYRlX9bVXdVlVfqqqdp7T/ZlWdshbnfVySP0iye3c/el3UujLdfWZ3H7o256iqXYZQZvN1VdfGqqpeWlWXrEH/UT7b7v5Cdz9pJt8DAFg9gigA4H6qar8k+yR5dJJLkrxuaN8myf9M8qdrcfonJLm1u3+wtnUONW22Ls6zIRCEAQAbA0EUALC8XZNc0t13Jfl0kl8a2v88yV939+0rO7iqtqmqM6rq5qr616r6k6p6SFU9O8mFSR5bVXdW1fumOfYZVbWkqv5omL63uKp+c8r+91XVu6vq/Kr6cZJnruj9hv73G6FTVb9cVRdW1dKq+mZV/caUfVtW1d8M57i9qi6pqi2TfH7o8sOh7gOr6olVdfHQ75aqOmcln8eHqup7Q9/PV9VTlrue9ww13TGc8wlT9ndVvaqqrk9y/dD2q1V1xXC+K6rqV4f2o6tq4XLv/ftVde7w+mFV9baq+req+v7wvltO6fuaqvpuVd1UVb+1ip/xS6vqW0PN3x5Gyj05yXuSHDh8Tj8c+j6/qv65qn5UVTdW1RunnOoBn+1wzG9V1XXDqLwLpn4my9VxelX9wfB65+HzeuWw/cTh51zL/lxNOe61VfWdof5vVtUhQ/tDqurEqrqhqm6tqg9W1fYr+ywAgDUjiAIAlndNkqcNIcUhSa6pqgVJntTdZ63G8f8ryTaZBFhPT3Jskpd190VJDk9yU3c/srtfuoLjH51kxyQ7JzkuyalVNXVa1YszCcW2ymTE1rTvt/xJq+oRmQRhZyV5VJJjkrxrSjD0tkxGgv1qku2T/GGSe5McPOzfdqj7S0nenORTSbZLMm+oYUU+kWS34T2/kuTM5fb/5nC+HZNcNc3+I5Psn2T3IRT5eJJ3JNkhyduTfLyqdkhybpInVdVuy31Wy35mb03yH5PsleSJmXy+fzp8NodlMtrtOUOtz17RxQyf4zuSHN7dW2XyeV3V3dcl+Z0kXxo+p22HQ36cyc9k2yTPT/KKqjpy2PeAz3bY90dJfj3J3CRfSPKBFZRzcZJnDK+fnuRbw/dl5/5Cd/dy9T8pyauT7DvU/9wki4fd/z2Tz/vpSR6b5LYk71zRZwEArDlBFABwP9399SQfTnJZksdnEmCckuS/V9V/H0b1nFlV2y5/bE2myr0oyeu6+47uXpzkb5K8ZA3LeH1339XdF2cSvPzGlH0f6+4vdve9SX6xBu/3giSLu/sfu/vu7v7KcJ0vHEZQ/VaSE7r7O919T3dfOowKm84vMplm+Nju/ll3r3BdpO4+bajtriRvTDK/JtMcl/l4d39+2P/HmYwoetyU/X/Z3Uu7+6eZBDnXd/f7h2v4QJJvJPn/uvsnST6WScCWIZD65STnVlUl+e0kvz+c644kf5Hk6OE9fiPJP3b317v7x0OdK3Nvkj2qasvu/m53X7OS6/9cd3+tu+/t7q9mEio9fUX9k/y34Zqv6+67hzr3WsGoqIszCU0fkknw9FdJDhr2PX3Yv7x7kjwsk2Dvod29uLtvmPLef9zdS6b8vF5YpkUCwDojiAIAHqC7T+7u+d39okyCni9k8veG4zMZJXVdkhOnOXTHJFsk+dcpbf+ayeib1XXbEIZMPf6xU7ZvfJDv94Qk+1fVD5d9ZTIaadkIrDlJbpjmuOn8YZJK8uWqumZFU9mqarOqOmmY6vWj/PvImx2nu57uvjPJ0qz4eh+b+19rcv/rPStDEJXJaKiPDgHV3CQPT3LllGv/5NC+7LxT32f597jP8LN5USajn75bVR+vql9eUf+q2r+qPluTqZO3D8ftuKL+mfycTplS59JMPusH/EyHAOnOTEZ5PS3JeUluGkY9TRtEdfeiJL+XScj0g6o6u6qWfd5PSPKRKe99XSbB1U4rqRcAWAOCKABghapqp0xGibwpyR5Jvtrdv0hyRZI9pznklvz7aKFlHp/kO2vwttsN07+mHn/TlO2pU63W5P1uTHJxd2875euR3f2K4Tw/S/IfpjmuH9DQ/b3u/u3ufmwmn8+7quqJ0xz74iRHZDLVbZskuwztNaXPfaOfquqRmUwLXNH13rTctSb3v95PJdmxqvbKJJBaNi3vliQ/TfKUKde+TXc/ctj/3al1DOdcoe6+oLufk+QxmYzI+vtpal3mrEymDT6uu7fJZB2pWkn/G5P8t+V+Tlt296UrKOfiJC9MskV3f2fYPjaTaZNXraD+s7r7P2XyWXYmo/6Wvffhy733nOG8AMA6IIgCAFbm7UneMIyq+XaSfYew5BmZrMdzP919T5IPJvnzqtpqmE71P5L87zV83z+rqi2q6mmZTKn70HSd1vD9zkvyH6vqJVX10OFr36p68jDN77Qkb6+qxw4jmQ6sqocluTmTqWjLFm1PVR1VVfOGzdsyCTPumeY9t0pyV5JbMxmR9BfT9HleVf2nqtoik7WiLu/uG6fplyTnD9fw4qravKpelGT34doyTGX7pyR/nUmgdeHQfm8mYdHJVfWo4Rp2rqrnDuf9YJKXVtXuVfXwJG9Ywfunqnaqql8bwsK7MhmRtOzav59k3nAtUz+Dpd39s5o8kfHFU/Y94LPNJKh63bK1u2qyGP1RK6onk+Dp1fn3hc8/l+R3M1lw/wE/k6p6UlU9a/jZ/iyTgG5Zv/dk8mfpCUPfuVV1xEreGwBYQ4IoAGBaVfXMTBaR/kiSdPeXM1mv6cYkz0xy0goO/d1MFqj+ViaLiZ+VScizur6XSbhzUyYLd/9Od39jJf1X6/2GdZEOzWRdpJuG93lrJusFJZPFur+WyWivpcO+hwwh3J8n+eIwZeuAJPsmubyq7sxktM8J3f3taWo7I5Npbt9Jcm0m624t76xMgp+lmSyW/pvT9Fl2DbdmEsz9QSbh1h8meUF337Lc+Z6d5ENDMLXMa5MsSnLZME3woiRPGs77iSR/m+QzQ5/PrKiGTP7++AeZfIZLM5kC98ph32cyWez+e1W1rKZXJnlTVd2RyeLoH5xyPQ/4bIc/b29NcvZQ59czWeR+RS7OJOxaFkRdkkno9/kV9H9YJn92b8nkz8CjMlkcPZmshXZukk8N9V6WyULxAMA6Uss9SAQAYNZU1TOS/O/unreqvqt5vt9K8l+6+1nr4nzrWlW9L8mS7v6T2a4FAGAMRkQBABuzp2QypRAAgPWAR9ECABulqvpokt2SrGx9IQAARjSjU/Oqatsk/5DJU3Y6yW8l+WaSczJ5asziJL/R3bdVVWUyL/95SX6S5KXd/ZXhPMclWTZk/S3dffrQvk+S9yXZMpPFO09ocw0BAAAA1kszPTXvlCSf7O5fTjI/yXVJTkzy6e7eLcmnh+1ksgjlbsPX8UnenSRVtX0mC3jun2S/JG+oqu2GY9499F123GEzfD0AAAAAPEgzFkRV1dZJDk7y3iTp7p939w+THJHk9KHb6UmOHF4fkeSMnrgsybZV9Zgkz01yYXcv7e7bMnkM8WHDvq27+0vDKKgzppwLAAAAgPXMTK4R9UtJbk7yj1U1P8mVSU5IslN3fzdJuvu7VfWoof/OmTwOepklQ9vK2pdM075SO+64Y++yyy4P5noAAAAAmMaVV155S3fPXVW/mQyiNk+yd5Lf7e7Lq+qU/Ps0vOnUNG39INofeOKq4zOZwpfHP/7xWbhw4crqBgAAAGANVNW/rk6/mVwjakmSJd19+bD9T5kEU98fptVl+P6DKf0fN+X4eUluWkX7vGnaH6C7T+3uBd29YO7cVYZzAAAAAMyAGQuiuvt7SW6sqicNTYckuTbJuUmOG9qOS/Kx4fW5SY6tiQOS3D5M4bsgyaFVtd2wSPmhSS4Y9t1RVQcMT9w7dsq5AAAAAFjPzOTUvCT53SRnVtUWSb6V5GWZhF8frKqXJ/m3JEcNfc9P8rwki5L8ZOib7l5aVW9OcsXQ703dvXR4/Yok70uyZZJPDF8AAAAArIdq8sC5TceCBQvaGlEAAACw6fnFL36RJUuW5Gc/+9lsl7LBmjNnTubNm5eHPvSh92uvqiu7e8Gqjp/pEVEAAAAA64UlS5Zkq622yi677JLJKj+sie7OrbfemiVLlmTXXXd9UOeYycXKAQAAANYbP/vZz7LDDjsIoR6kqsoOO+ywViPKBFEAAADAJkMItXbW9vMTRAEAAACM4Ic//GHe9a53rbTP4sWLc9ZZZ63yXIsXL84ee+yxrkobjTWiAAAAgE3SLid+fJ2eb/FJz1/p/mVB1Ctf+coVn2MIol784hev09rWF0ZEAQAAAIzgxBNPzA033JC99torr3nNa/Ka17wme+yxR5761KfmnHPOua/PF77whey11145+eSTs3jx4jztaU/L3nvvnb333juXXnrpLF/F2jEiCgAAAGAEJ510Ur7+9a/nqquuyoc//OG85z3vydVXX51bbrkl++67bw4++OCcdNJJedvb3pbzzjsvSfKTn/wkF154YebMmZPrr78+xxxzTBYuXDjLV/LgCaI2UOt6+CCsa6sakgoAALApu+SSS3LMMcdks802y0477ZSnP/3pueKKK7L11lvfr98vfvGLvPrVr85VV12VzTbbLP/yL/8ySxWvG4IoAAAAgJF192r1O/nkk7PTTjvl6quvzr333ps5c+bMcGUzyxpRAAAAACPYaqutcscddyRJDj744Jxzzjm55557cvPNN+fzn/989ttvv/v1SZLbb789j3nMY/KQhzwk73//+3PPPffMVvnrhBFRAAAAACPYYYcdctBBB2WPPfbI4Ycfnj333DPz589PVeWv/uqv8uhHPzo77LBDNt9888yfPz8vfelL88pXvjL/+T//53zoQx/KM5/5zDziEY+Y7ctYK7W6Q8E2FgsWLOgNeVGvZawRxfrOGlEAAMD65rrrrsuTn/zk2S5jgzfd51hVV3b3glUda2oeAAAAAKMQRAEAAAAwCkEUAAAAAKMQRAEAAAAwCkEUAAAAAKMQRAEAAAAwCkEUAAAAwEbqox/9aK699to1Pu6Rj3zkDFSTbD4jZwUAAABY371xm3V8vtvX7fnWgY9+9KN5wQtekN133322S0liRBQAAADAaI488sjss88+ecpTnpJTTz01SfLJT34ye++9d+bPn59DDjkkSXLnnXfmZS97WZ761Kdmzz33zIc//OEkyac+9akceOCB2XvvvXPUUUflzjvvTJLssssuee1rX5v99tsv++23XxYtWpRLL7005557bl7zmtdkr732yg033JAbbrghhx12WPbZZ5887WlPyze+8Y0kybe//e0ceOCB2XffffP6179+xq7fiCgAAACAkZx22mnZfvvt89Of/jT77rtvjjjiiPz2b/92Pv/5z2fXXXfN0qVLkyRvfvObs8022+RrX/takuS2227LLbfckre85S256KKL8ohHPCJvfetb8/a3vz1/+qd/miTZeuut8+UvfzlnnHFGfu/3fi/nnXdefu3Xfi0veMEL8sIXvjBJcsghh+Q973lPdtttt1x++eV55Stfmc985jM54YQT8opXvCLHHnts3vnOd87Y9QuiAAAAAEbyjne8Ix/5yEeSJDfeeGNOPfXUHHzwwdl1112TJNtvv32S5KKLLsrZZ59933HbbbddzjvvvFx77bU56KCDkiQ///nPc+CBB97X55hjjrnv++///u8/4L3vvPPOXHrppTnqqKPua7vrrruSJF/84hfvG3X1kpe8JK997WvX2TVPJYgCAAAAGMHnPve5XHTRRfnSl76Uhz/84XnGM56R+fPn55vf/OYD+nZ3quoBbc95znPygQ98YNrzT+2//LFJcu+992bbbbfNVVddtcrjZ4o1ogAAAABGcPvtt2e77bbLwx/+8HzjG9/IZZddlrvuuisXX3xxvv3tbyfJfVPzDj300Pzd3/3dfcfedtttOeCAA/LFL34xixYtSpL85Cc/yb/8y7/c1+ecc8657/uykVJbbbVV7rjjjiSTqXu77rprPvShDyWZBFtXX311kuSggw66bwTWmWeeOWOfgSAKAAAAYASHHXZY7r777uy55555/etfnwMOOCBz587Nqaeeml//9V/P/Pnz86IXvShJ8id/8ie57bbbsscee2T+/Pn57Gc/m7lz5+Z973tfjjnmmOy555454IAD7ltsPJlMs9t///1zyimn5OSTT06SHH300fnrv/7r/Mqv/EpuuOGGnHnmmXnve9+b+fPn5ylPeUo+9rGPJUlOOeWUvPOd78y+++6b22+fuaf/VXfP2MnXRwsWLOiFCxfOdhlrbZcTPz7bJcBKLT7p+bNdAgAAwP1cd911efKTnzzbZcyIXXbZJQsXLsyOO+444+813edYVVd294JVHWtEFAAAAACjsFg5AAAAwAZu8eLFs13CajEiCgAAAIBRCKIAAACATcamtlb2ura2n58gCgAAANgkzJkzJ7feeqsw6kHq7tx6662ZM2fOgz6HNaIAAACATcK8efOyZMmS3HzzzbNdygZrzpw5mTdv3oM+XhAFAAAAbBIe+tCHZtddd53tMjZppuYBAAAAMApBFAAAAACjmNEgqqoWV9XXquqqqlo4tG1fVRdW1fXD9+2G9qqqd1TVoqr6alXtPeU8xw39r6+q46a07zOcf9FwbM3k9QAAAADw4I0xIuqZ3b1Xdy8Ytk9M8unu3i3Jp4ftJDk8yW7D1/FJ3p1Mgqskb0iyf5L9krxhWXg19Dl+ynGHzfzlAAAAAPBgzMbUvCOSnD68Pj3JkVPaz+iJy5JsW1WPSfLcJBd299Luvi3JhUkOG/Zt3d1f6slzF8+Yci4AAAAA1jMzHUR1kk9V1ZVVdfzQtlN3fzdJhu+PGtp3TnLjlGOXDG0ra18yTTsAAAAA66HNZ/j8B3X3TVX1qCQXVtU3VtJ3uvWd+kG0P/DEkxDs+CR5/OMfv/KKAQAAAJgRMzoiqrtvGr7/IMlHMlnj6fvDtLoM338wdF+S5HFTDp+X5KZVtM+bpn26Ok7t7gXdvWDu3Llre1kAAAAAPAgzFkRV1SOqaqtlr5McmuTrSc5NsuzJd8cl+djw+twkxw5Pzzsgye3D1L0LkhxaVdsNi5QfmuSCYd8dVXXA8LS8Y6ecCwAAAID1zExOzdspyUcmGVE2T3JWd3+yqq5I8sGqenmSf0ty1ND//CTPS7IoyU+SvCxJuntpVb05yRVDvzd199Lh9SuSvC/Jlkk+MXwBAAAAsB6qyQPnNh0LFizohQsXznYZa++N28x2BbByb7x9tisAAABgJFV1ZXcvWFW/mX5qHgAAAAAkEUQBAAAAMBJBFAAAAACjEEQBAAAAMApBFAAAAACjEEQBAAAAMApBFAAAAACjEEQBAAAAMApBFAAAAACjEEQBAAAAMApBFAAAAACjEEQBAAAAMApBFAAAAACjEEQBAAAAMApBFAAAAACjEEQBAAAAMApBFAAAAACjEEQBAAAAMApBFAAAAACjEEQBAAAAMApBFAAAAACjEEQBAAAAMApBFAAAAACjEEQBAAAAMApBFAAAAACjEEQBAAAAMApBFAAAAACjEEQBAAAAMApBFAAAAACjEEQBAAAAMApBFAAAAACjEEQBAAAAMApBFAAAAACjEEQBAAAAMApBFAAAAACjEEQBAAAAMIoZD6KqarOq+ueqOm/Y3rWqLq+q66vqnKraYmh/2LC9aNi/y5RzvG5o/2ZVPXdK+2FD26KqOnGmrwUAAACAB2+MEVEnJLluyvZbk5zc3bsluS3Jy4f2lye5rbufmOTkoV+qavckRyd5SpLDkrxrCLc2S/LOJIcn2T3JMUNfAAAAANZDMxpEVdW8JM9P8g/DdiV5VpJ/GrqcnuTI4fURw3aG/YcM/Y9IcnZ339Xd306yKMl+w9ei7v5Wd/88ydlDXwAAAADWQzM9Iupvk/xhknuH7R2S/LC77x62lyTZeXi9c5Ibk2TYf/vQ/7725Y5ZUTsAAAAA66EZC6Kq6gVJftDdV05tnqZrr2LfmrZPV8vxVbWwqhbefPPNK6kaAAAAgJkykyOiDkrya1W1OJNpc8/KZITUtlW1+dBnXpKbhtdLkjwuSYb92yRZOrV9uWNW1P4A3X1qdy/o7gVz585d+ysDAAAAYI3NWBDV3a/r7nndvUsmi41/prt/M8lnk7xw6HZcko8Nr88dtjPs/0x399B+9PBUvV2T7Jbky0muSLLb8BS+LYb3OHemrgcAAACAtbP5qrusc69NcnZVvSXJPyd579D+3iTvr6pFmYyEOjpJuvuaqvpgkmuT3J3kVd19T5JU1auTXJBksySndfc1o14JAAAAAKutJoOONh0LFizohQsXznYZa++N28x2BbByb7x9tisAAABgJFV1ZXcvWFW/2RgRBbBe2eXEj892CbBSi096/myXAAAA68RMLlYOAAAAAPcRRAEAAAAwCkEUAAAAAKMQRAEAAAAwCkEUAAAAAKMQRAEAAAAwCkEUAAAAAKMQRAEAAAAwCkEUAAAAAKMQRAEAAAAwCkEUAAAAAKMQRAEAAAAwCkEUAAAAAKMQRAEAAAAwCkEUAAAAAKMQRAEAAAAwCkEUAAAAAKMQRAEAAAAwCkEUAAAAAKMQRAEAAAAwCkEUAAAAAKNY4yCqqrarqj1nohgAAAAANl6rFURV1eeqauuq2j7J1Un+sarePrOlAQAAALAxWd0RUdt094+S/HqSf+zufZI8e+bKAgAAAGBjs7pB1OZV9Zgkv5HkvBmsBwAAAICN1OoGUX+W5IIki7r7iqr6pSTXz1xZAAAAAGxsNl/Nft/t7vsWKO/ub1kjCthYLJ7z4tkuAVbh9tkuAAAA1onVHRH1v1azDQAAAACmtdIRUVV1YJJfTTK3qv7HlF1bJ9lsJgsDAAAAYOOyqql5WyR55NBvqyntP0rywpkqCgAAAICNz0qDqO6+OMnFVfW+7v7XkWoCAAAAYCO0umtE/UNVbbtso6q2q6oLZqgmAAAAADZCqxtE7djdP1y20d23JXnUzJQEAAAAwMZodYOoe6vq8cs2quoJSXpmSgIAAABgY7SqxcqX+eMkl1TVxcP2wUmOn5mSAAAAANgYrdaIqO7+ZJK9k5yT5INJ9unula4RVVVzqurLVXV1VV1TVX82tO9aVZdX1fVVdU5VbTG0P2zYXjTs32XKuV43tH+zqp47pf2woW1RVZ24phcPAAAAwHhWK4iqqkpyWJK9u/v/Jnl4Ve23isPuSvKs7p6fZK8kh1XVAUnemuTk7t4tyW1JXj70f3mS27r7iUlOHvqlqnZPcnSSpww1vKuqNquqzZK8M8nhSXZPcszQFwAAAID10OquEfWuJAcmOWbYviOTEGiFeuLOYfOhw1cneVaSfxraT09y5PD6iGE7w/5DhgDsiCRnd/dd3f3tJIuS7Dd8Lerub3X3z5OcPfQFAAAAYD20ukHU/t39qiQ/S+57at4WqzpoGLl0VZIfJLkwyQ1Jftjddw9dliTZeXi9c5Ibh/PfneT2JDtMbV/umBW1AwAAALAeWt0g6hfDVLhOkqqam+TeVR3U3fd0915J5mUygunJ03UbvtcK9q1p+wNU1fFVtbCqFt58882rKhsAAACAGbC6QdQ7knwkyaOq6s+TXJLkL1b3Tbr7h0k+l+SAJNtW1bKn9c1LctPwekmSxyXJsH+bJEunti93zIrap3v/U7t7QXcvmDt37uqWDQAAAMA6tLpPzTszyR8m+csk301yZHd/aGXHVNXcqtp2eL1lkmcnuS7JZ5O8cOh2XJKPDa/PHbYz7P9Md/fQfvTwVL1dk+yW5MtJrkiy2/AUvi0yWdD83NW5HgAAAADGt/nKdlbV1t39o6raPpN1nj4wZd92SX7U3fes4PDHJDl9mNL3kCQf7O7zquraJGdX1VuS/HOS9w7935vk/VW1KJORUEcnSXdfU1UfTHJtkruTvGrZe1bVq5NckGSzJKd19zVr/hEAAAAAMIaVBlFJzkrygiRXZvp1mR5ZVX/f3X+0/IHd/dUkvzJN+7cyWS9q+fafJTlquiK6+8+T/Pk07ecnOX8V1wAAAADAemClQVR3v2D4vut0+4fRTl9P8oAgCgAAAACmWtWIqPtU1a8lOXjY/Fx3nzdMkZvuSXgAAAAAcD+rtVh5VZ2U5IRM1mm6NskJVfWXM1kYAAAAABuX1R0R9bwke3X3vUlSVadnstD462aqMAAAAAA2Lqs1Imqw7ZTX26zrQgAAAADYuK3uiKi/TPLPVfXZTJ6cd3CMhgIAAABgDawyiKqqSnJJkgOS7JtJEPXa7v7eDNcGAAAAwEZklUFUd3dVfbS790ly7gg1AQAAALARWt01oi6rqn1ntBIAAAAANmqru0bUM5P8TlUtTvLjTKbndXfvOVOFAQAAALBxWd0g6vAZrQIAAACAjd5Kg6iqmpPkd5I8McnXkry3u+8eozAAAAAANi6rWiPq9CQLMgmhDk/yNzNeEQAAAAAbpVVNzdu9u5+aJFX13iRfnvmSAAAAANgYrWpE1C+WvTAlDwAAAIC1saoRUfOr6kfD60qy5bC97Kl5W89odQAAAABsNFYaRHX3ZmMVAgAAAMDGbVVT8wAAAABgnRBEAQAAADAKQRQAAAAAoxBEAQAAADAKQRQAAAAAoxBEAQAAADAKQRQAAAAAoxBEAQAAADAKQRQAAAAAoxBEAQAAADAKQRQAAABYGJ9KAAAMcUlEQVQAoxBEAQAAADAKQRQAAAAAoxBEAQAAADAKQRQAAAAAoxBEAQAAADAKQRQAAAAAoxBEAQAAADAKQRQAAAAAoxBEAQAAADCKGQuiqupxVfXZqrquqq6pqhOG9u2r6sKqun74vt3QXlX1jqpaVFVfraq9p5zruKH/9VV13JT2farqa8Mx76iqmqnrAQAAAGDtzOSIqLuT/EF3PznJAUleVVW7Jzkxyae7e7cknx62k+TwJLsNX8cneXcyCa6SvCHJ/kn2S/KGZeHV0Of4KccdNoPXAwAAAMBamLEgqru/291fGV7fkeS6JDsnOSLJ6UO305McObw+IskZPXFZkm2r6jFJnpvkwu5e2t23JbkwyWHDvq27+0vd3UnOmHIuAAAAANYzo6wRVVW7JPmVJJcn2am7v5tMwqokjxq67ZzkximHLRnaVta+ZJr26d7/+KpaWFULb7755rW9HAAAAAAehBkPoqrqkUk+nOT3uvtHK+s6TVs/iPYHNnaf2t0LunvB3LlzV1UyAAAAADNgRoOoqnpoJiHUmd39f4bm7w/T6jJ8/8HQviTJ46YcPi/JTatonzdNOwAAAADroZl8al4leW+S67r77VN2nZtk2ZPvjkvysSntxw5Pzzsgye3D1L0LkhxaVdsNi5QfmuSCYd8dVXXA8F7HTjkXAAAAAOuZzWfw3AcleUmSr1XVVUPbHyU5KckHq+rlSf4tyVHDvvOTPC/JoiQ/SfKyJOnupVX15iRXDP3e1N1Lh9evSPK+JFsm+cTwBQAAAMB6aMaCqO6+JNOv45Qkh0zTv5O8agXnOi3JadO0L0yyx1qUCQAAAMBIRnlqHgAAAAAIogAAAAAYhSAKAAAAgFEIogAAAAAYhSAKAAAAgFEIogAAAAAYhSAKAAAAgFEIogAAAAAYhSAKAAAAgFEIogAAAAAYhSAKAAAAgFEIogAAAAAYhSAKAAAAgFEIogAAAAAYhSAKAAAAgFEIogAAAAAYhSAKAAAAgFEIogAAAAAYhSAKAAAAgFEIogAAAAAYhSAKAAAAgFEIogAAAAAYhSAKAAAAgFEIogAAAAAYhSAKAAAAgFEIogAAAAAYhSAKAAAAgFEIogAAAAAYhSAKAAAAgFEIogAAAAAYhSAKAAAAgFEIogAAAAAYhSAKAAAAgFEIogAAAAAYhSAKAAAAgFEIogAAAAAYxYwFUVV1WlX9oKq+PqVt+6q6sKquH75vN7RXVb2jqhZV1Verau8pxxw39L++qo6b0r5PVX1tOOYdVVUzdS0AAAAArL3NZ/Dc70vyd0nOmNJ2YpJPd/dJVXXisP3aJIcn2W342j/Ju5PsX1XbJ3lDkgVJOsmVVXVud9829Dk+yWVJzk9yWJJPzOD1AAArscuJH5/tEmClFp/0/NkuAQA2eTM2Iqq7P59k6XLNRyQ5fXh9epIjp7Sf0ROXJdm2qh6T5LlJLuzupUP4dGGSw4Z9W3f3l7q7Mwm7jgwAAAAA662x14jaqbu/myTD90cN7TsnuXFKvyVD28ral0zTDgAAAMB6an1ZrHy69Z36QbRPf/Kq46tqYVUtvPnmmx9kiQAAAACsjbGDqO8P0+oyfP/B0L4kyeOm9JuX5KZVtM+bpn1a3X1qdy/o7gVz585d64sAAAAAYM2NHUSdm2TZk++OS/KxKe3HDk/POyDJ7cPUvQuSHFpV2w1P2Ds0yQXDvjuq6oDhaXnHTjkXAAAAAOuhGXtqXlV9IMkzkuxYVUsyefrdSUk+WFUvT/JvSY4aup+f5HlJFiX5SZKXJUl3L62qNye5Yuj3pu5etgD6KzJ5Mt+WmTwtzxPzAAAAANZjMxZEdfcxK9h1yDR9O8mrVnCe05KcNk37wiR7rE2NAMC6s3jOi2e7BFiF22e7AADY5K0vi5UDAAAAsJETRAEAAAAwCkEUAAAAAKMQRAEAAAAwCkEUAAAAAKMQRAEAAAAwCkEUAAAAAKMQRAEAAAAwCkEUAAAAAKMQRAEAAAAwCkEUAAAAAKMQRAEAAAAwCkEUAAAAAKMQRAEAAAAwCkEUAAAAAKMQRAEAAAAwCkEUAAAAAKMQRAEAAAAwCkEUAAAAAKMQRAEAAAAwCkEUAAAAAKMQRAEAAAAwCkEUAAAAAKMQRAEAAAAwCkEUAAAAAKMQRAEAAAAwCkEUAAAAAKMQRAEAAAAwCkEUAAAAAKPYfLYLAAAA/t0uJ358tkuAlVp80vNnuwRgA2ZEFAAAAACjMCIKAADWI4vnvHi2S4BVuH22CwA2YEZEAQAAADAKQRQAAAAAoxBEAQAAADAKQRQAAAAAo9jgg6iqOqyqvllVi6rqxNmuBwAAAIDpbdBBVFVtluSdSQ5PsnuSY6pq99mtCgAAAIDpbNBBVJL9kizq7m9198+TnJ3kiFmuCQAAAIBpbOhB1M5JbpyyvWRoAwAAAGA9s/lsF7CWapq2fkCnquOTHD9s3llV35zRqthQ7ZjkltkuYqPxZ9Pdnmwi3EvrmvtpU+Z+WpfcS5sy99K65F7alLmXWJknrE6nDT2IWpLkcVO25yW5aflO3X1qklPHKooNU1Ut7O4Fs10HbOjcS7DuuJ9g3XAvwbrhXmJd2NCn5l2RZLeq2rWqtkhydJJzZ7kmAAAAAKaxQY+I6u67q+rVSS5IslmS07r7mlkuCwAAAIBpbNBBVJJ09/lJzp/tOtgomL4J64Z7CdYd9xOsG+4lWDfcS6y16n7A2t4AAAAAsM5t6GtEAQAAALCBEESx0auqrqr3T9nevKpurqrzZrMu2JC5r2DdcT/BA1XVDlV11fD1var6zpTtLdbB+f9rVf3tuqgVNkZVdc9wv11TVVdX1f+oKvkB68QGv0YUrIYfJ9mjqrbs7p8meU6S70zXsao27+67R60ONkyrfV8Bq+T3FCynu29NsleSVNUbk9zZ3W+b1aKmcC+yCfhpdy+7Bx+V5Kwk2yR5w9RO7gUeDIkmm4pPJHn+8PqYJB9YtqOq3lhVp1bVp5KcUVVPqaovD/8H4KtVtdtsFAwbgJXdV0+f8n+u/7mqtpqVCmHDsdq/p2ajOFifVNVxU/6u9q5lozSG+2ThMILjT6f037+qvjSM6ri8qh4+7JpXVRdU1fVV9ZdT+h8+9P9KVZ1TVY8Y2pdU1eur6otJ/v8xrxlmU3f/IMnxSV5dEy+tqg9V1f9N8qlZLo8NkCCKTcXZSY6uqjlJ9kxy+XL790lyRHe/OMnvJDll+D8AC5IsGbVS2HCs7L76n0leNdxHT0vy01moDzYka/J7CjZZVbVHJiHQrw6/YzZPcvSw+8TuXpBkfpLnVNXuwz11dia/k+YnOTTJXUP/+UlemMk991+q6rHDyI8TkxzS3Xsn+WqSE6aU8OPuPqi7PzSzVwrrl+7+Vib5waOGpgOTHNfdz5q9qthQmZrHJqG7v1pVu2Tyf5nPn6bLucN0iCT5UpI/rqp5Sf5Pd18/TpWwYVnFffXFJG+vqjMzuY8EurASa/h7CjZlz06yb5KFVZUkWya5cdh3TFW9PJN/4zw2ye5JHpbk37r7K0nS3bcnyXDsRd19x7D9jSSPT/Lo4bhLhz5bJLlkyvufM4PXBuu7mvL6wu5eOmuVsEETRLEpOTfJ25I8I8kOy+378bIX3X1WVV2eyRSJC6rqv3b3Z0arEjYs095X3X1SVX08yfOSXFZVz+7ub8xOibDBWK3fU7CJqySndffr79c4WUrhhCT7dfcPq+p/J5kz9O8VnOuuKa/vyeTfRpXkk939khUc415kk1RVv5TJffKDocm9wINmah6bktOSvKm7v7ayTsN/ZL/V3e/I5B8Fe45RHGygpr2vquo/dPfXuvutSRYm+eVZqQ42LKv1ewo2cRcl+Y2q2jG57+l6j0+ydZI7kvyoqh6T5LlD/2uSPKGq9h76b11Vm63k/Jcmefrw98FU1SOsF8qmrqrmJnlPkr/r7hUFu7DaBFFsMrp7SXefshpdX5Tk61V1VSb/eD4jSarq/Kp67EzWCBualdxXv1dVX6+qqzNZH+oTSTLcV8A0Vvf31LCOzXTT92CjNwS1f5bkoqr6aiYLJe+U5CtJrk3y9SR/n8kU8XT3XZlMeX338DvpU5lM11vR+b+f5OVJzhn6X5rkP87YBcH6a8vhgQDXZBIAfyqTe29a/o7HmiiBJgAAAABjMCIKAAAAgFEIogAAAAAYhSAKAAAAgFEIogAAAAAYhSAKAAAAgFEIogAAAAAYhSAKAAAAgFEIogAAAAAYxf8DcoNFPgnOQrMAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "output_type": "display_data"
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " teacher_prefix project_is_approved total Avg\n",
+ "2 Mrs. 48997 57269 0.855559\n",
+ "3 Ms. 32860 38955 0.843537\n",
+ "1 Mr. 8960 10648 0.841473\n",
+ "4 Teacher 1877 2360 0.795339\n",
+ "0 Dr. 9 13 0.692308\n",
+ "==================================================\n",
+ " teacher_prefix project_is_approved total Avg\n",
+ "2 Mrs. 48997 57269 0.855559\n",
+ "3 Ms. 32860 38955 0.843537\n",
+ "1 Mr. 8960 10648 0.841473\n",
+ "4 Teacher 1877 2360 0.795339\n",
+ "0 Dr. 9 13 0.692308\n"
+ ]
+ }
+ ],
+ "source": [
+ "univariate_barplots(project_data, 'teacher_prefix', 'project_is_approved' , top=False)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "7OVowKoToc4V"
+ },
+ "source": [
+ "### 1.2.3 Univariate Analysis: project_grade_category"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "dXV569pboc4X",
+ "outputId": "0b9c3108-164c-415c-c876-5d745842914c"
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABKIAAAE/CAYAAAB1pGuwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3XuYJmV5J+DfI4ijcj5IFNQhkTUcZJCTICseSBSjG9xEIuh6igmJh12TzRIx8ZBoTDAmsrrBuCQSNQuCxqgEjQgeQBSFQSEIaAAZw4iJnAWNyOHZP75q0gw9M83MdHXT3Pd1fVd/31tvVT1VPRTdv37rreruAAAAAMBce9B8FwAAAADAA4MgCgAAAIBRCKIAAAAAGIUgCgAAAIBRCKIAAAAAGIUgCgAAAIBRCKIAgFFV1R9V1XVV9a8j7OtFVfWZud7PYlRVXVWPm+86NoSqekpVfWu+6wAABFEAwAyq6n9X1Y1VdW5V7TCt/UVV9a712O6jk/xOkl27+6c2RK1r0t0ndvcz12cbVbV0CGU23lB1LVZV9bKqOuc+9B/l3Hb3F7v78XO5DwBgdgRRAMA9VNV+SfZO8lNJzkny+qF9iyT/K8mb1mPzj01yfXd/f33rHGraaENs5/5AEAYALAaCKABgVTslOae7b0vy2SQ/PbS/Lck7uvvmNa1cVVtU1Qer6tqq+k5VvaGqHlRVP5fkjCSPqqpbq+r9M6z7tKpaWVW/N9y+t6KqXjRt+fur6i+r6lNV9cMkT1/d/ob+9xihU1U/W1VnVNUNVfWtqvqVacseWlV/Pmzj5qo6p6oemuTsoctNQ90HVNXjquqsod91VXXKGs7HR6rqX4e+Z1fVbqscz3uHmm4ZtvnYacu7ql5dVZcnuXxoe3JVnT9s7/yqevLQfnhVLV9l379dVacO7x9SVX9WVf9SVf827Peh0/oeVVXfq6prqupX1/I9fllVfXuo+aphpNwuSd6b5IDhPN009H1OVX29qn5QVVdX1R9M29S9zu2wzq9W1WXDqLzTp5+TVer4QFX9zvB+h+F8vWr4/Ljh+1xT/66mrfe6qvruUP+3qurgof1BVXV0VV1ZVddX1Yeraus1nQsA4L4RRAEAq7okyVOGkOLgJJdU1T5JHt/dJ81i/f+TZItMAqynJnlJkpd395lJnp3kmu7etLtftpr1fyrJtkl2SPLSJMdX1fTbql6YSSi2WSYjtmbc36obraqHZxKEnZTkEUmOSPKeacHQn2UyEuzJSbZO8rtJ7kpy0LB8y6Huc5O8NclnkmyVZMehhtX5xyQ7D/v8WpITV1n+omF72ya5cIblz0vypCS7DqHIJ5O8O8k2Sd6Z5JNVtU2SU5M8vqp2XuVcTX3P3p7kPyXZM8njMjm/bxrOzSGZjHb7+aHWn1vdwQzn8d1Jnt3dm2Vyvi7s7suS/GaSc4fztOWwyg8z+Z5smeQ5SV5ZVc8blt3r3A7Lfi/JLyXZLskXk3xoNeWcleRpw/unJvn28HVq21/s7l6l/scneU2SfYf6n5VkxbD4f2Ryvp+a5FFJbkxy3OrOBQBw3wmiAIB76O5vJPlokq8keUwmAca7kvyPqvofw6ieE6tqy1XXrcmtci9I8vruvqW7VyT58yQvvo9lvLG7b+vuszIJXn5l2rJPdPeXuvuuJLffh/09N8mK7v6b7r6ju782HOfzhxFUv5rktd393e6+s7u/PIwKm8ntmdxm+Kju/nF3r3ZepO4+YajttiR/kGRZTW5znPLJ7j57WP77mYwoevS05X/S3Td0979nEuRc3t1/OxzDh5J8M8l/6e4fJflEJgFbhkDqZ5OcWlWV5NeT/PawrVuS/HGSw4d9/EqSv+nub3T3D4c61+SuJLtX1UO7+3vdfckajv8L3X1xd9/V3f+USaj01NX1T/IbwzFf1t13DHXuuZpRUWdlEpo+KJPg6U+THDgse+qwfFV3JnlIJsHeg7t7RXdfOW3fv9/dK6d9v55fbosEgA1GEAUA3Et3H9vdy7r7BZkEPV/M5OeGIzMZJXVZkqNnWHXbJJsk+c60tu9kMvpmtm4cwpDp6z9q2uer13F/j03ypKq6aeqVyWikqRFYS5JcOcN6M/ndJJXkvKq6ZHW3slXVRlV1zHCr1w/yHyNvtp3peLr71iQ3ZPXH+6jc81iTex7vSRmCqExGQ318CKi2S/KwJBdMO/ZPD+1T252+n1X3cbfhe/OCTEY/fa+qPllVP7u6/lX1pKr6fE1unbx5WG/b1fXP5Pv0rml13pDJub7X93QIkG7NZJTXU5KcluSaYdTTjEFUd1+R5LcyCZm+X1UnV9XU+X5sko9N2/dlmQRX26+hXgDgPhBEAQCrVVXbZzJK5C1Jdk/yT919e5Lzk+wxwyrX5T9GC015TJLv3ofdbjXc/jV9/WumfZ5+q9V92d/VSc7q7i2nvTbt7lcO2/lxkp+ZYb2+V0P3v3b3r3f3ozI5P++pqsfNsO4Lkxyaya1uWyRZOrTXtD53j36qqk0zuS1wdcd7zSrHmtzzeD+TZNuq2jOTQGrqtrzrkvx7kt2mHfsW3b3psPx70+sYtrla3X16d/98kkdmMiLrr2aodcpJmdw2+Oju3iKTeaRqDf2vTvIbq3yfHtrdX15NOWcleX6STbr7u8Pnl2Ry2+SFq6n/pO7+z5mcy85k1N/Uvp+9yr6XDNsFADYAQRQAsCbvTPLmYVTNVUn2HcKSp2UyH889dPedST6c5G1VtdlwO9X/TPL/7uN+/7CqNqmqp2RyS91HZup0H/d3WpL/VFUvrqoHD699q2qX4Ta/E5K8s6oeNYxkOqCqHpLk2kxuRZuatD1VdVhV7Th8vDGTMOPOGfa5WZLbklyfyYikP56hzy9U1X+uqk0ymSvqq9199Qz9kuRTwzG8sKo2rqoXJNl1OLYMt7L9XZJ3ZBJonTG035VJWHRsVT1iOIYdqupZw3Y/nORlVbVrVT0syZtXs/9U1fZV9YtDWHhbJiOSpo7935LsOBzL9HNwQ3f/uCZPZHzhtGX3OreZBFWvn5q7qyaT0R+2unoyCZ5ek/+Y+PwLSf57JhPu3+t7UlWPr6pnDN/bH2cS0E31e28m/5YeO/TdrqoOXcO+AYD7SBAFAMyoqp6eySTSH0uS7j4vk/mark7y9CTHrGbV/57JBNXfzmQy8ZMyCXlm618zCXeuyWTi7t/s7m+uof+s9jfMi/TMTOZFumbYz9szmS8omUzWfXEmo71uGJY9aAjh3pbkS8MtW/sn2TfJV6vq1kxG+7y2u6+aobYPZnKb23eTXJrJvFurOimT4OeGTCZLf9EMfaaO4fpMgrnfySTc+t0kz+3u61bZ3s8l+cgQTE15XZIrknxluE3wzCSPH7b7j0n+d5LPDX0+t7oaMvn58XcyOYc3ZHIL3KuGZZ/LZLL7f62qqZpeleQtVXVLJpOjf3ja8dzr3A7/3t6e5OShzm9kMsn96pyVSdg1FUSdk0nod/Zq+j8kk3+712Xyb+ARmUyOnkzmQjs1yWeGer+SyUTxAMAGUqs8SAQAYN5U1dOS/L/u3nFtfWe5vV9N8t+6+xkbYnsbWlW9P8nK7n7DfNcCADAGI6IAgMVst0xuKQQAYAHwKFoAYFGqqo8n2TnJmuYXAgBgRG7NAwAAAGAUbs0DAAAAYBSCKAAAAABG8YCbI2rbbbftpUuXzncZAAAAAIvGBRdccF13b7e2fg+4IGrp0qVZvnz5fJcBAAAAsGhU1Xdm08+teQAAAACMQhAFAAAAwCgEUQAAAACM4gE3RxQAAADwwHT77bdn5cqV+fGPfzzfpdxvLVmyJDvuuGMe/OAHr9P6gigAAADgAWHlypXZbLPNsnTp0lTVfJdzv9Pduf7667Ny5crstNNO67QNt+YBAAAADwg//vGPs8022wih1lFVZZtttlmvEWWCKAAAAOABQwi1ftb3/AmiAAAAAEZw00035T3vec8a+6xYsSInnXTSWre1YsWK7L777huqtNGYIwoAAAB4QFp69Cc36PZWHPOcNS6fCqJe9apXrX4bQxD1whe+cIPWtlAYEQUAAAAwgqOPPjpXXnll9txzzxx11FE56qijsvvuu+cJT3hCTjnllLv7fPGLX8yee+6ZY489NitWrMhTnvKU7LXXXtlrr73y5S9/eZ6PYv0YEQUAAAAwgmOOOSbf+MY3cuGFF+ajH/1o3vve9+aiiy7Kddddl3333TcHHXRQjjnmmPzZn/1ZTjvttCTJj370o5xxxhlZsmRJLr/88hxxxBFZvnz5PB/JuhNE3U9t6OGDwNqH0QIAAGwo55xzTo444ohstNFG2X777fPUpz41559/fjbffPN79Lv99tvzmte8JhdeeGE22mij/PM///M8VbxhCKIAAAAARtbds+p37LHHZvvtt89FF12Uu+66K0uWLJnjyuaWOaIAAAAARrDZZpvllltuSZIcdNBBOeWUU3LnnXfm2muvzdlnn5399tvvHn2S5Oabb84jH/nIPOhBD8rf/u3f5s4775yv8jcII6IAAAAARrDNNtvkwAMPzO67755nP/vZ2WOPPbJs2bJUVf70T/80P/VTP5VtttkmG2+8cZYtW5aXvexledWrXpVf/uVfzkc+8pE8/elPz8Mf/vD5Poz1UrMdCrZY7LPPPn1/ntRrijmiYMMzRxQAACxul112WXbZZZf5LuN+b6bzWFUXdPc+a1vXrXkAAAAAjEIQBQAAAMAoBFEAAAAAjEIQBQAAAMAoBFEAAAAAjEIQBQAAAMAoBFEAAAAAi9THP/7xXHrppfd5vU033XQOqkk2npOtAgAAACx0f7DFBt7ezRt2exvAxz/+8Tz3uc/NrrvuOt+lJDEiCgAAAGA0z3ve87L33ntnt912y/HHH58k+fSnP5299tory5Yty8EHH5wkufXWW/Pyl788T3jCE7LHHnvkox/9aJLkM5/5TA444IDstddeOeyww3LrrbcmSZYuXZrXve512W+//bLffvvliiuuyJe//OWceuqpOeqoo7LnnnvmyiuvzJVXXplDDjkke++9d57ylKfkm9/8ZpLkqquuygEHHJB99903b3zjG+fs+I2IAgAAABjJCSeckK233jr//u//nn333TeHHnpofv3Xfz1nn312dtppp9xwww1Jkre+9a3ZYostcvHFFydJbrzxxlx33XX5oz/6o5x55pl5+MMfnre//e155zvfmTe96U1Jks033zznnXdePvjBD+a3fuu3ctppp+UXf/EX89znPjfPf/7zkyQHH3xw3vve92bnnXfOV7/61bzqVa/K5z73ubz2ta/NK1/5yrzkJS/JcccdN2fHL4gCAAAAGMm73/3ufOxjH0uSXH311Tn++ONz0EEHZaeddkqSbL311kmSM888MyeffPLd62211VY57bTTcumll+bAAw9MkvzkJz/JAQcccHefI4444u6vv/3bv32vfd9666358pe/nMMOO+zutttuuy1J8qUvfenuUVcvfvGL87rXvW6DHfN0gigAAACAEXzhC1/ImWeemXPPPTcPe9jD8rSnPS3Lli3Lt771rXv17e5U1b3afv7nfz4f+tCHZtz+9P6rrpskd911V7bccstceOGFa11/rpgjCgAAAGAEN998c7baaqs87GEPyze/+c185StfyW233ZazzjorV111VZLcfWveM5/5zPzFX/zF3eveeOON2X///fOlL30pV1xxRZLkRz/6Uf75n//57j6nnHLK3V+nRkptttlmueWWW5JMbt3baaed8pGPfCTJJNi66KKLkiQHHnjg3SOwTjzxxDk7B4IoAAAAgBEccsghueOOO7LHHnvkjW98Y/bff/9st912Of744/NLv/RLWbZsWV7wghckSd7whjfkxhtvzO67755ly5bl85//fLbbbru8//3vzxFHHJE99tgj+++//92TjSeT2+ye9KQn5V3veleOPfbYJMnhhx+ed7zjHXniE5+YK6+8MieeeGLe9773ZdmyZdltt93yiU98Iknyrne9K8cdd1z23Xff3Hzz3D39r7p7zja+EO2zzz69fPny+S5jvS09+pPzXQIsOiuOec58lwAAAMyhyy67LLvssst8lzEnli5dmuXLl2fbbbed833NdB6r6oLu3mdt6xoRBQAAAMAo5jyIqqqNqurrVXXa8HmnqvpqVV1eVadU1SZD+0OGz1cMy5dO28brh/ZvVdWzprUfMrRdUVVHz/WxAAAAACxEK1asGGU01PoaY0TUa5NcNu3z25Mc2907J7kxySuG9lckubG7H5fk2KFfqmrXJIcn2S3JIUneM4RbGyU5Lsmzk+ya5IihLwAAAAAL0JwGUVW1Y5LnJPnr4XMleUaSvxu6fCDJ84b3hw6fMyw/eOh/aJKTu/u27r4qyRVJ9hteV3T3t7v7J0lOHvoCAAAAzOiBNlf2hra+52+uR0T97yS/m+Su4fM2SW7q7juGzyuT7DC83yHJ1UkyLL956H93+yrrrK4dAAAA4F6WLFmS66+/Xhi1jro7119/fZYsWbLO29h4A9ZzD1X13CTf7+4LquppU80zdO21LFtd+0wh2oz/kqrqyCRHJsljHvOYNVQNAAAALFY77rhjVq5cmWuvvXa+S7nfWrJkSXbcccd1Xn/OgqgkByb5xar6hSRLkmyeyQipLatq42HU045Jrhn6r0zy6CQrq2rjJFskuWFa+5Tp66yu/R66+/gkxyfJPvvsI/YEAACAB6AHP/jB2Wmnnea7jAe0Obs1r7tf3907dvfSTCYb/1x3vyjJ55M8f+j20iSfGN6fOnzOsPxzPRkrd2qSw4en6u2UZOck5yU5P8nOw1P4Nhn2cepcHQ8AAAAA62cuR0StzuuSnFxVf5Tk60neN7S/L8nfVtUVmYyEOjxJuvuSqvpwkkuT3JHk1d19Z5JU1WuSnJ5koyQndPclox4JAAAAALM2ShDV3V9I8oXh/bczeeLdqn1+nOSw1az/tiRvm6H9U0k+tQFLBQAAAGCOzPVT8wAAAAAgiSAKAAAAgJEIogAAAAAYhSAKAAAAgFEIogAAAAAYhSAKAAAAgFEIogAAAAAYhSAKAAAAgFEIogAAAAAYxcbzXQDrZsWSF853CbAI3TzfBQAAACxqRkQBAAAAMAojogAWsaVHf3K+S4BFZ8Uxz5nvEgAA7reMiAIAAABgFIIoAAAAAEYhiAIAAABgFIIoAAAAAEYhiAIAAABgFIIoAAAAAEYhiAIAAABgFIIoAAAAAEYhiAIAAABgFIIoAAAAAEYhiAIAAABgFIIoAAAAAEYhiAIAAABgFIIoAAAAAEYhiAIAAABgFIIoAAAAAEYhiAIAAABgFIIoAAAAAEYhiAIAAABgFIIoAAAAAEYhiAIAAABgFIIoAAAAAEYhiAIAAABgFIIoAAAAAEYhiAIAAABgFIIoAAAAAEYhiAIAAABgFIIoAAAAAEYhiAIAAABgFIIoAAAAAEYhiAIAAABgFBvPdwEAzJ0VS1443yXAInTzfBcAAHC/ZUQUAAAAAKMQRAEAAAAwCkEUAAAAAKMQRAEAAAAwCkEUAAAAAKOYsyCqqpZU1XlVdVFVXVJVfzi071RVX62qy6vqlKraZGh/yPD5imH50mnbev3Q/q2qeta09kOGtiuq6ui5OhYAAAAA1t9cjoi6LckzuntZkj2THFJV+yd5e5Jju3vnJDcmecXQ/xVJbuzuxyU5duiXqto1yeFJdktySJL3VNVGVbVRkuOSPDvJrkmOGPoCAAAAsADNWRDVE7cOHx88vDrJM5L83dD+gSTPG94fOnzOsPzgqqqh/eTuvq27r0pyRZL9htcV3f3t7v5JkpOHvgAAAAAsQHM6R9QwcunCJN9PckaSK5Pc1N13DF1WJtlheL9DkquTZFh+c5Jtprevss7q2gEAAABYgOY0iOruO7t7zyQ7ZjKCaZeZug1fazXL7mv7vVTVkVW1vKqWX3vttWsvHAAAAIANbpSn5nX3TUm+kGT/JFtW1cbDoh2TXDO8X5nk0UkyLN8iyQ3T21dZZ3XtM+3/+O7ep7v32W677TbEIQEAAABwH83lU/O2q6oth/cPTfJzSS5L8vkkzx+6vTTJJ4b3pw6fMyz/XHf30H748FS9nZLsnOS8JOcn2Xl4Ct8mmUxofupcHQ8AAAAA62fjtXdZZ49M8oHh6XYPSvLh7j6tqi5NcnJV/VGSryd539D/fUn+tqquyGQk1OFJ0t2XVNWHk1ya5I4kr+7uO5Okql6T5PQkGyU5obsvmcPjAQAAAGA9zFkQ1d3/lOSJM7R/O5P5olZt/3GSw1azrbcledsM7Z9K8qn1LhYAAACAOTfKHFEAAAAAIIgCAAAAYBSCKAAAAABGIYgCAAAAYBSCKAAAAABGIYgCAAAAYBSCKAAAAABGIYgCAAAAYBSCKAAAAABGIYgCAAAAYBSCKAAAAABGIYgCAAAAYBSCKAAAAABGIYgCAAAAYBSCKAAAAABGIYgCAAAAYBSCKAAAAABGcZ+DqKraqqr2mItiAAAAAFi8ZhVEVdUXqmrzqto6yUVJ/qaq3jm3pQEAAACwmMx2RNQW3f2DJL+U5G+6e+8kPzd3ZQEAAACw2Mw2iNq4qh6Z5FeSnDaH9QAAAACwSM02iPrDJKcnuaK7z6+qn05y+dyVBQAAAMBis/Es+32vu++eoLy7v22OKAAAAADui9mOiPo/s2wDAAAAgBmtcURUVR2Q5MlJtquq/zlt0eZJNprLwgAAAABYXNZ2a94mSTYd+m02rf0HSZ4/V0UBAAAAsPisMYjq7rOSnFVV7+/u74xUEwAAAACL0GzniPrrqtpy6kNVbVVVp89RTQAAAAAsQrMNorbt7pumPnT3jUkeMTclAQAAALAYzTaIuquqHjP1oaoem6TnpiQAAAAAFqO1TVY+5feTnFNVZw2fD0py5NyUBAAAAMBiNKsgqrs/XVV7Jdk/SSX57e6+bk4rAwAAAGBRmdWteVVVSQ5Jsld3/0OSh1XVfnNaGQAAAACLymzniHpPkgOSHDF8viXJcXNSEQAAAACL0mzniHpSd+9VVV9PJk/Nq6pN5rAuAAAAABaZ2Y6Iur2qNsrwpLyq2i7JXXNWFQAAAACLzmyDqHcn+ViSR1TV25Kck+SP56wqAAAAABad2T4178SquiDJwZk8Ne953X3ZnFYGAAAAwKKyxiCqqjbv7h9U1dZJvp/kQ9OWbZXkB9195xzXCAAAAMAisLYRUScleW6SCzKZH6pWWb5pVf1Vd//eXBQHAAAAwOKxxiCqu587fN1ppuXDBObfSCKIAgAAAGCNZjVHVJJU1S8mOWj4+IXuPm24LW+XOakMAAAAgEVlVk/Nq6pjkrw2yaXD67VV9SdzWRgAAAAAi8tsR0T9QpI9u/uuJKmqDyT5epLXz1VhAAAAACwusxoRNdhy2vstNnQhAAAAACxusx0R9SdJvl5Vn8/kyXkHxWgoAAAAAO6DtQZRVVVJzkmyf5J9MwmiXtfd/zrHtQEAAACwiKw1iOrurqqPd/feSU4doSYAAAAAFqHZzhH1larad04rAQAAAGBRm+0cUU9P8ptVtSLJDzO5Pa+7e4+5KgwAAACAxWW2I6KeneSnkzwjyX9J8tzh62pV1aOr6vNVdVlVXVJVrx3at66qM6rq8uHrVkN7VdW7q+qKqvqnqtpr2rZeOvS/vKpeOq1976q6eFjn3cN8VgAAAAAsQGsMoqpqSVX9VpKjkhyS5Lvd/Z2p11q2fUeS3+nuXTKZ6PzVVbVrkqOTfLa7d07y2eFzMgm7dh5eRyb5y6GGrZO8OcmTkuyX5M1T4dXQ58hp6x0y6yMHAAAAYFRrGxH1gST7JLk4k6Doz2e74e7+Xnd/bXh/S5LLkuyQ5NBhu1Pbf97w/tAkH+yJryTZsqoemeRZSc7o7hu6+8YkZyQ5ZFi2eXef292d5IPTtgUAAADAArO2OaJ27e4nJElVvS/Jeeuyk6pamuSJSb6aZPvu/l4yCauq6hFDtx2SXD1ttZVD25raV87QDgAAAMACtLYRUbdPvenuO9ZlB1W1aZKPJvmt7v7BmrrO0Nbr0D5TDUdW1fKqWn7ttdeurWQAAAAA5sDagqhlVfWD4XVLkj2m3lfVmkKlJElVPTiTEOrE7v77ofnfhtvqMnz9/tC+Msmjp62+Y5Jr1tK+4wzt99Ldx3f3Pt29z3bbbbe2sgEAAACYA2sMorp7o+7efHht1t0bT3u/+ZrWHZ5g974kl3X3O6ctOjXJ1JPvXprkE9PaXzI8PW//JDcPt/CdnuSZVbXVMEn5M5OcPiy7par2H/b1kmnbAgAAAGCBWdscUevjwCQvTnJxVV04tP1ekmOSfLiqXpHkX5IcNiz7VJJfSHJFkh8leXmSdPcNVfXWJOcP/d7S3TcM71+Z5P1JHprkH4cXAAAAAAvQnAVR3X1OZp7HKUkOnqF/J3n1arZ1QpITZmhfnmT39SgTAAAAgJGsbY4oAAAAANggBFEAAAAAjEIQBQAAAMAoBFEAAAAAjEIQBQAAAMAoBFEAAAAAjEIQBQAAAMAoBFEAAAAAjEIQBQAAAMAoBFEAAAAAjEIQBQAAAMAoBFEAAAAAjEIQBQAAAMAoNp7vAgAAmF9Lj/7kfJcAi86KY54z3yUALEhGRAEAAAAwCkEUAAAAAKMQRAEAAAAwCkEUAAAAAKMQRAEAAAAwCkEUAAAAAKMQRAEAAAAwCkEUAAAAAKMQRAEAAAAwCkEUAAAAAKMQRAEAAAAwCkEUAAAAAKMQRAEAAAAwCkEUAAAAAKPYeL4LAABgfq1Y8sL5LgEWoZvnuwCABcmIKAAAAABGIYgCAAAAYBSCKAAAAABGIYgCAAAAYBSCKAAAAABGIYgCAAAAYBSCKAAAAABGIYgCAAAAYBSCKAAAAABGIYgCAAAAYBSCKAAAAABGIYgCAAAAYBSCKAAAAABGIYgCAAAAYBSCKAAAAABGIYgCAAAAYBSCKAAAAABGIYgCAAAAYBSCKAAAAABGsfF8FwAAAMDCt/ToT853CbDorDjmOfNdwujmbERUVZ1QVd+vqm9Ma9u6qs6oqsuHr1sN7VVV766qK6rqn6pqr2nrvHTof3lVvXRa+94tkp06AAAL5UlEQVRVdfGwzrurqubqWAAAAABYf3N5a977kxyyStvRST7b3Tsn+ezwOUmenWTn4XVkkr9MJsFVkjcneVKS/ZK8eSq8GvocOW29VfcFAAAAwAIyZ0FUd5+d5IZVmg9N8oHh/QeSPG9a+wd74itJtqyqRyZ5VpIzuvuG7r4xyRlJDhmWbd7d53Z3J/ngtG0BAAAAsACNPVn59t39vSQZvj5iaN8hydXT+q0c2tbUvnKGdgAAAAAWqIXy1LyZ5nfqdWifeeNVR1bV8qpafu21165jiQAAAACsj7GDqH8bbqvL8PX7Q/vKJI+e1m/HJNespX3HGdpn1N3Hd/c+3b3Pdtttt94HAQAAAMB9N3YQdWqSqSffvTTJJ6a1v2R4et7+SW4ebt07Pckzq2qrYZLyZyY5fVh2S1XtPzwt7yXTtgUAAADAArTxXG24qj6U5GlJtq2qlZk8/e6YJB+uqlck+Zckhw3dP5XkF5JckeRHSV6eJN19Q1W9Ncn5Q7+3dPfUBOivzOTJfA9N8o/DCwAAAIAFas6CqO4+YjWLDp6hbyd59Wq2c0KSE2ZoX55k9/WpEQAAAIDxzFkQBQAAwOKxYskL57sEWIRunu8CRrdQnpoHAAAAwCIniAIAAABgFIIoAAAAAEYhiAIAAABgFIIoAAAAAEYhiAIAAABgFIIoAAAAAEYhiAIAAABgFIIoAAAAAEYhiAIAAABgFIIoAAAAAEYhiAIAAABgFIIoAAAAAEYhiAIAAABgFIIoAAAAAEYhiAIAAABgFIIoAAAAAEYhiAIAAABgFIIoAAAAAEYhiAIAAABgFIIoAAAAAEYhiAIAAABgFIIoAAAAAEYhiAIAAABgFIIoAAAAAEYhiAIAAABgFIIoAAAAAEYhiAIAAABgFIIoAAAAAEYhiAIAAABgFIIoAAAAAEYhiAIAAABgFIIoAAAAAEYhiAIAAABgFIIoAAAAAEYhiAIAAABgFIIoAAAAAEYhiAIAAABgFIIoAAAAAEYhiAIAAABgFIIoAAAAAEYhiAIAAABgFIIoAAAAAEYhiAIAAABgFIIoAAAAAEYhiAIAAABgFIIoAAAAAEYhiAIAAABgFIIoAAAAAEZxvw+iquqQqvpWVV1RVUfPdz0AAAAAzOx+HURV1UZJjkvy7CS7Jjmiqnad36oAAAAAmMn9OohKsl+SK7r72939kyQnJzl0nmsCAAAAYAb39yBqhyRXT/u8cmgDAAAAYIHZeL4LWE81Q1vfq1PVkUmOHD7eWlXfmtOq4J62TXLdfBfBLPzhTJcUGI1rxf2FawXzy7Xi/sK1gvnlWnF/sbiuFY+dTaf7exC1Msmjp33eMck1q3bq7uOTHD9WUTBdVS3v7n3muw5gYXOtAGbDtQKYDdcKFrL7+6155yfZuap2qqpNkhye5NR5rgkAAACAGdyvR0R19x1V9ZokpyfZKMkJ3X3JPJcFAAAAwAzu10FUknT3p5J8ar7rgDVwWygwG64VwGy4VgCz4VrBglXd95rbGwAAAAA2uPv7HFEAAAAA3E8IoliUqmr7qjqpqr5dVRdU1blV9V/Xc5t/UFX/az23sbSq/r2qLqyqS6vqvVV1n/47rKoVVbXt8H7vqrqqqp44Q7+Tq+pbVfWNqvrrqrrf34oL82EBX08eO9RzYVVdUlW/uZp+0687F1bVe9dnv8DMFuq1YtjOY6rqM1V12fDzx9LV9PvT4XpyWVW9u6oW1TPFYT4s8GvD24ffFb5RVS9YQ79PV9VNVXXaKu0nTvt944SqevD61sQDgyCKRWf4oenjSc7u7p/u7r0zeaLijjP0nY9w5sru3jPJHkl2TfK8VWraaDYbqao9kvxdkhd099dn6PLBJD877GeLJC9fn6LhgWiBX0++l+TJw/XkSUmOrqpHrabvld295/CaMbAC1t0Cv1Ykk58J3tHduyTZL8n3V+1QVU9OcmAmPzfsnmTfJE8ds0hYbBbytaGqnpNkryRTP0ccVVWbr6b7O5K8eIb2EzP5feMJSR6a5NfmoFQWIUEUi9Ezkvyku+/+q393f6e7/0+SVNXLquojVfUPST5TVZtW1Wer6mtVdXFVHTq1XlX9/pDyn5nk8dPaf2b4y8AFVfXFqvrZof2w4S8CF1XV2WsqsrvvSPLlJI+rqqdV1eer6qQkFw/b+m9Vdd4wguH/rhJQ7ZLJ/9Re3N3nrWb7n+qJu5Kclxn+hwes1YK9nnT3T7r7tuHjQ+L/6TCfFuy1oqp2TbJxd58x1HVrd/9ohmPoJEuSbJLJNeXBSf5t/U8NPKAt2GtDJn8QP6u77+juHya5KMkhMx1Ed382yS0ztE/9vtHx+wb3gVt1WIx2S/K1tfQ5IMke3X3D8NeH/9rdP6jJLW9fqapTM/kLweFJnpjJfytfS3LBsP7xSX6zuy+vqicleU8m/6N5U5Jndfd3q2rLNRVQVQ9LcvCwTjL5C+Xu3X1VVe2S5AVJDuzu26vqPUlelMlfNJPkE0n+W3efs7aTUVWbDOu+cm19gXtZ0NeTqnp0kk8meVySo7r7mtXUuFNVfT3JD5K8obu/OKujB2ZrIV8r/lOSm6rq75PslOTMJEd3953TO3X3uVX1+UxGW1aSv+juy+7jeQDuaSFfGy5K8uaqemeShyV5epJL1+Uga3JL3ouTvHZd1ueBRxDFoldVxyX5z5n8NWLfofmM7r5hqkuSP66qg5LclWSHJNsneUqSj0391XD4n0CqatMkT07ykfqPqRMeMnz9UpL3V9WHk/z9akr6maq6MJO/PH6iu/+xqp6W5Lzuvmroc3CSvZOcP+zjobnnMPozk/xaVZ2+6g+SM3hvkjO7+9y19APWYqFdT7r76iR71OSWvI9X1d9196ojGL6X5DHdfX1V7T302627f7DuZwJYkwV2rdh42O4Tk/xLklOSvCzJ+1ap+XGZjLieGtFwRlUd1N1rHOENzN5CujZ092eqat9M7tC4Nsm5Se5Yx0N7Tya3H/pDF7MiiGIxuiTJL0996O5XD39RWD6tzw+nvX9Rku2S7D2MPlqRydD0ZBIWrepBSW4a5mW5h+7+zeEvEc9JcmFV7dnd16/S7cqZ1l2lpkryge5+/YxHmLwmk4DpPUl+I0mGYbrbJvnK1BwwVfXWTOaHcr82rJuFfj2Z6ntNVV2S5ClVdWeSNw+Lfq27lye5beh3QVVdmckIieUzbQtYJwv5WrEyyde7+9tJUlUfT7J/VX0jyf8d+rwpk1t9vtLdtw79/jHJ/kkEUbDuFvK1Id39tiRvS5KaTBEyNarq7mtDd5+6pgOsqjcPNf/GmvrBdOaTYDH6XJIlVTX9VrSHraH/Fkm+P1zsn57ksUP72Un+a1U9tKo2S/JfkmQYRXBVVR2WTCYhrKplw/uf6e6vdvebklyX5NHreAyfTfL8qnrEsN2tq+qx05bfleSIJI+vqrcMdf3c9ImIa/IEracledEwTxRw3y3Y60lV7VhVDx3eb5XJJMPf6u6P9X9MTL68qrarYY65qvrpJDsn+fZ6nBPg3hbstSLJ+Um2qqrths/PSHLpsM7UteLUTEZLPbWqNh5us3lqErfmwfpZsNeGqtqoqrYZ3u+RyYMKPjPDtWG1qurXkjwryRF+3+C+MCKKRae7u6qel+TYqvrdTIaa/jDJ61azyolJ/qGqlie5MMk3h+18rapOGdq+k2T6UNMXJfnLqnpDJpN5npzJfdbvqKqdMxnR9NmhbV2O4dJh25+pqgcluT3Jq4c6pvrcVpMJDM+qqn/r7uOmlg2/dP5FkhWZ3FueJB8Z/uoBzNICv57skuTPq6qHPn/W3RfPUNNBSd5SVXckuTOTeSRumKEfsI4W8rWiu++syWPeP1uTHwguSPJXM9T0d5mEVBdnMvLi0939D/ftTADTLeRrw9D3i8PvCT/IZP7ZGW/Nq6ovZvJ0vE2ramWSV3T36ZncofGdJOcO2/n77n7LrE4OD2jVPdMIPwAAAADYsNyaBwAAAMAoBFEAAAAAjEIQBQAAAMAoBFEAAAAAjEIQBQAAAMAoBFEAAAAAjEIQBQAAAMAoBFEAAAAAjOL/Azwjs3D5hjwsAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "output_type": "display_data"
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " project_grade_category project_is_approved total Avg\n",
+ "3 Grades PreK-2 37536 44225 0.848751\n",
+ "0 Grades 3-5 31729 37137 0.854377\n",
+ "1 Grades 6-8 14258 16923 0.842522\n",
+ "2 Grades 9-12 9183 10963 0.837636\n",
+ "==================================================\n",
+ " project_grade_category project_is_approved total Avg\n",
+ "3 Grades PreK-2 37536 44225 0.848751\n",
+ "0 Grades 3-5 31729 37137 0.854377\n",
+ "1 Grades 6-8 14258 16923 0.842522\n",
+ "2 Grades 9-12 9183 10963 0.837636\n"
+ ]
+ }
+ ],
+ "source": [
+ "univariate_barplots(project_data, 'project_grade_category', 'project_is_approved', top=False)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "aqKWHWBxoc4b"
+ },
+ "source": [
+ "### 1.2.4 Univariate Analysis: project_subject_categories"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "xc5btjFqoc4d"
+ },
+ "outputs": [],
+ "source": [
+ "catogories = list(project_data['project_subject_categories'].values)\n",
+ "# remove special characters from list of strings python: https://stackoverflow.com/a/47301924/4084039\n",
+ "\n",
+ "# https://www.geeksforgeeks.org/removing-stop-words-nltk-python/\n",
+ "# https://stackoverflow.com/questions/23669024/how-to-strip-a-specific-word-from-a-string\n",
+ "# https://stackoverflow.com/questions/8270092/remove-all-whitespace-in-a-string-in-python\n",
+ "cat_list = []\n",
+ "for i in catogories:\n",
+ " temp = \"\"\n",
+ " # consider we have text like this \"Math & Science, Warmth, Care & Hunger\"\n",
+ " for j in i.split(','): # it will split it in three parts [\"Math & Science\", \"Warmth\", \"Care & Hunger\"]\n",
+ " if 'The' in j.split(): # this will split each of the catogory based on space \"Math & Science\"=> \"Math\",\"&\", \"Science\"\n",
+ " j=j.replace('The','') # if we have the words \"The\" we are going to replace it with ''(i.e removing 'The')\n",
+ " j = j.replace(' ','') # we are placeing all the ' '(space) with ''(empty) ex:\"Math & Science\"=>\"Math&Science\"\n",
+ " temp+=j.strip()+\" \" #\" abc \".strip() will return \"abc\", remove the trailing spaces\n",
+ " temp = temp.replace('&','_') # we are replacing the & value into\n",
+ " cat_list.append(temp.strip())"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "3u8K7-c8oc4h",
+ "outputId": "f7ea0700-4d27-4528-d1f5-8d32d63dac1a"
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " Unnamed: 0 \n",
+ " id \n",
+ " teacher_id \n",
+ " teacher_prefix \n",
+ " school_state \n",
+ " project_submitted_datetime \n",
+ " project_grade_category \n",
+ " project_subject_subcategories \n",
+ " project_title \n",
+ " project_essay_1 \n",
+ " project_essay_2 \n",
+ " project_essay_3 \n",
+ " project_essay_4 \n",
+ " project_resource_summary \n",
+ " teacher_number_of_previously_posted_projects \n",
+ " project_is_approved \n",
+ " clean_categories \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 160221 \n",
+ " p253737 \n",
+ " c90749f5d961ff158d4b4d1e7dc665fc \n",
+ " Mrs. \n",
+ " IN \n",
+ " 2016-12-05 13:43:57 \n",
+ " Grades PreK-2 \n",
+ " ESL, Literacy \n",
+ " Educational Support for English Learners at Home \n",
+ " My students are English learners that are work... \n",
+ " \\\"The limits of your language are the limits o... \n",
+ " NaN \n",
+ " NaN \n",
+ " My students need opportunities to practice beg... \n",
+ " 0 \n",
+ " 0 \n",
+ " Literacy_Language \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 140945 \n",
+ " p258326 \n",
+ " 897464ce9ddc600bced1151f324dd63a \n",
+ " Mr. \n",
+ " FL \n",
+ " 2016-10-25 09:22:10 \n",
+ " Grades 6-8 \n",
+ " Civics & Government, Team Sports \n",
+ " Wanted: Projector for Hungry Learners \n",
+ " Our students arrive to our school eager to lea... \n",
+ " The projector we need for our school is very c... \n",
+ " NaN \n",
+ " NaN \n",
+ " My students need a projector to help with view... \n",
+ " 7 \n",
+ " 1 \n",
+ " History_Civics Health_Sports \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Unnamed: 0 id teacher_id teacher_prefix \\\n",
+ "0 160221 p253737 c90749f5d961ff158d4b4d1e7dc665fc Mrs. \n",
+ "1 140945 p258326 897464ce9ddc600bced1151f324dd63a Mr. \n",
+ "\n",
+ " school_state project_submitted_datetime project_grade_category \\\n",
+ "0 IN 2016-12-05 13:43:57 Grades PreK-2 \n",
+ "1 FL 2016-10-25 09:22:10 Grades 6-8 \n",
+ "\n",
+ " project_subject_subcategories \\\n",
+ "0 ESL, Literacy \n",
+ "1 Civics & Government, Team Sports \n",
+ "\n",
+ " project_title \\\n",
+ "0 Educational Support for English Learners at Home \n",
+ "1 Wanted: Projector for Hungry Learners \n",
+ "\n",
+ " project_essay_1 \\\n",
+ "0 My students are English learners that are work... \n",
+ "1 Our students arrive to our school eager to lea... \n",
+ "\n",
+ " project_essay_2 project_essay_3 \\\n",
+ "0 \\\"The limits of your language are the limits o... NaN \n",
+ "1 The projector we need for our school is very c... NaN \n",
+ "\n",
+ " project_essay_4 project_resource_summary \\\n",
+ "0 NaN My students need opportunities to practice beg... \n",
+ "1 NaN My students need a projector to help with view... \n",
+ "\n",
+ " teacher_number_of_previously_posted_projects project_is_approved \\\n",
+ "0 0 0 \n",
+ "1 7 1 \n",
+ "\n",
+ " clean_categories \n",
+ "0 Literacy_Language \n",
+ "1 History_Civics Health_Sports "
+ ]
+ },
+ "execution_count": 14,
+ "metadata": {
+ "tags": []
+ },
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "project_data['clean_categories'] = cat_list\n",
+ "project_data.drop(['project_subject_categories'], axis=1, inplace=True)\n",
+ "project_data.head(2)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "RSQAHa_woc4k",
+ "outputId": "f8364f7d-8fe9-4fe3-85f8-91343da762b8",
+ "scrolled": false
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABKQAAAFACAYAAACCzqTjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xm8VVXd+PHPV9RwRoXMRIPSzBFCUMxUyjKnJ6201EqtnqzMUp8yaXDIhgcbtEzNfJ7M7HHOHH5qGVpiigOooDiCeg3EAQQRRJFh/f5Y63CP1zsB9+57uXzer9d93XPW2cN3rb332nt/z977REoJSZIkSZIkqSqrdXUAkiRJkiRJWrWYkJIkSZIkSVKlTEhJkiRJkiSpUiakJEmSJEmSVCkTUpIkSZIkSaqUCSlJkiRJkiRVyoSUJEmqVET8OCJmRsTzFczrsxHx986eT08UESkituzqODpCROweEY93dRySJKmRCSlJkvQWEfGriJgdEXdFxGZ15Z+NiF+vwHQ3B74FbJtSekdHxNqalNIlKaW9V2QaETGgJGdW76i4eqqIOCoi7liG4Stp25TSv1JKW3fmPCRJ0rIxISVJkt4kInYGdgLeAdwBfLeUbwB8GzhlBSb/LuCllNKLKxpnialXR0xnZWBCTJIk9SQmpCRJUlMDgTtSSguAW4F3l/KfAD9PKc1pbeSI2CAiLo6IGRHxTET8ICJWi4iPAKOBd0bEvIi4qJlxR0TEtIj4XrmtryEiPlv3+UUR8duIuCkiXgU+1NL8yvBvumInIt4XEaMjYlZEPB4Rn677bK2I+GWZxpyIuCMi1gJuL4O8XOLeNSK2jIgxZbiZEXFFK+1xVUQ8X4a9PSK2a1Kf80tMc8s031X3eYqIr0fEZGByKftARIwr0xsXER8o5YdGxPgm8z4hIq4vr98WEb+IiH9HxAtlvmvVDXtiRDwXEdMj4ottLOOjIuKpEvPT5cq5bYDzgV1LO71cht0/Ih6IiFciYmpEnFY3qbe0bRnnixHxaLlK7+b6NmkSxx8j4lvl9WalvY4p77csyzlq61XdeCdFxLMl/scjYq9SvlpEjIyIJyPipYi4MiI2aq0tJEnS8jEhJUmSmnoY2L0kK/YCHo6IocDWKaVL2zH+b4ANyImsPYEjgC+klG4B9gWmp5TWTSkd1cL47wD6ApsBRwIXRET97VaHk5Nj65Gv4Gp2fk0nGhHrkBNilwJvBw4DzqtLEP2CfGXYB4CNgO8AS4A9yud9Stx3AT8C/g5sCPQvMbTkr8BWZZ73A5c0+fyzZXp9gQnNfH4QsAuwbUmO3AicDWwMnAncGBEbA9cDW0fEVk3aqrbMzgDeCwwGtiS37ymlbfYhX/320RLrR1qqTGnHs4F9U0rrkdtrQkrpUeCrwF2lnfqUUV4lL5M+wP7A1yLioPLZW9q2fPY94JNAP+BfwGUthDMGGFFe7wk8Vf7Xpv2vlFJqEv/WwLHAsBL/x4CG8vE3ye29J/BOYDZwbkttIUmSlp8JKUmS9CYppUnA1cDdwBbkRMavgW9GxDfLVT6XRESfpuNGvoXuM8B3U0pzU0oNwC+Bzy9jGCenlBaklMaQEzCfrvvsupTSnSmlJcDCZZjfAUBDSukPKaVFKaX7Sz0PLldUfRE4LqX0bEppcUppbLlKrDkLybcfvjOl9HpKqcXnJqWULiyxLQBOAwZFvv2x5saU0u3l8++TrzDavO7z/04pzUopvUZO6ExOKf2p1OEy4DHgP1JK84HryIk2SmLqfcD1ERHAl4ETyrTmAj8FDi3z+DTwh5TSpJTSqyXO1iwBto+ItVJKz6WUHm6l/rellB5KKS1JKT1ITi7t2dLwwFdKnR9NKS0qcQ5u4SqpMeTk6WrkBNTPgN3KZ3uWz5taDLyNnOBbI6XUkFJ6sm7e308pTatbXgeHt0tKktThTEhJkqS3SCmdlVIalFL6DDnh8y/yccPR5KumHgVGNjNqX2BN4Jm6smfIV+O01+ySFKkf/51176cu5/zeBewSES/X/shXJ9WuyOoNPNnMeM35DhDAvRHxcEu3uEVEr4gYVW4Be4XGK3H6NleflNI8YBYt1/edvLmu8Ob6XkpJSJGvjrq2JKr6AWsD99XV/W+lvDbd+vk0ncdSZdl8hnw11HMRcWNEvK+l4SNil4j4Z+RbKueU8fq2NDx5Of26Ls5Z5LZ+yzItiaR55Ku+dgduAKaXq6CaTUillKYAx5OTTS9GxOURUWvvdwHX1M37UXICa5NW4pUkScvBhJQkSWpRRGxCvmrkdGB74MGU0kJgHLBjM6PMpPHqoZotgGeXYbYbltvC6sefXve+/hasZZnfVGBMSqlP3d+6KaWvlem8DrynmfHSWwpSej6l9OWU0jvJ7XNeRGzZzLiHAweSb4HbABhQyqNumKVXQ0XEuuTbBVuq7/QmdYU31/fvQN+IGExOTNVu15sJvAZsV1f3DVJK65bPn6uPo0yzRSmlm1NKHwU2JV+h9T/NxFpzKfl2ws1TShuQnzMVrQw/FfhKk+W0VkppbAvhjAEOBtZMKT1b3h9Bvp1yQgvxX5pS+iC5LRP5KsDavPdtMu/eZbqSJKkDmZCSJEmtORM4tVxl8zQwrCRNRpCf1/MmKaXFwJXATyJivXKb1X8B/7eM8/1hRKwZEbuTb7W7qrmBlnF+NwDvjYjPR8Qa5W9YRGxTbv+7EDgzIt5ZrmzaNSLeBswg36JWe7g7EXFIRPQvb2eTkxqLm5nnesAC4CXyFUo/bWaY/SLigxGxJvlZUveklKY2MxzATaUOh0fE6hHxGWDbUjfKLW5/Bn5OTmyNLuVLyEmjsyLi7aUOm0XEx8p0rwSOiohtI2Jt4NQW5k9EbBIRHy9JwwXkK5RqdX8B6F/qUt8Gs1JKr0f+BcfD6z57S9uSE1bfrT3bK/JD6w9pKR5yAupYGh+QfhvwDfKD+d+yTCJi64j4cFm2r5MTdbXhzievS+8qw/aLiANbmbckSVpOJqQkSVKzIuJD5IdNXwOQUrqX/DynqcCHgFEtjPoN8oOsnyI/dPxScrKnvZ4nJ3mmkx/w/dWU0mOtDN+u+ZXnJu1Nfm7S9DKfM8jPE4L8UO+HyFd/zSqfrVaScT8B7iy3cg0HhgH3RMQ88tU/x6WUnm4mtovJt789CzxCfi5XU5eSE0CzyA9V/2wzw9Tq8BI5QfctcpLrO8ABKaWZTab3EeCqkqCqOQmYAtxdbh+8Bdi6TPevwK+Af5Rh/tFSDOTjx2+R23AW+da4Y8pn/yA/FP/5iKjFdAxwekTMJT9E/cq6+rylbcv6dgZweYlzEvlh+C0ZQ0561RJSd5CTf7e3MPzbyOvuTPI68HbyQ9QhPyvteuDvJd67yQ+UlyRJHSya/PCIJElSl4mIEcD/pZT6tzVsO6f3ReBzKaUPd8T0OlpEXARMSyn9oKtjkSRJqpJXSEmSpJ5sO/KthpIkSepG/AlbSZLUI0XEtcBWQGvPH5IkSVIX8JY9SZIkSZIkVcpb9iRJkiRJklQpE1KSJEmSJEmq1Cr3DKm+ffumAQMGdHUYkiRJkiRJPcZ99903M6XUr73Dr3IJqQEDBjB+/PiuDkOSJEmSJKnHiIhnlmV4b9mTJEmSJElSpUxISZIkSZIkqVImpCRJkiRJklSpVe4ZUpIkSZIkadW0cOFCpk2bxuuvv97Voay0evfuTf/+/VljjTVWaDompCRJkiRJ0iph2rRprLfeegwYMICI6OpwVjopJV566SWmTZvGwIEDV2ha3rInSZIkSZJWCa+//jobb7yxyajlFBFsvPHGHXKFmQkpSZIkSZK0yjAZtWI6qv1MSEmSJEmSJFXg5Zdf5rzzzmt1mIaGBi699NI2p9XQ0MD222/fUaFVzmdISZIkSZKkVdKAkTd26PQaRu3f6ue1hNQxxxzT8jRKQurwww/v0Ni6G6+QkiRJkiRJqsDIkSN58sknGTx4MCeeeCInnngi22+/PTvssANXXHHF0mH+9a9/MXjwYM466ywaGhrYfffdGTJkCEOGDGHs2LFdXIuO4RVSkiRJkiRJFRg1ahSTJk1iwoQJXH311Zx//vlMnDiRmTNnMmzYMPbYYw9GjRrFL37xC2644QYA5s+fz+jRo+nduzeTJ0/msMMOY/z48V1ckxVnQmol1dGXFXaGti5VlCRJkiRpVXXHHXdw2GGH0atXLzbZZBP23HNPxo0bx/rrr/+m4RYuXMixxx7LhAkT6NWrF0888UQXRdyxTEhJkiRJkiRVLKXUruHOOussNtlkEyZOnMiSJUvo3bt3J0dWDZ8hJUmSJEmSVIH11luPuXPnArDHHntwxRVXsHjxYmbMmMHtt9/Ozjvv/KZhAObMmcOmm27Kaqutxp/+9CcWL17cVeF3KK+QkiRJkiRJqsDGG2/Mbrvtxvbbb8++++7LjjvuyKBBg4gIfvazn/GOd7yDjTfemNVXX51BgwZx1FFHccwxx/CpT32Kq666ig996EOss846XV2NDhHtvUSspxg6dGjqCQ//8hlSkiRJkiQtm0cffZRtttmmq8NY6TXXjhFxX0ppaHun4S17kiRJkiRJqpQJKUmSJEmSJFXKhJQkSZIkSZIqZUJKkiRJkiRJlTIhJUmSJEmSpEqZkJIkSZIkSVKlTEhJkiRJkiT1UNdeey2PPPLIMo+37rrrdkI0jVbv1KlLkiRJkiR1V6dt0MHTm9Ox0+sA1157LQcccADbbrttV4fyJl4hJUmSJEmSVJGDDjqInXbaie22244LLrgAgL/97W8MGTKEQYMGsddeewEwb948vvCFL7DDDjuw4447cvXVVwPw97//nV133ZUhQ4ZwyCGHMG/ePAAGDBjASSedxM4778zOO+/MlClTGDt2LNdffz0nnngigwcP5sknn+TJJ59kn332YaeddmL33XfnscceA+Dpp59m1113ZdiwYZx88smd3g5eISVJkiRJklSRCy+8kI022ojXXnuNYcOGceCBB/LlL3+Z22+/nYEDBzJr1iwAfvSjH7HBBhvw0EMPATB79mxmzpzJj3/8Y2655RbWWWcdzjjjDM4880xOOeUUANZff33uvfdeLr74Yo4//nhuuOEGPv7xj3PAAQdw8MEHA7DXXntx/vnns9VWW3HPPfdwzDHH8I9//IPjjjuOr33taxxxxBGce+65nd4OJqQkSZIkSZIqcvbZZ3PNNdcAMHXqVC644AL22GMPBg4cCMBGG20EwC233MLll1++dLwNN9yQG264gUceeYTddtsNgDfeeINdd9116TCHHXbY0v8nnHDCW+Y9b948xo4dyyGHHLK0bMGCBQDceeedS6/C+vznP89JJ53UYXVujgkpSZIkSZKkCtx2223ccsst3HXXXay99tqMGDGCQYMG8fjjj79l2JQSEfGWso9+9KNcdtllzU6/fvim4wIsWbKEPn36MGHChDbH72w+Q0qSJEmSJKkCc+bMYcMNN2Tttdfmscce4+6772bBggWMGTOGp59+GmDpLXt7770355xzztJxZ8+ezfDhw7nzzjuZMmUKAPPnz+eJJ55YOswVV1yx9H/tyqn11luPuXPnAvmWvoEDB3LVVVcBOcE1ceJEAHbbbbelV2RdcsklndYGNSakJEmSJEmSKrDPPvuwaNEidtxxR04++WSGDx9Ov379uOCCC/jkJz/JoEGD+MxnPgPAD37wA2bPns3222/PoEGD+Oc//0m/fv246KKLOOyww9hxxx0ZPnz40oeSQ779bpddduHXv/41Z511FgCHHnooP//5z3n/+9/Pk08+ySWXXMLvf/97Bg0axHbbbcd1110HwK9//WvOPfdchg0bxpw5nf9rgZFS6vSZdCdDhw5N48eP7+owVtiAkTd2dQhtahi1f1eHIEmSJEnSUo8++ijbbLNNV4fRKQYMGMD48ePp27dvp8+ruXaMiPtSSkPbOw2vkJIkSZIkSVKlfKi5JEmSJEnSSq6hoaGrQ1gmXiElSZIkSZKkSpmQkiRJkiRJq4xV7VnaHa2j2s+ElCRJkiRJWiX07t2bl156yaTUckop8dJLL9G7d+8VnpbPkJIkSZIkSauE/v37M23aNGbMmNHVoay0evfuTf/+/Vd4OiakJEmSJEnSKmGNNdZg4MCBXR2G8JY9SZIkSZIkVcyElCRJkiRJkiplQkqSJEmSJEmVMiElSZIkSZKkSpmQkiRJkiRJUqVMSEmSJEmSJKlSJqQkSZIkSZJUqdW7OgAtn4beh3d1CO0wp6sDkCRJkiRJ3ZBXSEmSJEmSJKlSnZaQiojNI+KfEfFoRDwcEceV8o0iYnRETC7/NyzlERFnR8SUiHgwIobUTevIMvzkiDiyrnyniHiojHN2RERn1UeSJEmSJEkdozOvkFoEfCultA0wHPh6RGwLjARuTSltBdxa3gPsC2xV/o4Gfgs5gQWcCuwC7AycWktilWGOrhtvn06sjyRJkiRJkjpApyWkUkrPpZTuL6/nAo8CmwEHAn8sg/0ROKi8PhC4OGV3A30iYlPgY8DolNKslNJsYDSwT/ls/ZTSXSmlBFxcNy1JkiRJkiR1U5U8QyoiBgDvB+4BNkkpPQc5aQW8vQy2GTC1brRppay18mnNlEuSJEmSJKkb6/SEVESsC1wNHJ9SeqW1QZspS8tR3lwMR0fE+IgYP2PGjLZCliRJkiRJUifq1IRURKxBTkZdklL6Syl+odxuR/n/YimfBmxeN3p/YHob5f2bKX+LlNIFKaWhKaWh/fr1W7FKSZIkSZIkaYV05q/sBfB74NGU0pl1H10P1H4p70jgurryI8qv7Q0H5pRb+m4G9o6IDcvDzPcGbi6fzY2I4WVeR9RNS5IkSZIkSd3U6p047d2AzwMPRcSEUvY9YBRwZUR8Cfg3cEj57CZgP2AKMB/4AkBKaVZE/AgYV4Y7PaU0q7z+GnARsBbw1/InSZIkSZKkbqzTElIppTto/jlPAHs1M3wCvt7CtC4ELmymfDyw/QqEKUmSJEmSpIpV8it7kiRJkiRJUo0JKUmSJEmSJFXKhJQkSZIkSZIqZUJKkiRJkiRJlTIhJUmSJEmSpEqZkJIkSZIkSVKlTEhJkiRJkiSpUiakJEmSJEmSVCkTUpIkSZIkSaqUCSlJkiRJkiRVyoSUJEmSJEmSKmVCSpIkSZIkSZUyISVJkiRJkqRKmZCSJEmSJElSpUxISZIkSZIkqVImpCRJkiRJklQpE1KSJEmSJEmqlAkpSZIkSZIkVcqElCRJkiRJkiplQkqSJEmSJEmVMiElSZIkSZKkSpmQkiRJkiRJUqVMSEmSJEmSJKlSJqQkSZIkSZJUKRNSkiRJkiRJqpQJKUmSJEmSJFXKhJQkSZIkSZIqtXpXByABDBh5Y1eH0KaGUft3dQiSJEmSJPUIXiElSZIkSZKkSpmQkiRJkiRJUqVMSEmSJEmSJKlSJqQkSZIkSZJUKRNSkiRJkiRJqpQJKUmSJEmSJFXKhJQkSZIkSZIqZUJKkiRJkiRJlTIhJUmSJEmSpEqZkJIkSZIkSVKlTEhJkiRJkiSpUiakJEmSJEmSVCkTUpIkSZIkSaqUCSlJkiRJkiRVyoSUJEmSJEmSKmVCSpIkSZIkSZUyISVJkiRJkqRKmZCSJEmSJElSpTotIRURF0bEixExqa7stIh4NiImlL/96j77bkRMiYjHI+JjdeX7lLIpETGyrnxgRNwTEZMj4oqIWLOz6iJJkiRJkqSO05lXSF0E7NNM+VkppcHl7yaAiNgWOBTYroxzXkT0iohewLnAvsC2wGFlWIAzyrS2AmYDX+rEukiSJEmSJKmDdFpCKqV0OzCrnYMfCFyeUlqQUnoamALsXP6mpJSeSim9AVwOHBgRAXwY+HMZ/4/AQR1aAUmSJEmSJHWKrniG1LER8WC5pW/DUrYZMLVumGmlrKXyjYGXU0qLmpRLkiRJkiSpm6s6IfVb4D3AYOA54JelPJoZNi1HebMi4uiIGB8R42fMmLFsEUuSJEmSJKlDVZqQSim9kFJanFJaAvwP+ZY8yFc4bV43aH9geivlM4E+EbF6k/KW5ntBSmloSmlov379OqYykiRJkiRJWi6VJqQiYtO6t58Aar/Adz1waES8LSIGAlsB9wLjgK3KL+qtSX7w+fUppQT8Ezi4jH8kcF0VdZAkSZIkSdKKWb3tQZZPRFwGjAD6RsQ04FRgREQMJt9e1wB8BSCl9HBEXAk8AiwCvp5SWlymcyxwM9ALuDCl9HCZxUnA5RHxY+AB4PedVRdJkiRJkiR1nE5LSKWUDmumuMWkUUrpJ8BPmim/CbipmfKnaLzlT+o2Boy8satDaFPDqP27OgRJkiRJ0iqsK35lT5IkSZIkSaswE1KSJEmSJEmqlAkpSZIkSZIkVcqElCRJkiRJkiplQkqSJEmSJEmVWuaEVERsGBE7dkYwkiRJkiRJ6vlWb89AEXEb8PEy/ARgRkSMSSn9VyfGplVIQ+/DuzqEdpjT1QFIkiRJktQjtPcKqQ1SSq8AnwT+kFLaCfhI54UlSZIkSZKknqq9CanVI2JT4NPADZ0YjyRJkiRJknq49iakfgjcDExJKY2LiHcDkzsvLEmSJEmSJPVU7XqGFPBcSmnpg8xTSk9FxJmdFJMkSZIkSZJ6sPZeIfWbdpZJkiRJkiRJrWr1CqmI2BX4ANAvIup/UW99oFdnBiZJkiRJkqSeqa1b9tYE1i3DrVdX/gpwcGcFJUmSJEmSpJ6r1YRUSmkMMCYiLkopPVNRTJIkSZIkSerB2vsMqf+NiD61NxGxYUTc3EkxSZIkSZIkqQdrb0Kqb0rp5dqblNJs4O2dE5IkSZIkSZJ6svYmpJZExBa1NxHxLiB1TkiSJEmSJEnqydp6qHnN94E7ImJMeb8HcHTnhCRJkiRJkqSerF0JqZTS3yJiCDAcCOCElNLMTo1MkiRJkiRJPVK7ElIREcA+wLtTSqdHxBYRsXNK6d7ODU9a+TT0PryrQ2iHOV0dgCRJkiRpFdbeZ0idB+wKHFbezwXO7ZSIJEmSJEmS1KO19xlSu6SUhkTEA5B/ZS8i1uzEuCRJkiRJktRDtfcKqYUR0Yvyy3oR0Q9Y0mlRSZIkSZIkqcdqb0LqbOAa4O0R8RPgDuCnnRaVJEmSJEmSeqz2/sreJRFxH7AX+Vf2DkopPdqpkUmSJEmSJKlHajUhFRHrp5ReiYiNgBeBy+o+2xB4JaW0uJNjlCRJkiRJUg/S1hVSlwIHAPeRnx8VTT5fNyL+J6X0vc4ITpIkSZIkST1PqwmplNIB5f/A5j4vDzqfBJiQkiRJkiRJUru06xlSABHxcWCP8va2lNIN5Xa9bTolMkmSJEmSJPVI7fqVvYgYBRwHPFL+jouI/+7MwCRJkiRJktQztfcKqf2AwSmlJQAR8UfgAeC7nRWYJEmSJEmSeqZ2XSFV9Kl7vUFHByJJkiRJkqRVQ3uvkPpv4IGI+Cf5l/b2wKujJEmSJEmStBzaTEhFRAB3AMOBYeSE1Ekppec7OTZJkiRJkiT1QG0mpFJKKSKuTSntBFxfQUySJEmSJEnqwdr7DKm7I2JYp0YiSZIkSZKkVUJ7nyH1IeCrEdEAvEq+bS+llHbsrMAkSZIkSZLUM7U3IbVvp0YhSZIkSZKkVUarCamI6A18FdgSeAj4fUppURWBSZIkSZIkqWdq6xlSfwSGkpNR+wK/7PSIJEmSJEmS1KO1dcvetimlHQAi4vfAvZ0fkiRJkiRJknqytq6QWlh74a16kiRJkiRJ6ghtXSE1KCJeKa8DWKu8r/3K3vqdGp0kSZIkSZJ6nFYTUimlXlUFIkmSJEmSpFVDW7fsSZIkSZIkSR2q0xJSEXFhRLwYEZPqyjaKiNERMbn837CUR0ScHRFTIuLBiBhSN86RZfjJEXFkXflOEfFQGefsiIjOqoskSZIkSZI6TmdeIXURsE+TspHArSmlrYBby3uAfYGtyt/RwG8hJ7CAU4FdgJ2BU2tJrDLM0XXjNZ2XJEmSJEmSuqG2Hmq+3FJKt0fEgCbFBwIjyus/ArcBJ5Xyi1NKCbg7IvpExKZl2NEppVkAETEa2CcibgPWTyndVcovBg4C/tpZ9ZFWRQNG3tjVIbSpYdT+XR2CJEmSJGkZVf0MqU1SSs8BlP9vL+WbAVPrhptWylorn9ZMebMi4uiIGB8R42fMmLHClZAkSZIkSdLy6y4PNW/u+U9pOcqblVK6IKU0NKU0tF+/fssZoiRJkiRJkjpC1QmpF8qteJT/L5byacDmdcP1B6a3Ud6/mXJJkiRJkiR1c1UnpK4Har+UdyRwXV35EeXX9oYDc8otfTcDe0fEhuVh5nsDN5fP5kbE8PLrekfUTUuSJEmSJEndWKc91DwiLiM/lLxvREwj/1reKODKiPgS8G/gkDL4TcB+wBRgPvAFgJTSrIj4ETCuDHd67QHnwNfIv+S3Fvlh5j7QXJIkSZIkaSXQmb+yd1gLH+3VzLAJ+HoL07kQuLCZ8vHA9isSoyRJkiRJkqrXXR5qLkmSJEmSpFWECSlJkiRJkiRVyoSUJEmSJEmSKmVCSpIkSZIkSZUyISVJkiRJkqRKmZCSJEmSJElSpUxISZIkSZIkqVImpCRJkiRJklQpE1KSJEmSJEmq1OpdHYCk7quh9+FdHUI7zOnqACRJkiRJy8grpCRJkiRJklQpE1KSJEmSJEmqlAkpSZIkSZIkVcqElCRJkiRJkiplQkqSJEmSJEmVMiElSZIkSZKkSpmQkiRJkiRJUqVMSEmSJEmSJKlSJqQkSZIkSZJUKRNSkiRJkiRJqpQJKUmSJEmSJFXKhJQkSZIkSZIqZUJKkiRJkiRJlTIhJUmSJEmSpEqZkJIkSZIkSVKlTEhJkiRJkiSpUiakJEmSJEmSVCkTUpIkSZIkSaqUCSlJkiRJkiRVyoSUJEmSJEmSKmVCSpIkSZIkSZUyISVJkiRJkqRKmZCSJEmSJElSpUxISZIkSZIkqVImpCRJkiRJklQpE1KSJEmSJEmqlAkpSZIkSZIkVcqElCRJkiRJkiplQkqSJEmSJEmVMiElSZIkSZKkSpmQkiRJkiRJUqVMSEmSJEmSJKlSJqQkSZIkSZJUKRNSkiRJkiS5tpJWAAAgAElEQVRJqpQJKUmSJEmSJFWqSxJSEdEQEQ9FxISIGF/KNoqI0RExufzfsJRHRJwdEVMi4sGIGFI3nSPL8JMj4siuqIskSZIkSZKWTVdeIfWhlNLglNLQ8n4kcGtKaSvg1vIeYF9gq/J3NPBbyAks4FRgF2Bn4NRaEkuSJEmSJEnd1+pdHUCdA4ER5fUfgduAk0r5xSmlBNwdEX0iYtMy7OiU0iyAiBgN7ANcVm3YklYGA0be2NUhtKlh1P5dHYIkSZIkVaKrrpBKwN8j4r6IOLqUbZJSeg6g/H97Kd8MmFo37rRS1lK5JEmSJEmSurGuukJqt5TS9Ih4OzA6Ih5rZdhopiy1Uv7WCeSk19EAW2yxxbLGKkmSJEmSpA7UJVdIpZSml/8vAteQnwH1QrkVj/L/xTL4NGDzutH7A9NbKW9ufheklIamlIb269evI6siSZIkSZKkZVR5Qioi1omI9Wqvgb2BScD1QO2X8o4EriuvrweOKL+2NxyYU27puxnYOyI2LA8z37uUSZIkSZIkqRvrilv2NgGuiYja/C9NKf0tIsYBV0bEl4B/A4eU4W8C9gOmAPOBLwCklGZFxI+AcWW402sPOJckSZIkSVL3VXlCKqX0FDComfKXgL2aKU/A11uY1oXAhR0doyRJkiRJkjpPV/3KniRJkiRJklZRXfUre5JUqYbeh3d1CO0wp6sDkCRJkqRKeIWUJEmSJEmSKmVCSpIkSZIkSZXylj1JWgkNGHljV4fQpoZR+3d1CJIkSZK6Ka+QkiRJkiRJUqVMSEmSJEmSJKlS3rInSepS3n4oSZIkrXq8QkqSJEmSJEmV8gopSZI6iFd7SZIkSe3jFVKSJEmSJEmqlAkpSZIkSZIkVcpb9iRpJdTQ+/CuDqEd5nR1AJIkSZK6KRNSkqQuZXJNkiRJWvV4y54kSZIkSZIqZUJKkiRJkiRJlfKWPUmSOoi3H0qSJEnt4xVSkiRJkiRJqpQJKUmSJEmSJFXKhJQkSZIkSZIqZUJKkiRJkiRJlTIhJUmSJEmSpEqZkJIkSZIkSVKlTEhJkiRJkiSpUiakJEmSJEmSVKnVuzoASZLU/QwYeWNXh9CmhlH7d3UIkiRJWk4mpCRJUo9ngk2SJKl78ZY9SZIkSZIkVcorpCRJ0ls09D68q0NohzldHYAkSZKWkwkpSZLU45lgkyRJ6l5MSEmSJK1EetLzsHpSXSRJ0rIxISVJkiStIJNrkiQtGxNSkiRJkt7EBJskqbOZkJIkSVqJ9KTnYfWkukiSpGVjQkqSJElaQSbXuq+edLVXT6qLJJmQkiRJkvQmJtjU2UyuSTIhJUmSJEkrAROF3Vd3T7CZXFN3ZEJKkiRJUo9lEqd76mnLpfvXp/116e7JNTDB1lOYkJIkSZIkST2OybXuzYSUJEmSJEkCVoarvWBVvKqwJ1qtqwOQJEmSJEnSqsUrpCRJkiRJUo/j1V7dm1dISZIkSZIkqVImpCRJkiRJklQpE1KSJEmSJEmqlAkpSZIkSZIkVWqlT0hFxD4R8XhETImIkV0djyRJkiRJklq3UiekIqIXcC6wL7AtcFhEbNu1UUmSJEmSJKk1K3VCCtgZmJJSeiql9AZwOXBgF8ckSZIkSZKkVqzsCanNgKl176eVMkmSJEmSJHVTkVLq6hiWW0QcAnwspfSf5f3ngZ1TSt9oMtzRwNHl7dbA45UGuvLoC8zs6iA6iHXpvnpSfaxL99ST6gI9qz7WpXvqSXWBnlUf69I99aS6QM+qj3XpnqzLquNdKaV+7R149c6MpALTgM3r3vcHpjcdKKV0AXBBVUGtrCJifEppaFfH0RGsS/fVk+pjXbqnnlQX6Fn1sS7dU0+qC/Ss+liX7qkn1QV6Vn2sS/dkXdSSlf2WvXHAVhExMCLWBA4Fru/imCRJkiRJktSKlfoKqZTSoog4FrgZ6AVcmFJ6uIvDkiRJkiRJUitW6oQUQErpJuCmro6jh+hJtzVal+6rJ9XHunRPPaku0LPqY126p55UF+hZ9bEu3VNPqgv0rPpYl+7JuqhZK/VDzSVJkiRJkrTyWdmfISVJkiRJkqSVjAkpSeoGIuL7EfFwRDwYERMiYpcOnPZNEdGnjWEaIqJveZ0i4pd1n307Ik7roFhui4hu98skEfGJUu/3rcA0LoqIg8vr/42IbZdh3BERcUN5fVREnLO8cSyriHhnRPy5qvlJ6r46oi8s01nl+8OI2CQiboiIiRHxSER06CNGImJoRJzdxjBN23JJROxY9/mkiBjQAbEMiIhJKzodSaseE1KdICLmNVP21Yg4orw+KiLeWX1kLWsu5hWYVoqIP9WmGRGrR8SMslNusR0iYnBE7Ff3/rSI+PYyzLfdJ/Qt7cQ7sh26g9KGKSK2rFseJ5Sy01o7yIuI4yNi7br38+pe1x/gjIiID9R9dlFEfLMkHiZExKMR0ey91hGxWkScHRGzIuKJiBgXEQM7oN6pzH/b8n7pOric01umg+km414XEXe1Mcwx5F8JHQK8G/gIMLXu8xXqP1JK+6WUXl6GURYAn6wlqNrSQ7abw4A7gEMjYuum62+tX6sN3NY6lVL6z5TSIy30axdGxMg24nlfRJxT+rUXy0nEpFq/1sJ+5i39Wt3J5XbNzSQiRgAXpJQObi2Y1k4uWzoRiYjTI+IjpY94OCLWjm5ycrk8J08txR4l4Vv+jlnGac5r8n7pPOq3+xbGHRERH2ht3Wytvdu7z42II8q693Dkk+pvl/J/RE5kt7jPrWubN62bLay/HX6cVLePmRQRD63IPqalfi4ixrZ33LLepfplVrbzL7ZnH9XWMou6LxZaGL/+OOn5EseWdZ+fAPwFmAD8V9P+pI3YWkyO1PrDVsZ9f4nlY5GTI/8E3ls3SO+IWBhN9qXt3X6iyZcyZRt507FLXazT6/vDyMmky1qpOhFxUDR/jHA68DL5h5cSsHXd9nN6RHykjem2+mVSSmk88MUm49S3wQDgD01GmwZcVjfvjYHeZfi2ju1a3U/UDbvc211bfXNLbR0RZ0XE8XXvb468r1o7Ii4p29dzEXFHRKzbnljaGW+KiBfr3p8eEfPqt+X6OpV2TRFxYlm+T0bE3LI9Lsv21uw5Twt969DSdx/cpLy5YTsjIX13RCyIiA3aOW79eli/Pt8W5QvNtraNZqZZP51m93Xls45MSB9V2vJrtWVb175tHXO9aR/YVt/eZNxlSoS3py/qbCakKpJSOj+ldHF5exSwTAdaEbEyPYD+VWD7uvcfBZ6FNtthMLAfrWipHSJiV+AAYEhKaUeanNA3lVIan1L6ZuvV6DEeIic7ag4GWjwwrHM8sHabQ8EIoOlB3ReBs1JKg1NK2wC/aWHcz5DXgb4ppfcCnyAfvK2oV4EdyOsU1K2Dy6Otg+mWlJ3lEKBPSwdjZZ3eE1gtpbSgzG9mSml62QGdQW7PYyOfOBwFbBsRV5eDvHERsVuZ1roR8YdyAPhgRHyqlC/dkUXEtRFxXzmQObqF0BeRH9h4QjPx9mth3utETrSMi4gHIuLAUr5WRFxe4rkCWKuU9yoHLLUD1rfMqyrl4HQ34EvkbeVsYDTwCvAYsBe5TbYv9ZkHXAGsAwyPiH7NTLN24DQY+EpE3BUR9wOHAFNSSqMiYp+IeCwi7gA+2Uxo7yD3a78jn0RMBs4t0+ldO6iOiFMiYhxwUSmPWgzAT4E5wJmlvc+OiLER8VTdAdFadQfLR0XEXyLibxExOSJ+VhfPhyPiCWBL4IRoI7GUUjolpXRLeTuQ9vUnS0VEr3YO1+L+senJZWeoS/j2AZYpIQX55K2F6dbvL5szgtz3vkpZN0t5i/1dk7Zqzz53X/K+YO+U0nbk/mxO2eeuBWzd2j631jbt2ed20nFSbR+zY0ppBzpuH7NUSuktSY02vEhOTuxQt8y2o337qDaXWUuaOU66GHiUNx8ffJrc1/0I2KO2zMoJ4u0RcU05wTm/tt5GPvn+JXmfsV0b/SERsXetP4yIq0o/dhjwMHAlcBW5z9qkbhJbls93qpvm3uS+q346AMNKf3gs8MGIiJTSfsC1EfHTiBgDHAf8CjijaX8Yb04efBcYAHwiIqZExM/r5v+lyF+kjQF+Biy9qrjOIPI2Wtt+tiNvPyPI2+/Xm2nPpe1D3rYXlfJhJdaJEXFvRKxXplNLJu0cOTn6Q+BTEbF1M/EA3EBe/2rb68aU/TIwFNitzPvcEiMRsROwT2mvmyNis1p5iecu4Ot18/gW8LkSeyIfS6zwdle28YOA5pJ/YynHoqUt+5Lb+zjgBWBKGfdLwMI25hMt9cvNWFBGqbXhu8nrb2umAacAbwe2AsaQvxBbpz0zbGZbbvOcB7i3PdOm7su5dg7fHquV+X+iVtDe/XtLluOL1qbxtDTd5TpmaKU+DwE71e3/DgUmtmOSR7GM+8A6pwOjU0qDUkrbAq1+AdrkWK1rpJT86+A/YF4zZacB3yYnA+YBj5O/gVqLvIMdA9wH3AxsWsa5jXwyMYbcuf8HcA/wAHALsEkZbl3yNyAPAQ8CnyJ3uGfVzf/LwJnLGHNL8zsNuLDE9xTwzbpxTgaWAE8Di0udLwaeBP5Vxv0d8Eb5/HVgfmmLheVvPnljnQDMrit/rrTD8eQTxfnAS+TEwyfJv7bYXDtcSt5RTSxx/Ya8k72hxLxOqc+4EtOBpfwo8jeF95U4X6i1A3nH/Bwwq8T4VKlrbTrTyTuc0cBlwLfrlunQ8rov0FBeDyjtc3/5+0ApXw04j3wgdkOp48Hls2bXm2bWu9NLTPPIO8qbShynAecAvy1t/Qr5gHgccFZZRlPIO9YHStv8trTjI8DfS9zPl/EmALuTT4pnluGeqsVb4ukF/KJuGf2lLI/6dtkbuKvMr7ad3Ar8m3yg9Sh52T8OXAP0Jy/3eeQD/YfJBwgLSh3ml2VxIzC3zHdSbZmUeU4qdVmnDDexlH2mmeW2T1lGE4Fb2+gLvlSW36nAd+vKLwLOJH8LfDV53XqDvJ4tKsNPKmVPl2V1GTC+1PMVcnJiLWB/8kHrfaW9L6iL+UzyOjILOJy8PT9IXo/fVeaxRWm/N0rbfarEcS7QAGxAPkG4q0z3UuCD5fUWZXnMI/dVnyvlfWhcl6aV15sAO5L7h+tKXeZT+o8yzsnkBFCl2w35wPn35fOxwBPA0aUd3k1ebxeVmO8lH2DPJ28Dj5O3o1PI/dQC8jZxDzCcvC0sAV4jr/ejS7s+W6Z5eRl2NjCjtNNRZRndBPw/8vL/WYmnf4nzDfI2UevXxpO313nAgeR1eVaJ9bUS7/+V+B8ib1+1z6aR14UTS1kqn99ePruiTGsh8NnSfg+Ueu9d2v418nqybt12Moe8fowpbfBQeV8b764y7lXAx8v7BSWWseQDt+vI6/dr5PV77TL9O0vbzyP3tzeWuj1dhjsY+Elpu0lN+vS/leFmNNlWnyjTnFGW29V187uoLLvnqOvXyOtaLXH5bGm3p4Gfl+V8Knk7mEzjentgWR4zSlt/iNy33l/K55c2n0beDsaWeBaXdnidfGBf63sTeT35KrmvnE1eF24pdX66tNHc8r8B+GNp60Xl7z9LW80tny8ow44DPgz0K/W/n7wPf7HM+2tl+CtL3b5dYplFPkFaQt5fjCGvqw+Wtkpluc4u9ZpY6vhcKa+tm7XjpGNLbLX9/qbkdfy5urpdyFuPW04h72OaO056ndwP3F/a7QRyn/ke8jpyH7l/eV+p26vkfc7E8veBMr/FZX7/pLE/qh0v3EZeXxbU9VkvlPrNIJ/43UFen58s7f038rpYa7v7aDweWlKW12Ty9nE/ebusLcd55D5yt9JO80vbfIV8nPT/Wjg+GFbm8xq5b9mDvB0uqtueF5fl+gB5nfp3+UulPaaVeZ5T2vtZ8nr0WolrKHmf8XyZ1wPk9fAUGtfRF4CtyX3H86X81hLTfaX+E0r5Y6XOE0v5leTkw3NlmBfJ2/N/1LXFTOBucj9Ua8sJ5H1AQ5lXbZ+2Bbn/eb2UPULe1p8m9zUvl+X2UlkGr5RpvQf4Zhn+tfLZP4HvA+8s7TmitOcx5H348+Q+q2+pz01luFnAKGDNUp/J5fPLyb+Ufmpd+99Zyo4CriX3X0PI6+3LZTn/uCyfB0obTyvjP0VeDyeWut1f4ltI3mYeKm1yd2nH18h91nxyX3M1+bhxEnkfNrO0x0TyuvTfwHG1840ynamlvfuV8sF1y+YVYMMm50KPl3gXlTpNLG19T93yXVLacQfyujW1tOGjpS6HktfN10rZ6zQeH99EXgeeK+WvlDZ4qtT/hfL5G2U+04D30bjPXFDabR6NicRnyce8tW1rLPB58vqwpCyXCeXzi8h92Pgy3wVlWieWdnhPmeb0Utf7yccz95Th5pRlML/M5+FShwfJ6+yLpW3ecs5DXh8n0Li+v0I5Lyx1Hl2GXVymfz65L6vtf2rr+e3kfcXnyP3b0+R92KvkY6pF5OOQuaWdny3Tfhz4E3mbHkfj/uPB8v78Zo4Fny+f3V/aYHypw7jyN6kM/wR5/zO9DDOGfOw3jvzl41gajxk+V6bxGnk/9wXyMcO/S7vMBH5Yd8ywsNTx+TLN24AzyNvQE+T19lxy334jed2bTt6OHy7zvbEu3nGlDSaWab9I4z6wgXwOdD95fXxfK+ce1wOfauGz75TxJwKj6o5vWj23bKZuu7dwXveN9p6jvimuzkjIrOp/tJKQamaDWqNsDLUO+TPAhXXDnVc3jQ1h6S8j/ifwy/L6DOBXTYZbp2wAa5SyscAOyxhzS/M7rUzvbeSd50ulHkPLhjOPfCKWyFnZCeWvlpD6SdmwbiMfPFxTxm+gnCCQDwrnlPnUTlLmlo3ynrr2+l3ZCNYl7yxmk09E9yzx9yFv1MPL8PeQd3ojaExI1Z9Izysb2jrknfpT5BP33sAz5BO288gd5a9KfO8o7TAfOLK0w0PkDmeT8r+tE+u1gd7l9VbA+PL6YPJOcrUyn9mlrMX1prn1jtyhLibvAJ4p9XyefGCyETnJsEeJb2/yjrqBvMNZvUwrAXeW15cBjzVdt8v7i8id6hzyzmkG0Kd89jXygUttmtuX+cwj76Q+VMZZp8zvMvLB6inkHeQ3yB3emcD/0ngw/asS+3nk5T6PvOO4pyy76eQdYu0gbxTNJ6Q+BfxPXfkG9cuNvKOdCgws5Ru10RfcQk7SvRd4sEkb3QD0qmvDE8nr5Rvkdfb40jaDyuffIW9rt5F31rXt6tWyXNcjr69/btp/lOm8B4gyrankHd0c8kHAr8owfeva70nywevJ5bPatGo7yNrfs2X48aUda+VTgW3IB8a/oLH/eI68I9yEvCN/jXxAPozGHe96VLjdkA8IPlrKvgn8tdRpFvkktQ/5YGRsiXcxjQd548jby1/JyfeDyQcDr5C/tXyljDuB3C/MKO1+ZZnerBLXx0u7/JLGhNTvyngvlXm8Rt5uJ5K3j+tKG99HPkh4inzAdwX5wPR18sltrR98grzd1B/s1pIC08r0E/APYHPyujKHvJ39g9yHP0HeRn9epnV7iWEScBJ5W+1NXv5Xl/a4ktw/9i11q423TmnzH5LXsXXK/5uAU8pn76nbbh4Efle3Ht5RXvcCLinL8X7yt+dTyOvwYN6ckHqKnGTdmrytbU7+FrKB3BduUup5Dnn9/0bdNntvKd+WfJUbpX7zyX3DsNK2tQO758knRVE+e4ncz25PPhkZXoZ/mbxu1LalZ8nJg9oJy0fK8tqCfML5F/J+8TRyX7aYnOydTt5XTyAfFzxf6vx4aZteZVqPAN8rn11PXid3LNN7nbzO9y2xvF7a6xxKUp2cnEjk9eaFUq8XyvI7qYxzMvnKi2dKm15f6tCXvG0vLNOaXuq5Drm/rs3v9vL6U+Tk0wLyt8yQrxi9kLzvfpTc7/chr5ub8ebjlt+VZfsCeTt5f93xTSrla5DX2+fIJ7K3AluV4XYB/lFeLwSOr1vnNijTqZ24HQ38prz+GXl7qh0npTKf/yjlr5a45pITCf+mMem0FXl/NJ283e1P3p4+WNp3Zqn3weT149/kdWNemU9/8knNn+r6uT+Rj5MmlHY6j5yg+zb5GGxqKav1U7uQT9aWlGn8H3m9vIjG/uQP5HUokbedvUvdHi7jLgSOKePfTd6HXlnqXJvPAnLfeQ95mV9KTp49Q2M/96sS31HAG3X71vk0ngwnGr8gfKJM7wVy/zWS3C+OJR+jTS7LZAJwVV3/sqh8PoDcH15L3oaeKvFfX2L9PXldeazU+eoyv7/WTWs6ednPIq9Th5dl8AK5rxhBYxJqdRoTeQeU+jxT4nujtP1Bpbxv/bFHiS2VYR8jrw9vlOk9Rt5HTCcfb2xRXp9T2vlZ8pWrC0t7HlDaaxG5r51R2v0cGpMztS9W7iSvv/8ucfyYnHSaRN7//LnEMb3Uez/g/rpjyRfI/cMpwDl1/fuepf1fpJzX0Hhst3FdX/xnGvvm+WUZrEZjwv0r5G1/MjmZ/XKZ75/JSaRngPfXxXIbed1cQu6jx5L7nlTqVfuy42Vy/7iIvJ5tTmM//WdyHzqPxmTIBPI6sHUp+wj5JH0cuV9+ttThhlKvu8rfzmUZHklepzcm90uJfBXjCPJ29Bp5+/8JeTu/q8QzjPwF/unk9evD5HX66VLf2vpVO+fZh8Yk7sXkZONCYN8y/bnkbfVk8vo4mrx/vYLGbTSRj18uIX8p8Ufy+n0PeV0aVoapP8d6pbRvrU/5BHn5159v3E7jvv42cj/Sl7x/2IJ8/PEIcFoZ5vfAEeT9xqvkL9HWJK/bD9Udc48jfxm2Gnmf/kyJe8uyrM4jX/XZ9DzwLvJV8w2lbUbSeMxwG43HuvuR+8JzyOvW/2/vzKPsqqo0/tuVqkpVSIBMJIxJQA0iSAgBRBmCqIgiiARBNE0Q2xYEWxC7UWiBpdB06xIBbVAZXYjQLESBYBOEBJIQwhQyEsYEEkIw8zxV1e4/vn24t16qMkKFJOdb66333n33nmGfffZ0ztnv6WjL8KDz6dGPZAMOiM+nIBt4Oc19++kUPH8ucNM6fI/jEE8Op3kg/HjE2x0q5MhtrMe3bKFvf2/Fr+uyrnJae21Nx8C2VfRFxukjccqiHVJ0CXeXPu8B3G1mu6LJNS2uf4bS1kp3XwDK7wCcYGYvosDUxI1sW2v1AQx1HS9aZTo73QMZS38FfuDuT5mZI4H/EM23mNchhdwdCfNuaNLupWbbC1H3KsJRRAJtb7Qi+THgNTOrQYJkibsvNbOZKFDxkaDbxcgAnQfsajoPXeXuL8Q254TPASeazhPXR/v2it8eBXYEfo8m2flIsD6BJvtQd59NNBz4ERIk7ZAy7oIE3PpQA/zazPohpZ9yJxyBDKYmYLaZDY/r6+ObStyFjI2ZSJDej4RLN6TcTkWKoAYJ4BqkcHcE7jGzDyMF0TXKexmtwLaGXyFB+HlkFDxlZgciXr3R3RsA3H1SbCt/BinR++N9dJRzIBLKVwKXIiX4QzS+VyJFdhEy9n4P3O3uC2LrbEfkjL4c/VkOHGRm34g6WsJE4BemY3IPuvvIit8/ATzh7tOi/fNbI4CZ9UCKbZS7u5k1mNn+7j4pbrnH3RtLj7i7jzCz1UiQX4Ic2fLWYo/3KuBwFGR6EhkYI5ECLh9zKMuP3RAf7IcM0cmI1w9FvPHlaMSC4KnHkMF0dTyfciRUAYe7+4pSX5dGW09x95fi2gHAtcix6U/zY6Kj3f2duGcqCr51Av6ayjWztpo3c9G47h8yK+X6GIJ4bCAybkFG2TLkaAwNmqajSweh+X56PF+FHJFZSO70i35dThGQWIPkSNqx1g3N4ySr16BVppvRXDBkXP5L0PAkU86MfkHHpnj1CJq3R4bo29GeHmheLETj3z+e64Lm9tQoqzr68AdkgA6OtoGM47r43BPx073IsTkTGWv7In2xJO67A/EYFc+NjnHogo4ujA6aph2xAGeY2Q+RDqpG8xhkwF4O4O6NZrYGOVlDot+7Id1TuaX/UXdfZGadkY5JdH/c3eeb2dHx7H7IWH649OzzUd+UmN8gXkuO8Rxk4CfUoyD7uPjcAQUb0s6Jm+K+2WgV9eooq0v0dx7SI3Vo7Ccgo3pFtPERNH8b3H1C6ajUQxQ7fqAIzCYHvxbtpmpCMmMlxRGYFWi301wzm4N0cernydH//zOzBWiH4Cy0qtwJBZ5XoHH6FeKvHkgX7A6sjHL7UOj69tG3C5FNAHLYPhRtHRBtrwJurtB3H0e6+rPINqhD8+XWCrslOYPPA4+a2anu/qiZNSH9fAKSoxfH/Z9Eei+NY/t4r0aOGiG7F4UMqzOziVFfXfDQLnF/Z3efHbKlB3LKliBeeALtTugeY9OL0LnRl54UQdLdY7zbIbm3CvGWxXi9aWbDorxDYtz6xLG2pcBrYScdjBZJjkEOaz3aGTMAycG+UeZ90X4L2+YQJCNORDKiATk9xDgtRry6LNr3hRijpDdWxvtBSFYT72kh8RkUjLiLQt4m/t8VBZgrMQXx2HXIUetiOmJ8EeK/cchurEMy5SPI1rkv+BAKeULQ9s6g9UIk++dEX29EQZfJKMh/Bhqzb6LA3H9UtG0CcsxrgXnufidwpykvzlHRNxHPvSGOCPaJNjQB+7v7EjObjvTjD4C57j43nkm2R3ruN0jWj0FjcUzQ81Nobh6J7Kt6ND7VFLvO2lEsWE1DsqAJjU8tkjWTkT77sbunXDjLgarg/Y5oDIl27BG0/x46AnYS8IqZHRRlj3L3eWZ2B/BnU26hnd39cVPeq4VBp4S7kY7+GdKfq5HuBvHPHjEmIxGPfjL69QCaRz9HTnxHFFysjjLXoMByLeL5E1CQ7DCkt4hrPZCe/qK7X2Nmg5EsT3q5I+L5T0W9uyH/pgbZW79FMu2aqO8dNC87mtmRpX4+jXbl3I+C3dhyAccAABQ2SURBVDdGWz9OkRrjx/GedlTvgRYs390x6+7PxBHCWyh2czmyny+m0OHJ59klvq9EAcST0NwdjOTfuPh9GOKrO6NPDXF9YNTzJLL7qqLco4IWaTewx/fRSLY1Rd29kS7pFXXNReMK4ulTaY5PBG2HBp16AOeb2ZeRPD0OHTs2YE93Xx2+6isV5fwl7MSk0w9GtO8T5b+IdOnxaMGhM5LRxyM9dTRaOF9OYX/+Od6fo7CbHkM+zOlozu6E9PbcmEdPRx+q0WLIvWb2rowooVx2S2keAHD3h81sb+SDHQ+MM7P9kQ92q7svj/sqfZj1+Zbl+nvH50q/bn7UtTE+as4h9QGAAZNduXb6ufsB7v650u/LSp+vRysJByCFXVcqw1kbNyHj/CzWTmq4IWitPpAxlNBIGC4VzzsS5H+Ke9Lvx1Jskx0b1wYRKz3huP0RCbZUTwMSXNVR1jfcvR4JneTgGzDW3S9DKyKnxLW0StwaHZIj3Q9Y4e57ufuLpX5ejyLcj6OAVy0FvVdVlHUuMsp/W1FOQgPFvCvT8wKkoA5EhmFtqW0tYX18U4kHEO3edPfFpeudkPG2GCmHO9Aqw+7Rxx8Bw919f+RopDY3raNtoOMJs9z9FopjIfvTAq9GYHM+MirvAd6JsWhCeT/OTrdS0DvxHKXfoPl8mYUMjB2QgXQaWmE4GB1hLT9fF215OX6fCPynmf2kol+tzbWWcBpSXtPCqOxN8zP55bZ2pVBcIOU0Ito4HBkN/ZBiBhlU50V7JgNDgmbXIkWRUJbxVyPn+jGkWLsgpb4u+TEIGTL1pevDom4AIhhElH2+FV7crWjeXIHoWRdKqgew2pTTqgoZntcg4601vG/zBjlAf3D3Xu7e2933REb5R5Gz+/2ovwYFN2dEOUmR74Rk1z+QIXUGUupJ5i1GAfGUOLgG0XMBMnp6IgNwTKJTucHh+E5Hq/VLkBF7OoCZfST6vDL6f358HoEMACh2r8wqXWuiGPPyXJ4c16sRj+0d33+CdgasCFqvQHMK5CR/ATm8+1XM13XhkTQOKPfIffF5Fgp4nm1mdSjoNMjd69Aqcpk+yyrKXEWh92qQMV6JssxOfS3zy21IDv0J8W65vobSZ6t4bwlNwHXRr7ORfroZOZeLQq6uRM7MRUjn3YLGu1yvIUPw5Hg35BDsi8Yj5UNZjXZGpQTMaQy6Ay9EfV+KsrsinloV73WlZ8pydgWSiS3101EQcy5y+L6MHNvV7r4E0TLtCnu6ooyVQZc+UUcNkgFvx/Vn4/UwISda0HeG9P/X4vpeKLDVzG4JHbMkaHNVtDPhFsQvg6KtlXWlPIit4Xq02+sApG9SGoYbo84yXSsXga+Ka32QLdQINEb/JwALgu8fifu7okCih45O/Li6otxqJEt2Rbz2Ngo64e6N7j4i7KSHUJAhHbMBBaGfQk79V+PaEfHeDumP/vHMdUiPWNCQ6O8kWp8X6UjqoOjnfiigeBZy5m9Azu3OFEejP492Y5QxG+nUlRT65VqK46avIoft0Lj/naBDT+Bs27C8rLWIhvugHW87xvNzKGTu4Ugn9qp49osoSLQCGGtKot4pynoz7ukG7BK5ijqg8a1FtEsBb4tn/oGCF4cAmPJHVSObtAnNnZMochclnq2Kfo8Mel+A5EV/iuP8joIOTwVNF8S9NyM9fjrijypgiZnVmP4koy76cg6SleV50gftoj8HyYHhQbch0aeyLb4hNtWyKOc8tPCdgrZQHG8/GPFOO8TX85FuPhyN1RtIPzyL5M3goM0CCvuiGvkmT0d/POb2GIqASkK76EsTovvVyB54CQW7RqHxTLvxXkXytxbJhj2jLZeUylyDbIxXUTDkoyh4U49spWUlvXkSISfQzpsXKOX9dPcnkOx9CwWxUg7HtXyeoFM1ChbdhBaXuiN/DQqbodL2Pid+GxA0mB733Y4COyl/bLf4TtTZD9kVf62wGbz0uYzK74bm1jFIrv/C3bsim7Yajfm/IputrEsrc4eV7QGLdid7pi/SjbVIPx+L5N5YClsTWrZDQLRKNtdU5G+lU0WNAGHj9ES+48/RokkzG3AdZa9Thrn7fHe/090HI54+ivX7MOvzLVuqv6UyN9ZHzQGpLYQliDFBgqt7JKijJOhbwk4USS/PLF2vdBA7A7j7WCTwzqAwUDcGrdXXGkYhYZuSBBtyOiYi4yH9u8IuiJmXIGO6EU3WbhRGzBjkgBtSHCmR5etosnaJ70OADqVdNokO/aLOqciI6Ivo8EALhkgzRzpWcFqjw3HIwTwaGUyYWWrLUkSnUcCXzOywoMMXS2VNL/VlUEUdb0ekfjCFEBuFklNWRfR+YFzfGL7BtetkNdrxUUYtEqYPo1WT46O8fmh8upT6XtNK8WV+TugXO9hAY9g1yhkGfCeNgSlR6m6l+3aIfn0Iyaczwuk+g+LY5gKKZOWDkRNdyf+NSJm+hrYsv45WmOahlaRatOKLmfVHxhPRluXufgcKLPav6NcY4OhY4S+PfUv4GvD5CHL0RuPeWpLIBuDrZjYFGR6HIEW/ECndIWiF84KgwQ3IALgzyr0syrkaSAlZB8QroRNy6NORn97IAH2WdcuPPWiuIL8HDDAlKZ+CHCTQalQNMCHq/zAa8xuQUTUA0T7x0+4ocLIPovV/oXlT15bzBgUK7qM5piCeG4NW2vsio+t55KCk3Y+nIUP+xyh4k4ydc+J9Qlwfh/7VaDI6RtQJ8ei3g7YXIGM57UYBOYFnmdls5GRXo5X5HZDxUoUC/g+iuTEFreAvDrpMQ0bCOcF/X6UIKu+AVoANGaCd47lPx7UlaPX/LCTXvoIcw/TvWwdG+a8gJ7JX0LNDzNepaE4lufA1xOPp+2yUODcF6cajeZW+10c5aWfQVNMfBHymRJ+FBC+YdkQmeXMfcmDb0Xx307rwdNTfOdp4FKLv1zfg2VHI0Ldob/nfm6YB3wp+PgWoNbNdoo4UTKiJZ5eh+XAEouduiMd2QON7JHKwfoR0z0ikj8qrjqPRseSJyMlPQdN2pc9Dor456FjDW4hereEt5Iw/D3zVzNqb2W8Qz3RETkjq0w7R/qZwnDuhedMezZt6M+uK5nP70Lnng5KqRj93CXqlXUQ7ox14O5vZVwDMbJfQdw9TmjOhuyvtlo4h15Od9HHgjRjrKhR03hPx6N9iwWaamZ0aZZppdy9ozM6J6+3MbMeoLxnjx6Bg3BokXzu3QM9nKebBTIqdkjNRMHZN1L0v0Bh1Hxb3fBfpJAsdPSqe7x9y7rPRp+nIyTkgdNk1iL/7mnY7J6TjzOPRONaj+dOOQpauRvLmGYodm5Oi3v+mkJ2Hoh0TtcipexCNedp5kXTIUOTQ/cnMJiCZPCMWAk6gOIaUbMG56LjL6Sj4UmPaDT8r+t8eyT0LOtUjm+DCoMVKip2li9GRop3QmKfdMQmNFDp653i/FNkR56IAwO5x/a2ouxPirbSTKiXU3tPdh6PFwD2CZmNQIObwKGMOkjFp915PJKd/XqLPrmhnzbBo/w1mNh4FBuuQnPCYPzOQvZN2V4PkxI6lPqbd/zVR/3VBJ3P3OUgXdzOzqUj+7414eVD09wqkAz4ZdZyLAm+/otj59ijaaT/VtAvyY2hM0655o5gDZ6DdUouABaXdQjujgFkZnShyzB1TovUOaMz/DY1zNZJ3I6O+3ZFc+mj8thfis33jc88o/0SKHGXd0dgnO+EVtANmkZmdhwJeoLlTFeWm/E9pZ/DuFHNpTlwbEu/Lo8zeSE4cGP3rTuHfeNR5eNw/LcoifJ594v5kr8xAdpOZEuD3iuduRQG7FERpyed5I9ryEpKRc6PcpF8+hubXbtHX01Aw8mfR/yuiH6egcRuE+PMIZNuNC/ouBzqbWdr99rnQFdMpjs4T/Upz8DDW3l3zVJTfB/HbqWb2CQqboR4FqvdDeqeGIujeGhqi3V2DLmnnePKTFsXnQ5FPcXT0vV30e32YSrG7LSHJxfloMfkwoDp0YGeK3bkbBTP7tMW/pFcEwocB3yz9VunDbJRvGaj067psUjm+jvN8+bXJOaTS9sj0upDmOaROoXlS834o6joeCdV/9tJZ2VK5J6FJMBIprBFxvSMyACZFGV8pPXMxcNcmtrm1+t7tS3yfBPQu/dYUDOoUuUnmI8NgBjL+16DJmZJ0jkW7cxwprhkUeR/mIkN7GhKY36dIkjk3aHkwElALo56FwJnRpkPQRFwQ93SkeQ6peopcVKn+1OZRJTrMQ7spRqDAzdvIKHokypmMdnZNRKtZS4MOfyyN6b7ISX0SCfLpcf3Dcf0pdAwt5aSoQiutU1Ck/m8UuW5a5JuKcX13rCjlCaN5UvPb0CrCLCRw34o6z48xWB70X11q72XIiITIj0TzpOYPxLiMp9jRBlJkv4z+jEeGzHNI2L+KFPpxFMkW0z+jPBZj2C36nRJs/gUZe7dHGS8j53lptH9FvF6KvixG/HppjM0L6Kjfi4i3jiv15RmKvEUjSp+PR8p1PDH2LdC9d9DRKq4/jxTObTRP9l6mYRNFgkhHvFIex21dfrzElp83v0T8lpKyfgPx1BDkHDVEO2+lkCOXItmTcnq9HddPpUjKPSH6eBdF3ow3oq5KOg1Bq6xPImN2FgoIdYv2efR7PDJsJyDHaSFxtJQiAW1KUvo7NJdGR5vmoHk9O2h2f5Sb/khiOHLcfovk5wzkaD4e5Z+MgljpKFg6RjETBb9TUvOrY5ynUiQMTnWvjmuXoDmXkuufGHR4KNqyIMbzhbg+OtoxEc2FoRS5m26kyDXTm+Y5pH5dut4U7ZgZ5c9CMmRxjMv1wG1x/21IXi6lCCTMDPosQfzwlyhjWozlkUgXJFovQobhySj48q5cjfJTDphVSPfMiutjKXKXrUT8dSIa79fj+pHRp8cQLzxHkdS8gSJv2OIYx9vj2uKo838Qb86nyFPzKuKhs0rjtiLoPif6NoMi99XMGKtb4rlEpzGId+dR8IFTrLp79Cn1Z2LQP+0OrEfBmFT/UrTLtT5o9GqU+yBry51EiylojBfEtaQnfhrtfIci30UfFPxNf+Dxk5KcS7J5NdqRelJcTzlEFiGnNCU2T7KtMcand9At2UlD4/MQFCBMiy5p58qbSE+muZWOvsxFwZNxMa4LEd81oGNx55TotQLJzYORPJkSNHix1LdDKOTJYsRPA6Mvr5WuLwhap6PFMyl2gw6MPg9EeuXvpfrHt2BvTUL8850K+futoENvYu6W5u9z0e57492jzka06PF7xGfjEA9dhYIvK6Pfk5AMnxTPp3yMLc2f50tzfxDFsZNd0RxYhnRTNZqvM6LevvE99fGeeJ8c7xcGjWbQ3A5I8qVD6dp0ivl4JoWeTnIp5QedhPgx7VZLci4dkUu5KZcinTQUzZ3RiNeTvB+I5mtKrrwCzacj49mzSm1biXhuBM1lZY8oI439a0gm1BGyGc2754LeLSU1b0JyZSbi739HPD0Nza35Mc59KXIiTUIBe6cIlNwY45QWwadHWydFuWso9PbfovyXEU+8EWVNRvJnCpq7byO92ogCdispdpO+hebibIo/GXkNzeNl0e/ZSFb1QvM52XqzUWDvkOhfE5pzL8W49KFI4v96lPlatKUh6r83vj8Vv6c/iZoQ7R5E8znYSGHDzAsaPUix+HRdtOGK+G1JPHNjtP8tip2MTYiHuqOAVfojlBRwHRD0uAfx/gyKZPuVSc3nBv0nUPyZT+KFd5DdPxvNtwlx7+ulfs5A8mdk9OvxeP7ukq2Zcq0lu3VptHsKxR9e/JTCT3ox6n4CzbFvR/9Go4XXK1k73+nceH5gic6XRx+TvfIPxJd/pziuOCzqmU3zpOZJFgwgbMVWbPIfUsj5SSiVTtmunxLlXlWWceuykVvoW7LDK/268zbU1m7W5vU5Gvm1db+QYDm2DetL/7DUIYRI//egrK5I6PbMdNg8OmxNL1pItL+9vcoKaAvVv93Om7IBUbo2JIyLrZo3W+pb6bdW+4ZWz1Py3OuoCLh+EF7ICXmBSEq9CfxSjQLqJ2/Cs5slo5HDm5L07xPzv7aVe3dDjlPVJtY1AB3j2dD721MkLT2cCAxuYt0dEu8Q/6S4hXglBbC3Wzm3EfVskszYVl8xf2ZuqjxcFz231VdJNi9rwzpbnR9UBDzXU84Gy+Zt8dWKPdQ+9OXSTdEJlAKnFdc3eFy2ME022WbYgDI3Wzdsba8NOUOdsRUijjc8jValHm3Dqn9nZvuhlZDb3f35zSjrwehHLfBTj+ThG4NMh4ytGa6jVm2OPG/A3UegFaGWfuvY0vVtHe5+0ZZuw7oQvPMgykdVmbx0fbjczD6DeG8Y2u20oXivZHQHYHgcLzB03LIyPxBm9k9oNfZC13HVjYKZXYx2G2zIkcSEvYD/jSMyq9EOpU3FwejPCAytkH9zM8raLJjZy2zHcm5DkeVhgdL8Od3dR21KGeui57aIsmxGRxDbCm0qm7cz7IV2G9ajgOzm6IStEZtjM7SG91I3bFVIK1QZ2wEid0NLRtex7t5SNv8PHN6LPmwLdPigwMwuYe1/v7jH3a+suO8AtB23jFXuftj72b62gJmdhZInljHa3b+7JdrzfiHPm/cPmbbvH7Zl2VPG5sqh1mQ5Opqx3fDmtjAXP6h9MLOxrJ0TZbBv/D9Av6fYUDvm/S5ja8TmyNftRTZvDjZlLkeOv8p/wb7W3W99r9uXsWWxLfkfOSCVkZGRkZGRkZGRkZGRkZGRkdGmyP+yl5GRkZGRkZGRkZGRkZGRkZHRpsgBqYyMjIyMjIyMjIyMjIyMjIyMNkUOSGVkZGRkZGRkZGRkZGRkZGRktClyQCojIyMjIyMjIyMjIyMjIyMjo02RA1IZGRkZGRkZGRkZGRkZGRkZGW2K/we1Z2F06L2o9gAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "output_type": "display_data"
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " clean_categories project_is_approved total Avg\n",
+ "24 Literacy_Language 20520 23655 0.867470\n",
+ "32 Math_Science 13991 17072 0.819529\n",
+ "28 Literacy_Language Math_Science 12725 14636 0.869432\n",
+ "8 Health_Sports 8640 10177 0.848973\n",
+ "40 Music_Arts 4429 5180 0.855019\n",
+ "==================================================\n",
+ " clean_categories project_is_approved total Avg\n",
+ "19 History_Civics Literacy_Language 1271 1421 0.894441\n",
+ "14 Health_Sports SpecialNeeds 1215 1391 0.873472\n",
+ "50 Warmth Care_Hunger 1212 1309 0.925898\n",
+ "33 Math_Science AppliedLearning 1019 1220 0.835246\n",
+ "4 AppliedLearning Math_Science 855 1052 0.812738\n"
+ ]
+ }
+ ],
+ "source": [
+ "univariate_barplots(project_data, 'clean_categories', 'project_is_approved', top=20)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "H0UM0Ruyoc4o"
+ },
+ "outputs": [],
+ "source": [
+ "# count of all the words in corpus python: https://stackoverflow.com/a/22898595/4084039\n",
+ "from collections import Counter\n",
+ "my_counter = Counter()\n",
+ "for word in project_data['clean_categories'].values:\n",
+ " my_counter.update(word.split())"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "XzXq5ZERoc4r",
+ "outputId": "cf0e8427-0d1c-4be4-bc6e-2e55a82823cd"
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABKIAAAFACAYAAACP0NSkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xu4bVVd//H3BxBBUcA4Xrh5LElFVBJE1FS8hCCmlJiiKaRF+rM00xKzvJtYeYnSfDQJLFFRU0lQRBQMBQUUuWqc8ChHUEAQwQsJfH9/jLE5i3XW2mefy577nM379Tzr2XONeRtrzbXXnPMzxxwrVYUkSZIkSZI03zZZ6ApIkiRJkiTp9sEgSpIkSZIkSYMwiJIkSZIkSdIgDKIkSZIkSZI0CIMoSZIkSZIkDcIgSpIkSZIkSYMwiJIkSYNK8qYkVyf5wQDrek6Sz833ehajJJXkvgtdj/UhyaOTfHuh6yFJkgyiJEnSBEnemeTaJGck2WGk/DlJ/nEdlrsT8HJg16q65/qo62yq6oNVte+6LCPJ0h7KbLa+6rVYJTk0yelrMP0g721V/XdV3W8+1yFJkubGIEqSJN1Gkr2APYB7AqcDr+rlWwOvAF6zDou/N/CjqrpyXevZ67Tp+ljOxsAgTJIkLQYGUZIkadx9gNOr6kbgFOBXe/mbgb+vqutmmznJ1kk+kOSqJN9N8tdJNknyROBkYPskNyQ5esK8+yRZkeSv+u17y5M8Z2T80Un+JcmJSX4KPG7a+vr0t2mhk+T+SU5Ock2Sbyf5vZFxWyZ5W1/GdUlOT7Il8KU+yY97vR+R5L5JTuvTXZ3kI7O8Hx9N8oM+7ZeSPHDs9byn1+n6vsx7j4yvJC9OcglwSS97ZJKz+vLOSvLIXv6sJGePrftlSY7vw3dM8g9Jvpfkh329W45M+xdJrkhyeZLnr2YbH5rk0l7n7/SWcg8A3gM8or9PP+7THpDkG0l+kuSyJK8bWdQq722f5/lJLu6t8k4afU/G6nFMkpf34R36+/X/+vP79u2cmc/VyHyvTPL9Xv9vJ3lCL98kyeFJ/jfJj5Icl+Rus70XkiRpzRhESZKkcRcCj+4hxROAC5PsCdyvqo6dw/z/BGxNC7AeCzwP+IOq+jywP3B5VW1VVYdOmf+ewHbADsAhwHuTjN5W9WxaKHYXWoutiesbX2iSO9OCsGOBuwMHA+8eCYb+gdYS7JHA3YC/BG4BHtPHb9PrfQbwRuBzwLbAjr0O03wG2KWv8+vAB8fGP6cvbzvg3AnjDwQeDuzaQ5ETgCOBXwHeDpyQ5FeA44H7Jdll7L2a2WZvBX4d2B24L+39fU1/b/ajtXb7rV7XJ057Mf19PBLYv6ruQnu/zq2qi4EXAmf092mbPstPadtkG+AA4EVJDuzjVnlv+7i/An4XWAL8N/ChKdU5DdinDz8WuLT/nVn2f1dVjdX/fsCfAA/r9X8SsLyPfgnt/X4ssD1wLfCuae+FJElacwZRkiTpNqrqAuDjwJnAzrQA4x+BlyR5SW/V88Ek24zPm3ar3DOBV1XV9VW1HHgb8Nw1rMbfVNWNVXUaLXj5vZFxn6qqL1fVLcAv12B9TwGWV9W/VdVNVfX1/joP6i2ong+8tKq+X1U3V9VXequwSX5Ju81w+6r6RVVN7Repqo7qdbsReB3wkLTbHGecUFVf6uNfTWtRtNPI+LdU1TVV9XNakHNJVf17fw0fAr4F/HZV/Qz4FC1gowdS9weOTxLgj4CX9WVdD/wt8Ky+jt8D/q2qLqiqn/Z6zuYWYLckW1bVFVV14Syv/9SqOr+qbqmq82ih0mOnTQ/8cX/NF1fVTb2eu09pFXUaLTTdhBY8/R3wqD7usX38uJuBO9KCvTtU1fKq+t+Rdb+6qlaMbK+D4m2RkiStNwZRkiRpFVX1jqp6SFU9kxb0/DftuOEwWiupi4HDJ8y6HbA58N2Rsu/SWt/M1bU9DBmdf/uR55et5fruDTw8yY9nHrTWSDMtsLYA/nfCfJP8JRDga0kunHYrW5JNkxzRb/X6CStb3mw36fVU1Q3ANUx/vdtz29cKt329x9KDKFprqE/2gGoJcCfgnJHX/tlePrPc0fWMr+NWfds8k9b66YokJyS5/7Tpkzw8yRfTbp28rs+33bTpadvpH0fqeQ3tvV5lm/YA6QZaK69HA58GLu+tniYGUVW1DPgzWsh0ZZIPJ5l5v+8NfGJk3RfTgqt7zFJfSZK0BgyiJEnSVEnuQWsl8gZgN+C8qvolcBbw4AmzXM3K1kIzdga+vwar3bbf/jU6/+Ujz0dvtVqT9V0GnFZV24w8tqqqF/Xl/AL4tQnz1SoFVT+oqj+qqu1p78+7k9x3wrzPBp5Gu9Vta2BpL8/INLe2fkqyFe22wGmv9/Kx1wq3fb2fA7ZLsjstkJq5Le9q4OfAA0de+9ZVtVUff8VoPfoyp6qqk6rqt4B70VpkvW9CXWccS7ttcKeq2prWj1Rmmf4y4I/HttOWVfWVKdU5DTgI2Lyqvt+fP4922+S5U+p/bFX9Ju29LFqrv5l17z+27i36ciVJ0npgECVJkmbzduC1vVXNd4CH9bBkH1p/PLdRVTcDxwFvTnKXfjvVnwP/sYbrfX2SzZM8mnZL3UcnTbSG6/s08OtJnpvkDv3xsCQP6Lf5HQW8Pcn2vSXTI5LcEbiKdivaTKftJHlGkh3702tpYcbNE9Z5F+BG4Ee0Fkl/O2GaJyf5zSSb0/qK+mpVXTZhOoAT+2t4dpLNkjwT2LW/NvqtbB8D/p4WaJ3cy2+hhUXvSHL3/hp2SPKkvtzjgEOT7JrkTsBrp6yfJPdI8tQeFt5Ia5E089p/COzYX8voe3BNVf0i7RcZnz0ybpX3lhZUvWqm7660zuifMa0+tODpT1jZ8fmpwJ/SOtxfZZskuV+Sx/dt+wtaQDcz3Xton6V792mXJHnaLOuWJElryCBKkiRNlORxtE6kPwFQVV+j9dd0GfA44Igps/4prYPqS2mdiR9LC3nm6ge0cOdyWsfdL6yqb80y/ZzW1/tF2pfWL9LlfT1vpfUXBK2z7vNprb2u6eM26SHcm4Ev91u29gYeBnw1yQ201j4vrarvTKjbB2i3uX0fuIjW79a4Y2nBzzW0ztKfM2GamdfwI1ow93JauPWXwFOq6uqx5T0R+GgPpma8ElgGnNlvE/w8cL++3M8A7wS+0Kf5wrQ60I4fX057D6+h3QL3//q4L9A6u/9Bkpk6/T/gDUmup3WOftzI61nlve2ft7cCH+71vIDWyf00p9HCrpkg6nRa6PelKdPfkfbZvZr2Gbg7rXN0aH2hHQ98rtf3TFpH8ZIkaT3J2A+JSJIkLZgk+wD/UVU7rm7aOS7v+cDvV9Xj18fy1rckRwMrquqvF7oukiRJQ7BFlCRJWsweSLulUJIkSRsAf4pWkiQtSkk+CewCzNa/kCRJkgbkrXmSJEmSJEkahLfmSZIkSZIkaRAGUZIkSZIkSRrE7a6PqO22266WLl260NWQJEmSJElaNM4555yrq2rJ6qa73QVRS5cu5eyzz17oakiSJEmSJC0aSb47l+m8NU+SJEmSJEmDMIiSJEmSJEnSIAyiJEmSJEmSNAiDKEmSJEmSJA3CIEqSJEmSJEmDMIiSJEmSJEnSIAyiJEmSJEmSNAiDKEmSJEmSJA3CIEqSJEmSJEmDMIiSJEmSJEnSIAyiJEmSJEmSNIjNFroCkiRJkiRpw7D08BMWugq3K8uPOGChqzA4W0RJkiRJkiRpEAZRkiRJkiRJGoRBlCRJkiRJkgZhECVJkiRJkqRBGERJkiRJkiRpEAZRkiRJkiRJGsS8BlFJlic5P8m5Sc7uZXdLcnKSS/rfbXt5khyZZFmS85I8dGQ5h/TpL0lyyEj5Hn35y/q8mc/XI0mSJEmSpLU3RIuox1XV7lW1Z39+OHBKVe0CnNKfA+wP7NIfhwH/Ai24Al4LPBzYC3jtTHjVpzlsZL795v/lSJIkSZIkaW0sxK15TwOO6cPHAAeOlH+gmjOBbZLcC3gScHJVXVNV1wInA/v1cXetqjOqqoAPjCxLkiRJkiRJG5j5DqIK+FySc5Ic1svuUVVXAPS/d+/lOwCXjcy7opfNVr5iQrkkSZIkSZI2QJvN8/IfVVWXJ7k7cHKSb80y7aT+nWotylddcAvBDgPYeeedZ6+xJEmSJEmS5sW8toiqqsv73yuBT9D6ePphv62O/vfKPvkKYKeR2XcELl9N+Y4TyifV471VtWdV7blkyZJ1fVmSJEmSJElaC/MWRCW5c5K7zAwD+wIXAMcDM798dwjwqT58PPC8/ut5ewPX9Vv3TgL2TbJt76R8X+CkPu76JHv3X8t73siyJEmSJEmStIGZz1vz7gF8omVEbAYcW1WfTXIWcFySFwDfA57Rpz8ReDKwDPgZ8AcAVXVNkjcCZ/Xp3lBV1/ThFwFHA1sCn+kPSZIkSZIkbYDmLYiqqkuBh0wo/xHwhAnlBbx4yrKOAo6aUH42sNs6V1aSJEmSJEnzbr5/NU+SJEmSJEkCDKIkSZIkSZI0EIMoSZIkSZIkDcIgSpIkSZIkSYMwiJIkSZIkSdIgDKIkSZIkSZI0CIMoSZIkSZIkDcIgSpIkSZIkSYMwiJIkSZIkSdIgDKIkSZIkSZI0CIMoSZIkSZIkDcIgSpIkSZIkSYMwiJIkSZIkSdIgDKIkSZIkSZI0CIMoSZIkSZIkDcIgSpIkSZIkSYMwiJIkSZIkSdIgDKIkSZIkSZI0CIMoSZIkSZIkDcIgSpIkSZIkSYMwiJIkSZIkSdIgDKIkSZIkSZI0CIMoSZIkSZIkDcIgSpIkSZIkSYMwiJIkSZIkSdIgDKIkSZIkSZI0CIMoSZIkSZIkDcIgSpIkSZIkSYMwiJIkSZIkSdIgDKIkSZIkSZI0CIMoSZIkSZIkDcIgSpIkSZIkSYMwiJIkSZIkSdIgDKIkSZIkSZI0CIMoSZIkSZIkDcIgSpIkSZIkSYMwiJIkSZIkSdIgDKIkSZIkSZI0iM0WugKSJEmSpI3X0sNPWOgq3O4sP+KAha6CtNZsESVJkiRJkqRBGERJkiRJkiRpEPMeRCXZNMk3kny6P79Pkq8muSTJR5Js3svv2J8v6+OXjizjVb3820meNFK+Xy9bluTw+X4tkiRJkiRJWntDtIh6KXDxyPO3Au+oql2Aa4EX9PIXANdW1X2Bd/TpSLIr8CzggcB+wLt7uLUp8C5gf2BX4OA+rSRJkiRJkjZA8xpEJdkROAD41/48wOOBj/VJjgEO7MNP68/p45/Qp38a8OGqurGqvgMsA/bqj2VVdWlV/R/w4T6tJEmSJEmSNkDz3SLqncBfArf0578C/LiqburPVwA79OEdgMsA+vjr+vS3lo/NM61ckiRJkiRJG6B5C6KSPAW4sqrOGS2eMGmtZtyalk+qy2FJzk5y9lVXXTVLrSVJkiRJkjRf5rNF1KOApyZZTrtt7vG0FlLbJNmsT7MjcHkfXgHsBNDHbw1cM1o+Ns+08lVU1Xuras+q2nPJkiXr/sokSZIkSZK0xuYtiKqqV1XVjlW1lNbZ+Beq6jnAF4GD+mSHAJ/qw8f35/TxX6iq6uXP6r+qdx9gF+BrwFnALv1X+Dbv6zh+vl6PJEmSJEmS1s1mq59kvXsl8OEkbwK+Aby/l78f+Pcky2gtoZ4FUFUXJjkOuAi4CXhxVd0MkORPgJOATYGjqurCQV+JJEmSJEmS5myQIKqqTgVO7cOX0n7xbnyaXwDPmDL/m4E3Tyg/EThxPVZVkiRJkiRJ82S+fzVPkiRJkiRJAgyiJEmSJEmSNBCDKEmSJEmSJA3CIEqSJEmSJEmDMIiSJEmSJEnSIAyiJEmSJEmSNAiDKEmSJEmSJA3CIEqSJEmSJEmDMIiSJEmSJEnSIAyiJEmSJEmSNAiDKEmSJEmSJA3CIEqSJEmSJEmDMIiSJEmSJEnSIAyiJEmSJEmSNAiDKEmSJEmSJA3CIEqSJEmSJEmDMIiSJEmSJEnSIAyiJEmSJEmSNAiDKEmSJEmSJA3CIEqSJEmSJEmDMIiSJEmSJEnSIAyiJEmSJEmSNAiDKEmSJEmSJA3CIEqSJEmSJEmDMIiSJEmSJEnSIAyiJEmSJEmSNAiDKEmSJEmSJA3CIEqSJEmSJEmDMIiSJEmSJEnSIAyiJEmSJEmSNAiDKEmSJEmSJA3CIEqSJEmSJEmDMIiSJEmSJEnSIAyiJEmSJEmSNAiDKEmSJEmSJA3CIEqSJEmSJEmDMIiSJEmSJEnSIAyiJEmSJEmSNAiDKEmSJEmSJA1ijYOoJNsmefB8VEaSJEmSJEmL15yCqCSnJrlrkrsB3wT+LcnbVzPPFkm+luSbSS5M8vpefp8kX01ySZKPJNm8l9+xP1/Wxy8dWdarevm3kzxppHy/XrYsyeFr/vIlSZIkSZI0lLm2iNq6qn4C/C7wb1W1B/DE1cxzI/D4qnoIsDuwX5K9gbcC76iqXYBrgRf06V8AXFtV9wXe0acjya7As4AHAvsB706yaZJNgXcB+wO7Agf3aSVJkiRJkrQBmmsQtVmSewG/B3x6LjNUc0N/eof+KODxwMd6+THAgX34af05ffwTkqSXf7iqbqyq7wDLgL36Y1lVXVpV/wd8uE8rSZIkSZKkDdBcg6jXAyfRgp+zkvwqcMnqZuotl84FrgROBv4X+HFV3dQnWQHs0Id3AC4D6OOvA35ltHxsnmnlkiRJkiRJ2gBtNsfprqiqWzsor6pLV9dHVJ/uZmD3JNsAnwAeMGmy/jdTxk0rnxSi1YQykhwGHAaw8847r6bWkiRJkiRJmg9zbRH1T3Msm6iqfgycCuwNbJNkJgDbEbi8D68AdgLo47cGrhktH5tnWvmk9b+3qvasqj2XLFky12pLkiRJkiRpPZq1RVSSRwCPBJYk+fORUXcFNl3NvEuAX1bVj5NsSevc/K3AF4GDaH06HQJ8qs9yfH9+Rh//haqqJMcDx/YWWNsDuwBfo7WU2iXJfYDv0zo0f/ZcX7gkSZIkSZKGtbpb8zYHturT3WWk/Ce0sGg29wKO6b9utwlwXFV9OslFwIeTvAn4BvD+Pv37gX9PsozWEupZAFV1YZLjgIuAm4AX91v+SPIntL6rNgWOqqoL5/CaJUmSJEmStABmDaKq6jTgtCRHV9V312TBVXUe8BsTyi+l/eLdePkvgGdMWdabgTdPKD8ROHFN6iVJkiRJkqSFMdc+ov61dzgOQJJtk5w0T3WSJEmSJEnSIjTXIGq73uE4AFV1LXD3+amSJEmSJEmSFqO5BlG3JNl55kmSewM1P1WSJEmSJEnSYrS6zspnvBo4Pclp/fljgMPmp0qSJEmSJElajOYURFXVZ5M8FNgbCPCyqrp6XmsmSZIkSZKkRWVOt+YlCbAf8NCq+i/gTklW+eU7SZIkSZIkaZq59hH1buARwMH9+fXAu+alRpIkSZIkSVqU5tpH1MOr6qFJvgHtV/OSbD6P9ZIkSZIkSdIiM9cWUb9Msin9l/KSLAFumbdaSZIkSZIkadGZaxB1JPAJ4O5J3gycDvztvNVKkiRJkiRJi85cfzXvg0nOAZ5A+9W8A6vq4nmtmSRJkiRJkhaVWYOoJHetqp8kuRtwJfChkXHbAj+pqpvnuY6SJEmSJElaBFbXIupY4CnAObT+oTI2fqsk76uqv5qPykmSJEmSJGnxmDWIqqqn9L/3mTS+d2B+AWAQJUmSJEmSpFnNqY8ogCRPBR7Tn55aVZ/ut+U9YF5qJkmSJEmSpEVlTr+al+QI4KXARf3x0iRvmc+KSZIkSZIkaXGZa4uoJwO7V9UtAEmOAb4BvGq+KiZJkiRJkqTFZU4torptRoa3Xt8VkSRJkiRJ0uI21xZRbwG+keSLtF/Oewy2hpIkSZIkSdIaWG0QlSTA6cDewMNoQdQrq+oH81w3SZIkSZIkLSKrDaKqqpJ8sqr2AI4foE6SJEmSJElahObaR9SZSR42rzWRJEmSJEnSojbXPqIeB7wwyXLgp7Tb86qqHjxfFZMkSZIkSdLiMtcgav95rYUkSZIkSZIWvVmDqCRbAC8E7gucD7y/qm4aomKSJEmSJElaXFbXR9QxwJ60EGp/4G3zXiNJkiRJkiQtSqu7NW/XqnoQQJL3A1+b/ypJkiRJkiRpMVpdi6hfzgx4S54kSZIkSZLWxepaRD0kyU/6cIAt+/OZX82767zWTpIkSZIkSYvGrEFUVW06VEUkSZIkSZK0uK3u1jxJkiRJkiRpvTCIkiRJkiRJ0iAMoiRJkiRJkjQIgyhJkiRJkiQNwiBKkiRJkiRJgzCIkiRJkiRJ0iAMoiRJkiRJkjQIgyhJkiRJkiQNwiBKkiRJkiRJgzCIkiRJkiRJ0iAMoiRJkiRJkjSIeQuikuyU5ItJLk5yYZKX9vK7JTk5ySX977a9PEmOTLIsyXlJHjqyrEP69JckOWSkfI8k5/d5jkyS+Xo9kiRJkiRJWjfz2SLqJuDlVfUAYG/gxUl2BQ4HTqmqXYBT+nOA/YFd+uMw4F+gBVfAa4GHA3sBr50Jr/o0h43Mt988vh5JkiRJkiStg3kLoqrqiqr6eh++HrgY2AF4GnBMn+wY4MA+/DTgA9WcCWyT5F7Ak4CTq+qaqroWOBnYr4+7a1WdUVUFfGBkWZIkSZIkSdrADNJHVJKlwG8AXwXuUVVXQAurgLv3yXYALhuZbUUvm618xYRySZIkSZIkbYDmPYhKshXwceDPquons006oazWonxSHQ5LcnaSs6+66qrVVVmSJEmSJEnzYF6DqCR3oIVQH6yq/+zFP+y31dH/XtnLVwA7jcy+I3D5asp3nFC+iqp6b1XtWVV7LlmyZN1elCRJkiRJktbKfP5qXoD3AxdX1dtHRh0PzPzy3SHAp0bKn9d/PW9v4Lp+695JwL5Jtu2dlO8LnNTHXZ9k776u540sS5IkSZIkSRuYzeZx2Y8Cngucn+TcXvZXwBHAcUleAHwPeEYfdyLwZGAZ8DPgDwCq6pokbwTO6tO9oaqu6cMvAo4GtgQ+0x+SJEmSJEnaAM1bEFVVpzO5HyeAJ0yYvoAXT1nWUcBRE8rPBnZbh2pKkiRJkiRpIIP8ap4kSZIkSZJkECVJkiRJkqRBGERJkiRJkiRpEAZRkiRJkiRJGoRBlCRJkiRJkgZhECVJkiRJkqRBGERJkiRJkiRpEAZRkiRJkiRJGoRBlCRJkiRJkgZhECVJkiRJkqRBGERJkiRJkiRpEAZRkiRJkiRJGoRBlCRJkiRJkgZhECVJkiRJkqRBGERJkiRJkiRpEAZRkiRJkiRJGoRBlCRJkiRJkgZhECVJkiRJkqRBGERJkiRJkiRpEAZRkiRJkiRJGoRBlCRJkiRJkgZhECVJkiRJkqRBGERJkiRJkiRpEJstdAUkSZIk3f4sPfyEha7C7cryIw5Y6CpIEmCLKEmSJEmSJA3EIEqSJEmSJEmD8NY8SZIkbTS8nWtY3s4lSVrfbBElSZIkSZKkQRhESZIkSZIkaRAGUZIkSZIkSRqEQZQkSZIkSZIGYRAlSZIkSZKkQRhESZIkSZIkaRAGUZIkSZIkSRrEZgtdAUmSpPm09PATFroKtzvLjzhgoasgSZI2ULaIkiRJkiRJ0iAMoiRJkiRJkjQIgyhJkiRJkiQNwiBKkiRJkiRJgzCIkiRJkiRJ0iDmLYhKclSSK5NcMFJ2tyQnJ7mk/922lyfJkUmWJTkvyUNH5jmkT39JkkNGyvdIcn6f58gkma/XIkmSJEmSpHU3ny2ijgb2Gys7HDilqnYBTunPAfYHdumPw4B/gRZcAa8FHg7sBbx2Jrzq0xw2Mt/4uiRJkiRJkrQBmbcgqqq+BFwzVvw04Jg+fAxw4Ej5B6o5E9gmyb2AJwEnV9U1VXUtcDKwXx9316o6o6oK+MDIsiRJkiRJkrQB2mzg9d2jqq4AqKorkty9l+8AXDYy3YpeNlv5ignlkiStF0sPP2Ghq3C7svyIAxa6CpIkSRrAhtJZ+aT+nWotyicvPDksydlJzr7qqqvWsoqSJEmSJElaF0MHUT/st9XR/17Zy1cAO41MtyNw+WrKd5xQPlFVvbeq9qyqPZcsWbLOL0KSJEmSJElrbugg6nhg5pfvDgE+NVL+vP7reXsD1/Vb+E4C9k2ybe+kfF/gpD7u+iR791/Le97IsiRJkiRJkrQBmrc+opJ8CNgH2C7JCtqv3x0BHJfkBcD3gGf0yU8EngwsA34G/AFAVV2T5I3AWX26N1TVTAfoL6L9Mt+WwGf6Q5IkSZIkSRuoeQuiqurgKaOeMGHaAl48ZTlHAUdNKD8b2G1d6ihJkiRJkqThbCidlUuSJEmSJGmRM4iSJEmSJEnSIAyiJEmSJEmSNAiDKEmSJEmSJA3CIEqSJEmSJEmDMIiSJEmSJEnSIAyiJEmSJEmSNAiDKEmSJEmSJA3CIEqSJEmSJEmDMIiSJEmSJEnSIAyiJEmSJEmSNAiDKEmSJEmSJA3CIEqSJEmSJEmDMIiSJEmSJEnSIAyiJEmSJEmSNAiDKEmSJEmSJA1is4WugCQtJksPP2Ghq3C7svyIAxa6CpIkSZLWgC2iJEmSJEmSNAiDKEmSJEmSJA3CIEqSJEmSJEmDMIiSJEmSJEnSIAyiJEmSJEmSNAiDKEmSJEmSJA3CIEqSJEmSJEmDMIiSJEmSJEnSIAyiJEmSJEmSNAiDKEmSJEmSJA3CIEqSJEmSJEmDMIiSJEmSJEnSIAyiJEmSJEmSNAiDKEmSJEmSJA3CIEqSJEmSJEmDMIiSJEmSJEnSIAyiJEmSJEmSNAiDKEmSJEmSJA3CIEqSJEmSJEmDMIiSJEmSJEnSIAyiJEmSJEmSNIjNFroCWjtLDz9hoatwu7P8iAPmbdluz2HN57aUJEmSJE1niyhJkiRJkiQNwiBKkiRJkiRJg9jog6gk+yX5dpJlSQ5f6PpIkiRJkiRpso06iEqyKfAuYH9gV+DgJLsubK0kSZIkSZI0yUYdRAF7Acuq6tKq+j/gw8DTFrhOkiRJkiRJmmBjD6J2AC4beb6il0mSJEmSJGkDk6pa6DqstSTPAJ5UVX/Ynz8X2Kuq/nRsusOAw/rT+wHfHrSiGrXkKZrwAAAWHklEQVQdcPVCV0Lrjdtz8XBbLh5uy8XF7bl4uC0XD7fl4uG2XFzcngvv3lW1ZHUTbTZETebRCmCnkec7ApePT1RV7wXeO1SlNF2Ss6tqz4Wuh9YPt+fi4bZcPNyWi4vbc/FwWy4ebsvFw225uLg9Nx4b+615ZwG7JLlPks2BZwHHL3CdJEmSJEmSNMFG3SKqqm5K8ifAScCmwFFVdeECV0uSJEmSJEkTbNRBFEBVnQicuND10Jx5i+Ti4vZcPNyWi4fbcnFxey4ebsvFw225eLgtFxe350Zio+6sXJIkSZIkSRuPjb2PKEmSJEmSJG0kDKK0WknekeTPRp6flORfR56/Lcmfr+d17p7kySPPX5fkFetzHZIkAST5nSSV5P7rsIyjkxzUh/81ya5rMO8+ST7dhw9N8s9rW481lWT7JB8ban0LKcmrk1yY5Lwk5yZ5+Hpc9olJtlnNNMuTbNeHK8nbRsa9Isnr1lNdTk3ir0ZJkjZYBlGai68AjwRIsgmwHfDAkfGPBL68uoWkmetnbnfgyaudSiS5Z5IPJ/nfJBf1g+Ffn6d13ebgNsnSJBfMx7puL5LcMPb81pPQJC9M8rxZ5t0nySMHqOPzklzQT+AumgmFk7whyRNXM+9qT85uL/qJ57+PPN8syVUzAcRaLG+Nwo6xeT+V5IzVTDPI52sDcTBwOu3Xd9dZVf1hVV20Ppa1PiSZ2idoVV1eVQcNWZ+FkOQRwFOAh1bVg4EnApetr+VX1ZOr6sdrMMuNwO/OBFOam9n2mWuxrNEA+Dbfd6PB8hyWs0mSI/t+8vwkZyW5z9rUacKyD1zb7/mNwdruF9f1gvWahNJJ9kxy5FyXvViM/6/1sluPS/v/3vbD12y6SXXWhssgSnPxZXoQRQugLgCuT7JtkjsCDwAuTnJKkq/3nfDT4Nag4uIk7wa+DuyU5IYkb01yTpLPJ9mrBxyXJnlqks2BNwDP7DuHZ/Z17zoy3UsGfQc2UEkCfAI4tap+rap2Bf4KuMdc5l2DYHCDs7HXfy6q6j1V9YFZJtmHlf+bczLbCemU6fcH/gzYt6oeCDwUuK7X7zVV9fnZ5l+Lk7PF7KfAbkm27M9/C/j+2i5sbcOOHgw+FNhm2slS/5zswxp+vjZGSbYCHgW8gB5E9ZPSLyX5RA9f3zPzfdP3YW/r+7tTkiyZsMxbQ/sk+yY5o0//0b4+kuyX5FtJTgd+dw71nLac1/QT3wuSvLfvF2bq8LdJTgNe2k+sj0zylb4fnWm9desFhX5i8Z9JPpvkkiR/N7L+FyT5n77c92XAVlvryb2Aq6vqRoCqurqqLk9rpfTWJF/rj/sCJFmS5OP9vT0ryaN6+VZJ/q0f65yX5Om9fLS10yf7Mc6FSQ6bUp+baJ3qvmx8xCzrvnOSo3rZN0aOtbZMuyB1XpKPAFv28k37dp8JSFZZl261D2v/ffdMYHvgwVX1IOB3gHXe7/Xv4QOBRRtEsfb7xbW+YJ01DKWr6uyq8ryDVY5LD6V97udsTY9Btbgt6pM4rR9VdTlwU5KdaTvpM4CvAo8A9gTOA34G/E5VPRR4HPC2mYNh4H7AB6rqN6rqu8CdacHJHsD1wJtoO57fAd5QVf8HvAb4SFXtXlUf6cu5P/AkYC/gtUnuMN+vfSPwOOCXVfWemYKqOhf4RuYeDE48uVlTGbsqmeTTSfbpwzckeXOSbyY5M8k9evmv9ednpbWuuWFk/r/o5eclef20+q9NXTcWGbnCl+QlaSfE5/UTjqXAC4GXpQW2j05y777dz+t/d+7zHp3k7Um+CPx9P8Fc0sdtkmRZpl+VfxXwiv49QFX9oqreN7Lcg5Lsn+S4kXrvk+S/+vDoydnzet2+mX4FNMkz+knSN5N8ab2/iRuezwAH9OGDgQ/NjMjYFd3+viztJ58n9PfogvRwPrcNO/br/8PfTHLKaurwdOC/gA8z0gJo7HPyEVb9fC3WbXUg8Nmq+h/gmiQP7eV7AS8HHgT8GivDojsDX+/7u9OA105bcP/s/zXwxD792cCfJ9kCeB/w28CjgXvOVsFpy+mj/7mqHlZVu9ECiKeMzLpNVT22qmZuAbsX8Jt9miOmrG532on1g2gXhHZKu+r9N8DetP31Wt/CuIA+R9vn/U+Sdyd57Mi4n1TVXsA/A+/sZf8IvKOqHkb7n5npkuBvgOuq6kH9JPYLE9b1/H6MsyfwkiS/MqVO7wKek2TrsfJp63418IVe/jja9/mdgRcBP+v1eTOwR59+d2CHqtqtByT/Nsv7s9HL9ABvr7QA9hv97/3G5lvK2PddH/WYjAW3U9wLuKKqbgGoqhVVdW1f9sTgOq1Fz5l9n/iJJNv28tEA+ZXAU2nb+dx+zHSbY4H19d4tsNn2i6tsu6z7BeuJoXRf38P6er6ZFkzfJbdtOTctDJ4txF9l/zxtORu6meOU/v+wJ/DBvg22TLJHktPSQviTktyrzzN+UeS3k3y1v+7PZ+U5wSohf9oFkHeMrP+Pkrx9Des8bX2v69tglc9Mkr9Ju1B0cpIPZeWx+Ohx13ZJlvfhpUn+u2/nr6e3rkw7xn532kWJT6fdJTBzEWji+3W7UlU+fKz2AXyQdsJyDPAQ2lWINwF/QTuYvQPtAO484Fzg57QD66XAd8aWdSPc+ouNbwBe3Yc3AX7chw+lHVzPzPO6men684uBHRf6fVnoB/AS2sHqePlmwF378HbAMiB9e9wC7D0y7kvAnfvzVwKvmWV9pwLf7tv4XOAi4IIp2+zTwD59uIDf7sN/B/z1yDQH9+EXAjf04X1pV4rTPxefBh4zXv/F8ABuHnk/zwW+N/M+9s/9K/rw5cAd+/A24+P78/8CDunDzwc+2YeP7u/hpv35a4E/G3mvPz5L/a4Btp4y7mjgoP55+97I5+hfgN/vw8tZeTvvt4Htevnd+t/zaSdKt76uxfoAbgAeDHwM2KJv732AT0/Znhf0z/zTgfeNlG/d/55KOxBcQruae5/R93aWenyeFn78OnDe2PYc/ZyM12dRbivgBOC3+vBLgL/v2+VLI9M8H3hnH74Z2KwP/ypw7sj7d9DYtnkKcDW3/c58Py0gGF3+U0c+B4cy8l3ayyYup497Ou3i0Pm0lgSHj9ThsWPb9zkjz6/vf5dy2+/x0c/aZ2jB1YHAMSPlLxmv48bwADbt2/b1wA/6610O/GoffwfgR334Sm773fx94C7AOcAuE5a9nJXfb68Dvtkf17Fynzs6zcz+7g20cOsVwOtWs+6zad8Lo/uLBwCfBB4/Upev98/ftsD/Av8E7AdsstDbYD1sw9n2mccCv9mHdwYu7sN3ZeX/7BPp+zxm//49Gvgo7RhkV2DZLHXasW/bc4G3Ab8xMq7o/3e0i6wzdT2P/v/ZPwMz3y+nAu8eq8dBI89XORbYmB+sfr84bdsdyqrnCV8B7kg75vgRcIcp69yqr+d/gHePbIfNgUuBh42ue6w+f8vK45tt+jLu3OtzKbB1fx3fpV0snbh/nrachd4e49tmQtmt/yf9s7pnH75Df/+X9OfPBI6a8pnelpXngX8IvK0Pv3Xm/2BkujvTvsPu0Mu+AjxoDes8bX0TPzO0785zaRd27gJcMuU1bwcs78N3Arbow7sAZ/fhg4ATad8j9wSu7WVT36/b08PmcZqrmX6iHkQ7CLqMdqX4J8BRwHNoX7Z7VNUve0K8RZ/3p2PL+mX1/zpaqDBzReKWzN5k88aR4ZvBz+8sAvxtksfQ3uMdWHm73ner6sw+vDftAOvLaQ3YNqe1eJvNc6rqbLj1KuJc+rf5v5HpzqFdUYfWqu7APnws8A99eN/++EZ/vhXti/17Y/VfDH5eVbvPPElyKG0nOO482pWnT9JOOiZ5BCtbbfw7LfSb8dGqurkPHwV8inbl//ms41XyqropyWeB307r9PgA4C/HJns88LGqurrPc00v/zJwdFqLqv9cl3psDKrqvP5/czDt4GQuzgf+IclbaQfD/z02fm9aqPGdvo5rxhcwo18JvC9welVVkpuS7FZVM329jX5Oxi26bZXWUuXxtFtDihZUFG3b1Njk489XVw7tu/jkqjp4bL27r2a+uS5nC9qJ1J5VdVlaZ9dbjEwyvv8d3Y+GySbta6dNu1Hpn+1TgVOTnA8cMjNqdLL+dxPgEVX189FlpO0sp267tJbAT+zz/izJqdx2m4x7Jy04Gv0enm3dT6+qb4+Vj7+G9kKqrk3yEFpr8hcDv0f7zt+YzbbPfCKtVczM6LsmuQstHDgmyS6092muLeo/Wa2V00UzrSgmqaoVaa2sHt8fpyR5RlWdQjsGm2nZ/x/Af6a1gNumqk7r5cfQQq8ZH2G6uRwLbFRWs19ck213QrVWTjcmuZJ23LtiwvpuSLIH7YLM44CPJDmcdnx6RVWd1af7Cdz6/zVjX+CpWdl6eQta6AlwSlVd1+e5CLg3LQSZtH+etpyLZ3l9G7L7AbsBJ/f3a1PgipHxo5/pHWnv+b1o5x3f6eVPZKSVdq1sVfgF4ClJLqYFUuevYd2mrQ8mf2Z+E/jUzPdvegv/1bgD8M99334z7UIffVkf7d8jP0hrcQ6rf79uF7w1T3P1ZdoV2Wuq6ub+RboN7cT3DNqO4soeQj2O9uW7Lq6npdCa3YWsbII/ajQY3B34IZODwZmTm937Y9eqesFa1uUmbvudMnrgPRo+ziVEDPCWkXrdt6reP6H+tycH0G7j2AM4ZzWh7YzRE5Nb37equgz4YZLHAw+ntXqYZtpnbNxHaCc5jwfOqqrrx8ZPPHmrqhfSbjnaCTg3029hWUyOp4WuHxorn/g/VO2WsT1ogdRbkrxmbL5ZT4zHPJN2YPydfsFgKbftoHvq/9ci3VYH0W4dv3dVLa2qnWgHqb8J7JXkPml9Qz2T1pk5tG00c5vOs0fKJzkTeFRW9jt0p7Qfk/gWcJ8kv9anO3jaAlaznJnv2avTbquer07HvwY8Nq1vyM1orbA2Kmm39OwyUrQ7rdUCtO0783fmYszngD8ZmX/3KeXbjq1qa+DaHkLdnxYUT9WPp46j9VE2Y9q6TwL+tAdSJPmNXv4l2n6fJLvRWpjM3NK5SVV9nNbqaua208VqJsCbOXbYoe+L3gh8sdrtq7/N7MHgqLkEtwBU1Y1V9Zmq+gtaa5cDp006h/XOdpyzNscCG4Np+8U12XZzvmDdz2VOrarX0v7Xns7c9qUzYfDMZ2znqpoJj6aF+JOWOdtyNkYBLhx5PQ+qqn1Hxo9+pv+J1prtQcAfs3KbTnuv/pXW4uwPWLsLp9PWB2t+4WX0OG10OS+jnWs9hBaMb97Lpy1rde/X7YJBlObqfFoTxDPHyq7rLRw+COyZ5GzawdC31nF9X6Rd1Rq991ur+gJwxyR/NFOQ5GG0IHAuweC0k5u1sRzYvd8PvROtf5XVOZOVJzSjJ8MnAc/Pys54d0hy97Ws10avnwjvVFVfpLU02obWSmw8sP0KK9/H5zD7CfK/0q7OHjdLCxiAtwB/l+SevS53zOS+F06lneT8EZOv5p4C/N5MeJHkbv3vr1XVV6vqNbRbjxZ1v1/dUbT+8Mav6i2nnyim9VN0nz68Pa3/l/+gHaiPn0yeQQsJZqa/2yzrPhjYr4cuS2knM9N+Ke42n69Fuq0Opv3gw6iP0wKmM2i3nl9AC6dmpvsp8MAk59CC1zdMW3hVXUU7gP5QkvNo33n3r6pfAIcBJ6R1Vv7dsVkPTbJi5kG7dWDScn5M62vqfFrriLPW+B2Yg6r6Pu3k+qu0Wzsvov9owUZkK1rLiov6e7gr7dYMaPvRrwIvZWXn4S+hHdec11s3vLCXvwnYNr2/NFqLilGfBTbr63gjtz1umuZttGOsGdPW/Ubalffz0jqYf2Mv/xdgq77Ov6QFh9BaQ5+a5FzaLV6vmkNdNmbTArytWdkB9qFT5l3rC6BJHtq/p2f21w9m5f/0KsF1bzVzbVb2RfVcWn9zs9ZrlmOBxWDafnHatluX7TUtlP4WsH0/jiatf6jxMGtaGDzNtP3zmi5nQzS6Db4NLEnrCJ4kd0jywCnzjW7TQ0bKJ4b8VfVV2vHGs1k1qJyLaeub5nRaC/8t+nnIASPjlrPy4uzohZ+tWdlP3HNpLZxmlvX0fm50D9ptnrBm79eitVhSdM2zfqJ617GyQ0eGr6a1jppkt7H5thoZft2kcf0K4cNmqc9u08bdnvRba34HeGdvVvwL2pfk64AjezB4LlOCwaq6Kq1Z+4fSfgERWouH/1mL6nyZdrJ2Pu3E7etzmOfPgP9I8nJaPy0zv8b2uSQPAM7o++gbgN+nXa24PdqU9j5tTbuK8o6q+nFvLvyxtE4u/5R28nJUkr8ArqJdPZrmeNqVpVmvLlXViX3n+fl+wFS0A8bx6W5O68zzUCbs6KvqwiRvBk5LcjPttstDaZ2w7tJf1ym0PlUWtapaQeuMeNzHgef1k8azWPl/+CDa+3QL8Etax8Sjy7sq7Ze5/rOfqFzJyttfb5V268POjJwYV9V3kvwkk3+6evzz9bLFtq2qap8JZUf2E/pXVNXECyFV9Te0FiajZYdOWm5VfYEJ+7Oq+iwTOv2uqqNpocG4FVOW89e07+3x8n3Gnh869nxmf7ucvp8eX3dVjXZ8fmxVvbefmH2CdtKw0aiqc5jwq2h9H/Ouqnr92PRXs7Kl1Gj5DUz+jls68nT/KXVYOjI8eiz0Q1ofI6tb989pV/QnlU8LlBd7K6hRLwHe1f9/N6O1FHsh7Tb1Y5L8OZM7l4dVv+/WxN2B940cR32N1m8q3Da4vo6V2/UQ4D1J7kTrW2ja/vrDfdkvoW3j948fC6xhXTdIs+wXp227LwKH9/3lW9ZwdVsB/5T2C7I30fpRPayq/q9f/P6ntF/x+zntdrFRb6TdTntePyZazm1/IGL8dU3bP6/RchbInfqFkBnjnYQfTfsM/5x2DngQ7dxja9r/3ztprerHvQ74aJLv045HZn699020/98LaMf7r2dlNwDHAbtXv11vDes8bX0TVdVZSY6nHeN8l9Y338yFl38AjkvyXG77eXw38PEkz6B9NmdagH0ceALtvOh/aBdzruuftbm+X4vWTMddkjS4fgD28x6oPYvWcflG8cshG7u0X/14R1U9erUTS7czaf38vGIsiJkZd8NoiHB7keQfaCdlW9BCqJfWIjiITLtFdc8e/kjr1e31+0Jan/qFzndU63dtiPVtVa0vsTvRAu3DqmouF9hnW9av0ELqR1XVD9ZnfTdWBlGSFkxvlv7PtCt7P6b95PWyha3V4tdbz72I1vH8bLfvSZKktWQQJa293mrta8A3q+oZA673WNrt21vQfjF2TVvdjS7rVNpttJsDf9dbHguDKEkTJPkEqzZdfWVVnbQQ9dH8S/JqYHwn/9GqevNC1EfrJskf0Pq7GfXlqnrxQtRHkjZ2SR5E+0XaUTdW1aRbm7XAeguUSS1onlBVPxq6Plo/3K6Lh0GUJEmSJEmSBuGv5kmSJEmSJGkQBlGSJEmSJEkahEGUJEmSJEmSBmEQJUmSJEmSpEEYREmSJEmSJGkQ/x9gMivsbHX31wAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# dict sort by value python: https://stackoverflow.com/a/613218/4084039\n",
+ "cat_dict = dict(my_counter)\n",
+ "sorted_cat_dict = dict(sorted(cat_dict.items(), key=lambda kv: kv[1]))\n",
+ "\n",
+ "\n",
+ "ind = np.arange(len(sorted_cat_dict))\n",
+ "plt.figure(figsize=(20,5))\n",
+ "p1 = plt.bar(ind, list(sorted_cat_dict.values()))\n",
+ "\n",
+ "plt.ylabel('Projects')\n",
+ "plt.title('% of projects aproved state wise')\n",
+ "plt.xticks(ind, list(sorted_cat_dict.keys()))\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "-atwZbVFoc4v",
+ "outputId": "49993663-51c3-4578-bd3c-73551f00a2aa",
+ "scrolled": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Warmth : 1388\n",
+ "Care_Hunger : 1388\n",
+ "History_Civics : 5914\n",
+ "Music_Arts : 10293\n",
+ "AppliedLearning : 12135\n",
+ "SpecialNeeds : 13642\n",
+ "Health_Sports : 14223\n",
+ "Math_Science : 41421\n",
+ "Literacy_Language : 52239\n"
+ ]
+ }
+ ],
+ "source": [
+ "for i, j in sorted_cat_dict.items():\n",
+ " print(\"{:20} :{:10}\".format(i,j))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "sk6rX2awoc5y"
+ },
+ "source": [
+ "### 1.2.5 Univariate Analysis: project_subject_subcategories"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "5ikIuYryoc5z"
+ },
+ "outputs": [],
+ "source": [
+ "sub_catogories = list(project_data['project_subject_subcategories'].values)\n",
+ "# remove special characters from list of strings python: https://stackoverflow.com/a/47301924/4084039\n",
+ "\n",
+ "# https://www.geeksforgeeks.org/removing-stop-words-nltk-python/\n",
+ "# https://stackoverflow.com/questions/23669024/how-to-strip-a-specific-word-from-a-string\n",
+ "# https://stackoverflow.com/questions/8270092/remove-all-whitespace-in-a-string-in-python\n",
+ "\n",
+ "sub_cat_list = []\n",
+ "for i in sub_catogories:\n",
+ " temp = \"\"\n",
+ " # consider we have text like this \"Math & Science, Warmth, Care & Hunger\"\n",
+ " for j in i.split(','): # it will split it in three parts [\"Math & Science\", \"Warmth\", \"Care & Hunger\"]\n",
+ " if 'The' in j.split(): # this will split each of the catogory based on space \"Math & Science\"=> \"Math\",\"&\", \"Science\"\n",
+ " j=j.replace('The','') # if we have the words \"The\" we are going to replace it with ''(i.e removing 'The')\n",
+ " j = j.replace(' ','') # we are placeing all the ' '(space) with ''(empty) ex:\"Math & Science\"=>\"Math&Science\"\n",
+ " temp +=j.strip()+\" \"#\" abc \".strip() will return \"abc\", remove the trailing spaces\n",
+ " temp = temp.replace('&','_')\n",
+ " sub_cat_list.append(temp.strip())"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "6YN38eProc52",
+ "outputId": "e28be892-53ef-482e-8cf2-6020343ef2fd"
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " Unnamed: 0 \n",
+ " id \n",
+ " teacher_id \n",
+ " teacher_prefix \n",
+ " school_state \n",
+ " project_submitted_datetime \n",
+ " project_grade_category \n",
+ " project_title \n",
+ " project_essay_1 \n",
+ " project_essay_2 \n",
+ " project_essay_3 \n",
+ " project_essay_4 \n",
+ " project_resource_summary \n",
+ " teacher_number_of_previously_posted_projects \n",
+ " project_is_approved \n",
+ " clean_categories \n",
+ " clean_subcategories \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 160221 \n",
+ " p253737 \n",
+ " c90749f5d961ff158d4b4d1e7dc665fc \n",
+ " Mrs. \n",
+ " IN \n",
+ " 2016-12-05 13:43:57 \n",
+ " Grades PreK-2 \n",
+ " Educational Support for English Learners at Home \n",
+ " My students are English learners that are work... \n",
+ " \\\"The limits of your language are the limits o... \n",
+ " NaN \n",
+ " NaN \n",
+ " My students need opportunities to practice beg... \n",
+ " 0 \n",
+ " 0 \n",
+ " Literacy_Language \n",
+ " ESL Literacy \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 140945 \n",
+ " p258326 \n",
+ " 897464ce9ddc600bced1151f324dd63a \n",
+ " Mr. \n",
+ " FL \n",
+ " 2016-10-25 09:22:10 \n",
+ " Grades 6-8 \n",
+ " Wanted: Projector for Hungry Learners \n",
+ " Our students arrive to our school eager to lea... \n",
+ " The projector we need for our school is very c... \n",
+ " NaN \n",
+ " NaN \n",
+ " My students need a projector to help with view... \n",
+ " 7 \n",
+ " 1 \n",
+ " History_Civics Health_Sports \n",
+ " Civics_Government TeamSports \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Unnamed: 0 id teacher_id teacher_prefix \\\n",
+ "0 160221 p253737 c90749f5d961ff158d4b4d1e7dc665fc Mrs. \n",
+ "1 140945 p258326 897464ce9ddc600bced1151f324dd63a Mr. \n",
+ "\n",
+ " school_state project_submitted_datetime project_grade_category \\\n",
+ "0 IN 2016-12-05 13:43:57 Grades PreK-2 \n",
+ "1 FL 2016-10-25 09:22:10 Grades 6-8 \n",
+ "\n",
+ " project_title \\\n",
+ "0 Educational Support for English Learners at Home \n",
+ "1 Wanted: Projector for Hungry Learners \n",
+ "\n",
+ " project_essay_1 \\\n",
+ "0 My students are English learners that are work... \n",
+ "1 Our students arrive to our school eager to lea... \n",
+ "\n",
+ " project_essay_2 project_essay_3 \\\n",
+ "0 \\\"The limits of your language are the limits o... NaN \n",
+ "1 The projector we need for our school is very c... NaN \n",
+ "\n",
+ " project_essay_4 project_resource_summary \\\n",
+ "0 NaN My students need opportunities to practice beg... \n",
+ "1 NaN My students need a projector to help with view... \n",
+ "\n",
+ " teacher_number_of_previously_posted_projects project_is_approved \\\n",
+ "0 0 0 \n",
+ "1 7 1 \n",
+ "\n",
+ " clean_categories clean_subcategories \n",
+ "0 Literacy_Language ESL Literacy \n",
+ "1 History_Civics Health_Sports Civics_Government TeamSports "
+ ]
+ },
+ "execution_count": 20,
+ "metadata": {
+ "tags": []
+ },
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "project_data['clean_subcategories'] = sub_cat_list\n",
+ "project_data.drop(['project_subject_subcategories'], axis=1, inplace=True)\n",
+ "project_data.head(2)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "nZBLRgNGoc55",
+ "outputId": "835ebf56-cb95-4a00-e3f9-721b6e2596b3"
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABLkAAAFACAYAAABQnq67AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3XmcXlV9+PHPl0SM7FtEIdaklSqLBDFs8gNjcQFBoRYqYFWs1SK1olVKcIOqaFwRi1sqCFp2UaABFxDZZJEgYQ0hCQwkbCYkhITsyfn9cc7NczPMJBMyT2Zu5vN+veY1z3OXc7/n3HO379x7J1JKSJIkSZIkSU22UV8HIEmSJEmSJK0rk1ySJEmSJElqPJNckiRJkiRJajyTXJIkSZIkSWo8k1ySJEmSJElqPJNckiRJkiRJajyTXJIkqddFxFciYlZEPLUelvW+iPhdu5ezIYqIFBGv6es4ekNEHBARk/s6DkmS1HdMckmSNEBFxHcjYk5E3BoRO9aGvy8izlyHcl8FfBrYJaX0it6IdXVSSuenlN6+LmVExPCS8BncW3FtqCLiuIi4eS2mXy9tm1K6KaX02nYuQ5Ik9W8muSRJGoAiYm/gjcArgJuBU8rwLYHPAF9ch+JfDTyTUvrLusZZYhrUG+U0gUk2SZKkF88klyRJA9MI4OaU0mLg98Bfl+GnA99MKc1d3cwRsWVE/CwiZkbEoxHx+YjYKCLeClwD7BAR8yPi3C7mHR0RMyLis+WRxo6IeF9t/LkR8cOIuDoingfe0t3yyvSr3FkUEa+LiGsiYnZETI6If6yNe1lEfLuUMTcibo6IlwE3lkmeLXHvFxGviYgbynSzIuLi1bTHpRHxVJn2xojYtVN9flRimlfKfHVtfIqIf4uIKcCUMuxNEXFHKe+OiHhTGX50REzotOxPRcSV5fNLI+JbEfFYRDxdlvuy2rQnRcSTEfFERPzzGtbxcRHxcIn5kXKH387Aj4D9Sjs9W6Y9NCLuiojnImJ6RJxWK+oFbVvm+eeImFTuJvxtvU06xXFeRHy6fN6xtNcJ5ftrynqOql/V5js5Ih4v8U+OiIPK8I0iYkxETIuIZyLikojYZnVtIUmSmsEklyRJA9P9wAElAXIQcH9EjAJem1K6oAfz/zewJTk59mbgA8CHUkrXAocAT6SUNkspHdfN/K8AtgN2BD4IjIuI+qNmx5ITbpuT7zTrcnmdC42ITclJtguAlwPHAD+oJZ2+Rb6D7U3ANsB/AiuAA8v4rUrctwJfBn4HbA0MKzF059fATmWZfwbO7zT+faW87YCJXYw/AtgH2KUkXK4CvgdsC3wHuCoitgWuBF4bETt1aqtqnX0d+FtgD+A15Pb9Ymmbg8l36b2txPrW7ipT2vF7wCEppc3J7TUxpTQJOB64tbTTVmWW58nrZCvgUOBjEXFEGfeCti3jPgu8BxgK3ARc2E04NwCjy+c3Aw+X31XZN6WUUqf4Xwt8HNirxP8OoKOM/gS5vd8M7ADMAb7fXVtIkqTmMMklSdIAlFK6D7gMuA34K3Jy5EzgExHxiXI30vkRsVXneSM/Pvhe4JSU0ryUUgfwbeD9axnGF1JKi1NKN5CTOv9YG3dFSumPKaUVwNK1WN5hQEdK6acppWUppT+Xeh5Z7vz6Z+DElNLjKaXlKaVbyt1sXVlKfvRyh5TSopRSt++hSimdU2JbDJwGjIz86GflqpTSjWX858h3Qr2qNv5rKaXZKaWF5CTRlJTSz0sdLgQeBN6VUloAXEFO3lGSXa8DroyIAD4CfKqUNQ/4KnB0WcY/Aj9NKd2XUnq+xLk6K4DdIuJlKaUnU0r3r6b+16eU7k0prUgp3UNOWL25u+mBfy11npRSWlbi3KObu7luICdkNyIntb4B7F/GvbmM72w58FJy0vAlKaWOlNK02rI/l1KaUVtfR4aPikqS1HgmuSRJGqBSSmeklEamlN5LTiLdRD43+Cj57q5JwJguZt0O2Bh4tDbsUfJdQz01pyRa6vPvUPs+/UUu79XAPhHxbPVDvouqunNsCDCti/m68p9AAH+KiPu7e7wvIgZFxNjy+NtztO4Y2q6r+qSU5gOz6b6+O7BqXWHV+l5ASXKR7+K6vCS/hgKbAHfW6v6bMrwqt76czstYqayb95Lv2noyIq6KiNd1N31E7BMRf4j8OOncMt923U1PXk9n1uKcTW7rF6zTkpyaT7477QBgPPBEuVuryyRXSmkq8ElyAusvEXFRRFTt/WrgV7VlTyInxbZfTbySJKkBTHJJkjTARcT25LtbvgTsBtyTUloK3AHs3sUss2jd5VT5K+DxtVjs1uWRuPr8T9S+1x8/W5vlTQduSCltVfvZLKX0sVLOIuBvupgvvWBASk+llD6SUtqB3D4/iIjXdDHvscDh5Mf/tgSGl+FRm2blXVsRsRn5Ucnu6vtEp7rCqvX9HbBdROxBTnZVjyrOAhYCu9bqvmVKabMy/sl6HKXMbqWUfptSehvwSvKdZP/TRayVC8iPUr4qpbQl+b1dsZrppwP/2mk9vSyldEs34dwAHAlsnFJ6vHz/APlR0ondxH9BSun/kdsyke9WrJZ9SKdlDynlSpKkBjPJJUmSvgOcWu4GegTYqyRiRpPff7SKlNJy4BLg9IjYvDxi9h/A/67lcv8rIjaOiAPIjxle2tVEa7m88cDfRsT7I+Il5WeviNi5PPp4DvCdiNih3IG1X0S8FJhJfjyvegE/EXFURAwrX+eQEyXLu1jm5sBi4BnynVRf7WKad0bE/4uIjcnv5ro9pTS9i+kAri51ODYiBkfEe4FdSt0oj/f9AvgmOVl2TRm+gpyIOiMiXl7qsGNEvKOUewlwXETsEhGbAKd2s3wiYvuIeHdJRC4m30lV1f1pYFipS70NZqeUFkX+z53H1sa9oG3JSbBTqnelRf7HAkd1Fw85qfVxWi+xvx74d/I/T3jBOomI10bE35V1u4ic/Kum+xG5L726TDs0Ig5fzbIlSVJDmOSSJGkAi4i3kF8I/iuAlNKfyO/Hmg68BRjbzaz/Tn7Z+MPkF8NfQE4g9dRT5MTRE+SXsB+fUnpwNdP3aHnlPVRvJ7+H6omynK+T388E+cXr95LvUptdxm1UEnynA38sj7HtC+wF3B4R88l3KZ2YUnqki9h+Rn7073HgAfJ7zjq7gJxUmk1+8f37upimqsMz5KTfp8mJs/8EDkspzepU3luBS0vSq3IyMBW4rTw6eS3w2lLur4HvAteVaa7rLgbyOeKnyW04m/xY4All3HXkf1zwVERUMZ0AfCki5pFfdH9JrT4vaNvS374OXFTivI/8Dwu6cwM5kVYluW4mJxRv7Gb6l5L77ixyH3g5+UX3kN89dyXwuxLvbeSX/kuSpIaLTv+MRpIkqa0iYjTwvymlYWuatofl/TPwTymlv+uN8npbRJwLzEgpfb6vY5EkSdqQeSeXJElqul3Jj1lKkiRpAPNfJUuSpMaKiMuBnYDVvc9JkiRJA4CPK0qSJEmSJKnxfFxRkiRJkiRJjWeSS5IkSZIkSY23Qb6Ta7vttkvDhw/v6zAkSZIkSZI2GHfeeeeslNLQvo6jOxtkkmv48OFMmDChr8OQJEmSJEnaYETEo30dw+r4uKIkSZIkSZIazySXJEmSJEmSGs8klyRJkiRJkhpvg3wnlyRJkiRJGpiWLl3KjBkzWLRoUV+H0lhDhgxh2LBhvOQlL+nrUNaKSS5JkiRJkrTBmDFjBptvvjnDhw8nIvo6nMZJKfHMM88wY8YMRowY0dfhrBUfV5QkSZIkSRuMRYsWse2225rgepEigm233baRd8KZ5JIkSZIkSRsUE1zrpqntZ5JLkiRJkiSpFz377LP84Ac/WO00HR0dXHDBBWssq6Ojg9122623Qtug+U4uSZIkSZK0wRo+5qpeLa9j7KFrnKZKcp1wwgndl1OSXMcee2xvhjegeSeXJEmSJElSLxozZgzTpk1jjz324KSTTuKkk05it9124/Wvfz0XX3zxymluuukm9thjD8444ww6Ojo44IAD2HPPPdlzzz255ZZb+rgWzeOdXJIkSZIkSb1o7Nix3HfffUycOJHLLruMH/3oR9x9993MmjWLvfbaiwMPPJCxY8fyrW99i/HjxwOwYMECrrnmGoYMGcKUKVM45phjmDBhQh/XpFlMcvVz63pbZU9uo5QkSZIkSe1x8803c8wxxzBo0CC233573vzmN3PHHXewxRZbrDLd0qVL+fjHP87EiRMZNGgQDz30UB9F3FwmuSRJkiRJktokpdSj6c444wy233577r77blasWMGQIUPaHNmGx3dySZIkSZIk9aLNN9+cefPmAXDggQdy8cUXs3z5cmbOnMmNN97I3nvvvco0AHPnzuWVr3wlG220ET//+c9Zvnx5X4XfWN7JJUmSJEmS1Iu23XZb9t9/f3bbbTcOOeQQdt99d0aOHElE8I1vfINXvOIVbLvttgwePJiRI0dy3HHHccIJJ/AP//APXHrppbzlLW9h00037etqNE709La5Jhk1alTaUF7O5ju5JEmSJEnquUmTJrHzzjv3dRiN11U7RsSdKaVRfRTSGvm4oiRJkiRJkhrPJJckSZIkSZIazySXJEmSJEmSGs8klyRJkiRJkhrPJJckSZIkSZIazySXJEmSJEmSGs8klyRJkiRJUsNdfvnlPPDAA2s932abbdaGaPrG4L4OQJIkSZIkqW1O27KXy5vbu+X1kssvv5zDDjuMXXbZpa9D6TPeySVJkiRJktTLjjjiCN74xjey6667Mm7cOAB+85vfsOeeezJy5EgOOuggAObPn8+HPvQhXv/617P77rtz2WWXAfC73/2O/fbbjz333JOjjjqK+fPnAzB8+HBOPvlk9t57b/bee2+mTp3KLbfcwpVXXslJJ53EHnvswbRp05g2bRoHH3wwb3zjGznggAN48MEHAXjkkUfYb7/92GuvvfjCF77QBy3TPt7JJUmSJEmS1MvOOeccttlmGxYuXMhee+3F4Ycfzkc+8hFuvPFGRowYwezZswH48pe/zJZbbsm9994LwJw5c5g1axZf+cpXuPbaa9l00035+te/zne+8x2++MUvArDFFlvwpz/9iZ/97Gd88pOfZPz48bz73e/msMMO48gjjwTgoIMO4kc/+hE77bQTt99+OyeccALXXXcdJ554Ih/72Mf4wAc+wPe///2+aZw2McklSZIkSZLUy773ve/xq1/9CoDp06czbtw4DjzwQEaMGAHANttsA8C1117LRRddtHK+rbfemvHjx/PAAw+w//77A7BkyRL222+/ldMcc8wxK39/6lOfesGy58+fzy233MJRRx21ctjixYsB+OMf/7jybrH3v//9nHzyyb1W575mkkuSJEmSJKkXXX/99Vx77bXceuutbLLJJowePZqRI0cyefLkF0ybUiIiXjDsbW97GxdeeGGX5den7zwvwIoVK9hqq62YOHHiGuffkPhOLkmSJEmSpF40d+5ctt56azbZZBMefPBBbrvtNhYvXswNN9zAI488ArDyccW3v/3tnHXWWSvnnTNnDvvuuy9//OMfmTp1KgALFizgoYceWjnNxRdfvPJ3dYfX5ptvzrx584D8OOOIESO49NJLgZw0u/vuuwHYf//9V945dv7557etDfqCSS5JkiRJkqRedPDBB7Ns2TJ23313vvCFL7DvvvsydOhQxo0bx3ve8x5GjhzJe9/7XgA+//nPM2fOHHbbbTdGjhzJH/7wB4YOHcq5557LMcccw+67786+++678sXxkB893GeffTjzzDM544wzADj66KP55je/yRve8AamTZvG+eefz9lnn83IkSPZddddueKKKwA488wz+f73v89ee+3F3Ln98z9FvliRUurrGHrdqFGj0oQJE/o6jF4xfMxV6zR/x9hDeykSSZIkSZL6v0mTJrHzzjv3dRhtM3z4cCZMmMB2223X1uV01Y4RcWdKaVRbF7wOvJNLkiRJkiRJjeeL5yVJkiRJkhqio6Ojr0Pot7yTS5IkSZIkSY1nkkuSJEmSJG1QNsT3j69PTW0/k1ySJEmSJGmDMWTIEJ555pnGJmr6WkqJZ555hiFDhvR1KGvNd3JJkiRJkqQNxrBhw5gxYwYzZ87s61Aaa8iQIQwbNqyvw1hrJrkkSZIkSdIG4yUveQkjRozo6zDUB3xcUZIkSZIkSY1nkkuSJEmSJEmNZ5JLkiRJkiRJjec7ufq5jiHHrmMJc3slDkmSJEmSpP7MO7kkSZIkSZLUeN7JNcAMH3PVOpfRMfbQXohEkiRJkiSp93gnlyRJkiRJkhrPJJckSZIkSZIazySXJEmSJEmSGs8klyRJkiRJkhqvrUmuiPhURNwfEfdFxIURMSQiRkTE7RExJSIujoiNy7QvLd+nlvHDa+WcUoZPjoh3tDNmSZIkSZIkNU/bklwRsSPwCWBUSmk3YBBwNPB14IyU0k7AHODDZZYPA3NSSq8BzijTERG7lPl2BQ4GfhARg9oVtyRJkiRJkpqn3Y8rDgZeFhGDgU2AJ4G/A35Rxp8HHFE+H16+U8YfFBFRhl+UUlqcUnoEmArs3ea4JUmSJEmS1CBtS3KllB4HvgU8Rk5uzQXuBJ5NKS0rk80AdiyfdwSml3mXlem3rQ/vYh5JkiRJkiSprY8rbk2+C2sEsAOwKXBIF5OmapZuxnU3vPPyPhoREyJiwsyZM19c0JIkSZIkSWqkdj6u+FbgkZTSzJTSUuCXwJuArcrjiwDDgCfK5xnAqwDK+C2B2fXhXcyzUkppXEppVEpp1NChQ9tRH0mSJEmSJPVT7UxyPQbsGxGblHdrHQQ8APwBOLJM80HgivL5yvKdMv66lFIqw48u/31xBLAT8Kc2xi1JkiRJkqSGGbzmSV6clNLtEfEL4M/AMuAuYBxwFXBRRHylDDu7zHI28POImEq+g+voUs79EXEJOUG2DPi3lNLydsUtSZIkSZKk5mlbkgsgpXQqcGqnwQ/TxX9HTCktAo7qppzTgdN7PUBJkiRJkiRtENr5uKIkSZIkSZK0XpjkkiRJkiRJUuOZ5JIkSZIkSVLjmeSSJEmSJElS45nkkiRJkiRJUuOZ5JIkSZIkSVLjmeSSJEmSJElS45nkkiRJkiRJUuOZ5JIkSZIkSVLjmeSSJEmSJElS45nkkiRJkiRJUuOZ5JIkSZIkSVLjmeSSJEmSJElS45nkkiRJkiRJUuOZ5JIkSZIkSVLjDe7rALR+dQw5thdKmdsLZUiSJEmSJPUe7+SSJEmSJElS45nkkiRJkiRJUuOZ5JIkSZIkSVLjmeSSJEmSJElS45nkkiRJkiRJUuOZ5JIkSZIkSVLjmeSSJEmSJElS45nkkiRJkiRJUuOZ5JIkSZIkSVLjmeSSJEmSJElS45nkkiRJkiRJUuOZ5JIkSZIkSVLjmeSSJEmSJElS45nkkiRJkiRJUuOZ5JIkSZIkSVLjmeSSJEmSJElS45nkkiRJkiRJUuOZ5JIkSZIkSVLjmeSSJEmSJElS45nkkiRJkiRJUuOZ5JIkSZIkSVLjmeSSJEmSJElS45nkkiRJkiRJUuOZ5JIkSZIkSVLjmeSSJEmSJElS45nkkiRJkiRJUuOZ5JIkSZIkSVLjmeSSJEmSJElS45nkkiRJkiRJUuO1NckVEVtFxC8i4sGImBQR+0XENhFxTURMKb+3LtNGRHwvIqZGxD0RsWetnA+W6adExAfbGbMkSZIkSZKap913cp0J/Cal9DpgJDAJGAP8PqW0E/D78h3gEGCn8vNR4IcAEbENcCqwD7A3cGqVGJMkSZIkSZKgjUmuiNgCOBA4GyCltCSl9CxwOHBemew84Ijy+XDgZym7DdgqIl4JvAO4JqU0O6U0B7gGOLhdcUuSJEmSJKl52nkn118DM4GfRsRdEfGTiNgU2D6l9CRA+f3yMv2OwPTa/DPKsO6GS5IkSZIkSUB7k1yDgT2BH6aU3gA8T+vRxK5EF8PSaoavOnPERyNiQkRMmDlz5ouJV5IkSZIkSQ3VziTXDGBGSun28v0X5KTX0+UxRMrvv9Smf1Vt/mHAE6sZvoqU0riU0qiU0qihQ4f2akUkSZIkSZLUvw1uV8EppaciYnpEvDalNBk4CHig/HwQGFt+X1FmuRL4eERcRH7J/NyU0pMR8Vvgq7WXzb8dOKVdcWvtDR9z1TrN3zH20F6KRJIkSZIkDVRtS3IV/w6cHxEbAw8DHyLfPXZJRHwYeAw4qkx7NfBOYCqwoExLSml2RHwZuKNM96WU0uw2xy1JkiRJkqQGaWuSK6U0ERjVxaiDupg2Af/WTTnnAOf0bnSSJEmSJEnaULTznVySJEmSJEnSemGSS5IkSZIkSY1nkkuSJEmSJEmNZ5JLkiRJkiRJjWeSS5IkSZIkSY231kmuiNg6InZvRzCSJEmSJEnSi9GjJFdEXB8RW0TENsDdwE8j4jvtDU2SJEmSJEnqmcE9nG7LlNJzEfEvwE9TSqdGxD3tDEwD1/AxV63T/B1jD+2lSCRJkiRJUlP09HHFwRHxSuAfgfFtjEeSJEmSJElaaz1Ncv0X8Ftgakrpjoj4a2BK+8KSJEmSJEmSeq6njys+mVJa+bL5lNLDvpNLkiRJkiRJ/UVP7+T67x4OkyRJkiRJkta71d7JFRH7AW8ChkbEf9RGbQEMamdgUm/yZfaSJEmSJG3Y1vS44sbAZmW6zWvDnwOObFdQkiRJkiRJ0tpYbZIrpXQDcENEnJtSenQ9xSRJkiRJkiStlZ6+k+snEbFV9SUito6I37YpJkmSJEmSJGmt9DTJtV1K6dnqS0ppDvDy9oQkSZIkSZIkrZ2eJrlWRMRfVV8i4tVAak9IkiRJkiRJ0tpZ04vnK58Dbo6IG8r3A4GPtickSZIkSZIkae30KMmVUvpNROwJ7AsE8KmU0qy2RqbG6Bhy7DqWMLdX4pAkSZIkSQNXjx5XjIgADgb2TCn9H7BJROzd1sgkSZIkSZKkHurpO7l+AOwHHFO+zwO+35aIJEmSJEmSpLXU03dy7ZNS2jMi7oL83xUjYuM2xiVJkiRJkiT1WE/v5FoaEYMo/1ExIoYCK9oWlSRJkiRJkrQWeprk+h7wK+DlEXE6cDPw1bZFJUmSJEmSJK2Fnv53xfMj4k7gIPJ/VzwipTSprZFJkiRJkiRJPbTaJFdEbJFSei4itgH+AlxYG7c18FxKaXmbY5QkSZIkSZJWa013cl0AHAbcSX4fV3Qav1lE/E9K6bPtCE4DU8eQY9exhLm9EockSZIkSWqO1Sa5UkqHld8juhpfXkZ/H2CSS5IkSZIkSX2mR+/kAoiIdwMHlq/Xp5TGl0cVd25LZJIkSZIkSVIP9ei/K0bEWOBE4IHyc2JEfK2dgUmSJEmSJEk91dM7ud4J7JFSWgEQEecBdwGntCswSZIkSZIkqad6dCdXsVXt85a9HYgkSZIkSZL0YvX0Tq6vAXdFxB/I/2HxQLyLS5IkSZIkSf3EGpNcERHAzcC+wF7kJNfJKaWn2hybJEmSJEmS1CNrTHKllFJEXJ5SeiNw5XqISZIkSZIkSVorPX1c8baI2CuldEdbo5EaYviYq9Zp/o6xh/ZSJJIkSZIkCXqe5HoLcHxEdADPkx9ZTCml3dsVmCRJkiRJktRTPU1yHdLWKCRJkiRJkqR1sNokV0QMAY4HXgPcC5ydUlq2PgKTelPHkGPXsYS5vRKHJEmSJElqj43WMP48YBQ5wXUI8O22RyRJkiRJkiStpTU9rrhLSun1ABFxNvCn9ockSZIkSZIkrZ013cm1tPrgY4qSJEmSJEnqr9Z0J9fIiHiufA7gZeV79d8Vt2hrdJIkSZIkSVIPrDbJlVIatL4CkQay4WOuWucyOsYe2guRSJIkSZLUTGt6XFGSJEmSJEnq99qe5IqIQRFxV0SML99HRMTtETElIi6OiI3L8JeW71PL+OG1Mk4pwydHxDvaHbMkSZIkSZKaZX3cyXUiMKn2/evAGSmlnYA5wIfL8A8Dc1JKrwHOKNMREbsARwO7AgcDP4gIH6OUJEmSJEnSSm1NckXEMOBQ4CflewB/B/yiTHIecET5fHj5Thl/UJn+cOCilNLilNIjwFRg73bGLUmSJEmSpGZp951c3wX+E1hRvm8LPJtSWla+zwB2LJ93BKYDlPFzy/Qrh3cxjyRJkiRJktS+JFdEHAb8JaV0Z31wF5OmNYxb3Tz15X00IiZExISZM2eudbySJEmSJElqrnbeybU/8O6I6AAuIj+m+F1gq4gYXKYZBjxRPs8AXgVQxm8JzK4P72KelVJK41JKo1JKo4YOHdr7tZEkSZIkSVK/1bYkV0rplJTSsJTScPKL469LKb0P+ANwZJnsg8AV5fOV5Ttl/HUppVSGH13+++IIYCfgT+2KW5IkSZIkSc0zeM2T9LqTgYsi4ivAXcDZZfjZwM8jYir5Dq6jAVJK90fEJcADwDLg31JKy9d/2JIkSZIkSeqv1kuSK6V0PXB9+fwwXfx3xJTSIuCobuY/HTi9fRFKa6djyLHrWMLcXolDkiRJkiRl7f7vipIkSZIkSVLbmeSSJEmSJElS45nkkiRJkiRJUuOZ5JIkSZIkSVLjmeSSJEmSJElS45nkkiRJkiRJUuMN7usAJLXH8DFXrdP8HWMP7aVIJEmSJElqP+/kkiRJkiRJUuOZ5JIkSZIkSVLjmeSSJEmSJElS4/lOLqkf6BhybC+UMrcXypAkSZIkqZlMcknqEV9kL0mSJEnqz3xcUZIkSZIkSY1nkkuSJEmSJEmNZ5JLkiRJkiRJjWeSS5IkSZIkSY1nkkuSJEmSJEmNZ5JLkiRJkiRJjTe4rwOQ1B4dQ45dxxLm9kockiRJkiStD97JJUmSJEmSpMYzySVJkiRJkqTGM8klSZIkSZKkxjPJJUmSJEmSpMYzySVJkiRJkqTGM8klSZIkSZKkxjPJJUmSJEmSpMYzySVJkiRJkqTGG9zXAUhqho4hx65jCXN7JQ5JkiRJkrrinVySJEmSJElqPJNckiRJkiRJajyTXJIkSZIkSWo8k1ySJEmSJElqPJNckiRJkiRJajyTXJIkSZIkSWo8k1ySJEmSJElqPJNckiRt1bqrAAAgAElEQVRJkiRJarzBfR2ApIFp+Jir1rmMjrGH9kIkkiRJkqQNgUkuSRuMdU2cmTSTJEmSpObycUVJkiRJkiQ1nkkuSZIkSZIkNZ5JLkmSJEmSJDWeSS5JkiRJkiQ1ni+el6Ru+CJ7SZIkSWoOk1yStB71duLMRJwkSZIkZT6uKEmSJEmSpMZrW5IrIl4VEX+IiEkRcX9EnFiGbxMR10TElPJ76zI8IuJ7ETE1Iu6JiD1rZX2wTD8lIj7YrpglSZIkSZLUTO18XHEZ8OmU0p8jYnPgzoi4BjgO+H1KaWxEjAHGACcDhwA7lZ99gB8C+0TENsCpwCgglXKuTCnNaWPskhqoY8ix61jC3F6JQ5IkSZK0/rXtTq6U0pMppT+Xz/OAScCOwOHAeWWy84AjyufDgZ+l7DZgq4h4JfAO4JqU0uyS2LoGOLhdcUuSJEmSJKl51suL5yNiOPAG4HZg+5TSk5ATYRHx8jLZjsD02mwzyrDuhktqsHW/6wq880qSJEmSVGn7i+cjYjPgMuCTKaXnVjdpF8PSaoZ3Xs5HI2JCREyYOXPmiwtWkiRJkiRJjdTWO7ki4iXkBNf5KaVflsFPR8Qry11crwT+UobPAF5Vm30Y8EQZPrrT8Os7LyulNA4YBzBq1KgXJMEkaW35ji9JkiRJao62JbkiIoCzgUkppe/URl0JfBAYW35fURv+8Yi4iPzi+bklEfZb4KvVf2EE3g6c0q64JamdTJxJkiRJUnu0806u/YH3A/dGxMQy7LPk5NYlEfFh4DHgqDLuauCdwFRgAfAhgJTS7Ij4MnBHme5LKaXZbYxbkiRJkiRJDdO2JFdK6Wa6fp8WwEFdTJ+Af+umrHOAc3ovOkmSJEmSJG1I1st/V5QktYePP0qSJElS1vb/rihJkiRJkiS1m0kuSZIkSZIkNZ5JLkmSJEmSJDWeSS5JkiRJkiQ1nkkuSZIkSZIkNZ5JLkmSJEmSJDWeSS5JkiRJkiQ1nkkuSZIkSZIkNZ5JLkmSJEmSJDXe4L4OQJLUfwwfc9U6l9Ex9tBeiESSJEmS1o53ckmSJEmSJKnxTHJJkiRJkiSp8UxySZIkSZIkqfF8J5ckaaWOIcf2QilzV/m2ru/56vyOr94uT5IkSdKGwTu5JEmSJEmS1HgmuSRJkiRJktR4Pq4oSWqrdX8Ecu6aJ1kH6/r4I/hIpSRJktQfmOSSJKmfM2kmSZIkrZmPK0qSJEmSJKnxvJNLktQo/f3xx6bw7jBJkiRtaExySZLUywZiIs6kmSRJkvqajytKkiRJkiSp8byTS5I0oK37XVfQ7juvvDPsxfHuMEmSpIHFJJckSRoQevuRSh/RlCRJ6l9MckmSNAANxLvD+jvvXpMkSVo3JrkkSdI6M2kmSZKkvmaSS5Ik6UVoQmKvvz+i6d1rkiSpN5nkkiRJ/U4T/iGA+ifflSZJ0sBlkkuSJA0ITbjzSv2Pd5tJktQcJrkkSZL6Ae9eGzj622OfJuEkSRsKk1ySJEkbqN6+e63/lffCMrXuvHtNktRUJrkkSZK0wTARJ0nSwGWSS5IkSVqP+l8irnn/6VOSpK6Y5JIkSZK0UhPuXutv7zVrR5km9iRp7ZnkkiRJkqR+rgmJuP5WXjvKNPko9W8muSRJkiS11UB8RFOStP6Z5JIkSZKkXtb/EnvtKLN5ycLernMT7l6TBhKTXJIkSZIGtCa8h6wJmpDYG4j6WyKuqyRcE2JUM5jkkiRJkiTpRWhCYm8g3rHX27zDrjlMckmSJEmSpB5pQtKsCTGqPUxySZIkSZKkPtPfk1I+OtscG/V1AJIkSZIkSdK6MsklSZIkSZKkxjPJJUmSJEmSpMYzySVJkiRJkqTGa0ySKyIOjojJETE1Isb0dTySJEmSJEnqPxqR5IqIQcD3gUOAXYBjImKXvo1KkiRJkiRJ/UUjklzA3sDUlNLDKaUlwEXA4X0ckyRJkiRJkvqJpiS5dgSm177PKMMkSZIkSZIkIqXU1zGsUUQcBbwjpfQv5fv7gb1TSv9em+ajwEfL19cCk9d7oH1jO2BWPy+zv5fXjjL7e3ntKHMgxmid+2eZAzFG69w/yxyIMVrn/llmfy+vHWUOxBitc/8scyDGaJ03bK9OKQ3t6yC6M7ivA+ihGcCrat+HAU/UJ0gpjQPGrc+g+oOImJBSGtWfy+zv5bWjzP5eXjvKHIgxWuf+WeZAjNE6988yB2KM1rl/ltnfy2tHmQMxRuvcP8sciDFaZ/WlpjyueAewU0SMiIiNgaOBK/s4JkmSJEmSJPUTjbiTK6W0LCI+DvwWGASck1K6v4/DkiRJkiRJUj/RiCQXQErpauDqvo6jH2rHI5q9XWZ/L68dZfb38tpR5kCM0Tr3zzIHYozWuX+WORBjtM79s8z+Xl47yhyIMVrn/lnmQIzROqvPNOLF85IkSZIkSdLqNOWdXJIkSZIkSVK3THKto4iY38Ww4yPiA+XzcRGxw7rO00uxdkTETZ2GTYyI+9Yw3/CIOLb2/biIOKsN8aWI+Hnt++CImBkRv4mIE2rDd4iIX9S+7xER76x9Py0iPtPLsX0uIh4rMU6KiH1q4zq3z6iI+N5qyjo3Io4sn38SETdGxFZrWH5HRGwXEaNLDN+OiO0jYnxEPFHaabWP80bElyLirV0M//tS5usi4voS/1r10S7qtMsaYqnq8eHyeXxEvKEMeyAi7i6/X1CniDiiKr/U6bGImBoR90TEfRFx+OqW3VMRsbxsH8+UdT6mDD8lIh6qxXh+GT8uIj5T1tVltXKOjIhzy+eOiNiuNu76iDi1VvYREfG1iDin3sdr069s5xdRn1W2i7J9pfr2X9vmxteG9Xh/1JN139tWs98Yv4b51nm/Udt2JpW+MrFalz2Yd+V+o6zXX0bE79a2Davtp3x+U+mvCyNicUQ81s0825ZYn4qI2RHxeC3+jVezrGMi4vI1xHNcRJwVEfNLmy4odXomIhaV9poYEa/uoh5zy/gFZZq3lu1wWRm3sn1r+433RMTrOpW1sg2rz1Hbf9Wmq7bx6mdcWc5dZZ2euoa6vqDPRMQnyrznl+/XR8TkyPunB0vbbNW5/5Vpt4rasa5ez/L52xFxW+R9z4qIuDoiNoqI70XEksj7ozsiYkSZ/gX7/Ij4amnjzm1Wb4t76+s5IoZFxBURMSUipkXEmRGxcb0OpS1+F6vuY1buO6K1z3+q1hYXlWGr3e6its+vtWm3/70qavvZLtZxj7bPWlmnRcQPI+JNtWGr9KXu1nGncrrdj0bEvpGPKam072lrqtdq4n3Bsbirvr+aeo4vZTxZ+tfdpW4LupnvuMjnZF31tRccryLikxExtXx+wTawriJi08j7mi1rw6r99Ccj4t1r2wdq5XR5ntO5P0brXOYdtWHV/mp+tM7dnizb7H2x+muGLs/d2qnU9V87DTsi8v5nfETc0mlcvT0+u5bLShHxxyjXFdE6hj8XEReuZr49SttUy+1qf7xO23+tnK6OHyuP4eX7as/9e7CM0RFxa6dhgyPi6Yh45Zr6QXRx/FjNtPOr35GPH/dF3u8/FvncYctu5nt3RHw9WucuXbZvRBwW+ThanSf/axm+1udZZb6Vx8FOw190v9MAkFLyp4c/wPwuhi0CPlA+Hwfs0Gn89cCoNZXTafwNwChgNPCmHsRwPHBcdzHUpusAJgKvKt93BmYAs2rT/Bi4tvb934HLgPG1YccBZ5HfkbZV+TmhNn4H4Bdledt1iuHdwJjy+Qhgl3rdgLuAl5XvhwCPAQlYUZvu78uwHwMfKPFcC7wNeCdwGvCZzm3RVTyrWQcr2x7YD7i11Ol+YEpVLnAK8HjVPsC7yP/5c369fiWWvwD/DJwLnA+cCHy3jL+lm7b/XollAbAd8Elgefl+AXAncFup8+5V23dTp18BR9S+TwY+D1wC3AQ8ANxH7nvzge3LMh4uy/kz8GiZdyJwU62sc4Ej19Cmgzu17z3A78rn8WVdLwPmlvKPLHW6pcwzHDi2vixgGLAQeHP5vhkwoje397Lc+8rnlwDzyNvoZ4CXAq8lb+fjyrAO4FFg1zLPkcC5tT74ceCs8v0HwC9ry3yqzHsAXW/rTwA3ls+Pkv/z7Nnk9ys+T94m/6OMvxPYszbvacBnat9PJm9Hi4GPlP7xH6Xtq/48qNTtWOCd3ZXV1b6J3Od/XH6mkbedqcBFa9jfVH2+imE08KZSt51KGz5X6ncreR88B3hZ6RunV3UodVrYuc/X4psKvKdWp9PKfHeX9nye3L8mAqeWcfX+eBt5ezyth31qFLCilDeV3NfHsGqfrtf9o2UdTSFvmzeTt9Ph5P3+BzpNPx34n9ry3rOaWIYDD5byPrOG6ar+f3SJ51218eOB0Z3W+1nkfcjY8vsJ4CLyH9aeB14PbNVpOQvJ2/988r7yfuDe0l4PUDsG1drpKnL//FkP239Q5z7LC/dLVVtuWtr9jd2UdRDwUNV25G3lXPLxYERtuusp5wDAxsC3yfuPqp0G1/rf6WU9L6J1jBlN3kZ/Qt5eTqzFvjtwDLXjLfCpTn1gdFlHV5c2/j15e5xZ2vnXnfZ3g8o6v598nLqXfLyZV9b/IPI+5zngyVKHg4BZ5H3SZ0o7HNmp7keXdXlbbd39qfSHJzuvH+BLwFvL56vJfXsieTuvl7u8DJ9Y4nkaWFLaY3IZ/0Bp90Q+pn2GvC0+Qq3v1pZdteVgYClwO3AOrXOXH9Y+f7fUexT5mD+yto7rdbgeWNDFPvIsWseMycB55P3tcWUdVXWbWr53Pqc6l9qxt/P32vDDgcvL5xPJ+5Kptf3wU6U97irttwJ4ltzvZpe2e12JcSvyvviOMt0kYAJl37iG2M4qPz8BPks5Fnba38wANupi/7Cg9IPp5G3ivjLs6jLfsWXaC4EP1uZ9kLxvOb3e7l2s7+qc9n1VfburT5nuK2XdzCfvyx8p3zvI51Tn1uatzpkXlnX9SVrb3BWU4xSlb3eOsVbOZuR96b3kvv0o8LkyblYpazStfed3aJ3L3kk+Pz2SVc9xRwHXlDZ6D/l4+w5yn1tGPtYcX+o3i7ztV/36AFrH9tHAJuRt5t6yfiaX30+T92uzy7h9yvzHl+GPAj8swz5RpnuOvD/dtFb/fyKfO95PPmecQz4Ozqd2XkLtONTDY0MH8Iay3n9G6zhweGmDs7roA6OBq2qf31Qrb35p7xecc9e+X0btGE0+Pk4n75/OIvfpDvI+ezR5e0zAXtSuucq8e5Q6V8fqlddanaarrp+WkY8DibxfeW0Zfxf5vOq4sszf18ocXcY9Td5ffJjcB58p6//qMt1LyMf8YeV7dZ78pdK2P6y17/a0zrke6FTGWFrnPpPI++GV+9Qu6tajdd3puNj5nOAntK7b/oe8Xd9Vln9qF+XsDdxY1u2DZf5NulnmceTtvupLp7Gac68X80P313mvIO835pc+djXwt7XpVl47lr5UP9/vsi+9iNhOI2/PE8s6fXdv1r3LZbZ7ARvST1cbUH0YrYPTaeSd1JGlQ02mdXL2xrJTuJP83yKrnUBH2ZncTz54zyCfaDxeNuxbyjzLaB3g5pN3kpPJJ1TvIh8Uqgvl7UvZmwE/LeU9ST6J+jD5ZPO/yScJHykb53Pkk84/kw90F5adTJV4+FTZUH8J/KaM+xGtneDbyTvBP5dyXl2r31fLuAnAnqVuTwHHV21Zpnu41O8P5ATMUvKO+KEyz9zShp8AhpSYU5nugdL+95RplgK/r8VwPPnEeiI5KTGIfGCZD3y9tPG15J3btBLL18g7hKfKfKnU78mynhKtZMGM0r4ryrBnS7zVwf068kE5lfKWl/Hb0ToRW1CGTQDeC/wnrYuD28s8p5T2uLWUd1qp41Byn5heyplCPlBsSj6QzSHvsD9Pvmip2nJqWca8sl5T+b6MfAD7dFknqcxTjZtKPpmbU9rw7lLPH5R1UZ2Yzivjjip1eLzM/1xp61+XdbWkzP8P5JOJp8p8l5XlLC3zPVvWxe/LMr5B64R3MnnbuqW04bLy83hps0+XdTe7VtZj5P4xs/yeX1t/z5dyP1fqXq3v58gneKeR+8o4cl9ZWJY1G/gb4F9o9Z0ltE747iJvtwvJB/3za2U/Udr4b2qfl5Vp/0y+qK3W0VLyAXhJ+Ty9LGMZeTv9bll3TwOXky9If0VOMC4vw2eQt4sJJe7J5IugX5L79ZOlbe4vsc4k9+m/lGW9t7TZ9bQuPr9dpnma1jZ4ODC5ts+8nXyhNKh8v7CUNZpyAlLa9yQgaO1bHivTv7rE91VKMrHEcHKZ/6TSJreQ9wlVjBuT1/nyWvynkbfBKeTtfgo56XYf+cR6Enn9/7jEdUhZB0tKPa8ln/BMLOtpUWmn2eQ+dH9ZXiL36bnkPrS41OkP5G1mIrnf3V2b/vnSjtX2+kT5/nSZfnaJeUGp+2hy37qE3OevKut4ObnP3EE+gX6WvH0vLjHPIvf/ReRttrrYXUZe19V+bQm5bzxJq88uoXU8WFSGzSptvohWIn05JdEJfJPWCXe9P88jH8MW1IYvIW9HK0qsK2rxLC91qNqriufh8vnSMs+cEktV3gry/vXVZXy1T5hJ3maWlDb/S4mruvB/jta+qKr30k7r6wlyIqBqv+Wlvd5MK6FX1eG5WjxV/DNpJVtX0OpPVXIokbfXGaWd55b2nVGmXVjKXF7Kr45d1TKeL+XU221Z+T61FkcVY3U87Rxnvd7Ly/hqv7qYVr/8YZlmAXn/XF3YVMNuB/6P3F8Wlvk2I/eRap1MJG/TM8jH6+oibQp5n3Yr+aJ+cYnr9PL5kdIm1T7yltImVd0eI1+cv6s2rDpmLC8/1bo+oMRxL61jwyLydjaH3EfPL2XMJ2/3l9baaBawBfAx8nnFWaWcxcDPy/jqj0vV8XNmWf5SYGjZdqrviby9DCVv09XxttoH7U/et81j1e2kWp9VUnBZib3atqrt8CPkY8EK8vnRcvL2UO1LlpOPF8+SL/b+VL4/Qd63TCRf2D1UljO9lP1Qmac6rj1D3tfOLjFOIf/R5YayHlJp3+vKeq72A8+SzwVHk/vUB2j9IeTn5Iu75eTkzoPkc8CF5GPhA7TOH58inwseV6v/k2V9HF7a/EFaf7CZQStJWJ33PFzW9SPkY/cztI6l88j9oVpv19FK0M4uw+5k1f53F/ma4amy3N+Szy8fK+WtKDH+H62k1vJSv+pa4u4yTbVPfoh8fnZPKfPOMu31Zf6byX3inhLTnFLHTUpMx5V2rhJ0Pyt1XFLa6q5aHNeVdTq+lHV3Kfe+Eu8y8nnCcuCP5HV+R1nPj5OPuT8lb9PV/iSRt/WnydtNta9PpR1uK8OXkvtpFec/0Tr3/zG5j/xXWfbMUsbttM7Bnydf3D9fxs8r6/yZsp6/Su47VVs/U35mAX9V1vW8Wll/Ke09ndw/5pdlTiOfo7+vxFft488iXyctKdM/WNbhpFLHhbT2G78v62Vu+T6RvN+cX8ZVidhptLa55aVdFpPPuw4g99kHyMeo35KPjdWx6WnyfrPa3y0p9Uu0rkcfLev3xyW+G0tbfaJ2zvcrWonSn5dpP0s+x7+D3Df2L21yHvDSMt/fA3d2cQ1+Pfm6eyyt7el88jla53U+qHateR65n/0/4Iu1ZY8jn2sOpnXMvZtW8voqWvuD7cs6OKl8D+AfKdfe3cR6GmuR5KL2R7ge5ilOAr5RPm9L3r6vIu8zjyfvl19BTmQd0NUyeOEfAYJOf3R4EfmTwayahN659IPOf8xYq/qucbntSAZtqD90neRawgsTWk+R/zr/RvIOZRJ5h/Eq8k5iOXkH+UDZAN9F3tHMJ18o/ZH8V8+nyDv6xeQdw7ll3vvLspeT/6L6v+Qd+m2seuB/ssQzn7yDWkjeedxO3vkso3VQrf6iP68s8/3kE+jHyBdf1YXKb2jtoB4FdizxLSPv6KaXzludrIwnXwwtJO/kr6b1V8nqQLSCnLhbSitpc1tp27G0DmQ3kZNyU2mdTM8q01cn3StKXatyq9+vKdMvJO+0VpTfT9M60a7ukJpT6jSH1olJdVF0C62TkMW0/rJSnTQuKfVMteGJVnLqVloXXtW4pWUZz9O68KnG/brUcQX5ZK9ebv1io7oD6k9lvd9Cvth9jnyQm13qOomcUFtWhi0py51C6wTimtoy5pH7xbllmkQ+GFcXcU8C36KVLFlc2nA5rb+2LqDVJ79OPlmqTsDnk08cZpRpqxO3v5RpO8o0F9K6aJhNvgg4jtwHqwvI58nJrmvJFzfLaJ1cVH3wKlp94gZy/6wuoJ6gddfJ0FJmR5l+aYn3FeSERHWAHwOcSetCZBH5RGf7Uqd7yvfnyrBnyQfgs8gJ4Wo9LiSfyM0j9+/q4n5aieefgENr9awucpeUsq8jn5xW88wpP1VS5JFa+1YXTNX2Ul34rGDVE+zqZPmp8lP11Xp7LChlVxchy8l9ffsy7/LSBj+hdRKzDHhLafuqz1d99vEy7Bdl3t/QuriskrDVHX/Pl/as4riGvO98ntbJ5T1lvmtqy1pO7kOLKHdWlPVc3TVa7XeWki+Ynif3i2dobZePlPolVt0m64mXKpEwr8RZn/4S8kVXfdpqn1Rth4tq7Tyv1K36y3p199rc2jIfqa3X6vfyMt3ztP7iWk/EVBdc9YvwRKs/PFNr+5fT2jdUye/rSyxTyceaarnVxVz9QrjqP1X7TaN1cTKtU1tU08+rDavmXVFbzkJaF+UzyMexqu0mkbfP6gJ2Gq3E1FLysXMFuS8sr5Vxd5n3UVr79ZnkY0+1TqbTSnAsLeUvIu+v55X63VPGryBvw8eX+j5Qq8tjpU2r/dpdtO6aqe74u6J8nlxro2qa+eQkdv1Cvdru3kLrwvY2Wv1qea38JbUYU6ef6g66avxztXnqCfn6OlrUabpqeb+lda5xJ60LvOtq6/axMv5x8vY3i1X3hcvJF7G/pnXuUK2fa0usVSL0+TL/pDJv/Y9RS2tlzi7r9dky7920zhum1uarlrOCfB5ST67Wt5l621Y/D9HajqpxVVJsaa3c+nz184lE3s5n1ZY1s7b8aluYV5u+Ou5V2/+PavVaUpadyP2yWv5iWseTqoz6vqQ+rN5Hqu2w83ZaT36mWrnLO82/pLRPFd8Ccv86p4yr/ohQ9a/Ty3QzyX2hKqc6X6u2i+Xkc60qxsm0jsX1fdJN5G392Vr7VHFW+97qHLdazzNpnUdU5c8jnyNV81f7zQ5yn66v4+oPnYl8blL1/SopXbVddfxYwqrne9NoncPPL+VXbVT1iRW0+nm9vefT+oNlVZ8lnaattv2qz1XbW31bqK/3+nGnfm6xkNYfXJ8gH0+rfcRTtemqdVvFsaQ27NayvGdp9dUl5H1alZSv4qn+CPlYrdxqO69/r+Z5lFZfrcqt+uFcWv29ShDX/9BT9ZVFpW5VLAvJfareb5eQr+Gq87FzaZ13zSaf/0xg1ePZZFrJ3GnkO8kT+dyxfpyszreXsGp9H6t9rravzvv5ztcqndtoaW0Z9fOJxbSus6rpq/pexarbeHX+trA2fZWgq7bTxbQSR9WdpPXjwmxyf6/ObasE5rQy7/O1df+N8vmhWp2eK+toDPl6pepbC8jnpB8nXw9U+8Mp5MRlfXu9hHxuO6PMN418jKiu36rj+FTyNfOfafWb6vqi+kPCTPJNL88CXyz1/v/tnXvUX1V55z8nJCGBcFXuCsjFOl6WSGspMzoygtp2ZBgrXbjGVmMtCnRsVRaUSqfSizAsZ6QMFhFBwIoVQ6FgpFykBIEo9wC5kEAuXJK8ud/eJO99zx/f59tn/17eJJALED3PWr/1O7/zO2efvZ/93Pezn3NKjPNRRJc3oIXoWxGtLyYXXT4f95wT/X8S+Os49x+B++P4ZBTInRX4ewswtwpkTUI++Uoyg/zjgfMV8fvO6M91yGdZGp/lyM45FcU67o3zxsVtgcML47+zeeluki5kV16L/J97UNB7dyT/H0b0cErV51uQXzCbETLr2iDXDgpyxfEUMpPrXOS0PRDnTkPKzIp+OVI0dwL7IEV4Ocr6eCGunxvMMBj32bA1AQ+iiPu1cfzXZNZQd7Q9Ndo4JwjweiSEZsa1nyOzXz5GBqe8QrEWOZx3I2b/UNyzlkzxXhN9/miMyxk8DgrNCyY5Iv6/P/rRHUT7PBk8+sfoj1fsLyMVzR8F0dtRWxttP4uY/wLk5Pwwnt2NjOIX45wVsPG4DhnTl8SzziJXVefHPc8iQbSIzNSqFcF00pBZQSrLWpEMxv2FDNwUJMTsaNqIslK0Mnimun4pEniD5KqMM3ieCNzaQHqeDAYcQq7ADpKr9Da8HCx8KI5vj/NrYuxd0Yeb4r7RMZ9+nvHZRzpSDu4WJJydxfQsmWXXjZycmaRCXR7XP0+udDq4sR4FRq5FgnVinJ+FUpitmB0A8apxb8yNgymmjTVkBtufoCDMZdGPadVzbTB6hc/OuzMEHHi5hlxBfyNSnFcD/yvOTY1nLyKzErqRjFhHOh7rot82SpbH/YvI4NpPSEU9KebDhtt8cnXc2+02IP6wgv8puZXHNDqPdIyWIFpbE/i4gOSdBVXfbkArZKYt49WBWSvUScD74vjn0capSLGdFWP7LGlM/X18/6fAxVdjDu+K8a1Bq+5vJ4MTS0jDxoa0x3cnyZfrET/0AiujT8vj3mtII9uZDLUjaaPHxqqdJWdE2OifXeH5h3Q6SaZTO9BXoSDAIKLPOjhYOx42ymrncQPa3tkTOO0ljUQ7TM+QDlM3orvZZKC0VO0NP56NDLwBlMlo+eQMx43VPTWf1AZ1LzKwTPs2fG+vnjM8y6gM+107VmvJINOzw8Zquu9HK9mWTc6csm4sKGhsJ3ZF4G8iaSwbZw5smT+HYp7mVM90IKge/xpSViwn9daC+P0C4lvz2EY66WQo5pRGJSAAAB5uSURBVM447qZTDhmPK9AiQD/wD2RQ7QEykFg7+8Zj7RTVcmAgxmbjfnigcrhuW1b97wyyoRib9ZszdD0O86eD4wOIr31NT9Xmf4jxejvf8vj/GyQ91QEE47zO1FqF9MwcZEN43vtJ52MAZTPUvGUefQbJsCEy0FxImijIdpgV/9UZeM4IqvnYmUumMTvwj5O637g3furFCdNozWMO4A4hh3lSPGt+9fx1ZDDB7WykM1hueltezY+fY7rro5N+6gDcyurYAb2CbLuaR/qqNtchmfws0kF1lprH73vXDnu2bZh7yCzUycixcsalbZOLoy1nsTvTfj2p164j6XRq3Oc2BxFN1Ha86XSAXHB9AC1+9yPdM4oMAtiu3hxfWWevrNp21s9w2dhHLob7/MKqHePtbuR4z+elQVLLuHpuLTOtB+bE71nVHC5Aes/BxSnkQoj7Ylvfvy3rZlZ9GET+jwNzxs16ZC8UOnm9n7SBHFQqcd542FDNnflu4bBnmu+Oo9M/MD84gOLFyjpYfQKyf6wP/yZw4+Cg21+PtrV67vvj/HxkHyxGuuAH8fzPkzLLem1eNY4vkovBt5MLO4+RCzOPouCC58E49fHwYPoXKtyuRn6N7R/jywkOPWRSRk91nwOoGxEfP0fqkXrhbhaSjxuR//URkscXk3pkXlw7Bfm58+L/HyD6PQjRxgDKNj0t2nmYXHzrRba5s8yWIzt/CGV/3oH80t7A2ZL4bxawR7Tn7ZMnBe7ejWTA+pi3m0lbr0G8fkc855L479vkdvo7yUyuOsj1EPBgHH8HyYjxSO58B+2+OSPG8ghKRLmyeuZk4D+jraGr0W6Fi4DfjravQwkK36sCRi+iBf09URbwrJi7ieSOpN+K31chO+77SLecRyadTEX++W0oQeefEP3OAC6v4iUXkPGS4xBPN8in+/eto4h2/yCO90Z0tHv0YzHKUBtPlNfZXNymLTy/42B/4J2IIa4n98TOQITz8VLKu0opH0Z1hQ5AaY7noMk8lyTMp5EAuxUxzMTqOevjexFy1PsQIfagNMzjEEGci4jlYCSYj0bEemq0uRA55G9GAr4bMckAYmJQPaa7yODBbihDqonrGqTgfpfMQPkBUq52ThahLYZ7o+CJDfc74v6Pktv3BlFAhbj/fETYZ8Z/E5CgOwAx6hmBy8OizV1RUO6gGDdIyJ2JGOXBmJvPxbO/Gf+Ni7GBDKfRaD7HAHshQWdwBtIhMaYmPgY7HpdU5w6M79+M8XjLZFc8Y4gMbr4Y52xoe75tlB2KlMXNKNo/KvD3NygF95pSysK4Z1m0d2v06/1xfhAJuaNirIeRc7o7CsIeAnywGsNqpATsXPehOiIXRdufjP4C7Bvfa+PYynwdmuc+sqbUWoTzt6NVB2fZLYtnDofFga8Z8f+5pOEzKj4DKLC6KK4ZjQyMf0M004VWGN8SbXaXUo6Jdj6JFIpX2lYhXuxBQerLEB0egFLbPZ+QGZlnBU72jGc/CNwQz7gRCerxKCNsECl+zw1IJrwzzhN425c07g9AfOv06jfFuNeheRwXn7NQRtggSoN/K/nykYLmfW60uwQZe+Oqaxo055Arh+9DSnRU9VmFFH4fsF/TNL+HjJRvNk0zLfC8D6oLcypyPA4ks+8GA0d2vvZHPLpX9Hs8opPLkDJt4rrR0XYXMiqcKg+5Vc1O15w43x/f45EM+TCiE493fODhBnL7hp3fUaSBYRnhuX9zfL8tcGQeN/QiuQCivQ9EWw7mNkhmzUQrV4Mxhl3i2/w5Bhl3Y6L/uyDZPqZ65pvje0w8b3Lcf0/Vl4dI58hBraFSyq8h2h+FgpCGISQjR8XxFIR3460OqKxBNURWIZ1C9O0DcdyP5rWnus9bdC1LvaXSDrD7sBjh3kHnQST3R6Mg8z5VO7MQPTxGOuujSMeH6KMLKttI9nXeNt6D6mCtIDP8ZsTHQYSV8UzTw0ZkRHchntoHzdf+iOeWRJ/uRfqeaGsumS08ic5sCkhdZNo6PL73R/xcg2ndjsma+G3nx+3sgvRKg2wKz0Gt1+x8r0Byvolzzohpog3TyGjEjwXJsRlxfs9oryCHZRSSzUchvTIKzdc4RMcHI9tjLJLd48nAyh2Ibn5ELjY402cc0jUgGwCk21ajlf+hGPe/kvT7Ijl/tUN4UJwbQAuYpscPId7bBdWcG0/SgAOiffGMrhjDUFy3V4z1CHIuvdjnrOnrK/wvju/pZPBkdDyrQXP/3mhrMaK1fjRXQ0gGvBD/jQtclLh3WbR9KUkjdpbrl1LUQRnfD9KZxlkfmkeQTgDNC4jXQHMwHsmAIwIXBM56AgeL4/rpgYub6eSz0WheJsT/xyB7aHR8GiT//ixwNAHR3p5xfjSycQrKfiDOu47gaCSvRpHBC5DNVy/EmbeOR3Q1GjnH00hagpSVhdxyZkcfUpeavi2/baM4GDEY7Y4lbeUetIXQ7VhevBvZDfPI4KqDE98KHBW00HNN1T9IG7eQ/oDlxG5xXJC/cQydcCoKPBhvplHTs3XoKXG8a3V+N5QlAkkX/dGGdftYxG/ur23kcfGf29sF+UKm81IdX0/q815S1o2Nvh9N+gWWo9cg3Q45b88gHBtvCxCfzYu2BpGu3SNw94G4dm8UoBhE9p51lvn3JJLOTBsg++JNcXwE4oFRaK4/X+HLgUyQjDa4rVOj/QbxxtsRPY2rxrcfShowbnYlbQoHRneNe45A9HJYPNcy1/UeD4vrzkbbholrpkR/zkYy5TuopM+9yM5diHhgEfIrfzPavBwFSiDly5Lon3nf9scV8f+fogDOv8b53Uia2KMa54eapllAlvy5Lvo2CukU+7dHoUWKx1CtzI8in8ALz29AsvVQhkHTNBPinneEjXwy0FtK2Yhkyb7ITjwLyYQ3RNsfrp75NuDoUkov0q/HxvgeRHR4MMryql8YcRfiyQsDD4ejeTOvPVdK+UUcH4jo4ncD758KnB2E/JOL4/v86J/tyxuGDfdLMcb/A5xWIpIFTCql2K75MHBeXDcF0YrxdlcpZUXg5iaSB0eENsi1Y2EGmugzSinvQpH//eK/9U3TjGma5h3IWVuLgk6O4u8Z55Yh425PcjXrr5qmcTDFTuc6RHB7ISN5UTz/IaRsr49zvx99eh6trB2MBNO7o/1vAJ9BTOUiwd2Iqa08QM7XBBTYsFP4C5R5YeO6ifH2VvdZeNcGM9Xv7yPj7Ft0BrgaxDhjUDCwQcLs3ujHGiS8ZiOB5YCOV+U+RSqTMciAHIci4c7K+CBaEfpbFFwh+j4GKYYelB3w/arfu0c7Q/HsHtLQARk3b0DCZggpMjuGx5Ircw0SmEuRIN0DCe+1pCMAEiKGPZHQ3y3GfGSMYxSKqo8F9miaZl/kAOyOFK6d4c+jQM1aNMefpZOmno/2Hw0crYjzp5Ip7iDhXpCQ3S+Oj0VOC2ieTkCBh340Z2sQ3R0c9zjNtQsJs8djfBOiT28iFcs6MlDoIM5zMd73BW5/GmPtQ8GpW6Mf3hp8OMoQOAMZEZcjJXs6MLZpmuOj/SXR/h6B55VIoYxBhTQPJR2ifw582QD+exTQG0KKZXk8+70k7Bs4WYkUzYYYh41ZGz0LkJPrFeF94vhxpAQc9LiUpL0HyHR813m5PvowCvEr0b8fBX7WVeccuDaO7QBfiGjjYqRw7yCNnH604veFaG80Ksa8D3B8BPY+i5yVdyIFfD6ZXeXteaV6/lIUJF6OZNv9QCml/AmqL0Zc/xNEo/uQDpVx4QCjjdi3xFhssIIU/iUoMOkVfK/afoBOJ2VfcpV8AMnaVWS2hXXr/0S00hXzYXgOrYQNoGB0H2l4vxjnx6NCuM5CmEI6LX7GWmRYd5OBKjsx3s7y8Tg/pnrGgYh2QPRm57cP6ZA1wKimad5DymFn1EJmynil/3DEzw25Bdor17siuv4DOjMzro22xqBixzbqrf9eJJ3BfUhZaKd6LOkwjUE85K3R68gsDqKt8UjeHBn37RXfz6H53j2utdPwOFqZ7EN0N5EEB5ING5Bu8QsQlqF58Er2VxDfrEfybgPigZlIfpq31kU7BP5+gwwg7F+NeXqcW4oWNJ5E8/QQnVtzDgncLCXncSqiF28DcnDVz1xBblM8Lc4PkllLBO5cI+ewOO/2m7jeAaaL0ZwcF//3oeDBXNIBrVfPB8ig1GApZTyiz3VIls9Eq8eXk4tC3Yi+bkMG+O6B8/2iPwuQHj4QzfdaMgDlAIGznpxpUetd94nAr+nO/F8Qr3tb15XIlliB7CMXtPYix1fIjBbjfQNypOwQriADULYzTHMPxfceiNaM8+44f2/gA7JUwmhEt2ORY7IG0R7Rb2dgWbdOQIFdyABAbbc5y9mLSuY1B8YGAk8OChqfDpQNxfcgub3sEeTY2okdG2O0rhoXz9snnufgRoP4eiOa843V9bX+3YXMPl8efXwHsgGawIPtn7FIRo8m622BshH+kMzgeTbafAzR3wCyA14gM2y+TmbbjUIO+wZEhzNI3rG+uQXJkifo3PZ9fLR7IWl/LUG6xXb2CiRPDQ46OyhxfNUPB/CmVNdPQLzprByQrWMH1HbMUHXPDHILkzP1h5AMvQ851wXxbB+SXx8iM8c8ZuMXxBPPkFnRzsxycNTb5aw3PB/3xvlHSNok+vM/0Fy7Rqnp6RNkoApEj4YHSVmxobruT9HCOIi+bJuPQzbKIKLF2SjwZ97x9k2P+80x1itjvH+MaMpBl9GId8bHOC8k5eYJpF82NcY2gHxKBxHXxX2PxO+3kbzsRZJjY3wvIjtxUvTF8mYUCvTVNgykDTEN2d62f5aiHUe7It3pYFhX/O/svPeEfJ+O6Mb+79tIm828sRTphF9Devx0MuPsa9HOEPIPQXZVQXJkFKK3B0h/6yxEm58hF9q+G/27rZTibM25KLC7K3BV2LBfJe32/eOei+K/34rnOSOqm9QdkDoUOoOW3cAj0cYVSG8aGmRTvw+9oOItiEYvKqUcE5+jSilXx/VTka+5RyllVeDgXYgP6zlcjxYl9kO+kRfcxlT/13AX8qXOLqW8vZRin3EGopuvVsk7bKKNS6K/7y+l3LeJ6xqUCOSxHVpKmTUC/kb6Pezf18E2wJ3lw8jbFS1YX0TC9HIkpP8cEflfkIXnj0XCrpB1bVbFvYuQU3wNYlwX5n4eOQOusVUQAdt5PSf+n4kCOgPkFpOp0YdTUMZIHxJcv0durbyY3C4xDwmapaQDdw3aDvNAnPsK+daS3ujn3UBX4OODSDE7Jf4K8u1Bbww8PBrtrkUrxQuifQeKHkGpkfNQsMtbhhbHPU7jXY+ycbzK6lTln1fHrvl0Jimw5pH1iWYj5iyBoynx7LvRCsM3o21v4/I2Bztr3nJjpe4ik3YyusmU6UGyLoyzFZzJNhjj7qnaHkTCdXL87q3w5PpvFsRL0erHhpjPxaQRfSFSkN0V7gbItwGVaPN7ZO2sepV2CNGY6zgsIYtXDpDblnrING8XeS9I8Zmu7o/5XkBuvVuCHKJlpJPg1GXXEpiDnCDXD1uGeOA58oUF3WStF2/RmUquoD+GaL4LGRoDpKE7Bxktq2IsdXq956eHzi0kQ9GOa1ZdWc2Ht61+nKxhUG8VMb2uQfR2G2mQeTulg2fOQPI4bqeTboZImppNBiO6EP3aEVmGAlL98e0tnoOIDx2A9HbNvxzWV/dvLhnQepHcMmvH/X4UQPwWWZx+CMmqo5Gh6e0iNwfeB+OceeITgcuxMUdXxxw/Fs9YFvLm0OjXdLTi24vo5gTEN95iUW/xe47M5HFhZAeLvk3WLXQ9lBVoK3idneTtHG6zl86tZq6PthTR9kCMq7+63rzkwsAl+jCzeq55rHYoPbemwTsDz5dV/fF//4S2y9ZbCweibb9trt7m5BV+t2HHopAvISiBL7/Uwc/y9panK3ybb6xP3O4MtFrn3/XWJGdFbKyeV8tYb7Exf6yv7hsc9hwX278ucLaiatP46I0+D5FbbZ8jt7LNRzrF2z8GkXH/UFy/hHwD6QpS7i9FCwJD1cfbTB6MeXPW9ADpBLtez3rEpx7r02Qwoc54+zq5NbyfztqO5t+11T0e/xPk9pYaZ5bpXtgom/nU28p6qo9pzzbMEFlLxoFsO3qDcTwV2QXWo87M+yz5Vrp+JKv80g9n7vYhXv99lClWov/Dywt427jHbXz0R5vmc2dRmy/vJ4MW9Xatp+ksMeBnOYBp3v1i1YdeJBNsy9R0u5QsdlwH/I1r9/kOkub930OkTDIvDiF5ZvpYUrVhXW1n2/cNVf/3Vb8HKxz4uwxrY7hsGunb/Gvc1jLRL9codL78wFti1yC+cTkL21W2aaaT2W8D1TNvRHzsQKBl02rSnvO2UdvRhcxYnEe+NGMpsg/d1nTES93kdvKrSNtwdbTj2oiWBcNxMlx+mQb/uerP0yibxlttLYuvIbeM1vbLeuSTDJeP05Cu97PmkzpxEflSlHrrobc0ns1Lt1jaRnc2p+W+56WLtMm9aGM6sY5zXTxv411FvqXSc1Tj7cd0bkn2eE1Xw/WO+2LadrH5fvKtx/YzflzdczaZ7evC7gUFBfwCoPlkTdb1ZOH5JdVzLNe8oFTQ4uIhiNZ/gWjpBMSvPUjP2J733D1K1sf1CwtK9PFOOjMoPQbXmxui00Z1v+oacTcGzpfF82vZeXWFV/s6no9azi4k34Tqe4fi+mnVtZZ1T5NvUSzIX5iEaNovGfohyRf98QxvYb2KfPP5gsD7ycgetq88DQWxboz7v4Xk6FhSV8wL/HhBeQMZuB2ItvZHPrCDzU6AeBAFiD8X93wX+c4FLcA+HtfeTW5XnEe8CTnG4nrbFwD/N45/gnyLf0F+bDfahXGynxnXHQLsH8f/HdnpV8fv0TGWbqLQO9J1N6Hs1svQQuX86O8ZgSe/UG5i4Ph5JI9ORUHYt5J1yM5HNvdYFGBbiey836jiJRcwQqF9XvoW3guRvdDE7/dU/ViEFpnHx7xsdrviax442pk+pFHtz5frSUMOrQNa41FA62dIAc4ATo/rpgyb+FOC2O9DBuuUOP/WmMRpyKA7gBRaFu5fJoNck6M/sxGjP4EMPxfEfEkf4p4Tybe1uA8Lgnj3Qkp/NhJU9etuVwE3xfEPkID6ejDL9GjDb917EWWJTQNujnsuJp1/F+O+nXyV7F8FUduoNN4dhFtOplsuJldZupDxO4tUDPeTWT0nI6acErifT2c9rbWIyV9AAti470VO9kWkoXY+mXFXkBKYQhoBGwN35yABfy4K9s2nMzhnoes+DMWcfDPOryUj7evjvilo7u+rcL+eTsFUvyFjMhJ+BQW05kQbC4naSXHdf0H0MossmP0oUQQzrjkh2nsaZbaZBy6IuTg8fvegOX8SCaf/h7IGHyNfjf47SEG5RtZ0qtfVBp5PjGvuRvTxpU2M74Qq2OrAxZMotfcg5Ag8iQJ2n45rbyJfd30pIVirdg83TkcS1igrqINut8DX/95v5IDMRArwSDrfTmhHari8OYeslWcFfhfiN9c+Wo1oxVst18ZczUZ8Mg/xj4O3E2MevW3qLxHN2xm4hDS6/YKBBdHnj9BZX2UWqnc0D/HVynjOaiQL5sW5hTHfDv71k3LnE8DawMN/I4N65kkbWc9HX0zzG4CHq3maQxqB36v6aAPcb/lbEGN0zTY7+q4nMod0EJ1xcD1ZlHgo+rWczqK1GxENzqWzvlYX+QIKG/pDSDb8jHwRxVNkAe5CFkP1qukMUu49G7g6hnxzlR3BH5FvbnPw/9L4fzoyotzf1YFnF+Wv5+IUxMdPIrp1ts61qAaNdd7GwNnpSDfMRjJvevR3ITKano1+Plz167fJt+FtDFz59ea/g3jlCZS2Dp389EZya+lM4Irh/Bq/p5My6tOko3rt5toZJgNOIF6DXp17mM7XcI+k/8+M8U1BxuW1I8gU6w3bEsvRKjJIFi4dYYzHB86fJWnYb4X8KRnweTL+/yjSi3eg4K5r5KyN438j38DWG/c7MHp1jMEFpO9D/LEQGbizSL3m7ViHI3vgVFJ/dKPFvUFysW0IydNryTc+D0Sfr0T64wWySHOJ57nujG2ArsDFtJgDOzCuqWQd7SLAt5A1eOyQO7vJ7Q7GOOfHWFw3yUGyuaSMsFy4I+ZnWnV+CXKk7OB/h9yO+wydC2Vuz4tIhawr4/5a7rqQtLf5PRbP3psMBK4FZlU2nOXSbciR6qnadpCuB9HdMcP6NVgd29n9FzKoP0AGXeo3w26s2v8askscAFkZ83s4+bICy+Xlcf2PyYXOEufnIftgMRmIWBl4uTH+XxY4qGWx59Xz81yF7+mkvWl5uhDZQq5BOxTfzyB9ZBruJustPRXPnxvPWUrqutVx7KDbrWTN3PUo48Q7Emwbevu9A5PzyQXZWhevQtkb9ZwtC3z876q9L5D8708/SU9+ZkE7HZZU9zqYYTyZ7h2kdvCv/m8DCoIfU81tQbRxF/nm467AxzMxL3Orfrggf0/0x8GEn/HSF034RTwOcvWSCzU+tk0wHcmejZUf5iDXvDjuR7bkt+P8Fci+WoNkzftj3J9BQZFC2M7RpvX5HERLR6HyBaY5y08XWbds2ID0oxdrHLjoJv0kBxgd7FtJvrTEPDd8sX6QtA187nmU1FDThOl/BZIXXkQ0H52N/KN6Qa4P+TCWAxvJHSt1AsCaGPtzSI8+VfVxYzy3i6zhZ72zilxcGUC+wb2Iz54m5dBMpGO/EfjwglM/uajimmt/R2ZAmy/PQ5nN08jFsxOR3rVecCb0QrJ4u3nAc10Xnv9uHN+HdNtKRD/LgNuDVo5GwaxFZPbiPcg3/7PA01PR9pFxj2nujyuam0q+gGdGPOcfka3zc6TrLS/fTdZNO41MbPkguQhov6qbtHVcs+1xZBs+wdYFucYj3rJfNrmy9X6E+Hw2beH5X40PWZht0o68Z4Q2JgMnbsP9jkCPRkbLx15rXL7C/i9ATt/kTfz/ksy/bXye8dWg1bkv7QjcM4LzNtKYUMrwHLbx1bKb6eM20SjDgsntpwM3j4ZS2vW17st2HNNm6XFr5A1Z3+kEFBCY9jLueVn8s41jPZxhgdctXD+RKiD8evkEble/1v3YTmO5OQy/N77G/TiaDAQ+DLx3a2jmlwEXm+nfVuHi1R4XsYC5if9G2lkw4rjQguZ927lvm5VzIY+95WkC+SbiK5EjukU5vA3z1DFeskDyW19u/19NetxO83HUy9FPce222lbD8bsLMC6Oj0S28ditbW8z102ojh0A/+IreE4HPQ1r7zzg0lfSv+1Fn9s479tMx1toYz2vwM7fVlrYTLu7oQDNXtsDb9vQj5NQAGuLdLe19DHCuJ3R9Angltdy/Fvoq23sN8RcHbid25/IK7Rjvde1hZ0YSimr0WrDDr3H0DTN3mgV44lSyt1b00bABU3TnIT2K99JFiDcKaCUcngc3rKJ/yds50ee3jTNp1E66OMo0r21sEncl1Km0Fmjgeq/CQBN03wKrah+uZQytA392CRsC43G/Sdsv978ckEp5de3fNXOAy+THrdG3hyKVo72QCteH9rSDS+Hf15tKKVcS9bAet1AKWWArEG1U0Mp5WOvdR8ASinPoBpQw88voLOm447sw+sCF5uCrcXFqz2uUsrEzfz3Elky0riapjkPZQ9+cjt3b3Pg2mM3oqztA5Cz1oUyG45D9Xe2u9030nhLKV8Yft3rUU6/WrCN9v9I9LQbcE/TNK77eGYppW+k+19me5uC/9o0zV+Qb/g+spSybAv3vJL2Jm5j/7YIrxE/bhWEXTUeOP8V2PlbTQub6cdJKOvpG6WUNVu6fkdCKeWnjFA8fgfCr6OXNjUoo+yPXsVnv1KYHPGBscDfllK6tnTDjgZHB1v4FYCmaR4kCxYa/rCU8tRr0Z/XOzRNczNZANzw56WUO7airVcN903TvAulodbQW0o5bqTrX23Ynnj9VYCmaT5CZxFKgPmvd0dyR9J80zT/gLZ6Gvzmo5XVuZdF8y09trAzQtM0n0HbFWp4oOiFDNvS7g7RH693vfTLBMNk2tEom2oR+YKBn6FtpTVMKqV87dXp4aahlcdbhm2xCTYhN2ahOpo1vGzebJrmfFQPr4atpqft3d6Ohla2bT20/L51sAmaG6TzBUmGE0spK0Y4/0sPbZCrhRZaaKGFFlpooYUWWmihhRZaaKGFnR5GbfmSFlpooYUWWmihhRZaaKGFFlpooYUWWnh9QxvkaqGFFlpooYUWWmihhRZaaKGFFlpoYaeHNsjVQgsttNBCCy200EILLbTQQgsttNDCTg9tkKuFFlpooYUWWmihhRZaaKGFFlpooYWdHtogVwsttNBCCy200EILLbTQQgsttNBCCzs9/H9MfLVXq+zZ9wAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "output_type": "display_data"
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " clean_subcategories project_is_approved total Avg\n",
+ "317 Literacy 8371 9486 0.882458\n",
+ "319 Literacy Mathematics 7260 8325 0.872072\n",
+ "331 Literature_Writing Mathematics 5140 5923 0.867803\n",
+ "318 Literacy Literature_Writing 4823 5571 0.865733\n",
+ "342 Mathematics 4385 5379 0.815207\n",
+ "==================================================\n",
+ " clean_subcategories project_is_approved total Avg\n",
+ "196 EnvironmentalScience Literacy 389 444 0.876126\n",
+ "127 ESL 349 421 0.828979\n",
+ "79 College_CareerPrep 343 421 0.814727\n",
+ "17 AppliedSciences Literature_Writing 361 420 0.859524\n",
+ "3 AppliedSciences College_CareerPrep 330 405 0.814815\n"
+ ]
+ }
+ ],
+ "source": [
+ "univariate_barplots(project_data, 'clean_subcategories', 'project_is_approved', top=50)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "l0hscXcToc57"
+ },
+ "outputs": [],
+ "source": [
+ "# count of all the words in corpus python: https://stackoverflow.com/a/22898595/4084039\n",
+ "from collections import Counter\n",
+ "my_counter = Counter()\n",
+ "for word in project_data['clean_subcategories'].values:\n",
+ " my_counter.update(word.split())"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "f8dg8oiroc5-",
+ "outputId": "2bddce12-5786-464b-cf10-a6b0c15b0d07"
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABKIAAAFACAYAAACP0NSkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xm8XVV5+P/PQxjEooIlogwaqnFAf4oaAbVWHIqgVmiL4gio3+JcrdoKagsOWKx1wrFUEWyhiLZqCiggGpTKkCCBMEqAKCEggTAFJUB4fn+s53jPvTl3yHB3buLn/Xqd1z1n7bX3Xmvttdfe57l77xOZiSRJkiRJkjTZNlnfBZAkSZIkSdIfBgNRkiRJkiRJ6oSBKEmSJEmSJHXCQJQkSZIkSZI6YSBKkiRJkiRJnTAQJUmSJEmSpE4YiJIkSZ2KiI9HxC0RcVMH63pdRJwx2evZGEVERsTj1nc51oWIeF5EXLW+yyFJkgxESZKkASLicxFxW0ScGxE79KW/LiI+vxbL3Ql4H7BLZj5yXZR1LJl5QmbutTbLiIgZFZTZdF2Va2MVEQdHxDmrkb+Tts3Mn2XmEyZzHZIkaWIMREmSpGEiYjfgmcAjgXOAwyr9YcD7gX9ai8U/Brg1M29e23JWmaati+VsCAyESZKkjYGBKEmSNNLOwDmZuQI4C/iTSj8S+FRm3jHWzBHxsIj4ZkQsjYhfRcSHI2KTiHgxcCawfUQsj4jjBsy7Z0QsjogP1u17iyLidX3Tj4uIr0TEaRFxN/CC0dZX+YddoRMRT4yIMyNiWURcFRGv6pu2ZUR8upZxR0ScExFbAj+tLLdXuZ8dEY+LiLMr3y0R8a0x2uPbEXFT5f1pRDx5RH2+WmW6q5b5mL7pGRHviIirgasr7TkRMbeWNzcinlPpr46IeSPW/XcRMbvebxER/xoRv46I39R6t+zL+/cRcWNELImIN42zjQ+OiGurzNfVlXJPAr4KPLva6fbK+7KIuCgi7oyI6yPiiL5FrdK2Nc+bIuKKuirv9P42GVGO4yPiffV+h2qvt9fnx9V2jl6/6pvvAxFxQ5X/qoh4UaVvEhGHRsQ1EXFrRJwcEQ8fqy0kSdLqMRAlSZJGugx4XgUpXgRcFhGzgCdk5okTmP8LwMNoAaznAwcCb8zMHwH7AEsyc6vMPHiU+R8JbAvsABwEHBMR/bdVvZYWFHsI7YqtgesbudCI+CNaIOxE4BHAa4Av9wWG/pV2JdhzgIcD/wA8APxZTd+6yn0u8DHgDGAbYMcqw2h+AMysdf4COGHE9NfV8rYF5g+Yvh+wO7BLBUVOBY4G/hj4DHBqRPwxMBt4QkTMHNFWvW32SeDxwK7A42jt+0/VNnvTrnb78yrri0erTLXj0cA+mfkQWnvNz8wrgLcC51Y7bV2z3E3bJlsDLwPeFhH71bRV2ramfRD4K2A68DPgv0YpztnAnvX++cC19be37J9lZo4o/xOAdwLPqvK/BFhUk/+W1t7PB7YHbgO+NFpbSJKk1WcgSpIkDZOZlwL/DZwHPJoWwPg88LcR8bd1Vc8JEbH1yHmj3Sp3AHBYZt6VmYuATwNvWM1i/GNmrsjMs2mBl1f1Tft+Zv5fZj4A3Lca63s5sCgzv5GZ92fmL6qe+9cVVG8C3p2ZN2Tmysz8eV0VNsh9tNsMt8/MezJz1OciZeaxVbYVwBHA06Ld5thzamb+tKZ/iHZF0U590/85M5dl5u9ogZyrM/M/qg7/BVwJ/EVm/hb4Pi3ARgWkngjMjogA/gb4u1rWXcAngFfXOl4FfCMzL83Mu6ucY3kAeEpEbJmZN2bmZWPUf05mLsjMBzLzElpQ6fmj5QfeUnW+IjPvr3LuOspVUWfTgqab0AJP/wI8t6Y9v6aPtBLYghbY2ywzF2XmNX3r/lBmLu7bXvuHt0VKkrTOGIiSJEmryMzPZubTMvMAWqDnZ7TzhkNoV0ldARw6YNZtgc2BX/Wl/Yp29c1E3VbBkP75t+/7fP0aru8xwO4RcXvvRbsaqXcF1oOAawbMN8g/AAFcEBGXjXYrW0RMi4ij6lavOxm68mbbQfXJzOXAMkav7/YMrysMr++JVCCKdjXU9ypANR14MHBhX91/WOm95favZ+Q6fq+2zQG0q59ujIhTI+KJo+WPiN0j4ifRbp28o+bbdrT8tO30+b5yLqO19SrbtAJIy2lXeT0POAVYUlc9DQxEZeZC4D20INPNEXFSRPTa+zHAd/vWfQUtcLXdGOWVJEmrwUCUJEkaVURsR7tK5KPAU4BLMvM+YC7w1AGz3MLQ1UI9jwZuWI3VblO3f/XPv6Tvc/+tVquzvuuBszNz677XVpn5tlrOPcBjB8yXqyRk3pSZf5OZ29Pa58sR8bgB874W2Jd2q9vDgBmVHn15fn/1U0RsRbstcLT6LhlRVxhe3zOAbSNiV1pAqndb3i3A74An99X9YZm5VU2/sb8ctcxRZebpmfnnwKNoV2T9+4Cy9pxIu21wp8x8GO05UjFG/uuBt4zYTltm5s9HKc7ZwP7A5pl5Q30+kHbb5PxRyn9iZv4prS2TdtVfb937jFj3g2q5kiRpHTAQJUmSxvIZ4PC6quY64FkVLNmT9jyeYTJzJXAycGREPKRup3ov8J+rud6PRMTmEfE82i113x6UaTXXdwrw+Ih4Q0RsVq9nRcST6ja/Y4HPRMT2dSXTsyNiC2Ap7Va03kPbiYhXRsSO9fE2WjBj5YB1PgRYAdxKuyLpEwPyvDQi/jQiNqc9K+r8zLx+QD6A06oOr42ITSPiAGCXqht1K9t3gE/RAlpnVvoDtGDRZyPiEVWHHSLiJbXck4GDI2KXiHgwcPgo6ycitouIV1SwcAXtiqRe3X8D7Fh16W+DZZl5T7RfZHxt37RV2pYWqDqs9+yuaA+jf+Vo5aEFnt7J0IPP5wDvoj1wf5VtEhFPiIgX1ra9hxag6+X7Kq0vPabyTo+IfcdYtyRJWk0GoiRJ0kAR8QLaQ6S/C5CZF9Ce13Q98ALgqFFmfRftAdXX0h4mfiItyDNRN9GCO0toD+5+a2ZeOUb+Ca2vnou0F+25SEtqPZ+kPS8I2sO6F9Cu9lpW0zapINyRwP/VLVt7AM8Czo+I5bSrfd6dmdcNKNs3abe53QBcTnvu1kgn0gI/y2gPS3/dgDy9OtxKC8y9jxbc+gfg5Zl5y4jlvRj4dgWmej4ALATOq9sEfwQ8oZb7A+BzwI8rz49HKwPt/PF9tDZcRrsF7u017ce0h93fFBG9Mr0d+GhE3EV7OPrJffVZpW2rv30SOKnKeSntIfejOZsW7OoFos6hBf1+Okr+LWh99xZaH3gE7eHo0J6FNhs4o8p7Hu1B8ZIkaR2JET8kIkmStN5ExJ7Af2bmjuPlneDy3gS8PjNfuC6Wt65FxHHA4sz88PouiyRJUhe8IkqSJG3Mnky7pVCSJElTgD9FK0mSNkoR8T1gJjDW84UkSZLUIW/NkyRJkiRJUie8NU+SJEmSJEmdmLRAVEQ8KCIuiIiLI+KyiPhIpR8XEddFxPx67VrpERFHR8TCiLgkIp7Rt6yDIuLqeh3Ul/7MiFhQ8xwdETFZ9ZEkSZIkSdLamcxnRK0AXpiZyyNiM+CciPhBTfv7zPzOiPz70J7jMJP2M7lfAXaPiIfTftJ4FpDAhRExOzNvqzyH0H5a9zRgb+AHjGHbbbfNGTNmrIv6SZIkSZIkCbjwwgtvyczp4+WbtEBUtodPLa+Pm9VrrAdS7Qt8s+Y7LyK2johHAXsCZ2bmMoCIOBPYOyLmAA/NzHMr/ZvAfowTiJoxYwbz5s1b43pJkiRJkiRpuIj41UTyTeozoiJiWkTMB26mBZPOr0lH1u13n42ILSptB+D6vtkXV9pY6YsHpEuSJEmSJGkKmtRAVGauzMxdgR2B3SLiKcBhwBOBZwEPBz5Q2Qc93ynXIH0VEXFIRMyLiHlLly5dzVpIkiRJkiRpXejkV/My83ZgDrB3Zt6YzQrgG8BulW0xsFPfbDsCS8ZJ33FA+qD1H5OZszJz1vTp496uKEmSJEmSpEkwmb+aNz0itq73WwIvBq6s5z5Rv3C3H3BpzTIbOLB+PW8P4I7MvBE4HdgrIraJiG2AvYDTa9pdEbFHLetA4PuTVR9JkiRJkiStncn81bxHAcdHxDRawOvkzDwlIn4cEdNpt9bNB95a+U8DXgosBH4LvBEgM5dFxMeAuZXvo70HlwNvA44DtqQ9pHzMB5VLkiRJkiRp/Yn2I3V/OGbNmpX+ap4kSZIkSdK6ExEXZuas8fJ18owoSZIkSZIkyUCUJEmSJEmSOmEgSpIkSZIkSZ0wECVJkiRJkqROGIiSJEmSJElSJzZd3wWQJEmSJEmaKmYcempn61p01Ms6W9dU4RVRkiRJkiRJ6oSBKEmSJEmSJHXCQJQkSZIkSZI6YSBKkiRJkiRJnTAQJUmSJEmSpE4YiJIkSZIkSVInDERJkiRJkiSpEwaiJEmSJEmS1AkDUZIkSZIkSeqEgShJkiRJkiR1wkCUJEmSJEmSOmEgSpIkSZIkSZ0wECVJkiRJkqROGIiSJEmSJElSJwxESZIkSZIkqRMGoiRJkiRJktQJA1GSJEmSJEnqhIEoSZIkSZIkdcJAlCRJkiRJkjphIEqSJEmSJEmdMBAlSZIkSZKkThiIkiRJkiRJUicMREmSJEmSJKkTBqIkSZIkSZLUiUkLREXEgyLigoi4OCIui4iPVPrOEXF+RFwdEd+KiM0rfYv6vLCmz+hb1mGVflVEvKQvfe9KWxgRh05WXSRJkiRJkrT2JvOKqBXACzPzacCuwN4RsQfwSeCzmTkTuA14c+V/M3BbZj4O+GzlIyJ2AV4NPBnYG/hyREyLiGnAl4B9gF2A11ReSZIkSZIkTUGTFojKZnl93KxeCbwQ+E6lHw/sV+/3rc/U9BdFRFT6SZm5IjOvAxYCu9VrYWZem5n3AidVXkmSJEmSJE1Bk/qMqLpyaT5wM3AmcA1we2beX1kWAzvU+x2A6wFq+h3AH/enj5hntPRB5TgkIuZFxLylS5eui6pJkiRJkiRpNU1qICozV2bmrsCOtCuYnjQoW/2NUaatbvqgchyTmbMyc9b06dPHL7gkSZIkSZLWuU5+NS8zbwfmAHsAW0fEpjVpR2BJvV8M7ARQ0x8GLOtPHzHPaOmSJEmSJEmagibzV/OmR8TW9X5L4MXAFcBPgP0r20HA9+v97PpMTf9xZmalv7p+VW9nYCZwATAXmFm/wrc57YHmsyerPpIkSZIkSVo7m46fZY09Cji+ft1uE+DkzDwlIi4HToqIjwMXAV+v/F8H/iMiFtKuhHo1QGZeFhEnA5cD9wPvyMyVABHxTuB0YBpwbGZeNon1kSRJkiRJ0lqYtEBUZl4CPH1A+rW050WNTL8HeOUoyzoSOHJA+mnAaWtdWEmSJEmSJE26Tp4RJUmSJEmSJBmIkiRJkiRJUicMREmSJEmSJKkTBqIkSZIkSZLUCQNRkiRJkiRJ6oSBKEmSJEmSJHXCQJQkSZIkSZI6YSBKkiRJkiRJnTAQJUmSJEmSpE5sur4LIEmSJEmSNOPQUztb16KjXtbZujScV0RJkiRJkiSpEwaiJEmSJEmS1AkDUZIkSZIkSeqEgShJkiRJkiR1wkCUJEmSJEmSOmEgSpIkSZIkSZ0wECVJkiRJkqROGIiSJEmSJElSJwxESZIkSZIkqRMGoiRJkiRJktQJA1GSJEmSJEnqhIEoSZIkSZIkdcJAlCRJkiRJkjphIEqSJEmSJEmdMBAlSZIkSZKkThiIkiRJkiRJUicMREmSJEmSJKkTBqIkSZIkSZLUCQNRkiRJkiRJ6sSkBaIiYqeI+ElEXBERl0XEuyv9iIi4ISLm1+ulffMcFhELI+KqiHhJX/relbYwIg7tS985Is6PiKsj4lsRsflk1UeSJEmSJElrZzKviLofeF9mPgnYA3hHROxS0z6bmbvW6zSAmvZq4MnA3sCXI2JaREwDvgTsA+wCvKZvOZ+sZc0EbgPePIn1kSRJkiRJ0lqYtEBUZt6Ymb+o93cBVwA7jDHLvsBJmbkiM68DFgK71WthZl6bmfcCJwH7RkQALwS+U/MfD+w3ObWRJEmSJEnS2urkGVERMQN4OnB+Jb0zIi6JiGMjYptK2wG4vm+2xZU2WvofA7dn5v0j0iVJkiRJkjQFTXogKiK2Av4beE9m3gl8BXgssCtwI/DpXtYBs+capA8qwyERMS8i5i1dunQ1ayBJkiRJkqR1YVIDURGxGS0IdUJm/g9AZv4mM1dm5gPAv9NuvYN2RdNOfbPvCCwZI/0WYOuI2HRE+ioy85jMnJWZs6ZPn75uKidJkiRJkqTVMpm/mhfA14ErMvMzfemP6sv2l8Cl9X428OqI2CIidgZmAhcAc4GZ9Qt5m9MeaD47MxP4CbB/zX8Q8P3Jqo8kSZIkSZLWzqbjZ1ljzwXeACyIiPmV9kHar97tSruNbhHwFoDMvCwiTgYup/3i3jsycyVARLwTOB2YBhybmZfV8j4AnBQRHwcuogW+JEmSJEmSNAVNWiAqM89h8HOcThtjniOBIweknzZovsy8lqFb+yRJkiRJkjSFdfKreZIkSZIkSZKBKEmSJEmSJHXCQJQkSZIkSZI6YSBKkiRJkiRJnTAQJUmSJEmSpE4YiJIkSZIkSVInDERJkiRJkiSpEwaiJEmSJEmS1AkDUZIkSZIkSeqEgShJkiRJkiR1wkCUJEmSJEmSOmEgSpIkSZIkSZ0wECVJkiRJkqROGIiSJEmSJElSJwxESZIkSZIkqRMGoiRJkiRJktQJA1GSJEmSJEnqxKbruwCSJEmSJGn9mXHoqZ2ta9FRL+tsXZqavCJKkiRJkiRJnTAQJUmSJEmSpE4YiJIkSZIkSVInDERJkiRJkiSpEwaiJEmSJEmS1AkDUZIkSZIkSeqEgShJkiRJkiR1wkCUJEmSJEmSOmEgSpIkSZIkSZ0wECVJkiRJkqROGIiSJEmSJElSJyYtEBURO0XETyLiioi4LCLeXekPj4gzI+Lq+rtNpUdEHB0RCyPikoh4Rt+yDqr8V0fEQX3pz4yIBTXP0RERk1UfSZIkSZIkrZ3JvCLqfuB9mfkkYA/gHRGxC3AocFZmzgTOqs8A+wAz63UI8BVogSvgcGB3YDfg8F7wqvIc0jff3pNYH0mSJEmSJK2FSQtEZeaNmfmLen8XcAWwA7AvcHxlOx7Yr97vC3wzm/OArSPiUcBLgDMzc1lm3gacCexd0x6amedmZgLf7FuWJEmSJEmSpphOnhEVETOApwPnA9tl5o3QglXAIyrbDsD1fbMtrrSx0hcPSJckSZIkSdIUtNqBqIjYJiKeuhr5twL+G3hPZt45VtYBabkG6YPKcEhEzIuIeUuXLh2vyJIkSZIkSZoEEwpERcSciHhoPa/pYuAbEfGZCcy3GS0IdUJm/k8l/6Zuq6P+3lzpi4Gd+mbfEVgyTvqOA9JXkZnHZOaszJw1ffr08YotSZIkSZKkSTDRK6IeVlcz/RXwjcx8JvDisWaoX7D7OnBFZvYHrWYDvV++Owj4fl/6gfXreXsAd9Ste6cDe9WVWNsAewGn17S7ImKPWteBfcuSJEmSJEnSFLPpRPPV1UuvAj40wXmeC7wBWBAR8yvtg8BRwMkR8Wbg18Ara9ppwEuBhcBvgTcCZOayiPgYMLfyfTQzl9X7twHHAVsCP6iXJEmSJEmSpqCJBqI+Qrsy6ZzMnBsRfwJcPdYMmXkOg5/jBPCiAfkTeMcoyzoWOHZA+jzgKWMXXZIkSZIkSVPBRANRN2bm7x9QnpnXTuQZUZIkSZIkSVLPRJ8R9YUJpkmSJEmSJEkDjXlFVEQ8G3gOMD0i3ts36aHAtMksmCRJkiRJkjYu492atzmwVeV7SF/6ncD+k1UoSZIkSZIkbXzGDERl5tnA2RFxXGb+qqMySZIkSZIkaSM00WdEfS0itu59iIhtIuL0SSqTJEmSJEmSNkITDURtm5m39z5k5m3AIyanSJIkSZIkSdoYTTQQ9UBEPLr3ISIeA+TkFEmSJEmSJEkbo/EeVt7zIeCciDi7Pv8ZcMjkFEmSJEmSJEkbowkFojLzhxHxDGAPIIC/y8xbJrVkkiRJkiRJ2qhM6Na8iAhgb+AZmfm/wIMjYrdJLZkkSZIkSZI2KhN9RtSXgWcDr6nPdwFfmpQSSZIkSZIkaaM00WdE7Z6Zz4iIi6D9al5EbD6J5ZIkSZIkSdJGZqJXRN0XEdOoX8qLiOnAA5NWKkmSJEmSJG10JhqIOhr4LvCIiDgSOAf4xKSVSpIkSZIkSRudif5q3gkRcSHwItqv5u2XmVdMaskkSZIkSZK0URkzEBURD83MOyPi4cDNwH/1TdsGuDMzV05yGSVJkiRJkrQRGO+KqBOBlwMX0p4PFSOmbxUR/56ZH5yMwkmSJEmSJGnjMWYgKjNfXn93HjS9HmB+KWAgSpIkSZIkSWOa0DOiACLiFcCf1cc5mXlK3Zb3pEkpmSRJkiRJkjYqE/rVvIg4Cng3cHm93h0R/zyZBZMkSZIkSdLGZaJXRL0U2DUzHwCIiOOBi4DDJqtgkiRJkiRJ2rhM6IqosnXf+4et64JIkiRJkiRp4zbRK6L+GbgoIn5C++W8P8OroSRJkiRJkrQaxg1ERUQA5wB7AM+iBaI+kJk3TXLZJEmSJEmStBEZNxCVmRkR38vMZwKzOyiTJEmSJEmSNkITfUbUeRHxrEktiSRJkiRJkjZqE31G1AuAt0bEIuBu2u15mZlPnayCSZIkSZIkaeMy0UDUPpNaCkmSJEmSJG30xgxERcSDgLcCjwMWAF/PzPu7KJgkSZIkSZI2LuM9I+p4YBYtCLUP8OmJLjgijo2ImyPi0r60IyLihoiYX6+X9k07LCIWRsRVEfGSvvS9K21hRBzal75zRJwfEVdHxLciYvOJlk2SJEmSJEndGy8QtUtmvj4z/w3YH3jeaiz7OGDvAemfzcxd63UaQETsArwaeHLN8+WImBYR04Av0YJguwCvqbwAn6xlzQRuA968GmWTJEmSJElSx8YLRN3Xe7O6t+Rl5k+BZRPMvi9wUmauyMzrgIXAbvVamJnXZua9wEnAvhERwAuB79T8xwP7rU75JEmSJEmS1K3xAlFPi4g763UX8NTe+4i4cw3X+c6IuKRu3dum0nYAru/Ls7jSRkv/Y+D2vuBYL12SJEmSJElT1JiBqMyclpkPrddDMnPTvvcPXYP1fQV4LLArcCNDz5yKQatfg/SBIuKQiJgXEfOWLl26eiWWJEmSJEnSOjHeFVHrVGb+JjNXZuYDwL/Tbr2DdkXTTn1ZdwSWjJF+C7B1RGw6In209R6TmbMyc9b06dPXTWUkSZIkSZK0WjoNREXEo/o+/iXQ+0W92cCrI2KLiNgZmAlcAMwFZtYv5G1Oe6D57MxM4Ce0B6gDHAR8v4s6SJIkSZIkac1sOn6WNRMR/wXsCWwbEYuBw4E9I2JX2m10i4C3AGTmZRFxMnA5cD/wjsxcWct5J3A6MA04NjMvq1V8ADgpIj4OXAR8fbLqIkmSJEmSpLU3aYGozHzNgORRg0WZeSRw5ID004DTBqRfy9CtfZIkSZIkSZriOr01T5IkSZIkSX+4DERJkiRJkiSpEwaiJEmSJEmS1AkDUZIkSZIkSeqEgShJkiRJkiR1YtJ+NU+SJEmSJI1uxqGndrauRUe9rLN1SWPxiihJkiRJkiR1wkCUJEmSJEmSOmEgSpIkSZIkSZ0wECVJkiRJkqROGIiSJEmSJElSJwxESZIkSZIkqRMGoiRJkiRJktQJA1GSJEmSJEnqhIEoSZIkSZIkdcJAlCRJkiRJkjphIEqSJEmSJEmdMBAlSZIkSZKkThiIkiRJkiRJUicMREmSJEmSJKkTBqIkSZIkSZLUCQNRkiRJkiRJ6oSBKEmSJEmSJHXCQJQkSZIkSZI6YSBKkiRJkiRJnTAQJUmSJEmSpE4YiJIkSZIkSVInNl3fBZAkSZIkqUszDj21s3UtOuplna1L2hB4RZQkSZIkSZI6MWmBqIg4NiJujohL+9IeHhFnRsTV9XebSo+IODoiFkbEJRHxjL55Dqr8V0fEQX3pz4yIBTXP0RERk1UXSZIkSZIkrb3JvCLqOGDvEWmHAmdl5kzgrPoMsA8ws16HAF+BFrgCDgd2B3YDDu8FryrPIX3zjVyXJEmSJEmSppBJe0ZUZv40ImaMSN4X2LPeHw/MAT5Q6d/MzATOi4itI+JRlffMzFwGEBFnAntHxBzgoZl5bqV/E9gP+MFk1UeSJEmStHZ8NpOkrp8RtV1m3ghQfx9R6TsA1/flW1xpY6UvHpAuSZIkSZKkKWqqPKx80POdcg3SBy884pCImBcR85YuXbqGRZQkSZIkSdLa6DoQ9Zu65Y76e3OlLwZ26su3I7BknPQdB6QPlJnHZOaszJw1ffr0ta6EJEmSJEmSVl/XgajZQO+X7w4Cvt+XfmD9et4ewB11697pwF4RsU09pHwv4PSadldE7FG/lndg37IkSZIkSZI0BU3aw8oj4r9oDxvfNiIW03797ijg5Ih4M/Br4JWV/TTgpcBC4LfAGwEyc1lEfAyYW/k+2ntwOfA22i/zbUl7SLkPKpckSZIkSZrCJvNX814zyqQXDcibwDtGWc6xwLED0ucBT1mbMkqSJEmSJKk7U+Vh5ZIkSZIkSdrIGYiSJEmSJElSJwxESZIkSZIkqRMGoiRJkiRJktQJA1GSJEmSJEnqhIEoSZIkSZIkdcJAlCRJkiRJkjphIEqSJEmSJEmdMBAlSZIkSZKkThiIkiRJkiRJUicMREmSJEmSJKkTBqIkSZIkSZLUCQNRkiRJkiRJ6oSBKEmSJEmSJHXCQJQkSZIkSZI6YSBKkiRJkiRJnTAQJUmSJEmSpE4YiJIkSZIkSVInDERJkiRJkiSpEwaiJEmSJEmS1AkDUZIkSZIkSeqEgShJkiRJkiR1wkCUJEmSJEmSOmEgSpIkSZIkSZ3YdH0XQJIkSZI0eWYcemqn61t01Ms6XZ+kDYtXREmSJEmSJKkTBqIkSZIkSZLUCQNRkiRJkiRJ6oSBKEmSJEmSJHXCh5VsN+6GAAAgAElEQVRLkiRJ0iTwIeGStKr1ckVURCyKiAURMT8i5lXawyPizIi4uv5uU+kREUdHxMKIuCQintG3nIMq/9URcdD6qIskSZIkSZImZn3emveCzNw1M2fV50OBszJzJnBWfQbYB5hZr0OAr0ALXAGHA7sDuwGH94JXkiRJkiRJmnqm0jOi9gWOr/fHA/v1pX8zm/OArSPiUcBLgDMzc1lm3gacCezddaElSZIkSZI0MesrEJXAGRFxYUQcUmnbZeaNAPX3EZW+A3B937yLK2209FVExCERMS8i5i1dunQdVkOSJEmSJEkTtb4eVv7czFwSEY8AzoyIK8fIGwPScoz0VRMzjwGOAZg1a9bAPJIkSZIkSZpc6+WKqMxcUn9vBr5Le8bTb+qWO+rvzZV9MbBT3+w7AkvGSJckSZIkSdIU1HkgKiL+KCIe0nsP7AVcCswGer98dxDw/Xo/Gziwfj1vD+COunXvdGCviNimHlK+V6VJkiRJkiRpCloft+ZtB3w3InrrPzEzfxgRc4GTI+LNwK+BV1b+04CXAguB3wJvBMjMZRHxMWBu5ftoZi7rrhqSJEmSpqIZh57a6foWHfWyTtcnSRuyzgNRmXkt8LQB6bcCLxqQnsA7RlnWscCx67qMkiRJklafASBJ0njW18PKJUmSpA1el4GXsYIuBoAkSRuK9fKwckmSJEmSJP3hMRAlSZIkSZKkThiIkiRJkiRJUicMREmSJEmSJKkTBqIkSZIkSZLUCQNRkiRJkiRJ6oSBKEmSJEmSJHXCQJQkSZIkSZI6sen6LoAkSZI2HDMOPbWzdS066mVTvhySJGn1eEWUJEmSJEmSOmEgSpIkSZIkSZ0wECVJkiRJkqRO+IwoSZKkDYDPRJIkSRsDr4iSJEmSJElSJ7wiSpIkaQxeiSRJkrTuGIiSJElTkgEgSZKkjY+BKEmSNIwBIEmSJE0WA1GSpD94UyXwMlXKIUmSJE0WH1YuSZIkSZKkThiIkiRJkiRJUicMREmSJEmSJKkTPiNKkjo0VZ4BZDkkSZIkrQ9eESVJkiRJkqROGIiSJEmSJElSJwxESZIkSZIkqRM+I0rSHwSfRSRJkiRJ65+BKGkjNVUCL1OlHJIkSZKk9c9AlLSOGXiRJEmSJGmwDT4QFRF7A58HpgFfy8yj1nORtJ4YAJIkSZIkaWrboANRETEN+BLw58BiYG5EzM7My9dvyf5wdBn8AQNAkiRJkiRtyDboQBSwG7AwM68FiIiTgH2BjT4QZQBIkiRJkiRtaDZZ3wVYSzsA1/d9XlxpkiRJkiRJmmIiM9d3GdZYRLwSeElm/r/6/AZgt8x814h8hwCH1McnAFd1WtCpZVvglvVdCCzHSJZjOMsxnOUYznKsaqqUxXIMZzmGsxzDWY7hLMdwlmM4yzGc5RjOckwdj8nM6eNl2tBvzVsM7NT3eUdgychMmXkMcExXhZrKImJeZs6yHJbDclgOy7FxlAOmTlksh+WwHJbDclgOy2E5LIfGs6HfmjcXmBkRO0fE5sCrgdnruUySJEmSJEkaYIO+Iioz74+IdwKnA9OAYzPzsvVcLEmSJEmSJA2wQQeiADLzNOC09V2ODchUuUXRcgxnOYazHMNZjuEsx6qmSlksx3CWYzjLMZzlGM5yDGc5hrMcw1mO4SzHBmaDfli5JEmSJEmSNhwb+jOiJEmSJEmStIEwEDVFRMTKiJjf9zp0gvM9MiJOiohrIuLyiDgtIh6/jss2KyKOXoP5RtZpt4g4KyKOjohdI+KlE1jGEyJiTs1/RUSMeblj3zovjYhvR8R5o+TbPiK+U++X198ZEXHpgLwfjYgX1/v3RMSD+6YNq0dEHBwRXxyvXgPKO+p2j4g9I+KUev/BiS57MkXEv61uWfrqem9ELIiIGeuoLD9fzfwZEZ+u9wdHxDkRccQ488yIiNeOMb2/P43sE6+Y6P48ynp/N6KPHDgg36j9LiI+GxHv6ft8ekR8re/zpyPivQPm2y8idun7/Pv9YALlHtkGR0TE+ycy7wSW/aGIuCwiLqn22H015x93PBuxz20XEadExMV9Y+zIcaZ/TBi3nSLieVWH+RGx5Yhpg8b0Q3rlmUD91ri/9S1jetXxLePkGzYeVtqciLiqr7/O7nt/U0TcUO9XRvuRkXWit49GxLSI+FJELIyIWyLigoh4zDpax99EO4ZdXdvn8xGx+WT296mqxtH/6Pu8aUQsnWg/HbC8r/WPNxuyiRzXx5l/3P7Tt59dEhFXRsQXI2LrtSv5wPUsioht1+HyBrZNRLw8Ii7qG2ffUumrtEUd77Yfb5lrULa3Djq+TiURsXVEvH1E2pyIeMmItPdExH0R8Z2I2CTaefel0c695kbEzmOsY9RjyMjtUfv9LRHxz+OUe9g2m4iI+MsaZ564OvONWMZxEbF/vV+tMSbGOQ+o9IHnI7Ea50tjrP+08fbp/v0z+s5t6/P7Y5xz29Uoy5yImNCvwK3psWF9H0cj4u7oO8+Pdq74496YsCZ9WBOQmb6mwAtYvgbzBHAu8Na+tF2B563v+oxXJ+Bg4IsTWMbpwL59n/+/ia4TOBF470TLCfwJcOk4eRcB245Wj0H1AqatzXYH9gROGSt/9YVNBqQ/EjgJuAa4nPY8tT8DvjPOOl8BHDqo/LQfBpjQ9qv8mwKfAB4A5gP3AkeuRj/afB33y3uA64Btqx7nAEdMdBsMql9fnuesTttMoKwzxuuTo/W7vmmvBE6u95sAFwLn9k0/F9h9wHzHAfuP1sdG6VuPH1Qe4Ajg/WvRDnOAWcCzq7yPBy6tbbj9uuwfI7c38G/Au/umPZXh48wJTGCc6cs/Dfgq8MYB00Yb0/9ptP43wXVuupr53w6sBOaMU49FDB8Pp/W21Sjz/L4fsAbHvIlsM+AN1S83qfRHA1uvg+XvAKwAbu/r798GPjWgv38OuHFkX1qdPrKGZdwMOAq4uvaPC4B91mU7961refWRLevzPsCvgRuBO+r9EuDwMbbXc9ZVWUZ8/v32AF4PXAJcBlwMfG2s/jBi3x9WRkaMieO0zQwGjN3AR4EX1/vnVbnmA7+ijWebMmK8BD5U+S6pvLv372fA5sCngbNp4+TR63A7D9vH1/W26uu3S4Ad6/MWwBPq/aeAXwDXUseu6tuzxlrmGpZtDnBVtfH83rYGfl5/ZwCvXVdtsYZlXKVfAW8BvjEi7Tzgt/X+NcB3GBoTdwS2mcj2YZxjOfBS4P9o5wExYt49aWPytGrPN/VNG3dfAk4GfgZcAezXl34V8OG+z/8N/NUoyzgOeFuvzViN8ZjxzwN65yNbVNo6Ox8ZZT95K3Bg33bZvn//pO/ctj6/n3HObUfUddTxmDGO64PKDlzE8GPDfNp++7m+fP8G/Kjv838CFw/qa7Tj7db1entfnu0Z5/vMarT578bqG6vTBn3zrNa51x/ia70XwFdtiNEDDM8Cfk47gboAeAjwIOAbtAPzcuAFlfdg4H+AHwK3AUuBBcABtAPRtcDdwJXAL2knrPfQTgB+RzuY7AbcBNxJO+m5Fng37aTyihoovlHLXQn8Ne0g85Na54Iq59E1/VqGDuYzapA8tZZ3N3Ar7QTrPuCwyrdJ1Wt+le/j/e0EHFntsaQGu0tqwP0uLdixHDiDdkK8kval6n+rTvfRvkj8TQ2Ky2mBkRtpJ4IraCfxvROec4FbKt9Pa/kraCdGmwM31zJ/W3nfAnyRdnC4qMp4VW2LhVXu64G/rPrcXetdVPU4pfLex9AB5zrghtpeWW18QrXnvX3b4wdVnrur3T9S6zqXdlLS29a3VJsvAL5c63hmbYuraMG/u2knzHfWNl9R810CvK7a447aRoexah89mKEvAkdVOX5Xn38F/Eu9n13LvYfWJ3p9+R7al73bgAsr7e+BuVWGj4zcd2j95stVt1NoB65e31tU7fELWp/4DK0fHUxfIIo6OQK+AsyrvB+p9ruj2vv0Wt4dtH7/Y+AZ1UaLgbtqvgXAOyut1xYfr21zCW1/urhei6rsP692+GXV9fPAyr669rfB9yvfz2qeW2h9eg7DA0h3A4vr/WeqTe8CPks74f8trb/fVdMuBT4ALKvtdg+tD9xKOxFaTvuiv7KmzaZ9AVpc83ys2un+quMBtBOKY6ts19J3QjfB8XEO7QvWX9H25Rn0nYwDL6LtbwtqPb0Tw0Hj554MnVzuVtMvqr+9Lz/9eWYDf923rmCoz/0Dbd+8hdbPX0/bf6+jnWQ9q9pmJe1E/RfAhxkah26pbXhitfu11c4LKn9v2hLavriy5r2DNgZ8sdr6gdp+x1D7XrXZJbVdFtHG9aurrj+ijRuX0caN62n75SW0Mf36WtcK4H+qrq+vtJuA3wCH17pX1vLPp+1zd9PGur8bsQ13ruVeT+sjy4GDaH3kDlr/36Sv7POqDX7dt/1uqOl31nquqPVeU213R7XVnBHb8OG0/WUlbay/HDgT+CStv8yj9eUbaF9qHlbznUMbJ35KG1tX1radT/sC9tW+bXJPpR9AC0TdVuVYwvC++vqqy3xaH5nWd2z7aNXnT9fwPOIo4HiG+v92wKtWY/4JB8AYOnb2xthv0gJzN9LG3yOAD9L63DNp/XsG8EfVT26qvAf07+P1fm/avnIxcFbfOgee1DPKl+dazoXADr36AW+i9vNRltXfb45g+Jfu4xj/y/OmjBKIogWU51ZbHFP9541V99tp52Dv660XeCztmHwubayeWf1me0Z8Kaq6XQc8bbR+RvtC/i8j2ukL4/TLRQx9sX1vlf1S4D1953VX0vrdJbSAx4P75v1ElX8e7Th5P21/feuIdrmPNu59pG+5VzB0rnEGsCXtGLSCoYDRliO3f99yFzF03F8APJE2xiyiLxhJG6+2q/TP9fXHT9DG7/cBj6H1pTuBs4BH9/WJo2nHj/7z3T1r3pMZOt9+XbXxAuCxlW86bcyZW6/n9vW9/mPm31b6SbTz9fm0IN1WtZ77arvsW23XO8e+tLbbCX3b9xJaX5pRde7ta1fT9umDaec1c2nHj+VV97nA16kAR5Wvdzz4JfDsKuOBtZxlta1eX5/voZ1v9Mb266ss/zpg221FG48fTxt7/6Xa9OcMncN8tbbnkqrrp6suZwHT+7bP2xg6N3oLbXzai9Yvf0Ebt7bqG3uupI39RzPKeUCl9c5H/qG26cW1nRfV56urzfetbXRxtdf8astf0I5B82h9/Jpqj1dWe91LO0a/C/gebX/ofWdYBryk1nUY7Zi2stZxZJXv94EoWj/7H1btZ39U2/GGeu1b6VvS+tolwLdox6VZtHHkuGrPBYw4zvcdGz7B8GPDB2jnqhcwdN51d23HJ9G+T91N2796x9EjGLEPUOMqYx9HP0nrrz+qdfXmf0Xf2PKzav9fUAG4ar/e95q/o/W3X1Y7vp62j62g7X+voZ3f3VSf7wL+aZSx4y+q/XrnXtv19fHe97feudebgc/2teXfAJ9Zk/OBDeW13gvgqzZE2wHm970OqB3zWuBZleehtJOc91Xn/dsaEH5NC04dXPnfQBuIfwU8nTa4LKYNhrfTBtj9Kz1p0ep30w7GZ9BOKH5Y5di3BoezaQP+TcAJVZ7lwDa0k8yLgeMq/UTawL6SNnCuoAWJZtBOlE6psl5AG4y2qIHjbtp/xvYCZteyDqnl/KgGhqyd+pAaSD5c8y+jncT/rpbzdNoXj3ur7NOr/a6oev6aNphl5flv4Am0g+TMKsdVVZfjaAfMBbRB/9VVnm0rz1errB+gDfS9QNS8aodNaP85WVj5vg2cX++TdmJ2cW2PnzF0crCituU9wOmV/17qSgpgv5p/jyrnn9K+cD266jmfdoD+P1q/eG3V761V9wtpB/Sn1XY4o+Y5tJb7Q9qA+hWGgoZ30a76+Tnt5OCSKtNhI/rowdUOD675fsBQH78XOLXyf5jWDy5j6GqDB9X67wYeXvn+g3bSELSD/u20g/ZHGDrpX0zr8xfRDphZ2/XiWvYH+/a1K2l9pResvYihvrF/teNelfcu2oH7B7VdbqWdFNxf7fdE2sn3ytqGN9e6t+0rVy8QdRnw3Xr/LuB79f7iKsMm1eY3VfqHalnzq7630P6Lvn2V/y9oY8VNfes4geGBqOVV7gNrGe+iBQJeBTy3tuWmte0+Ttv+Cxk6gXuA1seOq7bJav+5tP16Ce1E92m1ba+q9S0HzqgyfI7W975K6zO30cadVU4ERxkf59Q23araoheweT7tQH0XQ1djLab1vc2r7MdW+86tdtuTdpJ9Hm0f6AVFXkzrL39P6x930vrXSxgKfJxH6y93V/l/ThvP3lZt9L+08XP/quvVtLEnaYG/Y6uMNzE0xh1ZdZlGG7Puo/3Hes9az0za/noXrc/9Pa2PXVlt+kjaOH0qbT/5HEPBnCsZGoP2YGgM+kq1YS/wcw9DJ41PqXL3TibfSztR/N+qx6toQaMDazv30p5JC+7MofWBBbWtPlXLnU3rL+8H3lFl/x4tiHgK7Yv5a6s872Do+HcRsAutfy6uaQ8CvkA7+f4F7UvkslrOo2njwNW0/r5r5f1IlfWjVa6P1vb8OW3ff1lth6OoL0a0Y+UXgBfS9omR/5m/sbbFklr/ASP6+xa1be6lHVOeQTv2zKt6nVbt+OAq26/oO+mvZQ38wjRgH+mNtQ8dZXovuH4ZwwP5i2iBgHNox7bH0sb+C2nHoydWvpFfmH9br8tpX07vrGX3AlFzaH3mJNr5yn2V51Za/7+JdtL/22rb62nHgl/S9tvTaGPFr2lfCH9C24euZuhL5iY172iBqJ/RjpODvujvRhsX7qL19Z8Bj6Ltdz+t7XMfbZxdQBt3/5c2Bt9FGwN/3be+b9f0H9OOBcurHr9jaB94WtV5Dm3fvq/a/zfVNmf2pZ9T9VvB0BU5n6Ads7atZRzI8ED7KbR+3mv7h9HGv5trPW+o9jqYdq6ytNr9a5V/M9oX8aXV7mfVfI+mjU2/rXUdQNvWT6cd47KvXY9l6CqGRcDb6v1na3v2/klzH20/PJK273+tynkDbd/cufIuoY0ZJwOv7zseXATs2ndMX04b726infOdQRsvv0YLYtxQdd2M9g+e3nnU7tRVGawaiOr9o255tc9Chq72W1Dt+CuGgvxfZ2iMfX+t/xJa/1tS2+aoyr8U+Ffauds/0sb4yxm6iukIhs6Pt6XtN5ux6j9hesfuU2lflhfSjuGfYigQtSOtf/2KFqx5Fi3Q8IzaDjvXsv6RoUDU1yrtXNq49y7aWLqi2vGGWvYS4OW1DZbWdrm22uirtH/czajpt9G2+UH1uRfAW8SIAG/V5ev1vneOtmeV7/O0/n4m7R/N19D64Our3r1/Dr2FwYGo02n7+JG0/noNbfx+b9VtZi3rVtr2/jfa8f522vj2m2qTD9S891bdrqHtV4to4/X+tEDzMtr4eSJtrD2Wtk/1gmefpB0Le/3wfbS+s4i27R8OPIKhf+L8mnbM7v1z9Cba8X0lrb/9jhbAez9DweDf0MbEv6i2vIf2PeZzwHtqGUsq/c+rfX9c5Xlqte8s2nevZVWXy2lXKI0MCi2veb5DO1bPr213arXhI6pOP6m0Xr1vqe01o9p3bi1rZtV5Ge342Kv7pyvvrbSx8OAq5zza/vhL2jiwGe0fZ/fQ+sCxwFdqnTOBefV+2BVRDA9EfZJ2/tE7Lk+njYVz6vMBwH+OHDvq8zYM/Tjc/wM+Xe8/yfArxLahBQavATartJ8zzp1AG/rLZ0RNHb/LzF37Xt+iBUZuzMy5AJl5Z2beTws49O6/vY12cOk9F+os2sHlBNog8Ue0HemXtB13Lu2k8Dm0zn4f7aRzAW3gO5u2I/8nbQdfUOu4KzMfoO3Q5/QKnZm30Q462wG7R8TetIHxe1WnJwH3ZuZfjlLvUzNzBW2A3KSW8yZgeURcTPvS0fsCuGeV7QzayfljacGp82knXOcz9OXzG7SB617aoPfBvnbaudazKW3g3oR2wHwM7aD/7ar342gH2FfQBp3fVZkvrrbZg/bF9q8jondw7X+WwnW0QMMDVa4ZEbGAdhLw5IjYovJ9OzOfRhvID8/MRbRB9C7al4feCTG0bXRAvf8L4NbMPI/2JfqLVbYrq+yPY+g/WTfSvhBMo21vGLqC5S20L5970L7wva7a+ZrK93jaycdetIPZZbQBc0XlnUv7YtrfR3seV9thJa0f7Eo72B1U099MOzl/gHaQ2KLa+wFan1tW+f7/9s492quq2uOfeXgjCj4R8YE8FFECFZWDkqaGeUu5Kj6QTDRvNbqmoVaWVBQmld3rNa1hJb4qb2QOUzEVTCwkHhICvhUVXyhCvJH3mfeP71zs/ftxDqApcGl9x/iNc35779/aa80133PttU9GztQslIiaD4xAwW/SY+2BO9z9UHefGsdeDNquRDxCjK0NclhmoSB7InBwHO+AnIe74/pk9DrG9/eCrg8GPa4Iui1EzvbXgzb1oQPiLYKOnw6e6Ijmsg7ojuQW5PzXBd3uifvegJKLaxBvP4nkstbM+lLwShkTULJgLnLAJiJHoQ/i08fi79djPO2RowrwWvBYwhpE/8cpVuIdE/83RvM3DOmiY8zM4nfNUbL6Y8hh/S56ROUw5DhssE9VFX5LoXtqEE+NQnphibu/GOfeiLEdiBKX9wQPjEO6BTTX16Mg9TMx1uuQbHZBydq/Iv5agYLQFmiO94ix3I548lUUgPSK609BvHUScjbHxj1PjOsTJsff3YC17r4O6aA5SIeDdEIzpLMsxvw5xF/zkJ64Bzn0x8enfekeZR20nEIHnQ0sj+O1SO8nnIyCPpDOGIiSRYfHsW/F9yQP65CsvBLHOiNd1CNs2dfiuqMpeP/XSBcdgRzXviip2CnOH4Wc17bAPkA3d18S5x4GfgWchuaiq7vPRTqjkbu/juY+7YM2DgXXv0H6cxiwK7JR+6LEQTN3fwAFwunx5YTfIf34BhtiHtKFj6BA9VozaxfnloZtW4zmqy3SWTsiOWmMeOJAFEx50G94onXs/TGUzZOTzigxsqSB81e5ey8kG8ea2cdK51a6+zHu/juUFPiKux+OdMHP45rrUaX2CFS5bU6xSuc8JCdl+wfSS71Rkm8u4sEBce18ZIN2QDamLQoWf4R4vVXoilVBpxPdfQiax0HR/onI5rUo7xGEEhkgOR9U1e/EF7OiPx2RHmiKAlNQwP3V+P44WpU1Hum5mciW3BV9TqgFznf342N8vZEPtg9wWujBWpQ06IoCssVI9p5DerUlSraPib4fg/Trx8zsRVQwfNHd5weNrkGrS3sELeqiL7shHnoRyepCxMffRn5QJ6RjUpB3OpLFaShhvBQFa2dGe0NQIuMnSE6HI37vG+ffcPcJ8f9vot8J98Xfp5DOW+Hu3ZFPchzioX5Ify6IeTgf6dB/RH9BfkyHUrt/RIEnyEY/7+5dkS/XiILnBiEdcHrc69PIbiQ/6pz4nnBu8FAvRPuEWuQrjQ/6JTnfBclodzQHe4bcngf8JXh4CvJFJyK9dS6yyVfHb76F5nM1sMjMdoy2H3D3VTHf71LJbwmJD7oj36A9Sgz8b7rA3d9Eq7OJcY1Ftv9QZAdejXMrkF76PjDAtH9qbySf3w06rg0a/x7x9jhkK1M8MYFile44YE34tFD4JkOi36eiZEJ/lKArYyDiWRAvHhR9ewfNywvIbzkl7lmHZGcx4su3UJGqVT002xn5bJ9HfLAa6f3voMRN4zh+EZrvdSgGOA3prTFo3v9AUfD+GdJlj8Q9Xom/TyK/ciySp28iHXhf3OchxAM/pODvPiVaEX7wMDS3V8ZfR3pjDtIzo+M3fVByZ/38x/0NyeU18f8/kO9wToyTaPNdpJf3RPOKu8+k0C1zor01yBbtFbQ6OvzUdWjl6swYz8CgbWp/OkVS/xDk/x8Sey8Z0kkguzgDGOHuL8X95yM/bQHS3SdE260o/BHieHfkH0xHc3cBsiWfRPr3E+EL3YV4YVM4EfFUQlvkl9Wa2Tw0f3uUzpd1yt7Aw3G/ryHdntr8WbrI3Re6+3Lkk3wm9kZr4u5PsR0jJ6K2bRgS3PqOgwLZw6vOrSqdX4cUnVWdT6hDAZDH/zWl8yvjt3VsGNg2ir9a0qNk1FXIQPwnCjjK9zEaxqpo4w1k4FJAsi9a5tsDOUePuHv/uOch0eZI4P5QfguQAViNjH9Pd/9K3OMJ5Iy8gxTneORUWYwzjcWAVdHemcAUd98JGYyXUbAAlXR9BhgV9+uGDGbC2hIdbkOJmO7IoMxFgSoUQV+ZTiMpApZyEqAO6GxmuyPnbV4cr0EGZRV6DKFJ9K0GzZ9H0Fmey1ShOomikj0q+riagvcOC3otRQZmMTICuyKHYsc4VsZaKvVLcwAzuwAZrhlmdiZS3H+Iez4Z90lVuqamTcB7xLiupkjGLEOOVdfSfZZQGP9Eq7/H/6vivgkLUCXowLjXu0GfhcgxvzxoYIjfe1AkZlLF5b2gQwcaxloa5v+RKFjtjgxuo9K5+n5jyCj3RHS/x91HRgImOe0jkAGuAYjgpymqqrSPz9OIp2qR03ICCu4fQZXD0Yg/U3+W1zOmhPU8FfQDGdrhKJhvRuE8LywltJoh53ZCKYm7XwN0ShiUEvUogHkX8UBDTkTSn6PjezmQ2Rk5IMNRZS+tLmuN5OpmpIu6In5YjBJyJyN9shoFXN9396+4e+KV25G++BpysqdFf5e7e3d371fqX5JFp6D1UhSoJiyPdmejIO6l4Jd74/iPEQ9PRHM+EgX/CWUddAMKCrojRyddV81rA1GA1zLG0gPJ6e0xjp7ufqC7D4vrV7r7urADPVCAfSZFwL8x3BL3mhBtDo979UNBxJPIUW9e+s1FiD+/h5KTTeN40uG4+8qg13MosVFOQlP639FcJiTdXkbi/wUo+CjjcYoVbKcgxz74HKwAABM/SURBVP2IOFdXus6j3YMo5Cc95pgC91VBx6dRsgOK4sD7kZOGcJaZTUM0PZhKuRkFYGatkE64K+73C4qA+0TgxjiekgsrggZr4/ytcbwv8k16Iwd9GkqOvI7k53A0bwegwGYaxT5BhnRr6t/LKHmxLr7fgpKxoMTyrVQV8lBAmXBc9Pt5FLx2MbPzkZ05Ivp0P+LdvVEw2cTdU3J2KvDx2DS4CVqlUYfkqcwrY0uFE5AO6Iz0anvk0wyPsV2MkqmLEE+AdOK+aH56Rz+6oGRgYyR/a4FuZjYYyef8VKhEfHoIReLmdpQ8XYrm6VNIjsbFuN9Aj92uRHw4FiVE7nL3ju4+rDSeT6D5/QIK/ptTyBRs6KeWvyf9U8eG/mfyo0bE3HV1990Rf3yKSluzDjg1CpSHBV0/Y2ZN0LzcVrr2QXdfg2SzBumQdYj2HZC+TH7Uv6NVLAl3Bg9NRT5RQ0hjfBtYFHR8lmL1aQegV0lumyH/YiXyL/aO/tQgHTAHBaXd3X1pFe3S+Kt1E8i33R0lmNfEPVq4+7SKzrrfgQoVd0dbF1Opo0DzuhbJTw3y5ZehZGlKdCxFvvBAxIOfRP5jZ5S8GEiRkF5JJX5fktHfIN+3P0ourE+ymdmu0debzWw28tsN6YudkG6fGPdsh/wboi+fi752QT5q2Z6WMRYl1K5x94Pc/bNIxzemKLz8F9JlqfAyPca8CNnkQ6Ot2chXGIUKW2UY2l6hJ/IjdnH3neL7RDRfqcjUuPSbogGz4xBPzUGJrPFIl6Xk4jDknzZFyZpu8UkFzVEUT2aci3ynBeipmhYoQX8TStjv6+7Pxe/qiz+XIZ1/H4r3RgatngheP4HCJ78PJa/LSbEJSM8sQbZ8MEokHY2KAwmvoYRYQzJwe9Dw35BfNCyOr3X3xSGP89B8HYl4uFHohcVIJ/ZAidmmbBrVflKK/3aleMrkzdL5st98A3pioTtKZjcvtVEfjW9GdLmAwqZut8iJqG0bzwN7mdkRAGa2o5k1Rs7uIBRMtEYK54X4zR5IsaVqT2ukrLtQOA4DqayAvx/MQQ4CwFwzOyqM+alIcXwbCeamsJQNhX8hSg78DQWt75nZRUgBY2Z7IsF9CwXOJ1EohymoWkhcWzY+U5Ci25N4HpjKyu1apEheAxqZWT9Ez92t8k1pHaPfqcIyCVXG9op7tqT+ihUoqeThNA1CKxUuKLULMi6D4//DkHO1ACnaNM41KAj9b6S0k3M+BjmJy4HFZnY8MtptkNFZz0cUxmlR0OFt5AB3Bh6NPm4seUjQYRriowPM7KagQeLR2aiq/DJyyI4EcPdbKfa7aRN/u0Xmvzb6Njfu8TKqHJ2Nqp8XIp4Zgaqa/dy9M4WzuhitTqsxs7ZsqN/KTpyHkz2DSj5cimRlFTIyhmh+I5qzhLKD3Bg5rcm4dEROJzGWnYDmsQJuFQoWQLSfGPQuV3Mmlfp6Sun4w8CFESxOBk4wvVVyX+T8vIiMfguKBHV/xEcTEP+3Rqs/FiA5rY3zqdp0Tly3H3I4Eq+UUYf4+ej4fjiV+mRX5GinVVuJLuWAH+DxUvDYzd0/X8+9KhDj7VI61BPx8U5m1jmO7UexMhDkaBDjLCdpQPRIwcbg+DuCqIQGf70aY1gelepOFCszL7TirXFTEb+m8b4LtDOz2uh7EzNLlbAyJgI7mFl6NG8nlFxKfU66q3VqhyIh0hbReDhKZg2op/3yWJPTsyvSbzXIqTw22j4QJZbbI3nqEvRoE21bXLeL6U10S0vHdkMyNx85tWlVV8IECt4fhHTXWRQ6oF3Q52gUwExFFfdPR/tplcBOaM4cBfEpiVcHtDKzw0urkkCJ2eeRA94E2aj5SDZeR8HgCjPrE9efxob28RkU7Blh/2IeTkB6+xfI4W3ExrEU6eh+4UT3jPs3pG8NJTg2R05mAfuW6FQ0ojdkXQGcECs0HqAyuZec5hoUVJdXZx9UOldbCiTfi+NPokdwy1Xb8SjQe9Xdb0IrRpoivTGdYs/BJ9Bj6j2RTr0f2ZVmJZo0oaRvo2g1N2zcUVSuWqnGM3Hf2khytEC8acT+fXHsIPQ4dL+Gm1rfn4ZWu5YDj8ZIRmfF2OZSmQxtTiGr5UDkurj+brTKaKS7z0KJoiEoePoiChyLjokXR6Dk0iuItgMQ7c5AQX1/d98XJTsOQ9X8VLV/FyWb2iA/Jcl3GV+O6/ogevVF8wziu9r4fyClVfObgYeBi8zs5BhLe5Q8fAvRuizLf0Iy1xjN61gkx41RQSGhPEdrotia0Di+34P8qOfc/R+b0c+/ITqC9Fca47rSNesQnxjSX+NLRcoX4vyRyIffEyXIxiDbPRTpu2ciEdMQliI5SmiNCmmLEL+3Q3K0HmZ2mJn1RrxxI+LHlKDb0cwODf+kf+lnTZCeTY9gEr+5HyWObkV6eh+0+vkdtKJ6SvSpptQOSD7SSs9WKFaZglYe9qRSBw5Aq9v3c/cO7r4P4r3+SP+3QT7QJ+P7hLjf3ugRwjtRwnh/5G9WYxGyM7sAq8yspelt4yuQL7w7SuRORnN4IJqzVSh5MQnFXemRvyUoedAbyQdIvkAJwtUhH2OAS0p+QIolxqDVWQmPU+mrtI9xtAxa9Y7jyW9si4oX7yG73QclP1Kby+MeF8fxG9GKvS8GLVLRHjNLcz2HWBlsZodQzGdr9Pjo3ciW7kMkhVKRisLXuwUV68q24W8oZmqHfJ9jYqx90KrJxNvVBdAylqMVe2kFUqOSvqouNjViQ/vanGJF+HlULq7YwH4GxiC+SOfnEk8CBS2+RzH31WhNsZrq/NLxNCcAmNnOAO4+GdH1XCqTeNslciJq20HF0nIz+2FU2c8Gbogq0FgkQD9HgjMTzeFMVIn5ATJyd8axjyODcTl6lvm6ODbN3e/9gP2cgZz9p5Hxvxc5B7UoGXUbxSqUjWEcEuohZpaSZkuQoh0GNDazmciw1SEl/zBaVfROfH8TVcieRoJ+LHJg+1IsfQRVHuuQwboXrRwpG6e1FFXRpshJT/sO/STG1QkZlF8i562tu89DAetJZrYCVd/LTlMZ30YJgrEoKHoLzYUD34nfXw30MbMXUKXiQbTJ3wwUEBL3Px0tvR5dav8SZKz2Qcb01qBxDQrEz0YGqAWqQtVQPHPdkUJRX4UChbJumEKpqhRJvkUx1iFoZclZVTw6AQXwU5CD8h6VaIKCvVdRoDiZotr2WFzzEkqMDAja3IkSM9ehCuaO4bSmvi9BPPE0CgzTxoMbw19irJeZ2ZsoAdAhxnt0tDEBOUFNkAGtz1BdH+cvRwmmNcg5Ox3x3AA0X48ChwZvvxVjH1vVz68CTcxsCnLWaqLS9GM0x+m595XIkRyNqnFno/n7Knr0ZgoK1JYjA78DCvKmRns1cd+hKIn5WcTjHRGP3o8clU5mlh6ZSjgXydhliIdvKiU656Nq9cFIHqsrhCB+ODwlj0qO4KbQCjmIY1HitBuS0dfRKo7nEf3vC/25kkJ/fofC4ViIArQfo6pnizi3AiU8W0S/2iM5vT/uNxHpnjp3fwhV/BI9Twla9os2/4Tk/kfR3nTqd1QeQI7bDOSkPBrtjEU6bSgKHjvFZzoKYkCrhgwlA9ZRPO5XH4ahhOh4FCStQrKyP5qza5E8JKfxl8iO9EKrIYbG72dG39rFNS3MbBzizcfi+luQfE43s/SowqVoJcalSF/XIeftDqT3X0VJgslINp5E8+rIto2Nsd4cdPomWtmWHNY1QYO7KB5BPxbNadrDqg7xejPkAP81fnse0iupaHN1Fe0ejd/cDQwys7RPSjs0p8OQXTmDYm7qw71ItsYEHR+PNh4nks+m14t3j+snAUdvjpy4+3uoOv1TM2sa17czs88ifZaKFG3R45f1tbEEeNW0WhUTesTpCqeZypWo9SUengVahmxcjuzAVJQEnYwKJb2QrIB0/2nIJjVCK2JnoKDr+cqmuZlYUVFaKVUfRiCeuKp0rPzoavMIEAfHeA8m9mgyPea8lHh0NVb8raGwxeds5L5Nkf3oZGazUHJ8CXrUaAfEL08g/k1jW4l4KwWnjcxsj0gO/yGuvQPp6NeIVWNm9hKS4zbI3oD8l6GIFycQ8mpmh8Y45qCE85TS9SORv3UW0gPtzCwlvMehBNBtyKbPQHsIPRnnnwPOD57eBW0p0BBaBE/sFe0ej2R2VMjVi0i2r0BzkR4VG4rszVPR35vitz+Ndh+Ndr+Einebwihk80Zt6sLAJUi3H4f0xaUbuXYSSrq3hPVFyhbxSdtIPIOSCpcgPfUr5Cc0Rn5cvYik2QQze9rMrkWrQnuZ2VSKhO39VT/bA+mutIfqTmiz+LeRDp+EbEBZNibHJyXFTqXYQwyUjHzL9fhx67j3WGQvFyPe+x+KlY0PAIeFrzstxpze9Dikqr8DUaKwjIdQsvQdtMry14i+rREtl6MVMKMQr34/dGV9q8jSPlhnIJ6ahHwoR6t1zkN+1DxQ4YXihSiTEH/+EiW+LkK67I/If2yCdGMN0j8XI13xIyS730KPaT1LsUr/aiS/e4XOex3ZqvRSgt2RTnS0gm9t3PPI+P0VKLmcthhYjvzCcsH9EqRvj0Lz8iVkR1+LPn8Ryf/wEr33Cpm+odTObuhxtOlIHwynlBQKWqWVyW+6+/VVtE/7nnVFc9woxtof8XI35Ds1tJJtGdKvQ5FNehD57A3FXiCdlYptjZEO7mpmkxAdkw/RHG0xs9rM0sruhKsRrR4KHj4ePSb5x/g+HsWo9WEY8k/HIzkrt7lzyPIMxN8Jv0crxRduZFzbB3wb2Kgqf/LH3UFKcvzW7se28EFGbDrQ5Z9sZy+k0F5GxvoBYvPj0jVtkWH7bunYYIrNr9uiACptPlyLVqPNpHj7R4OvNKV4pfgsireTXQU0jfMbvImn9NungHFVxy6N40+hxEAnijdppDef7IqM257xfQDFZvq3UfkmxzItyueOp3hD3UyKN27MpniLUC/kKDRDjtlM5Ei/9E/MWUuKjQ3PAe7d2vz4PnjrCIo3JN2MApQO1XTeGH0buNdjVL4han17yOn5bfRhVFx7XJxbVvpNmQe6ICd7Ctr74q3N4a+tTfMPef7KsvJykpXt9YMCkkX/xO8b0qXXUrxBKG1WXubP4yjevNQCJcmfit+k4zugZMNMlGj9O6H736ecNEXJ1VnR/mTgpDh3W8jjAyiRPziOzyb0WXzfHwUhM1AyKb0JaLeQr1T4ugkFBcMoNqcejIKL0ek4xb6Sb6Bk3ZVx7QEo4biC4o2SaWPk5SjRNDP6d27VOJugxE7aSL3BV86jx0cWUbyx61kUtNSiwGIxqm6vRond41CCchJKEi2m2Kx8dPxmIpHkqr5fiVbTkA1Km4+/jVYVLUIBVMXY4v9vxb3SptidUAJ1drT1Qsxdsj9HRD9nxN9WbB6/Vfd3NIXOPBnZ6RloNV6D7VTz+kckt+1QAi8VtsYRchbnnwc+Vfo+jMo3HS5r6Fw993qMenyZ1Abiuz8HbYZsgo4byG2MZUp8fwrtKUbMaaLt9YT93xofNi5LG+iAOF6L/J4JKDExux7ddwCFz9iXqjdQVt+3nn7tgRIxM6rmK73IZxnym68p0XIcSlSt59GqPlXzytNAh/j/bIo3DP4dJcTTViHT43MyhX5L97ySKp36AeehDhVW0+cyKnXtGVS+ObIn0lszkH36j/p4GiV8XkGJk2spNtuunp+2SKdMQbpuWTX9Sm1uQKtNjO0ZYmPv0jwsI96KSv3+4nqaUrxl+NqquR1Mw/L4BcSjj6FE+Q+2loxt5vyPRiuYt3pfPupPCnYyMrYqzOxKtMx1kLu/n2Xd2x2iIj4a7QF0+dbuz/8nmNljqLLUFL2m+rYtdN8uFCvNVgNf9mLvjvfbVl+0dNpQ0HKh6/GMjA8JUaFe4e5uZucAA1170P3LYGvJytZCVELnu3ubrd2Xapgey2zi7itj9eGf0Vsgqx9n3e5hZh1QoHPIRq7phR5j69vQNR8FzKyVuy+L/68E2rn7xlbGVP++A5sYWz2/uQetrpnv7rWbun5L44OM6UO8d1ox0tWLPQoztlOY9kq6wt03WGVtZsvcvb6Nybc4TPta9XJtMp+xDSDp7vAD7kFvMK5edbfVYdqLcApKuJ65qeu3B+REVEZGRkbGvxRysi9jW4JpX6dxqLpuwDfcfWN7H2232FRiY2sWrWIbgW+i1XWvoVVl8zb+q4rfd+D9J6Jyka4emNnn0CO7l7n7XVu7PxkZGdsuzOwnaIuB5mhF6qWeEyDbBHIiKiMj40NBVG73rzr8DXdv6LnpjIwKZB7KyNg0spxUwsyuonI/D9Db336wBe7dHe1XU8Yqdz/qo753xgdDlp9tE1mWth+Y2WSKl/YknOeVG5dnZOREVEZGRkZGRkZGRkZGRkZGRkbGlkF+a15GRkZGRkZGRkZGRkZGRkZGxhZBTkRlZGRkZGRkZGRkZGRkZGRkZGwR5ERURkZGRkZGRkZGRkZGRkZGRsYWQU5EZWRkZGRkZGRkZGRkZGRkZGRsEeREVEZGRkZGRkZGRkZGRkZGRkbGFsH/ASaWBizWNgQSAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# dict sort by value python: https://stackoverflow.com/a/613218/4084039\n",
+ "sub_cat_dict = dict(my_counter)\n",
+ "sorted_sub_cat_dict = dict(sorted(sub_cat_dict.items(), key=lambda kv: kv[1]))\n",
+ "\n",
+ "\n",
+ "ind = np.arange(len(sorted_sub_cat_dict))\n",
+ "plt.figure(figsize=(20,5))\n",
+ "p1 = plt.bar(ind, list(sorted_sub_cat_dict.values()))\n",
+ "\n",
+ "plt.ylabel('Projects')\n",
+ "plt.title('% of projects aproved state wise')\n",
+ "plt.xticks(ind, list(sorted_sub_cat_dict.keys()))\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "fgTozC6woc6B",
+ "outputId": "57592fd7-0b73-4fe3-c220-485e61100e36"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Economics : 269\n",
+ "CommunityService : 441\n",
+ "FinancialLiteracy : 568\n",
+ "ParentInvolvement : 677\n",
+ "Extracurricular : 810\n",
+ "Civics_Government : 815\n",
+ "ForeignLanguages : 890\n",
+ "NutritionEducation : 1355\n",
+ "Warmth : 1388\n",
+ "Care_Hunger : 1388\n",
+ "SocialSciences : 1920\n",
+ "PerformingArts : 1961\n",
+ "CharacterEducation : 2065\n",
+ "TeamSports : 2192\n",
+ "Other : 2372\n",
+ "College_CareerPrep : 2568\n",
+ "Music : 3145\n",
+ "History_Geography : 3171\n",
+ "Health_LifeScience : 4235\n",
+ "EarlyDevelopment : 4254\n",
+ "ESL : 4367\n",
+ "Gym_Fitness : 4509\n",
+ "EnvironmentalScience : 5591\n",
+ "VisualArts : 6278\n",
+ "Health_Wellness : 10234\n",
+ "AppliedSciences : 10816\n",
+ "SpecialNeeds : 13642\n",
+ "Literature_Writing : 22179\n",
+ "Mathematics : 28074\n",
+ "Literacy : 33700\n"
+ ]
+ }
+ ],
+ "source": [
+ "for i, j in sorted_sub_cat_dict.items():\n",
+ " print(\"{:20} :{:10}\".format(i,j))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "YqtXGwRUoc6E"
+ },
+ "source": [
+ "### 1.2.6 Univariate Analysis: Text features (Title)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "UQHyF0ASoc6F",
+ "outputId": "ecd2350b-7399-4456-ddf8-34389eee54fa"
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABKIAAAE/CAYAAAB1pGuwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xu8XVV57//PVwJesYBEDleDNvIrUkGNSL1VRQVEQf3VCnokRT2RHqh69Jwa1CNeyvnRVm2l9egPJQW8gCheqKCYUgVvKAG5ipSAIDEpIKBJRVHgOX+ssY+LsC8re2fNlb3zeb9e67XmfOaYcz5z7B1MHscYM1WFJEmSJEmSNGwPGnUCkiRJkiRJ2jxYiJIkSZIkSVInLERJkiRJkiSpExaiJEmSJEmS1AkLUZIkSZIkSeqEhShJkiRJkiR1wkKUJEkaiSTvTvLJaZy3R5IfJFmX5I3DyG2mkixIUknmzeAaVyd5ziTHv5Hk9dO9/iTX3eD+bc/6+xs7l5lK8qwk1446D0mS9DsWoiRJEkmOTXLuerHrJogd1m12D/CXwDeqauuqOnHEuWwUSU5J8lf9sap6QlV9ox2fVtFumibt32EVwIahqr5ZVXvM9DqbaqFNkqTZyEKUJEkCuBB4RpItAJL8J2BL4MnrxX6/tR1Yejbm3zkeA1w9nRNnMkJpMzLt/u2aP09JkmYfC1GSJAngYnqFp33a/rOBrwPXrhe7vqpWAyR5epKLk/yifT997GJt1MzxSb4N3AU8NsnuSS5oU76WA9v3tX9Ikk8muT3Jz9v1dlg/yST/CjwX+Mck/5Hk8Ul+L8lpSW5LclOSd44VvpL8WZJvJ/m7JHcA7x7nmg9KsjTJ9e3+ZybZru/4Z5P8e3vOC5M8oe/YQ5N8oN33F0m+leShfZd/dZKfJPlZkneM1/FJlgCvBv6yPdM/t/iNSZ6f5EDg7cAr2/HLJ7jOa5Nck+TOJOclecx47VrbQ9rUv5+3n9UfTNS/6513PPCsvuP/2Hf4+W3E3J1JPpwkG5pbfjelcUmS1UnWJHlr3/F3J/lc+11ZC/xZkgcn+fvWfnXbfnBr/5wkq/rO3ynJWe135cfpm3qYZIskb2+/B+uSXJJk1yRjhdfL2zO/cqJ+lSRJU7MQJUmSqKrfAN+jV2yifX8T+NZ6sQsBWqHmHOBE4FHAB4Fzkjyq77KvAZYAWwM3AZ8GLqFXgHofsLiv7WLg94Bd2/WOAn41Tp7Pa3kdU1WPqKp/A/6hnftY4I+BI4Aj+057GnAD8Gjg+HEe/43AS9u5OwF3Ah/uO/4VYGE7/1LgU33H3g88BXg6sB29aW339R1/JrAHsD/wrrGCz3rPdFK75t+0Z3rJese/Cvwv4DPt+N7rXyPJS+kVq14OzG99dPo4z0orLp0OvLm1PRf45yRbTdC//bm8Y73jx/QdfjHwVGBv4E+BAzY0tz7PpdfnLwSWJnl+37FDgc8B29Drt3cA+9ErmO4N7Au8c5znfhDwz8DlwM70fiZvTnJAa/IW4HDgRcAjgdcCd1XV2O//3u2ZPzNF7pIkaRIWoiRJ0pgL+F3R6Vn0CgbfXC92Qds+GLiuqj5RVfdU1enAj4D+IsopVXV1Vd0D7EivSPE/q+ruqrqQXlFgzG/pFaB+v6rurapLqmrtVAmnN23wlcCxVbWuqm4EPkCvCDZmdVX9Q8vzAcUt4A3AO6pqVVXdTW/U1J+kTfuqqmXt2mPH9m6jsB5Er1jxpqr6acv7O63dmPdU1a+q6nJ6BZAHFJE2kjcA/19VXdP6+38B+0ww8uiVwDlVtbyqfkuvmPZQesW0mTihqn5eVT+hN5pubCTdhuQ25j1V9cuquhL4J3oFojHfraovVtV97ef5auC9VXVrVd0GvIf7//zHPBWYX1XvrarfVNUNwMeAsTXPXg+8s6qurZ7Lq+r26XWFJEmaiIUoSZI05kLgmUm2pfcP9uuA7wBPb7G9+N36UDvRG+XU7yZ6I03G3Ny3vRNwZ1X9cr32Yz4BnAec0aZX/U2SLQfIeXtgq/WuNVke43kM8IU2Te3nwDXAvcAObbrWCW261lrgxr77bg88BLh+kmv/e9/2XcAjpshluh4DfKjvGe4Awv37Ycz9fnZVdR+9Phqv7YaY6Fk3JLcx/T+zm1rO4x2DB/4urt9+zGOAncbyaLm8HRibArork/8sJUnSRmAhSpIkjfkuvSluS4BvA7RRSatbbHVV/bi1XU3vH/b9dgN+2rdffdtrgG2TPHy99rT7/Laq3lNVe9IbmfNielPspvIzeqOp+nOZLI/x3AwcVFXb9H0eUlU/BV5FbyrY8+n1zYJ2Ttq9fw08boA8pzJVjoM8wxvWe4aHVtV3xml7v59dW8tpV+7fZzPJZSa5jdm1b3u3lvNE91//d3H99v15/Hi9PLauqhf1Hd8YP0tJkjQJC1GSJAmANs1pBb21cr7Zd+hbLdb/trxzgccneVWSeW0B5z2BL09w7Zvatd+TZKskz6RvGl+S5yb5wzbVbi294tK9A+R8L3AmcHySrdt0r7cAnxz0uYGPtvMf03KZn+TQdmxr4G7gduBh9KaVjd37PmAZ8MG2CPYWSf5obKHsDXQLvTWuJju+IBO/ffCjwLFpC6m3qYOvmKDtmcDBSfZvo87eSu8ZJysMbUiuM8ltzP9M8rB2zpHAZOsynQ68s/3ctgfexfg//+8Da5O8Lb1F5rdIsleSp7bjHwfel2Rhep7Yt+bZhj6zJEmagIUoSZLU7wJ6i3J/qy/2zRb7v4WotnbOi+kVMW6nt0j3i6vqZ5Nc+1X0Fg6/AzgOOK3v2H+itwD1WnpT4y5g8GLSXwC/pLcg+bfoLYq+bMBzAT4EnA18Lck64KKWJy3Hm+iNFvphO9bvvwNX0nvr4B3AXzO9v1+dDOzZpox9cZzjn23ftye5dP2DVfWFdu8z2hTCq4CDxrtRVV0L/Gd6i7z/jF5B8CVtwfpBfIjeGlp3JjlxqsYbklufC4CVwPnA+6vqa5O0/St6Rc4r6P0sLm2x9fO4l96z7gP8mN6zf5zeSDfoLbh/JvA1er+HJ9NbOwt6a4Od2n4+fzpF7pIkaRKp2tDR1ZIkSdLGl2QBvSLRlm1h85le73nAx6vK0UySJG0iHBElSZKkuWoveoUtSZK0iZg36gQkSZKkjS3Jh4BDgMWjzkWSJP2OU/MkSZIkSZLUCafmSZIkSZIkqRMWoiRJkiRJktSJzW6NqO23374WLFgw6jQkSZIkSZLmjEsuueRnVTV/qnabXSFqwYIFrFixYtRpSJIkSZIkzRlJbhqknVPzJEmSJEmS1AkLUZIkSZIkSeqEhShJkiRJkiR1wkKUJEmSJEmSOmEhSpIkSZIkSZ2wECVJkiRJkqROWIiSJEmSJElSJ4ZWiEqya5KvJ7kmydVJ3tTi2yVZnuS69r1tiyfJiUlWJrkiyZP7rrW4tb8uyeK++FOSXNnOOTFJhvU8kiRJkiRJmplhjoi6B3hrVf0BsB9wdJI9gaXA+VW1EDi/7QMcBCxsnyXAR6BXuAKOA54G7AscN1a8am2W9J134BCfR5IkSZIkSTMwtEJUVa2pqkvb9jrgGmBn4FDg1NbsVOClbftQ4LTquQjYJsmOwAHA8qq6o6ruBJYDB7Zjj6yq71ZVAaf1XUuSJEmSJEmbmE7WiEqyAHgS8D1gh6paA71iFfDo1mxn4Oa+01a12GTxVePEJUmSJEmStAmaN+wbJHkEcBbw5qpaO8kyTuMdqGnEx8thCb0pfOy2225TpSxJkiRJkjqyYOk5o05hZG484eBRp9C5oY6ISrIlvSLUp6rq8y18S5tWR/u+tcVXAbv2nb4LsHqK+C7jxB+gqk6qqkVVtWj+/PkzeyhJkiRJkiRNyzDfmhfgZOCaqvpg36GzgbE33y0GvtQXP6K9PW8/4Bdt6t55wAuTbNsWKX8hcF47ti7Jfu1eR/RdS5IkSZIkSZuYYU7NewbwGuDKJJe12NuBE4Azk7wO+AnwinbsXOBFwErgLuBIgKq6I8n7gItbu/dW1R1t+8+BU4CHAl9pH0mSJEmSJG2ChlaIqqpvMf46TgD7j9O+gKMnuNYyYNk48RXAXjNIU5IkSZKkGdmc1ziCzXOdI01fJ2/NkyRJkiRJkixESZIkSZIkqRMWoiRJkiRJktQJC1GSJEmSJEnqhIUoSZIkSZIkdcJClCRJkiRJkjphIUqSJEmSJEmdsBAlSZIkSZKkTliIkiRJkiRJUicsREmSJEmSJKkTFqIkSZIkSZLUCQtRkiRJkiRJ6sS8UScgSZIkSRq9BUvPGXUKI3XjCQePOgVps+CIKEmSJEmSJHXCQpQkSZIkSZI6YSFKkiRJkiRJnbAQJUmSJEmSpE5YiJIkSZIkSVInLERJkiRJkiSpExaiJEmSJEmS1AkLUZIkSZIkSeqEhShJkiRJkiR1wkKUJEmSJEmSOjG0QlSSZUluTXJVX+wzSS5rnxuTXNbiC5L8qu/YR/vOeUqSK5OsTHJikrT4dkmWJ7mufW87rGeRJEmSJEnSzA1zRNQpwIH9gap6ZVXtU1X7AGcBn+87fP3Ysao6qi/+EWAJsLB9xq65FDi/qhYC57d9SZIkSZIkbaKGVoiqqguBO8Y71kY1/Slw+mTXSLIj8Miq+m5VFXAa8NJ2+FDg1LZ9al9ckiRJkiRJm6BRrRH1LOCWqrquL7Z7kh8kuSDJs1psZ2BVX5tVLQawQ1WtAWjfjx520pIkSZIkSZq+eSO67+HcfzTUGmC3qro9yVOALyZ5ApBxzq0NvVmSJfSm97HbbrtNI11JkiRJkiTNVOcjopLMA14OfGYsVlV3V9XtbfsS4Hrg8fRGQO3Sd/ouwOq2fUubujc2he/Wie5ZVSdV1aKqWjR//vyN+TiSJEmSJEka0Cim5j0f+FFV/d8pd0nmJ9mibT+W3qLkN7Qpd+uS7NfWlToC+FI77Wxgcdte3BeXJEmSJEnSJmhohagkpwPfBfZIsirJ69qhw3jgIuXPBq5IcjnwOeCoqhpb6PzPgY8DK+mNlPpKi58AvCDJdcAL2r4kSZIkSZI2UUNbI6qqDp8g/mfjxM4Czpqg/Qpgr3HitwP7zyxLSZIkSZIkdWVUb82TJEmSJEnSZsZClCRJkiRJkjphIUqSJEmSJEmdsBAlSZIkSZKkTliIkiRJkiRJUicsREmSJEmSJKkTFqIkSZIkSZLUCQtRkiRJkiRJ6oSFKEmSJEmSJHXCQpQkSZIkSZI6YSFKkiRJkiRJnbAQJUmSJEmSpE5YiJIkSZIkSVInLERJkiRJkiSpExaiJEmSJEmS1AkLUZIkSZIkSeqEhShJkiRJkiR1wkKUJEmSJEmSOmEhSpIkSZIkSZ2wECVJkiRJkqROWIiSJEmSJElSJyxESZIkSZIkqRMWoiRJkiRJktQJC1GSJEmSJEnqxNAKUUmWJbk1yVV9sXcn+WmSy9rnRX3Hjk2yMsm1SQ7oix/YYiuTLO2L757ke0muS/KZJFsN61kkSZIkSZI0c8McEXUKcOA48b+rqn3a51yAJHsChwFPaOf87yRbJNkC+DBwELAncHhrC/DX7VoLgTuB1w3xWSRJkiRJkjRDQytEVdWFwB0DNj8UOKOq7q6qHwMrgX3bZ2VV3VBVvwHOAA5NEuB5wOfa+acCL92oDyBJkiRJkqSNahRrRB2T5Io2dW/bFtsZuLmvzaoWmyj+KODnVXXPevFxJVmSZEWSFbfddtvGeg5JkiRJkiRtgK4LUR8BHgfsA6wBPtDiGadtTSM+rqo6qaoWVdWi+fPnb1jGkiRJkiRJ2ijmdXmzqrplbDvJx4Avt91VwK59TXcBVrft8eI/A7ZJMq+NiupvL0mSJEmSpE1Qp4WoJDtW1Zq2+zJg7I16ZwOfTvJBYCdgIfB9eiOfFibZHfgpvQXNX1VVleTrwJ/QWzdqMfCl7p5EkiRJ0qZowdJzRp3CyNx4wsGjTkGSpjS0QlSS04HnANsnWQUcBzwnyT70ptHdCLwBoKquTnIm8EPgHuDoqrq3XecY4DxgC2BZVV3dbvE24IwkfwX8ADh5WM8iSZIkSZKkmRtaIaqqDh8nPGGxqKqOB44fJ34ucO448RvovVVPkiRJkiRJs8Ao3ponSZIkSZKkzZCFKEmSJEmSJHXCQpQkSZIkSZI6MWUhKsnjkjy4bT8nyRuTbDP81CRJkiRJkjSXDDIi6izg3iS/T2+x8d2BTw81K0mSJEmSJM05gxSi7quqe4CXAX9fVf8N2HG4aUmSJEmSJGmuGaQQ9dskhwOLgS+32JbDS0mSJEmSJElz0SCFqCOBPwKOr6ofJ9kd+ORw05IkSZIkSdJcM2+ANi+oqjeO7bRi1K+GmJMkSZIkSZLmoEFGRC0eJ/ZnGzkPSZIkSZIkzXETjohq60K9Ctg9ydl9h7YGbh92YpIkSZIkSZpbJpua9x1gDbA98IG++DrgimEmJUmSJEmSpLlnwkJUVd0E3JTk1cDqqvo1QJKHArsAN3aSoSRJkiRJkuaEQdaIOhO4r2//XuCzw0lHkiRJkiRJc9Ughah5VfWbsZ22vdXwUpIkSZIkSdJcNEgh6rYkh4ztJDkU+NnwUpIkSZIkSdJcNNli5WOOAj6V5MNAAauAI4aalSRJkiRJkuacKQtRVXU9sF+SRwCpqnXDT0uSJEmSJElzzZRT85LskORk4LNVtS7Jnkle10FukiRJkiRJmkMGWSPqFOA8YKe2/2/Am4eVkCRJkiRJkuamQQpR21fVmcB9AFV1D3DvULOSJEmSJEnSnDNIIeqXSR5Fb6FykuwH/GKoWUmSJEmSJGnOGeSteW8BzgYel+TbwHzgT4aalSRJkiRJkuacKUdEVdWlwB8DTwfeADyhqq6Y6rwky5LcmuSqvtjfJvlRkiuSfCHJNi2+IMmvklzWPh/tO+cpSa5MsjLJiUnS4tslWZ7kuva97YY/viRJkiRJkroyYSEqyfPa98uBQ4A9gMcDL0nysiR/nGSLSa59CnDgerHlwF5V9UR6i54f23fs+qrap32O6ot/BFgCLGyfsWsuBc6vqoXA+W1fkiRJkiRJm6jJpub9MfCvwEsmOP4o4J3AC8Y7WFUXJlmwXuxrfbsXMcUUvyQ7Ao+squ+2/dOAlwJfAQ4FntOangp8A3jbZNeTJEmSJEnS6ExYiKqq49r3kRO1SXLyDO79WuAzffu7J/kBsBZ4Z1V9E9gZWNXXZlWLAexQVWtajmuSPHoGuUiSJEmSJGnIplysPMnvAccBz26hC4D3VtUvqup107lpkncA9wCfaqE1wG5VdXuSpwBfTPIEIOOcXtO43xJ60/vYbbfdppOyJEmSJEmSZmjKxcqBZcA64E/bZy3wT9O9YZLFwIuBV1dVAVTV3VV1e9u+BLie3npUq4Bd+k7fBVjdtm9pU/fGpvDdOtE9q+qkqlpUVYvmz58/3dQlSZIkSZI0A4MUoh5XVcdV1Q3t8x7gsdO5WZID6a3jdEhV3dUXnz+28HmSx9JblPyGNvVuXZL92tvyjgC+1E47G1jcthf3xSVJkiRJkrQJGqQQ9askzxzbSfIM4FdTnZTkdOC7wB5JViV5HfCPwNbA8iSXJfloa/5s4IoklwOfA46qqjvasT8HPg6spDdS6istfgLwgiTX0Vsw/YQBnkWSJEmSJEkjMuUaUcBRwGltrSiAO/ndSKQJVdXh44THXdy8qs4Czprg2Apgr3HitwP7T5WHJEmSJEmSNg2TFqKSPAjYo6r2TvJIgKpa20lmkiRJkiRJmlMmnZpXVfcBx7TttRahJEmSJEmSNF2DrBG1PMl/T7Jrku3GPkPPTJIkSZIkSXPKIGtEvbZ9H90XK6b55jxJkiRJkiRtnqYsRFXV7l0kIkmSJEmSpLltykJUkocA/xV4Jr2RUN8EPlpVvx5ybpIkSZIkSZpDBpmadxqwDviHtn848AngFcNKSpIkSZIkSXPPIIWoPapq7779rye5fFgJSZIkSZIkaW4a5K15P0iy39hOkqcB3x5eSpIkSZIkSZqLBhkR9TTgiCQ/afu7AdckuRKoqnri0LKTJEmSJEnSnDFIIerAoWchSZIkSZKkOW/KQlRV3dRFIpIkSZIkSZrbBlkjSpIkSZIkSZqxCQtRSR7cZSKSJEmSJEma2yYbEfVdgCSf6CgXSZIkSZIkzWGTrRG1VZLFwNOTvHz9g1X1+eGlJUmSJEmSpLlmskLUUcCrgW2Al6x3rAALUZIkSZIkSRrYhIWoqvoW8K0kK6rq5A5zkiRJkiRJ0hw02YioMZ9I8kbg2W3/AuCjVfXb4aUlSZIkSZKkuWaQQtT/BrZs3wCvAT4CvH5YSUmSJEmbswVLzxl1CiNz4wkHjzoFSdIQDVKIempV7d23/69JLh9WQpIkSZIkSZqbHjRAm3uTPG5sJ8ljgXuHl5IkSZIkSZLmokFGRP0P4OtJbgACPAY4cqhZSZIkSZIkac6ZckRUVZ0PLATe2D57VNXXB7l4kmVJbk1yVV9suyTLk1zXvrdt8SQ5McnKJFckeXLfOYtb++uSLO6LPyXJle2cE5Nk8EeXJEmSJElSlwaZmkdV3V1VV1TV5VV19wZc/xTgwPViS4Hzq2ohcH7bBziIXsFrIbCE3oLoJNkOOA54GrAvcNxY8aq1WdJ33vr3kiRJkiRJ0iZioELUdFXVhcAd64UPBU5t26cCL+2Ln1Y9FwHbJNkROABYXlV3VNWdwHLgwHbskVX13aoq4LS+a0mSJEmSJGkTM2khqk2X23Uj33OHqloD0L4f3eI7Azf3tVvVYpPFV40TlyRJkiRJ0iZo0kJUG2n0xY5yGW99p5pG/IEXTpYkWZFkxW233TaDFCVJkiRJkjRdg0zNuyjJUzfiPW9p0+po37e2+Cqgf/TVLsDqKeK7jBN/gKo6qaoWVdWi+fPnb5SHkCRJkiRJ0oYZpBD1XHrFqOvb2+yuTHLFDO55NjD25rvFwJf64ke06YD7Ab9oU/fOA16YZNu2SPkLgfPasXVJ9mtvyzui71qSJEmSJEnaxMwboM1B0714ktOB5wDbJ1lF7+13JwBnJnkd8BPgFa35ucCLgJXAXcCRAFV1R5L3ARe3du+tqrEF0P+c3pv5Hgp8pX0kSZIkSZK0CZqyEFVVNyV5JrCwqv4pyXzgEYNcvKoOn+DQ/uO0LeDoCa6zDFg2TnwFsNcguUiSJEmSJGm0ppyal+Q44G3AsS20JfDJYSYlSZIkSZKkuWeQNaJeBhwC/BKgqlYDWw8zKUmSJEmSJM09gxSiftOmzRVAkocPNyVJkiRJkiTNRYMUos5M8v8D2yT5L8C/AB8bblqSJEmSJEmaawZZrPz9SV4ArAUeD7yrqpYPPTNJkiRJkiTNKVMWoporgYfSm5535fDSkSRJkiRJ0lw1yFvzXg98H3g58CfARUleO+zEJEmSJEmSNLcMMiLqfwBPqqrbAZI8CvgOsGyYiUmSJEmSJGluGWSx8lXAur79dcDNw0lHkiRJkiRJc9WEI6KSvKVt/hT4XpIv0Vsj6lB6U/UkSZIkSZKkgU02NW/r9n19+4z50vDSkSRJkiRJ0lw1YSGqqt7Tv5/k4VX1y+GnJEmSJEmSpLloysXKk/wRcDLwCGC3JHsDb6iq/zrs5CRJkjQ7LVh6zqhTGKkbTzh41ClIkrRJGmSx8r8HDgBuB6iqy4FnDzMpSZIkSZIkzT2DFKKoqvXfknfvEHKRJEmSJEnSHDbl1Dzg5iRPByrJVsAbgWuGm5YkSZIkSZLmmkFGRB0FHA3sDKwC9mn7kiRJkiRJ0sCmHBFVVT8DXt1BLpIkSZIkSZrDBnlr3u7AXwAL+ttX1SHDS0uSJEmSJElzzSBrRH0ROBn4Z+C+4aYjSZIkSZKkuWqQQtSvq+rEoWciSZIkSZKkOW2QQtSHkhwHfA24eyxYVZcOLStJkiRJkiTNOYMUov4QeA3wPH43Na/aviRJkiRJkjSQQQpRLwMeW1W/GXYykiRJkiRJmrseNECby4FtNtYNk+yR5LK+z9okb07y7iQ/7Yu/qO+cY5OsTHJtkgP64ge22MokSzdWjpIkSZIkSdr4BhkRtQPwoyQXc/81og6Zzg2r6lpgH4AkWwA/Bb4AHAn8XVW9v799kj2Bw4AnADsB/5Lk8e3wh4EXAKuAi5OcXVU/nE5ekiRJkiRJGq5BClHHDfH++wPXV9VNSSZqcyhwRlXdDfw4yUpg33ZsZVXdAJDkjNbWQpQkSZIkSdImaMpCVFVdMMT7Hwac3rd/TJIjgBXAW6vqTmBn4KK+NqtaDODm9eJPG2KukiRJkiRJmoEp14hKsq6t47Q2ya+T3Jtk7UxvnGQr4BDgsy30EeBx9KbtrQE+MNZ0nNNrkvh491qSZEWSFbfddtuM8pYkSZIkSdL0DDIiauv+/SQv5XdT42biIODSqrql3eeWvnt8DPhy210F7Np33i7A6rY9Ufx+quok4CSARYsWjVuskiRJkiRJ0nANskbU/VTVFzfSG+oOp29aXpIdq2pN230ZcFXbPhv4dJIP0lusfCHwfXojohYm2Z3egueHAa/aCHlJkiQBsGDpOaNOYaRuPOHgUacgSZLmmCkLUUle3rf7IGARE0yBG1SSh9F7290b+sJ/k2Sfdu0bx45V1dVJzqS3CPk9wNFVdW+7zjHAecAWwLKqunomeUmSJEmSJGl4BhkR9ZK+7XvoFYkOnclNq+ou4FHrxV4zSfvjgePHiZ8LnDuTXCRJkiRJktSNQdaIOrKLRCRJkiRJkjS3TViISvKuSc6rqnrfEPKRJEmSJEnSHDXZiKhfjhN7OPA6etPqLERJkiRJkiRpYBMWoqrqA2PbSbYG3gQcCZwBfGCi8yRJkiRJkqTxTLpGVJLtgLcArwZOBZ5cVXd2kZgkSZIkSZLmlsnWiPpb4OXAScAfVtV/dJaVJEmSJEmS5pwHTXLsrcBOwDuB1UnWts+6JGu7SU+SJEmSJElzxWRrRE1WpJIkSZIkSZI2iMUmSZIkSZIkdcJClCRJkiRJkjphIUqSJEmSJEmdsBAlSZIkSZKkTliIkiRJkiRJUicsREmSJEmSJKkTFqIkSZIkSZLUCQtRkiRJkiRJ6oTMASziAAANG0lEQVSFKEmSJEmSJHXCQpQkSZIkSZI6YSFKkiRJkiRJnbAQJUmSJEmSpE5YiJIkSZIkSVInLERJkiRJkiSpE/NGnYAkSRquBUvPGXUKI3PjCQePOgVJkiT1GdmIqCQ3JrkyyWVJVrTYdkmWJ7mufW/b4klyYpKVSa5I8uS+6yxu7a9LsnhUzyNJkiRJkqTJjXpq3nOrap+qWtT2lwLnV9VC4Py2D3AQsLB9lgAfgV7hCjgOeBqwL3DcWPFKkiRJkiRJm5ZRF6LWdyhwats+FXhpX/y06rkI2CbJjsABwPKquqOq7gSWAwd2nbQkSZIkSZKmNspCVAFfS3JJkiUttkNVrQFo349u8Z2Bm/vOXdViE8UlSZIkSZK0iRnlYuXPqKrVSR4NLE/yo0naZpxYTRK//8m9QtcSgN122206uUqSJEmSJGmGRjYiqqpWt+9bgS/QW+PpljbljvZ9a2u+Cti17/RdgNWTxNe/10lVtaiqFs2fP39jP4okSZIkSZIGMJJCVJKHJ9l6bBt4IXAVcDYw9ua7xcCX2vbZwBHt7Xn7Ab9oU/fOA16YZNu2SPkLW0ySJEmSJEmbmFFNzdsB+EKSsRw+XVVfTXIxcGaS1wE/AV7R2p8LvAhYCdwFHAlQVXckeR9wcWv33qq6o7vHkCRJkiRJ0qBGUoiqqhuAvceJ3w7sP068gKMnuNYyYNnGzlGSJEmSJEkb1yjfmidJkiRJkqTNiIUoSZIkSZIkdcJClCRJkiRJkjphIUqSJEmSJEmdsBAlSZIkSZKkTliIkiRJkiRJUicsREmSJEmSJKkTFqIkSZIkSZLUiXmjTkCSpEEsWHrOqFMYmRtPOHjUKUiSJEkbhSOiJEmSJEmS1AkLUZIkSZIkSeqEhShJkiRJkiR1wkKUJEmSJEmSOmEhSpIkSZIkSZ2wECVJkiRJkqROWIiSJEmSJElSJyxESZIkSZIkqRMWoiRJkiRJktQJC1GSJEmSJEnqhIUoSZIkSZIkdcJClCRJkiRJkjphIUqSJEmSJEmdsBAlSZIkSZKkTliIkiRJkiRJUic6L0Ql2TXJ15Nck+TqJG9q8Xcn+WmSy9rnRX3nHJtkZZJrkxzQFz+wxVYmWdr1s0iSJEmSJGlw80Zwz3uAt1bVpUm2Bi5Jsrwd+7uqen9/4yR7AocBTwB2Av4lyePb4Q8DLwBWARcnObuqftjJU0iSJEmSJGmDdF6Iqqo1wJq2vS7JNcDOk5xyKHBGVd0N/DjJSmDfdmxlVd0AkOSM1tZClCRJkiRJ0iZopGtEJVkAPAn4Xgsdk+SKJMuSbNtiOwM39522qsUmio93nyVJViRZcdttt23EJ5AkSZIkSdKgRlaISvII4CzgzVW1FvgI8DhgH3ojpj4w1nSc02uS+AODVSdV1aKqWjR//vwZ5y5JkiRJkqQNN4o1okiyJb0i1Keq6vMAVXVL3/GPAV9uu6uAXftO3wVY3bYnikuSJEmSJGkTM4q35gU4Gbimqj7YF9+xr9nLgKva9tnAYUkenGR3YCHwfeBiYGGS3ZNsRW9B87O7eAZJkiRJkiRtuFGMiHoG8BrgyiSXtdjbgcOT7ENvet2NwBsAqurqJGfSW4T8HuDoqroXIMkxwHnAFsCyqrq6yweRJEmSJEnS4Ebx1rxvMf76TudOcs7xwPHjxM+d7DxJkiRJkiRtOkb61jxJkiRJkiRtPixESZIkSZIkqRMWoiRJkiRJktQJC1GSJEmSJEnqhIUoSZIkSZIkdcJClCRJkiRJkjphIUqSJEmSJEmdsBAlSZIkSZKkTliIkiRJkiRJUicsREmSJEmSJKkTFqIkSZIkSZLUCQtRkiRJkiRJ6oSFKEmSJEmSJHXCQpQkSZIkSZI6YSFKkiRJkiRJnbAQJUmSJEmSpE5YiJIkSZIkSVInLERJkiRJkiSpExaiJEmSJEmS1AkLUZIkSZIkSeqEhShJkiRJkiR1wkKUJEmSJEmSOmEhSpIkSZIkSZ2Y9YWoJAcmuTbJyiRLR52PJEmSJEmSxjerC1FJtgA+DBwE7AkcnmTP0WYlSZIkSZKk8czqQhSwL7Cyqm6oqt8AZwCHjjgnSZIkSZIkjWPeqBOYoZ2Bm/v2VwFPG1Eu0mZhwdJzRp3CyNx4wsEzOn9z7juYef9JkiRJmv1SVaPOYdqSvAI4oKpe3/ZfA+xbVX+xXrslwJK2uwdwbaeJzk3bAz8bdRKzmP03ffbd9Nl302ffzYz9N3323fTZd9Nn382M/Td99t302XfTZ99tPI+pqvlTNZrtI6JWAbv27e8CrF6/UVWdBJzUVVKbgyQrqmrRqPOYrey/6bPvps++mz77bmbsv+mz76bPvps++25m7L/ps++mz76bPvuue7N9jaiLgYVJdk+yFXAYcPaIc5IkSZIkSdI4ZvWIqKq6J8kxwHnAFsCyqrp6xGlJkiRJkiRpHLO6EAVQVecC5446j82QUx1nxv6bPvtu+uy76bPvZsb+mz77bvrsu+mz72bG/ps++2767Lvps+86NqsXK5ckSZIkSdLsMdvXiJIkSZIkSdIsYSFKU0qyLMmtSa7qi70vyRVJLkvytSQ7jTLHTdUEffe3SX7U+u8LSbYZZY6bsgn67xVJrk5yXxLfbjGA8fpRE5vg9267JMuTXNe+tx1ljrNFkjcluar9mX3zqPOZTZL8t9ZvVyU5PclDRp3TbJFk1yRfT3JN68M3jTqn2SLJHu3vdmOftf7ZHVySbZJ8rv0975okfzTqnGaDJA9J8v0kl7c/s+8ZdU6zTZIbk1zZ/tyuGHU+s02SLZL8IMmXR53L5sJClAZxCnDgerG/raonVtU+wJeBd3We1exwCg/su+XAXlX1RODfgGO7TmoWOYUH9t9VwMuBCzvPZvY6hQf2oyZ2Cg/sr6XA+VW1EDi/7WsSSfYC/guwL7A38OIkC0eb1eyQZGfgjcCiqtqL3gtZDhttVrPKPcBbq+oPgP2Ao5PsOeKcZoWquraq9ml/v3sKcBfwhRGnNZt8CPhqVf0/9P67d82I85kt7gaeV1V7A/sABybZb8Q5zUbPbX9+/T9qN9yb8M9rpyxEaUpVdSFwx3qxtX27DwdcbGwcE/Td16rqnrZ7EbBL54nNEhP03zVVde2IUpqVxutHTWyC/joUOLVtnwq8tNOkZqc/AC6qqrvaf/MuAF424pxmk3nAQ5PMAx4GrB5xPrNGVa2pqkvb9jp6/7jYebRZzUr7A9dX1U2jTmQ2SPJI4NnAyQBV9Zuq+vlos5odquc/2u6W7eO/LdSJJLsABwMfH3UumxMLUZq2JMcnuRl4NY6Imq7XAl8ZdRKSprRDVa2B3j9ygUePOJ/Z4Crg2UkeleRhwIuAXUec06xQVT8F3g/8BFgD/KKqvjbarGanJAuAJwHfG20ms9JhwOmjTmIWeSxwG/BPbYrPx5M8fNRJzRZtatRlwK3A8qryz+yGKeBrSS5JsmTUycwyfw/8JXDfqBPZnFiI0rRV1TuqalfgU8Axo85ntknyDnrTBz416lwkaWOrqmuAv6Y3HfmrwOX0/punKbQ1yA4Fdgd2Ah6e5D+PNqvZJ8kjgLOAN683kltTSLIVcAjw2VHnMovMA54MfKSqngT8EqdxD6yq7m1TQncB9m3TuzW4Z1TVk4GD6E1HfvaoE5oNkrwYuLWqLhl1LpsbC1HaGD4N/L+jTmI2SbIYeDHw6qpy6LG06bslyY4A7fvWEeczK1TVyVX15Kp6Nr3pjteNOqdZ4vnAj6vqtqr6LfB54OkjzmlWSbIlvSLUp6rq86POZxY6CLi0qm4ZdSKzyCpgVd9Ins/RK0xpA7TpjN/AtS03SFWtbt+30lvXbd/RZjRrPAM4JMmNwBnA85J8crQpbR4sRGla1ltw9hDgR6PKZbZJciDwNuCQqrpr1PlIGsjZwOK2vRj40ghzmTWSPLp970bvJQNO8xnMT4D9kjwsSeit1eMiqgNqfXYycE1VfXDU+cxSh+Of1w1SVf8O3JxkjxbaH/jhCFOaNZLMH3uLdJKH0ivG+2+LASV5eJKtx7aBF9KbHq8pVNWxVbVLVS2gNx35X6vKEcgdmDfqBLTpS3I68Bxg+ySrgOOAF7X/ob0PuAk4anQZbrom6LtjgQcDy3t/V+aiqrL/xjFB/90B/AMwHzgnyWVVdcDostz0jdePVXXyaLPadE3we3cCcGaS19ErErxidBnOKmcleRTwW+Doqrpz1AnNBlX1vSSfAy6lN53xB8BJo81qVnkG8BrgyrbmDMDbq+rcEeY0a7Q13V4AvGHUucxCfwF8qk1tvAE4csT5zBY7Aqcm2YLeQIkzq+rLI85pNtkB+EL7d8U84NNV9dXRpiRNLs4KkiRJkiRJUhecmidJkiRJkqROWIiSJEmSJElSJyxESZIkSZIkqRMWoiRJkiRJktQJC1GSJEmSJEnqhIUoSZIkSZIkdcJClCRJkiRJkjphIUqSJEmSJEmd+D8sV1hDGyQ3zwAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "#How to calculate number of words in a string in DataFrame: https://stackoverflow.com/a/37483537/4084039\n",
+ "word_count = project_data['project_title'].str.split().apply(len).value_counts()\n",
+ "word_dict = dict(word_count)\n",
+ "word_dict = dict(sorted(word_dict.items(), key=lambda kv: kv[1]))\n",
+ "\n",
+ "\n",
+ "ind = np.arange(len(word_dict))\n",
+ "plt.figure(figsize=(20,5))\n",
+ "p1 = plt.bar(ind, list(word_dict.values()))\n",
+ "\n",
+ "plt.ylabel('Numeber of projects')\n",
+ "plt.title('Words for each title of the project')\n",
+ "plt.xticks(ind, list(word_dict.keys()))\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "51BD8dOioc6I"
+ },
+ "outputs": [],
+ "source": [
+ "approved_word_count = project_data[project_data['project_is_approved']==1]['project_title'].str.split().apply(len)\n",
+ "approved_word_count = approved_word_count.values\n",
+ "\n",
+ "rejected_word_count = project_data[project_data['project_is_approved']==0]['project_title'].str.split().apply(len)\n",
+ "rejected_word_count = rejected_word_count.values"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "PhMvROIvoc6L",
+ "outputId": "d9d2855a-b5f9-4fe7-8879-6eab5b3cde28"
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAD8CAYAAAB6paOMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAF71JREFUeJzt3X+UHWWd5/H3Jz9MJAbtCNOjIDSio8nkKCvt6ABqWiYEkc0wK6AZUXbJSSbACYwZHMzJrui6IQszZAecEwLZjLCKwUFlDTODJAt9yQQQ7ADBSMbRw0+RkR8dMM1gJPDdP6pabpr07eq+t6q6uz6vc+rcus+tquebe5/0t34+jyICMzOrrgllB2BmZuVyIjAzqzgnAjOzinMiMDOrOCcCM7OKcyIwM6s4JwIzs4pzIjAzqzgnAjOziptUdgBZHHTQQdHR0VF2GOPGCy+8wLRp08oOw+w13DZba9u2bc9ExMFDLTcmEkFHRwc9PT1lhzFu1Go15syZU3YYZq/httlakh7NspxPDZmZVZwTgZlZxTkRmJlVnBOBmVnFORGYmVWcE0GFbNiwgdmzZ3P88ccze/ZsNmzYUHZIZjYKjInbR615GzZsYMWKFaxfv56XX36ZiRMnsnDhQgAWLFhQcnRmViYfEVTEypUrWb9+PV1dXUyaNImuri7Wr1/PypUryw7NzErmRFARO3fu5Ljjjtun7LjjjmPnzp0lRWRmo4UTQUXMnDmTrVu37lO2detWZs6cWVJEZjZaOBFUxIoVK1i4cCHd3d3s3buX7u5uFi5cyIoVK8oOzcxK5ovFFdF/QXjp0qXs3LmTmTNnsnLlSl8oNjMngipZsGABCxYscMdeZrYPnxoyM6s4JwIzs4pzIjAzqzgnAjOzinMiMDOrOCcCM7OKcyIwM6s4JwIzs4rLLRFI+jtJT0naUVf2V5L+RdIDkm6U9Ka86jczs2zyPCK4BjhxQNlmYHZEvAf4V2B5jvXbAJMnT0YSXV1dSGLy5Mllh2QGJF2fTJ06la6uLqZOncrSpUvLDqlScksEEbEF6B1Qtiki9qZvfwAcmlf9tq/Jkyezd+9e2traWLduHW1tbezdu9fJwEq3dOlS1q5dy8UXX8zNN9/MxRdfzNq1a50MClTmNYKzgJtLrL9S+pNAb28v73jHO+jt7f1tMjAr07p167jkkktYtmwZU6dOZdmyZVxyySWsW7eu7NAqo5RO5yStAPYC1zVYZjGwGKC9vZ1arVZMcOPYpZdeSq1Wo6+vj1qtxqWXXsqiRYv83Vqp9uzZw6xZs/Zpm7NmzWLPnj1um0WJiNwmoAPYMaDsTOAu4ICs2zn66KPDmgNEW1tbRER0d3dHRERbW1skTcCsPFOmTInLLrssIl5tm5dddllMmTKlxKjGB6AnMvyNLfTUkKQTgQuB+RHx70XWXXWTJk1i165dzJgxg5/97GfMmDGDXbt2MWmSeyK3ci1atIgLL7yQ1atX8+tf/5rVq1dz4YUXsmjRorJDqwwlSSOHDUsbgDnAQcAvgYtI7hKaAjybLvaDiFgy1LY6Ozujp6cnlzirpP+Ccb9Jkybx0ksvlRiRWWLp0qWsW7eOPXv2MGXKFBYtWsRXv/rVssMa8yRti4jOIZfLKxG0khNBa3lgGhut3DZbK2si8JPFZmYV50RgZlZxTgRmZhXnRGBmVnFOBGZmFedEYGZWcU4EZmYV50RgZlZxTgRmVrp58+YxYcIEurq6mDBhAvPmzSs7pEpxIjCzUs2bN49NmzaxZMkSbrrpJpYsWcKmTZucDArkHsfMrFSbN2/m7LPPZs2aNdRqNdasWQPA2rVrS46sOnxEME5JGnTqH6pyf5NZ0SKCVatW7VO2atUqxkI/aOOFE8E41ajv8UafmxVNEsuX7zt8+fLly71jUiCfGjKzUs2dO5crr7wSgJNOOolzzjmHK6+8khNOOKHkyKrD3VBXkCTv/duoMm/ePDZv3kxEIIm5c+dyyy23lB3WmJe1G2ofEZhZ6fr/6Hs8gnL4GoGZWcU5EZiZVZwTgZlZxTkRmJlVnBOBmVnFORGYmVWcE4GZWcU5EZiZVVxuiUDS30l6StKOurIZkjZL+mn62pZX/WZmlk2eRwTXACcOKPsCcGtEvBO4NX1vZmYlypwIJE0bzoYjYgvQO6D4j4Fr0/lrgVOGs00zM2u9IROBpGMkPQjsTN+/V9KaEdbXHhFPAqSvvzPC7ZiZWYtk6XTufwHzgI0AEbFd0odzjQqQtBhYDNDe3k6tVsu7ykrx92ll6urqGvY63d3dOURikLH30Yh4fMAgES+PsL5fSnpLRDwp6S3AUw3qvBq4GpJuqN0jYWv5+7QyDdYNurtIL0eWawSPSzoGCEmvk3QB6WmiEdgInJnOnwl8b4TbMTOzFsmSCJYA5wKHAD8HjkrfNyRpA3AX8C5JP5e0EPifwFxJPwXmpu/NzKxEQ54aiohngE8Pd8MRsWCQj44f7rbMzCw/gyYCSV8FBj1ZFxHn5RKRmZkVqtERgQcJNjOrgEETQURcCyDptIi4of4zSaflHZiZmRUjy8Xi5RnLzMxsDGp0jeBjwEnAIZKuqPvoQGBv3oGZmVkxGl0j+AXJdYL5wLa68t3A5/IMyszMitPoGsF2YLuk6yLCRwBmZuNUo1NDfx8RpwP3SXrNbaQR8Z5cIzMzs0I0OjV0fvp6chGBmJlZOQa9a6i/u2jgnIh4tH4CzikmPDMzy1uW20fn7qfsY60OxMzMytHoGsHZJHv+b5f0QN1H04E78g7MzMyK0egawTeBm4FV7Du28O6IGDgEpZmZjVGNbh99HngeGKwXUTMzGwcyD15vZmbjkxOBmVnFDZkIJF2SpczMzMYm3z5qZlZxWW4fPXI/t4/emXdgZmZWDN8+amZWcY26mHg+Ih4BLgd667qXeEnSB4oK0MzM8pXlGsGVQF/d+xfSMjMzGweyJAJFxG+7oY6IV2h8SsnMzMaQLIngIUnnSZqcTucDD+UdmJmZFSNLIlgCHAM8Afwc+ACwuJlKJX1O0o8l7ZC0QdLUZrZnZmYjN+Qpnoh4CvhUqyqUdAhwHjArIl6U9Pfp9q9pVR1mZpZdlieLf0/SrZJ2pO/fI+m/NlnvJOD1kiYBBwC/aHJ7ZmY2QllODa0DlgMvAUTEAzRxhBARTwB/DTwGPAk8HxGbRro9MzNrTpa7fw6IiHsk1ZftHWmFktqAPwaOAJ4DbpB0RkR8Y8Byi0mvRbS3t1Or1UZape2Hv08brdw2i5clETwj6UggACSdSrInP1J/BDwcEU+n2/suycXofRJBRFwNXA3Q2dkZc+bMaaJKG8jfp41WbpvFy5IIziX5g/xuSU8ADwNnNFHnY8AHJR0AvAgcD/Q0sT0zM2tClruGHgL+SNI0YEJE7G6mwoi4W9K3gXtJTjHdR7rnb2ZmxWvU++gZEfENScsGlENymqgX2BgRu4ZbaURcBFw03PXMzKz1Gt01NC19nb6f6UDgaJLeSc3MbAxrNHj9VenrlwdbRtJ/zyMoMzMrTpYHyg6VdKOkpyT9UtJ3JB0KEBFfzD9EMzPLU5YHyr4GbATeChwC3JSWmZnZOJAlERwcEV+LiL3pdA1wcM5xmZlZQbIkgmcknSFpYjqdATybd2BmZlaMLIngLOB04N9Inig+NS0zM7NxoOEDZZImAp+IiPkFxWNmZgVreEQQES+TdBBnZmbjVJa+hu6Q9LfAt0gGrgcgIu7NLSozMytMlkRwTPpa//BYAB9tfThmZla0LJ3OdRURiI3MjBkz2LVr2N09MWB8iYba2tro7e0ddh1mNjZkebL4zZKukHSvpG2SLpf05iKCs6Ht2rWLiBjW1N3dPazlR5JozGzsyHL76PXA08AnSG4dfZrkeoGZmY0DWa4RzIiIr9S9/x+STskrIDMzK1aWI4JuSZ+SNCGdTgf+Me/AzMysGFkSwZ8B3wT2pNP1wDJJuyX9Ks/gzMwsf1nuGppeRCBmZlaOLEcEZmY2jjkRmJlVnBOBmVnFZbl9tL8X0vb65SPisbyCMjOz4gyZCCQtBS4Cfgm8khYH8J4c4zIzs4JkOSI4H3hXRHhUMjOzcSjLNYLHgedbWamkN0n6tqR/kbRT0h+2cvtmZpZdliOCh4CapH8keaAMgIhY3US9lwPfj4hTJb0OOKCJbZmZWROyJILH0ul16dQUSQcCHwb+M0BE/Ab4TbPbNTOzkcnyZPGXW1zn20l6MP2apPcC24DzI+KFxquZmVkeBk0Ekv4mIv5c0k0kdwnto4kB7ScB7wOWRsTdki4HvgD8twH1LwYWA7S3t1Or1UZY3fg33O+mr69v2Ov4+7fhmj9/Prt37x72esMZNAlg+vTpbNy4cdj12KsU8Zq/8ckH0tERsU3SR/b3eUTcPqIKpd8FfhARHen7DwFfiIiPD7ZOZ2dn9PT0jKS6cU8Sg/2Gg6nVasyZMyfXOsyKaJsjracqJG2LiM6hlhv0iCAitqWvI/qD32C7/ybpcUnvioifAMcDD7ayDjMzyy7Tk8U5WApcl94x9BDwX0qKw8ys8kpJBBFxPzDk4YqZmeVvWJ3OpSOUHZhXMGZmVrwhE4Gkb0o6UNI0knP5P5H0+fxDMzOzImQ5IpgVEb8CTgH+CTgM+EyuUZmZWWGyJILJkiaTJILvRcRL7Oe5AjMzG5uyJIKrgEeAacAWSYcDHrTezGycyNLFxBXAFXVFj0rqyi8kMzMrUqMuJpYNsW4zvY+amdko0eiIYHr6+i7g/UB/Zx7/EdiSZ1BmZlacRl1MfBlA0ibgfRGxO33/JeCGQqIzM7PcZblYfBj7jhfwG6Ajl2jMzKxwWbqY+Dpwj6QbSW4b/RPg2lyjMjOzwgzaDfU+C0nvAz6Uvt0SEfflGtUA7oa6gS+9saB6WjpstVVBUW0T3D4HkbUb6oaJQNIE4IGImN3K4IbLiWBwHo/ARiuPR1C+rImg4TWCiHgF2C7psJZFZmZmo0qWawRvAX4s6R7gt+MKNzFUpZmZjSJZEkGrB683M7NRJEsXE7dLaid5qAzgnoh4Kt+wzMysKFnGIzgduAc4DTgduFvSqXkHZmZmxchyamgF8P7+owBJBwP/D/h2noGZmVkxsjxZPGHAqaBnM65nZmZjQJYjgu9LugXYkL7/JMlIZWZmNg5kuVj8eUmfAI4FBFwdETfmHpmZmRWi0XgEfw7cAdwXEd8BvlNYVGZmVphGRwSHApcD75b0AHAnSWK4KyJ6iwjOzMzy12g8ggsAJL0O6ASOAc4C1kl6LiJmNVOxpIlAD/BERJzczLbMzGzkstz983rgQOCN6fQL4O4W1H0+sLMF2zEzsyY0ukZwNfD7wG6SP/x3AqsjYlezlUo6FPg4sBIYamxkMzPLUaNrBIcBU4CfAk8APweea1G9fwP8Ja+Oi/wakhYDiwHa29up1Wotqnr8kZTr9qdPn+7v30ZkuO2mr69vRG3N7bM5Q41HIJKjgmPSaTbQS3LB+KIRVSidDJwUEedImgNcMNQ1Ao9H0Fruv92K4PEIypd1PIKGzxFE8u3ukPQc8Hw6nQz8ATCiREDyPMJ8SScBU4EDJX0jIs4Y4fbMzKwJg14slnSepOslPQ5sIUkAPwH+EzBjpBVGxPKIODQiOoBPAbc5CZiZlafREUEHScdyn4uIJ4sJx8zMitboOYLc7+aJiBpQy7seMzMbnHsRNTOrOCcCM7OKcyIwM6s4JwIzs4pzIjAzqzgnAjOzinMiMDOrOCcCM7OKcyIwM6s4JwIzs4pzIjAzq7iG3VCbmTUj70GTANra2nKvY7xzIjCzXIxksBgPMlMOnxoyM6s4JwIzs4pzIjAzqzgnAjOzinMiMDOrOCcCM7OKcyIwM6s4JwIzs4pzIjAzqzgnAjOzinMiMDOruMITgaS3SeqWtFPSjyWdX3QMZmb2qjI6ndsL/EVE3CtpOrBN0uaIeLCEWMzMKq/wI4KIeDIi7k3ndwM7gUOKjsPMzBKldkMtqQP4D8Dd+/lsMbAYoL29nVqtVmRo456/Txut3DaLp7L6/pb0BuB2YGVEfLfRsp2dndHT01NMYBXgPt9ttHLbbC1J2yKic6jlSrlrSNJk4DvAdUMlATMzy1cZdw0JWA/sjIjVRddvZmb7KuOI4FjgM8BHJd2fTieVEIeZmVHCxeKI2ArkP6K1mZll4ieLzcwqzonAzKzinAjMzCrOicDMrOKcCMzMKs6JwMys4pwIzMwqzonAzKzinAjMzCrOicDMrOKcCMzMKq7UgWksP0knr8P/3H3BWxEatU+3zeL5iGCciohBp+7u7kE/MyuC2+bo4kRgZlZxTgRmZhXnRGBmVnFOBGZmFedEYGZWcU4EZmYV50RgZlZxTgRmZhWnsfCghqSngUfLjmMcOQh4puwgzPbDbbO1Do+Ig4daaEwkAmstST0R0Vl2HGYDuW2Ww6eGzMwqzonAzKzinAiq6eqyAzAbhNtmCXyNwMys4nxEYGZWcU4ELSDpTySFpHeXHUsWkvoGKX9Z0v2Sdki6QdIBw9zuP0l60wjimSPpmOGuZ9kN+G1vyvI7SbpzhHWdImnWCNZzuyyJE0FrLAC2Ap9q1QYllTF63IsRcVREzAZ+AywZEJMkDdpmIuKkiHhuBPXOASrxH65E9b9tL3DuUCtExEh/k1OAYSeCBtwuc+ZE0CRJbwCOBRZSlwjSvYktkm6U9KCktf2NVVKfpMsk3SvpVkkHp+U1SRdLuh04X9Lh6ecPpK+HSXqjpEfqtnWApMclTZZ0pKTvS9om6Z/7j1AkHSHpLkk/lPSVjP+0fwbeIalD0k5Ja4B7gbdJWiDpR+ke2iV1/+ZHJB2Uzp8h6Z50T+4qSRPT8hPTf/f29N/UQfIf+3Ppsh+SdFq67e2Stoz817FB3AUc0v9G0ufTtvGApC/XlfdlWOazadl2SV9P96DnA3+V/p5Hul2OAY2GNPQ09AScAaxP5+8E3pfOzwF+DbwdmAhsBk5NPwvg0+n8F4G/TedrwJq6bd8EnJnOnwX833T+e0BXOv9J4H+n87cC70znPwDcls5vBD6bzp8L9A3yb+lLXyeldZwNdACvAB9MP3sr8BhwcLrcbcAp6WePkDwZOjONfXJavgb4bLrO48ARafmM9PVLwAV1cfwIOCSdf1PZv/F4mOp+24nADcCJ6fsTSO7UEcmO4T8AHx6wzn6XAX4f+Alw0IDf85r+tu52OTYmHxE0bwFwfTp/ffq+3z0R8VBEvAxsAI5Ly18BvpXOf6OunLpygD8EvpnOf71uuW+RJABIjkK+lR6ZHAPcIOl+4CrgLekyx6b1929nMK9P1+0h+U+1Pi1/NCJ+kM6/H6hFxNMRsRe4juSPQr3jgaOBH6bbO54kIX4Q2BIRDwNERO8gcdwBXCNpEckfLmte/2/7LDCDZMcEkj/yJwD3kexZvxt454B1B1vmo8C3I+IZ2P/v6XY5NpRxHnrckPRmkv8MsyUFSeMISX+ZLjLw3tzB7tWtL3+hQZX9y20EVkmaQdKwbwOmAc9FxFEZ6hjMiwPXlzQwJmXYjoBrI2L5gG3NzxJHRCyR9AHg48D9ko6KiGcz1GuDezEijpL0RpI9+nOBK0h+q1URcVWDdfe7jKTzGPr3nIDb5ajnI4LmnAr8n4g4PCI6IuJtwMO8uuf+B+l50Akke/Bb0/IJ6boAf1pXPtCdvHrd4dP9y0VEH3APcDnwDxHxckT8CnhY0mnw2wto703XvWPAdppxN/ARSQel51cXALcPWOZW4FRJv5PGMkPS4STnpj8i6Yj+8nT53cD0/pUlHRkRd0fEF0k6IHtbkzFbKiKeB84DLpA0GbgFOCvdc0fSIf2/W53BlrkVOD3dIdrv7+l2OUaUfW5qLE8k5/RPHFB2HnAlyTWC20hO4zwIrAUmpMv0AV8BtqXLHFy3vc66bXWknz9A0ogPq/vsVJK9mI/UlR0BfB/Yntb5xbryu4AfAl9giHOxA8o6gB0Dyv6U5HzpDuDSuvJHgDen858E7k9j38ar53I/RnKKYTuwOS37vXS5+4EPAd+t2/7lpA8+emqqrfYNeH8T8Jl0/vz0+/5R2k6OTMt31y0/2DJnpr/TduCatOzYtP3dBxzpdjn6Jz9ZnBNJc0guNJ28n8/6IuINxUeVn3Qv7CngdyPipbLjseake/n3RsThZcfSDLfLbHxqyFrlxyR3L/k/2xgn6a0ke+p/XXYsLeB2mYGPCMzMKs5HBGZmFedEYGZWcU4EZmYV50RgZlZxTgRmZhXnRGBmVnH/H1yP2TDPsfgkAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# https://glowingpython.blogspot.com/2012/09/boxplot-with-matplotlib.html\n",
+ "plt.boxplot([approved_word_count, rejected_word_count])\n",
+ "plt.xticks([1,2],('Approved Projects','Rejected Projects'))\n",
+ "plt.ylabel('Words in project title')\n",
+ "plt.grid()\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "ifNxNmA0oc6O",
+ "outputId": "682ce3fd-d1fb-4523-c356-584f444aea61"
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl0AAADFCAYAAABuKEcsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd81EX++PHX7KZueiUhARJ6b1KkChYQC4qiYvc8z/Msp56e5YrtTu9OvWL9cd6pd18LoKCIZy8U6b0HkFCSkN7rJtns/P747C4JScgm2d1EeT8fDx6Qz87MTgImb98z8x6ltUYIIYQQQniXqasnIIQQQghxJpCgSwghhBDCByToEkIIIYTwAQm6hBBCCCF8QIIuIYQQQggfkKBLCCGEEMIHJOgSQgghhPABCbqEEEIIIXxAgi4hhBBCCB/w6+oJnCo2NlanpKR09TSEEEIIIdq0bdu2Qq11nDttu13QlZKSwtatW7t6GkIIIYQQbVJKHXe3rSwvCiGEEEL4gARdQgghhBA+IEGXEEIIIYQPdLs9XUIIIYQn1dfXk5WVhdVq7eqpiB+woKAgkpOT8ff37/AYEnQJ0QkNdk1GcTWpsSFdPRUhRCuysrIICwsjJSUFpVRXT0f8AGmtKSoqIisri9TU1A6PI8uLQnTCki2ZnP+31ZworenqqQghWmG1WomJiZGAS3SYUoqYmJhOZ0sl6BKiE1YfyqfBrtl6rLirpyKEOA0JuERneeLfkARdQnRQg12z8YgRbG09VtLFsxFCCNHdSdAlRAel5ZRTVlOPv1mx7bgEXUKI0/vwww9RSnHgwIGunopbQkNDW3xuNpsZPXo0w4cP56qrrqK6urpd41500UWUlpa2ez6rVq1i/fr17e7XnUjQJUQHrU8vBGD+WckcyC2nstbWxTMSQnRnixYtYurUqSxevNhjY9psvv++ExwczM6dO9m7dy8BAQEsXLiwyetaa+x2e6v9P/30UyIjI9v9vj+GoEtOLwrRQRvSi+gbF8Kc4Yks2pzJrsxSpvSP7eppCSFO48mP97E/u9yjYw7tGc7jlw47bZvKykrWrVvHypUrmTt3Lk888QRgBBKPPfYYMTExHDx4kOnTp/Pqq69iMpkIDQ3l5z//OStXriQqKorFixcTFxfHjBkzmDx5MuvWrWPu3LnMnz+fW2+9lYKCAuLi4njzzTeJiIhg1KhRHDlyBJPJRHV1NYMGDeLIkSNkZGRw1113UVBQgMVi4V//+heDBw/m6NGjXHfdddhsNi688EK3Pvdp06axe/dujh07xpw5c5g5cyYbNmxg+fLlrF+/nmeeeQatNRdffDF/+ctfgJPX/cXGxvL222/z4osvUldXx8SJE3n11Vcxm818/vnn/OY3v6GhoYHY2Fhef/11Fi5ciNls5u233+all14iNzeXJ598ErPZTEREBGvWrOnU36MvSKZLiA6ob7Cz+Wgxk/vFMLp3JErJvi4hROuWL1/OhRdeyMCBA4mOjmb79u2u1zZv3sxf//pX9uzZQ3p6Oh988AEAVVVVjB07lu3bt3POOefw5JNPuvqUlpayevVqHnjgAe6++25uuukmdu/ezfXXX88vf/lLV9C1evVqAD7++GNmz56Nv78/t99+Oy+99BLbtm3j+eef58477wTg3nvv5Re/+AVbtmwhISGhzc/JZrPx2WefMWLECAAOHjzITTfdxI4dO/D39+fhhx/m22+/ZefOnWzZsoXly5c36Z+WlsaSJUtYt24dO3fuxGw2884771BQUMDPfvYzli1bxq5du3j//fdJSUnhjjvu4P7772fnzp1MmzaNp556ii+++IJdu3axYsWKzv0F+YhkuoTogN1ZZVTVNTC5XyzhQf4M6hHGtgwJuoTo7trKSHnLokWLuO+++wBYsGABixYtYuzYsQBMmDCBvn37AnDttdeydu1a5s+fj8lk4pprrgHghhtu4IorrnCN53wOsGHDBlegduONN/LQQw+52ixZsoSZM2eyePFi7rzzTiorK1m/fj1XXXWVq39tbS0A69atY9myZa5xHn744RY/l5qaGkaPHg0Yma6f/vSnZGdn06dPH84++2wAtmzZwowZM4iLiwPg+uuvZ82aNVx++eWucb755hu2bdvG+PHjXePGx8ezceNGpk+f7qqHFR0d3eI8pkyZwi233MLVV1/d5GvTnUnQJUQHbHDs5zq7bwwAZ/WJYsXObOx2jcnUdUfTd2SUEBsaSHJUsByRF6KbKCoq4ttvv2Xv3r0opWhoaEApxbPPPgs0L0XQ2n+7jZ+HhLRekNnZbu7cuTz66KMUFxezbds2zj33XKqqqoiMjGTnzp1tvkdrnHu6TtV4TlrrNsfRWnPzzTfzpz/9qcnzFStWuDWPhQsXsmnTJj755BNGjx7Nzp07iYmJabNfV5LlRSE6YMORIgYnhBEdEgAYQVdFrY1D+RVdNqe9J8qY9+p6pj27ktFPfcX1/97IX788SJ2t9Q2tQgjvW7p0KTfddBPHjx/n2LFjZGZmkpqaytq1awFjefHo0aPY7XaWLFnC1KlTAbDb7SxduhSAd9991/X8VJMnT3Ztzn/nnXdc7UJDQ5kwYQL33nsvl1xyCWazmfDwcFJTU3n//fcBI/DZtWsXYGSOGo/TGRMnTmT16tUUFhbS0NDAokWLOOecc5q0Oe+881i6dCn5+fkAFBcXc/z4cSZNmsTq1as5evSo6zlAWFgYFRUnv8emp6czceJEnnrqKWJjY8nMzOzUnH3BraBLKXWhUuqgUuqwUuqRFl6/Qym1Rym1Uym1Vik1tNFrjzr6HVRKzfbk5IXoCtb6BrYeK2Fyv5Ob5s/qEwXQpaUjDuYa34zuO38AF41IoKiyjpe+PSzlLIToYosWLWLevHlNnl155ZW8++67AEyaNIlHHnmE4cOHk5qa6mobEhLCvn37OOuss/j222957LHHWhz/xRdf5M0332TkyJG89dZbvPDCC67XrrnmGt5+++0my5HvvPMOr7/+OqNGjWLYsGF89NFHALzwwgu88sorjB8/nrKysk59zomJifzpT39i5syZjBo1irFjx3LZZZe5XldKMXToUP74xz8ya9YsRo4cyQUXXEBOTg5xcXG89tprXHHFFYwaNco190svvZQPP/yQ0aNH89133/HrX/+aESNGMHz4cKZPn86oUaM6NWdfUG2lAJVSZuAQcAGQBWwBrtVa72/UJlxrXe7481zgTq31hY7gaxEwAegJfA0M1Fo3tPZ+48aN01u3bu3cZyWEF21IL+Laf23k3zeN4/yhPQDj/xbHP/010wfG8berR3fJvP765UFeWXmYA3+YQ4CficziaqY9u5I/XzGCBRN6d8mchOgO0tLSGDJkSFdPo0WrVq3i+eef53//+1+z10JDQ6msrOyCWXlPQ0MD8fHx5Obmduri6K7S0r8lpdQ2rfU4d/q7k+maABzWWh/RWtcBi4HLGjdwBlwOIYAzkrsMWKy1rtVaHwUOO8YT4gdrw5EiTAom9D25uVMpxdjeUWzvwqzS0cIqkqMsBPgZ/1n3jAzG36w4VtS+woVCCOEtw4YN47bbbvtBBlye4M5G+iSg8UJpFjDx1EZKqbuAXwEBwLmN+m48pW9SC31vB24H6N1b/o9cdG8b0gsZkRRBeFDTbxrjUqL4cn8eBRW1xIUF+nxex4qqSIk9uZHVbFL0irKQUVzl87kIIdwzY8YMZsyY0eJrP7YsF/CDqcbvLe5kulo6QtBsTVJr/YrWuh/wMPC7dvZ9TWs9Tms9znm8VIjuqLrOxo6MUib1a14E1bmva3sXlI7QWnOssJrUGEuT531iLBwrlEyXEEJ0B+4EXVlAr0YfJwPZp2m/GHAW4mhvXyG6tR0ZpdjsmrP7Nq8bM6xnBAFmU5csMRZW1lFZa2uS6QLoExNCRnG1W8e3hRBCeJc7QdcWYIBSKlUpFQAsAJqUflVKDWj04cXA944/rwAWKKUClVKpwABgc+enLUTXyCw2skb945tfBBvkb2Z4UniXnBY8VmQsITYPuixU1tooqqrz+ZyEEEI01WbQpbW2AXcDXwBpwHta631KqaccJxUB7lZK7VNK7cTY13Wzo+8+4D1gP/A5cNfpTi4K0ZLqOhu7s0ppsHd9tiav3KjcHB8W1OLrZ/WJYveJMmwNvq2NdbTQCLpSY5oGXSmOj48Xyb4uIYToam7V6dJaf6q1Hqi17qe1ftrx7DGt9QrHn+/VWg/TWo/WWs90BFvOvk87+g3SWn/mnU9D/Ji9/t1R5r68jsl//oZnPk1jf3Z5ly2X5VVYiQkJcJ0QPFXvmBDqbHafZ5aOFVbhZ1IkRwWfMh9jj9dxOcEoRJdSSvHAAw+4Pn7++eddl163Zvny5ezfv/+0bUaNGsW1117riSl63RNPPMHzzz/f4vOkpCRGjx7N8OHD232P4ooVK/jzn//coTk988wzHerXUVKRXnR7+3PKiQ0NZERSJG+sPcpFL37H3e/u6JK55JdbiQ9vOcsF0MNxajHfkRHzlWNFVfSKtuBnbvqfdHJUMCaFlI0QoosFBgbywQcfUFhY6HaftoKutLQ07HY7a9asoarKM9nshoauWYxyXmT9/vvvc+utt2K3N10tsNlsrfadO3cujzzSrG67W3wddMndi6LbSy+oZHSvSP598ziKq+p48uN9fLwrm1pbA4F+Zp/OJa+8lh7hrZeDcAZkeeVWRhDhq2lxtLCalFNOLgIE+plJjAgmQ5YXhTB89gjk7vHsmAkjYM7pMy1+fn7cfvvt/P3vf+fpp59u8trx48e59dZbKSgoIC4ujjfffJOsrCxWrFjB6tWr+eMf/8iyZcvo169fk37vvvsuN954I2lpaaxYscKV8ZoxYwajR49m8+bNlJeX88YbbzBhwgSeeOIJ0tPTOXHiBJmZmTz00EP87Gc/Y9WqVTz55JMkJiayc+dO9u/fz9/+9jfeeOMNAG677Tbuu+8+Hn74Yfr06cOdd94JGBmqsLAwHnjgAZ577jnee+89amtrmTdvHk8++SQATz/9NP/3f/9Hr169iIuL46yzzjrt12nIkCH4+flRWFjIQw89RHR0NDt27GDs2LH89re/5dZbb+XIkSNYLBZee+01Ro4cyX/+8x+2bt3Kyy+/TEFBAXfccQcZGRkA/OMf/2DKlClUVlZyzz33sHXrVpRSPP7442zZssV1efewYcN47bXXuPrqq8nKyqKhoYHf//73TSr5e4IEXaJbszXYOVZYzczB8QBEhwQwc1A8H+3MJrO4mv7xYT6dT165laGJ4a2+7gzI8it8l+nSWnO8qKrFE5UAKbEWyXQJ0Q3cddddjBw5koceeqjJ87vvvpubbrqJm2++mTfeeINf/vKXLF++nLlz53LJJZcwf/78FsdbsmQJX331FQcPHuTll19ussxYVVXF+vXrWbNmDbfeeit79+4FYPfu3WzcuJGqqirGjBnDxRdfDBj3P+7du5fU1FS2bdvGm2++yaZNm9BaM3HiRM455xwWLFjAfffd5wq63nvvPT7//HO+/PJLvv/+ezZv3ozWmrlz57JmzRpCQkJYvHgxO3bswGazMXbs2DaDrk2bNmEymXCWjzp06BBff/01ZrOZe+65hzFjxrB8+XK+/fZbbrrppmYXb997773cf//9TJ06lYyMDGbPnk1aWhp/+MMfiIiIYM8eI+AuKSnhyiuv5OWXX3aNsWzZMnr27Mknn3wC0OmrkFoiQZfo1rJKaqhrsNM/7uRpQecJvSMFVT4NumwNdgorT5/pig0NRCkjOPOV/IpaqusaSD3l5KJT7+gQPt+b47P5CNGttZGR8qbw8HBuuukmXnzxRYKDT+6/3LBhAx988AEAN954Y7OgrCVbtmwhLi6OPn36kJyczK233kpJSQlRUUa9QGcANn36dMrLyyktLQXgsssuIzg4mODgYGbOnMnmzZuJjIxkwoQJpKamArB27VrmzZtHSIjxPeWKK67gu+++45e//CX5+flkZ2dTUFBAVFQUvXv35sUXX+TLL79kzJgxgFHU9fvvv6eiooJ58+ZhsRhZ+Llz59Kav//977z99tuEhYWxZMkSlDLKfF511VWYzWbXvJYtWwbAueeeS1FRUbPA6Ouvv26yJFteXk5FRQVff/216zJvwPV1amzEiBE8+OCDPPzww1xyySVMmzatzb+H9pKgS3Rrh/ONisz9GpVocJ7QO+bjJbOiqjrsmtPu6fI3m4i2BPg00+U8uZgS03LQlRJjoaS6nrKaeiKCz8yrN4ToLu677z7Gjh3LT37yk1bbOAOO01m0aBEHDhwgJSUFMIKLZcuWcdttt7U4hvPj1p47AyzgtAeV5s+fz9KlS8nNzWXBggWu9o8++ig///nPm7T9xz/+4dbnAsaergcffLDZ87bmder4drudDRs2NAlqnX3bmsvAgQPZtm0bn376KY8++iizZs1q9ZLxjpKN9KJbSy9wBF2xJ4OuCIs/0SEBHPVxpXVn9qrHaYIuMIKyggrfZbqOOctFtJLp6uMIxjJkiVGILhcdHc3VV1/N66+/7no2efJkVxbmnXfeYerUqQCEhYVRUVHRbAy73c7777/P7t27OXbsGMeOHeOjjz5i0aJFrjZLliwBjOxQREQEERHGHtOPPvoIq9VKUVERq1atYvz48c3Gnz59OsuXL6e6upqqqio+/PBDV9ZnwYIFLF68mKVLl7qWPWfPns0bb7zhurboxIkT5OfnM336dD788ENqamqoqKjg448/7tTXbvr06bzzzjuAcVF4bGws4eFNt3vMmjWLl19+2fWxc+nw1OclJUY9RX9/f+rr6wHIzs7GYrFwww038OCDD7J9+/ZOzbclEnSJbi29oJLY0EAiLE0zNCkxFo4W+vZeMmeNrtMtLwLEhwW62vrC0aIqAswmekYGt/h6H2fZCLmDUYhu4YEHHmhyivHFF1/kzTffZOTIkbz11lu88MILgBHgPPfcc4wZM4b09HRX+zVr1pCUlERS0smrjKdPn87+/fvJyTG2EkRFRTF58mTuuOOOJgHehAkTuPjiizn77LP5/e9/T8+ePZvNb+zYsdxyyy1MmDCBiRMnctttt7mWDocNG0ZFRQVJSUkkJiYCRkBz3XXXMWnSJEaMGMH8+fOpqKhg7NixXHPNNYwePZorr7yy08t1TzzxBFu3bmXkyJE88sgj/Pe//3W95sxivfjii642Q4cOZeHChQD87ne/o6SkhOHDhzNq1ChWrlwJwO23387IkSO5/vrr2bNnDxMmTGD06NE8/fTT/O53v2s+iU5S3e16kHHjxumtW7d29TREN3Hl/1uPv1mx+PZJTZ4/8N4u1h0uZONvzvPZXN7eeJzfLd/Lpt+cd9ps10NLd7H6UAGbfnO+T+b187e2cji/km8emNHi69V1NoY+9gW/nj2Iu2b298mchOhO0tLSGDJkSFdPw2dmzJjB888/z7hx45o8f+KJJwgNDW1xGe+H7K9//Svl5eWuE5Pe1NK/JaXUNq31uFa6NCGZLtFtaa05nF9Jv7jmV+6kxlrILbdSXdd67RZPyy+3YlIQExJw2nbxYUEUVNT6rIL+scLqVpcWASwBfsSFBbqWIYUQ4sdi4cKF/Oc//+GGG27o6qm4RTbSi26rqKqOspr6FoMu5wnGY4XVDO3ZegkHT8orryU2NLBZAdJT9QgPxK6hqKq21euCPMVu1xwrqmLagNjTtkuJsXC8WPZ0CXEmWLVqVYvP26qA/0N0xx13cMcdd3T1NNwmmS7RbaW3cHLRyZnZ8eUJxrwKa5ub6AHiHIGWL6rS55ZbqbXZm110fare0SFy/6I4o3W3rTTih8cT/4Yk6BLdVnqBEST0byHocpZHOOrDJbO2qtE7nSyQ6v0TjG2dXHRKibGQV15LTZ3cNy/OPEFBQRQVFUngJTpMa01RURFBQZ1bvZDlRdFtHc6vJNjfTGIL2aWQQD96hAf6NOjKL7cypndkm+2cdbx8kek66shetZnpcpxgzCiuZlCCb6v4C9HVkpOTycrKoqCgoKunIn7AgoKCSE5O7tQYEnSJbiu9oJK+cSGYTC0XtEuJCfFZ0FVns1NUVUcPN/ZoxYUamS5flI04VlhFoJ+pxcC0MWdm8HhRlQRd4ozj7+/vqrYuRFeS5UXRbaUXtHxy0Sk1NsRnJ/IKKt2r0QUQ4GciOiTAJ8uLRwur6RNjaTUwdToZdMlmeiGE6CpuBV1KqQuVUgeVUoeVUo+08PqvlFL7lVK7lVLfKKX6NHqtQSm10/FrhScnL368auoaOFFa02bQ5Tzh6G3uVqN38lWB1GNFVa1e/9NYhMWfiGB/n1+dJIQQ4qQ2gy6llBl4BZgDDAWuVUoNPaXZDmCc1noksBR4ttFrNVrr0Y5frd92KUQjRwor0brlTfROJ8tGeD+QyHcEXfFuZLqMdt6/CqjBrskoOn2NrsZSYixkSNkIIYToMu5kuiYAh7XWR7TWdcBi4LLGDbTWK7XWzu/mG4HO7TQTZzznycV+8a0HFL4sG3HyCqDuk+nKLbdS12B33a3Ylt4xIZLpEkKILuRO0JUEZDb6OMvxrDU/BT5r9HGQUmqrUmqjUuryljoopW53tNkqp0sEGDW6lOK0S2e9oy0o5ZuyEXnlVvxMimjL6avRO/UID6Swsha7F6vSO5c8EyLcy76lxFg4UVJDnc3utTkJIYRonTtBV0s7dFv8SaKUugEYBzzX6HFvx51E1wH/UEr1azaY1q9prcdprcfFxcW5MSXxY5deUEmvKAtB/uZW2wT5m+kZEeyjoKuW+LDANjesO8WHBWGza4qr67w2J2dJCner3veKtmDXkFNW47U5nU56QaXPrkYSQojuyJ2gKwvo1ejjZCD71EZKqfOB3wJztdaudRWtdbbj9yPAKmBMJ+YrzhCH8ytPu5/LqW+cb04w5ldYXfW33BEf5iwb4b19Xc49Y873cndO+RXe3+B/qqOFVVzwt9W8vfG4z99bCCG6C3eCri3AAKVUqlIqAFgANDmFqJQaA/wTI+DKb/Q8SikV6PhzLDAF2O+pyYsfpwa75mhhFf3i2t6rlBITwpHCKq9Xms4rt7pVLsLJVSDViwFOfkWtcQF3qLtBlzGngi4Iuj7dk4Ndwyd7cnz+3kII0V20GXRprW3A3cAXQBrwntZ6n1LqKaWU8zTic0Ao8P4ppSGGAFuVUruAlcCftdYSdInTyi6todZmP225CKeU2BAqrDaKq7y3jAfOK4Dan+nK92KmK7+8lpjQQMzuLnmGe39OrflsrxFsbT1WTFGl74M+IYToDtyqSK+1/hT49JRnjzX68/mt9FsPjOjMBMWZ53BB6xddn6pvoxOM7mZ82sta30BZTX37gi5XgOPNTJfV7aVFgGhLAH4m5fPlxYyiavaeKGfemCQ+3HGCbw7kc/W4Xm13FEKIHxmpSC+6HXcvcYaTtbqOFHhvX9fJDevuBziBfmYiLf7kebFWV35FbbvmZDIpYkMDfR50ObNcv7pgIEmRwXy5L9en7y+EEN2FBF2i28ktt+JvVsSEtF2eITkqGLNJebX+lDNwak+mC6BHWJCXM121bp9cdIoP933Q9eneXEYmR9Ar2sIFQ3uw5vtCqmptPp2DEEJ0BxJ0iW4nv9wIJpRqe6+Sv9lE72gLxwq9V2m9vVcAOXkzwGmwa4oqa92ukO+aU1igT/d0ZZVUsyuzlDnDEwGYPSyBOpudNYekHp8Q4swjQZfodnLLrCREuB/gpMRYvFqr62Q1+hYCHGsZ7HgbbM2Dq/iwIK8FOEWVtdh1+5Y8AeLCAn16evHzvcZS4pzhCQCMT4kiyuLPl/vzfDYHIYToLiToEt1OXoWVhJaySvaWK6knRgaT69VTglYC/ExEBPs3faG2At6+Ej66C774TbN+8eGBFHipKr0zgxbXzuXFuLAgiqvrqG/wTVX6z/bmMjQx3LX3zs9s4rwhPfgmLc9ncxBCiO5Cgi7R7eSVWZsvm+XsgmdT4KvHwN7Q5KWE8CCKq+qotTV97rH5OGp0NVnurKuGd6+BE9uh//mw5d+wZ2mTfvFhgdQ3aEq8UJU+v6J9F3A3npPWUFTp3RIbYGQstx0v4aIRCU2ezxrag3KrjU1Hir0+ByGE6E4k6BLdSmWtjaq6hqaZrgYbrLgH6q2w7gVYcgPUVrpedrb11qb1vPJaejTOKNVbYfF1cHw9XPEaXLsYek+CFb+EgoOuZj28WCC1IycqG7fP9+KpSqfPHacW54xIbPJ8+sA4gv3NfLlfTjEKIc4sEnSJbiW3rIVN65v+n5HpuuKfMOc5OPQ5vDEbSo172J3ZHm9duZNXYT05H7sdlt4KR1bC3JdgxHww+8P8N8A/GJbc6AoIvXkV0MnlxXYGXV4OUBv7dG8ug3qENStyG+RvZvrAWL7cl+fVC8GFEKK7kaBLdCvNTgoWH4Vvn4ZBF8HQy2Hi7XD9+1CaAf8+D6qLXZvuvbWvK7+80SnBrM1w8BM473EYe+PJRuE9Yf7rUHgIPvlVk8/BK5muCiuRFn8C/Vq5EDz9W1jzfLN9cL66f9Fa38CWY8VcMLRHi6/PHpZAbrmVvdllXp2HEEJ0JxJ0iW7FGXQlRASB1vC/+8HkBxc9D849Vf3Ph+uXQmUe7PvQtbyY54XsTWWtjcpa28kgcN+HYA6ECT9r3rjvDJh6H+xeAqUZriyUN04LGmU1Wshy5e03Nve/NQ++/QPseKvJy7GhvllezCiuRmsY0KPlWwXGp0QDkJZT7tV5CCFEdyJBl+hWcl2ZrkAjeDmyEs5/HCKSmjbsNQFiB8Ge94kI9ifAz+SdZbzG87HbYd9yGHABBIa13GGMI/uV9j+C/M1EBPt7bXmxSWFUWx18fB8snAJZW2DWH419Zl8/AdUnN6wH+JmIDgnweqYro8iom9Y72tLi64kRQfiZFBnF3quvJoQQ3Y0EXaJbyS+vJSzID4ufgi9/D8kTYNxPmzdUCkZeBRkbUGWZJIQHufaDeXQ+Fc4N60GQsQEqc2HYvNY7xPSD+GGQ9rGjX6BX9k8VnHoF0O7FsO1NGH8b/HInTL4HLnoOrKWw8pkmfeNCvV+r67gjmOoT0/JVTn5mE0lyNmykAAAgAElEQVRRwWQU13h1HkII0Z1I0CW6ldwyx6b1E9ugKh/OvgNMrfwzHXGV8fuepSSEB3l1w3p8WKCxtOgXDAMvPH2nIZc6ArR84sMDPX7/otaagopa4hqXi9j2H4gbDHOeBYuxdEfCCCMI2/o65Ox2NfXFVUCZxdWEBvoRZfFvtU3vaItkuoQQZxQJukS34iqM+v1XoEzQd2brjaNSjEzYnveN4MYLQZczIxQX4gf7P4KBsyCw5X1KLkMuATQc/NQr9y+WVtdT12A/ubyYu8cIUs+65eS+N6eZv4XgaPj018YeORxV6b18FVBGcTW9oy2nvcqpV7SFTAm6hBBnEAm6RLfiKox6+CtIHn8ya9OakVdD/n5G+mWRW25Fa8+WICioqCXAbCIif7OReRt2Rdudegw3AsK0j4kLN5byPDmvJtk3gG3/NTb3j7ymeePgSDj/CcjcCLvfc/QLoqDSs3M61fGiqlb3czn1jrZQXFVHhbXea/MQQojuxK2gSyl1oVLqoFLqsFLqkRZe/5VSar9SardS6hulVJ9Gr92slPre8etmT05e/LjY7Zr8ilr6BldD9g7of0HbnYbNA2VmYtU3WOvtlFttHp1TQUUtcWGBqP3Lwd8CA2a13UkpY4nxyGqSgo2sVFmN5wILVzX6sECjMv7uJTD0stYD1NHXQ8+xsOoZ0LpRpXzvBDt2uyazpIY+MW0HXQCZsq9LCHGGaDPoUkqZgVeAOcBQ4Fql1NBTmu0AxmmtRwJLgWcdfaOBx4GJwATgcaVUlOemL35MiqrqsNk1o+u2GQ8GnN92p5BY6H8eA/K/QGH3+BJjfoWV+FA/2L/C2MsVcPpAwmXwpWCvZ1jlRsCzZSNc1ejDg4x9ZrXlxtJia0wmGHsTlByDggOummPeKhuRV2GlzmanlxuZLkD2dQkhzhjuZLomAIe11ke01nXAYuCyxg201iu11s7vnBuBZMefZwNfaa2LtdYlwFdAG7uQxZnKGTD1Ld0IIXGQMMq9jiOuwlKTw3h10ONBV0FFLVP90qC6EIa7sbTolDweQnuQUvAt4NlipE2WF7f/F2IGQJ/Jp+80cLbx+8HPXHvBvFWV3lkuos1MV4wz0yVBlxDizOBO0JUEZDb6OMvxrDU/BT5rT1+l1O1Kqa1Kqa0FBQVuTEn8GOWVWzFhJz5/rVEAtbVTi6cadBF2v2AuN6/zeNmIwspaptV9BwGhxpzcZTLB4EuIOrGKQOo8m+mqsBISYCak9BBkbmp5A/2pwntC4ig49IVXi7bCyXIRbe3pCg/yJ9LiL5kuIcQZw52fai19N29xB65S6gZgHPBce/pqrV/TWo/TWo+Li4tzY0rixyi33MoolY5fbWn7ApzAUPSgi5lj3kx+WZXH5mNrsFNcZWV4xVpjadE/uH0DDLkUk62G6abdHl3Ky6+oNZYWt/8XzAEw6lr3Og6cA1mbiTdXusbxhsziaswmRc/Itr9eUjZCCHEmcSfoygJ6Nfo4Gcg+tZFS6nzgt8BcrXVte/oKAcY1PjPMu9DKBP3ObVdf8+A5RKlKzLm7227spuKqOoaQgaW+xKhC314pU9FBkVzst9WjWaWC8loSQk2wa7GxYT8kxr2OA2eDthOSsZKQALPX9nRlFFfTMzIIf3Pb316kbIQQ4kziTtC1BRiglEpVSgUAC4AVjRsopcYA/8QIuPIbvfQFMEspFeXYQD/L8UyIZvLKrJzvvxuVNK7tUhGn6jsDO4qEwvUem09+RS1TTXtc47eb2R81YBbTTbsoKPfcCb38CiuT/A4Z1eaHX+l+x8TREJpg7OsKD/Japut4UTV9oluuRH+q3tEWskpqaLB7r3yFEEJ0F20GXVprG3A3RrCUBryntd6nlHpKKTXX0ew5IBR4Xym1Uym1wtG3GPgDRuC2BXjK8UyIZqpLcxmi0zuWVQqJ5XhAfwZUbPbYfAocQVdN1CAIS+jYIP1mEk0ZQSUHPDav/IpaxtdtNZYWU89xv6PJZBR3Tf+WhFATBV7aSJ9ZXN3myUWn3tEW6ho8f+pUCCG6I7d2KmutP9VaD9Ra99NaP+149pjW2hlcna+17qG1Hu34NbdR3ze01v0dv970zqchfgx6FW/AhG7ffq5GjoZPZJAtDazlHplPcWkZE0wHsfVpR2Bzqr4zAEgp2+KROVXW2qiua2Bw5QZImdp2dfxTDZwDteVM8jvoleXFylobRVV1bW6id5KyEUKIM4lUpBfdxvCaLVT6RRnLYB1Q2GMqfthpSF/tkfn4ndhEoKoncNB5HR8kvCf5QSmMqN3ukTnll1vppfKIqj7mXqHWU/U9B8yBTKjb4pXlRXfLRThJ0CWEOJNI0CW6hVpbA6Pt+8iOHOd+qYhT2JLGU6mDqD34tUfmFJO3jjr8COg3rVPj5ERPZKxOw1rT+ZOV+RW1nGvaaXzQkaArIAT6nsOQinVU19moqvVsBf+MYuNzdDfTlRgRhNmkZDO9EOKMIEGX6BaKTqTTUxVTGT+uw2PER4axwT4U89FvPTKnPmWb2W8ebAQqnVDecxrBqo7yQ53f5J9XbmWmaSd1EakQ069jgwycTURNFv1UtsezXc6MVW83M11+ZhNJkcGS6RJCnBEk6BLdgjXdCEh074kdHiMhIojv7CMIrMiA4iOdm1BlPr1qD3PA0vEg0En3mYJNm7Cndz4YLCktZZJpP7p/B7JcTgONSyHOM20n38Mb2I8XVRNp8Sc8yN/tPlKrSwhxppCgS3QLpqxNVOlAQnt3bD8XQHx4IGvsI40PDn/TuQkdMfaFZUWd3blxgOjoGHbo/gRnrun0WJYT6wlU9QQM6cRtWhHJ1EYP5hzTbq9kuvq4ubToJLW6hBBnCgm6RLcQlr+V7fYB9Ijs+FJebEggWSqR0sBESF/ZuQkdWUmZDsEaN7xz42Dckbi2YQThJfugunMVU5IK1lBNECplSqfG0akzGGc6RFGpZ056OrWnXIRT72gLhZV1Ht9fJoQQ3Y0EXaLrWcuJqjzMTjWIiGD3l6VOZTIp4sOC2G8ZD0fXQEN9xwbSGnv6t6y1DyM2vH0BREtiQgNZp0eg0Ma8OkprBlVsYE/AaPAL7NScAgfOMDJmOZ4pZQHGtUlZJTVun1x0khOMQogzhQRdoutlbcGEnaPBI1BtXdzchvjwIDabRkNdBWR1MKAoPISpIoe19hHEhXYuuAGM03nBQ7CaLHCkExm4/DRiGwr4PmJyp+ek+kzBhom4go2dHsspp8yKza7dPrnoJEGXEOJMIUGX6HqZm7BjojBiZKeHSggPYlXdYFDmju/rcixNfmcfQVxY54MugJjwENICR3Vu2fN74wat3PjOlbAAICicw36DSKnY1vmxHFwnF928AsjJGXT5cl+X3a6x1je4ftXZ7D57byHEmcuvqycgBBkbSTf1ITwyqtNDJUQEsS7dD3pPgEOfw3m/b/8g339JVUgfsqzxxId7JuiKCwtkc90oxpRugOKjEJ3a7jHsBz/ngL0PQTG92m7shsOhZzGn9F2jgn9QeKfHa2+5CKcIiz/hQX4+y3RprbnkpbXsz2m6n+2ZeSO4bmJvn8xBCHFmkkyX6FoNNnTWVjbbBpIQHtTp4eLDA6mw2qgbeCnk7YXC79s3QHUxHF3NkbiZAB5ZXgRjM/23dUONDzqyxFieg8rcxJf2s0iICPbInHJjJmDGDsfXeWS840XV+JtVh/4ee8f4rmzEsaJq9ueUc8nIRB66cBAPXTiIpMhgPt2T45P3F0KcuSToEl0rby+qvopNtgEkRHQ+6HL+wM9NdtSx2re8fQMc+ATsNnaEzcBsUkRZAjo9JzAyXduqYtGRveHAp+0fYP9HKDQfN0yipwe+TgDWHmdh1f7YOnvS0yGzuJpeURbMplb25WkN9TVgb2j2ki9rda07XAjAry4YyJ0z+nPnjP7MGtaDLceKqbU1n5sQQniKBF2ia2VuAmCrfSDxHsh0OYOuEw3R0Ots2N/OoGvfhxCVwl57KrGhAZhaCyDaKT4sEJsdrAMvMzJdVUXtnNcHlIYNJF0nkRjpmUxXfFQEW+yDsKd3vn4YwPHiqublItJXwt+HwzNJ8GQUPJ0Ar05qdil5r2gLWcU12O3aI3M5nfXphSRGBJEae3Lv2ZR+sdTa7Gw/Xur19xdCnLkk6BJdK2MjtZYEson10PKiMUZeuRWGXW4sMRYccq+zY2mRoZdTUFlHfJhnMkqN55XT62Kw29oXDJZlQeYm0qKNi7cTPZTp6hkZzHr7cAKK0qCyoNPjZRRVNz25WF0MH94BZn8YezNMfxCm/xoKD8HXjzfp2zvaQl2DnbwKz1bIP5XdrlmfXsSU/rFNTspO7BuN2aRYn17o1fcXQpzZ3Aq6lFIXKqUOKqUOK6UeaeH16Uqp7Uopm1Jq/imvNSildjp+rfDUxMWPgNaQsZG8yDEAHgm6nEuUeeVWGHqZ8dDdAOfA/4yAaNg8CiprPXZyEXCNlRXQD2IHwt5l7nd2LJGuCzqH6JAAgvzNHplTYmQQ6+zDjA+Oru7UWGU19ZRbbU2Drs8ehupCmP8mXPgMnPs749fZd8LWN+Dod66mrrIRRd5dYtyfU05pdT1T+sc0eR4W5M+IpAjX0qMQQnhDm0GXUsoMvALMAYYC1yqlhp7SLAO4BXi3hSFqtNajHb/mdnK+4sekLBMqskkPGo5SeGRPV2igH6GBfuSWWyG8J/Se5P6+rn3LISoFEkeRX17rsU30YCwvAuRX1sHw+XB8PZSdcHNeH0DiKPZaYzyW5QLoGRHMXp1KrTm0c0VbOVnuITnKsfSZ9jHseQ+mPQg9T7na6dzfQVQqrLgH6pz9jKArq6SmU/NoizOomtwvttlrU/rHsCurjAprB4vqCiFEG9zJdE0ADmutj2it64DFwGWNG2itj2mtdwNS7Ea4L8PYz7VbDSYuNJAAP8+sdseHB5Jf7rhTcOjlkL+v7SXG6mI4sgqGzaNBQ1FVnVcyXQUVtTBiPqCN/WNtKTkGJ7bBsHnklFpJ9NDJRYDgADPhlkDSQ8Z0OtOVVWIET72iLcZ+tf/dDwkjYNoDzRsHWGDuS1ByFFY+DUDPyCCU8kHQlV5E//hQerSQVZ3SL5YGu2bz0c5d1SSEEK1x56dcEpDZ6OMsxzN3BSmltiqlNiqlLm+pgVLqdkebrQUFnd9bIn4gMtZDQBjba3vS00Obw8HY83Si1PHDe+hcQLW9xHjgf6AbYOjllFTX0WDXHqvRBWAJMDJw+RVWiOkHiaNh79K2OzoDs2HzyC6roWek5zJdAIkRwezwG2kEdyXHOzyOM1jqFWWBTx+EmlK4fCH4tXL6M3UanPUT2PgqZG0l0M9Mj7AgV/DmDXU2O1uOFjOlX0yLr4/tE0Wgn4l1h9t5yEEIIdzkTtDV0vGt9hwx6q21HgdcB/xDKdWv2WBav6a1Hqe1HhcXF9eOocUP2pHVkDKFzLI6kjwYdCVHWk4GXa4lxjaySvs+NJa8EkcZ2Sg8V6PLKS4s0DU2I+ZD9g4oSm97XklnUWlJpsJq82imC6BnRBCr6ztRP8whs7iasCA/IvI3G8uh5zwECW1cFn7BUxCaAF8aBWyTo4LJ9GLQtSOjhJr6Bib3b760CBDkb2ZcSpRsphdCeI07QVcW0LgEdjKQ7e4baK2zHb8fAVYBY9oxP/FjVZYFxenolGlkl3o2g9MrOpiCilqs9Y6aS8Muh/z9UHCw5Q7VxUYAOGweKEW+M+jy4PKiczzn2AybZ/y+94PWOxSlQ84uGHYFOY4g0uOZrsggNlXEGXvZ0v7X4XEyS2qMLNf6F8ESA5PvabtTUDhM+JmR8Sw8THJUsFeXF9elF2FScHbfljNdYOz1OpBbQWFlrdfmIYQ4c7kTdG0BBiilUpVSAcACwK1TiEqpKKVUoOPPscAUYH9HJyt+RBwn1yoSJ2Ott3s0g+PclO3Kdg2ZC8oEa54zTkyeavO/jKXFYcbqd4EXg65CZ9AVkQy9JxtLjC3NCWDnO8bvwy4nu8wopeDpTFdiRDBlVhv1gy419rTVlHRonMziasaH5BlXL024HfzdnOfo64x7Mne+Q69oi3FpdoN3toauP1zIiORIIoL9W20zxZEFW58uS4xCCM9rM+jSWtuAu4EvgDTgPa31PqXUU0qpuQBKqfFKqSzgKuCfSql9ju5DgK1KqV3ASuDPWmsJuoRxWs4SQ4a/cQehJ/d0OU/QubIm4Ykw4zew530j8Gpsz1JY9YyReUowLtz2VtAV3zjTBTDiSig4YGyUP9XR72DtP2DYFRCR7LVMl3O83KQLwV4PBz9v9xhaa7JKarjc+iH4BcP4n7nfOSwBBlwAuxbRK8KfBrsmp8zztboqa23szCxtdT+X0/Ce4YQF+rFeSkcIIbzAreNiWutPtdYDtdb9tNZPO549prVe4fjzFq11stY6RGsdo7Ue5ni+Xms9Qms9yvH76977VIQnNdi1965E0do4LZcyjewyIwjx6J4uV/mBRvuDpj8Io641Tsvtft94dmS1Ubyzz1Rj07ejWGZBRS2hgX5YAjx7H3xcWCCVtTaq62zGg2FXQGgPePcayN1zsmHZCXj/FmPD/aUvAJBdZkUpWjx11xnOzNmxwIEQ0Qv2f9TuMQor6witL2Rk0Rcw5noIOX1g08yYG6Aih+E1RvDpjSXGzUeLsNm1K5PVGj+ziYl9Y1gn+7qEEF4gFelFM3a75uY3NjPvlfXeWeopPgLlJyB1OtmODE6iBzM48WGB+JsVmcWNfngrZQQwfabAR47inEtugJj+sOAd8D/5/p4ujHpyXsZ7uDbTW6Lhlk/BLxD+cwmc2A62WnjvRuP3a94x9j0BOaU1js/Ls//J9nQEXTlltcYybPo3za7oaUtWSTW3+H2BSdtg0l3tn8SA2WCJpU/mB67xPG3d4SIC/Eyc1SeqzbZT+seQWVzjqj0mhBCeIkGXaGbxlkzWHi5kf045H2x3s4BnezhrQqWeQ06ZlQA/EzEhnrlYGsBkUiRFBjf/4e0XCNe8DZG9jTpSgWFwwzIIjmzSLL/c6vGTi9CoQGrjJcbY/vCTTyEoAv7vMnjvJmO58fJXIW6gq1lOmWdrdDn1iDDmlF1WY1Twb6iDQ1+0a4zs/EJuMH9NZd85EN23/ZPwC4BRC7Ac/ZJYVU6mFzJdG48UcVbvKLeq+TuzYRuOyL4uIYRnSdAlmsgrt/KnT9OY1DeGUckR/OPrQydPAXrKkdUQ1hNi+nGitIakyOAm9+B5QnKUpeVlKks0XPeeUTT1hmUQ0bzknLcyXU0KpDYWlQI/+QxC442N6FPvd9QXO8kbNboAAv3MxIUFklNqheTxEJbY7kvCw9MWEaGq8Z92b8cnMuYGlN3GTZaNHs901TfYOZRXwahekW03BvrHhWIJMLM/u30ZPyGEaIsEXaKJxz/aR12DnT9dMYJfzx5MdpmVdzdleO4N7HY49h30PQeU8ni5CKfTlh+I6QdX/xfih7T4ckGFt5YXHZmu8hY2ikckGYHXZa/Cub9v8pLW2uPV6BvrGRFkZLpMJmOJ8fDXUFvpXmdbLcMz3mY7QwhKPbvjk4gfAknjmKe+JcvDy3rpBZXUN2iGJIa51d5kUgzsEcaBXAm6hBCeJUGXcPl8bw6f78vl/gsGkhIbwtQBsUzuF8MrKw9TWWvzzJvk74fqIkidDkC2l4KJ5KhgCitr252ls9Y3UGG1eSXoirIE4GdSFLRWAyo03tiIbmq6BFZWU09NfYNH711sLDEi+OSJwaGXgc0Kh79yr/OWfxNVn8fyiBs6P5ExN9DLlkFY0e7Oj9XIgZwKAIYkhrvdZ0hiGAdyK9CtlfMQQogOkKBLAMYP9sc+2sewnuHcNjXV9fzXswdRVFXHG2uPeuaNnBcrp0yjvsFOfoXVo+UinDp6gXKeIwvljaDLZFLEhja6F9JN2aXGnLzxdQLjEEN2aY0RYPQ+G0Li3TvFWFMCq59lk3kMxT0md34iw6+k3hTITOtX1Nk8d4AjLbecALOJ1NgQt/sMTgintLqevHb+XQkhxOlI0CUAWLg6ncLKWv58xUj8Gp2QG9M7illDe/CvNUcoqarr/BsdXW1sto7sRV65FbuGJC8sL/aKdtbqat9S1fEio32faIvH5wSOq4DaWe08p8xxwtNLma6eEcFU1zVQXmMzsmxDLjU209e18bVb+3e0tYw/Wq8xLrrurKBwchLO5SLTRnKLPbe0dyCngv7xoe06+Tk4wViKTJMlRiGEB0nQJQBYfbCAs/vGMCI5otlrD84eRGWdjYVr2rgnsC0NNji2DlLPAbybweloputYURVAu7Ii7REfFtju7ImzGr03M13G+zi+ViOvhvpqo6ZZa0ozYeNCaoZcxZ6G3sYVQB5QNegKolUllfvbd4LydNJyytu1tAhGpgtOLk36UoNdy7KmED9SEnQJymrqScstZ2JqjFG4dPtbsPJPsPbvsHEhA/M+Y9bASD7fm9u5N8reDnUVjfZzOTM4ng8m4kIDCTCb2h90FVZjCTB7ZXkRoFe0hczi6nb9UM0prcHPsTTpDYmuWl2Or1Xvs2H8bbDhZWNTfUscAdnBob8ETt4C0FmhQ2dTrEMJPXiaOynboaiylvyKWrc30TtFWPzpGRHk8830dTY7V/y/9fzs/7ZJ4CXEj5BnS26LH6Rtx4vRGib2jYZ1L8DXjzdr82jsOVxQ9FPyy63Ed7Qq+s53wC8I+s0ETmZWvHF60WRSJEUFk9nO5cVjRVX0iQnxeAkLp9TYECprbRRU1Lr9dcwps9IjPAizyTtzcn79nZlHAGb90chKfvgL+MV6CI1rNKHdsGsxTLmX9LooIMMzy4tAYnQYi+yTWJC30ijSGtS+DNWpDuYamSpn5qo9BieGu/r7ysLV6ezKLAVg0eZMrpvY26fvL4TwLsl0CTYdKSbAbGJszUb4+gnjeprHiuE3OfDQUZjzLCmFq3nB/2W2HMnv2JtYy43rd4ZfCcFGVfDs0hqiLP4ev27H6bRlI1pxrKiKlBjv7OcC6BtnLFumF1S53cdbZTWc4sOMgM6V6QLjwur5r4O1DJb/wsiA1lthy+uw6FqjoOzU+8ksrkYpzwXOfmYTa4PPxd9eCwf+1+nx9ucYmaommS57A3zxW3h+EPz3Uvjyd8YdnFVNi6EOTgjjcH6lRzf1n87h/Ape/vYwF49MZHK/GJ7+ZL9XqvMLIbqOBF2CTUeLuSShhICPbofEUXDZK8aG6gCLUUx04s9pmPUMF5k303vV/cYPrfbavQTqq2DcT12Psku9c3LRKTkqmBPt+KFla7CTWVxNipf2c8HJvWJHC90PurxVjd7JbFL0cBZIbazHMJj9tFE+YulP4IWR8MmvjEuqFyyC4EgyS6pJCA8i0K/tSu/uKo0eTZ45wfg300kHciuICwskxrk0W281PpcNL0PCcKitgE3/hGU/hdfOgepiV9/BieHY7Jr0AjdrlnWC3a55ZNkeggPMPHHpMP5y5Ug08OgHe2SZUYgfEQm6znBVtTZOnMjksco/QEAILHjXCLZOYZ58F4sibmNE6dfw0V1G5sNdWsPWNyFhJCSNdT3OLq3xajCRHGWhsLKOmjr3gsScMiv1DZrUGO8FXT0jggnyN3HEzR/kdrsmt8zq0bspW5IYGXxyI31j42+DQRfBvg+NAqY3fwy3fQ19JgHGQQVPbaJ36hUTwid6qlFepDynU2MdyC13nUSkpgTemmeUw5j1tHEjwe2r4DfZcMMHUJkHy25z/U/FEEc/X+zremfTcbYeL+H3lwwlLiyQXtEWHr1oCN99X8jiLZlef38hhG9I0HWG25FRyp/MCwmvLzQCrhauxXHKH3EHf7PNh12LjEyBuzI3Qf4+GP9T4+Jph+zSGq+Ui3Bybu4+UepetsuZferjxeVFk0mREhPCETczXUVVddQ12F0XU3tLz8hGBVIbUwrmvwl3b4WbPjIOQTT6O8wqrvbYJnqn5Khg3rFOBG2Hvcs6PI6twc6hvEqGJoZDZQG8MQdObIUrX4fJd59saPaH/ufBnL8YF36veQ6AlNgQAswmr59gzC6t4S+fH2TagFiuHHvyv7/rJ/RmUt8Ynv4kjROlnr+PUgjhexJ0neHS927kfPMO6qc+CMnjTtt2fGoUL9rmkZ88G756HDI2uvcmW9+AwHAYPt/1qMJaT7nV5vXlRcDtC5SPe7lchFPfuBC3lxe9XaPLqWdEEDllVuz2FjKY/kEQO6DZ4zqbnZxyK8kermmWHGUh3Z5EbdxI2PNeh8c5WlhFnc3O4IRQ+N99UHwErl8KI+a33OGsn8Coa2HVn+H7r/E3m+gfH0qalzfTP/fFQRrsmmfmjWhygMNkUjw7fyQNds1L33zv1TkIIXzDraBLKXWhUuqgUuqwUuqRFl6frpTarpSyKaXmn/LazUqp7x2/bvbUxIVn9D70H6wEEnj2z9psO6ZXFP5mE+/0eAgie8P7P4GqwtN3qioylqZGXgOBoa7HOV6uPQXtr9V11MvlIpz6xoaSUVzt1gZtb1ejd0qMCKLOZqeoHQVwjSr20MvDmS7neFm9L4WcXZCf1qFxnMHS+KrVxqb8mb8x7vxsjVJw8d8gfih8cBuUZjA4MYwDOd5bXrQ12Pk6LY+5o3q2eAK0V7SFmYPjWH2oQPZ2CfEj0GbQpZQyA68Ac4ChwLVKqaGnNMsAbgHePaVvNPA4MBGYADyulIrq/LSFJ1iLTzCl+lv2xl9ibJhvQ3CAmRFJEazNqjMujK4ugg9uNy6xbs3Ot6GhDsbd2uSxc7nEm6fy4kIDCfAzuX0CzNvlIpz6xoXQYNdkuHGxs68yXYmRp9TqcoOzHIenykU4OTNnuyJnGSVG1rdjKbuRtJxyepgrSNrwGCSdBZPubrtTgAWuecso5PvZIwxJCCe/opZiT9zG0ILdJ8qosNqYPjCu1TbTBsSRU2b1ySsTfeIAACAASURBVIZ+IYR3uZPpmgAc1lof0VrXAYuByxo30Fof01rvBk796Tsb+EprXay1LgG+Ai70wLyFBxStehU/7NSe9XO3+4xPjWZ3VinW2OEn98Cs/GPLG+trK42lxd6ToEfTOD3HBxkck0mRHOl+2Qhvl4twas8JxpwyK4F+JqJDArw6J+eesexTTzCeRmax8XX1dNDVIywQP5PicFUQjL0Zdi82KuC304Gccp61vIWqrYDLXgWzm6VJYvrB5Hvg4CecFXjcGMtLm+m/O1SIUjClf0yrbab2jwVgzaE2sspCiG7PnaArCWj8HS/L8cwdbvVVSt2ulNqqlNpaUFDg5tCiU+qqid7/Fl/bxzJsxBi3u01Iiaa+QbMjoxTOugVGXw/f/RXevQYq8k42zNoKC6dCyXGYcm+zcbJLazCbFPFh3s3gJLlZq8sX5SKc+sYay6zunGA0TngGeT375jwd2Z5MV1ZJNX4mRUJHi+W2ws9sIjEyyPh7m3yP8XD9S+0eJ+HEl5xTvxZmPALxg9vX+ew7ICiCYYcWAt67Dui77wsYmRRBpKX1oLpXtIW+sSF89718bxTih86doKul7/bubi5wq6/W+jWt9Tit9bi4uNbT7MKDdi8m2FbGlxHzT/sN/1Tj+kSjFGw5VmzsgZn7Msx51rjI+v9Ngv0rYPWz8PossNvglk9g0Jxm42SX1pDgxSrrTslRFrLcWsYzykX4ItMVYfEnJiSAI24USPV2jS6nmJAAAvxMLZ9gbEVmSQ09I4O98nfYK8piLAtH9oJRC2D7f40TiG4qKzjBr+r/SUHYEJjcPOhvU1AETLqbwPTPmRqS6ZVMV7m1nh2ZpUwb0Pb3vKkDYtl4pJhaWwdq5Akhug13gq4soFejj5OBbDfH70xf4S12O3rDq+zVfbH0n9aurhEWfwb1CDOCLgCTCSb+HG5fDeFJ8N6Nxr18w+bBHWshZUqL42SXebfKulNyVDBFVXVU19lO28651JfixRpdjbl7gjGntMbrNboAlFIkRgS57sN0R2ZxNb2ivRMQJkcFnzx1OuV+sNXCxlfc62y3Y//wF4RRw/Fpf3V/WfFUE++AoEh+5f8BB7xwgnFjehENds20AbFttp02II6a+ga2Hy/1+DyEEL7jTtC1BRiglEpVSgUAC4AVbo7/BTBLKRXl2EA/y/FMdKXDX6GKvue1+jlM6Nv6XpLWTEiNZtvxEmwNjbbwxQ+G276B85+E+W8YV8gER7Y6hrer0Tu5anW1scToq3IRTn1jQzlSePrlxdLqOrLLrPSLCz1tO09JdJSNcEeDXXMo7/+3d+fhUVbXA8e/d2ay7yuQBUIWdsIWdkRAUBQEVERc6gKtCy61Vlut1vqzttbWWtSqoOJWFUS0ioogSwHZ90BYk0jITkIgO1lm5v7+eGdiyDohswRyP8+Th8zMOzM3L5PMmXvPPaeMeAeNLSrIm8KyaqpqTRAaD/1nwa534bwNQcfORQTlbuIF4x107zvs4gfh6Q9jHmJo1U7c8w9gaqqcRjv8mHoGb3c9Q7q3vrdoVGwwBp1QS4yKcolrNeiSUhqBh9CCpaPAcinlYSHE80KIGQBCiOFCiGzgZmCxEOKw5b5ngT+jBW67gect1ymutOc9KtzDWGUeyYiere9abGh4TDCVNSYO5zZYcjG4w7hHtf6KLTCbJXkl550UdNlWNsJZ5SKseob5cKa8hpLztc0esy/zHABJPZyz4TciwMvmma70wnIqa0wkRjUfWLeHtUBthiUYZtxjUFMGu99p+Y65B2Dts6T4jWO153XtzxkccR/VbgEsEJ//PBY7+TG1kNGxIbgbWv/s6+fpxtDuQfyYqpLpFeVSZlOdLinlKillLyllnJTyL5brnpVSrrR8v1tKGSWl9JFShkgp+9e773tSynjL1/uO+TEUm5UXQupatnhPIjLE/6LelKyBWt0SYxudKa+m1iSdEnTV1XxqpWzEKSeVi7CKtWEH495T5zDohMMCm0ZjCvMhr6SKksrmA0GrA1najNOg6ACHjKVvN38AjlgD+26JkHA1bH+j+bpd1eVaD0WfMP6sW0DfCDuMzdOfc4PvY5L+ALkpW9r/eBZZZyvJKKq0aWnRalxCKCm5JQ4rX6EoiuOpivSdTcoXIE28Xz6KIdEX92bexd+T7sHe7Dp5cUGXNVcnwsG1pwBC62p1tTLT5aRyEVaxYa3vYNyTcY7+Ef54uduvmXRLrMtcB7JbX8I7mF2Mr4ehbiemvcWG+uBh0P0cdAFM+TPoPeDdyXD8+wvvUHYavrofitKpnrGIPYWCwRf5+m4oeMJDnJN+dDuw0C6PB9TNWI2zIYne6oqEUKSErWnOm+0ymyVpBWXszzzHltQzrE7JU/XCFKUdVNDV2RxcRk3YQHaUd7Epl6Q5I3oGszvj7EVVyT5qqfDd29qI2IF0OkGPYG+On24+Edpklk4rF2HVPdgbvU40u4Ox1mQmObuYYT3avvx7sRKjAhACDmTaEnSVMDAyAJ2Ddp8a9Dr6dPW7cAk7vA/c+z+tJdHSW+HHV6AsH1b/AV5NhGPfweTnSDYMxGSWDOlun6DL3SeAlb6ziS/ZDlm77fKYP6YWEhHgSVyY7a+5xKhA/D0NTs3r+v0XB5n8ymZueHMbdyzZyf0f72Pu2ztsbiKvKMqFVNDVmRQeh9z9pHabBtCuN6URMcGcq6wlraDtn3pTckoI9HYj0gnLiwCj40LY2cJ2+9zi804rF2HlbtARHeTV7PLi0bxSqmrNDHNSPhdoeUMJ4b7szzrX4nHVRhNH80pJdNDSolW/CH+O5JVeGNj7R8A938OAG2H9/8Er/WDnW9D/Rq0p97hH2W/JhRtkx2XZrLjbOCv9kBtfbPdjGU1mtqad4YqEsMbL2VJq1fCboNcJxiWE8mPqGae0BDqeX8aKfdncNDSK9+8ezvL7RvParUMoLKvmw+0ZDn9+RbkcqaCrM0leBkLPGnEFHgYdfbr6X/RDDbfkde26iLyulFxtlsRZ+VPjLdvt955qOphwdrkIq9gw32aXavZkaGMd2sM5+VxWg6MDOZBV3OKb+rG8MmpN0q5BTVP6RQRQcr62rmVUHTcvuGkJXP0CDP2FFmzd8JZWSR4t36x7sDchvvbbFNGnRwSLjdMR6esha1e7HutgTgmlVUbG1c/nMtbAvo/gtcHwYhR8cjPsegfOnrzgvj+3BLJvUn9TXl1/Ah93A89M68vEPuGM6BnMjEERTOgdxlsb0ymtaj33T1GUC6mgq7Mwm+HgcoibxJY8wcDIAJt2TTUnJsSbUF8Pdrcxr6vGaOZ4fhn97ZHkbKNRcSEYdKLZNirWchHOXF4ErTxFRlEF5iZKEezNPEdkoJdTCqPWN6R7EMWVtWQUNb/x4KAl5ysxyrH/h/0jtA8FjXbJglaYd8zDcP2rdcGW1f7MYrstLVoNigrgI9MUqtyDoZ2zXVtSra1/QsFUq7XKen0YrHxYK8o6+DY4kwqrHteCsC9+WTf79XNLIMcuMR7NK2XVoXzuGRtDUIMWVI9f3ZuS87W8u/knh45BUS5HKujqLE5tgdJsagfOISW3tN1vSkIIRvYMZndGy0tRDZ04rc2SDIx0XtDl62FgaI+gZnNhrOUiwp1ULsIqNsyHqlozeaWNa2PtO3XOqUuLVtbXhXWJrinJ2SWE+Lg7fHm4T1c/hODCZPpW5JdUkV9aZbckeqvYMF907j5sCr0V0jdA5s6LfqwtqWcYEBFAsLsZlt0G3/4GfMPhts+1IsPTX4FfH4CH98G438Chz+G/94LJSHSwNz1CvNmWXmTHn66xV9el4udh4JfjYhvdNiAygGkDu7Fky0mKyqsdOg5FudyooKuzSP4M3P044j+eGqO5XUn0VsNjgsgpPt9qOYb6UnJKABgQefFLmxfjyl5hHM4t5UwTbxLOLhdhZS3E2nAHY07xefJKqlwSdCWE++Hjrq8rCdGUg9nFlqR7x54vb3cDsaE+Tc90NeOAJR/N3kGXXicYEBnAkpqrwCcMNv71oh6notrI/qxzXBnrC5/dDqk/wLRX4JfroNfV2gyeVUgcTH4Opjyv7Tr+6n4wmxgTF8LOk0V2L9ZqdTi3hNWH87lnXE8CvN2aPOY3U3pxvtbEWxvTHTIGRblcqaCrM6iphCNfQf+Z7MvV8mPssfwy/CLqdaXkluDnaaB7sPOS1oG6ekhbmigu6exyEVZxdWUjLszPseaeuSLo0lvqgu1vZgdjRbWRtIJyp9UO6xcRwJHcEpuP359ZjLteR78I+wf1g6IDOZBXg3HMo/DTRjjydZsfY1fGWfSmKuZn/QHS1mu9S4fPvzDYamjsr+GqZ7UZr68WMDo2iLIqI4fbcF7aYuG6VPw8Dcwf17PZY+LDfblpaBQf7TjVpibpitLZqaCrMzi+CmrKIXEu+zOL6ervaZdcoT5d/fHzMLDrpO1LjIdyShkQ4bwkeqsBEQEEebuxucES4/kak9PLRViF+3ng465vtINx36lzeLvr6eOEkhpNGdI90LJ7svFuz5ScEszScUVRG+of4U9uSRXnbCwIuj+rmH4R/ngY7F/bLDEqgBqTmaPRcyFiKHzzayhtWyvZ3cezeN/9ZQLzt8GsN7WNALa44rcw8Rk4uIyr8rSq/I5YYkzJKWHtkdPMH9eTAK+mZ7msHrkqASklb/wvze7jUJTLlQq6OoPkpRAQDT3Gsj/rnN2SjPU6wbCYIJtnumpNZo7mlTp9aRG0el3jEsIabbd/a1M6tSbJVX3CnT4mIQSxYb5sTy+6IMDZc+osg6MDMehd8+s5ODoQo1nWLQXXdzBbu85ZM13WZPojea0vMRpNZg5ll9h9adHKulszObcCbnxHa8L91QPaJhVbVJcz9eAjjNQdRdywWEuYb4srn4Ahd+Cz8zVuDM5guwOCrve3ZuDnYWBeC7NcVtHB3lw/KIKvD+Q2GaAritKYCroud2WntcTfxDkUVtSSdfa8XXd2jegZTFpBuU0JtWkF5dQYzQxwYhJ9fVckhFJYVs2xfK1QatbZShZvSuf6QREkxTivCGl9D06M50RBGY8tP4DZLKmoNnI0r8wlS4tWg+uS6RsvMSZnFxMZ6EWoHcsxtKRfw3ZALTh+uozztSa771y0igryIsjbTdu9GRoPU1/Ulhl3vNn6navLqP3oRvrVHmFtnz/DoFsubhBTX4Lgnjxb+yrHMrKoMdoY8NmgqtbEmsP5XDuwK/6eLc9yWc0aHElZlZGNx53fiPuj7Rn88sPdbcopVRRXU0HX5S5lBUizZWnRUvvJDkn0ViNirHldrS8x/pxE75qga7yl5Yp1F+NfVx1FJwRPXdvHJeMBmDqgK09f15dVh/L566qjJGcVYzJLhrow6Ar38yQqyKvJIqkHs0scXiqivhBfD7r6e9qUv2RN/h8S7ZhzJ4SW72ad7WPoXdB7mlakNf9Q83esKoWPb0Kfu4dHah8ifMztFz8ID1+48V38jUU8I9/mYCuFbNti3dHTlFcbmTU40ub7jIkLIdTXna8P5NhtHK0xmSXPrTzMs18fZsOxAqa/vsXhJTQUxV5U0HW5S16q5Z+E9WJ/VjEGyy4sexkYpdX7smWJ8XBuKT7ueno6uQipVdcAT3p18eXH1DNsSzvD9yn5LJgQ55TG2y2ZP64nd4+J4d0tJ3n+2yMADHVQ4GCrwdGBjdoBnauoIfNspdOWFq36RfjbtINxf2YxwT7uRAc77v9zUFQAJ06XUVlj1JLfZ7wOXkHw6VzY9x+tyKmV2Qwn1sAH0yBnL592/z9+dBvX/nIpUcOoHvc7rtfv4Oz2/7Tvser5an8uXfw9GBkbYvN9DHod0xMjWH+swCnFUs/XmLj/4718sC2DeWN7svaxK+nq78ld7+/itfWpTda8U5SORAVdl7PTh7VP4IPmAlrtpX4R/ni62S/J2MOgZ3B0oE1B16GcEvpF+DusX58txieEsfPkWf608jDRwV78anzjOkTOJoTgj9P7cXW/LhzLL6NXF99mt+o7y5DuQeSWVJFf8nMNsYOWmcpBTpzpAi2vK72wvNW8oQNZxQyJDnToJo3EqEDMsl7BVp8QmPspeAfDyofgtSGwczHseAteHwqfzoGKQrjlY94uHKAV6rVDrp7XxMdJMfRnXOpLcLb9RUqLK2vYdKKAGYMi0Df1+1l5Vpuxa8LMwRHUGM2sSclv9zhacraihrnv7GDd0dP86fp+PHt9P+LCfPlywRhmDY7klbUneGTZfoeOQVHaSwVdl7PkZaAzwICbMJrMHMwuYYgDkoxH9gzmcG4pFdVN94wDbUngSG6py5YWra7oFUaN0UxqQTlPX9fPrgFoe+h1glfnDuHKXmHMbMPyjqNYk9EP1Fu+OmhZvhvggqDLLKnLxWtKyXmtD6ijkuitrP0mk+vXMYtKgvs2w+0rICAKvv8drH5SK3g6+z149BBZYVeSebaSsXG2zyK1SKdnQ98XqDELzMvvhtrGBXbbYtWhfGpN8ufXnskIGVtg3f/B4vHw957a1wfTYdvrWsV8i8HRgXQP9mZlctt2crbVP9Yc40huCW/dPox7xv6c6O/tbuCVOYN4ZFI83x7MY1t6050nFKUjsCnoEkJMFUIcF0KkCSGebOJ2DyHEZ5bbdwohYizXxwghzgshDli+Ftl3+EqzzCatrk/8FPAJ5cTpciprTHYpitrQ8JhgTGbJvhaqmP9UWM75WhMDnNj+pykjewbj5aZnXHwo1/Tv4tKxNOTlrufDeSN4cGK8q4dC/wh/3PSC/ZnFpOSUsHDdCT7dlUlsmI/NSdb20q+b9pppKa/L2pposIOS6K3C/TzpFuD5c16XlRCQMAXmr4FfbtCCsPk/wICbQO/G1jQtELig32I7Dejfn9/W3o8uPxl+eKZdj/XVgRziwny03aIFR+Gdidqy6NZXwc1HK1cx5hFtxuuHZ+DfSbBiPtRUIIRg5uAItqadoaCsfcFfc7LPVfL5nmzmDu/O1AFdG90uhGDBxHi6+nvyr7UnnNIQXFEuhqG1A4QQeuANYAqQDewWQqyUUh6pd9h84JyUMl4IMRd4CbBuz0mXUg6287iV1pzcDGV52g4rYO8pbfnPETMBQ3sEodcJfkw9wxWWZPWGUnJdm0Rv5emmZ8UDo4kM9HJ6rbBLiaebnn4RASze/BOLN/+EEDAkOpBHJ/dy+liig73w8zC0uIPxQGYxQmgFTB0tMSqgLshrUtSwRldtTS8i3M+jriCuPQyPCeZXJLEn4naSdr8DMWOh/w1tfpyc4vPsOnmW306OR2x/A9Y/Dx5+MGsR9LlO6wdpNflPUJypNefe/DIUHIFbPmbm4Ahe35DGt8l5NpWbaKu3NqYjBNw/Ia7ZYzzd9Dw4MY4/fn2YLWnN/y1SFFeyZaZrBJAmpfxJSlkDLANmNjhmJvCh5fsVwFVCvaO5VvIy8AiAXtcCsPF4IVFBXvRwQOV1Xw8DU/p2YdmuTMqaSaZNySnF001HXJhrkujr6x8RQKC3e+sHdnLzxsYwLbEb/5idyO6nJ/PlgrGM7+X8NzIhBH1bSKY3myXfHsyjb1d/p8zCJUYFklFUSUmlbYnjZrNkW9oZxsaH2jXQ9/N0Y2BkAP8wzoWo4fD1w1DU9rY8Kw/k0pUifpXxG/jhaYi/ChbsgMG3XhhwWQV2h0nPwB1fQFk+vD2B+HNb6B/hz9cOWGLMLT7P8j1Z3JwU3Wq/zznDo4kI8OQVNduldFC2BF2RQFa9y9mW65o8RkppBEoAa/JCTyHEfiHEJiHEFU09gRDiXiHEHiHEnsJCtfW33arL4eg30H8WuHlSVWtia/oZJvUJd9jszgMT4iitMrJ0V2aTtx/KKaFvN3+XFfxU2m7m4EjeuG0oNydFO60uV3P6R/hzLL+U8zWNk+m/O5TH8dNlLc6C2JO15MqWNNtyh46fLqOoooax8fZbWrQaExfC3uxyKme8Czo9LL8Tygva9BhZu79hjdfTeBYka22J5n4KvjYE1/FXwX2bIDgWls7lydCtJGcVk9Ggw0J7Wfs7LrDh/9fDoOehSQnszyxmkyojoXRAtrwDNvUu3fAjRHPH5AHdpZRDgMeAT4UQjcqRSynfllImSSmTwsLUlHC7JS+F2goYcgeApeK5mUkOrLo+KDqQsfEhvPvjSaqNF74xmi1J9O3eKq90WtMGdqOq1swra49fcL3JLFm47gS9uvgyfWA3p4xlRM9guvp7smJvVusH83O/z7Hxdkqir2d0XAhGs2TnOW8tab8oHd65SsvLao3ZxJlvnuOF8ucw+4TDvRu1tkRt+WAW2B3mrYFe13LFiRe5Q7+Wr+xYsyu/pIrPdmcxe1gUUUENZumNNXD2ZKNNBNqxXiq3S+mQbAm6soHoepejgIZzyHXHCCEMQABwVkpZLaUsApBS7gXSAecnhXQmZrNWITsyCaJHALDhWAFebnpGtaH+zsV44Mp4Csqq+XLfhX90v9yfQ3m10en1nZTLR1JMMLeO6M6SLScv2Dm4MjmH9MIKfjO5l9NKkeh1ghuHRrLpROEFJTWaYjZLlu3OZGBkgF36nTaU1CMYb3c9qw/lazNP96wCUw0suRrS1jV/x9z98PGNhO79F1+Zx2Gavw5CEy5uEG6eMOdD6HUtL7i9T+2OdzHZqV7Wok3pmKVkwYR4qCqBjS9pOyj/NQD+0gVeGwwvJ8DXD8HJH8Fsxt2g45FJCSRnl7DhWNtm/RTF0WwJunYDCUKInkIId2AusLLBMSuBuyzfzwY2SCmlECLMkoiPECIWSADaX1RGad6J1VrdntEPAiClZMOxAsbGhzi8PMLY+BASowJYvCm97o/u9vQinvryIKNjQ5gxKMKhz69c3p66rg9hfh78/ouD1BjNGE1mXl2XSt9u/lzTv/GONke6OSkas4Qv92e3eNym1ELSCyuYNy7GIePwctczPbEb3x7M1Uq2RA6FX62HwB7wyRxY/QdI+UKb+aqt0tIO3rsW3p6AzN7Nc/JeNvZ9ntCgdu5qNnjAnA853XUiTxgXk/bdwnb/bKdLq/h0Vya3DA4m+vAiWJgIG/8Kteehx1gY/wRc/yr0vR4O/xc+nA4LB8KxVdwwNJIeId4sXJeqZruUDqXVoMuSo/UQsAY4CiyXUh4WQjwvhJhhOWwJECKESENbRrSWlRgPHBRCJKMl2N8vpbStO7Jycba/oTW37qv916QWlJNTfJ6JTmjoLITggSvjyCiq5PuUPNIKyrjvP3voEeLDol8Mw92g8rmUi+fv6cYLswZyLL+MxZvS+XJ/DhlFlTw2xXmzXFY9Q30YERPM53uyW3xTf2/LScL9PJg20HEfOOYkRVNRY+K7Q3naFQFRMO976Dsddi6CFfPgzVHazNBnd0BJNlz9Fz4bt4YPqidwt712Gxo8CLp7KZtFEr33PqfNSrUj4Fm8MZ0b2cDzJ2/XWi1Fj9RKcfxqPdy4GCb+AYbdDbPehMdT4aYlWpHaZbfitumvLBgfw6GcErY5oDG4olysVktGAEgpVwGrGlz3bL3vq4Cbm7jfF8AX7RyjYqvcA3BqC1z9Aui1/1rr9Loj87nqu6Z/V2LDfHh9fRoVNUbcDTrev3s4AV6urbCuXB6m9OvC9MRuvL4hjSAfbffe5L7OeW03NDspit+tOMjeU+eabJh+4nQZP6ae4fGrezn0A8ewHkHEhvrw+Z4s5iRZMkE8/GDOR2CshjMntJmuwuPQdSD0mY7U6XnnlU0kRgXYtWCyu6cXu4YvpGD7H5i98a9QfAqmLwRD23YLn8k+zuQ99zLGkAJho2Hyp9B9ZAtP7A0DZ0Of6bDqt7D5H8yO3cvbvneyaFO6QzYxKMrFUFMPl5Mdb4K7Lwy9s+6qDccK6NvN3yH5JE3R6QT3XxnH8dNlnCmvZsldw4kOtn+ZCqXzem5Gf7w99JwureaxKb1cVm9t2sBueLvrWb6n6YT697eexMOg47aRPRw6DiEENydFszvjHD8Vll94o8FDC7QS58BVf9R2NOsNbEk7Q3phBXePibH7+btlVBxPGO9jW/S9cOAT+GS2lo9lC5MRdryF/3vjGSjSOTPhJbh7VcsBV31untoOzOkL0Z/awpeGpzmZdoSUHBufX1EcTAVdl4vSXC13Y+iddbV1Sipr2XvqHJP6OHdH6KzBkcweFsWiO4Y5pVil0rmE+nrw+q1DWDAhjgm9Xbfb2cfDYMmnymvUAutsRQ1f7svhxqGRBPs4vibcTUMj0esEn+9tOcfM6sNtGYT6ujMt0f47PqODvRmfEM5jp6dimvEWnNoKb42FnW9DTTPlJGqrYPcSrV/l6ifZZurLvxI+InTC/aBr49uUEJB0D9zzPX5UsMz9Lyxfv739P5ii2IEKui4Xu94BaYaR99VdtSm1EJNZMqmPc9vduBt0vHzzICb0ds2yj3L5uyIhjN9N7ePyrgI3J0VTWWNilTWfyuKTHaeoNpqZN9b+1dmbEu7vyYReYXyxNxujydzisaeKKlh/rIDbRnTHw+CYzTW3j+xOfmkVGzyvgru+Bf8I+P4Jbdfh/16E1LXah8S9H2qXX02E7x4DnzA+T/g782oe5/ZrxrRvEFFJ6O78ilBDJfPSHiEnU+3hUlxPBV2Xg/JC2LME+kyDoJi6q/93rIBgH3eHNwFWlM4qqUcQPUN9+Gx3FuXVRsxmSY3RzEc7TjG+VxgJXfycNpabk6IpKKtmc2rLRUE/2n4KvRDcPspxy56T+oTT1d+TT3aegh6jtT6U89ZoyfCb/qYtOa6YB988ol0O7wt3fUPR3O949lgPrh8UaZ+WSRFDqLh5OaGiBPdPZrW5cKyi2JtNifRKB7f2j1BTCZP+WHeVySzZeLyACb3D0Tt5Z5eidBZaPlUUf199nAF/WoMQ4OWmp7LGxD9mxzh1LJP6hBPi487y3dnNzm5XVBtZvieLawd2o4u/p8PGYtDrGeYs7gAADIZJREFUmDM8mtc3pJJ1tlLL6+w+Cm5bppW0qSgCD18tB9XTvy4l4t3Vx6gymnh4kv2avof0GcebPf/B3Scfx/jBDAz3fAc+jq1ZqCjNUUHXpe7kZq0C/RWPQ1jvuqv3ZZ7jXGWtU0pFKEpnds+YnoT6elBcWUN5lZHSKiOB3m6Md3LDZXeDjhuGRPLBtgwKy6oJ87uwdZPRZObp/x6irMrI3WNiHD6eucOj+feGVP69IY2XZif+fENwrPbVwJnyaj7alsG0gd2ID7fvDOHV193A/IX5fHT2ZfjPLLhrJXi1szaZolwEFXRdyozV8O1j2pLi+McvuOnfG9II8HJjogsTjRWlM/By1/9cqsHF5o6I5v1tGdzy9nYW3zGsbnnTaDLzm+XJfJOcyxPX9GZYD8cHHBGBXtw7Po5Fm9IZlxDK9S0UR641mXnwk33UmiWPTr7IyvgtiA/3I6j/VTxwzMQ7Ba8gPr4JfvGVNsumKE6kcrouZdteg6JUuO6f4PZzSYjt6UVsOlHIgxPj8PNU9bEUpbOID/fj4/kjKT1fy8w3tvL1gRxqTWYeWbafb5JzefLaPjw40X5Ld6357dW9GNYjiKe+PNRiI+znvznCzpNn+ftNiXaf5bJ6Zlo/tosh/Cv4GWRespZXVl3e+h0VxY5U0HWpOvsTbH4Z+s2ChMl1V0speWn1MboFeHLn6BjXjU9RFJcYHRfCd49cQb9u/vx62QGmLtzMqkP5PDOtL/dfGefUsbjpdbx26xD0OsFDS/dRbTQ1OubTnZn8Z8cp7hsfy6whkQ4bS0SgF49f05vXsuPZk/RPyN4DH98IlapJiuI8Kui6FNVUwJf3gc4Npr54wU1rDp/mQFYxj05OcHivRUVROqYu/p4svXcU88f15OSZCp6d3o9fXtE4j8oZIgO9ePnmQaTklPLiqmMX3LY74yx/WpnClb20EiCOdufoGBKjAnhgXyQVM97VungsmQJnTzr8uRUFQHS0ZqBJSUlyz549rh5Gx1VTCZ/O0QoOzn4P+t9Qd5PRZOaahZsBWPPoeAx6FVMrSmdXWWPE29316bvPf3OE97aeJDbMB70QCAG5xVWE+3nw3wfHOq1VWEpOCTPf2MqcpCheHFYBy24FnQFu+wwihzllDMrlRQixV0qZZMux6l35UlJbBZ/dDhlb4IbFFwRcAF/syya9sIInrumjAi5FUQA6RMAF8OS1fbhvfCx9u/mT0MWXuDBfJvcNZ4mTe7MOiAxg3tgYlu7KYqepF8xfq+XEfjAdkpe1q0m3orRGzXRdKozV8NkdkPoDzHwThtx+wc0V1UYmv7KJLv6e/HfBGJdX6lYURemoKmuMXLNwM8WVtSy6Yxhju5q1v69ZOyF+Ckx/BQK7u3qYyiVCzXRdbn7aCG9P1AKu6QsbBVw/FZZzw5tbOV1axVPXur41iqIoSkfm7W5g2b2j6RbgyV3v7eLzY9Vwz/cw9SU4tQ3eGAU7FoGxxtVDVS4zKujqyIrSYelt8NFMqCmHuZ9qjVzrWXvkNDP/vZXCsmo+mjeSkbGq0rKiKEprIgO9WPHAGEbFhvDEioP8c10acuR98OAOrXXR6t/Dv/rB+uehONPVw1UuEzYtLwohpgKvAnrgXSnl3xrc7gF8BAwDioBbpJQZltueAuYDJuARKeWalp6rUy8vSglnUiFtrTarlbEVDB5wxW9h1AJw87QcJsk8W8nSXVks2pTOwMgA3rpjKFFB3i7+ARRFUS4ttSYzz/w3hc/2ZNGnqx+zhkQyI7EbEUXbYPcSOLFaOzB2IvQcD91HQ8Rg7W+zotC25cVWgy4hhB44AUwBsoHdwK1SyiP1jlkAJEop7xdCzAVukFLeIoToBywFRgARwDqgl5SycbEWiw4bdElpSbDU/pXSjFlKzGYzZmlGmiVmacZslphNtWA0YjbVYDbVIk21mI1GpKkGWVsF1WVQXQpVpegr8jCUZuJWmoV7yU+4VeQDUBWYQGn0JLJ630OxPpjyaiPFlbUcyCpmx09F5JVUATAnKYrnZw5Q5SEURVEukpSSz/dk8+muTA5kFSMEjIgJZkBkAHHu50gq+pro3DV4lWUAYNa7UxXUm1rfyLovk1cw0t0P6e6H8PAFgwdCb0CndwedHp3BHZ3egNC7af/qdOgE6HQCnbB+r0MnBDoh0Ot1CATUpYs0+B5auNzge8Wh7B10jQaek1JeY7n8FICU8sV6x6yxHLNdCGEA8oEw4Mn6x9Y/rrnnc0rQ9c8+UFVyQRDV1L9SSgSO32hQIAPJkmFkynD2mHuz0TSIHJpu3xPq687I2BBG9QxmdFyIw6o3K4qidEYZZypYmZzLqkN5nCqq5Hztz3MEoZQwTHeCJN1xeolsIkQRkeIM3qLahSNuG7PUgrH672wS0cz3Vq3d3vi2pi7X96R8kHWMtGXI7RIX5ss3D49z6HO0JeiyZS9xJJBV73I2NDpTdcdIKY1CiBIgxHL9jgb3bVRyWAhxL3Cv5WK5EOK4LYO/SKHAGQc+/kUoBaw5A9+3eOQpYC/wpoNHZNEBz1WHpM6T7dS5so06T7Zx6nmy/v1921lPaF8d7DX1nFOe5SggHmnTXS7mPPWw9UBbgq6mQtWGAW5zx9hyX6SUb+Ok17EQYo+tEWlnp86VbdR5sp06V7ZR58k26jzZTp0r2zj6PNmyezEbiK53OQrIbe4Yy/JiAHDWxvsqiqIoiqJc9mwJunYDCUKInkIId2AusLLBMSuBuyzfzwY2SC1ZbCUwVwjhIYToCSQAu+wzdEVRFEVRlEtHq8uLlhyth4A1aCUj3pNSHhZCPA/skVKuBJYA/xFCpKHNcM213PewEGI5cAQwAg+2tHPRSS7R5XiXUOfKNuo82U6dK9uo82QbdZ5sp86VbRx6njpcGyBFURRFUZTLkapIryiKoiiK4gQq6FIURVEURXGCThV0CSGmCiGOCyHShBBPuno8HZEQIloI8T8hxFEhxGEhxK9dPaaOTgihF0LsF0J86+qxdFRCiEAhxAohxDHLa2u0q8fUEQkhfmP5vUsRQiwVQni6ekwdhRDiPSFEgRAipd51wUKItUKIVMu/Qa4cY0fRzLn6h+X376AQ4r9CiEBXjrEjaOo81bvtcSGEFEKE2vM5O03QZWln9AZwLdAPuNXSpki5kBH4rZSyLzAKeFCdp1b9Gq0Gn9K8V4HVUso+wCDU+WpECBEJPAIkSSkHoG1cmuvaUXUoHwBTG1z3JLBeSpkArLdcVpo+V2uBAVLKRLTWfk85e1Ad0Ac0Pk8IIaLRWh/avdN5pwm60Po/pkkpf5JS1gDLgJkuHlOHI6XMk1Lus3xfhvbm2KiLgKIRQkQB04B3XT2WjkoI4Q+MR9vljJSyRkpZ7NpRdVgGwMtS79AbVdewjpRyM9ru+PpmAh9avv8QmOXUQXVQTZ0rKeUPUkqj5eIOtLqZnVozrymAfwG/o4li7u3VmYKuptoZqWCiBUKIGGAIsNO1I+nQFqL9cppdPZAOLBYoBN63LMO+K4TwcfWgOhopZQ7wMtqn6zygREr5g2tH1eF1kVLmgfaBEQh38XguFfNoredcJyWEmAHkSCmTHfH4nSnosqklkaIRQvgCXwCPSilLXT2ejkgIMR0okFLudfVYOjgDMBR4S0o5BKhALQM1YslHmgn0BCIAHyHEHa4dlXK5EUI8jZZG8omrx9LRCCG8gaeBZx31HJ0p6FItiWwkhHBDC7g+kVJ+6erxdGBjgRlCiAy05epJQoiPXTukDikbyJZSWmdMV6AFYcqFJgMnpZSFUspa4EtgjIvH1NGdFkJ0A7D8W+Di8XRoQoi7gOnA7VIV6WxKHNqHnmTL3/UoYJ8Qoqu9nqAzBV22tDPq9IQQAi335qiU8hVXj6cjk1I+JaWMklLGoL2eNkgp1cxEA1LKfCBLCNHbctVVaF0qlAtlAqOEEN6W38OrUBsOWlO/Bd1dwNcuHEuHJoSYCvwemCGlrHT1eDoiKeUhKWW4lDLG8nc9Gxhq+RtmF50m6LIkEFrbGR0FlkspD7t2VB3SWOAXaLM2Byxf17l6UMol72HgEyHEQWAw8FcXj6fDscwErgD2AYfQ/j6r1i0WQoilwHagtxAiWwgxH/gbMEUIkYq22+xvrhxjR9HMufo34AestfxdX+TSQXYAzZwnxz6nmmFUFEVRFEVxvE4z06UoiqIoiuJKKuhSFEVRFEVxAhV0KYqiKIqiOIEKuhRFURRFUZxABV2KoiiKoihOoIIuRVEURVEUJ1BBl6IoiqIoihP8Pxrw5UqK+ZpVAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "plt.figure(figsize=(10,3))\n",
+ "sns.distplot(approved_word_count, hist=False, label=\"Approved Projects\")\n",
+ "sns.distplot(rejected_word_count, hist=False, label=\"Not Approved Projects\")\n",
+ "plt.legend()\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "-rcU9zgXoc6Q"
+ },
+ "source": [
+ "### 1.2.7 Univariate Analysis: Text features (Project Essay's)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "Aa4a8iSioc6R"
+ },
+ "outputs": [],
+ "source": [
+ "# merge two column text dataframe:\n",
+ "project_data[\"essay\"] = project_data[\"project_essay_1\"].map(str) +\\\n",
+ " project_data[\"project_essay_2\"].map(str) + \\\n",
+ " project_data[\"project_essay_3\"].map(str) + \\\n",
+ " project_data[\"project_essay_4\"].map(str)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "hrGwRq-Hoc6U",
+ "outputId": "e941226f-9b5c-413e-c8a4-e6223108bd54"
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABJwAAAFNCAYAAABFdHXxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xm8XVdZ8PHfk6YzLR0pUFrCUJFBQSgIiCKgMhSp8opMMgnUAREFhVR5QV9Aq8goiBZaKYOUQYVKKlPpQIHSkakDNLRpkzZt02ZqmzlZ7x/rWeydk5ubm+ScO+X3/Xzu556zh7WfvfZ4nrP2OlFKQZIkSZIkSRqWOVMdgCRJkiRJkmYXE06SJEmSJEkaKhNOkiRJkiRJGioTTpIkSZIkSRoqE06SJEmSJEkaKhNOkiRJkiRJGioTTpIkaSgi4m8i4hO7MN9DIuKKiLgzIv50FLHtroiYFxElIuZOdSyjFBFHRcQFuS3eNcF5FkXEr406tp0VEcdGxF0RsddUxyJJ0p7IhJMkSbNQRJwcEWcPDLt2O8NeMLnRbeONwHmllINKKe+f4lj2dCcBtwMHl1LeMDgyIj4aEW+f/LB2XinlxlLKPUopm3ennOmaUJMkaboz4SRJ0ux0AfBLrXVHRNwb2Bt49MCwB+e0ExbVMO8h7g9cuSszzvYWR1Pg/sBVpZQy1YHsiNtekqTpzYSTJEmz0yXUBNOj8v2vAOcCPxoY9pNSys0AEfHEiLgkIlbl/ye2wiLivIh4R0R8E1gDPDAiHhAR5+fjV18FjuhNv19EfCIi7oiIlVneUYNBRsTXgacAH8jHn34mIu4ZER+LiGURcUNEvLkluCLi5RHxzYh4T0QsB/5mjDLnRMT8iPhJLv8zEXFYb/xnI+KWXM8LIuLhvXH7R8S7crmrIuLCiNi/V/yLI+LGiLg9Iv56e5UfEftGxD/ltLdGxL+2ciLiiIj4YtbL8oj4Rm/93hQRN2Wd/iginpbDHxcR3855lkbEByJinxz3wcHH3yLifyLiz7YT25jbOSI+CrwMeGNui18bmO8k4MW98f/TG/2oiPh+lvnpiNivN9+zI+K7Gfu3IuLnx6m3EhF/GhHXZR2/c7xtn9v6zbm9bsv95p45/VaPQeZ+dVrW300R8fboPW4XEa+OiKuz7q+KiEdHxMeBY4H/yXV+4/ZilyRJWzPhJEnSLFRK2QB8h5pUIv9/A7hwYNgFAJmQWQC8HzgceDewICIO7xX7EuojVwcBNwD/AVxGTTS9jZqsaF4G3BM4Jsv7Q2DtGHE+NeP6k3z86cfAP+e8DwSeDLwUeEVvtl8ErgPuBbxjjNX/U+C3ct77AiuAD/bG/y9wXM5/OfDJ3rh/Ah4DPBE4jPq435be+CcBDwGeBrwlIh46xvIB/gH4GWpy78HA0cBbctwbgCXAkcBRwF8BJSIeAvwJ8NhSykHA04FFOc9m4M+pdf2EXP4f57gzgBf2EjNH5PhPDQY13nYupbw86+Ifc1t8rT9vKeXUgfG/2Rv9u8AzgAcAPw+8PJf3aOB04A9yef8GnBUR+26n3gB+GzgeeDRwIvD7vXGD2/7l+fcU6v5yD+AD2yn3DGATdXv8AvAbwKsyzudRk5cvBQ4GngPcUUp5CXAj8Ju5zv84TtySJKnHhJMkSbPX+XTJpV+mJna+MTDs/Hx9AnBtKeXjpZRNpZRPAdcA/aTCR0spV5ZSNgH3AR4L/N9SyvpSygVAv8XLRmqC4cGllM2llMtKKat3FHC2OHk+cHIp5c5SyiLgXdRkV3NzKeWfM85tkljU5MZfl1KWlFLWUxMJv9NaupRSTs+y27hHZuuXOdTkxutKKTdl3N/K6Zq/LaWsLaV8D/ge8Mgx1iGAVwN/XkpZXkq5E/g7oPWVtTHr7/6llI2llG/kI2ybgX2Bh0XE3qWURaWUn2TMl5VSLsp1XkRN3Dw5x10MrKImmcjlnFdKuXWMupnIdt4V7y+l3FxKWU7dD1orulcD/1ZK+U7W5xnAeuDx45T1D1lvNwLvBV7YGze47V8MvLuUcl0p5S7gZOAFMfC4XdTWdc8E/qyUcncp5TbgPXTb5FXURNolpVpYSrlhdypEkqQ9nQknSZJmrwuAJ0XEocCRpZRrgW8BT8xhj6Drv+m+1FZLfTdQW+Y0i3uv7wusKKXcPTB983Hgy8CZEXFzRPxjROw9gZiPAPYZKGu8OMZyf+C/8xGulcDV1GTOURGxV0ScEvVxu9V0LYiOyL/9gJ+MU/YtvddrqC1qBh0JHABc1ovhSzkc4J3AQuAr+ejYfIBSykLgz6hJsNsi4syIuC9A1EcNvxj1UcDV1ATWEb1lngH8Xr7+PWr9j2Ui23lXbK9e7g+8odVD1sUxGcf29LfvDQPTDm77wfW5AZhLbTnWd3/qI6ZLe3H8G7WlFBnTeNtdkiTtJBNOkiTNXt+mPpp2EvBNgGxldHMOu7mUcn1OezP1Q3nfscBNvff9jqSXAodGxIED05PL2VhK+dtSysOoj6c9m/q40o7cTm0B1I9lvDjGshh4ZinlkN7ffqWUm4AXUR/T+jVq3czLeSKXvQ540ATi3NE6rAUe3lv+PUsp9wDI1lVvKKU8kNqy6PWtr6ZSyn+UUp5EXf9CfTQP4EPUlkjHlVIOpj6GF71lfgI4MSIeCTwU+Px2YpvIdh7PznYmvhh4x8C2OCBbVm3PMQOx3TzO8gfX51jqY3ODrbsWU1tWHdGL4+BSysN747e33ad9B+qSJE1HJpwkSZql8pGjS4HXUx+lay7MYf1fpzsb+JmIeFFEzI2I5wMPA764nbJvyLL/NiL2iYgn0XssKyKeEhE/l4/IraYmkXb48/T5E/afAd4REQdFxP0z1k9MdL2Bf83575+xHBkRJ+a4g6iJhzuorZD+rrfsLdT+ht4dEffN1lBP2EF/Q2Otwxbgw8B7IuJeGcPREfH0fP3siHhwPnq3mlovmyPiIRHx1FzeOmrSqtXZQTntXRHxs8AfDSxzCbWj+I8D/7mdRw1hJ7fzGG6l9pU0UR8G/jAifjGqAyPihIg4aJx5/jIiDo2IY4DXAZ8eZ9pPAX8etQP7e1C356fzsc+fKqUsBb4CvCsiDs7Oxh8UEU/OST4C/EVEPCbjfHDbf3ZhnSVJEiacJEma7c6nPjZ0YW/YN3LYTxNOpZQ7qK2Q3kBNxrwReHYp5fZxyn4RtRPn5cBbgY/1xt0b+Bw1SXJ1xjHRpNFrgbupnUNfSO2c/PQJzgvwPuAs6iNrdwIXZZxkjDdQW/RcleP6/gL4ATV5s5zawmhX7pfeRH1s7qJ8BO5r1M7GoXZY/jXgLmortH8ppZxH7b/pFGoLqVuo2+ivenG9CLiTmsQZKwlzBvBzbP9xul3dzn2nUfuYWhkR22tF1V/epdR+nD5A7bx9Idmh+Di+QO2M/rvUDs5PG2fa06nrewFwPTVR99rtTPtS6uOaV2Usn6P2pUUp5bPUTsj/g1rHn6d2Gg/w98Cbc53/YgexS5KkFLWPSkmSJM1kEfEr1KTevGxlNeNERKE+NrhwCGU9ELgWmFu84ZUkadLZwkmSJGmGyw7ZXwd8ZKYmm0bgEcAik02SJE0NE06SJEkzWEQ8FFhJfTzsvVMczrQQEa8HTgXmT3UskiTtqXykTpIkSZIkSUNlCydJkiRJkiQNlQknSZIkSZIkDdXcqQ5gFI444ogyb968qQ5DkiRJkiRp1rjssstuL6UcOZFpZ2XCad68eVx66aVTHYYkSZIkSdKsERE3THRaH6mTJEmSJEnSUJlwkiRJkiRJ0lCZcJIkSZIkSdJQmXCSJEmSJEnSUJlwkiRJkiRJ0lCZcJIkSZIkSdJQmXCSJEmSJEnSUJlwkiRJkiRJ0lCZcJIkSZIkSdJQmXCSJEmSJEnSUJlwkiRJkiRJ0lCZcJIkSZIkSRqBefMXMG/+gqkOY0qYcJIkSZIkSdJQmXCSJEmSJEnSUJlwkiRJkiRJ0lCZcJIkSZIkSdJQmXCSJEmSJEnSUJlwkiRJkiRJ0lCZcJIkSZIkSdJQjSzhFBGnR8RtEfHD3rB3RsQ1EfH9iPjviDikN+7kiFgYET+KiKf3hj8jhy2MiPmjileSJEmSJEnDMcoWTh8FnjEw7KvAI0opPw/8GDgZICIeBrwAeHjO8y8RsVdE7AV8EHgm8DDghTmtJEmSJEmSpqmRJZxKKRcAyweGfaWUsinfXgTcL1+fCJxZSllfSrkeWAg8Lv8WllKuK6VsAM7MaSVJkiRJkqadefMXMG/+gqkOY8pNZR9Ovw/8b74+GljcG7ckh21vuCRJkiRJ0rRgkmlbU5Jwioi/BjYBn2yDxpisjDN8rDJPiohLI+LSZcuWDSdQSZIkSZIk7bRJTzhFxMuAZwMvLqW05NES4JjeZPcDbh5n+DZKKaeWUo4vpRx/5JFHDj9wSZIkSZIkTcikJpwi4hnAm4DnlFLW9EadBbwgIvaNiAcAxwEXA5cAx0XEAyJiH2rH4mdNZsySJEmSJEnaOXNHVXBEfAr4VeCIiFgCvJX6q3T7Al+NCICLSil/WEq5MiI+A1xFfdTuNaWUzVnOnwBfBvYCTi+lXDmqmCVJkiRJkibCPpvGN7KEUynlhWMMPm2c6d8BvGOM4WcDZw8xNEmSJEmSJI3QyBJOkiRJkiRJs40tmyZmSn6lTpIkSZIkSbOXCSdJkiRJkiQNlQknSZIkSZIkDZUJJ0mSJEmSpHHMm7/Avpt2kp2GS5IkSZIkpcHE0qJTTpiiSGY2WzhJkiRJkqQ9mi2Yhs+EkyRJkiRJ2uOYZBotE06SJEmSJEkaKhNOkiRJkiRJGioTTpIkSZIkSRoqE06SJEmSJEkaqrlTHYAkSZIkSdJksJPwyWPCSZIkSZIkzWommiafj9RJkiRJkqRZZ978BSaappAJJ0mSJEmSJA2Vj9RJkiRJkqRZwRZN04cJJ0mSJEmSNKOZaJp+fKROkiRJkiRJQ2XCSZIkSZIkSUNlwkmSJEmSJElDZcJJkiRJkiRJQ2XCSZIkSZIkSUNlwkmSJEmSJElDZcJJkiRJkiRJQ2XCSZIkSZIkSUNlwkmSJEmSJElDZcJJkiRJkiRJQ2XCSZIkSZIkSUNlwkmSJEmSJElDZcJJkiRJkiRJQ2XCSZIkSZIkSUM1d1QFR8TpwLOB20opj8hhhwGfBuYBi4DfLaWsiIgA3gc8C1gDvLyUcnnO8zLgzVns20spZ4wqZkmSJEmSNP3Mm79gq/eLTjnhp8MWnXLCVISkHRhlC6ePAs8YGDYfOKeUchxwTr4HeCZwXP6dBHwIfpqgeivwi8DjgLdGxKEjjFmSJEmSJEm7aWQJp1LKBcDygcEnAq2F0hnAb/WGf6xUFwGHRMR9gKcDXy2lLC+lrAC+yrZJLEmSJEmSNAvMm7/gpy2X+q8180x2H05HlVKWAuT/e+Xwo4HFvemW5LDtDZckSZIkSdI0NV06DY8xhpVxhm9bQMRJEXFpRFy6bNmyoQYnSZIkSZKkiZvshNOt+agc+f+2HL4EOKY33f2Am8cZvo1SyqmllONLKccfeeSRQw9ckiRJkiRJEzPZCaezgJfl65cBX+gNf2lUjwdW5SN3XwZ+IyIOzc7CfyOHSZIkSZIkaZqaO6qCI+JTwK8CR0TEEuqvzZ0CfCYiXgncCDwvJz8beBawEFgDvAKglLI8It4GXJLT/b9SymBH5JIkSZIkaYaxQ/DZbWQJp1LKC7cz6mljTFuA12ynnNOB04cYmiRJkiRJmgItybTolBOmOBKN2nTpNFySJEmSJEmzhAknSZIkSZIkDZUJJ0mSJEmSNDLz5i+wv6Y9kAknSZIkSZIkDZUJJ0mSJEmSJA3VyH6lTpIkSZIk7bl8jG7PZgsnSZIkSZIkDZUJJ0mSJEmSJA2VCSdJkiRJkiQNlQknSZIkSZIkDZUJJ0mSJEmSJA2Vv1InSZIkSZJ2yli/QLfolBN+OnzRKSdMdkiaZkw4SZIkSZKkCRkr0SSNxUfqJEmSJEmSNFQmnCRJkiRJ0nbNm7/Alk3aaT5SJ0mSJEmSAB+Z0/DYwkmSJEmSpD2YLZg0CiacJEmSJEmSNFQ7TDhFxIERMSdf/0xEPCci9h59aJIkSZIkSZqJJtLC6QJgv4g4GjgHeAXw0VEGJUmSJEmSpJlrIgmnKKWsAZ4L/HMp5beBh402LEmSJEmSJM1UE0o4RcQTgBcDrRcxf91OkiRJkiRJY5pIwul1wMnAf5dSroyIBwLnjjYsSZIkSZIkzVQTaal0VCnlOe1NKeW6iPjGCGOSJEmSJEnSDDaRFk4nT3CYJEmSJEmStP0WThHxTOBZwNER8f7eqIOBTaMOTJIkSZIkSTPTeI/U3QxcCjwHuKw3/E7gz0cZlCRJkiRJGr558xds9X7RKSdMUSSa7babcCqlfA/4XkT8N3B3KWUzQETsBew7SfFJkiRJkiRphplIH05fAfbvvd8f+NpowpEkSZIkScM0b/6CbVo2SaM2kYTTfqWUu9qbfH3A6EKSJEmSJEm7wySTptp4fTg1d0fEo0splwNExGOAtaMNS5IkSZIk7QwTTJpOJpJw+jPgsxFxc76/D/D80YUkSZIkSZKkmWyHCadSyiUR8bPAQ4AArimlbNydhUbEnwOvAgrwA+AV1ETWmcBhwOXAS0opGyJiX+BjwGOAO4Dnl1IW7c7yJUmSJEmaLWzZpOloh304RcQBwJuA15VSfgDMi4hn7+oCI+Jo4E+B40spjwD2Al4A/APwnlLKccAK4JU5yyuBFaWUBwPvyekkSZIkSZI0TU2k0/B/BzYAT8j3S4C37+Zy5wL7R8RcagfkS4GnAp/L8WcAv5WvT8z35PinRUTs5vIlSZIkSZI0IhNJOD2olPKPwEaAUspa6qN1u6SUchPwT8CN1ETTKuAyYGUpZVNOtgQ4Ol8fDSzOeTfl9Ifv6vIlSZIkSZrp/BU6TXcTSThtiIj9qf0tEREPAtbv6gIj4lBqq6UHAPcFDgSeOcakpc0yzrh+uSdFxKURcemyZct2NTxJkiRJkqYlk0yaSSaScHor8CXgmIj4JHAO8MbdWOavAdeXUpZl5+P/BTwROCQfsQO4H9B+FW8JcAxAjr8nsHyw0FLKqaWU40spxx955JG7EZ4kSZIkSZJ2xw4TTqWUrwLPBV4OfIra2fd5u7HMG4HHR8QB2RfT04CrgHOB38lpXgZ8IV+fle/J8V8vpWzTwkmSJEmSJEnTw9ztjYiIny2lXBMRj85BS/P/sRFxDLC8lHLDzi6wlPKdiPgccDmwCbgCOBVYAJwZEW/PYaflLKcBH4+IhdSWTS/Y2WVKkiRJkjRT+RidZqLtJpyA1wMnAe/azvjDI+J7pZSX7OxCSylvpT6q13cd8Lgxpl0HPG9nlyFJkiRJ0kzVkkyLTjlhiiORds12E06llJPy/1O2N01EfGUUQUmSJEmSJGnmGq+FEwARsTfwR8Cv5KDzgH8rpWwspfzGCGOTJEmSJEnSDLTDhBPwIWBv4F/y/Uty2KtGFZQkSZIkSXuCsfpn8jE6zQYTSTg9tpTyyN77r0fE90YVkCRJkiRJs50dgWu2mzOBaTZHxIPam4h4ILB5dCFJkiRJkiRpJptIC6e/BM6NiOuAAO4PvGKkUUmSJEmSJGnGGjfhFBFzgLXAccBDqAmna0op6ychNkmSJEmSJM1A4yacSilbIuJdpZQnAN+fpJgkSZIkSZp1Wr9NdgquPcFE+nD6SkT8n4iIkUcjSZIkSZKkGW8ifTi9HjiQ2nn4WupjdaWUcvBII5MkSZIkSdKMtMOEUynloMkIRJIkSZKkmaz/yFx73fgYnfY0E2nhREQ8F3gSUIBvlFI+P9KoJEmSJEmSNGPtsA+niPgX4A+BHwA/BP4wIj446sAkSZIkSZI0M02khdOTgUeUUgpARJxBTT5JkiRJkiRJ25jIr9T9CDi29/4Y4PujCUeSJEmSpJlj3vwF2/TXJGliLZwOB66OiIvz/WOBb0fEWQCllOeMKjhJkiRJkiTNPBNJOL1l5FFIkiRJkjSD2KpJGt8OE06llPMnIxBJkiRJkiTNDhPpw0mSJEmSJEmaMBNOkiRJkiRNgB2ESxO33YRTRJyT//9h8sKRJEmSJGn6MMkk7Zrx+nC6T0Q8GXhORJwJRH9kKeXykUYmSZIkSdIkMrEkDc94Cae3APOB+wHvHhhXgKeOKihJkiRJkiTNXNtNOJVSPgd8LiL+bynlbZMYkyRJkiRJkmaw8Vo4AVBKeVtEPAf4lRx0Xinli6MNS5IkSZKk0WiPzi065YStXksanh0mnCLi74HHAZ/MQa+LiF8qpZw80sgkSZIkSRoi+2iSJs8OE07ACcCjSilbACLiDOAKwISTJEmSJGnasQWTNPUmknACOARYnq/vOaJYJEmSJEnaJbZekqaXiSSc/h64IiLOBYLal5OtmyRJkiRJkjSmiXQa/qmIOA94LDXh9KZSyi2jDkySJEmSJEkz04QeqSulLAXOGnEskiRJkiRJmgXmTHUAkiRJkiRJml2mJOEUEYdExOci4pqIuDoinhARh0XEVyPi2vx/aE4bEfH+iFgYEd+PiEdPRcySJEmSJEmamHETThExJyJ+OILlvg/4UinlZ4FHAlcD84FzSinHAefke4BnAsfl30nAh0YQjyRJkiRpBpo3f4G/UCdNQ+MmnEopW4DvRcSxw1pgRBxM/aW703IZG0opK4ETgTNysjOA38rXJwIfK9VFwCERcZ9hxSNJkiRJmv76iSWTTNL0N5FOw+8DXBkRFwN3t4GllOfs4jIfCCwD/j0iHglcBrwOOCo7J6eUsjQi7pXTHw0s7s2/JIct3cXlS5IkSZJmCBNL0sw0kYTT345gmY8GXltK+U5EvI/u8bmxxBjDyjYTRZxEfeSOY48dWoMsSZIkSdIkaImlRaecsNVrSTPTDjsNL6WcDywC9s7XlwCX78YylwBLSinfyfefoyagbm2PyuX/23rTH9Ob/37AzWPEeWop5fhSyvFHHnnkboQnSZIkSZKk3bHDhFNEvJqaFPq3HHQ08PldXWAp5RZgcUQ8JAc9DbgKOAt4WQ57GfCFfH0W8NL8tbrHA6vao3eSJEmSJEmafibySN1rgMcB3wEopVzb619pV70W+GRE7ANcB7yCmvz6TES8ErgReF5OezbwLGAhsCanlSRJkiRJ0jQ1kYTT+lLKhojalVJEzGWMPpR2Rinlu8DxY4x62hjTFmrSS5IkSZI0C9gRuDT77fCROuD8iPgrYP+I+HXgs8D/jDYsSZIkSZIkzVQTSTjNB5YBPwD+gPqI25tHGZQkSZIkaXaZN3+BLZukPcgOH6krpWyJiDOofTgV4Ef5mJskSZIkSdtlgknac+0w4RQRJwD/CvwECOABEfEHpZT/HXVwkiRJkqSZx0STpIl0Gv4u4CmllIUAEfEgYAFgwkmSJEmSBHRJpkWnnDDFkUiaDibSh9NtLdmUrgNuG1E8kiRJkiRJmuG228IpIp6bL6+MiLOBz1D7cHoecMkkxCZJkiRJmoYGH5mzVZOkQeM9Uvebvde3Ak/O18uAQ0cWkSRJkiRJkma07SacSimvmMxAJEmSJEmSNDtM5FfqHgC8FpjXn76U8pzRhSVJkiRJmmr9jsDtFFzSzpjIr9R9HjgN+B9gy2jDkSRJkiRJ0kw3kYTTulLK+0ceiSRJkiRpyg12CC5Ju2IiCaf3RcRbga8A69vAUsrlI4tKkiRJkjRyYz0yJ0nDMJGE088BLwGeSvdIXcn3kiRJkqQZYDChZF9MkkZpIgmn3wYeWErZMOpgJEmSJEm7x46+JU0HcyYwzfeAQ0YdiCRJkiRJkmaHibRwOgq4JiIuYes+nJ4zsqgkSZIkSZI0Y00k4fTWkUchSZIkSZKkWWOHCadSyvmTEYgkSZIkSZJmhx0mnCLiTuqv0gHsA+wN3F1KOXiUgUmSJEmSJmbwF+gkaapNpIXTQf33EfFbwONGFpEkSZIkSZJmtIn04bSVUsrnI2L+KIKRJEmSJI2vtWZadMoJtmySNG1N5JG65/bezgGOp3vETpIkSZI0IiaUJM1UE2nh9Ju915uARcCJI4lGkiRJkvZAY7VaWnTKCVMZkiTtlon04fSKyQhEkiRJkvYEPhInaU+w3YRTRLxlnPlKKeVtI4hHkiRJkmYdWy1J2tOM18Lp7jGGHQi8EjgcMOEkSZIkSZKkbWw34VRKeVd7HREHAa8DXgGcCbxre/NJkiRJkuzwW9Kebdw+nCLiMOD1wIuBM4BHl1JWTEZgkiRJkjQTmWiSpPH7cHon8FzgVODnSil3TVpUkiRJkjTN+ctykrR947VwegOwHngz8NcR0YYHtdPwg0ccmyRJkiRNme0llGzBJEk7Nl4fTnMmMxBJkiRJmmomkyRpOMbtw0mSJEmS9gQmmiRpuKasFVNE7BURV0TEF/P9AyLiOxFxbUR8OiL2yeH75vuFOX7eVMUsSZIkafaYN3+BiSZJGpGpbOH0OuBqoPUF9Q/Ae0opZ0bEvwKvBD6U/1eUUh4cES/I6Z4/FQFLkiRJmjnG63fJzr0labSmJOEUEfcDTgDeAbw+ao/kTwVelJOcAfwNNeF0Yr4G+BzwgYiIUkqZzJglSZIkTS8mlCRp+pqqFk7vBd4IHJTvDwdWllI25fslwNH5+mhgMUApZVNErMrpb+8XGBEnAScBHHvssSMNXpIkSdLkGeuxNxNKkjS9TXrCKSKeDdxWSrksIn61DR5j0jKBcd2AUk4FTgU4/vjjbf0kSZIkzUDjtVqSJM0cU9HC6ZeA50TEs4D9qH04vRc4JCLmZiun+wE35/RLgGOAJRExF7gnsHzyw5YkSZI0TD4GJ0mz16T/Sl0p5eRSyv1KKfOAFwBfL6W8GDgX+J2c7GXAF/L1WfmeHP91+2+SJEmSZo7+r8H5y3CStGeYyl+pG/Qm4MyIeDtwBXBaDj8N+HhELKS2bHrBFMUnSZIkaQdMJkmSYIoTTqWU84Dz8vV1wOPGmGYd8LxJDUySJEmSJEm7bNIfqZMkSZI0u/iYnCRpkAknSZIkSTvNJJMkaTzTqQ8nSZIkSdOcSSZJ0kTYwkmSJEmSJElDZcJJkiQyHgFOAAAgAElEQVRJ0rh8fE6StLNMOEmSJEmSJGmoTDhJkiRJkiRpqEw4SZIkSdqGj9FJknaHCSdJkiRJkiQN1dypDkCSJEnS9GCLJknSsJhwkiRJkvZwJpokScNmwkmSJEma5cZLKC065YRJjESStKewDydJkiRpluh39G2n35KkqWQLJ0mSJGmGM7EkSZpubOEkSZIkzUC2YJIkTWcmnCRJkqQZwiSTJGmmMOEkSZIkSZKkoTLhJEmSJEmSpKGy03BJkiRpmmiPyy065QQfnZMkzWgmnCRJkqQpMJhQWnTKCVMUiSRJw+cjdZIkSdII9Tv6ttNvSdKewhZOkiRJ0pCYTJIkqbKFkyRJkrQbbLUkSdK2TDhJkiRJkiRpqHykTpIkSZogWzJJkjQxtnCSJEmSJEnSUJlwkiRJkiRJ0lCZcJIkSZLGYafgkiTtPBNOkiRJ0gCTTJIk7R47DZckSdIepyWTFp1ywpivJUnS7jHhJEmSpD2CySRJkiaPCSdJkiTNCrZakiRp+pj0hFNEHAN8DLg3sAU4tZTyvog4DPg0MA9YBPxuKWVFRATwPuBZwBrg5aWUyyc7bkmSJE1PJpQkSZp+pqLT8E3AG0opDwUeD7wmIh4GzAfOKaUcB5yT7wGeCRyXfycBH5r8kCVJkjTV+h1526m3JEnT26S3cCqlLAWW5us7I+Jq4GjgROBXc7IzgPOAN+Xwj5VSCnBRRBwSEffJciRJkjQLmUySJGlmm4oWTj8VEfOAXwC+AxzVkkj5/1452dHA4t5sS3KYJEmSJEmSpqEpSzhFxD2A/wT+rJSyerxJxxhWxijvpIi4NCIuXbZs2bDClCRJ0iTxMTlJkmaPKfmVuojYm5ps+mQp5b9y8K3tUbmIuA9wWw5fAhzTm/1+wM2DZZZSTgVOBTj++OO3SUhJkiRptMb7Zbgd/XLcolNOmJwgJUnSpJj0Fk75q3OnAVeXUt7dG3UW8LJ8/TLgC73hL43q8cAq+2+SJEmSJEmavqaihdMvAS8BfhAR381hfwWcAnwmIl4J3Ag8L8edDTwLWAisAV4xueFKkiRJkiRpZ0zFr9RdyNj9MgE8bYzpC/CakQYlSZKkHRqvfyUfiZMkSX1T+it1kiRJmn76nXfbkbckSdoVU9JpuCRJkibXWEmjHXXkLUmStKtMOEmSJM0wu/NrcJIkSZPBR+okSZJmAB9tkyRJM4ktnCRJkibBRFsd2SpJkiTNBiacJEmSdtFYSaTtPeYmSZK0JzHhJEmStB32hSRJkrRrTDhJkqQ9lq2SJEmSRsOEkyRJmrV21FeSJEmSRsOEkyRJmvYm2ldSnwklSZKkqWPCSZIkTVv2myRJkjQzzZnqACRJkubNX/DT5FL/tSRJkmYmWzhJkqSR2JXH4CRJkjQ72MJJkiRJkiRJQ2ULJ0mStNtswSRJkqQ+E06SJGmH/DU4SZIk7QwTTpIk7aHGa5U02O+SJEmStDPsw0mSpD2IvwAnSZKkyWALJ0mSZpCJ9pXkL8NJkiRpKplwkiRpGtnRY26SJEnSTGDCSZKkEduZVkmSJEnSbGDCSZKkIbJVkiRJkmTCSZKkMe1qX0mSJEmSTDhJkvYgYyWR7FBbkiRJGj4TTpKkGW2sZJEJJUmSJGlqmXCSJE26XUkSmUSSJEmSZg4TTpKkkTJJJEmSJO15TDhJ0iy3Oy2FbHUkSZIkaVeYcJKkaWJYiR1/NU2SJEnSVDPhJElDsrsthSRJkiRptjDhJGmPM6rHySRJkiRJlQknSSMzVrJmmI+L7Wi8LYkkSZIkaWrMmIRTRDwDeB+wF/CRUsopUxySNCPZWbQkSZIkadRmRMIpIvYCPgj8OrAEuCQiziqlXDW1kUnDZxJIkiRJkjTTzYiEE/A4YGEp5TqAiDgTOBEw4aRJMZk/Ky9JkiRJ0kw3UxJORwOLe++XAL84RbHMWhPtb6dvMh/LmsqyJEmSJEnSxEUpZapj2KGIeB7w9FLKq/L9S4DHlVJe25vmJOCkfPsQ4EeTHujoHAHcPs7rHY3fmWmn07KMe+bGbR0Y90wuy7iN2zqYfssybuvAuGd2WcZt3NZB93qmu38p5cgJTVlKmfZ/wBOAL/fenwycPNVxTeL6Xzre6x2N35lpp9OyjHvmxm0dGPdMLsu4jds6mH7LMm7rwLhndlnGbdzWQfd6T/qbw8xwCXBcRDwgIvYBXgCcNcUxSZIkSZIkaQwzog+nUsqmiPgT4MvAXsDppZQrpzgsSZIkSZIkjWFGJJwASilnA2dPdRxT5NQdvN7R+J2Zdjota5hlGffMLcu4jXuyyzJu457ssozbuCe7LOM27skuy7iNe7LLmq5x71FmRKfhkiRJkiRJmjlmSh9OkiRJkiRJmiFmzCN1s1lEnA48G7gNuDhfAxwCbAb2oSYH1wFrc3jkNK2JWnt/N3DgwCJuAO4PbKL2gRXARmDv3jQlh4/1vz9+HbA/sIWtE5ab2HZ/Wgvsl68398Zvzvn3ZmxtWW0Z7f+GLGPOwHT9Oii94S3e/XrTb8k6WA4cNsayNwA/AR46TmyD7+fk/01sW6ct9hiYbwt1G+wzMHys9Wmvx4qjvx8MLn8pcG+23p5t2cHW9XUH9ac6g7rd9u+V21/2Fur223s7y+xvq73p9pfBstrrtk37Zc1h2/1wS07btmXb3+4GDuhN0/4Xtt4fC7A+52/r3N+PGFjeqozlgN40bV8arI/+OrUyN1P3s8G427L6x19b7zVsfby08auAe+a8bdu0dWjLGFyXvhZLGzcHuCvjPpCuvvYCrgQensOWAkfnuI05X9tW/XXu78drMr7IZdyDrfeZFktbrwPo9iV65W4EfgQ8LJe7PpfRn66/Pdr+Btuemwpb12fb52DbL13a9tqXbp/Zvzd+I/VYuXdvfOT0rey92Xof2ZjrPGdg/dcNzEtvPfv7c1u/ktO2/WRwHdt0+1D3qXYc9feRsc7r/eH9euhvi/469fexFmd7PdY5MLbzfvDa0j8f9M/7Y5UzaHCbDxrr3LO98WOVtb3lD9ZnM1iXK4GD2Paat6O4dhRDOw+ON+9Y15A2ff94HTznDs6/lq3Ph9src0vG1Y7Xds2FbffDDRnDIRNY1x2Nb/vhWMf0WPcM/e29hW3vX7a3jMFz/Fja9X0vtr0O9Y+ZwWOYMZY5nhbPRuq54x4D48e6R9peGTuab6z9Yqz7m/667ei+cqz9jN64iRwfO6q37W3HwW2+Md/37z0H5x889401fqy4odtfxtundrTft2n699PjnfvGOz+NdwwP3iMNjp+o/v7ezvGtHvrnrrHuneiNa9fhzWy9v/Xvs+ZQ7wfnsvU1Feq23Uy9bo51vzR4P7ija01/2W2+wc9Ubdrxzj2D55DBbdm/Dg8eYztqMDLe9h2Md6zjcjD2wWv7WPc65HTB1us11ueVwf1rc2/ewc9F/fu/th/1jXe+GjwftfHr6faTfr20e6d2DRssv3/sjXc+aOu4Ipczl1pfG3vTf5z6uetB1PvB3y+l/JBZyhZO08NHgWcMvL4duBk4Bvg34D+piZBF+bcOuJX6oe1z1Ju2C6knAYD/Bi7P4ZdRD7pbqQmtAlxF/aW/s6kHwE3Um+KFwDLgTuDcXNadGc/11ANmaS5nFfXg25ivb895/yj/Lwd+mMu6lO6k9U/UfW8tcEsO+8+cdhnwv9RfJlxPvYBsytiX5nrcBTw3x9+U8X0I+Equ7/l0F7ZFGfcNWcYc6gfGe2RcyzKGzcDb8v+98/8twOosfzNwUq7D9RnDjdSTyZos/3rg6qyblb063pJ1cVHW0zLgwzns3NyW63K6dbms/8ky1uQ6bgT+GHhH1slZGdutvXmXAp/KevlJrseWjO0tGc/SXD453Zm9+r0th23MYXdmHWzJ11cC3wOWAIszvnYC/gZ1P1uf5dyV5dyZMd2Y69s+0K/NuluWy1qVf+ty/dbnum+k7he3Ad/KaZdRL2ZrcztfnOWuzdfrcjtfAfxaLu9S6sXj+9Tj6m/p9uM7s9z1Wca1+bd/Dv8WcB1dImpdbrcrcxv8Z2/e9Tl8U9bPHcDbsx43ZB2szfEXU4+ZW3Ib70NNspxD3Zebi6j71p359zm23u6bgM9mvdyQMW0CvpPre10Ov7G3vW6gSwTdmtNvoSagWjJqc05/W45fnbGuzeEXU/eflb1YzsvX7UK8iu6cdGXOf3FugwtzeNvHb876upLu+Lqdbv9cmMtu+/SPe9vtYrpzzuqcbzP1OFlJ3dfOz+Frs7y76Y6587LMq6nnuLZ/z804VmZ5P6HeIHyVuv98Ndd1A9356oKM464cd0GudztH30B3E70B+FKu95beOtyar6/PaVcC/0x303dlxv156rmyJfE3A9dQ95Of5Ha8KOv5jlyvVVmXS7IuNma9nNRbj3UZ7x3U/ad9uGznwOtym7Vz1129Or8ry/7NnLat093A13JdNuX23pLrvyyX/R+9+rw2y9ySr2/I+ffJuK/JctZQzzGb6c4Fd+V6vDbX4YnU42oT9Ty1Jteh1fUJwBuy3Lbdvt3bJuty/BrqeaWdhy7NWK/Pulmd5f8X9bhZlet7cW6PLdT94U9yOd/N8m7LbbMBeBfwsRx2Wf5fA/xfumvxPlneZuo+eHv+tbhfTZfoOinnX0/9Musu6vmlUPeDto9dl3/tnLYmY92Xeqy1xPC6jOkK6vFyXpZzaa7nZuoxc3cOb9eJdp0v1GPx7tw266iuBBbk8MXA4RnrD6jnsvV01+RbcvyG3A7/knWzMss6m3oPtCan719v78hpv0vd9v9Bd59xTi5vLfDLOd07c1nrMoYPU4/9yOmuBH6D7rzerhe/Tr0OrabuB9dkPDdm3KdnnbXr7k3U/XxpTrMeeCXdMbuaei+4NP/atr6VLnmyEXhNzvu1LG9jbqdL6e4vfqdXd+szttPz9aasv5tzvo3Ue8l2jN5Cva9qycIt1H3xnIzxh3Tnon/K19f11nN5zr+Jeny2e4Vn5jyrchusyW3ZrtN3ZfntfN7W5eac/zdz+Macp107vptlteveHdTjoyUolva27Y053RU57KacfkO+vyrLXEG9T92Ucbf7mrbvrKAeV3dn3bT7hjW9cs/M16vzf6vX9Rn7cVlnm6nn+E25jquo9z+PynXfTL0OrMzx52a93Z6xr6XuR+uB52UdbABOy216Tb7fBHwd+NN837bvIrp70XXUzyirs54/k8t5Rm6fzdTjqcVyQ063krqfvibLbfcW7Xp+BvV4W0J3Xb4c+Jl8v3/GeneWsznrenW+/nEufw51/9oMPD+X2/abpTn8utw+N+Xy1ufwX8jpVlDPJxvp7mVvybJWUs8JH6C71q3I7dCvw1fQ7Z8X0O3jt+V6HJflRG7bldTjZl3O3645G6j7Wbsn/nour90LX5LLatvmi71lrc1lfD/rZD3w99R9Auo949m57FW5Du+iS4hck69/l+48ujLLWZzLWpflf5/uXnpOrucz6L4o+0quw11094Mfzvk295b11hxXqPe5rU6vymki6+PLOc0S6nG2JeMv1M8iy7K8n2R5P6Fu97beLYG1knqOa/NfSd0v1lPPp9flMtp1dgvdZ74t1GN4Rcb4jV7dLM5l/Su1YcPN1Hv7DwEvol4XNwPHA98tpfw88FLgfcxiJpymgVJK+4DSf72lN8liupuy26gHUst8r6Du9O2msLV++C71JmkfugPtEGpGtVBbLlyR0wX1g+ay/L8oy2kX2n2pJ4Z70mV3V2bZLc575PLXUG8O2/J+3BtPLvv3qBepvagXlaAe6AdQ98n7UE8u66g3ue3EvC/dhe6Jue6t5deSjH9v6oVrfY67jHqC2Yd6wluX67GcegPWEmntBNdaBwTdiefuHH91jmsfyg6lO3EcRr2YthYjzaMy/vaN2m1Zf8uo37YcSZfgIYdvoXYqt2/GsTewspTyIeDnqBeHX8xtdEiuO1nGw3MbtG+iyfV4SpZ5j/xr30B8JKc5Fvg0XUuY9m3AgXQtF6AmQPfJ9W0tP1rLlwOzXg7O4RtyXT6f49bStVxYmeu3F3WbHpzT3Jll3UXXiuMjOf5n8/3BOU/7luzQXN4+wFE5/x3Uk3y74Dwyl3tx1veTqYmDdjPUvnlcmf8fnPU4h3qhad98tm8q5lD3h32oN2D75fSF7hu3OzK+p9J9YG91uzf1+Lw242itEq/N8b9Md+E/gnoc7UPdd7+Ww9r5ey/qhW1u1kX7lu89wLyM417Ubbw8y30Q3Y36EXQ3IcdQj5n2zdAWasuMtdTz0BG53u1bqLOo+/AZuW5Ppl5Yybq6O9d1E932PZm6fZ9A/cAUvfU6oLf8x1HPbeR6LaLuczfm+s2ju6GZRz1+985p2nZ/P903ov+PevwfQL05aN9SbaBr9bUqp12Q07UkXEugtRZVp+T0v0Q9f7QE+j2o++m/U88tQb05LVlfH6ces60+9qJ+oL0xy7hnlvGJHHZslnE38OiMYS71mGjH3BE5fA51/211cEwO/3gu7+Bc9oocd2quz8Ycfm6WuTnnW0XdhvftDSNf35/uxnGvrIuDsqy76I5RqOeEVn8tyRR03zb/Qs67GXg63fa6Iqdp327vRz2XHZrvP5HL3ky3jdqHnhbXYbnu+wNP6sV0APXmth2Py+muUe0b1PZFw950rfXmUJMlc4FvUlvCbqAeX3+Y8d2HLhFcct2W0u1PV1M/JNxIPV8dRT3H3CfLXZDLOTDjasnhdk4uGdN+Gd9jM7ZFGffZ1C8n2nr8Sa73+ixnf2riIjK2K3K996Y7D7ZtsA91H7gfXaK51e9Dqdeez2VdPZy678+l6xT1PtR9ou3DJ+frd+b4e9J9c92u2W09WwvG66j70wbqMXVn1s0hGfM1GeP+dPvkl3PZe9Nd79YBj8ntsJh6Ld6Lek39L7pvpb+VMbRr05F0Hx5bvdyDuk/MpW7Pb+a22ou6D+xF/XDfzk8trhXUc/lc6ofFz9Ili+6m7tsbc33XUfeLQ3rrvW+Ob/cZD81xc/NvHd017DDqdeyu/P9lulamP6a7Ju1P/SB0C91x+gTqB/uDstyDM7bFWe6hbH28HUG911mY41oCfFGWdzj1eLgjy7x31v+P2LplarsXeEBO246fvXLdbs9p98u47sxlt8RZ+5LgPOoxtzHXve1Hi7P8w7OcZbk+l1D3i3+nbuPvZzlnU/fR1ops31zn9mVpO6ZaYvEBdAmKxXTnxrYvtWT+NdTzUUuo7009Tx+Y22bfnP/H1G35CGqCpR0jG7OMG7MOnkj3hd8T6fadlsB7JvVe+xHUc/AqunPUF+iO60up9x63UvfnNbn8/utldF9aLqJLeJYs91rqMfAYukTMQuq91wvoPnO0+5stwPdLKRdmPbXrxcWllIXU88PmXP6+dNez+1GPGajXw3Z8/jiXeTjdfeDBWX+FmrRZTZcUWAdQSvluxr1vrkeh7kN30N1TtmT7LTnsM3QJ5Y35+shSykfpWlW9l+4zwK1Z/qIsp30Wa40CVlKPxw/TJdPOo/sS5Et0Xy7fChyay2r3jR/NMubQfZG3gprMatuhJXKv7G23FsuP6BJ+x1LPbSupX5QdkvO2dX9MjjuHut/2W0wdTE0y3ZXvH5pltfvoQv1M8tIcf3vG/Gt092Lt89Yc6rZelNOeRU3YtfnaNfy7+f811HPQpqzb9mX08lz2UXT3Ae3etN17Qfflb7sHWZXj2zIPpLsP/BJdq6VH0SUlb83xx9Jt93nU/budi+7KOM8BKKVcA8yLiKOYrUop/k2DP+rO+MP+a+qO21qDXEjdqa+iXhzbh8GFdBePlhjZTNfKoNA91lLoTmwto7uArlXLLdQPeO2Ev5ru5NNOwCty+DK6D9htme0mY3nv9Rvomnu3aduH1410CZY1dFn8zTlN+1aqJWRu7pWzIWNpLQN+CPxNbxnn5v+76VrRXJ9ltRPrsix/dZbxqZyutdZYk+/bPGupJ73VdN/M3E33jc3ne3XRPmy0k/nGXjltm7bpbqe7oFxF923w0vzfYvpGLnsR3TftbVv2vzVq+8NKupuKc3vL+ArdjfDG3vKW5esFOW+7YLZy27K+mdOu7q3jtWy9/7Wk6PLcRpdk3P3ES6F+W7Gs934T9WTclrmitz43svWNTaFemNt26se5Otfxpt7wtXQtOlrLlM05TRn4u5Zu2781/6/rLf+mXO5i4O/oWqG08bdm7JsHymo3ERt7/9syV/XqsMXe6uD6Xtl35rA2Xzs++tuo1X27SenXdyvnw3TfTl+Wwy6k2wev7c3XWkgs7k17LV1rlQ/RnTNeTPeBsX1j3rZBv9VOu6HekOu9me6b5HZctHVo55O2/hvovrHcAnySLsHZEvbtG+lC18JuPfWmeg31fNL+/6i3LRb36vPyXF5r5VOo+/8lvbhW5PZudbGK+u1uOwdfT3eObfXRyn858Kt0yY11dN/W3063n9wJPI1uP/p8b5u0faAltPvHZWuV1V63OtqUdb6xN6zV76besJbgH9wP2vvWkqEMDG/bf9PAsA29ZfTjaR9eW3n9cvvnhsW9umyJmDb/loHp29+P6VrZ9Kdf3hs2ePwMxr2xN64lH1p8/fq+aozlb+7VTf9YaPvHnXTX0raPtGX19/sWXzvX97dNv67aOeQOtq67MlBOq4PBMraMMU+7aW/bucXQYrylN+1yug8w/XuEu3tlt32y7d/961erm/41s8XQPvAMxralt6wtvfna8to9xeA+0D/3rBqj3PV09yhj7VutXloLlVZv7Tx/a6/MDdTzSPvA2L//KNTrebufaa0b+nXWrkFtfVqr1I/RtbZo26Pto4WaNBnr+Gj3PVuoH9ZaC9w27a1sXVft2r+CmmhscaweKPd8asKmUFuZtH32ywNlbaQmmNt++oje+rXpLu2tx7fY+prSPy43UVsAfqQXV6EmgX+Ur/vX57Z/fDDXpSXO3p7DT88y/5ut70/6x82qnO/VvWW28RdSvwQa3AcX5vtWR3fQnZs+1Jt+DV0rinY+2ER33Cyn7i/tHnpt1vFH6M6xd/WW2z/nLMny2j1E28/auWgF3fHYP24K3f3T4DmhtdrtXx820J0PV+W0p1HvY1sdtflvz+HtXq5Qr3Ht9bl014oLevXS4vp1us8P3+ktvx1Pm3O9N1ITQG2/aQmL6+hai62ju9fsL6PF0l/Hf6D7XHIR3fW21dE3qQmF9jTIzdT74LbP30R3r3oj3T71TLr7uu/T3e+2zx0n5fiv0SWPP5jvWwJsfS77Iuq56RZqC6e2HtfQtV5v54MWdztWNlJbPS3O4a31eUuYtC+f2rlkId3x1a4BW3Ladm756fknP++2lnTt2tKu7wvZej87h6717OA1aiO1xVV7cqB/j9XOZe043kzdL9s+3s6b7Rjb0JtvDd2XAm0/X9Ibv3qMeW6luxZszG1+Q+/9Zuq++m7q+e3dWQ+Py7IeM9X5iFH92cJpentYKWUf6gH/EOpBfwXd40SvpH47s4i6I7dHAArdBzCAV9EdzK3Z8oac5vicB+q3tAdTL+xbqDcI19JdSJfSfXt+eA67Jst+TY5vH8TJ+R6Qsb2Q7gRwPfUbro3A/FyXM6kHfvsg9Fe5rIV0rS/ulXXQHmGLnGdN1sPzc7ofUQ/eQvctRlC/qV+f74+hJhK+TddHzPPpLtSrqd9etMTa3fn/WLZ+Brqd9AJ4FvXi0G4UrsrYD8v3385pW8ucy3P+Q6kXrg3U7dweHTiqt6yF1GTB3lkPUPeF9mF3S87Tbj6gZuJbU+zj6RIfT8jpL6I+atcuzu/O17+S479D90jdD7IuF+b8B1C/rWgXkxU5rFAvCK3Ov5XzPJCu35unUm+utlBvOA/L4Uvpmk+3puStlVrJ+mjf7LV98heo3xi1Dz3twrEPNQnZHqNsj3adn/Xb6mBxb/4f0t30PSjj2Yva7B+6R0rat2qrM/b/0xv/XuqF9Z50Hx7/ku6G75/p+mJrLQnahfjAjGEj9dHF1sfYWbnu7dhoraHajf6F1O24LtdzSdZFe/689cm0mfqtarvxfG6Ov4auNcxLe6/Pp/tAsY66vduHHKg3LwfmuBU57I/pmkX/Bd2ja+2D9krqcfj/2zv3KLvr4oB/JmFJwiMIQnkIgqLIESgIRKSoIKKt1iIqSD2ABRFEK4KQVq2CaFUKyLGooALFgDwsIipH0YAQkxQ0gcTEJBAkhECyCQTy3t1kn9/+MTPONzd3sxtYCHLmc849e/f3+L6f852Z24OeTC8n/KYtQNt0r5XN9wiTjLmEGYebTF5OLIz2RRcabrLoApxXEf1zHFof+xIaOWvQE6dFFu5iK+sH0Po/wPLtmo8dqKaR92HXPm0hTu8moVqcfhJ9I6FF5QtALH0noyrWru2D5WF/C89P4nosXT7ebEP4c1pK4NoPhfXHdT/dczMgbzeFmE/eQpgodgOnWBm5qjxWJt5e51Vlu4LQePVTWNeWWYAuilehpsKuweMaIi54dQ2V6RbulYS6+nS0Lb3C0rCaECIuReePDitbF3T9Cu0XPl7OIEz/+izueRbGTHvWVf795L/DnveFp6evjzgNFmLBuQ+6KL/Y7rUS2pAu4PPNnWvHuOZkr6XlKVTjBlQT6heWrgusDJ9GTaL8IMm1B1zT9Xv2t4Uw3+pF50w/4V5sz3Sibc21G/xE/52WzsXEhsi1DFYRc3KX5dfnAje7eNDu15oE0wmTx22tDARdGwyz+yegdf6whdtLbHieJoRQD6JaVO3o3ORt6GGLqwMdS30TfRPaDlstzYtRjd5i5TTOvk9CN8Xz0HpfbWH9iDDL+Z+GMrmG9QWKLuC5D+0DCyysP6FtcQZhuunmGT3ouHSsla0flH3envkV2i4+S8wDfWj9vpfQIutDhSxuftKLarysAT5BCKoOszrztcrJ6PzvWnNPouuXmY2Ln1kAABbQSURBVMTmcR1hdrQz0dfXEppHK1Ft4hF2f5yV5TBUKPBnwpypCx0PfNx4kFjTubuDg4kDzMOJOXMYMfausDR8DvgXK/sZVk/fIjQOt0DnF293q63sRhLm8x+z+yegbaYVnae87tdZvG6utw5tny54esjK6gj73w8LfAz9G6vfw9F13zloX+hDTZB8k++ajW4i3ouux15tz7gf1fGWvrXo3P1PRF+cR2z6/UCxhXBX0E70zy3QsbOP8BHbiQp6/FBlLtqeV6Fte76FMY1YW7tQbZ6ladcq/R2WV197fcHSMxE9BD2CmLe7rT47rRyOsDT+p30H1VTy9efV6PpzBnpg/wyqLTPawvuplX0r2s76rN683n2+v8X+bkdoq9xKaFAtJvwWLUUP13ZB+473jS+jff23aPs9Et3z9BDWIW5WuYuV0xnoWuVeu3cHsQ/ZD+038638f4ya/C2157e2+N6P7nvW2nO+Dt/P8gq6Z3za6uIyK6/hqGD1KUIQPtryeCk6briQZy90TY+V93S0Pfuaw8ePXrRdnU9Y0LhJse8DfR3rVg99qOb4lvZc7Taj/nyWaCdPWtk+RfSfgyxcP9jvQet5BGEptBdhObOCWN/U63F3T3EssQ7ZA51jfM/k6xxvs93oeL+CMPHcmXCB0QacZ+V+Clpv24vIDHSf4eb6L082t8QrP/qhiYZTdW9PdIJbgg4w7h/hy+jgPwntMC4R98HdF8H1KWMt8f+xvesdZb7FN9PePR/tOO3VM6Wfj0++frrXh3Zc1xZYWD1bn3K51sEY++u+N57qJ576dMUHth50wH6cOE3x59qIU6XGE/NVxADo6a9PqWqp9xPoBqMNnSiW2r1P2z2/3mrltRYdmCbavSetbDur9NWnqV5v6+y9d1uZ+UZhNjop+KmUn476iYCns/Ek2xemXU3qr6/h+cYT0Pr/DovzaeKUoH62jeb11SzctgGeb3x37SCfbfy4Dyj/7v1ioLQNJh+N+S9E+212+tLYfpvF/XzKoP05hPtifBrLaWNtrG8Q9weq7/6ebTyprePrY33/ZV7ejeNA/W5jP6s/XQ3P13XTTGOlWb6aaa50Vd/rk+G6XbtGRU+T+DZWtgX1vdGFLpj60AW7j0s+xqxCN78uaLrB7h1P+Pc6Dh2vfGyfad8nWnrdj8qXWF9joe43Xl9tVn5LUTMw1wx1vztr0E3AVehC3oVJd1hZvLq6do2lvY8wpV6NbtrW2rP1WPo1K9eb7P97COFrJ7oJmYualPUQZuDLCZMo39D7/OltwwWc9RzUi5qATrGPz4/uY3CNpaGb8BfoBw3u06bYc8XefRY9aPB0+bxVtyvfTPSg64tWVFi8sLpXP+//dxJrFtfy9IMZn6ca21+zcbPWrFpsdddr6e5CN5nus7AT3QQtRQVNv0TnZTf/97iWWbpaLV9Hopu2dqunVtZfJ7h2Qze6Fplg/19k+bmTEJoei86FyywdK9A27Sfh7kexq/r4qXob2g7noX1kGNp2C2rONZbw0bgcba9zCA3usZafWUT7cO2Heiy7m9iMuzbybURb2hfdLPqa498tfB8/lqF+Dl3QtMDiuI0YG1tRDU13O+AHCoU4DFmFbth943eOXTvPnllO+B591sLx+374M86uTUHr28e+sZa2Kyws18jttPdbiL43wfK3prpWt0vX1qg1Ic8kfJ1dT7hkWI323/uqsNai44jH6+lYhfZVryPvN4Xw1diLHkbOsPC+Qfhse4w4GHMttKcszgvQTWtBx6iRxIFBu6VlPKEt7FpnXjcdVmYdaL3fat8fJ4Re3pYfJXxWub/VRahg3LWifC9xHqEB7HXVzfpro7q9rkEF0bWmiZeTm7nX79TaJM3m39onZxehodgYtwvIfPw/Dz1o7CMO2r9j19bYtRuqsqs1xzxM17K6Dm2fBTXlP5841FyJ9qfT7Z3bLA3L0D7pvrzOsnxcjgpCe6zMfZzzfC6rnl2B9pN5aPtyv7yHEYe1l1o6f0K0iVMt7OtZX7PuIbTeaw0d70M96P7nd8T+6RZCE/M8VEDjbW4C2qZcE7ybcDcxjQ21UNcQ89UqQpC/K6Hp10b4qVtraX432ld6iT6zmtgju8WEaxv5uPME62v29RDjwVLiwOoPVj+zgXOr+lhscfi6pQ/tH52Ef8FfosLs1Va2t1b7fD+cG7255REv1Cc1nF66jBCRbe37WYQWjp9QDEcHrLWoZH04ekp1HdpBfowu9EG1BJ5EJeT72v05aKd9nb37e2ArETkV1axos3Bd2LQA7ZBLCZM4P3nrRrUllhFOuCFM8uaiA6qH5Zo0y4gF7UnEr+DcgZ62L0UXeS55dzOKJ9AJag3hQHM3i7PH0uKT1u2o/a+r4fuA04NOBH5qsxpdpM0lNIduIoRnI60MRlgd+AnIgfZ/u5XbHyxvfnLvPlV6ReRMS+M64iR+DjFhu1N0IXxd+On4MPTU2TcyY9GF2pVWjq6m6ROuC/o+hm70JhOO092p4ERUw6jPwjya0CBZTQjMCmGr/yeL653o5OG+Ag4gNhzvJNRfH0Enntr052C0rc4nFqIL0cXXXEvfg+jEuQQdmN3EcjW60PNJwhdI/vceQnDwiKUZ9KSz28rLT63vJMxyfBF/MrFxnGP14mak7qBwFuG3w7Ve2tHT3o+ii4b6pOMJe74DPeV1HwCu1TebMJm7Hm0bfgpe0Lb3W8vzjyyeFejixye6My3MNeip8TMW5ypCQD3D7q9DJ3jX5liHOSAupQjaVyEcX05E29jjVh9uKvgKy+dC1B6/1+67n54foBOs27T7Zn2NfW+1+uhG+/8p6OlZu71zuV3zhcOviY21O610c4lbLKwOK/8f2nsPW/l2EIuhXnShdCdh7uo+Gvxk6p+tnrvQH0GYxfobr0/Z+/cQAv/a7PgUtL0sRzWYVliZfIowCfDFzNnEDxD0oOP2xyydZ9u1JUW1Xd0XwcmWnq2tHNyh/FctTw8R5lKrCTXvaRbGUsLBaJ/l3TXaXPvU29QCYkP+bXSceBjdmH+AGI/cT87nCZ8ILVZGI9GTx63R9gvhA+V+YtM9lzAtdcfM7jflXYQvl8MsLy0W5m7o6bn7YToUXWh/mPC3cy/aTr3d74jW+xjL34eIXxIchs6NIyy/vYRWiAusdrO8vcfS6nPJbFQA12tp6ULb79WECcxUe7aFEBr+GXVeviuqddSOtlOfK64ntOvORU/EO1FfGo8S5iE+vvvp/RxCU9Y1iv0Ut8vqsBC/ZjvKwnINyz8SmrMdhBnQcKBVRPZANZx70D7/LCpYaEfHeN8gTkAP03zz564CPm7/z0G1QY+wPOxq5bKTpWsbC/P99veVlvd56GZ5HWH2fJqIvJVwPH4mquEwGz1xbiE23mst3QX9UY73oHW9AD3db0HXUDvYd9eE9vY2yuIdY3ndx9L9r1ZWiwjt6E60Xe2OzkkHWf47UU2EJ9G+8ioL4yh77wpU0OVtyjUQ7iM0aFotLxeimg6utbYdOh68hugfWxG/xNth5TSa0DybaulyHyy7WDzHon2j1cryGCsTF9i7Wc5StI0cg24An7SwLrKwn7D0bWn5FrReW9C2fCO6NgHtfzMsbYcSGgUfRPvjFItzhD2/0sr2bmLzegXqm8j9Ci4mxt+fWH58nvP550grF1/vQKwnRhEa1xAb8RsJCwH3fbSwqht3eo9dG2XlvwW6Nn8abV+9qAbe7sR4sw8xdw5HBQdjLaxPEAcB7mfs+2g7GoauNVwLxf1YXkT8kvAItM33EtpNW6LjzTD7foDdewptU6PQX5F1jRjvrz+351yTcqU944KBpVbGV6Nz3lJ0jHuYcPbchY532xLOoNutfB+1spyMrod8g99t5Xc54We1zcr/MXRM6rBycpPd5Vaufei66Q57131xLbNrz1haXEP8C8S62wUKMyyvd6Pj0dft/v2oVk6nldE26FhxqtXdKHTuGGZlPBLV7vqmxXs3KvhyB+/txA9GdaJrisuszB9C93KL0Lofgbazi+3+9lZuoHPMSMvP+ZaOyZZ/sfB3IXz7daDjzRLW/yGl/QjNYV87dqF90N05LEfH/l+ifd99XvqPhGD5u5NYv59uz4Ku83a3Z79CCJyWWbhrLcwl6HrtZntvPutrMQ1Hx+U5xA9qXUj8gACEkHMhOr8/ZeV4p/09GD1sGo6OC+5z8P/QcdX9lvZZfv0QawE6Lo9G19K7AutExC0RPg5MKqX4+PCyQ0yylmxGROQWdGGxIzHY+oLCN0OFDX8qusZPVHxyqPHTaBeEPB8K/f88Zy/9/0xws3f7u+8nBo357GLDn6lshgubWvq5DzqgbNskDojTL3ccN1gGyl+z5zsI59j+fmMYzcL1hdRaNvwpZG8z7uzOVbZXoG2sg3DY3W1/3b79tehgvgMqUChsWKftFtb26CZpf0Kd3zUktkA3CYUwN3rU8rqz/e8LR1/wLEI3BSPtmm+YVllaHrH074ROTq8gtNLchA2Lz9W36/JqJ8yjfDGxJ7Hgc0exw9EJfTG6IfCNmdeRm05RXfMy9f7lC05/zjexjqvNuoPxYdWzpbrm7/RV7/lzT6Knb16HbsLlYfk7tebPD9HNahsq2PAF1CL0NMpVjkeibctV990PWi/a3nZAFzLuqLagE78/4yZCntZ2oh16nlYSbaynyoO3dw9rS6JNg9ZFnT6/tmWT792EU8faOW0f/Y+FfsLlzuvdjNjpItpLh5Xd64j6bhy/6jw39uXGZ13jopPoo3X/a2xXdThS/e2t7kl1rRaG+xjZbAys4/FNTP1cs3z4e8Ora51oXfVHfdLdgvY5Icxv63Lzvz5mChufbzw9w4j25flxYX6zcqzbouNzm9dXYx00LqSahdvNhnNzs3c9fJ/Hms15dT17n/E2XY8fdXrq970/rEb75UDzMmh/372fe/V4U5eNC3hHoOPtaMKEyuulkzCvcDxfjWNjHa/nqc5f3f6cjfU/T2NLk/sDzef9rcXqNDZbxzwXBrO2qMsCol/V5dEsjIHyMdg01G1yoH65KWvBxue8nXn7kCbP+nefD72PeD7dvKm/uOtyq/s+G0n3QPfrdWldRv21z3oc6G/NL4TrDJ8nfbNb98NNqZs6vY3x9pfHZuH3l6+6vzVSiLVf/Z7P9XWfqsfUgfq4zxtbM3AZeFj95bVuf/VaY2NtaqC4BkOdr02px01hoH3VxtYAf00Mpi8PNm+DmSfaCIG4r3V8v95CaDCeXkpZ0SyQlwMpcEqSJEmSJEmSJEmSJEmGlDSpS5IkSZIkSZIkSZIkSYaUFDglSZIkSZIkSZIkSZIkQ0oKnJIkSZIkSZIkSZIkSZIhJQVOSZIkSZIkSZIkSZIkyZCSAqckSZIkSZIkSZIkSZJkSEmBU5IkSZIkzwsRKSJyefX/WBG5aIjCHicixw9FWAPEc4KIPCwiE17ouCy+U0Xku4N8djcRue2FTlOTePcSkdkvdrxJkiRJkrw8SIFTkiRJkiTPl07ggyKy4+ZOSI2IDN+Ex08HPlVKeccLkA4Rkee85iqlLC6lvOBCtyRJkiRJkqEkBU5JkiRJkjxfeoCrgc823mjUUBKRNvt7lIhMFJFbReTPIvJfInKSiEwVkVkisncVzDEiMtmee5+9P1xELhORB0TkTyLyiSrcCSJyMzCrSXo+YuHPFpFL7NqFwFuB74vIZQ3PXyUix9r3n4nIdfb9dBH5mn0/z8KbLSLn2rW9TGPqKmA6sIeInGZ5mAgcUcVxgr07U0QmNUnzXzSNTDPqdhH5jYg8KiKXNqsQETnEyneaiIwXkV3t+hlWZjNF5KcispVd39nyN9M+f2dBDReRa0RkjojcJSKjmsS1k4X1gH2OsOtvFpH7ReSP9vcNdn0/q+cZVnevF5GtReRXFvdsETnR68bCnC0iV5vwbm8RmV7F/3oRmdasHJIkSZIk2XykwClJkiRJkqHgSuAkEdluE945EDgHOAA4BdinlPJm4Frg7Oq5vYAjgX9EhUIjUY2kVaWUMcAY4AwReY09/2bgi6WUN9aRichuwCXA0cBBwBgROa6U8lXgQeCkUsq/NaRxEvA2+/4qwMN8KzBZRA4BTgMOA95i6XiTPfMG4IZSypuALuArqKDpXVU4ABcCf19KORA4dsBS07SfiJbbiSKyR0M+W4DvAMeXUg4BrgO+brdvL6WMsbgeRssR4NvARLt+MDDHrr8euLKUsh+wEvhQk/RcAXzL6uJDaP0BzAXebvm/EPiGXT8LuKKUchBwKLAI+AdgcSnlwFLK/sBv7NnvWnr3B0YB7yulPAasEpGD7JnTgHGDKLckSZIkSV5EUuCUJEmSJMnzppSyGrgB+MwmvPZAKWVJKaUTeAy4y67PQoVMzq2llL5SyqPAfGBf4N3AR0VkBjAFeCUqHAGYWkp5vEl8Y4DflVKeKaX0ADcBbx8gjZOBt4nIG4GHgKdNW+hw4H5U8PSzUkp7KaUNuJ0QUD1RSvmDfT+sirsL+N8qjvuAcSJyBjAYM8B7SimrSinrLE17Ntx/A7A/cLeVz5eA3e3e/qYtNgs4CdjPrh8NfA+glNJbSlll1x8vpcyw79NYv16cY4DvWlx3AKNFZFtgO+Anpp31rSqu3wP/ISKfA/YspaxF6/wYEblERN5Wxf8OEZli6T26CuNa4DRRs8kTgZsHUW5JkiRJkryIbLG5E5AkSZIkycuG/0bNx35YXevBDrhERIAtq3ud1fe+6v8+1l+jlIZ4CiDA2aWU8fUNETkKaO8nfTJgDhojKqVVRLZHNXAmATsAHwbaSilrLE/90ZiOxnx4HGeJyGGoBtcMETmolLJsI+HW5dbLhus5AeaUUg5v8u444LhSykwRORU4aiPxNItrA5M6tH4PN8FRJELkO8CEUsoHRGQv4HcApZSbRWQKmt/xIvLxUsq9pi32XuBiEbkLuBS4Cji0lLJQ1BH9SAv+p8CXgXuBaQOUV5IkSZIkm4HUcEqSJEmSZEgopSwHbiXMtAAWAIfY9/cDLc8h6BNEZJioX6fXAo8A44FPmvkYIrKPiGw9QDhTgCNFZEfTjPkIMHEQ8f8eOBcVOE0Gxtpf7NpxIrKVxf+B6l5j3EeJyCstzSf4DRHZu5QypZRyIfAssEeT9zeFR4CdRORwC79FRFwzaFtgiaXhpOqde4BP2vPDRWT0JsR3F/Bp/6cyddsOaLXvp1b3XwvML6V8G9WI+lszd+wopdwIfBM163Ph0rMisg3wF19gpt01HtXKqgWcSZIkSZK8REiBU5IkSZIkQ8nlQP1rddegQp6pqFlZf9pHG+MRVDD0a+AsEzZci5qTTTeTrR8wgOZ2KWUJ8AVgAjATmF5K+cUg4p8MbFFKmYdqcO1g1yilTEe1hqaiQqVrSyl/7Cfui1Dh1W8tHOcyMUfmqABr5iDS1C9msnc8cImIzARmAO4E/AJL592ojyXnHNR8bRZqOrcfg+czwKHmAPwh1EcTqIbSxSJyH+ubCp4IzDYTvH1RU8wDgKl27YvA10opK9H2Mwv4OfBAQ7w3oVpjd5EkSZIkyUsOKaWpdneSJEmSJEmSvGQRkbHAdqWUCzZ3WpIkSZIk2ZD04ZQkSZIkSZL8VSEiPwP2Rh2JJ0mSJEnyEiQ1nJIkSZIkSZIkSZIkSZIhJX04JUmSJEmSJEmSJEmSJENKCpySJEmSJEmSJEmSJEmSISUFTkmSJEmSJEmSJEmSJMmQkgKnJEmSJEmSJEmSJEmSZEhJgVOSJEmSJEmSJEmSJEkypKTAKUmSJEmSJEmSJEmSJBlS/h+9lflmtf0oUAAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "#How to calculate number of words in a string in DataFrame: https://stackoverflow.com/a/37483537/4084039\n",
+ "word_count = project_data['essay'].str.split().apply(len).value_counts()\n",
+ "word_dict = dict(word_count)\n",
+ "word_dict = dict(sorted(word_dict.items(), key=lambda kv: kv[1]))\n",
+ "\n",
+ "\n",
+ "ind = np.arange(len(word_dict))\n",
+ "plt.figure(figsize=(20,5))\n",
+ "p1 = plt.bar(ind, list(word_dict.values()))\n",
+ "\n",
+ "plt.ylabel('Number of projects')\n",
+ "plt.xlabel('Number of words in each eassay')\n",
+ "plt.title('Words for each essay of the project')\n",
+ "plt.xticks(ind, list(word_dict.keys()))\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "rhK9C3-Foc6W",
+ "outputId": "8562b5fc-14a8-48f3-9c59-924949aaa938"
+ },
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "D:\\installed\\Anaconda3\\lib\\site-packages\\matplotlib\\axes\\_axes.py:6571: UserWarning:\n",
+ "\n",
+ "The 'normed' kwarg is deprecated, and has been replaced by the 'density' kwarg.\n",
+ "\n"
+ ]
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEWCAYAAAB42tAoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xl8XXWd//HXO0uTtlm6pVu677QsBULLqqxSlKE4wlBQhLEjLuDuDKCOoj8ZRUdxZkARBFkES2XRisjasgld0lK6h6Z72jTpvjdtks/vj/MNXMLNzW2a5Cbp5/nofeTc7/me7/mec3rv557v+Z7vkZnhnHPONSQt1RVwzjnXtnmgcM45l5AHCueccwl5oHDOOZeQBwrnnHMJeaBwzjmXkAcKlxRJt0n6QxOWGy3pbUl7JH21Jep2tCQNkWSSMlJdl5YkqY+k18Kx+EWSy6yVdGFL1+1ISRokaa+k9FTX5VjggaIdknSrpGfrpa1sIG1K69buQ/4DeMXMcs3sf1Ncl2PdDcBWIM/MvlV/pqQHJf249at15MxsvZnlmFnN0ZTTVgNhW+OBon16DTir7teUpL5AJnBKvbQRIW/SFGnO/xeDgaVNWbCj/8JPgcHAMmsHd9n6sW9bPFC0T/OIAsP48P4jwCygpF7aKjPbBCDpTEnzJO0Kf8+sK0zSK5Jul/QPYD8wTNJQSa+GZooXgV4x+bMl/UHSNkk7Q3l96ldS0kzgPOCu0EwwSlK+pIclbZG0TtL36gKTpOsl/UPSnZK2A7fFKTNN0i2SVoX1T5fUI2b+nyRtDtv5mqRxMfM6S/pFWO8uSW9I6hxT/KclrZe0VdJ3G9r5krIk/XfIWyHpnrpyJPWS9EzYL9slvR6zfTdL2hj2aYmkC0L6BElvhWXKJd0lqVOYd3f9ZiJJf5X09QbqFvc4S3oQuA74j3AsLqy33A3Ap2Pm/zVm9nhJi0KZj0vKjlnuUkkLQ93flHRigv1mkr4qaXXYxz9PdOzDsf5eOF6V4f9Nfsj/gebC8P/q/rD/Nkr6sWKapSR9XtLysO+XSTpF0iPAIOCvYZv/o6G6H/PMzF/t8EUUGL4Rpu8CPgfcXi/tgTDdA9gBXAtkAFeH9z3D/FeA9cC4MD8TeAv4JZBFFHT2AH8I+b8A/BXoAqQDpxI1Z8Sr5yvAv8W8fxj4C5ALDAHeBaaGedcD1cBXQj06xynv68BsYECo22+BP8bM/1woOwv4FbAwZt7doT6Fod5nhnxDAAPuAzoDJwFVwHENbNOvgBlhv+aGffGTMO8nwD1hH2YC5wACRgMbgP4h3xBgeJg+FTg9bPMQYDnw9TBvArAJSAvvexEF8z5x6tXYcX4Q+HGC/1Mfmg+sBeYC/UP5y4EvhnmnAJXAxLA/rwv5sxoo34j+3/Yg+oJ+t+7/RrxjH45lKTAMyAGeAh6J2X8GZIT3fw7/F7oCvUOdvxDmXQlsBE4Lx2IEMDhm+y5M9ee5rb9SXgF/NfHARb+2nw7T7wAjgUn10q4L09cCc+st/xZwfZh+BfhRzLxB4UPbNSbtMd4PFJ8D3gROTKKer8R8GaQTfQGPjZn/BaJrGHVfFusbKW85cEHM+37A4bovjHp5u4Uvk3yis+cDwElx8tV96QyISZsLTImTV8A+wpd8SDsDWBOmf0QUCEfUW24E0ZfqhUBmI9v49brjGLPNF4Xpm4BnG1iuseP8IE0LFJ+Jef8z4J4w/Rvg/9XLXwJ8tIHyDZgU8/7LwMsNHXvgZeDLMe9H1x3rmGOWAfQJ/686x+S9GpgVpp8HvtZAndbigaLRlzc9tV+vAWdL6g4UmNlKoi/vM0Pa8bx/faI/sK7e8uuIflnX2RAz3R/YYWb76uWv8wjRh2+apE2SfiYpM4k69wI61SsrUT3iGQw8HZo6dhJ9idYAfSSlS/ppaJbaTfQlULfeXkA2sCpB2ZtjpvcT/Yqtr4DoTGp+TB2eC+kAPyf6FfxCaGK5BcDMSokCwG1ApaRpkvoDKGqSeyY0me0G/ouYpj7gIeAzYfozRPs/nmSOc1M0tF8GA9+q2w9hXwwM9WhI7PFdVy9v/WNff3vW8X5giDWY6OytPKYevyU6syDUKdFxd43wQNF+vUX0S/kG4B8AZrabqJniBmCTma0JeTcRfZhiDSI6Ha8Te4GzHOguqWu9/IT1HDazH5rZWKLmm0uBzyZR561Evwhj65KoHvFsAC4xs24xr2wz2whcA0wm+tWeT/SrE6KzgK3AQWB4EvVsbBsOAONi1p9vZjkAZrbHzL5lZsOAfwK+WXctwsweM7OzibbfgDtCmb8BVgAjzSwP+E6oc50/AJMlnQQcR9TMEk8yxzmRI73IvQG4vd6x6GJmf0ywzMB6dduUYP31t6fuTLciTj2qgF4x9cgzs3Ex8xs67m3+wn5b4IGinTKzA0Ax8E3g9ZhZb4S02N5OzwKjJF0jKUPSVcBY4JkGyl4Xyv6hpE6Szib60gNA0nmSTggXC3cTffk32k3Roq6M04HbJeVKGhzqeiT3Z9wTlh8c6lIgaXKYl0v0hbGN6Ff/f8WsuxZ4APilpP7h7OMMSVlHsO66cu4D7pTUO9ShUNLFYfpSSSMkiWjf1AA1iu4nOT+s7yBRsKnbZ7kh715JY4Av1VtnGVEHhkeAJ8Oxj+eIjnMcFUTXA5J1H/BFSRMV6SrpE5JyEyzz75K6SxoIfA14PEHePwLfUNSxIofoeD5uZtWxmcysHHgB+IWkvHARfLikj4YsvwO+LenUUM8Rdf9/mrDNxyQPFO3bq0Sn12/EpL0e0t4LFGa2jehX/7eIvkT/A7jUzLYmKPsaoouU24EfEF2ErtMXeILoy215qEeyX/ZfIWrjXx3q/RjRF3iy/ofoQvILkvYQXdieGOY9TNQ8sRFYFubF+jawmOhLdzvRL/qmfAZuJmpemh2ail4iaj+H6FrRS8BeorO+X5vZK0QXzX9KdEaymegYfSemXtcQdRi4j/hfng8BJ9Bws1NTj3Os+4GxofmmobOW2PUVA58n6jixg2ifXN/IYn8B5gMLgb+FdTbkAaLtfQ1YQxRgv9JA3s8SNWsuC3V5guj6FWb2J6KOHo8R7eM/E11Qh6jzwffCNn+7kbofsxQu6Djn2jBJHyEKxkPCWU27I8mImtdKm6GsYcBKok4M/iXWwvyMwrk2LnQU+Brwu/YaJFrA8cBaDxKtI6lAIWmSohuESut6cdSbn6XoRpxSSXMkDYmZd2tIL6lrx42Zl65oHKBnYtKGhjJWhjI7NX3znGvfJB0H7CRqRvlViqvTJkj6JnAv8KHvItcyGm16Chcs3wUuAuouql1tZsti8nyZqE/9FxWNLfRJM7tK0liiC1ITiLq6vQSMChc16w54EdHNWpeGtOnAU2Y2TdI9wDtm9ptm3WrnnHNJS+aMYgJQamarzewQMI2oC2KsyUQX2yC6iHRB6PUxGZhmZlWhq2ZpKA9JA4BPEPVIIKQJOD+UQSjz8qZsmHPOueaRzMBbhXzwRpgy3u9l8qE8ZlYtaRfQM6TPrrds3c0/vyLqlRHbla4nsDOm+1ts/g9QNDbNDQBdu3Y9dcyYMUlsinPOuTrz58/famYFjeVLJlAoTlr99qqG8sRNl3QpUGlm8yWde4TrihLN7iVqp6SoqMiKi4vjZXPOOdcASfXv5I8rmaanMj54N+UAPng35QfyKBrNMZ+on3pDy54FXCZpLVFT1vmKHoqzFeim94cYjrcu55xzrSiZQDEPGBl6I3UCphDd8BRrBtHIkQBXADNDt7UZwJTQK2oo0c1Ic83sVjMbYGZDQnkzzewzYZlZoQxCmX85iu1zzjl3lBoNFOF6wU1Eg8AtB6ab2VJJP5J0Wch2P9BTUinRkAx1A6EtJRqyYRnRwGk3WuNPpLqZaHycUqJrFonu3HTOOdfCOsSd2X6Nwjnnjpyk+WZW1Fg+vzPbOedcQh4onHPOJeSBwjnnXEIeKJxzziXkgcI551xCydyZ7dqBx+asb5Zyrpk4qPFMzrljip9ROOecS8gDhXPOuYQ8UDjnnEvIA4VzzrmEPFA455xLyAOFc865hDxQOOecS8gDhXPOuYQ8UDjnnEvIA4VzzrmEPFA455xLyAOFc865hJIKFJImSSqRVCrpljjzsyQ9HubPkTQkZt6tIb1E0sUhLVvSXEnvSFoq6Ycx+R+UtEbSwvAaf/Sb6ZxzrqkaHT1WUjpwN3ARUAbMkzTDzJbFZJsK7DCzEZKmAHcAV0kaC0wBxgH9gZckjQKqgPPNbK+kTOANSX83s9mhvH83syeaayOdc841XTJnFBOAUjNbbWaHgGnA5Hp5JgMPhekngAskKaRPM7MqM1sDlAITLLI35M8MLzvKbXHOOdcCkgkUhcCGmPdlIS1uHjOrBnYBPRMtKyld0kKgEnjRzObE5Ltd0iJJd0rKilcpSTdIKpZUvGXLliQ2wznnXFMkEygUJ63+r/+G8jS4rJnVmNl4YAAwQdLxYf6twBjgNKAHcHO8SpnZvWZWZGZFBQUFjW+Fc865JkkmUJQBA2PeDwA2NZRHUgaQD2xPZlkz2wm8AkwK78tD01QV8Huipi/nnHMpkkygmAeMlDRUUieii9Mz6uWZAVwXpq8AZpqZhfQpoVfUUGAkMFdSgaRuAJI6AxcCK8L7fuGvgMuBJUezgc45545Oo72ezKxa0k3A80A68ICZLZX0I6DYzGYA9wOPSColOpOYEpZdKmk6sAyoBm40s5oQDB4KParSgOlm9kxY5aOSCoiarRYCX2zODXbOOXdkFP3wb9+KioqsuLg41dVIqcfmrG+Wcq6ZOKhZynHOtX2S5ptZUWP5/M5s55xzCXmgcM45l5AHCueccwl5oHDOOZeQBwrnnHMJeaBwzjmXkAcK55xzCXmgcM45l5AHCueccwl5oHDOOZeQBwrnnHMJeaBwzjmXkAcK55xzCXmgcM45l5AHCueccwl5oHDOOZeQBwrnnHMJeaBwzjmXUFKBQtIkSSWSSiXdEmd+lqTHw/w5kobEzLs1pJdIujikZUuaK+kdSUsl/TAm/9BQxspQZqej30znnHNN1WigkJQO3A1cAowFrpY0tl62qcAOMxsB3AncEZYdC0wBxgGTgF+H8qqA883sJGA8MEnS6aGsO4A7zWwksCOU7ZxzLkWSOaOYAJSa2WozOwRMAybXyzMZeChMPwFcIEkhfZqZVZnZGqAUmGCRvSF/ZnhZWOb8UAahzMubuG3OOeeaQTKBohDYEPO+LKTFzWNm1cAuoGeiZSWlS1oIVAIvmtmcsMzOUEZD63LOOdeKkgkUipNmSeZpcFkzqzGz8cAAYIKk45NcV7RC6QZJxZKKt2zZ0mDlnXPOHZ1kAkUZMDDm/QBgU0N5JGUA+cD2ZJY1s53AK0TXMLYC3UIZDa2rbrl7zazIzIoKCgqS2AznnHNNkUygmAeMDL2ROhFdnJ5RL88M4LowfQUw08wspE8JvaKGAiOBuZIKJHUDkNQZuBBYEZaZFcoglPmXpm+ec865o5XRWAYzq5Z0E/A8kA48YGZLJf0IKDazGcD9wCOSSonOJKaEZZdKmg4sA6qBG82sRlI/4KHQAyoNmG5mz4RV3gxMk/Rj4O1QtnPOuRRR9CO+fSsqKrLi4uJUVyOlHpuzvlnKuWbioGYpxznX9kmab2ZFjeXzO7Odc84l5IHCOedcQh4onHPOJeSBwjnnXEIeKJxzziXkgcI551xCHiicc84l5IHCOedcQh4onHPOJeSBwjnnXEIeKJxzziXkgcI551xCHiicc84l5IHCOedcQh4onHPOJeSBwjnnXEIeKJxzziXkgcI551xCHiicc84llFSgkDRJUomkUkm3xJmfJenxMH+OpCEx824N6SWSLg5pAyXNkrRc0lJJX4vJf5ukjZIWhtfHj34znXPONVVGYxkkpQN3AxcBZcA8STPMbFlMtqnADjMbIWkKcAdwlaSxwBRgHNAfeEnSKKAa+JaZLZCUC8yX9GJMmXea2X8310Y655xrumTOKCYApWa22swOAdOAyfXyTAYeCtNPABdIUkifZmZVZrYGKAUmmFm5mS0AMLM9wHKg8Og3xznnXHNLJlAUAhti3pfx4S/19/KYWTWwC+iZzLKhmepkYE5M8k2SFkl6QFL3eJWSdIOkYknFW7ZsSWIznHPONUUygUJx0izJPAmXlZQDPAl83cx2h+TfAMOB8UA58It4lTKze82syMyKCgoKEm+Bc865JksmUJQBA2PeDwA2NZRHUgaQD2xPtKykTKIg8aiZPVWXwcwqzKzGzGqB+4iavpxzzqVIMoFiHjBS0lBJnYguTs+ol2cGcF2YvgKYaWYW0qeEXlFDgZHA3HD94n5guZn9MrYgSf1i3n4SWHKkG+Wcc675NNrrycyqJd0EPA+kAw+Y2VJJPwKKzWwG0Zf+I5JKic4kpoRll0qaDiwj6ul0o5nVSDobuBZYLGlhWNV3zOxZ4GeSxhM1Ua0FvtCM2+ucc+4IKfrh374VFRVZcXFxqquRUo/NWd8s5VwzcVCzlOOca/skzTezosby+Z3ZzjnnEvJA4ZxzLiEPFM455xLyQOGccy4hDxTOOecS8kDhnHMuIQ8UzjnnEvJA4ZxzLiEPFM455xLyQOGccy4hDxTOOecS8kDhnHMuIQ8UzjnnEvJA4ZxzLiEPFM455xLyQOGccy4hDxTOOecS8kDhnHMuoaQChaRJkkoklUq6Jc78LEmPh/lzJA2JmXdrSC+RdHFIGyhplqTlkpZK+lpM/h6SXpS0MvztfvSb6ZxzrqkaDRSS0oG7gUuAscDVksbWyzYV2GFmI4A7gTvCsmOBKcA4YBLw61BeNfAtMzsOOB24MabMW4CXzWwk8HJ475xzLkWSOaOYAJSa2WozOwRMAybXyzMZeChMPwFcIEkhfZqZVZnZGqAUmGBm5Wa2AMDM9gDLgcI4ZT0EXN60TXPOOdccMpLIUwhsiHlfBkxsKI+ZVUvaBfQM6bPrLVsYu2BopjoZmBOS+phZeSirXFLveJWSdANwA8CgQYOS2IxjV3VtLeu376e0Yi/VtcaoPrkM7dWV9DSlumrOuXYgmUAR79vEksyTcFlJOcCTwNfNbHcSdXm/ELN7gXsBioqK6tfHBeu27eMPc9azr6qaNEGaxBulW+mcmc6nTilkbP/8VFfROdfGJRMoyoCBMe8HAJsayFMmKQPIB7YnWlZSJlGQeNTMnorJUyGpXzib6AdUHsH2uBhLNu5ievEGunXJ5PLxgxhekEOaRGnlXl55t5I/zFnPx8b24aOjCohaCp1z7sOSuUYxDxgpaaikTkQXp2fUyzMDuC5MXwHMNDML6VNCr6ihwEhgbrh+cT+w3Mx+maCs64C/HOlGOVhUtpM/zl1P/26d+eJHhjOufz7Zmel0ykhjbP88Pn/OME4akM8Lyyp4ZlF5qqvrnGvDGj2jCNccbgKeB9KBB8xsqaQfAcVmNoPoS/8RSaVEZxJTwrJLJU0HlhH1dLrRzGoknQ1cCyyWtDCs6jtm9izwU2C6pKnAeuDK5tzgY8GuA4f588KNDOzRhalnDyUz/cO/BzLT0/iXooF0zcrgzVXbGNC9MycP8p7IzrkPS6bpifAF/my9tO/HTB+kgS90M7sduL1e2hvEv36BmW0DLkimXu7DzIyn3y6jpta48tQBcYNEHUlccnw/yncd5M8LN9I3P7sVa+qcay/8zuwOpnjdDt6t2MukcX3pmZPVaP70NDHltIFkZ6bz2Jz1HDhU0wq1dM61Jx4oOpCDh2t4bslmhvbqysRhPZNeLjc7k38pGsi2fYe4a9bKFqyhc6498kDRgcxZvY0Dh2u45Pi+pB1hL6bhBTmMH9iNe19bzeote1uohs659sgDRQdxqLqW10u3MqpPDgO6d2lSGZcc35fsjHR+MGMpUac155zzQNFhzF2zjf2HajhvdNwb2ZOSm53Jtz42itdXbuX5pZubsXbOufbMA0UHcPBwDa+v3Mqwgq4M7tn1qMr6zOmDGdE7h/9+4V1qav2swjnngaJD+Os7m9hTVX1UZxN1MtLT+OZFoyit3MtfFm5shto559o7DxQdwLR5G+iVk8WwXkd3NlFn0ri+jOufx69eWsnhmtpmKdM51355oGjnVlbsYf66HZw2pHuzjdeUlia+9bFRrN++nz8VlzVLmc659ssDRTs3bd4GMtPV7MNvnDe6N6cM6sbds0r9rMK5Y5wHinasqrqGpxaUcdHYPuRkJTUaS9IkcdP5I9i48wB/80EDnTumeaBox15cVsGO/Ye56rSWeXDTuaN6M6pPDve8usrvq3DuGOaBoh17Yn4Zhd06c86IXi1SflqauOEjw1mxeQ+vvrulRdbhnGv7PFC0Uzv2HeKNlVu59KR+pLXgI00vO6k/ffOy+e2rq1tsHc65ts0DRTv1wrLNVNcal57Qv0XX0ykjjalnD+Wt1dt4Z8POFl2Xc65t8kDRTj2zqJzBPbtwfGFei69ryoSB5GZncO9rflbh3LHIA0U7tG1vFW+u2sYnTujXKs+6zs3O5NrTB/P3JeWs3bqvxdfnnGtbPFC0Q88t3UxNrXHpiS3b7BTr+rOGkJGWxu/e8LMK5441SQUKSZMklUgqlXRLnPlZkh4P8+dIGhIz79aQXiLp4pj0ByRVSlpSr6zbJG2UtDC8Pt70zeuY/raonGG9unJcv9xWW2fv3Gw+dWohfyouY+veqlZbr3Mu9RoNFJLSgbuBS4CxwNWSxtbLNhXYYWYjgDuBO8KyY4EpwDhgEvDrUB7AgyEtnjvNbHx4PdtAnmPStr1VzF69jU+c2DrNTrH+7ZxhHKqp5aE317bqep1zqZXMGcUEoNTMVpvZIWAaMLlensnAQ2H6CeACRd9ik4FpZlZlZmuA0lAeZvYasL0ZtuGY8vKKSmoNLh7Xt9XXPbwgh4uO68Mjs9ex/1B1q6/fOZcayQSKQmBDzPuykBY3j5lVA7uAnkkuG89NkhaF5qm4gxhJukFSsaTiLVuOnZvBXlxWQf/8bMb1b/neTvHc8JFh7Nx/mCfn+2CBzh0rkgkU8do36o/n0FCeZJat7zfAcGA8UA78Il4mM7vXzIrMrKigoKCRIjuG6AFFW7hwbJ9Wb3aqc+rg7pw8qBu/e2ONP9jIuWNEMoGiDBgY834AsKmhPJIygHyiZqVklv0AM6swsxozqwXuIzRVOXhj5VYOHq7lwuP6pKwOkrjhnGGs27afF5f541KdOxYkEyjmASMlDZXUieji9Ix6eWYA14XpK4CZFo0iNwOYEnpFDQVGAnMTrUxSv5i3nwSWNJT3WPPS8gpysjI4fVjPlNbjY+P6MqhHF78Bz7ljRKOBIlxzuAl4HlgOTDezpZJ+JOmykO1+oKekUuCbwC1h2aXAdGAZ8Bxwo5nVAEj6I/AWMFpSmaSpoayfSVosaRFwHvCNZtrWdq221nhpeSUfHV1Ap4zU3v6Sniamnj2UBet3Mn+d90dwrqNL6iEGoYvqs/XSvh8zfRC4soFlbwduj5N+dQP5r02mTseahWU72bq3io+NTV2zU6wriwbwyxff5b7X1nDqtT1SXR3nXAvyO7PbiZeXV5CeJs4d1TvVVQGgS6cMrj19MM8v2+zDejjXwTXvY9Fci5m1YgunDu5OfpfMFl3PY3PWJ503NzuDNImbn1zE5PEf7vV8zcSWeaCSc651+RlFO1Cx+yDLyndz3ui2cTZRJzc7k/EDu7Fg/Q72V/kNeM51VB4o2oFXS6IbCs8d3fbuFzl7RC8O1xhvrd6W6qo451qIB4p2YFZJJX3zshnTt/UGAUxWn7xsjuuby5urtlF1uCbV1XHOtQAPFG3c4Zpa3li5lfPGFKTsbuzGnDu6NwcO1zB3rXeVda4j8kDRxs1ft4M9VdV8tI30dopnYI8uDC/oyhsrt3K4pjbV1XHONTMPFG3crJJKMtPFWSNSezd2Y84d3Zs9VdXMX7cj1VVxzjUzDxRt3CsrtnDakB7kZrdst9ijNaxXVwb16MJr726h2s8qnOtQPFC0YZt2HqCkYk+b7O1UnyQuGNObnQcOU+xnFc51KB4o2rBXQrfYtnb/RENG9M5hSM8uzCqp9GsVznUgHijasFkllRR268yI3jmprkpSJHHh2D7sOVjNnDXeA8q5jsIDRRtVVV3Dm6VbOXd02+0WG8+wXjmMKMjh1ZJK9vnd2s51CB4o2qjitTvYd6im3TQ7xbpobB/2Harht/68Cuc6BA8UbdSsFZV0Sk/jzDbeLTaegT26cEJhPve+toryXQdSXR3n3FHyQNFGzSqpZOKwHnTp1D4H+J00ri+1Bj9/viTVVXHOHSUPFG3Qhu37WbVlH+e2w2anOt27duJzZw3lqQUbWVS2M9XVcc4dBQ8UbdDMFZUAnNcO7p9I5MvnDadn1078YMZSamst1dVxzjVRUoFC0iRJJZJKJd0SZ36WpMfD/DmShsTMuzWkl0i6OCb9AUmVkpbUK6uHpBclrQx/uzd989qnl1dUMqxXV4YVtI9usQ3Jy87ku584jrfX7+TROetSXR3nXBM1GigkpQN3A5cAY4GrJY2tl20qsMPMRgB3AneEZccCU4BxwCTg16E8gAdDWn23AC+b2Ujg5fD+mLGvqprZq7Zx/pj22+wU65MnF3LWiJ787LkSKnYfTHV1nHNNkMwZxQSg1MxWm9khYBowuV6eycBDYfoJ4AJFnf8nA9PMrMrM1gCloTzM7DUg3l1ZsWU9BFx+BNvT7r1RupVDNbWcf1zHCBSSuP3yEzhUU8ttM5amujrOuSZIJlAUAhti3peFtLh5zKwa2AX0THLZ+vqYWXkoqxyI+40p6QZJxZKKt2zZksRmtA8zl1eSm5XBaUN6pLoqzWZIr6587cKR/H3JZp5+uyzV1XHOHaFkAkW824LrX5lsKE8yyzaJmd1rZkVmVlRQ0L4v+taprTVmllTykdEFZKZ3rH4GX/jIcE4b0p3//PNS1m/bn+rqOOeOQDLfRmXAwJj3A4BNDeWRlAHkEzUrJbNsfRWS+oWy+gGVSdSxQ1iyaRdb9lRxQQe5PhErPU3cedV4JPja42/7UOTOtSPJBIp5wEhJQyV1Iro4PaOcrH4cAAAcrElEQVRenhnAdWH6CmCmmVlInxJ6RQ0FRgJzG1lfbFnXAX9Joo4dwsvLK5Fo1/dPJDKgexdu/+QJvL1+Jz/5+4pUV8c5l6RGA0W45nAT8DywHJhuZksl/UjSZSHb/UBPSaXANwk9lcxsKTAdWAY8B9xoZjUAkv4IvAWMllQmaWoo66fARZJWAheF98eEmSsqOWVQd3p07ZTqqrSYy07qz/VnDuH+N9Ywfd6GxhdwzqVcUuNDmNmzwLP10r4fM30QuLKBZW8Hbo+TfnUD+bcBFyRTr46kYvdBFm/cxb9fPDrVVWlx3/vEcZRW7uW7f17MkF5dmTC041y4d64j6lhXTNuxWeFu7As6SLfYRDLS07j7mlMY2L0L//bQPJZs3JXqKjnnEvBA0Ua8vCJ6SNHoPrmprkqryO+SyUOfm0BudibX3j+HFZt3p7pKzrkGeKBoAw4eruGNlVs5f0zvdvWQoqM1sEcXHvv8RLIy0vn0fXN88EDn2igPFG3A7NXbOHC4psPcjX0kBvfsymOfn0jnTun8y2/f4rklm1NdJedcPR4o2oCZKyrpnJnOGcPa30OKmsOwghye/vJZjOmbx5cenc//vLTS77Nwrg3xQJFiZsbLyys5a0QvsjPTG1+ggyrIzWLaDacz+aT+3PnSu0y5dzYbtvsd3M61BR4oUmzppt1s3HmAC4/BZqf6sjPT+dWUk/nVVeMp2byHj935GnfNXMnBwzWprppzxzQPFCn29yXlpKeJj43rm+qqtBmXn1zI379+Dh8dVcB/v/AuF/7yVaYXb+CwN0c5lxIeKFLIzHh28WZOH9ajQ9+N3RQDunfhnmtP5bF/m0hedib/8cQizv35K/zu9dXs3H8o1dVz7piS1J3ZrmWUVOxhzdZ9TD17aKqr0madOaIXf/vq2dw2YymvlGzhx39bzk//voITCvM5aWA3hhfkkJ6WfJfiayYOasHaOtcxeaBIoWcXb0aCi73ZKSFJjO6bx+i+eWzaeYB5a7ezcMNO3t6wk86Z6Yzrn8cJA/IZ1uvIgoZzLjkeKFLo74vLmTCkBwW5WamuSrvRv1tnJo8v5BMn9GNl5V4Wb9zFoo27KF63gy6d0jmuXx7j+ucxoiCHjA72TA/nUsUDRYqUVu5hZeVefnjZuFRXpV3KSE/juH55HNcvj8M1tbxbsYclG3exZOMu5q/bQVZGGqP75nJ8/3xG9cmlU4YHDeeaygNFivz1nXIkmHR8x212emzO+lZZT2Z6GuP65zOufz7VNbWs2rKXpZt2s6x8N4vKdpGZLkb1yWX8wG4cqq71oOHcEfJAkQJmxp8XbuSMYT3pk5ed6up0KBnpae9dz5hca6zdto+lm3azdOMulm7azd8Wl3PZSf351CkDOHFA/jE1tpZzTeWBIgUWrN/Jum37uem8EamuSoeWniaGF+QwvCCHT5zQj9LKvWzff4jH523g4bfWMbJ3DteeMZhPnlxIbnZmqqvrXJvlgSIFnn67jOzMNC45oV+qq3LMSE8To/vmcs3EQew+eJi/LSrnj3PX8/2/LOWOv6/gn08ZwGfPGMzIY2SYd+eOhAeKVnaoupZnFpXzsbF9ycny3Z8KedmZXD1hEFdPGMTCDTt5+K21PF68gUdmr+OMYT357BmDuWhsH+815VyQ1DeVpEnA/wDpwO/M7Kf15mcBDwOnAtuAq8xsbZh3KzAVqAG+ambPJypT0oPAR4G6x55db2YLm76Jbcuskkp27j/MJ08pTHVVjknxLrAXDe7BmL55zF+7nTlrtvOlRxeQl53BxGE9OW1IjwYDut+8544VjQYKSenA3cBFQBkwT9IMM1sWk20qsMPMRkiaAtwBXCVpLDAFGAf0B16SNCosk6jMfzezJ5ph+9qcpxdspFdOFueM6JXqqrgYOVkZfHR0b84ZVcCK8j3MXr2NF5dVMHNFJScW5nPG8J4M6N4l1dV0LiWSOaOYAJSa2WoASdOAyUBsoJgM3BamnwDuUtSdZDIwzcyqgDWSSkN5JFFmh1O5+yAvLa/g+jOHeLNGG5UmMbZ/HmP751G5+yBvrd7G2+uju8AH9ejCGcN6Mq4wj4w0P37u2JHM//ZCYEPM+7KQFjePmVUTNRv1TLBsY2XeLmmRpDtDs1aHMG3eBqprjU+fPjjVVXFJ6J2XzeTxhdxyyRg+cUI/9lVV83jxBn7+XAkvL6+gcs/BVFfRuVaRTKCI19HcksxzpOkAtwJjgNOAHsDNcSsl3SCpWFLxli1b4mVpU6pravnj3PWcM7IXQ3t1TXV13BHIzkznrBG9+MZFo7jujCH065bNyysqOeunM7npsQW8vnILtbX1PxLOdRzJND2VAQNj3g8ANjWQp0xSBpAPbG9k2bjpZlYe0qok/R74drxKmdm9wL0ARUVFbf5T+vKKSsp3HeQ2H7Kj3UpT1MV2dN9ctu6tYsf+Qzy1YCPPLCqnsFtnPnXqAK48dQADe/i1DNexJHNGMQ8YKWmopE5EF6dn1MszA7guTF8BzDQzC+lTJGVJGgqMBOYmKlNSv/BXwOXAkqPZwLbiD7PX0S8/mwvG+JPsOoJeOVn84J/GMec7F3DXNSczvHcO/zdzJef8bBZX3vMmD7251pumXIfR6BmFmVVLugl4nqgr6wNmtlTSj4BiM5sB3A88Ei5Wbyf64ifkm050kboauNHMagDilRlW+aikAqLmqYXAF5tvc1Nj1Za9vL5yK9+6aJRfxO5gsjPTufTE/lx6Yn827TzAUwvK+Os75fxgxlJ++NelTBzak0tP6sdFx/Whtw/X4topRT/827eioiIrLi5OdTUa9O9/eocZ72zijZvPb7EhxVtrAD6XnIrdB1lUtovFG3eydW/0RL7Cbp0Z0y+X4/rm0S8/+wPjTPk9GS4VJM03s6LG8vmtwS2sbMd+nn57I585fbA/d+IY0icvm4vGZnPhcb3ZvPsgKzbvYUX5bmYur+Tl5ZXkZWcwonfOe2NROdeWeaBoYb99dTUS3PCRYamuiksBSfTL70y//M6cN7o3ew4e5t2KPZRs3sOKzXtYsH4nAH+av4Ezh/eiaEh3Th3cncJunX1kW9dmeKBoQZW7D/J48QY+dcoA+nfrnOrquDYgNzuTUwf34NTBPag1Y/Oug6zaspf9h2p4akEZj8xeB0CfvCyKBvdg/MBuHF+Yz7jCPPJ8hFuXIh4oWtBvX1tNdU0tX/zo8FRXxbVBaRL9u3Wmf7fOXDNxENU1tazYvIf563a89/rb4vL38g/u2YXjC/MZ3SeX4QU5jOidw5BeXcjKSE/hVrhjgQeKFrJm6z4efmstV5w6gCF+g51LQkZ6GscX5nN8YT7XnTkEgK17q1gSHrq0uGwX72zYyd8WvR880gSDenR5L3AM6tmF/t06U9itM/3ys4/qORvN2UHCL9a3bx4oWsjtf1tOVkY63754dKqr4tqxXjlZnDu6N+eOfv/+m/2Hqlm9ZR+rtuxl1ZZ9rKrcG3XBLt3KoeraDyyfm51BYThr6ZufTZ/cbHrnZdEnL4veYbpn1yzS0/x6iGuYB4oW8PrKLby0vIKbJ42hd673nXfNq0unjPfOPGLV1Bpb9lSxcecBNsW8Nu48yKadB1i4YSfb9x36UHnpaaJXTqcocORm0Tsv+rtu235yszPIy84kNzuDrlkZHlCOUR4omtmh6lr+3zPLGNSjC587e0iqq+OOIelpYuaKyvfe52ZnMrpvJqP75r2XVl1by96D1ew5WM3ug4c/8HfPwcMsK9/N7DXb2VdV/aHyRTQce252BrkheOR1zvxAMMnNziTHA0qH44Gimf3ixRLerdjLA9cX+UVGl7TWumEyIy2Nbl060a1Lp4T5amqNvVXV7D7w4WBS93fjzgPsq6qOO0Jol6wM8rIz3gsi5bsOvHem0if8LcjNItNHKmgXPFA0o7dWbePe11Zz9YRBnD+mT6qr41yTpaeJ/M6Z5HdOfDG8LqDsiXN2Uve+fNdBFqzfQbwBdnt27UTvvGwG9ejMkJ5dGdSzC4N7dGVwuCjvZyZtgweKZrLrwGG+NX0hQ3p25T8vPS7V1XGuVSQbUK46bSDb9lZRuaeKit0HP/A3updkH7NWbOFQzfsX4zPTxcDuXRjZJ4ex/fI5rl8uKyv20q1LZrPcjOg9sZLngaIZHKqu5cZHF1C5p4onv3QmXTr5bnUuVnqaoqanvOwPXYSvU1trbN59kLXb9rF+237WbtvP2q37KKnYwwvLKqgbli47M41BPbowqEdXhvTswoDuXeiU4U1YLcm/0Y6SmXHLU4t4o3QrP7/iRE4a2C3VVXKuXUpLe/8GxDPr3aO6r6qakoo9PPTmWjbtPMC6bft5t6IiWk7RgIsjeucyqk8OA7p38SarZuaB4iiYGT99bgVPLdjINy8axZVFAxtfyDl3xLpmZXDKoO6sKN/zXtqBQzWs376Pddv2s3rrPl4pqWRWSSXZmWkML8hhVO9cRvbJafTCvWucB4omOlxTy3efXsz04jI+PXEQXzl/RKqr5Fyb1RK9ujp3Smd037z3uv8eOFRD6Za9rKzYw8rKvSzdtBuAgtwsRveJnkw4uGcXMtK8mepIeaBogp37D/G1aQt59d0tfPX8EXzjolE+0qdzKda5UzonFOZzQmE+ZkblnipWVuzh3cq9vLV6G2+UbiUrI40RvXMY0zeXC8f29htik+SB4gi9vLyCW55azI59h/jJP5/A1RO854RzbY0k+uRl0ycvm7NHFlBVXcOqyn2UVOymZPMelm7azZMLNnJCYT7njS7gvDG9OXFAN7+20QAPFElasXk3v3pxJc8t3cyYvrn8/vrTGuy94ZxrW7Iy0hnbP4+x/fMwi3pXZWemM2tFJXfNKuV/Z5aS3zmTCUN7cPqwnpw+rAfH9c0jzQMH4IEiocM1tbxasoXpxRt4YVkFOVkZfOPCUXzp3OHeHc+5dqruYVLXTBzEjeeNYMe+Q7y2cgtvlm5j9pptvLgs6k2V3zmT8QO7ceKAqDnrxAHd6JOXdUw2MycVKCRNAv4HSAd+Z2Y/rTc/C3gYOBXYBlxlZmvDvFuBqUAN8FUzez5RmZKGAtOAHsAC4Foz+/BIZi2gptZYv30/89Zu561V23j13S1s33eIHl078ZXzRzD17KHeg8K5DqZ7105MHl/I5PGFAGzceYA5q7cxe/U2FpXt4u5ZW967q7xXThYjendlWEEOw3p1ZVhBVwb37Eq//OwOff9Uo1smKR24G7gIKAPmSZphZstisk0FdpjZCElTgDuAqySNBaYA44D+wEuSRoVlGirzDuBOM5sm6Z5Q9m+aY2Prm1VSyexV2yjbeYCy7ft5t2IvBw7XANArpxPnjOzFZSf15yOjCnxMGueOEYXdOvPPpwzgn08ZAES9qZaV72Zx2U6WbNrN6i17eXZxOTv3H/7AcrnZGfTJy6ZvXja9cjq9N3Di+3+jca+6ZmXQKSONzHTRKT2NzPQ0MsJ0RvieMTNqDQwj/KPWjKrDtRw4XBO9DkWv8YO60Ssnq0X3STIhcAJQamarASRNAyYDsYFiMnBbmH4CuEvR+dlkYJqZVQFrJJWG8ohXpqTlwPnANSHPQ6HcFgkUr7+7lT/MXkf/btkM6N6FKRMGcly/PE4a0I1RfXKOyVNM59wHde6UzqmDo2eZx9qx7xCrt+5l7db9VOw5SMWug1TsrmLz7oOs277vvVF6q+MNctWMfv+vp3FezPNKWkIygaIQ2BDzvgyY2FAeM6uWtAvoGdJn11u2MEzHK7MnsNPMquPk/wBJNwA3hLd7JZUksS1xrWw8Sy9ga1PLbwVtvX7gdWwuXsfm0evT7aCOJFHH8+84qnUMTiZTMoEi3s/qeCMLx8vTUHq8dpxE+T+caHYvcG+8ec1NUrGZFbXGupqirdcPvI7NxevYPLyORyaZhvcyIHZsigHApobySMoA8oHtCZZtKH0r0C2U0dC6nHPOtaJkAsU8YKSkoZI6EV2cnlEvzwzgujB9BTDTzCykT5GUFXozjQTmNlRmWGZWKINQ5l+avnnOOeeOVqNNT+Gaw03A80RdWR8ws6WSfgQUm9kM4H7gkXCxejvRFz8h33SiC9/VwI1mVgMQr8ywypuBaZJ+DLwdyk61VmniOgptvX7gdWwuXsfm4XU8AjJr2Svyzjnn2je/OcA551xCHiicc84l5IEihqSfS1ohaZGkpyV1C+lDJB2QtDC87olZ5lRJiyWVSvpftfJdepImSSoJ67+lNdddrx4DJc2StFzSUklfC+m3SdoYs+8+HrPMraHeJZIubqV6rg3Ha6Gk4pDWQ9KLklaGv91DusIxLQ3/J05p4bqNjtlPCyXtlvT1trAPJT0gqVLSkpi0I95vkq4L+VdKui7eupqxfm3q89xAHY/42KbkM29m/gov4GNARpi+A7gjTA8BljSwzFzgDKJ7QP4OXNKK9U0HVgHDgE7AO8DYFO27fsApYToXeBcYS3Rn/bfj5B8b6psFDA3bkd4K9VwL9KqX9jPgljB9S8xx/3g4pgJOB+a08rHdTHRDVMr3IfAR4JTYz8GR7jei8dtWh7/dw3T3Fqxfm/o8N1DHIzq2qfrM+xlFDDN7wd6/K3w20X0cDZLUD8gzs7csOroPA5e3cDVjvTe8ikUDJ9YNr9LqzKzczBaE6T3Achq4qz54b3gXM1sDxA7v0tomEw0XQ/h7eUz6wxaZTXSPT79WqtMFwCozW5cgT6vtQzN7jahHY/31H8l+uxh40cy2m9kO4EVgUkvVr619nhvYhw1p6Nim5DPvgaJhnyP6RVFnqKS3Jb0q6ZyQVkh082CdBoccaSHxhldpzfXHJWkIcDIwJyTdFE7/H6hrniB1dTfgBUnzFQ0DA9DHzMohCnhA3cA5qdy/U4A/xrxvS/uwzpHut1TWty1/no/k2KZkHx5zgULSS5KWxHlNjsnzXaL7Ph4NSeXAIDM7Gfgm8JikPI5gyJEWkur1f4ikHOBJ4OtmtptoQMfhwHii/fiLuqxxFm+Nup9lZqcAlwA3SvpIgrwpqaOim1AvA/4UktraPmzMkQ7p06La+Of5SI9tSvZhxx1AvQFmdmGi+eEC26XABeH0E4tGv60K0/MlrQJGEUXz2NPZ1h5yJJnhVVqNpEyiIPGomT0FYGYVMfPvA54Jb1NSdzPbFP5WSnqa6FS+QlI/MysPzQ+VqawjURBbULfv2to+jHGk+60MOLde+istWcG2/nlu4rFt9WN+zJ1RJKLoYUo3A5eZ2f6Y9AJFz+VA0jCioUhWh9PtPZJOD70jPkvrDjmSzPAqrSJs//3AcjP7ZUx6bJv+J4G6Hh8NDe/SknXsKim3bproYucSPjgETeywMTOAz4ZePKcDu+qaWlrY1cQ0O7WlfVjPke6354GPSeoemlg+FtJaRHv4PDfh2KbmM9/SV8vb04vogtEGYGF43RPSPwUsJephsAD4p5hlisLBXQXcRbjbvRXr/HGiHkargO+mcN+dTXQKvChm/30ceARYHNJnAP1ilvluqHcJrdBbjKinyDvhtbRufxENb/8y0YjzLwM9QrqIHrC1KmxDUSvUsQvRUyLzY9JSvg+JAlc5cJjo1+7Upuw3omsFpeH1ry1cvzb1eW6gjkd8bFPxmfchPJxzziXkTU/OOecS8kDhnHMuIQ8UzjnnEvJA4ZxzLiEPFM455xLyQOESkmSSfhHz/tuSbmumsh+UdEXjOY96PVcqGtV2VkuvK6zvekl3JZm3v6QnWrpOcdY7RDGjmDqXiAcK15gq4J8l9Up1RWLV3TCVpKnAl83svBaohyQ1+XNkZpvMrMWDpXNHwwOFa0w10bN7v1F/Rv0zAkl7w99zw2Br0yW9K+mnkj4taa6isf6HxxRzoaTXQ75Lw/Lpip4lMC8MlvaFmHJnSXqM6Cal+vW5OpS/RNIdIe37RDcD3iPp5/Xy/1rSZWH6aUkPhOmpip7ZjqRvxowH9vWQNiScofya6IatgZL+NWzDq8BZMeu4Miz7jqTX4tT5vV/24UzkKUnPKXpew8/iHRBFz0x4VdHAhs/X3d0r6fNhn70j6UlJXUJ6n7B974TXmaGodEn3KXp+yAuSOsdZV0Eoa154nRXSJ0h6U9HAem9KGh3Sx4XjvDAcu5GK7oj/W1j3EklX1R2bUOYSSfeGoDtc0oKY9Y+UND/efnCtqDXu6vNX+30Be4E8ouc45APfBm4L8x4ErojNG/6eC+wkekZFFrAR+GGY9zXgVzHLP0f0g2Uk0d2q2cANwPdCniygmGhM/nOBfcDQOPXsD6wHCojGMJsJXB7mvUKcu6qJhj/4eZieC8wO078nGhL7VKKA1BXIIbqb92Si5xnUAqeH/P1i1t0J+AdwV5i3GCgM093i1GEI4fkEwPVEz2jID/thHTCwXv5M4E2gILy/CnggTPeMyfdj4Cth+nGiQRohep5BflhvNTA+pE8HPhOnfo8BZ4fpQURDtBD+T9Q96+FC4Mkw/X/Ap8N0J6Az0Z3Q98WUmR/+9ohJe4RwhzQwK6Ze/1W3Hf5K3cvPKFyjLBoF9mHgq0ew2DyLnlFRRTTUwAshfTHRl1Sd6WZWa2Yrib4kxxCNAfRZSQuJhirvSRRIAOZaND5/facBr5jZFoueQfAo0YNiEnkdOEfSWGAZYZA7ogfXvEl0JvK0me0zs73AU0DdkNTrLHrWAsDEmHUfIvpirvMP4EFJnyf6km7My2a2y8wOhjoNrjd/NHA88GLYP9/j/YHsjg9nZ4uBTwPjQvr5RKOUYmY1ZrYrpK8xs4Vhej4fPC51LgTuCuuaAeQpGi8rH/hTOBu6M2ZdbwHfkXQzMNjMDhAd8wsl3SHpnJj1nydpTqjv+TFl/A74V0XNi1cRBSuXQsfc6LGuyX5F1Mzy+5i0akLzpSQR/YKsUxUzXRvzvpYP/r+rP4ZM3VDKXzGzDwwYJ+lcojOKeI74kZVmtlHR4HSTgNeInrz2L0RnRnvCNjWkfj3ijoVjZl+UNBH4BLBQ0ngz25ag3Nj9VsOHP6MClprZGXGWfZDoLOodSdfzwZFak1nXh5qeiI7vGeEL//1KSP8HzDKzTyp6/sgrAGb2mKQ5RNv7vKR/M7OZkk4lGqPoJ5JeIHo63q+JzvQ2KOogkR2KfxL4AdFZ4fxG9pdrBX5G4ZJiZtuJmiemxiSvJWqegegpW5lNKPpKSWmKrlsMIxoA7XngS4qGLUfSKEWjvSYyB/iopF7hl+jVwKtJrP8t4OtEgeJ1oqa118O814DLJXUJ6/9kzLz66z5XUs9Q5yvrZkgabmZzzOz7wFY+OER0U5QABZLOCOVnSqr7JZ4LlIc6fDpmmZeBL4X86YqevZCsF4Cb6t5IGh8m84maFCFqMqubP4xoJNb/JToDOVFSf2C/mf0B+G+ix4HWBYWtip5h8t61rnA29TzRWVDsDxOXIh4o3JH4BRDb++k+oi/nuUTNLw392k+khOgL/e/AF8OXxO+Iml0WhKaN39LI2a9FQ0TfStS+/Q7R8xySGSL6daK29lKiM6YeIQ2LHu36INH1iznA78zs7QbWfRtR0HkplFPn5woX2IkCzztJ1KlBoWnrCuAOSe8QjYpad3H6P0M9XwRWxCz2NaJmnsVETUzjSN5XgaJwYXoZ8MWQ/jOis4N/8MEmtauAJaGpagxRk+UJwNyQ9l3gx2a2k+j/z2Lgz0TDZ8d6lPA0wiOoq2shPnqsc67NkfRtoove/5nquji/RuGca2MUPXlwONEFbtcG+BmFc865hPwahXPOuYQ8UDjnnEvIA4VzzrmEPFA455xLyAOFc865hP4/6bb1Ww9u0QQAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "sns.distplot(word_count.values)\n",
+ "plt.title('Words for each essay of the project')\n",
+ "plt.xlabel('Number of words in each eassay')\n",
+ "plt.show()\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "yxJn8uEooc6Y"
+ },
+ "outputs": [],
+ "source": [
+ "approved_word_count = project_data[project_data['project_is_approved']==1]['essay'].str.split().apply(len)\n",
+ "approved_word_count = approved_word_count.values\n",
+ "\n",
+ "rejected_word_count = project_data[project_data['project_is_approved']==0]['essay'].str.split().apply(len)\n",
+ "rejected_word_count = rejected_word_count.values"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "aWXaw61joc6a",
+ "outputId": "eb06fdff-4c51-41c6-c268-94a40a2b12f5"
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEICAYAAABF82P+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3XmYHVWd//H3JxtgCEtI7AlJSBBQWWbIQAsMuDTLKCAjzDOggAgKMxFllR31UVAz6MwIigsSjLJJ2JQhIOOAgQYRMCYQwpLxR4RAQsISEgIBCSF8f3/UuVJcqm9Xd1J9O92f1/PU03VPnar63lvV93tPnVoUEZiZmdUb0OwAzMysd3KCMDOzQk4QZmZWyAnCzMwKOUGYmVkhJwgzMyvkBGENSTpH0pXdmO99kh6Q9LKkE6uIbU1JGi8pJA1qdixVktQi6a60Lb5bcp75kvapOraukrSFpBWSBjY7lv7ACWIdIulsSbfUlT3WQdmhPRvdO5wBtEfEsIi4sMmx9HcTgSXARhFxav1ESZdK+lbPh9V1EfFURGwYEavXZDm9NQH2Nk4Q65a7gD1qv54k/Q0wGNiprmzrVLc0Zdbm/jAOeKQ7M/b1X/RNMA54NNaBq2K97XuZiPCwjgzAEOBVYOf0+pPAz4E768rm5ebZHfgjsDz93T03rR2YBPwe+AtZYtkyLe9l4Dbgh8CVqf76wJXAC8CLaXktBXHeDqwGXgNWAO8FNgYuB54HngS+CgxI9T+bYrgAWAp8q2CZA4CzgD+n9V8LDM9Nvw54Jr3Pu4Dtc9M2AL6b1rscuDuVjQcCOAp4iuxX9lcafP7rAf+V6j4L/ATYIE0bAdycPpelwO9y7+9M4On0mf4J2DuV7wLcm+ZZnD7rIWnaj4Dv1q3/JuDkDmIr3M7ApcAq4PW0Lfapm29i3fSbUvl84DRgTlrmNcD6ufkOAGan2O8B/q7B5xbAicDj6TP+z0bbPm3rr6bt9VzabzZO9WvbbFB6vTEwJX1+T6f5B+bW/W/A3PTZPwrsBFwBvEm2z68Azmj2/3ZvHZoegIcubjC4A/hSGv8hcDTZl3y+7GdpfDiwDPgMMAg4LL3eLE1vT19226fpg9MX1vlkX4YfTv9YtQTx+fQl9S5gILAz2WGLojjbgX/Nvb4cuBEYlv7J/x9wTJr2WeAN4IQUxwYFyzsZuA8Yk2K7GJiam350WvZ6wPeA2blpP0rxjE5x757q1b5sLiFLGDsCK4FtO3hP3wOmpc91WPoszkvTziNLGIPT8CFAwPuABcDmqd54YKs0vjOwW3rP49MX2clp2i7AIt76Ih1B9uOgKCF3tp0vpSDp5uZ/x3SyBDED2Dwtfy5wbJq2E9kX967p8zwq1V+vg+UH2X47HNgibft/7Wjbp205D3gPsCHwK+CK3OeXTxD/nfaFocC7U8yfT9MOIUsaH0jbYmtgXO797dPRZ+IhbbtmB+ChixsMzgFuSOMPAtsA+9aVHZXGPwPMqJv/XuCzabwd+EZu2hbpn3Voruwq3koQR9PJr8XcfO25L4GBZF+82+Wmf56sj6L2JfFUJ8ubS/rlnV6PIvvlO6ig7ibpS2Rjsl+jfwF2LKhX+7IZkyubARxaUFfAK6Qv91T2D8ATafwbZAlw67r5tib7Mt0HGNzJezy5th1z7/kf0/jxwC0dzNfZdr6U7iWII3Kv/wP4SRq/CPhmXf0/AR/pYPkB7Jt7/UVgekfbHpgOfDH3+n21bZ3bZoOAlrRfbZCrexhwRxr/X+CkDmKajxNEp4P7INY9dwEflLQpMDIiHiP70t49le3AW/0Pm5M10/OeJPslXbMgN745sCwiXqmrX3MF2T/d1ZIWSfoPSYNLxDyC7PBYflmN4igyDrhB0ouSXiT78lwNtEgaKOnbkv4s6SWyf/7aekeQHRr7c4NlP5Mbf5XsV2u9kWQtp1m5GH6TyiE7bDIPuFXS45LOAoiIeWRf/OcAz0m6WtLmAJLeK+lmSc+kuP89xVtzGXBEGj+C7PMvUmY7d0dHn8s44NTa55A+i7Epjo7kt++TdXXrt339+3mStxJC3jiy1triXBwXk7UkSDE12u7WCSeIdc+9ZL+MJ5IduyUiXiI7HDERWBQRT6S6i8j+ifK2IGt21+Q7LhcDm0oaWleftJ5VEXFuRGxHdpjmAODIEjEvIfsFmI+lURxFFgD7RcQmuWH9iHgaOBw4kOxX+sZkvzIh+9W/hKwvZKsScXb2Hv5C1rdRW//GEbEhQES8HBGnRsR7gH8CTpG0d5p2VUR8kOz9B/CdtMyLgP8DtomIjYAvp5hrrgQOlLQjsC3Z4ZQiZbZzI13tvF4ATKrbFu+KiKkN5hlbF9uiBuuvfz+1lu2zBXGsBEbk4tgoIrbPTe9ou3f1PfdLThDrmIj4CzATOIWsI7Tm7lSWP3vpFuC9kg6XNEjSp4DtyDpTi5b9ZFr2uZKGSPog2ZcdAJL2lPS36Yypl8i+9Ds93TCyUxKvBSZJGiZpXIq1K9dX/CTNPy7FMlLSgWnaMLIvihfIfuX/e27dbwI/A86XtHlqbfyDpPW6sO7aci4BLpD07hTDaEkfS+MHSNpaksg+m9XA6nQ9yF5pfa+RJZnaZzYs1V0h6f3AF+rWuZCsw/kK4Jdp2xfp0nYu8CzZ8f6yLgGOlbRrOvttqKSPSxrWYJ7TJW0qaSxwElmnd0emAl+StKWkDcm25zUR8Ua+UkQsBm4FvitpI0kDJG0l6SOpyk+B0yTtnOLcurb/dOM990tOEOumO8ma0Xfnyn6Xyv6aICLiBbJf+aeSfXmeARwQEUsaLPtwss7HpcDXyTqXa/4GuJ7sS21uiqPsl/wJZMfwH09xX0X2xV3W98k6iG+V9DJZh/WuadrlZIchniY7U+W+unlPAx4i+7JdSvYLvjv7/plkh5HuS4eEfkt2fByyvqDfkp0Vcy/w44hoJ+sM/zZZC+QZsm305Vxch5OdCHAJxV+alwF/S8eHl7q7nfOmANulwzQdtVLy65tJdnbQD8k6w+eR9SU0ciMwi+zMp1+ndXbkZ2Tv9y7gCbLEekIHdY8kO3z5aIrlerL+KSLiOrITOK4i+4z/m6yjHLKTCr6a3vNpncTebyl12JhZLyTpw2RJeHxqxaxzJAXZYbR5a2FZ7wEeIzs5wV9eFXMLwqyXSicAnAT8dF1NDhXYAZjv5NAznCDMeiFJ25JdhDaK7PqLfk/SKcBksgsmrQf4EJOZmRVyC8LMzAqt0zfGGjFiRIwfP77ZYfQZr7zyCkOHDu28olkP8765ds2aNWtJRIzsrN46nSDGjx/PzJkzmx1Gn9He3k5bW1uzwzB7B++ba5ek+ivvC/kQk5mZFXKCMDOzQk4QZmZWyAnCzMwKOUGYmVkhJwhj6tSp7LDDDuy9997ssMMOTJ3a6K7NZtZfrNOnudqamzp1Kl/5yleYMmUKq1evZuDAgRxzzDEAHHbYYU2OzsyayQmin5s0aRKHH344J5xwAnPnzmXbbbfl8MMPZ9KkSU4QZv2cE0Q/9+ijj/Lqq6++owUxf/78ZodmZk3mPoh+bsiQIRx//PHsueeeDBo0iD333JPjjz+eIUOGNDs0M2sytyD6uddff53zzjuPH/zgBzz55JOMGzeOFStW8Prrrzc7NDNrMieIfm706NEsXryYJUuyp1POnz+fgQMHMnr06CZHZmbNVukhJknzJT0kabakmalsuKTbJD2W/m6ayiXpQknzJM2RtFOVsVnm+eefZ/Xq1W8rW716Nc8//3yTIjKz3qIn+iD2jIgJEdGaXp8FTI+IbYDpvPV0qP3IHvy+DTARuKgHYuv3Vq5c2aVyM+s/mnGI6UCgLY1fBrQDZ6byy9OzZu+TtImkURGxuAkxmlkvsP7667/tx8p6663Ha6+91sSI+peqE0QAt0oK4OKImAy01L70I2KxpHenuqOBBbl5F6aytyUISRPJWhi0tLTQ3t5e7Tvox/zZWjN99KMfZdWqVQwYMIA333yTAQMGsHLlSoYMGcKtt97a7PD6haoTxB4RsSglgdsk/V+Duiooe8cDs1OSmQzQ2toafohIdfzZWjOtWrUKgDfffPNtf1etWuV9s4dU2gcREYvS3+eAG4BdgGcljQJIf59L1RcCY3OzjwEWVRmfmZl1rLIEIWmopGG1ceCjwMPANOCoVO0o4MY0Pg04Mp3NtBuw3P0PZmbNU+UhphbgBkm19VwVEb+R9EfgWknHAE8Bh6T6twD7A/OAV4HPVRibmZl1orIEERGPAzsWlL8A7F1QHsBxVcVjZmZd43sxmZlZIScIMzMr5ARhZmaFnCDMzKyQE4SZmRVygjAzs0JOEGZmVsgJwszMCjlBmJlZIScIMzMr5ARhZmaFnCDMzKyQE4SZmRVygjAzs0JOEGZmVsgJwszMClWeICQNlPSApJvT60slPSFpdhompHJJulDSPElzJO1UdWxmZtaxKh85WnMSMBfYKFd2ekRcX1dvP2CbNOwKXJT+mplZE1TagpA0Bvg48NMS1Q8ELo/MfcAmkkZVGZ+ZmXWs6hbE94AzgGF15ZMkfQ2YDpwVESuB0cCCXJ2FqWxxfkZJE4GJAC0tLbS3t1cTufmztV7L+2bPqCxBSDoAeC4iZklqy006G3gGGAJMBs4EvgGoYDHxjoKIyWk+Wltbo62trb6KrSX+bK238r7ZM6o8xLQH8AlJ84Grgb0kXRkRi9NhpJXAz4FdUv2FwNjc/GOARRXGZ2ZmDVSWICLi7IgYExHjgUOB2yPiiFq/giQBBwEPp1mmAUems5l2A5ZHxOKiZZuZWfV64iymer+QNJLskNJs4NhUfguwPzAPeBX4XBNiMzOzpEcSRES0A+1pfK8O6gRwXE/EY2ZmnfOV1GZmVsgJwszMCjlBmJlZIScIMzMr1IyzmKzJsjOMu1YvO4fAzPoTJ4h+KP9l3yhZOCmY9W8+xNTPdZQEnBzMzC0I+2sykOTEYGZ/5RaEmZkVcoIwM7NCpROEpKFVBmJmZr1LpwlC0u6SHiV7bCiSdpT048ojMzOzpirTgrgA+BjwAkBEPAh8uMqgzMys+UodYoqIBXVFqyuIxczMepEyp7kukLQ7EJKGACeSDjeZmVnfVaYFcSzZcxpGkz0WdAJ+boOZWZ/XaQsiIpYAn+7uCiQNBGYCT0fEAZK2JHtG9XDgfuAzEfG6pPWAy4Gdyfo7PhUR87u7XjMzWzMdJghJPwA6vKw2Ik4suY6TyA5JbZRefwe4ICKulvQT4BjgovR3WURsLenQVO9TJddhZmZrWaNDTDOBWQ2GTkkaA3wc+Gl6LWAv4PpU5TLgoDR+YHpNmr63yt521MzM1roOWxARcRmApEMi4rr8NEmHlFz+94AzgGHp9WbAixHxRnq9kKxvg/R3QVr3G5KWp/pL6tY9EZgI0NLSQnt7e8lQrAx/nrYu8H7aM8qcxXQ2cF2JsreRdADwXETMktRWKy6oGiWmvVUQMRmYDNDa2hptbW31VWwN+PO0dYH3057RqA9iP2B/YLSkC3OTNgLeKJ7rbfYAPiFpf2D9NN/3gE0kDUqtiDHAolR/ITAWWChpELAxsLSL78fMzNaSRn0Qi8j6IV7j7X0P08iurG4oIs6OiDERMR44FLg9Ij4N3AEcnKodBdyYxqel16Tpt4fvPW1m1jSN+iAeBB6U9Itcn8HacCZwtaRvAQ8AU1L5FOAKSfPIWg6HrsV1mplZFzU6xHRtRHwSeEBSUV/A35VdSUS0A+1p/HFgl4I6rwFlO7/NrA/qzvPSwU9ArEqjTuqT0t8DeiIQMzM/L7136bAPIiIWp9EvRsST+QH4Ys+EZ2ZmzVLmXkz/WFC239oOxMwsr6NWglsPPadRH8QXyFoK75E0JzdpGPD7qgMzM6slA0lODE3QqA/iKuB/gPOAs3LlL0eEr08wM+vjGp3muhxYDhzWc+GYmVlvUeqJcmZm1v84QZiZWaFOE4Sk75QpMzOzvsWnuZqZWaEyp7luVXCa6z1VB2ZmZs3l01zNzKxQo1ttLI+I+cD3gaW522yskrRrTwVoZmbNUaYP4iJgRe71K6nMzMz6sDIJQvkH90TEm5R7VKmZma3DyiSIxyWdKGlwGk4CHq86MDMza64yCeJYYHfgabLnRu8KTOxsJknrS5oh6UFJj0g6N5VfKukJSbPTMCGVS9KFkuZJmiNpp+6/LTMzW1OdHiqKiOfo3uM/VwJ7RcQKSYOBuyX9T5p2ekRcX1d/P2CbNOxK1s/hznAzsyYpcyX1eyVNl/Rwev13kr7a2XyRqXVuD05Do/v1Hghcnua7D9hE0qjO34KZmVWhTGfzJcDpwMUAETFH0lXAtzqbUdJAYBawNfCjiPhDugBvkqSvAdOBsyJiJTAaWJCbfWEqW1y3zImkQ1wtLS20t7eXeAtWlj9P6628b/a8MgniXRExo+75sG+UWXhErAYmSNoEuEHSDsDZwDPAEGAycCbwDaDoAbTvaHFExOQ0H62trdHW1lYmFCvJn6f1Vt43e16ZTuolkrYifVlLOpi6X/WdiYgXgXZg34hYnA4jrQR+DuySqi0ExuZmGwMs6sp6zMxs7SmTII4jO7z0fklPAycDX+hsJkkjU8sBSRsA+wD/V+tXUNYkOQh4OM0yDTgync20G7A8IrqUiMzMbO0pcxbT48A+koYCAyLi5ZLLHgVclvohBgDXRsTNkm6XNJLskNJsstNoAW4B9gfmAa8Cn+vaWzEzs7Wp0d1cj4iIKyWdUlcO2eGmpcC0iFhWNH9EzAH+vqB8rw7qB1lrxczMeoFGh5iGpr/DCoaNgJ3J7vZqZmZ9UIctiIiondZ6bkd1JH2jiqDMzKz5ylwoN0bSDZKek/SspF9KGgMQEV+rPkQzM2uGMmcx/ZzsDKPNyS5cuymVmZlZH1YmQYyMiJ9HxBtpuBQYWXFcZmbWZGUvlDtC0sA0HAG8UHVgZmbWXGUSxNHAJ8luj7EYODiVmZlZH9bwQrl0kdu/RMQneigeMzPrJRq2INLN9g7soVjMzKwXKXM3199L+iFwDfBKrTAi7q8sKjMza7oyCWL39Dd/UVwAhbfMMDOzvqHMzfr27IlAzMysdylzJfVmki6UdL+kWZK+L2mzngjOzMyap8xprlcDzwP/QnaK6/Nk/RFmZtaHlemDGB4R38y9/pakg6oKyMzMeocyLYg7JB0qaUAaPgn8uurAzMysucokiM8DVwEr03A1cIqklyW91NFMktaXNEPSg5IekXRuKt9S0h8kPSbpGklDUvl66fW8NH38mr45MzPrvk4TREQMi4gBETE4DQNS2bCI2KjBrCuBvSJiR2ACsG961vR3gAsiYhtgGXBMqn8MsCwitgYuSPXMzKxJyrQguiUyK9LLwWmoXT9xfSq/DKj1ZxyYXpOm7630fFMzM+t5ZTqpuy3dy2kWsDXwI+DPwIsR8UaqspDsGROkvwsAIuINScuBzYAldcucCEwEaGlpob29vcq30O/487Teyvtmz6s0QaR7OU2QtAlwA7BtUbX0t6i1EO8oiJgMTAZobW2Ntra2tROsAeDP03or75s9r1SCSC2Blnz9iHiq7Eoi4kVJ7cBuwCaSBqVWxBhgUaq2EBgLLJQ0CNgYWFp2HWZmtnaVuZL6BOBZ4Day01t/DdxcYr6RqeWApA2AfYC5wB1kF9wBHAXcmManpdek6bdHxDtaEFbO8OHDkdSlAehS/eHDhzf5XZpZlcq0IE4C3hcRXX2K3CjgstT6GABcGxE3S3oUuFrSt4AHgCmp/hTgCknzyFoOh3ZxfZazbNkyuppf29vbu9SM9zkEZn1bmQSxAFje1QVHxBzg7wvKHwd2KSh/DTikq+sxM7NqlEkQjwPtkn5Ndm0DABFxfmVRmZlZ05VJEE+lYUgazMysHyjzPIhzeyIQMzPrXTpMEJK+FxEnS7qJ4usRPlFpZGZm1lSNWhBXpL//1ROBmJlZ79JhgoiIWenvnT0XjpmZ9RaV3azPzMzWbU4QZtbjunqlP3TtKn9f6b92dClBpCfKNXoGhJlZp2pX+pcd7rjjji7VjwiWLVvW7Le5zitzL6arJG0kaSjwKPAnSadXH5qZmTVTmRbEdhHxEtmDfW4BtgA+U2lUZmbWdGUSxGBJg8kSxI0RsYqC6yLMzKxvKZMgLgbmA0OBuySNA16qMigzM2u+MrfauBC4MFf0pKQ9qwvJzMx6g0a32jilk3l9N1czsz6sUQtiWPr7PuADZE98A/gn4K4qgzIzs+brsA8iIs5Nd3IdAewUEadGxKnAzmTPkm5I0lhJd0iaK+kRSSel8nMkPS1pdhr2z81ztqR5kv4k6WNr/vbMzKy7yjwPYgvg9dzr14HxJeZ7Azg1Iu6XNAyYJem2NO2CiHjbTQAlbUf2mNHtgc2B30p6b0SsLrEuMzNby8okiCuAGZJuIDu99Z+ByzqbKSIWA4vT+MuS5gKjG8xyIHB1RKwEnkjPpt4FuLdEjGZmtpaVOYtpkqT/AT6Uij4XEQ90ZSWSxpM9n/oPwB7A8ZKOBGaStTKWkSWP+3KzLaQgoUiaCEwEaGlpob29vSuh9Ctd/WxWrFjR5Xn8+Vt3dWXf6c6+2dV12DspouNr3iQNAOZExA7dXoG0IXAnMCkifiWpBVhC1hr5JjAqIo6W9CPg3oi4Ms03BbglIn7Z0bJbW1tj5syZ3Q2tT5NEo21bpL29nba2tkrXYQZd33e6um92Zx39iaRZEdHaWb2GF8pFxJvAg5K26GYQg4FfAr+IiF+lZT4bEavTsi8hO4wEWYthbG72McCi7qzXzMzWXJk+iFHAI5JmAK/UCjt75Kiye/ROAeZGxPm58lGpfwKy/oyH0/g04CpJ55N1Um8DzCj7RszMbO0qkyDO7eay9yC7qd9Dkmansi8Dh0maQHaIaT7weYCIeETStWR3jH0DOM5nMJmZNU+ZTuo7U7/BB1LRjIh4rsR8dwMqmHRLg3kmAZM6W7aZmVWv0wQh6ZPAfwLtZF/4P5B0ekRcX3Fstgbi6xvBORt3aZ42yLZyV9ZhZn1WmUNMXwE+UGs1SBoJ/BZwgujFdO5LPXMW0zldi8vM1h1lbvc9oO6Q0gsl5zMzs3VYmRbEbyT9LzA1vf4UDfoRzMysbyjTSX26pH8hOytJwOSIuKHyyMzMrKkaPQ/iZOD3wAPpauYOr2g2M7O+p1ELYgzwfeD9kuYA95AljHsjYmlPBGdmfVNXz7Jrgy6dYffXddga6TBBRMRpAJKGAK3A7sDRwCWSXoyI7XomRDPra7p6ll2378V0Ttfisrcr00m9AbARsHEaFgEPVRmUmZk1X6M+iMlkD+95mew23fcA56dbc5uZWR/X6HqGLYD1gGeAp8nutvpiTwRlZmbN16gPYt90R9btyfofTgV2kLSUrKP66z0Uo5mZNUHDPojIepEelvQisDwNB5A9w8EJwsysD2vUB3EiWcthD2AV6RRX4Ge4k9rMrM9r1IIYT3ZDvi/lHvBjZmb9RKM+iFN6MhAzM+tdKrsrq6Sxku6QNFfSI5JOSuXDJd0m6bH0d9NULkkXSponaY6knaqKzczMOlfmQrnuegM4NSLulzQMmCXpNuCzwPSI+Laks4CzgDOB/cieQ70NsCtwUfpr3ZSdhFadTTfdtNLlm1lzVZYgUr/F4jT+sqS5wGjgQNKtVYDLyO6wcmYqvzydOXWfpE0kjXL/R/d09WFBkG5N0I35zKxvqrIF8VeSxgN/T3ZFdkvtSz8iFkt6d6o2GliQm21hKntbgpA0EZgI0NLSQnt7e5Wh9zv+PK2ndGVfW7FiRbf2Te/Pa0ZV/2KUtCFwJzApIn6VbvS3SW76sojYVNKvgfMi4u5UPh04IyJmdbTs1tbWmDlzZqXx9yduQVhPqfrwJ2SHQJcu9Y2ni0iaFRGtndWrtAUhaTDZcyR+ERG/SsXP1g4dSRoF1B5nuhAYm5t9DNmNAc2sj+nqDxH/eGmOKs9iEjAFmBsR5+cmTQOOSuNHATfmyo9MZzPtBix3/4OZWfNU2YLYA/gM8JCk2ansy8C3gWslHQM8BRySpt0C7A/MA14FPldhbGZm1okqz2K6m+wZ1kX2LqgfwHFVxWNmZl1T2SEmMzNbtzlBmJlZIScIMzMr5ARhZmaFnCDMzKyQE4SZmRVygjAzs0JOEGZmVsgJwszMCjlBmJlZIScIMzMr5ARhZmaFnCDMzKyQE4SZmRVygjAzs0JOEGZmVqjKR47+TNJzkh7OlZ0j6WlJs9Owf27a2ZLmSfqTpI9VFZeZmZVTZQviUmDfgvILImJCGm4BkLQdcCiwfZrnx5IGVhibmZl1orIEERF3AUtLVj8QuDoiVkbEE2TPpd6lqtjMzKxzlT2TuoHjJR0JzAROjYhlwGjgvlydhansHSRNBCYCtLS00N7eXm20/Yw/T+utvG/2PEVEdQuXxgM3R8QO6XULsAQI4JvAqIg4WtKPgHsj4spUbwpwS0T8stHyW1tbY+bMmZXF399Iosr9way7vG+uXZJmRURrZ/V69CymiHg2IlZHxJvAJbx1GGkhMDZXdQywqCdjMzOzt+vRBCFpVO7lPwO1M5ymAYdKWk/SlsA2wIyejM3MzN6usj4ISVOBNmCEpIXA14E2SRPIDjHNBz4PEBGPSLoWeBR4AzguIlZXFZuZmXWu0j6IqrkPYu3ycV7rrbxvrl29sg/CzMzWHc04zdXMrJCkbk1z66IabkGYWa8REYXDHXfc0eE0J4fqOEGYmVkhJwgzMyvkBGFmZoWcIMzMrJAThJmZFXKCMDOzQk4QZmZWyBfK9UPduRjJ55qb9T9uQfRD3bkYycz6HycIMzMr5ARhZmaFnCDMzKyQE4SZmRWqLEFI+pmk5yQ9nCsbLuk2SY+lv5umckm6UNI8SXMk7VRVXGZmVk6VLYhLgX3rys4CpkfENsD09BpgP7LnUG8DTAQuqjAuMzMrobIEERF3AUvrig8ELkvjlwEH5covj8x9wCaSRlUVm5mZda6nL5RriYjFABGxWNK7U/loYEGu3sJUtrh+AZImkrUyaGlpob29vdKA+5MVK1b487Reyftmc/SWK6mLLt8tvDorIiYDkwEkPb/nnns+WWVm79j9AAAFz0lEQVRg/cwIYEmzgzAr4H1z7RpXplJPJ4hnJY1KrYdRwHOpfCEwNldvDLCos4VFxMgKYuy3JM2MiNZmx2FWz/tmc/T0aa7TgKPS+FHAjbnyI9PZTLsBy2uHoszMrDkqa0FImgq0ASMkLQS+DnwbuFbSMcBTwCGp+i3A/sA84FXgc1XFZWZm5cg3YrMaSRNTH49Zr+J9szmcIMzMrJBvtWFmZoWcIMzMrJATRMUk/bOkkPT+ZsdShqQVHZSvljRb0sOSrpP0ri4u9xZJm3QjnjZJu3d1PiunbrveVGYbSbqnm+s6SNJ23ZjP+2STOEFU7zDgbuDQtbVASc24wPEvETEhInYAXgeOrYtJkjrcnyJi/4h4sRvrbQP6xT9jk+S361LguM5miIjubo+DgC4niAa8T1bMCaJCkjYE9gCOIZcg0i+QuyTdIOlRST+p7ciSVkj6rqT7JU2XNDKVt0v6d0l3AidJGpemz0l/t5C0saT5uWW9S9ICSYMlbSXpN5JmSfpdrUUjaUtJ90r6o6RvlnxrvwO2ljRe0lxJPwbuB8ZKOkzSQ+lX3Xdy73m+pBFp/AhJM9Kvv4slDUzl+6b3/WB6T+PJ/um/lOp+SNIhadkPSrqr+1vHCtxLdosbACSdnvaLOZLOzZWvKFHnyFT2oKQr0i/uTwD/mbblVt4n1wEdPYPYw5oPwBHAlDR+D7BTGm8DXgPeAwwEbgMOTtMC+HQa/xrwwzTeDvw4t+ybgKPS+NHAf6fxG4E90/ingJ+m8enANml8V+D2ND4NODKNHwes6OC9rEh/B6V1fAEYD7wJ7JambU52fcvIVO924KA0bT7Z7RK2TbEPTuU/Bo5M8ywAtkzlw9Pfc4DTcnE8BIxO45s0exuv60Nuuw4ErgP2Ta8/SnZLG5H9kLwZ+HDdPIV1gO2BPwEj6rblpbX93PvkujG4BVGtw4Cr0/jV6XXNjIh4PCJWA1OBD6byN4Fr0viVuXJy5QD/AFyVxq/I1buGLDFA1mq5JrVkdgeukzQbuBio3S13j7T+2nI6skGadybZP9yUVP5kZHfgBfgA0B4Rz0fEG8AvyL4w8vYGdgb+mJa3N1mi3A24KyKeAIiI+jsB1/weuFTSv5F9qdmaqW3XF4DhZD9WIPvy/yjwANkv8feT3Y4/r6M6ewHXR8QSKN6W3ifXDb3lZn19jqTNyP5RdpAUZDtOSDojVam/AKWjC1Ly5a80WGWt3jTgPEnDyXb624GhwIsRMaHEOjryl/r5JdXHVHTTxXoCLouIs+uW9YkycUTEsZJ2BT4OzJY0ISJeKLFeK/aXiJggaWOyFsBxwIVk2+m8iLi4wbyFdSSdSOfbcgDeJ3s9tyCqczDZMy7GRcT4iBgLPMFbv/R3ScdaB5D94r87lQ9I8wIcniuvdw9v9Wt8ulYvIlYAM4DvAzdHxOqIeAl4QtIh8NfOux3TvL+vW86a+APwEUkj0jHcw4A76+pMBw5WutW7sqcMjiM7/v0RSVvWylP9l4FhtZklbRURf4iIr5Hd3XMstsYiYjlwInCapMHA/wJHp1/6SBqtt27PX9NRnenAJ9OPpMJt6X1yHdHsY1x9dSDrM9i3ruxEsqfltZH9sr8GeBT4CTAg1VkBfBOYleqMzC2vNbes8Wn6HLIdfIvctIPJfvl8JFe2JfAb4MG0zq/lyu8F/kj2hL+Gx3vrysYDD9eVHU52TPZh4D9y5fOBzdL4p4DZKfZZvHW8eD+ywxUPArelsvemerOBDwG/yi3/+6S7AXjo9n66ou71TcBn0vhJ6bN+KO0jW6Xyl3P1O6pzVNpGDwKXprI90r73ALCV98neP/hWG00gqY2sk+uAgmkrImLDno+qOumX23PA30TEqmbHY92XWgX3R0Sp5wn0Vt4ny/EhJusJj5CdTeV/xHWYpM3Jftn/V7NjWQu8T5bgFoSZmRVyC8LMzAo5QZiZWSEnCDMzK+QEYWZmhZwgzMys0P8H2i5BCP5fMSMAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# https://glowingpython.blogspot.com/2012/09/boxplot-with-matplotlib.html\n",
+ "plt.boxplot([approved_word_count, rejected_word_count])\n",
+ "plt.title('Words for each essay of the project')\n",
+ "plt.xticks([1,2],('Approved Projects','Rejected Projects'))\n",
+ "plt.ylabel('Words in project title')\n",
+ "plt.grid()\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "gC2O5Xhqoc6d",
+ "outputId": "6a594b11-9ef3-4499-de8b-0936e6bba97a"
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmMAAADgCAYAAABPc2EiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd4VMX6wPHvm0JCDYSEXhJ6CUkIIUgLYBRQKSpw6UX0IiIKigren1fRa+8gIBZABQQEFLEhAgakExTpoYfeA4TQUub3xzmJS0gDkmwC7+d59snuOXPmvGd3SV5m5syIMQallFJKKeUcLs4OQCmllFLqdqbJmFJKKaWUE2kyppRSSinlRJqMKaWUUko5kSZjSimllFJOpMmYUkoppZQTaTKm1C1CREaLyLQbOK62iPwlInEi8mRuxHazRMRPRIyIuDk7ltwkImVFZJn9WbyXzWP2ichduR3b9RKRKiJyXkRcnR2LUvmdJmNK5QIReV5Efk6zbWcG23rkbXTXeA6INMYUN8aMdXIst7tBwEmghDFmRNqdIvKFiLya92FdP2PMfmNMMWNM0s3Uk1+TTaVykiZjSuWOZUDzlFYBESkHuAMhabbVsMtmm1hy8t9uVWDLjRx4q7dUOUFVYKspALNx62evVM7RZEyp3LEOK/kKtl+HA78D0Wm27TbGHAYQkWYisk5Ezto/m6VUJiKRIvKaiKwALgDVRMRfRJbaXVq/AT4O5T1FZJqInBKRM3Z9ZdMGKSJLgDbAOLtLqZaIeInIVyJyQkRiROSFlORPRAaIyAoR+UBETgOj06nTRURGichu+/zfiIi3w/7ZInLUvs5lIlLfYV9hEXnPPu9ZEVkuIoUdqu8tIvtF5KSI/F9Gb76IeIjIu3bZYyIyMaUeEfERkR/t9+W0iPzhcH0jReSQ/Z5Gi0iEvT1MRFbZxxwRkXEiUsjeNz5tl6KI/CAiwzOILd3PWUS+APoDz9mfxV1pjhsE9HbY/4PD7mAR2WjXOUtEPB2O6yAiG+zYV4pIYCbvmxGRJ0Vkj/0ev5PZZ29/1i/Yn9dx+3vjZZe/qmvZ/l5Nst+/QyLyqjh0YYrIv0Vkm/3ebxWREBGZClQBfrCv+bmMYleqQDPG6EMf+siFB1by9ZT9fBwwEHgtzbbJ9nNvIBboC7gBPe3Xpe39kcB+oL693x1YBbwPeGAldnHANLv8o8APQBHAFWiE1fWVXpyRwCMOr78CvgeKA37ADuBhe98AIBF4wo6jcDr1DQdWA5Xs2D4BZjjsH2jX7QF8CGxw2DfejqeiHXczu5wfYIDPgMJAEHAZqJvBNX0IzLff1+L2e/GGve8NYKL9HroDLQEBagMHgAp2OT+guv28EXCHfc1+wDZguL0vDDgMuNivfbAS5rLpxJXV5/wF8Gom36lr9gP7gLVABbv+bcBge18IcBxoYr+f/e3yHhnUb7C+t95YSdCOlO9Gep+9/VnuAqoBxYBvgakO758B3OzX8+zvQlGgjB3zo/a+bsAhoLH9WdQAqjpc313O/vesD33k5sPpAehDH7fqA6vV6Dv7+d9ATaB9mm397ed9gbVpjl8FDLCfRwKvOOyrYv9hLOqw7Wv+ScYGAiuBwGzEGenwB9cVK8mp57D/UawxZSl/kPdnUd82IMLhdXkgIeWPcpqyJe0/2F5YLfUXgaB0yqX8Ya/ksG0t0COdsgLEYydS9ramwF77+StYyWaNNMfVwEpc7gLcs7jG4Smfo8M1320/Hwr8nMFxWX3OX3BjyVgfh9dvAxPt5x8D/0tTPhpolUH9Bmjv8HoIsDijzx5YDAxxeF075bN2+MzcgLL296qwQ9mewO/281+BYRnEtA9NxvRxiz+0m1Kp3LMMaCEipQBfY8xOrASpmb0tgH/Gi1UAYtIcH4PVQpTigMPzCkCsMSY+TfkUU7H+wM0UkcMi8raIuGcjZh+gUJq6MosjPVWB7+xusTNYiUoSUFZEXEXkTbsL8xzWH9qU8/oAnsDuTOo+6vD8AlZrTFq+WC2C6x1iWGBvB3gHqzVnod0dNwrAGLMLK8kaDRwXkZkiUgFArO7bH+3u1XPA6zh0CwNfAn3s532w3v/0ZOdzvhEZvS9VgREp74P9XlS248iI4+cbk6Zs2s8+7fXE8E/y5agqVivkEYc4PsFqIcOOKbPPXalbmiZjSuWeVVgtPoOAFQDGmHNYXVqDgMPGmL122cNYf7AcVcHquknhOKj7CFBKRIqmKY99ngRjzMvGmHpYXX0dgH7ZiPkkVsuGYyyZxZGeA8A9xpiSDg9PY8whoBfQGav1yQur9QSs1qyTwCWgejbizOoaLgL1Hc7vZYwpBmCMiTPGjDDGVAM6Ak+njA0zxnxtjGmBdf0GeMuu82NgO1DTGFMC+I8dc4ppQGcRCQLqYnXJpSc7n3Nmrndg/wHgtTSfRRFjzIxMjqmcJrbDmZw/7fWktNgeSyeOy4CPQxwljDH1HfZn9Lnn+5sZlLpZmowplUuMMReBKOBp4A+HXcvtbY53Uf4M1BKRXiLiJiLdgXrAjxnUHWPX/bKIFBKRFliJBQAi0kZEGtgDpM9hJVhZTjFgrGkIvgFeE5HiIlLVjvV65i+baB9f1Y7FV0Q62/uKY/1RPoXVevW6w7mTgcnA+yJSwW5FayoiHtdx7pR6PgM+EJEydgwVRaSd/byDiNQQEcF6b5KAJLHmW7vTPt8lrIQu5T0rbpc9LyJ1gMfSnPMg1k0bU4G59mefnuv6nNNxDGt8VnZ9BgwWkSZiKSoi94lI8UyOeVZESolIZWAYMCuTsjOAp8S6maQY1uc5yxiT6FjIGHMEWAi8JyIl7IH/1UWklV3kc+AZEWlkx1kj5ftzA9esVIGjyZhSuWspVlfMcodtf9jbUpMxY8wprNarEViJynNAB2PMyUzq7oU1MPs08BLWwPsU5YA5WAnENjuO7CZUT2CNudpjx/01VpKUXWOwBs8vFJE4rMH8Tex9X2F1ZR0Cttr7HD0DbMJKbE5jtUzdyO+pkVhdkavtbsVFWOOZwBq7twg4j9V6OcEYE4l1o8CbWC1rR7E+o/84xNUL6yaJz0g/QfkSaEDGXZQ3+jk7mgTUs7v6Mmp9czxfFPBvrJtFYrHekwFZHPY9sB7YAPxknzMjk7GudxmwFyuJfSKDsv2wusC32rHMwRpPiDFmNtbNLV9jvcfzsG4iAOuGixfsa34mi9iVKpDEGG0BVkqpmyUi4VgJr5/dOlfgiIjB6ordlQN1VQN2Yt24oX9olMqEtowppdRNsm+OGAZ8XlATsVwQAOzTREyprGkyppRSN0FE6gJnsLrcPnRyOPmCiDwNfAqMcnYsShUE2k2plFJKKeVE2jKmlFJKKeVEmowppZRSSjmRm7MDuB4+Pj7Gz8/P2WEopZRSSmVp/fr1J40xvlmVK1DJmJ+fH1FRUc4OQymllFIqSyKSdvmzdGk3pVJKKaWUE2kyppRSSinlRJqMKaWUUko5UYEaM6aUUkrllISEBA4ePMilS5ecHYoq4Dw9PalUqRLu7u43dLwmY+rWEX8KrsRBKT9nR6KUKgAOHjxI8eLF8fPzQ0ScHY4qoIwxnDp1ioMHD+Lv739DdWgypgq2swdh24+w/UeIWQHGQNv/QdOhoL9clVKZuHTpkiZi6qaJCKVLl+bEiRM3XIcmY6rg2rcCvuoEyYngWxdajoAT0bDwBTi5E+57D1xvrMlYKXV70ERM5YSb/R7pAH5VMBkDi16CYmVh6Hp4fDXc+QJ0+9JKyv78EqZ1gYtnnB2pUkpl6rvvvkNE2L59u7NDyZZixYqlu93V1ZXg4GACAgLo1q0bFy5cuK567733Xs6cuf7f2ZGRkaxcufK6j8tPNBlTBdPOhXBwHYQ/Cz41/tnu4gIRL0LnCRCz0krIkhKdF6dSSmVhxowZtGjRgpkzZ+ZYnYmJef97r3DhwmzYsIHNmzdTqFAhJk6ceNV+YwzJyckZHv/zzz9TsmTJ6z6vJmNKOUNyMix51Rqo37BP+mUa9oYHJsKhKFg9Pk/DU0qp7Dp//jwrVqxg0qRJVyVjkZGRhIeH88ADD1CvXj0GDx6cmsgUK1aMESNGEBISQkREROpYpdatW/Of//yHVq1aMWbMGGJiYoiIiCAwMJCIiAj279/P2bNn8fPzS63rwoULVK5cmYSEBHbv3k379u1p1KgRLVu2TG2p27t3L02bNqVx48b897//zdZ1tWzZkl27drFv3z7q1q3LkCFDCAkJ4cCBA8yYMYMGDRoQEBDAyJEjU4/x8/Pj5MmTAEybNo2wsDCCg4N59NFHSUpKAmDBggWEhIQQFBREREQE+/btY+LEiXzwwQcEBwfzxx9/MHv2bAICAggKCiI8PPwmP6G8oWPGVMGzbT4c3QgPfJL5mLCALrDlO/j9dah939UtaEop5eDlH7aw9fC5HK2zXoUSvNSxfqZl5s2bR/v27alVqxbe3t78+eefhISEALB27Vq2bt1K1apVad++Pd9++y1du3YlPj6ekJAQ3nvvPV555RVefvllxo0bB8CZM2dYunQpAB07dqRfv37079+fyZMn8+STTzJv3jyCgoJYunQpbdq04YcffqBdu3a4u7szaNAgJk6cSM2aNVmzZg1DhgxhyZIlDBs2jMcee4x+/foxfnzW/7lNTEzkl19+oX379gBER0czZcoUJkyYwOHDhxk5ciTr16+nVKlStG3blnnz5nH//fenHr9t2zZmzZrFihUrcHd3Z8iQIUyfPp177rmHf//73yxbtgx/f39Onz6Nt7c3gwcPplixYjzzzDMANGjQgF9//ZWKFSveULenM2jLmCpYkpOs5MqnFjTolnlZEWsQv5sHzH/CalFTSql8ZMaMGfTo0QOAHj16MGPGjNR9YWFhVKtWDVdXV3r27Mny5csBcHFxoXv37gD06dMndTuQuh1g1apV9OrVC4C+ffumluvevTuzZs0CYObMmXTv3p3z58+zcuVKunXrltoadeTIEQBWrFhBz549U+vJyMWLFwkODiY0NJQqVarw8MMPA1C1alXuuOMOANatW0fr1q3x9fXFzc2N3r17s2zZsqvqWbx4MevXr6dx48YEBwezePFi9uzZw+rVqwkPD0+dPsLb2zvdOJo3b86AAQP47LPPUlvU8jttGVMFy6Y5cDIaun0BLq5Zly9eDtq9Dt8/DlGTIOzfuR6iUqrgyaoFKzecOnWKJUuWsHnzZkSEpKQkRIS3334buPYOvYzu2HPcXrRo0QzPl1KuU6dOPP/885w+fZr169dz5513Eh8fT8mSJdmwYUOW58hIypixtBxjMsZkWY8xhv79+/PGG29ctX3+/PnZimPixImsWbOGn376ieDgYDZs2EDp0qWzPM6ZtGVMFRzJyRD5BpRrAHU7Z/+44N5Q/U5YNBrO7M+18JRS6nrMmTOHfv36ERMTw759+zhw4AD+/v6pLVhr165l7969JCcnM2vWLFq0aAFAcnIyc+bMAeDrr79O3Z5Ws2bNUsehTZ8+PbVcsWLFCAsLY9iwYXTo0AFXV1dKlCiBv78/s2fPBqyE6O+//waslibHem5GkyZNWLp0KSdPniQpKYkZM2bQqlWrq8pEREQwZ84cjh8/DsDp06eJiYmhadOmLF26lL1796ZuByhevDhxcXGpx+/evZsmTZrwyiuv4OPjw4EDB24q5rygyZgqOI5tgti9cMcQ667J7BKBjmOs6TB+/U/uxaeUUtdhxowZPPDAA1dt69KlC19//TUATZs2ZdSoUQQEBODv759atmjRomzZsoVGjRqxZMkSXnzxxXTrHzt2LFOmTCEwMJCpU6cyZsyY1H3du3dn2rRpV3VrTp8+nUmTJhEUFET9+vX5/vvvARgzZgzjx4+ncePGnD179qauuXz58rzxxhu0adOGoKAgQkJC6Nz5n/9ciwj16tXj1VdfpW3btgQGBnL33Xdz5MgRfH19+fTTT3nwwQcJCgpKjb1jx4589913qQP4n3322dQbBMLDwwkKCrqpmPOCZKfJML8IDQ01UVFRzg5DOcuKMfDbi/D0dihR/vqPj3wLIl+Hh3+DymE5H59SqkDZtm0bdevWdXYY6YqMjOTdd9/lxx9/vGZfsWLFOH/+vBOiyj1JSUmUKVOGo0eP3vD6js6W3vdJRNYbY0KzOlZbxlTBsScSfOvcWCIG0PRxKFrGSugK0H9ClFLqVle/fn0eeeSRApuI3SwdwK8KhsTLELMKGvW/8To8ikHrUfDT0xD9C9S5N+fiU0qpHNS6dWtat26d7r5brVUMKDCrD+QWbRlTBcOBtZB4EfxbZV02MyH9oHQNWPyyzsyvlFIqX8hWMiYi7UUkWkR2iciodPZ7iMgse/8aEfGzt5cWkd9F5LyIjEtzTCMR2WQfM1Z0tVaVmT2RIK7g1/zm6nF1h4iX4MR2+PvrHAlNKaWUuhlZJmMi4gqMB+4B6gE9RaRemmIPA7HGmBrAB8Bb9vZLwH+BZ9Kp+mNgEFDTfrS/kQtQt4k9kVCxEXh63XxddTtCpTBr8tgr17eQrVJKKZXTstMyFgbsMsbsMcZcAWYCaSd56gx8aT+fA0SIiBhj4o0xy7GSslQiUh4oYYxZZazbOb8C7kep9Fw6C4f/hGqtc6Y+Ebj7FYg7Ams+zpk6lVJKqRuUnWSsIuA4Y9pBe1u6ZYwxicBZILPpbiva9WRWp1KWfcvBJEO1mxwv5qhqU6h9Lyz/EOJP5Vy9Sil1HUSEESNGpL5+9913GT16dKbHzJs3j61bt2ZaJigoKHUJo/xu9OjRvPvuu+lur1ixIsHBwQQEBDB//vzrqnf+/Pm8+eabNxTT66+/fkPH3ajsJGPpjeVKOy9AdsrcUHkRGSQiUSISlbIyvbrN7IkE9yJQqXHO1hvxElw5D39c+0tAKaXygoeHB99++y0nT57M9jFZJWPbtm0jOTmZZcuWER8fnxNhOm2Nx6eeeooNGzYwe/ZsBg4cSHKaNYYTEzO+EatTp06MGnXNMPdsyY/J2EGgssPrSsDhjMqIiBvgBZzOos5KWdQJgDHmU2NMqDEm1NfXNxvhqlvOnqVQtZm14HdOKlMHGvaBtZ9B7L6crVsppbLBzc2NQYMG8cEHH1yzLyYmhoiICAIDA4mIiGD//v2sXLmS+fPn8+yzzxIcHMzu3buvOe7rr7+mb9++tG3b9qrWpNatWzN8+HCaNWtGQEAAa9euBawWqL59+3LnnXdSs2ZNPvvsM8CaeLZNmzb06tWLBg0aAPD+++8TEBBAQEAAH374IQAjR45kwoQJqecZPXo07733HgDvvPMOjRs3JjAwkJdeeim1zGuvvUbt2rW56667iI6OzvJ9qlu3Lm5ubpw8eZIBAwbw9NNP06ZNG0aOHMnp06e5//77CQwM5I477mDjxo0AfPHFFwwdOhSAEydO0KVLFxo3bkzjxo1ZsWIFYE0T8tBDD9GgQQMCAwOZO3cuo0aNSl30vHfv3sTHx3PfffcRFBREQEBA6iLrOSk784ytA2qKiD9wCOgB9EpTZj7QH1gFdAWWmEym9jfGHBGROBG5A1gD9AM+uoH41a3u3GFrYfCQvrlTf+v/wMbZsORV6PJ57pxDKZX//TIKjm7K2TrLNYB7su4me/zxxwkMDOS55567avvQoUPp168f/fv3Z/LkyTz55JPMmzePTp060aFDB7p27ZpufbNmzeK3334jOjqacePGXdVdGR8fz8qVK1m2bBkDBw5k8+bNAGzcuJHVq1cTHx9Pw4YNue+++wBrfczNmzfj7+/P+vXrmTJlCmvWrMEYQ5MmTWjVqhU9evRg+PDhDBkyBIBvvvmGBQsWsHDhQnbu3MnatWsxxtCpUyeWLVtG0aJFmTlzJn/99ReJiYmEhITQqFGjTN+jNWvW4OLiQkqjzI4dO1i0aBGurq488cQTNGzYkHnz5rFkyRL69et3zYLlw4YN46mnnqJFixbs37+fdu3asW3bNv73v//h5eXFpk3WZx8bG0uXLl0YN25cah1z586lQoUK/PTTTwA3vSRUerJMxowxiSIyFPgVcAUmG2O2iMgrQJQxZj4wCZgqIruwWsR6pBwvIvuAEkAhEbkfaGuM2Qo8BnwBFAZ+sR9KXW3PUuvnzc4vlpES5aHpEPjjPWg6FCoE5855lFIqAyVKlKBfv36MHTuWwoULp25ftWoV3377LQB9+/a9JllLz7p16/D19aVq1apUqlSJgQMHEhsbS6lSpQBSE7Pw8HDOnTvHmTNnAOjcuTOFCxemcOHCtGnThrVr11KyZEnCwsLw9/cHYPny5TzwwAMULVoUgAcffJA//viDJ598kuPHj3P48GFOnDhBqVKlqFKlCmPHjmXhwoU0bNgQsFqhdu7cSVxcHA888ABFihQBrO7EjHzwwQdMmzaN4sWLM2vWLFJmwerWrRuurq6pcc2dOxeAO++8k1OnTl2TMC1atOiqrt1z584RFxfHokWLUhdBB1LfJ0cNGjTgmWeeYeTIkXTo0IGWLVtm+Tlcr2zNwG+M+Rn4Oc22Fx2eXwK6ZXCsXwbbo4CA7AaqblN7IqFIaSib9VclOdkgAtc9ZV3zYRA1BRa9BP2+v7E4lVIFWzZasHLT8OHDCQkJ4aGHHsqwTHZ+t82YMYPt27fj5+cHWEnH3LlzeeSRR9KtI+V1RttTEi+AzNay7tq1K3PmzOHo0aP06NEjtfzzzz/Po48+elXZDz/8MNu/p5966imeeeba2bGyiitt/cnJyaxateqqZDfl2KxiqVWrFuvXr+fnn3/m+eefp23bthkuzn6jdAZ+lb8dWGONF3PJ+Kt6JTGZCZG7qP/Sr9w7djnLdlznjR6eXtDqOSvx27X45uJVSqkb4O3tzb/+9S8mTZqUuq1Zs2aprTbTp0+nRYsWABQvXpy4uLhr6khOTmb27Nls3LiRffv2sW/fPr7//ntmzJiRWiZlvNPy5cvx8vLCy8uau/H777/n0qVLnDp1isjISBo3vvaGqfDwcObNm8eFCxeIj4/nu+++S20l6tGjBzNnzmTOnDmp3aft2rVj8uTJqcs3HTp0iOPHjxMeHs53333HxYsXiYuL44cffrip9y48PJzp06cD1jg3Hx8fSpQocVWZtm3bMm7cP3PPp3RBpt0eGxsLgLu7OwkJCQAcPnyYIkWK0KdPH5555hn+/PPPm4o3PZqMqfzrchzE7oVyQRkWWbHrJO3HLOPtBdHcUc2b85cT6Dd5LX0nrWHL4evo1w8dCCWrWq1jae7WUUqpvDBixIir7qocO3YsU6ZMITAwkKlTpzJmzBjASnzeeecdGjZseNUA/mXLllGxYkUqVvxnpqjw8HC2bt3KkSNHAKsbrlmzZgwePPiqxC8sLIz77ruPO+64g//+979UqFDhmvhCQkIYMGAAYWFhNGnShEceeSS1C7J+/frExcVRsWJFypcvD1iJTq9evWjatCkNGjSga9euxMXFERISQvfu3QkODqZLly433e03evRooqKiCAwMZNSoUXz55Zep+1JavcaOHZtapl69ekycOBGAF154gdjYWAICAggKCuL3338HYNCgQQQGBtK7d282bdpEWFgYwcHBvPbaa7zwwgs3FW96JLNmx/wmNDTUREVFOTsMlVf2r4bJ7aDnTKh9z1W7jDGMmruJWVEHqFq6CKM71adN7TJcTkxi+ur9jF2yk7MXE3i2XW2GtK6RvfNtmgNzH4YHPoWg7rlwQUqp/GTbtm3UrVvX2WHkmdatW/Puu+8SGhp61fbRo0dTrFixdLsDC7L33nuPc+fO8fLLL+fJ+dL7PonIemNMaAaHpNKWMZV/pdzZlM54sT/3xzIr6gD9m1bl1+HhtKldBgAPN1cGtvBn6bNt6BBYgbcXRDNz7f7sna/+g1A+yLqzMuFS1uWVUkrlSxMnTuSLL76gT58+zg4lW7I1gF8ppzi22RrP5VXpml1TVuyjuKcbI++pg6e76zX7vQq78/6/gjh3MYH/fLeJ0sU8uLte2czP5+ICd70MU++HdZ9Ds6E5dSVKKeV0kZGR6W7Pasb/gmjw4MEMHjzY2WFkm7aMqfzr6GYo28BaS9Jx89lL/LL5KN1DK1OkUMb/n3B3dWFC7xAaVPRi6Nd/sj4ms3mIbdXbQPU7rVn5L5652StQSimlsqTJmMqfkpPg+FZr0sQ0pq+JIdkY+jX1y7Kaoh5uTB7QmAolCzPwiyh2Hb/2DqRr3PWylYgtv3ZGbKXUraUgjZtW+dfNfo80GVP50+m9kHAByl09XuxSQhJfr9lPRJ2yVCldJFtVlS7mwVcDw3B3deGRL6M4eyEh8wPKB0Jgd1j9sRWHUuqW5OnpyalTpzQhUzfFGMOpU6fw9PS84Tp0zJjKn46lP3j/x41HOBV/hYea+11XdZW9izCxTwg9P1vNsFl/Mal/Y1xdMpno766XYNsPsPAF6DH9OoNXShUElSpV4uDBg5w4cZ1zEyqVhqenJ5UqXTu+Obs0GVP509HNIK7gWyd1kzGGL1fuo2aZYjSrXvq6qwz18+aljvV5Yd5m3v8tmmfb1cm4cIkKEP4MLH7Zmgi2RsSNXIVSKh9zd3dPXepHKWfSbkqVPx3bDD61wP2fZt8/98ey6dBZ+jfzu/4lj2y9m1ShR+PKjP99N79sOpJ54aaPQyl/WDAKkrLo2lRKKaVukCZjKn86uuma8WJfrIyhuKcbD4ZUzOCgrIkIL3euT8MqJRkx+2+ij2YyoN/NA9q/CSd3wJpPbvicSimlVGY0GVP5z4XTcO7QVePFLl5JYsHmI3QJqZTpdBbZ4eHmysQ+jSjq4cagqVkM6K/VDmrcDZFvQtyxmzqvUkoplR5NxlT+c2yz9dOhZezvg2dISDK0rOmTI6coW8KTiX1COHzmIk/O/Iuk5AzuphKB9m9A4iVr3UqllFIqh2kypvKfo3YyVvafOcbWx8QC0KhqqRw7TaOq3ozuVJ+lO07w3sLojAv61IRmT8DfM2BPZI6dXymllAJNxlR+dGwzFPWF4v8sX7Ru32lqlilGySKFcvRUvZtUpWdYZSZE7ubnzAb0t3rOGsz/41OQcDFHY1BKKXV702RM5T9HN101835ysmF9TCyhfjnXKuZxkgboAAAgAElEQVRodKf6hFQpyTOz/2b70XPpF3IvDB0+gNN7YNm7uRKHUkqp25MmYyp/SUqAE9uvGry/43gccZcSCa3qnSun9HBz5eM+jSjm4cbDX0Rx/Nyl9AtWbwOBPWDFh3Bsa67EopRS6vajyZjKX07uhKQrV7WMRe2zxovlVssYWAP6Jw9oTOyFKwz8ch3xlxPTL9juNfAoAT8Oh+TkXItHKaXU7SNbyZiItBeRaBHZJSKj0tnvISKz7P1rRMTPYd/z9vZoEWnnsP0pEdkiIptFZIaI3PiiTurWcfTaZZDWx8TiW9yDKt7ZW4vyRgVU9GJcr4ZsPXyOJ2dkcIdlUR8rITuwBtZ9nqvxKKWUuj1kmYyJiCswHrgHqAf0FJF6aYo9DMQaY2oAHwBv2cfWA3oA9YH2wAQRcRWRisCTQKgxJgBwtcup292xzeBayLqD0bZu32lCq5a64Vn3r8eddcrycqf6LN5+nJd/2JL+AsJBPaHGXfDbi3Bqd67HpJRS6taWnZaxMGCXMWaPMeYKMBPonKZMZ+BL+/kcIEKsv5ydgZnGmMvGmL3ALrs+sNbFLCwibkAR4PDNXYq6JZzcCaVrgKs7AEfPXuJg7MUcndIiK32b+jEovBpfrYrh02V7ri0gAp0+ArdC8N1gSE7Ks9iUUkrderKTjFUEDji8PmhvS7eMMSYROAuUzuhYY8wh4F1gP3AEOGuMWZjeyUVkkIhEiUjUiRMnshGuKtBO7rCSMVtUzGkAGvvlzuD9jIxqX4cOgeV545ftfBN14NoCJSrAve/BwbWwYkyexqaUUurWkp1kLL2+obR9NxmVSXe7iJTCajXzByoARUWkT3onN8Z8aowJNcaE+vr6ZiNcVWAlXoHYfdYC4baofbEUdnelXoUSeRqKi4vw/r+CaVnTh1FzN/LrlqPXFmrQFep2gt9fh2Nb8jQ+pZRSt47sJGMHgcoOrytxbZdiahm729ELOJ3JsXcBe40xJ4wxCcC3QLMbuQB1C4ndCybpqvFiUTGnCa5cEnfXvL/xt5CbC5/0bURQ5ZI8MeMvVu4+eXUBEWvuscIl4dtHIfFynseolFKq4MvOX7h1QE0R8ReRQlgD7eenKTMf6G8/7wosMdbI5/lAD/tuS3+gJrAWq3vyDhEpYo8tiwC23fzlqALt5E7rp52MxV9OZNuRuFyd0iIrRQq5MWVAY/xKF2HQV+vZdPDs1QWK+kDHsXBsEywa7ZQYlVJKFWxZJmP2GLChwK9YCdM3xpgtIvKKiHSyi00CSovILuBpYJR97BbgG2ArsAB43BiTZIxZgzXQ/09gkx3Hpzl6ZargOWUnY6WtZGzDgTMkJZs8HbyfnpJFCvHVwCZ4FXan/5S17D5x/uoCde6FsEdh9QTY/pNzglRKKVVgSbq37udToaGhJioqytlhqNwybwjsWgTP7ADgw0U7GLN4J3+/1JYSnu5ODg72noyn68cr8XR3Zc5jTSnvVfifnYmXYVJbq6t18HIoWcV5gSqllMoXRGS9MSY0q3I6A7/KP07uvGrw/vqYWGqXLZ4vEjEAf5+ifDkwjHMXE+g7aS2x8Vf+2enmAd2mWLPyzxloLeuklFJKZYMmYyp/MOaqaS2Skw1/7T/j9C7KtAIqevFZ/1AOnL7AgC/SLJvkXQ06jYWD62DxK84LUimlVIGiyZjKHy6cgktnUgfvHzpzkfOXE6lfwcvJgV3rjmqlGdcrhM2HzvLvr6K4lOAw6WvAgxD6MKwcC1vmOS9IpZRSBYYmYyp/SL2T0uqm3HEsDoDa5Yo5K6JM3V2vLO92C2TVnlM8Pv1PEpIcFg1v/wZUCoN5j8HRzc4LUimlVIGgyZjKH05ag/ZTuil3HLPuWKxRprizIsrSAw0r8er9ASzefpzhszb8s7C4mwd0nwqeXjCzF1w47dxAlVJK5WuajKn84dROcPVIvQtxx7E4ynt54lU4fwzez0jvJlX5v3vr8tPGI4yau5HklISseDnoPg3ijsDs/pCUmHlFSimlbluajKn84eQuKF0dXFwBiD4aR62y+bdVzNG/w6sxLKIms9cf5JUft5I6XUylUGuG/r3LYOH/OTdIpZRS+ZabswNQCrC6KcvWByAp2bDrxHma1yjt5KCyb/hdNYm/nMjny/dSpJArz7WvY+1o2Mdat3L1BPCuDk0GOTdQpZRS+Y4mY8r5UhYIr/8AADGn4rmSmFxgWsYARIT/u68u8VeSmBC5m6Iebjzexhr/RttXretbMNLqhq3d3qmxKqWUyl+0m1I5X+y+qxYIT7mTsiAlY2AlZK/eH8D9wRV459dopqzYa+1wcYUun0O5QJjzEBze4NxAlVJK5SuajCnnS7mTMjUZs+6krFk2f05rkRlXF+HdbkG0rVeWl3/Yyoy1+60dhYpCr2+gSGn4ujucPejcQJVSSuUbmowp50uzQHj0sTiqeBehSKGC2Yvu5urCR70a0rq2L89/u4mpq2OsHcXLQu/ZkHABpj6oU14opZQCNBlT+cHJnVCsLHiWAGDH0ThqFcBWMUcebq580rcREXXK8N95m/kipcuyTF3oORPOxMD0rnD5vHMDVUop5XSajCnnc1gg/EpiMntPxhe48WLp8XBz5eM+jWhbryyjf9jK53/ssXb4NYeuU6yxY7P6QOJl5waqlFLKqTQZU86VZoHwvSfjSUw21C5X8JMxgEJuLozvHcK9Dcrx6k/bGLNopzUPWZ17ofM42PM7fDsIkpOyrkwppdQtqWAOylG3jjQLhKfcSVkzHy+DdL3cXV0Y26Mhnu4b+WDRDg6ducBrDzTAPdheKmnh/8FPpawJYkWcHa5SSqk8psmYcq50Fgh3dRGq+RZ1YlA5z83Vhfe6BVGpZGHGLtnFkbOXmNA7hOLNhloJ6fL3rTstI/7r7FCVUkrlMe2mVM6VZoHw6KNx+JUugqe7qxODyh0iwtNta/N2l0BW7j5Ft4mrOHzmIkS8CCH94Y93YdUEZ4eplFIqj2UrGROR9iISLSK7RGRUOvs9RGSWvX+NiPg57Hve3h4tIu0ctpcUkTkisl1EtolI05y4IFXApFkgfOfx87fE4P3M/KtxZaYMaMzB2IvcN/YPfo8+YXVR1u0Ivz4Pf890dohKKaXyUJbJmIi4AuOBe4B6QE8RqZem2MNArDGmBvAB8JZ9bD2gB1AfaA9MsOsDGAMsMMbUAYKAbTd/OarAcVgg/FJCEvtO3Rp3UmYlvJYv84c2p2wJTx76Yh1v/rqThPs/A/9WMG8IbJnn7BCVUkrlkey0jIUBu4wxe4wxV4CZQOc0ZToDX9rP5wARIiL29pnGmMvGmL3ALiBMREoA4cAkAGPMFWPMmZu/HFXgONxJuev4eYzhlrmTMivVfIsx7/Hm9AyrwsSlu+k5+S8OtZ8ElRrD3Idh24/ODlEppVQeyE4yVhE44PD6oL0t3TLGmETgLFA6k2OrASeAKSLyl4h8LiK31ohtlbWUBcIdBu8DBX7C1+vh6e7KGw82YEyPYLYdOUfb8euZVft9TPmGMHsARP/i7BCVUkrlsuwkY+nda2+yWSaj7W5ACPCxMaYhEA9cMxYNQEQGiUiUiESdOHEiG+GqAiPNAuHRx+Io5OpC1dK3X17eObgiC4aHE1ylJCN/3MfDSc9z2ac+fNMPdv7m7PCUUkrlouwkYweByg6vKwGHMyojIm6AF3A6k2MPAgeNMWvs7XOwkrNrGGM+NcaEGmNCfX19sxGuKjDSLhB+NI5qvkVxd709b/Kt7F2EaQ834Y0HG7D2SCLhR57gZJHqmJm9YddiZ4enlFIql2Tnr946oKaI+ItIIawB+fPTlJkP9LefdwWWGGOMvb2HfbelP1ATWGuMOQocEJHa9jERwNabvBZV0KRZIHzHsVv/TsqsiAg9w6qw8Klw6lWrwl0nhrOXCiTP6Al7Ip0dnlJKqVyQZTJmjwEbCvyKdcfjN8aYLSLyioh0sotNAkqLyC7gaewuR2PMFuAbrERrAfC4MSZl3ZcngOkishEIBl7PuctSBYLDAuHxlxM5dOYiNcvcPuPFMlOhZGEmD2jM/3qG82/+y86EMiRM+xeXdy5zdmhKKaVyWLZm4DfG/Az8nGbbiw7PLwHdMjj2NeC1dLZvAEKvJ1h1i3FYIHzvyXgAamgylkpE6BhUgZY1OzJ2vg89tj5Gpend+PvuKQQ1v9fZ4SmllMoht+fgHOV8aRYI33X8PADVNRm7RskihXixRyvO/etbTogPNRcO4OPJkzgdf8XZoSmllMoBmowp50izQPjuE+dxdRGqli7i5MDyr9CAOpR9chHxRSszMGYkL733Ad/9dRBreKZSSqmCSpMx5RxpFgjffeI8VbyL4OF2661JmZM8S5XHd+hvGN86vJ/8Ngtmf06/yWvZf+qCs0NTSil1gzQZU86ReiflP92U1X21izJbinjj+fCPuFUK4WOPsVTaP5+2Hy7lk6W7SUxKdnZ0SimlrpMmY8o5Tu5IXSA8MSmZfScvUL3M7TfZ6w0rXBLp+x0ufs15Q8Yxuswy3vhlO53Hr2DzobPOjk4ppdR10GRMOYfDAuEHYi9yJSlZW8aul0cx6D0H6nakx6kJLApezvFzl+g8fgWv/7yNi1eSsq5DKaWU02kyppzD4U7K3fadlDqtxQ1w84BuX0JIP2psn8DyBj/RvVF5Pl22h3YfLmP5zpPOjlAppVQWNBlTeS/NAuG7TtjTWmjL2I1xcYWOY6H5cDz+msLrCe8y66EgXF2EPpPW8Mzsv4nVaTCUUirfytakr0rlqDQLhO8+fh7f4h54FXZ3blwFmQjc/TKUqAi/PEeTuKP88sjXfLQmlk+W7iEy+jgvdqxPx8DyiIizo1VKKeVAW8ZU3kuzQPjuE+ep7quD93NEk0HQfRoc24znl+14NtSdH55oQcWShXlyxl/0n7IudbUDpZRS+YMmYyrvOSwQbozRaS1yWt0O0P9HuHwOPo+g7sW/+HZIc17sUI8/Y2Jp98Ey3lsYrQP8lVIqn9BkTOU9hwXCT56/wrlLiTp4P6dVbgyPLIKiZWDqA7hGfc7AFv4sGdGKexuU46Mlu7j7g6Us2HxEZ/BXSikn02RM5T2HBcJT16TUlrGc513NSshq3AU/PwM/PkWZoq582KMhM/59B0UKuTJ42p/0+HS1zk2mlFJOpMmYyltpFgjffUKntchVniWg5wxoPhyiJsOXHeHcYZpWL83PT7bkf/cHsONYHB3HLWfknI0cO3fJ2RErpdRtR5MxlbfSWSC8SCFXypXwdHJgtzAXV+tOyy6T4MhGmNgCdi3GzdWFvndUJfLZNjzc3J+5fx6k1Tu/89aC7Zy9mODsqJVS6rahyZjKW8e3Wj/L1AWsbspqvkVxcdHpFnJdg64wKNIarzetCyx5DZKT8Crszgsd6rF4RCva1S/Hx5G7CX/7dyYu3a2D/JVSKg9oMqby1vFt1s8y9QDYcyKeGjpeLO/41oJHFkNwb1j2Nkxuby1NBVQtXZQxPRry05MtCKlSkjd/2U7Lt5fw6bLdXLiS6OTAlVLq1qXJmMpbx7ZAYW8oVpb4y4kcOnNRB+/ntUJF4P7x8ODn1vi9iS1gzSeQnAxA/QpeTHkojDmDm1K3fAle/3k7Ld+yWsrOX9akTCmlcpomYypvHd9qtYqJpE4+qoP3nSSwGwxZDf4t4Zfn4KtO1p2utlA/b6Y+3IS5jzWjfkUv3vxlO03fWMwbv2zj6Fkd6K+UUjklW8mYiLQXkWgR2SUio9LZ7yEis+z9a0TEz2Hf8/b2aBFpl+Y4VxH5S0R+vNkLUQWAMVY3ZVmrizJ1WgtNxpynRHno9Q10+sga3D+hKfz2Elw+n1qkUdVSfDUwjO8fb054LV8+W7aHlm8vYcQ3f+uUGEoplQOyTMZExBUYD9wD1AN6iki9NMUeBmKNMTWAD4C37GPrAT2A+kB7YIJdX4phwLabvQhVQJzZD1fOpw7e333iPC4CVUsXcXJgtzkRCOkHT0RB4L9gxYcwPgw2zUntugQIqlyS8b1CWPpsG3o3qcrPm47Q4aPldB63nG/WHdBxZUopdYOy0zIWBuwyxuwxxlwBZgKd05TpDHxpP58DRIi1GnFnYKYx5rIxZi+wy64PEakE3Ad8fvOXoQqE1MH79QErGatauigebq6ZHKTyTLEycP8EePg3KFIa5j4Mn4RD9AKrVdNW2bsIozvVZ/V/Ini5U30uJiTx3NyNNHl9MSPnbGT5zpMkJiVnciKllFKO3LJRpiJwwOH1QaBJRmWMMYkichYobW9fnebYivbzD4HngOLXH7YqkI5vsX6WqQNgr0mpC4TnO5XDrCkwNs+F31+HGd2hUmNoNQpqRFgtaYBXYXf6N/OjX9OqRMXEMmPtfn7adIRZUQfwKVaIewLKE1G3DE38S1O4kCbcSimVkewkY+lNAJV2MbuMyqS7XUQ6AMeNMetFpHWmJxcZBAwCqFKlStbRqvzr+DbwqgyeXiQkJbP3ZDxt6pRxdlQqPS6uVpdl/Qdgw3RY+jZM72K1ajZ93JqzzM0DABGhsZ83jf28uZSQRGT0CX7YeJjZ6w8wdXUMhdxcaOLvTXhNX5pU86Ze+RK4ueq9Q0oplSI7ydhBoLLD60rA4QzKHBQRN8ALOJ3JsZ2ATiJyL+AJlBCRacaYPmlPboz5FPgUIDQ0VFc0LsiObU0dL7bnRDwJSYa65Uo4OSiVKVd3aDQAgnpaLWUrP4Lvh8DiVyD0IWjYB7wqpRb3dHelfUA52geU41JCEmv3nmbpjhMs23GC1362uqmLFHKlYZWSNKrqTWO/UjSsUopiHtn5VaSUUrem7PwGXAfUFBF/4BDWgPxeacrMB/oDq4CuwBJjjBGR+cDXIvI+UAGoCaw1xqwCngewW8aeSS8RU7eQpARrTquadwOw/eg5AOqU117qAsHNA4J7WUnZ7sWwagJEvgFL34Iad0Oj/tZPt0Kph3i6uxJey5fwWr4AHD17iXX7TrM+JpZ1+04zbslOkg24CNSrUILQqt60qOFDsxqlKVJIkzOl1O0jy9949hiwocCvgCsw2RizRUReAaKMMfOBScBUEdmF1SLWwz52i4h8A2wFEoHHjTG6vsrt6NQuSE5InXl/25E43F1FJ3wtaESgxl3WI3Yf/DkV/poGM3tB4VJQ736rC7NKM3C5uiuynJcnHYMq0DGoAgDnLyfy1/5Y1u2LZX3MaWatO8AXK/dRyNWFMH9vWtf25d4G5alQsrATLlQppfKOGFNwev5CQ0NNVFSUs8NQN2LzXJgzEAYvh3IN6D95LcfjLvPLsJbOjkzdrKRE2LUINs2G6J8h4QIULw+174Ha94JfS3DPeiH4y4lJRO2LJTL6OJHRJ9h5/Dwi0KKGD10bVaJd/XJ4uuuNAEqpgkNE1htjQrMqp30BKm8c2wriCj61AKubsnl1HycHpXKEqxvUbm89rsRD9C+wdR78PQuiJkOhYlCtNVRvA9UjwNs/3Wo83FxpXsOH5jV8+L/7IOZUPHP/PMTc9QcZNnMDxT3d6NWkCg+38KdM8ayTO6WUKig0GVN54/hWKF0D3Dw4HX+FY+cu63ixW1GholY3ZYOukHAJ9v0B23+CXYthu73QRil/qH6n9fBvCZ5e6VZVtXRRnr67FsMjarJ6zymmr93PZ8v2MGXFPrqHVmZQeDUqe+uEwUqpgk+TMZU3jm+FCg0Bh8H7eiflrc3d07pho+bd1qSxp3bD7iXWY+MsiJpktZZWavxPclahodXS5sDFRWhWw4dmNXzYezKeT5buZua6/Xy9dj/dG1dmeERNypTQljKlVMGlyZjKfZfPW4O9g3sDsP1IHKB3Ut5WRMCnhvVoMggSr8DBdf8kZ5FvQOTrVitZtTYQ2N1K4lzdr6rG36cob3YJZNhdNfk4cjdfr9nPd38e4pGW/gwKr0ZxT/cMAlBKqfxLkzGV+05EWz/tOym3Hz2HT7FCOu7nduZWCPyaW4+I/8KF07An0krMdiywxpwV9bWSspB+4Fv7qsPLexXmlc4BDGzuz7sLo/loyS6mr9nP0DY16H1HFV1iSylVoOg02Cr3pS6DZE34uu1InHZRqqsV8YaAB6HzOHh6G/ScCZWbwJqJML4JzB7wz9qmDvx8ijKuVwjzhzanTrnivPLjVu56fynfbzhEcnLBuVNcKXV702RM5b7j28CtMJTyJzEpmR3H4qhTTrsoVQZc3a1pMXpMhxHR0PJp2PkbTGgK3/SHkzuvOSSwUkmmP9KErwaGUdzDnWEzN9Bx3HL+2HnCCReglFLXR5MxlfuObbEWB3dxYd+pC1xOTKZOeW0ZU9lQ1AciXoThm6DlCGs+swlNrQXMEy5dVVRECK/ly49PtODD7sGcvZhA30lr6TtpDZsPnXXSBSilVNY0GVO5yxg4ugnK1gcc76TUljF1HYp4W2PLnvzLWrx86VvwcTNrnFkaLi7C/Q0rsnhEK17sUI/Nh87S4aPlPDnjL/afupD3sSulVBY0GVO569RuuHgaKoUB1p2Uri5CjTK6DJK6AcXKQJfPoO93gIGvOsP8J+By3DVFPdxcGdjCn6XPtWFomxos3HqUiPcjGT1/C6fOX8772JVSKgOajKncdWC19bNyEwC2HTlHdd+iuqyNujnV74THVkLzYdb6mBNbQMyqdIuW8HTnmXa1WfpsG7o2qszU1TG0eieSjxbv5PzlxDwOXCmlrqXJmMpdB9aAZ0mHZZD0TkqVQ9wLw92vwEO/WN3hU+6B316CxPRbvcqW8OSNBxvw6/BwmtcozXu/7aD5m0sYs2gnZy8k5HHwSin1D03GVO46sBYqh4GLC2cvJnDozEWd7FXlrKpN4bEVENIXVnwIn91p3TSSgRplivFJ31C+f7w5Yf7efLBoB83fWsJbC7ZzPO5ShscppVRu0WRM5Z6LsXBiu5WMAdFHrXE9dbVlTOU0j+LQ6SNrfrLzx+DT1rBiDCQnZXhIUOWSfNYvlF+GtaR1bV8mLt1Nizd/57k5f7Pj2LVj0JRSKrdoMqZyz8Eo66c9Xiz1TkptGVO5pfY9MGQ11GwLv70IX3SwluLKRN3yJRjXK4QlI1rzr8aVmP/3Ydp+sIz+k9fye/RxnTxWKZXrNBlTuefAGmsh6AohgDXzvldhd8rpos4qNxX1ge7T4P6PrWlVPm5uDfI3mSdV/j5FefX+BqwcFcGIu2ux5fA5Hpqyjlbv/s7Epbs5HX8ljy5AKXW70WRM5Z4Da6BcAHhY01hsO3KOuuWLIyJODkzd8kQguBcMWQkVGsL8oTCzF5w/nuWh3kUL8URETVaOupOPejakgldh3vxlO3e8vpgh09fz29ZjXElMzoOLUErdLnShcJU7khLh4Hpo2BuAK4nJbD96jp5hVZwcmLqtlKwC/ebD6gmw+BX4qBG0eg7CHrUWK89EITcXOgZVoGNQBXYci2PG2v3M33CYnzcdxbtoIToGlueBkEoEVfLS/2AopW6Ktoyp3HF8CyTEp44X23jwDJcSkgnz83ZyYOq24+ICzYbC4OVQ5Q5Y+AJMaALbf8qy6zJFrbLFealjfVb/J4LJA0JpWr00M9Yd4P7xK4h4fynjluzkYKzO7q+UujHZSsZEpL2IRIvILhEZlc5+DxGZZe9fIyJ+Dvuet7dHi0g7e1tlEfldRLaJyBYRGZZTF6Tyif1rrJ92MrZq9ykAmlQr7ayI1O3Otxb0ng2954KLu9VtOamttQh5NpMyd1cX7qxTlvG9Qlj3f3fx5oMN8CnmwbsLd9Dird/p+vFKvlq1jxNxOsO/Uir7xGTxS0hEXIEdwN3AQWAd0NMYs9WhzBAg0BgzWER6AA8YY7qLSD1gBhAGVAAWAbWAMkB5Y8yfIlIcWA/c71hnekJDQ01UVNQNXqrKU3MehpiV8PRWEKHXZ6s5HX+FBcPDnR2ZUpCUAH9NhT/eh7MHrHFl4c9CrXuslrTrdOD0Bb7fcIgf/j5C9LE4XASaVfehY1B52tcvj1cR91y4CKVUfici640xoVmVy85vnTBglzFmjzHmCjAT6JymTGfgS/v5HCBCrEEUnYGZxpjLxpi9wC4gzBhzxBjzJ4AxJg7YBlTMzoWpAiJlslcRLicmsT4mlqbVtVVM5ROu7hA6EJ7405qf7GKs1VI2rhGsmgCXzl5XdZW9izD0zpr8+lQ4vw4P5/E2NTgQe4GRczcR+tpvPPLlOr7fcIh4XX5JKZWO7AzgrwgccHh9EGiSURljTKKInAVK29tXpzn2qqTL7tJsCKxJ7+QiMggYBFClig7+LhDOHYaz++GOxwDYsP8MlxOTaapdlCq/cSsEIf0gqBds+x7WfAq/Pg9LXoWg7tZA/zJ1rqvK2uWKU7tcbZ6+uxabDp3lh78P8+PGIyzadhxPdxci6palY2AFWtf21TValVJA9pKx9G4TStu3mVGZTI8VkWLAXGC4MeZceic3xnwKfApWN2U24lXOdmCt9TNlvNieU4hAE///b+/O4+usykWP/569d/beSXbGnaFzk5a0tKUVoYBIFUTgiHDAAQQvR49crh69eh2ues7Vg4p+vJ6jXq84HxGhDnAVBRSFK0WpgAwdaelE6ZTOTZu5mffwnD/WSrKTpk3Sps3Q5/thfd75fdfOKjtP1lrvWhaMmTEqGILz3u3SgXWw8ifw8gOw+j6ofLMLyuZeC4GhB08iwqJphSyaVsjnrp3Hmj0N/GH9AZ7YcJDHXzlILBLiLeeWcc38cq6YW0pe1JoyjTlbDSUY2wdMz9ieBhw4zjn7RCQEFAD1J7pWRLJwgdgDqvrISeXejE17V0AoCpMWAq7z/oIp+dZvxowPU86Hd/zATUK+9mew6qfw69sgf5qrRbvgfZA/ZVi3DASEiyqKuaiimC9eP5+Xdtbzx1cO8NTmGv6w/gBZQeGNs0t4y9xSLp9bRmVJ7mn6cMaYsWgoHfhDuA78bwX248QCXqMAABqgSURBVDrw/xdV3ZRxzkeBhRkd+N+lqu8RkQXAg/R24P8LUAWkcX3M6lX1k0PNrHXgHwdU4TuLIF4F73uEjkSKRXct4/2XzuTO6+ePdu6MGb5UErY+4WrJdi53s0rMeRssvh1mXzms2rJjbp1WXt7TwLLNNTy1uYZdta0AzIzncPmcUi6dFefiymLischIfRpjzBk01A78g9aM+T5gHwOeBILAfaq6SUS+AqxW1ceAnwK/EJHtuBqxW/21m0TkIWAzkAQ+qqopEVkCvA/YICLr/KM+r6pPDP+jmjHlwFpo3AOX/wsAa3c30JVKW+d9M34FQzD/Bpfqd8Kan8HLv4Stj0PBjN7asrxJw791QFhcUcziimI+//Z57K5r5ZnXjvDM1iP8ZvU+fv7ibgDmlMe4pDLO62cU8rrphVTGcwkEbKBZYyaKQWvGxhKrGRsHnvxXWPFj+Ow2yC7iW8u28oPl21n3pWvItz4xZqJIdsGrf4Q198OuZ11t2dxrXW3ZrCtPaniM/rqSaTbsb+KlnXW8tLOONbsbaOtKAZAXDbFoWgFzy/OZUx6jqjyPqvKY/T9mzBgz1JoxC8bMyEmn4e6FUL4AbnsIgJt+9AKJVJrff2zJKGfOmNOkbocLytY9CG11bgqmC94PC98DRTNH7DHJVJrtR1p4ZW8T6/Y1smFfE9sOH6Uj0TtPZjw3zPTiHGZkprhbludHCVptmjFnlAVj5szbswLuuwbe+WN43a20dSV53ZeX8V+XVPK5a+eNdu6MOb2SnbDlD7BmKVQ/5/ZNvwQW3gzzb4RY2Yg/Mp1W9ja08VpNC9sPt7Cnvo099a3sqW/jQGMHqXTv93s4GGBaUTbTi3OY6QO0zMAtN2JTFRsz0kasz5gxQ7bpUQhGYO7bAVhd3UAipTa+mDk7hCKw8CaXGqph48Ow4WF44jPwxGdh6oWu4//ct0H5eTACk4sHAsLMeC4z47lcPb+8z7FEKs3Bxg4foLWxu76VvX597Z4Gjnb0HYC2JHZsrdq5k/KpKo/ZeGjGnGYWjJmRkU7D5t9B1dUQzQfc+GIh/0q/MWeVogp406ddqtns+pe99idY/lWXckth5hthxhvdsmyemxVgBGUFA66JMp4z4PGmtkRPkLanvq1PoPbHVw721KoFA8KsklzmTc73KY/5U/Ipy4uOaH6NOZtZMGZGxp4X4ehBWPDOnl0v7qhj0bQCa/4wZ7fy+S5d/s9wtAa2LYPqv7m5Wzf/3p0TDEPpuW5svvIFUFTpArqimRA+PWOOFeRksTCngIXTCo45lkil2VvfxquHjrLlYDNbDjazZncDj63vHWKyJBbhghmFXFRRzOKKIhZMKSAcOvUXF4w5G9lvSTMyNj0CoWzXDANU17ayfl8jn3zrnFHOmDFjSF65Gwbjgve57cY9rq/loVegZiNsewrWPdD3muwiyClxtWm5cb/ut3Pibhkrc8vs4hF5kzMrGGBWaYxZpTHevnByz/7Gti62HHQB2sYDTazZ7cZIA4hmBTh/eiGLZ7rg7IKZRfZ2pzFDZMGYOXXplPsLf841EIkBsPSFakIB4b0XTx/kYmPOYoUzXFp0c+++1jporHb9zhqq3VyvrbUu1W6D1hfdW5vHzEqHG2IjJ+6DsxLIm+xr2Cp6a9tiZSfdX60wJ8yls+N9xg083NzB6t0NrK5uYPXuen70zA5SyxURmDcpn4sr3cwDF1UWWdOmMcdhwZg5dbuehdYjsOBdADR3JPjN6r38/aIplOXbl68xw5Ibd2nqhcc/J52C9gb3/113auleP+wCt5bDUPssrP8VfQK3rJze4KykyvVXKz0XSudCVvaws1uWH+XtCyf31KC1diZZt7eRlbvqWb27nl+v2svSF6oBqIjn9AZnFcXMjOcgI/AigzHjnQVj5tSowl//zTWRVF0DwEOr9tLaleL2yypHOXPGTFCBoG+qLAEGGTYm0QFNe6F+l69t88v6Ha7/WjrhTxQoroTSeVB2LpTNd0FaSZV7U3SIciMhLjunhMvOKXGPT6XZuL+JVdX1rNzlmjUfWr0PgILsLBZOLeC8qQUsnFrA3EkxZsZzyQpa3zNzdrFgzJyajQ+7icFv+B6Ec0illaUvVHNxRfGAHYONMWdYVtQFVCVVxx5LJdwUT4c3w+FX4cgWOLzFvfmpbrR/JAjx2S4wK5vvatLK5kPxLDdV1GCPDwZ4/YwiXj+jiA+92Y2Ntv1IC6urG9iwv5EN+5v46d92kki52rtQQKgsyaWqPMY5ZXlUlcWoKo9RWZJLJGRDbJiJyYIxc/K62uCpL8KkRXD+bQA8tbmGfQ3t3HmdDfJqzJgXzHLNk6VzYUHG/mQn1G13gVl3qtnoBrXtbvIMhqFkjg/O5vUGagUzTvgSQSAgzCnPY055HjADgM5kim01LWw7fNQvW9hy8Ch/2niI7nFrAwLTinKYVZpLZUkus0pymVXqgrRJ+VGbq9OMaxaMmZP3wneheT+8+17XbALc9/wuphVlc/X84U+abIwZI0IRN8RG+YK++7vaoPY1H6BthiOvwp6XYMNves/JynXBXU8t2jy3nTfluEFaJBTkPN9cmakjkWJXbSuv1Rxlx+EWdta2svNIKyt21tOeSPWcF80KUFkSY1aJD9R6ArYYBTn2RqcZ+ywYMyenaR/87W6Y/w43aCWwcX8TK3fVc+d182wOPGMmonAOTDnfpUwdTXBka0ZN2mbXH23dL3vPCWW7PmnFs1yzZ/Hs3mXepAHf8IxmBXsGm82kqtQ0d7LziAvQdtW2svNIC5sONPGnTYf6TAMVzw1T2ROkxXqCtZnxHGv2NGOGBWPm5Pz5LkDh6q/07Lrvb7vIDQd5z0U2nIUxZ5VoAUy/2KVMrXWuH9qRra5vWt0OV7O2bRmkunrPy8pxQdpAgdoAQ3GICJMKokwqiPJG/6JAt65kmj31beyqbWVXbQs7j7Sys7aVv752hN+s2dfn3JJYhMn+Pt3LKQXZPdvl+VGbCsqcERaMmeFb+RPXLPHmz7oRwoFHX97HIy/v544llTbQozHGyY1D7hKoWNJ3fzrlatfrd7gArTtQO7wZtj4B6Yx5M8MxX6PmA7SiCiiYBgXTIX+qq63LEA4FOKcsxjllMaDvfJ3NHQmqfU1adW0bh5rbOdDYwZ66NlbsrKO533ydAMW5YSblu+BscmGUyQXZPdsuaMsmO2wBmzk1ojrAwIFj1OLFi3X16tWjnY2zV/cwFs98HeZcCzcvhawoT79awwd/voaLK4q5//aL7C9JY8zJSyWhaQ/U7XTBWnegVr8DGnb3vuXZLSfugrKC6VAw1c1QkFPsU9ylbL89yDhqrZ1JDjV3cKipgwON7Rxq6uCg3z7Y1MGhpnYa2hLHXFeQnUV5foTC7DD52SHyo1nkZ2eRHw25ZXaW3+eOFfjtWDRkXTomOBFZo6qLBzvPasbM0KRT8PinYc398Pp/gOu/A8EQK3fV85FfrmX+5Hzuef+FFogZY05NMNTbZMlVfY+lEm5GgqZ9LjXv611v2OXm/OxsOv69Q1GI5EM0f4BlAbnRfGZH8pkdzYecfCjuPl7cc16Hhlyw1tSeEaR1UNPcQXNHggONHbzacZTm9gRHO5MMVt+RF+kN2EpiYeK5YeKxCCWxCPFYmJJY2K9HiOeG7Tt2grJgzAzuwMuw/Guun8eST8FbvwQibDrQxB1LVzG1KJult19EnjVPGmNOp2CW6xrhu0cMKJVwsxO01UFbvVu217tZCToaoaMZOpt7l80He7cTrYNmIRqMUBHNp6J/MFdY7Abh7a6Ny4mTzp5Ma6iAJvJpTGZxtDNFc0eC5vYEzR1Jv0zQ3J6kqb2L2pYuqutaqWvpoq0rNeDz8yIh4rFwT3BWkhehJDdMcW6YvGgWedFQzzK/ZztEyAbSHdOGFIyJyNuA7wBB4F5V/fd+xyPAz4ELgTrgFlWt9sc+B9wBpICPq+qTQ7mnGWWphBtTaMV/uEFdwzG49htwyT+xreYoS1+o5pG1+ynMyeIXd1xCPDb0EbqNMea0CWa5Tv+xsuFfm0q6wKyzGTqPHhu4dTT12/bL2prewC+jGTUA5Pk0LRT1QVoxRAvdd2o416X8GJT67awcCEXpJMTRRJCmRICmrgANXdDQKdR2dFHb3s6Rdjh8RNmxW6lpUzo0RJIgMHCzZ3ZWkNxIkJxwiJxwkJxwkNxI93qo37bb131+bjhELBqiPD9CaSxigd1pMGgwJiJB4AfA1cA+YJWIPKaqmzNOuwNoUNVzRORW4OvALSIyH7gVN5zgFODPIjLHXzPYPc3plk67vxhbalxq2A2HXoGD66FmEyQ7oKiSzqu+xo6pN/Bqg/DwvS/x/PY6wqEAN75uCh9/axVTC4c/n50xxow5wVBvf7OToeoCtra6vqm1NqOmrtYFcc37oasFulp9aulzq4hPJQM+qB//t7AiaDBCOhgmJWFSEiJFgBRCWsUtk0IqISRbA6RUSKYhhZBMC0mFlApphBRBWjRKK9nUajYtRGnRbFolGyJ5BLMLCceKCeeXEisspaC4nLLigp4XG6ylZHiGUjN2MbBdVXcCiMivgBuBzMDpRuAuv/5b4PviZn+9EfiVqnYCu0Rku78fQ7jnuKeqPf0F1G+jiqJoWgFFNY2m0+4MVXdOOoWmOiHZSTrZSTrRRSrRQTrRSSrRgSa7SCc60WSnWyZaoasNSbS5ZdKtS6KNQLKNQLKdYNKtB5PtBJPthFIuBUj3yXN7IMbeyDnsyL6ONYGFPN4yn4N/TAKvADC5IMpn/24u7714BsW54TP54zTGmLFNBLILXYrPHt616TQk2lxgluqEZJf7g7h7vc/Sp37HJNmBpDoJJLsIpTpdC4em+6Z0KmNbjzmu6RSpdIp0MoF2tUBnA4GuowQSrQRTHS6vKaDFp0O9H6FdwzQQY5/GaJY8OrMKSEYKkewiArlxJKeYUCxONLeAaHYuoXCUUDSbUDibUCSHcCSHrEiUSDiLrFAIQZBAADnBjA4TxVCCsanA3oztfcAlxztHVZMi0gTE/f6X+l071a8Pds8z7l0/fJ4tB48CuIApI5CiZ/3YAOuO4ON8KvhbxP1dkpHosx6U0//makqFNqK0E6FNI27Zs55HOyU9+1uJUqsF1FJAgxRRHyylITiJWCiLWDSLWCTIZdOye6YeqSzN5ZzSmFVRG2PMSAsEIBJzaRQJJwgMUknoOuqbcJt837x6Ei11tDYeob3pCImWOrLb6slpbySrax85bZuJtR4lVDtwH7ihSvsaO6V3qQiPpN/MXek7fN4F/5/bFreve5i6zAbcaFaQNV+4+pTyNJKGEowN1ADdP6o43jnH2z/Qb/MBIxUR+RDwIb/ZIiJbj5PP06EEqB3spDt9GjtO8DbR2W1I5WnGBSvLicXKc2I5g+X5iE/DJ18c2ZwcxwneNuk1lGBsH5A5pPo04MBxztknIiGgAKgf5NrB7gmAqt4D3DOEfI44EVk9lPFBzPhg5TlxWFlOLFaeE4uV5/ANpb1pFVAlIpUiEsZ1yH+s3zmPAf/o128CnlY3muxjwK0iEhGRSqAKWDnEexpjjDHGTHiD1oz5PmAfA57EDUNxn6puEpGvAKtV9THgp8AvfAf9elxwhT/vIVzH/CTwUVX33u9A9xz5j2eMMcYYM7aNq+mQzjQR+ZBvJjUTgJXnxGFlObFYeU4sVp7DZ8GYMcYYY8wosjEKjDHGGGNG0VkbjInIfSJyWEQ2ZuwrFpGnRGSbXxb5/SIi3xWR7SLyiohcMHo5NwMRkekislxEtojIJhH5hN9vZToOiUhURFaKyHpfnl/2+ytFZIUvz1/7F4DwLwn92pfnChGpGM38m2OJSFBEXhaRP/ptK8txTESqRWSDiKwTkdV+n33fnqSzNhgDlgJv67fvfwF/UdUq4C9+G+Ba3JugVbgxz350hvJohi4JfFpV5wFvAD7qp+OyMh2fOoErVfV1wPnA20TkDbip1r7ty7MBNxUbZEzJBnzbn2fGlk8AWzK2rSzHv7eo6vkZw1jY9+1JOmuDMVV9FvfmZ6YbgZ/59Z8B78jY/3N1XgIKRWTymcmpGQpVPaiqa/36UdyX/lSsTMclXy7dk/Vl+aTAlbgp1+DY8uwu598Cb/VTspkxQESmAdcB9/ptwcpyIrLv25N01gZjx1GuqgfB/XIHyvz+gaaEmooZk3yzxuuBFViZjlu+WWsdcBh4CtgBNKpq0p+SWWZ9pmTDTUMRP7M5NidwN/DP0DMZbhwry/FOgWUissbPlAP2fXvShjICvxnalFBmDBCRGPAw8ElVbT7BH9RWpmOcH5PwfBEpBB4F5g10ml9aeY5RInI9cFhV14jIFd27BzjVynJ8uUxVD4hIGfCUiLx6gnOtTAdhNWN91XRXnfrlYb9/KFNCmVEmIlm4QOwBVe2erMzKdJxT1Ubgr7i+gIXiplyDvmXWU57Sd0o2M/ouA24QkWrgV7jmybuxshzXVPWAXx7G/bF0MfZ9e9IsGOsrc1qnfwR+n7H//f6NkDcATd1VsWZs8H1KfgpsUdX/m3HIynQcEpFSXyOGiGQDV+H6AS7HTbkGx5bnQFOymVGmqp9T1WmqWoGbneVpVb0NK8txS0RyRSSvex24BtiIfd+etLN20FcR+X/AFbjZ5WuALwG/Ax4CZgB7gJtVtd7/ov8+7u3LNuB2VV09Gvk2AxORJcBzwAZ6+6V8HtdvzMp0nBGRRbgOwEHcH40PqepXRGQWrnalGHgZ+AdV7RSRKPALXF/BeuBWVd05Ork3x+ObKT+jqtdbWY5fvuwe9Zsh4EFV/d8iEse+b0/KWRuMGWOMMcaMBdZMaYwxxhgziiwYM8YYY4wZRRaMGWOMMcaMIgvGjDHGGGNGkQVjxhhjjDGjyIIxY8Y5EVER+VbG9mdE5K4RuvdSEblp8DNP+Tk3i8gWEVl+up/ln/cBEfn+EM+dIiK/HfzMkSUiFSKy8Uw/1xhz5lkwZsz41wm8S0RKRjsjmUQkOIzT7wD+u6q+5TTkQ0TkpL/rVPWAqp72gNQYc/ayYMyY8S8J3AN8qv+B/jVbItLil1eIyDMi8pCIvCYi/y4it4nIShHZICKzM25zlYg858+73l8fFJFvisgqEXlFRP4p477LReRB3AC8/fPzXn//jSLydb/vi8AS4D9E5Jv9zv+hiNzg1x8Vkfv8+h0i8lW//j/9/TaKyCf9vgpf0/ZDYC0wXURu95/hGdwUPd3PuNlfu15Enh0gzz01VL5G7RER+ZOIbBORbwxUICJyof/5rhGRJzOmiPmg/5mtF5GHRSTH7y/3n2+9T2/0twqKyE9EZJOILPOzEfR/Vqm/1yqfLvP7LxaRF0TkZb+c6/cv8OW8zpddlbgR1R/3z94oIrd0l42/50YRuccHtrNFZG3G86tEZM1APwdjzBCpqiVLlsZxAlqAfKAaN4/fZ4C7/LGlwE2Z5/rlFUAjMBmIAPuBL/tjnwDuzrj+T7g/3Kpwc8xFgQ8Bd/pzIsBqoNLftxWoHCCfU3CjcpfiRu1+GniHP/ZXYPEA19wKfNOvrwRe8uv3A38HXIgL+nKBGLAJN3J7BW4mhjf48ydnPDsMPA983x/bAEz164UD5KEC2OjXPwDs9D/nKLAbmN7v/CzgBaDUb98C3OfX4xnnfRX4H37917jJ7cHNOlDgn5sEzvf7H8KNUt8/fw8CS/z6DNyUYPh/EyG/fhXwsF//HnCbXw8D2cC7gZ9k3LPAL4sz9v0C+Hu/vjwjX1/r/hyWLFk6uWQ1Y8ZMAKraDPwc+PgwLlulqgdVtRPYASzz+zfgAoFuD6lqWlW34QKRc3Fz0b1fRNbhppyK44I1gJWqumuA510E/FVVj6hqEngAePMgeXwOeJOIzAc20zsR8aW4gGcJ8KiqtqpqC/AI8CZ/7W5VfcmvX5Lx7C5c8NPteWCpiHwQFwgN5i+q2qSqHT5PM/sdnwucBzzlfz534iZGBjjP1zJuAG4DFvj9VwI/AlDVlKo2+f27VHWdX19D33LpdhXwff+sx4B8cfMGFgC/8bV638541ovA50XkX4CZqtqOK/OrROTrIvKmjOe/RURW+PxemXGPe4HbxTVF34ILCI0xJyk02hkwxoyYu3FNcvdn7EviuyOIiOBqQrp1ZqynM7bT9P1u6D9nmgKCqw15MvOAuLkHW4+TPxn0E/R/kOp+ESnCzWn3LG4ew/fgaviO+s90PP3zMeDcb6r6YRG5BLgOWCci56tq3Qnum/lzS3Hs96gAm1T10gGuXYqrDVwvIh/A1SSeSP9nHdNMiSvfS31Q1ZsJke8By1X1nSJSgat9RFUfFJEVuM/7pIj8N1V9WkQuBN4O/JuILAO+AfwQV2O5V9xLIVF/+4dx8/k+DawZ5OdljBmE1YwZM0Goaj2uKeuOjN3VuKY8gBtxTWjDdbOIBMT1I5sFbAWeBD4iIlkAIjJHRHIHuc8K4HIRKfE1Ku8FnhnC818EPokLxp7DNcM+5489C7xDRHL889+Zcaz/s68QkbjP883dB0RktqquUNUvArXA9CHk6US2AqUicqm/f5aIdNco5QEHfR5uy7jmL8BH/PlBEckfxvOWAR/r3hCR8/1qAa75GVzzavfxWcBOVf0uriZtkYhMAdpU9ZfA/wEuoDfwqhWRGNDT99DXCj6Jq83LDP6NMSfBgjFjJpZvAZlvVf4EFwCtxDXVHa/W6kS24oKm/w982P8ivhfXRLfWN4P9mEFq2lX1IPA5XH+j9cBaVf39EJ7/HK7v03ZczV+x34eqrsXVNq3EBVz3qurLx3n2XbjA7s/+Pt2+Kf6lAlxwt34IeTou3wx6E/B1EVkPrAO6O+R/wefzKeDVjMs+gWsS3IBrjlzA0H0cWOw7428GPuz3fwNXy/U8fZtfbwE2+mbNc3HN2wuBlX7fvwJfVdVG3L+fDcDvgFX9nvsArrZxGcaYUyKqA9bcG2OMMcclIp/BdfT/wmjnxZjxzvqMGWOMGRYReRSYjevUb4w5RVYzZowxxhgziqzPmDHGGGPMKLJgzBhjjDFmFFkwZowxxhgziiwYM8YYY4wZRRaMGWOMMcaMIgvGjDHGGGNG0X8C75+nH6dz9aMAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "plt.figure(figsize=(10,3))\n",
+ "sns.distplot(approved_word_count, hist=False, label=\"Approved Projects\")\n",
+ "sns.distplot(rejected_word_count, hist=False, label=\"Not Approved Projects\")\n",
+ "plt.title('Words for each essay of the project')\n",
+ "plt.xlabel('Number of words in each eassay')\n",
+ "plt.legend()\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "SBVSAdFRoc6f"
+ },
+ "source": [
+ "### 1.2.8 Univariate Analysis: Cost per project"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "xk4fJ4rKoc6g",
+ "outputId": "6ab35ab8-9bff-4637-8bcc-96f02a90b4ee"
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " id \n",
+ " description \n",
+ " quantity \n",
+ " price \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " p233245 \n",
+ " LC652 - Lakeshore Double-Space Mobile Drying Rack \n",
+ " 1 \n",
+ " 149.00 \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " p069063 \n",
+ " Bouncy Bands for Desks (Blue support pipes) \n",
+ " 3 \n",
+ " 14.95 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " id description quantity \\\n",
+ "0 p233245 LC652 - Lakeshore Double-Space Mobile Drying Rack 1 \n",
+ "1 p069063 Bouncy Bands for Desks (Blue support pipes) 3 \n",
+ "\n",
+ " price \n",
+ "0 149.00 \n",
+ "1 14.95 "
+ ]
+ },
+ "execution_count": 35,
+ "metadata": {
+ "tags": []
+ },
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# we get the cost of the project using resource.csv file\n",
+ "resource_data.head(2)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "gLd9rR8Goc6i",
+ "outputId": "4c5d6f5a-c1dd-49d1-a1d4-0f3a77900919"
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " id \n",
+ " price \n",
+ " quantity \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " p000001 \n",
+ " 459.56 \n",
+ " 7 \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " p000002 \n",
+ " 515.89 \n",
+ " 21 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " id price quantity\n",
+ "0 p000001 459.56 7\n",
+ "1 p000002 515.89 21"
+ ]
+ },
+ "execution_count": 36,
+ "metadata": {
+ "tags": []
+ },
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# https://stackoverflow.com/questions/22407798/how-to-reset-a-dataframes-indexes-for-all-groups-in-one-step\n",
+ "price_data = resource_data.groupby('id').agg({'price':'sum', 'quantity':'sum'}).reset_index()\n",
+ "price_data.head(2)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "-510M9TKoc6k"
+ },
+ "outputs": [],
+ "source": [
+ "# join two dataframes in python:\n",
+ "project_data = pd.merge(project_data, price_data, on='id', how='left')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "WxMMxRiEoc6p"
+ },
+ "outputs": [],
+ "source": [
+ "approved_price = project_data[project_data['project_is_approved']==1]['price'].values\n",
+ "\n",
+ "rejected_price = project_data[project_data['project_is_approved']==0]['price'].values"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "Irsdqxnuoc6r",
+ "outputId": "e4ad6e99-39c0-4e72-dfca-189446a9b567"
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZgAAAEICAYAAABiXeIWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xt8FdW99/HPLwkkGlTAC1642IoXkNPWlqM9Vi0REbFWPEetpdaCcqR6NGJpqyB9WnsBj7ZSKTxeCwpVo2JrpS1WOZi0ta1V8IrweOoFIRWvgEJKIAm/549ZO07Czs5Ows7skO/79dqvPXvNzJ7f7Jk9a2atNWvM3REREdnVCpIOQEREdk/KYEREJCeUwYiISE4ogxERkZxQBiMiIjmhDEZERHJCGUyOmNkIM6vOgzh+ZGbvmdlbScciHWdmbmaDO2E5E8zsiVwvpzsxszVmdkonLOdEM3s518vJxm6ZwYQNudXMtpjZRjP7nZkNyMFyJphZQ1jOh2b2nJmd0Y7vucvMfpSD+AYA3wSGuvuBLUyzt5ndZGZrw3q8Ej7v14Hl5kXmKvlH+0Z64RiwPfwHN5jZUjM7qj3f5e5/cvcjd0FMHT6Z2S0zmOCL7t4LOAh4G5iTo+X8NSynNzAPeMDM+uZoWW01CHjf3d9JN9LMegLLgKOB04C9geOB94FjOyvIjjKzwgSXXZTUsqVj8nDb3RCOJf2Bd4C70k2Uh3G3zN13uxewBjgl9vl04H9jn/cBFgLvAm8A3wEKwrhbgAdj015PdBC2NMuZADwR+1wKODAcGAFUx8YNAaqATcBLwJkhfRJQB2wHtgC/CelXA/8ANgMvAyNbWNe06wKcAmwFdoTvvSvNvP9JlPn2yvBbpo079ruuCjH+A/hW+A3iy90CHJzme+8CbgWWhvn/AAyKjT8qjNsQ1v9Lzea9BVgC1MS3dWyaC4HV4btfA74eGzcCqAauAd4L+8v5bYjNgcuAvwOvh7TjgaeBD8L78SH9y8DyZrF9A1gchouBnwBrw7a4FdgjNu23gfXAm8BFYdmDW9hW2azzN4kOXuuBC2Pj9wUWAx8CTwE/JLZvN1vOoSGO8SHu94DpsfHFwE0h5jfDcHEb9o0vAM+GWNYB16ZZ9qTw3euBb8bGXws8CNwffodngE82OzZcDbwAbAOKaPm/+VngLaAwNv+/Ay+E4QJgKvAq0UnZA0Df2LQXEP0n3wem0+y4lOb/8KNmv8GWZut0d/hN/rOl3zi+rWPfdTDwS6JjxOvAFbFxhUT/g1fD77UCGAD8MfzONWE7nQfsB/w2/E4bgD8RjpstHj/acwDP91d8QwJ7AguAhbHxC4GHgb3CDvu/wMTY9P9LlHmcSPTn6d/CciYQ/oRhR50cNtI+8Y0M9ABeCRuyJ3BymO7IFnauI4n+WAfH/lSHtRBDpnVpsqOlmfc+YEGG8a3FvR44MQz3AT6dzXJj67wZOCn8WWbHfsvSsP4Xht/102E7HB2b9wPgc0R/8pI03/8F4DDAgM8D/2wWXz0wKyz780R/pCNbiy2Md6LMpy+wR3jfSHRAKQLGhc/7Eu1Pm4HDY/M/DXw5DN9EdGDvG7bhb4DrwrjTiDKdYeE3uZfMGUw26/yDsF1PD+P7xPaFB8JyhhGdMLSWwdwR1v+TRAfrIWH8D4AngQOA/YG/AD9sw74xAviXsG0/EX6Ds5otuyLE+i9EB87U//1aohO2c8J6fovooNojdmx4jugguget7+OvAqNisS0CpobhK8N69g/7yW1ARRg3lOjAnNqHZoXfv9UMBugVtvWfmq3TWeE32SPb3zhMvwL4bli/jxOdfIwO478NvEh0zLGwLfeN7eeDYzFeR3QC1CO8TiTNiXeT9crVQT7JV9iJthDltPVEOfy/hHGFRH+GobHpvw5UxT4fS5RDvwGMy7CcCeH7NxEdAJ+M7ejxjXwi0ZlQQWzeCsKZGTtnMIOJzjJPIfwxWlh+xnWh9QxmKfDfGca3FvfasLy90xwgsslg7ot97gU0EP3xzyP8uWLjbwO+F5t3YabvT7O8XwOTY/HVA6Wx8Q8A/6e12MJnB06Ojb8AeKrZ8v4KTAjDdwPfDcOHEx3A9iT6Q9cQO3kA/o2Prormx7cPcAQZMpgs1nkrUBQb/w7RWXoh0QHsqNi4mbSewfSPpT3FR5nmq8DpsXGjgTXZ7htplncT8NNmy47HegMwLwxfCzwZG1dA0xOhNcBFbdjHfwTMD8N7he01KHxeTaxkgag4vo7oJOO7zfahUqJSikwZTC3RseQtopOOw2Lr9Mdm02f1GwPHAWubzTsNuDMMvwyMbSGm5hnMD4hOZrPa/9x9t66DOcvdexOdPVwO/MHMDiS6zOtJlHmkvAEckvrg7k8R5fJGdODJ5El37+3u+7n7Z939f9JMczCwzt13tLTMOHd/hejs6FrgHTO7z8wOTjNpq+vSiveJ/hQtaS3us4nOhN8wsz+Y2b9ludyUdakBd99ClKkfTFR3dJyZbUq9gPOBA9PNm46ZjTGzJ0OF6aYQZ7zhwkZ3r2m2XvHfuKXY0i3/YJpug9T3pX6ne4muagC+Avza3f9JdOa5J7Aitp6/D+mp740vp/kymshind939/rY538SZZ77Ex0Us15WEG+ZmPquVNzN98l0+29aZnacmVWa2btm9gFwCU3XgzSxtrTtdhAVDWbadpn28XuB/zCzYuA/gGfcPbVug4CHYttuNdGJSD+abbuwr73fyqr/JBxLDnT3M9391RZiTsWdzW88CDi42X/pmhAjRCd0r6aZL50fE13tPWZmr5nZ1NZm2J0zGADcvcHdf0W04U8gutKoI/rhUwYSFQkAYGaXEWVMbwJX7YIw3gQGmFn8944v09PEfa+7nxDidKK6oOZaXZdW/A8w2sxK2xO3uz/t7mOJLtN/zUeZ8U7r04LGln1m1ouomOhNoj/TH8KfLfXq5e6XxuZtcRnhYPBLorqNfuFEYwnRCUNKn2brPTAsu7XY0i3/TZpug9T3pbbDY8B+ZvYpoozm3pD+HtFVxdGx9dzHo4peiM68BzT7zo6sc0veJbqiy2pZWWj+e8R/22z2jXuJzuAHuPs+RMUyzdejeawtbbsCoiKsTNsu0z6+iujgPYbo5ODe2HTrgDHN9tMSd/8Hzbadme1JVGTaXs1/t0y/cdw6oivieIx7ufvpsfGHZRWA+2Z3/6a7fxz4IjDFzEZmmme3z2AsMpaojmC1uzcQHQhnmNleZjYImEJUjIGZHUF0WfxVoqKPq8KBoSP+RnRpfZWZ9TCzEUQb6L4w/m2istFUzEea2cnhoFFLdBBqaP6lra1LFn5BtIP90syOMrMCM9vXzK4xs9MzxW1mPc3sfDPbx93riCofUzG+DexrZvu0svzTzeyE0Jrth8Df3H0dUUXiEWZ2QVhuDzP7VzMbkuV69SQ6QXgXqDezMcCpaab7fliPE4EziMrXW4stnSUh3q+YWZGZnUdUBv9bgHDV8CDRGWBfoqLJ1Nn1HcBPzewAADM7xMxGh+99AJhgZkPDAep7u2CddxL2o18B15rZnmY2lKgCv70qgO+Y2f6huft3+WifzGbf2AvY4O61ZnYs0YG9uf8TYj2aqK7u/ti4z5jZf4TWVlcSFSM/2cKyWvtvQpSpXEFUnxLfR24l+u8NAgjrOzaMexA4I7YP/YBde7zN9BvHPQV8aGZXm9keZlZoZsPM7F/D+J8DPzSzw8Ox8hNmlsoImx+XzjCzwWZmfPR/3+m41ES2ZWld6UVUzrqVqB5mM7CSpq2E+oSN8S7RAfa7RBu/KGyQqbFpLyWqBCtOs5wJtFxOPYKmLTmOJmqN9AFRy6t/j407nKjicRPRlcAnQhybiYpmfkua1jaZ1iVdDC3Mvw9RGfe68Hu9SlQhuW+muIkOaL8nqsz+kKji+oTY984nKhLYlC52mrbU2kLUauVjsfFHAr8L6/U+8Djwqdi8P2plvS4j+oNsIspI7+OjStQRRMUm04muItYCF7Qhtp3qQYiujleE32lF/LcI408M8/3fZuklRPUdr4XfcTVNW/lMJSqKyqYVWavrnOZ/kqoz3D/sZ21pRRavz6kC/jO2Tj8jOotfH4ZLYtO2tm+cQ3TVsDnENBe4u9myU63I3gKuis17LU1bkT1LaOjQfJ2z+W+G8QOJWr79rll6AdEJ3cthWa8CM2Pjx4d9q82tyJqNuza1/s32m7S/cfNtTVR0VhF+q400rSsuJGp5+npYh6cJdWtERZPrw3b6ElHrxzVEGXI1oc4y08vCF4l0KjO7i+hP8J0Elj2C6A/bv4Xxd5FQbJKZmR3KR63C6tOMv5YoA/5q50aWP8zsZODnHhVlJWq3LyITEelmhhFlwonrOneEiohIRmY2GziTjtWh7TIqIhMRkZxQEZmIiOREtysi22+//fzQQw9NOozdQk1NDaWlLd1CI5Is7Z+7zooVK95z9/1bn7KpbpfBHHrooSxfvjzpMHYLVVVVjBgxIukwRNLS/rnrmFk2PTvsREVkIiKSE8pgREQkJ5TBiIhITiiDERGRnFAGIyIiOZGzDMbM5pvZO2a2MpbW18yWmtnfw3ufkG5m9jMze8XMXjCzT8fmGR+m/7uZjY+lf8bMXgzz/Cz08CmdwMwwM8rKyhqHRfJFeXk5JSUllJWVUVJSQnl5edIhdVu5vIK5i+iRr3FTgWXufjjRc+5TD6wZQ9Sj8OFEvaTeAlGGRNRF+XFET5n8XipTCtNMis3XfFmSA/HMZNq0aWnTRZJSXl7OrbfeysyZM3nkkUeYOXMmt956qzKZhOQsg3H3PxJ1NR83FlgQhhcQPWM6lb7QI08Cvc3sIKLHgC519w3uvpGo+/TTwri93f2vHvV1szD2XdIJ3J1TTz0VdTUk+eSOO+7g+uuvZ8qUKZSUlDBlyhSuv/567rjjjqRD65Y6+0bLfu6+HsDd16ceskT0eNL4w5yqQ1qm9Oo06WmZ2SSiqx369etHVVVVx9aim5s2bRpVVVVs2bKFqqoqpk2bxnXXXaffVRK3bds2hg4d2mT/HDp0KNu2bdP+mYB8uZM/XfmKtyM9LXe/HbgdYPjw4a67ezvmuuuuY+bMmY13SpeVlQHormlJXHFxMatWrWLKlCmN++esWbMoLi7W/pmAzm5F9nYo3iK8vxPSq2n6jO3UM7QzpfdPky6dxMx47LHHVPcieeXiiy/m6quvZtasWdTW1jJr1iyuvvpqLr744qRD65Y6+wpmMdFzCv47vD8cS7/czO4jqtD/IBShPQrMjFXsnwpMc/cNZrbZzD5L9EztrwFzOnNFuit3b8xUrrvuuibpIkmbMyc6DFxzzTVs27aN4uJiLrnkksZ06Vy5bKZcAfwVONLMqs1sIlHGMsrM/g6MCp8BlhA9k/wV4A7gvwDcfQPRs8GfDq8fhDSAS4Gfh3leBR7J1bpIU6nnbVdWVsafES6SF+bMmUNtbS2VlZXU1tYqc0lQzq5g3H1cC6NGppnWgcta+J75wPw06cuJHg0qnayiooIZM2awevVqhgwZwvTp0xk3rqXNLSLdle7klzapqKhg8uTJ1NTU4O7U1NQwefJkKioqkg5NRPKMMhhpk6uuuorCwkLmz5/PY489xvz58yksLOSqq65KOjQRyTPKYKRNqqurWbhwIWVlZRQVFVFWVsbChQuprq5ufWYR6VaUwYiISE4og5E26d+/P+PHj6eyspL6+noqKysZP348/fv3b31mEelW8uVOfukibrjhBiZPnsxFF13E2rVrGThwIPX19dx4441JhyYieUZXMNIm48aNY/bs2ZSWlgJQWlrK7Nmz1UxZRHaiKxhps3HjxjFu3LjGvp5ERNLRFYyIiOSEMhgREckJZTAiIpITymBERCQnlMGIiEhOKIMREZGcUAYjbVZRUcGwYcMYOXIkw4YNU0/KIpKWMhhpE3XXLyLZUgYjbaLu+kUkW8pgpE2qq6uZMGEC5eXljB49mvLyciZMmKDu+iVvqAg3f6irGGmzO++8k4qKChoaGigsLFQ/ZJI3KioqmD59OvPmzWvcPydOnAig/TQBuoKRNikqKqKurq5JWl1dHUVFOleR5M2YMYN58+Y1eSDevHnzmDFjRtKhdUs6KkibpM4K4931FxYW0tDQkHRoIqxevZoTTjihSdoJJ5zA6tWrE4qoe9MVjLTJ0KFDmTRpUpPu+idNmsTQoUMTjkwEhgwZwhNPPNEk7YknnmDIkCEJRdS96QpG2mT69Olpy7hVBCH5YPr06UycOLFx/6ysrNT+mSBlMNImqYrS8vJyVq9ezZAhQ5gxY4YqUCUvaP/ML+buScfQqYYPH+7Lly9POozdgh44JvlM++euY2Yr3H14W+dTHYyIiOSEMhgREckJZTAiIpITymBERCQnlMGIiEhOKIMRkd2KOrvMH4ncB2Nm3wD+E3DgReBC4CDgPqAv8AxwgbtvN7NiYCHwGeB94Dx3XxO+ZxowEWgArnD3Rzt5VUQkj6izy/zS6VcwZnYIcAUw3N2HAYXAl4HrgZ+6++HARqKMg/C+0d0HAz8N02FmQ8N8RwOnATebWWFnrouI5Bd1dplfkioiKwL2MLMiYE9gPXAy8GAYvwA4KwyPDZ8J40eamYX0+9x9m7u/DrwCHNtJ8YtIHlJnl/ml04vI3P0fZvYTYC2wFXgMWAFscvf6MFk1cEgYPgRYF+atN7MPgH1D+pOxr47P04SZTQImAfTr14+qqqpduUrd1pYtW/RbSl4ZOHAgc+fO5ZhjjmncP5999lkGDhyofTUBnZ7BmFkfoquPjwGbgEXAmDSTpvqwsRbGtZS+c6L77cDtEHUVo+4jdg11xSH5ZubMmY11MCUlJbg7c+bMYebMmdpXE5BEJf8pwOvu/i6Amf0KOB7obWZF4SqmP/BmmL4aGABUhyK1fYANsfSU+Dwi0g2ps8v8kkQdzFrgs2a2Z6hLGQmsAiqBc8I044GHw/Di8Jkw/nGPeuhcDHzZzIrN7GPA4cBTnbQOIpKnxo0bx8qVK1m2bBkrV65U5pKgJOpg/mZmDxI1Ra4HniUqvvodcJ+Z/SikzQuzzAN+YWavEF25fDl8z0tm9gBR5lQPXObueqyiiEieSKQVmbt/z92Pcvdh7n5BaAn2mrsf6+6D3f1cd98Wpq0NnweH8a/FvmeGux/m7ke6+yNJrEt3pBvZRCQbeuCYtIluZBORbKmrGGkT3cgmItnKOoMxs9JcBiJdg25kE5FstZrBmNnxZrYKWB0+f9LMbs55ZJKXhgwZwhNPPNEk7YknnmDIkCEJRSQi+SqbOpifAqOJmgXj7s+b2Uk5jUry1vTp0znvvPMoLS3ljTfeYNCgQdTU1DB79uykQxORPJNVEZm7r2uWpObA3diGDRtYs2YN7s6aNWvYsGFD0iGJNFIrx/yRzRXMOjM7HnAz60nUE7IK3LupCy+8kIaGBs4880wuvPBC7rzzThYvXsyFF16oVmSSOLVyzC8W3RSfYQKz/YDZRF28GFHnlJPd/f3ch7frDR8+3JcvX550GF2WmTFo0CDeeusttm3bRnFxMQceeCBvvPEGre1LIrk2bNgw5syZQ1lZWWNfeZWVlZSXl7Ny5cqkw+uyzGyFuw9v63ytXsG4+3vA+e2KSnZL69at48c//jFDhw5l1apVfPvb3046JBFArRzzTYsZjJnNoYXeiQHc/YqcRCR5r7CwkGOOOYaGhgaOOeYYCgsL2bFjR9JhiTS2ciwrK2tMUyvH5GS6glE5kqRVV1fH2LFjqampobS0lLq6uqRDEgGiVo4TJ05srIOprKxk4sSJuhE4IS1mMO6+AMDMznX3RfFxZnZurgOT/FRcXMyOHTvYvHkzAJs3b6ZHjx4UFKhTCEmeuuvPL9kcFaZlmSbdwAEHHEBdXR3HH388ixYt4vjjj6euro4DDjgg6dBEAHXXn08y1cGMAU4HDjGzn8VG7U3UPb50Q9XV1QwbNowVK1Zw7rnnUlxczLBhw3jppZeSDk1E8kymK5g3iephaoEVsddiojv7pRtyd6688koGDx5MQUEBgwcP5sorr1QTZRHZSaY6mOeB583snvAYYxEAvvGNb/Dwww833sg2duzYpEMSkTzU4hVMeFokwLNm9kLzVyfFJ3mmtLSUzZs3s2jRImpra1m0aBGbN2+mtFSdbYtIU5maKU8O72d0RiDSNWzdupVTTjmFW2+9lVtuuQUz45RTTuHxxx9POjQRyTMtXsG4+/ow+F/u/kb8BfxX54Qn+WbIkCFcc8017Nixg8rKSnbs2ME111yjG9lEZCfZNFMelSZtzK4ORLqG1I1slZWV1NfXN97INn369KRDE5E8k6mZ8qVEVyofb1bnshfw51wHJvlJN7KJSLYy1cHcCzwCXAdMjaVvdnc9AKQbGzduHOPGjWvsrVZEJJ1MdTAfuPsadx/XrA5GmUs3pwc6iUg2snngmEgjPdBJRLKlDEbaZMaMGXzyk59kzJgxjQ8cGzNmjOphRGQnrWYwZna9u1/dWpp0Dy+99BIvv/wy119/feMDx66++mrq69XZg4g0pWbK0iZmxsUXX8yUKVMoKSlhypQpXHzxxZhZ0qGJSJ7JppnyYWmaKf8l14FJfnJ3lixZQmVlZeMDnZYsWaLOLkVkJ2qmLG1SXFzMCSec0OQ+mBNOOIG33nor6dBEJM9k6k35A+ADM5sNbHD3zQBmtpeZHefuf+usICV/XHzxxdx666071cFccsklSYcmInkmm1ZktwCfjn2uSZPWJmbWG/g5MAxw4CLgZeB+4FBgDfAld99oUeH+bKKHn/0TmODuz4TvGQ98J3ztj1KPeZbcmTNnDgDXXHNNYyuySy65pDFdRCQlm0p+81gBu7vvoOPNm2cDv3f3o4BPAquJiuGWufvhwDI+KpYbAxweXpOIMjfMrC/wPeA44Fjge2bWp4NxSRbmzJlDbW0tlZWV1NbWKnMRkbSyyWBeM7MrzKxHeE0GXmvvAs1sb+AkYB6Au293903AWCB1BbIAOCsMjwUWeuRJoLeZHUT0VM2l7r7B3TcCS4HT2huXZK+8vJySkhLKysooKSmhvLw86ZBEJA9lcyVyCfAzoqIoJ7q6mNSBZX4ceBe408w+SfQY5slAv9QjAtx9vZkdEKY/BFgXm786pLWUvhMzm5SKuV+/flRVVXUg/O5t9uzZLF68mH322Yft27ez5557cvPNN1NdXc3kyZNb/wKRTrJlyxb91xPWagbj7u8AX97Fy/w0UO7ufwuNCKZmmD7dDRaeIX3nRPfbgdsBhg8f7uqgsf1GjRpF7969efDBBxu7ijnnnHP47W9/y0MPPZR0eCKN1Blr8lotIjOzI8xsmZmtDJ8/YWbfaW2+DKqB6lgrtAeJMpy3Q9EX4f2d2PQDYvP3B97MkC45VF9fz913301ZWRlFRUWUlZVx9913605+EdlJNnUwdwDTgDoAd3+BDlzRuPtbwDozOzIkjQRWAYuB8SFtPPBwGF4MfM0inwU+CEVpjwKnmlmfULl/akiTHFu5cmXGzyIikF0dzJ7u/lSzrkA6erpaDtxjZj2JGgxcSJTZPWBmE4G1wLlh2iVETZRfIWqmfCGAu28wsx8CT4fpfqAbQHOvb9++TJs2jcLCQoYOHcqsWbOYNm0affv2TTo0Eckz2WQw75nZYYT6DTM7B1jfkYW6+3PA8DSjRqaZ1oHLWvie+cD8jsQibTN37ly+/vWvM3XqVOrq6ujRowd77rknc+fOTTo0Eckz2RSRXQbcBhxlZv8ArgQuzWlUkrfGjRvHbbfdxhFHHEFBQQFHHHEEt912m7rql7yhB+LlD8u2k0IzKwUKUl3GdFXDhw/35cuXJx3GbkGtdCTfVFRUMHnyZEpLS1m7di0DBw6kpqaG2bNn6ySoA8xshbunK3XKPF9LGYyZfdXd7zazKWlGO7ABWBxucuwylMHsOspgJN8MGDCAhoYG7rnnnsZm9Oeffz6FhYWsW7eu9S+QtNqbwWQqIisN73ulee0NfIaot2XpZlQEIfmqurqaBQsWNGlGv2DBAqqrq5MOrVvK1JvybeH9+y1NY2Y/yEVQkr8qKiqYPn068+bNazxDnDhxIoCKIESkiVbrYMysPzAH+BxR0dgTwGR375KnBCoi65hhw4Zx1lln8etf/7rxeTCpz7ofRpI2YMAA6uvruffeextPgL7yla9QVFSkIrIOaG8RWTbNlO8kevhY6r6Ur4a0dI9Slt3cqlWr+Oc//7nTFcyaNWuSDk2EG264gcmTJ3PRRRfxxhtvMGjQIBoaGpg1a1bSoXVL2TRT3t/d73T3+vC6C9g/x3FJnurZsyeXX355kzLuyy+/nJ49eyYdmgjjxo3jvPPOY/369bg769ev57zzzlPxbUKyyWDeM7OvmllheH0VeD/XgUl+2r59O3PmzKGyspL6+noqKyuZM2cO27dvTzo0ESoqKrj//vs56KCDMDMOOugg7r//fjVESUg2dTADgbnAvxHVwfyFqA7mjdyHt+upDqZjVAcj+Ux1MLmRkzoYMysEznb3M9sdmexWpk+fnrYV2YwZM5IOTYTq6moee+wxysrKGu/TWrhwIaeeemrSoXVLGYvI3L2B6ImSIkBUxt2rVy9OPvlkRo0axcknn0yvXr1Uxi0iO8mmDubPZjbXzE40s0+nXjmPTPLS6NGjefHFF7n00kv5zW9+w6WXXsqLL77I6NGjkw5NhP79+zN+/PgmdYTjx4+nf//+SYfWLWVTB1OZJtnd/eTchJRbqoPpmIKCAkaOHMn69esb62AOOuggli1bxo4dO5IOT7o59UWWGzm7D8bdy9oXkuyO3J3nnnuOXr164e7U1NTw3HPPkW2nqSK5lMpEUnWCpaWlzJw5U5lLQrK5gtkX+B5wAh/dyf8Dd++STZV1BdMxZsYee+zB7373u8ZK/i984Qts3bpVmYzkFXXGuuvkorPLlPuAd4GzgXPC8P1tXZDsPrZu3cqiRYuora1l0aJFbN26NemQRCQPZXMFs8LdP9MsbXl7crN8oCuYjjEzSkpKqK2tbUxLfdYVjOSDiooKZsyY0VhHOH36dBWRdVAu+yKrNLMvAw+Ez+cAv2vrgmQnb+aFAAATIUlEQVT3UFRURG1tLXvssQe1tbWUlJSwdetWioqy2ZVEcku9feeXbK5gNhM9G6YhJBUCNWHY3X3v3IW36+kKpmPMDIB+/frxzjvvcMABB/D2228D6ApGEqeeJnIjl63I9mpfSLK7GjNmDI8//jjuzqZNmxgzZgyPPKJnz0nyVq1aRU1NDfPnz2+8gkn1rCydL5tKfpEmqqqqeOSRR1i6dCmPPPIIVVVVSYckAkS9fZeXlzfp7bu8vFy9fSdEGYy0iZmxdetWbrrpJrZs2cJNN93E1q1bG4vORJK0fft25s6d2+RO/rlz56q374S0Wgezu1EdTMcUFBRgZk3u2i8oKMDddSe/JE51MLmRy1ZkqV6V+8Wnd/e1bV2YdH19+vRh48aNHHjggU0q+fv06ZN0aCLq7TvPtJrBmFk50Z38bwOpU1QHPpHDuCRPffjhh/Tp06fJ8zbOOeccPvzww6RDE2lsilxeXt54BTNjxgw1UU5INs2UXwGO66pdwzSnIrKOMTMmTZrEggUL2LZtG8XFxYwfP57bb79dzZQlr6irmF0nl13FrAM+aHtIsjsqKirinnvuafJI2nvuuUc3WorITrLJYF4DqsxsmplNSb1yHZjkp+LiYmpqali7di3uztq1a6mpqaG4uDjp0ESAqHispKSEsrIySkpKKC8vTzqkbiubDGYtsBToCewVe0k3VFNTg5k1NktODdfU1LQyp0julZeXc/PNN9O7d28Aevfuzc0336xMJiFqpixtYmaMHDmSt956q7ES9cADD2TZsmWqg5HE9ejRg7322otf/vKXjY1Qzj77bDZv3kxdXV3S4XVZ7a2DaTGDMbOb3P1KM/sNUauxJtz9zLaH2eT7C4HlwD/c/Qwz+xjRowH6As8AF7j7djMrBhYCnwHeB85z9zXhO6YBE4n6SbvC3R9tbbnKYDom0w2VymAkaWbGMccc0/gQPDPjU5/6FM8++6z2zw7IxX0wvwjvP2lfSK2aDKwGUp1lXg/81N3vM7NbiTKOW8L7RncfHHp1vh44z8yGAl8GjgYOBv7HzI5w94bmCxKR7uPZZ5/l0ksv5fTTT2fJkiXccsstSYfUbbVYB+PuK8L7H9K9OrJQM+sPfAH4efhswMnAg2GSBcBZYXhs+EwYPzJMPxa4z923ufvrwCvAsR2JS0S6PjNj8ODBFBUVMXjwYHVjlKCk2pbeBFzFR40F9gU2uXt9+FwNHBKGDyFqKo2715vZB2H6Q4AnY98Zn6cJM5sETIKom3l1zpgb+l0lH5SUlHD11VdTX19PUVFR4zOLtH92vk7PYMzsDOAdd19hZiNSyWkm9VbGZZqnaaL77cDtENXB6Oar3NDvKkkzM44//vjGRihHHnkkBx54II8//rj2zwS0qTdlMysws44+YOxzwJlmtoaoUv9koiua3maWyvD6A2+G4WpgQFh+EbAPsCGenmYeEemGRo0axbJlyzjppJN4+OGHOemkk1i2bBmjRo1KOrRuKZuuYu4FLiFqqbWC6AA/y91/3OGFR1cw3wqtyBYBv4xV8r/g7jeb2WXAv7j7JaGS/z/c/UtmdjRwL1G9y8HAMuDw1ir51YqsY9SKTPLd6NGjWbp0aWMrslGjRvHoo602MJUMctlVzFB3/5Co0n0JMBC4oK0LysLVwJTQ99m+wLyQPg/YN6RPAaYCuPtLwAPAKuD3wGVqQSYiEyZMYOjQoRQUFDB06FAmTJiQdEjdVjZ1MD3MrAdRBjPX3evMbJecqrp7FVAVhl8jTSswd68Fzm1h/hmA+uEWEQAqKiqYPHkypaWlQNTzxOTJkwHUo3ICsikiu4Lo6uJ5oqbFA4G73f3E3Ie366mIrGNURCb5bMCAATQ0NHDPPfc03sl//vnnU1hYyLp165IOr8vKWRGZu//M3Q9x99M98gZQ1q4oRURyqLq6mgULFlBWVkZRURFlZWUsWLCA6urqpEPrllosIsuix+RZuzgWEZEOmzp1KqNHj26s5D/mmGOSDqnbynQFk+o1eThwKdFNjIcQtSgbmvvQRETapri4mGeeeYYvfvGLPPTQQ3zxi1/kmWee0eMkEpJNHcxjwNnuvjl83gtY5O6ndUJ8u5zqYDpGdTCSz8yMHj16AFBXV9dkWPtn++WymfJAYHvs83bg0LYuSESkM/Ts2TPjZ+k82TRT/gXwlJk9RNQVy7/zUeeTIiJ5paGhgUcffbSxFdnpp5+edEjdVqsZjLvPMLNHgFSz5Avd/dnchiUi0j61tbWcffbZbNq0id69e1NbW5t0SN1WxgzGzAqIumwZRvQQMBGRvFZYWMjGjRsB2LhxI4WFhTQ0qJOPJGSsg3H3HcDzZjawk+IREWm3goIC3J0bb7yRRx55hBtvvBF3p6CgTf36yi6STR3MQcBLZvYUUJNK7Ogjk0VEdrUdO3ZQUlLC1KlTG1uR9ezZU8VkCckmg/l+zqMQEdlF6urqGovE6urq2LFjR8IRdV/ZdBXzB+D/8dGNl6s7+shkEZFcaWhooFevXgD06tVL9S8JajWDMbMvAU8R9Wj8JeBvZnZOrgMTEWmvLVu2NHmXZGRTRDYd+Fd3fwfAzPYH/gd4MJeBiYhI15ZN04qCVOYSvJ/lfCIiiTjzzDN56KGHOPNMtUVKUjZXML83s0eBivD5PKInW4qI5KXFixezePHipMPo9rK5k//bZnY28DnAgNvd/aGcRyYiIl1apufBXAn8GXjW3X8J/LLTohIR6YDU3fu6iz9Zma5g+gOzgaPM7AXgL0QZzl/dfUNnBCci0h6pTEWZS7JazGDc/VsAZtaT6KFjxwMXAXeY2SZ310PHRESkRdm0BtsD2BvYJ7zeBP6Wy6BERDoi1feY+iBLVqY6mNuBo4HNRBnKX4BZ7r6xk2ITEWmXVPcw6iYmWZmy94FAMfAW8A+gGtjUGUGJiHREnz59MDP69OmTdCjdWqY6mNMsegD70UT1L98EhpnZBqKK/u91UowiIm0Sfx6MJCfjfTDu7sBKM9sEfBBeZwDHAspgRESkRZnqYK4gunL5HFBHaKIMzAde7JToRESky8p0BXMoUYeW33D39Z0TjoiI7C4y1cFM6cxARERk96JG4iIikhOdnsGY2QAzqzSz1Wb2kplNDul9zWypmf09vPcJ6WZmPzOzV8zsBTP7dOy7xofp/25m4zt7XUREpGVJXMHUA9909yHAZ4HLzGwoMBVY5u6HA8vCZ4AxwOHhNQm4BaIMiagl23GEVm2pTElERJLX6RmMu69392fC8GZgNXAIMBZYECZbAJwVhscCCz3yJNDbzA4CRgNL3X1D6F1gKXBaJ66KiIhkkM0Dx3LGzA4FjiHqiqZfqrWau683swPCZIcA62KzVYe0ltLTLWcS0dUP/fr1o6qqapetg3xEv6vkM+2fnS+xDMbMehE9Y+ZKd/8w6jQg/aRp0jxD+s6J7rcDtwMMHz7cR4wY0eZ4pXX6XSWfaf/sfIm0IjOzHkSZyz3u/quQ/HYo+iK8vxPSq4EBsdn7E/Xo3FK6iIjkgSRakRkwD1jt7rNioxYDqZZg44GHY+lfC63JPgt8EIrSHgVONbM+oXL/1JAmIiJ5IIkiss8BFwAvmtlzIe0a4L+BB8xsIrAWODeMWwKcDrwC/BO4EMDdN5jZD4Gnw3Q/0JM2RUTyh0X9WXYfw4cP9+XLlycdRpeVoa6M7rYvSf7R/pkbZrbC3Ye3dT7dyS8iIjmhDEZERHJCGYyIiOSEMhgREckJZTAiIpITymBERCQnlMGIiEhOKIMREZGcUAYjIiI5oQxGRERyQhmMiIjkhDIYERHJCWUwIiKSE8pgREQkJ5TBiIhITiiDERGRnEjiiZYiIrtEpgeMZZpWDx/rHMpgRKTLap5R6ImW+UVFZCIikhO6gpFWZVsM0Xw6nTFKZ3P3tPur9sVkKIORVsX/nCqCkHyX2g/NTPtkwlREJiIiOaEMRtqkpTNCnSmKSHMqIpM2UxGEiGRDVzAiIpITymBEJO/17dsXM2vTC2jT9H379k14LXc/ymBEJO9t3LgRd2/Tq7Kysk3Tb9y4MenV3O0og5FGbT1LhLadIeosUaR7UQYjjdp6ltjWM0SdJYp0L2pFJiJ5z7+3N1y7T5vmGQFQ1cZlyC5l3a2Z6fDhw3358uVJh5Gf2vgHbv9yPuic5chuoz1N4quqqhgxYkROl9FdmNkKdx/e1vm6/BWMmZ0GzAYKgZ+7+38nHFKXZd//sE1/sLb+gSH8ia9tW1wi0Lau+dujT58+Of3+7qhLZzBmVgj8X2AUUA08bWaL3X1VspF1XfoTSz5qz5WFrkiS16UzGOBY4BV3fw3AzO4DxgLKYNqhrX9G/YFFJJOunsEcAqyLfa4Gjms+kZlNAiYB9OvXj6qqqk4JbndRVlbW4rhMVzyVlZW5CEekUaZ9E1reP7Vvdo6unsGk23t2OqV299uB2yGq5G9rvUF319JVSnvqYER2pUxX0No/k9fV74OpBgbEPvcH3kwoFhERienqGczTwOFm9jEz6wl8GViccEwiIkIXLyJz93ozuxx4lKiZ8nx3fynhsEREhC6ewQC4+xJgSdJxiIhIU129iExERPKUMhgREckJZTAiIpITymBERCQnul1vymb2LvBG0nHsJvYD3ks6CJEWaP/cdQa5+/5tnanbZTCy65jZ8vZ04S3SGbR/Jk9FZCIikhPKYEREJCeUwUhH3J50ACIZaP9MmOpgREQkJ3QFIyIiOaEMRkREckIZTJ4xs383Mzezo5KOJRtmtqWF9AYze87MVprZIjPbs43fu8TMercjnhFmdnxb55PsNNuuv8lmG5nZX9q5rLPMbGg75tM+mSeUweSfccATRM+22SXMLIles7e6+6fcfRiwHbikWUxmZi3uf+5+urtvasdyRwDd8s/cSeLbdQNwWWszuHt7t8dZQJszmAy0T3YyZTB5xMx6AZ8DJhLLYMIZ0B/N7CEzW2Vmt6b+CGa2xcxuNLNnzGyZme0f0qvMbKaZ/QGYbGaDwvgXwvtAM9vHzNbEvmtPM1tnZj3M7DAz+72ZrTCzP6WuqMLD3f5qZk+b2Q+zXLU/AYPN7FAzW21mNwPPAAPMbJyZvRjOKq+PrfMaM9svDH/VzJ4KZ5+3mVlhSD8trPfzYZ0OJTpofCNMe6KZnRu++3kz+2P7t46k8VfgkNQHM/t22C9eMLPvx9K3ZDHN10La82b2i3DGfybw47AtD9M+2QW5u1558gK+CswLw38BPh2GRwC1wMeJHqy2FDgnjHPg/DD8XWBuGK4Cbo5992+A8WH4IuDXYfhhoCwMnwf8PAwvAw4Pw8cBj4fhxcDXwvBlwJYW1mVLeC8Ky7gUOBTYAXw2jDsYWAvsH6Z7HDgrjFtD1NXHkBB7j5B+M/C1MM864GMhvW94vxb4ViyOF4FDwnDvpLdxV3/FtmshsAg4LXw+lahZsBGduP4WOKnZPGmnAY4GXgb2a7Yt70rt59onu+ZLVzD5ZRxwXxi+L3xOecrdX3P3BqACOCGk7wDuD8N3x9KJpQP8G3BvGP5FbLr7iTIWiK6a7g9XUscDi8zsOeA24KAwzefC8lPf05I9wrzLif6w80L6G+7+ZBj+V6DK3d9193rgHqIDTtxI4DPA0+H7RhJltJ8F/ujurwO4+4YW4vgzcJeZXUx0UJSOSW3X94G+RCc7EGUepwLPEl0JHAUc3mzelqY5GXjQ3d+D9NtS+2TX1OWfaLm7MLN9if5ow8zMiXY8N7OrwiTNb1hq6QameHpNhkWmplsMXGdmfYn+NI8DpcAmd/9UFstoydbm85tZ85gsi+8xYIG7T2v2XWdmE4e7X2JmxwFfAJ4zs0+5+/tZLFfS2+runzKzfYiuQC4Dfka0na5z99syzJt2GjO7gta3ZQHaJ7scXcHkj3OAhe4+yN0PdfcBwOt8dKVxbChrLiC64ngipBeEeQG+Ektv7i98VK9zfmo6d98CPAXMBn7r7g3u/iHwupmdC42Vn58M8/652fd0xN+Az5vZfqEMexzwh2bTLAPOMbMDQix9zWwQUfn/583sY6n0MP1mYK/UzGZ2mLv/zd2/S9Sz7oAOxiyAu38AXAF8y8x6AI8CF4UrDczskNQ2i2lpmmXAl8JJVtptqX2yi0q6jE6v6EVUZ3Jas7QrgFuI6mAeJyrOWgXcChSEabYAPwRWhGn2j33f8Nh3HRrGv0D0BxkYG3cO0ZnX52NpHwN+DzwflvndWPpfgaeBqbRS3t0s7VBgZbO0rxCVSa8EboilrwH2DcPnAc+F2FfwUXn5GKLilueBpSHtiDDdc8CJwK9i3z+b0HuFXu3eT7c0+/wb4IIwPDn81i+GfeSwkL45Nn1L04wP2+h54K6Q9rmw7z0LHKZ9suu91FVMF2BmI4gqCc9IM26Lu/fq/KhyJ5w5vgMc6O51Sccj7ReuSp5x90FJx9IR2ifbR0Vkko9eImrNpj9yF2ZmBxNdWfwk6Vh2Ae2T7aArGBERyQldwYiISE4ogxERkZxQBiMiIjmhDEZERHJCGYyIiOTE/wfP4a8LDVP2JAAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# https://glowingpython.blogspot.com/2012/09/boxplot-with-matplotlib.html\n",
+ "plt.boxplot([approved_price, rejected_price])\n",
+ "plt.title('Box Plots of Cost per approved and not approved Projects')\n",
+ "plt.xticks([1,2],('Approved Projects','Rejected Projects'))\n",
+ "plt.ylabel('Words in project title')\n",
+ "plt.grid()\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "WjeL5bs5oc6s",
+ "outputId": "d7f9b31c-6f88-494d-979e-5c3ff95eb5f3"
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmkAAADgCAYAAABYUfHrAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xl8FdX9//HX52bfSFiiIvumsoWAgEuVorjgimvF3daWWrUuVQv2Vy21Wm2rRf2q5atfl1YRUFRE6y4idQNBKbKIgqwCsiZk3+75/TGTcAk35Ca52eD9fDzug5kzZ86cmbkhn5w5Z4455xARERGRliXQ3BUQERERkb0pSBMRERFpgRSkiYiIiLRACtJEREREWiAFaSIiIiItkII0ERERkRZIQZqItBpm9oyZ3d1Ex3Jm1rspjnUgMLOJZvZcEx1rqZmNbIpjiTQmBWlywDOzS8xsgZnlm9kmM3vTzI5rYJlrzOykaNVR9h/6buzNzEaaWdD/GcwzsxVm9tP6luec6++cm9PAOjXZHwQiNVGQJgc0M/sN8CDwZ+BgoCvwGDCmOetVF2YW28zHj2nO40v9Nfd3p5qNzrlUoA0wHnjCzPpVz9TC6izSqBSkyQHLzNKBu4DrnHMvO+cKnHNlzrnXnHO3+XkSzOxBM9vofx40swR/Wwcze93Mcsxsh5n9x8wCZvYsXrD3mt8y8Nswxx5pZhvM7Hdmts1vXbk0ZHuCmd1vZuvM7Aczm2xmSdX2HW9mm4Gnw5Tfy8xmm9l2v/wpZpYRsn2Nmd1uZsvMbKeZPW1miRHW7Rkz+4eZvWFmBcAJZpZuZv8ys61mttbMfu9fiwT/+gwI2T/TzIrM7CB//UwzW+Tn+8TMskLyDjazL/zWlelA4j7uZyTnfKuZLTazXDObXnnO/vbb/JbUjWb2s5qO4+edY2Z/MrOP/bq9Y2YdQraf7T9yy/Hz9vXTI/lutPW/V1v9e/O6mXWudux7zWy+fx6vmlk7f1t38x7TjvPPY5OZ3RKy70Qzm2Fmz5nZLuCqWr7jy83szJD9Y/1rO8RfP9q/Zzlm9l8LecRoZj3M7EP/+rwLVF2ffXGemcBOoF/IOV1tZuuA2fu6xv62qtZK/3s4wcxW+d+NFyqvl7/9uJBzWG9mV5nZOOBS4Lf+fXrNzzvezL633a19oyI5J5F6c87po88B+QFGA+VA7D7y3AV8BhwEZAKfAH/yt90LTAbi/M/xgPnb1gAn7aPckf6x/w4kAD8GCoDD/e0PArOAdkAa8Bpwb7V9/+LvmxSm/N7Ayf72TGAu8GDI9jXAEqCLf4yPgbsjrNszQC7wI7w/9BKBfwGv+nXtDnwDXO3nfwq4J+TY1wFv+ctDgC3AUUAMcKVftwQgHlgL3Oxf3wuAssp61vOc5wOH+ue8HLgm5LvwAzAASAGeBxzQu4ZjzQFWAYcBSf76ff62w/zrdbJf798CK4H4CL8b7YHzgWT/er4IzKx27O9D6voS8Jy/rbtf76n+toHA1srjARP9a3iOf++S2Pd3/E5gSsixzwC+9pc7AduB0/2yTvbXM/3tn7L7OzQCyKusZw0/Dxv85QBwrl/Pw0PO6V/+OSXV5RoDN/nn19mvy/8CU/1tXf16XeyX0x7IDvme3x1Sx8OB9cChIde6V3P/P6bP/v1p9groo09zffD+Ut5cS55VwOkh66cCa/zlu/ACk71+kUfwi3gkXiCUEpL2AnAHYP4voF4h244BVofsWwok1uFczwG+rFa/a0LWTwdW1VY3f/kZ4F8h22KAEqBfSNovgTn+8knAdyHbPgau8Jf/gR8QhGxfgRcYjgA24ge+/rZPqCFIi/CcLwtZ/ysw2V9+Cj/I8tcPo/Yg7fch69eyO/C8A3ghZFsAL6gaGcl3I8yxsoGd1Y4dWtd+/vchht0BzRHVzvNJf3kiMLcO3/HeeEFMsr8+BbjTXx4PPFutrLfxAu2uYb5Dz7PvIC0I5AA7gEXAWH9b5Tn1DMkf8TXGC8ZHheTtiBcAxgK3A6/UUKdn2DNI6433B8VJQFyk908ffRry0bN9OZBtBzqYWaxzrryGPIfiteZUWuunAfwN75feO2YG8Lhz7r46HH+nc64gTNmZeK0oC/1ywQvcQvt+bXXOFddUsP8o8WG81r00vF9iO6tlWx/m2LXVLdy+Hdjd6hWav5O/PBtIMrOjgM14Qccr/rZuwJVm9uuQfeP9Yznge+ecq1ZuWBGe8+aQ5cKQczoUWBjJcfZRVmpIWVX7O+eCZrae3ddjn8wsGZiE17rX1k9OM7MY51yFv1793sWx5+PE6tsH1rBtr/oScq+dcyvNbDlwlv/I72xgsJ+vG3ChmZ0Vsm8c8IG/f7jvUJewJ+3Z6JzrvI/tofWuyzXuBrxiZsGQtAq8Pqhd8ILUWvnX4ia8n/n+ZvY28Bvn3MZI9hepD/VJkwPZp0AxXotLTTbi/SdfqaufhnMuzzl3i3OuJ3AW8JuQPiqO2rU1s5QwZW8DioD+zrkM/5PuvE7VlWor/14/T5Zzrg1wGV6gFyr0F2bVedVSt3DH34bXMlH9On0P3i9QvJa4i4FLgNedc3l+vvV4j0IzQj7JzrmpwCagk4VEqn65DTnnmmxi7+tRX3t8Z/z6d8G/HtR+727Be7R2lH8eIyqLCslTva5lePehpu013bu96hsm/1S8ezcGWOacW+mnr8drSQu9dyn+HyqbCP8daojQetd2jUOtB06rVs9E59z3/rZeERzPS3Dueefccf6xHV6XA5FGoyBNDljOuVy8PjePmtk5ZpZsZnFmdpqZ/dXPNhX4vXmd3Tv4+Z+Dqg7vvf1fELvw/jqvbOn4AegZQTX+aGbxZnY8cCbwoh/UPAFMst2d6zuZ2al1OL00IB/IMbNOwG1h8lxnZp39TtS/A6bXVrdwB/Jbd14A7jGzNDPrBvwG/zr5ngcuwnvE/HxI+hPANWZ2lHlSzOwMM0vDC6LLgRv8DuvnAcMbeM41eQGvE30/vyXrD3XYN1xZZ5jZKDOLwwu6SvAe1ULt3400vCA9x7834epyWUhd7wJmhLSyAdzhf5/7Az9l73sbqsbvuG8acArwK/a8d8/htbCdamYxZpZo3qCTzs65tcACdn+HjsP7QyZaarvGoSbjfTe7QdXAlcrR21OAk8zsJ/53rL2ZZfvb9rhPZna4mZ1o3qCKYrx7FHrNRaJOQZoc0Jxzf8cLKH6P18F6PXA9MNPPcjfeL5vFwFfAF34aQB/gPbzA4FPgMbf73Uz34v3iyzGzW2s4/Ga8x3Eb8X5ZXOOc+9rfNh6vI/Rn5o3Cew+vdSVSf8TrlJ8L/Bt4OUye54F3gO/8T+g7ofZVt3B+jdeP7jvgI7/spyo3Oufm+dsPBd4MSV8A/AJ4xD/eSuAqf1spcJ6/vhMvyAt3HnU557Ccc2/iDdaY7ddhdqT7hilrBV4r3v/gtW6dBZzlnw/U/t14EK9z/Da8Du9vhcnzLF6fqc14AzduqLb9Q/883gfud869s48q7+s7jnNuE973+1hCgj3n3Hq81rXfsftn5zZ2/165BG9AyA68QPNf+6hDnURwjUM9hDcI5x0zy8O7pkf55azD6495C7v7wg3y93sSb3RpjpnNxBt0cJ9/vM14Ay1+F61zEgmnciSaiDQh815V8FwtfXAa8/hrgJ87594Ls20kzVg32Tczm4N3f/4vzLbuwGq8ju019bPc75n3qo7LnHNzm7suIg2hljQREdlvmFkm3uCbNc1cFZEGU5AmIiL7BTMbBnwL/I//KFOkVdPjThEREZEWSC1pIiIiIi2QgjQRERGRFmi/mHGgQ4cOrnv37s1dDREREZFaLVy4cJtzLrO2fPtFkNa9e3cWLFjQ3NUQERERqZWZRTL1nB53ioiIiLREEQVpZjbazFaY2UozmxBme4KZTfe3z/NfqFi57XY/fUXltDZm1sXMPjCz5Wa21MxuDMk/0cy+N7NF/uf0hp+miIiISOtS6+NOM4sBHgVOBjYAn5vZLOfcspBsVwM7nXO9zWws3qSzF5lZP2As0B9vOpj3zOwwvPn4bnHOfeHP0bfQzN4NKXOSc+7+aJ2kiIiISGsTSZ+04cBK59x3AGY2DW++ttAgbQww0V+eATziTzo9BpjmnCsBVpvZSmC4c+5TYBOAcy7PzJYDnaqVKSIi0izKysrYsGEDxcXFzV0VacUSExPp3LkzcXFx9do/kiCtE97EuZU24E9OGy6Pc67czHKB9n76Z9X27RS6o/9odDAwLyT5ejO7Am/S31ucczurV8rMxgHjALp27RrBaTS9gpJy8kvKObhNYnNXRURE6mDDhg2kpaXRvXt3vDYHkbpxzrF9+3Y2bNhAjx496lVGJH3Swn07q09TUFOefe5rZqnAS8BNzrldfvI/gF5ANl5r2wPhKuWce9w5N9Q5NzQzs9ZRrM3i4fe/5aL//bS5qyEiInVUXFxM+/btFaBJvZkZ7du3b1BrbCRB2gagS8h6Z2BjTXnMLBZIB3bsa18zi8ML0KY4516uzOCc+8E5V+GcCwJP4D1ubZU25RbzfU4RmnpLRKT1UYAmDdXQ71AkQdrnQB8z62Fm8XgDAWZVyzMLuNJfvgCY7bzIZBYw1h/92QPoA8z3+6s9CSx3zv09tCAz6xiyei6wpK4n1VLkl5RTVuEoLK1o7qqIiEgr9Morr2BmfP31181dlYikpqaGTY+JiSE7O5sBAwZw4YUXUlhYWKdyTz/9dHJycupcnzlz5vDJJ5/Ueb+WotYgzTlXDlwPvA0sB15wzi01s7vM7Gw/25NAe39gwG+ACf6+S4EX8AYEvAVc55yrAH4EXA6cGOZVG381s6/MbDFwAnBztE62qeUXlwOQW1TWzDUREZHWaOrUqRx33HFMmzYtamWWl5dHraxIJSUlsWjRIpYsWUJ8fDyTJ0/eY7tzjmAwWOP+b7zxBhkZGXU+7n4fpAE4595wzh3mnOvlnLvHT7vTOTfLXy52zl3onOvtnBteORLU33aPv9/hzrk3/bSPnHPmnMtyzmX7nzf8bZc75wb62852zm2K/mk3jV3FXnCmIE1EROoqPz+fjz/+mCeffHKPIG3OnDmMGDGCc889l379+nHNNddUBTipqanccsstDBkyhFGjRrF161YARo4cye9+9zt+/OMf89BDD7F27VpGjRpFVlYWo0aNYt26deTm5tK9e/eqsgoLC+nSpQtlZWWsWrWK0aNHc+SRR3L88cdXteytXr2aY445hmHDhnHHHXdEdF7HH388K1euZM2aNfTt25drr72WIUOGsH79eqZOncrAgQMZMGAA48ePr9qne/fubNu2DYDnnnuO4cOHk52dzS9/+UsqKrynVW+99RZDhgxh0KBBjBo1ijVr1jB58mQmTZpEdnY2//nPf3jxxRcZMGAAgwYNYsSIEQ28Q41vv5gWqqXKL/H+WskpVJAmItJa/fG1pSzbuKv2jHXQ79A2/OGs/vvMM3PmTEaPHs1hhx1Gu3bt+OKLLxgyZAgA8+fPZ9myZXTr1o3Ro0fz8ssvc8EFF1BQUMCQIUN44IEHuOuuu/jjH//II488AkBOTg4ffvghAGeddRZXXHEFV155JU899RQ33HADM2fOZNCgQXz44YeccMIJvPbaa5x66qnExcUxbtw4Jk+eTJ8+fZg3bx7XXnsts2fP5sYbb+RXv/oVV1xxBY8++mit511eXs6bb77J6NGjAVixYgVPP/00jz32GBs3bmT8+PEsXLiQtm3bcsoppzBz5kzOOeecqv2XL1/O9OnT+fjjj4mLi+Paa69lypQpnHbaafziF79g7ty59OjRgx07dtCuXTuuueYaUlNTufXWWwEYOHAgb7/9Np06darX49OmpmmhGlFlkKaWNBERqaupU6cyduxYAMaOHcvUqVOrtg0fPpyePXsSExPDxRdfzEcffQRAIBDgoosuAuCyyy6rSgeq0gE+/fRTLrnkEgAuv/zyqnwXXXQR06dPB2DatGlcdNFF5Ofn88knn3DhhRdWtV5t2uQ95Pr444+5+OKLq8qpSVFREdnZ2QwdOpSuXbty9dVXA9CtWzeOPvpoAD7//HNGjhxJZmYmsbGxXHrppcydO3ePct5//30WLlzIsGHDyM7O5v333+e7777js88+Y8SIEVWvumjXrl3YevzoRz/iqquu4oknnqhqgWvJ1JLWSJxzVX3SdilIExFptWpr8WoM27dvZ/bs2SxZsgQzo6KiAjPjr3/9K7D3qMGaRhGGpqekpNR4vMp8Z599Nrfffjs7duxg4cKFnHjiiRQUFJCRkcGiRYtqPUZNKvukVRdap0jehOCc48orr+Tee+/dI33WrFkR1WPy5MnMmzePf//732RnZ7No0SLat29f637NRS1pjaSkPEh50PvC5RSVNnNtRESkNZkxYwZXXHEFa9euZc2aNaxfv54ePXpUtXjNnz+f1atXEwwGmT59OscddxwAwWCQGTNmAPD8889XpVd37LHHVvVzmzJlSlW+1NRUhg8fzo033siZZ55JTEwMbdq0oUePHrz44ouAFyj997//BbyWqdByGuKoo47iww8/ZNu2bVRUVDB16lR+/OMf75Fn1KhRzJgxgy1btgCwY8cO1q5dyzHHHMOHH37I6tWrq9IB0tLSyMvLq9p/1apVHHXUUdx111106NCB9evX05IpSGskecW7R8/ocaeIiNTF1KlTOffcc/dIO//883n++ecBOOaYY5gwYQIDBgygR48eVXlTUlJYunQpRx55JLNnz+bOO+8MW/7DDz/M008/TVZWFs8++ywPPfRQ1baLLrqI5557bo/Ho1OmTOHJJ59k0KBB9O/fn1dffRWAhx56iEcffZRhw4aRm5vboHPu2LEj9957LyeccAKDBg1iyJAhjBkzpmq7mdGvXz/uvvtuTjnlFLKysjj55JPZtGkTmZmZPP7445x33nkMGjSoqu5nnXUWr7zyStXAgdtuu61qYMKIESMYNGhQg+rc2Gx/eNHq0KFD3YIFC5q7GntYva2AE+6fA8BlR3fl7nMGNm+FREQkYsuXL6dv377NXY2w5syZw/3338/rr7++17bU1FTy8/OboVaNp6KigoMOOojNmzfXew7M5hTuu2RmC51zQ2vbVy1pjSR/j5a0pn8njYiIyP6gf//+/PznP2+VAVpDaeBAI8kr2f2IM6dQfdJERCQ6Ro4cyciRI8Nu299a0YBWM9tCY1BLWmPYvIROn07ECNIhNV6jO0VERKTOFKQ1hhVv0m3ls3S3H+iUkaSBAyIiIlJnCtIaQ6k33LefraVz22RyFKSJiIhIHalPWmMo8foE9A2sZVfbJHYVlREMOgKB2l+0JyIiIgJqSWscpV6Q1j+wjoPSEgg6yC/VCE8REYmcmXHLLbdUrd9///1MnDhxn/vMnDmTZcuW7TPPoEGDqqZyaukmTpzI/fffHza9U6dOZGdnM2DAAGbNmlWncmfNmsV9991Xrzr9+c9/rtd+9aEgrTGUFgDQN7CO9CRvyHCuJlkXEZE6SEhI4OWXX2bbtm0R71NbkLZ8+XKCwSBz586loKAgGtVstjkwb775ZhYtWsSLL77Iz372M4LB4B7by8trbhw5++yzmTBhQr2OqyCttSvx+qQdwnbax3g/BBo8ICIidREbG8u4ceOYNGnSXtvWrl3LqFGjyMrKYtSoUaxbt45PPvmEWbNmcdttt5Gdnc2qVav22u/555/n8ssv55RTTtmj9WnkyJHcdNNNHHvssQwYMID58+cDXovV5ZdfzoknnkifPn144oknAO+FuieccAKXXHIJAwd6L2v/+9//zoABAxgwYAAPPvggAOPHj+exxx6rOs7EiRN54IEHAPjb3/7GsGHDyMrK4g9/+ENVnnvuuYfDDz+ck046iRUrVtR6nfr27UtsbCzbtm3jqquu4je/+Q0nnHAC48ePZ8eOHZxzzjlkZWVx9NFHs3jxYgCeeeYZrr/+egC2bt3K+eefz7Bhwxg2bBgff/wx4L3O5Kc//SkDBw4kKyuLl156iQkTJlRNFn/ppZdSUFDAGWecwaBBgxgwYEDV5PTRoj5pjaE0nzKLI86V0bFoJWAK0kREWqs3J8Dmr6Jb5iED4bTaH7ddd911ZGVl8dvf/naP9Ouvv54rrriCK6+8kqeeeoobbriBmTNncvbZZ3PmmWdywQUXhC1v+vTpvPvuu6xYsYJHHnlkj8eeBQUFfPLJJ8ydO5ef/exnLFmyBIDFixfz2WefUVBQwODBgznjjDMAb/7QJUuW0KNHDxYuXMjTTz/NvHnzcM5x1FFH8eMf/5ixY8dy0003ce211wLwwgsv8NZbb/HOO+/w7bffMn/+fJxznH322cydO5eUlBSmTZvGl19+SXl5OUOGDOHII4/c5zWaN28egUCAzMxMAL755hvee+89YmJi+PWvf83gwYOZOXMms2fP5oorrthrovcbb7yRm2++meOOO45169Zx6qmnsnz5cv70pz+Rnp7OV195937nzp2cf/75PPLII1VlvPTSSxx66KH8+9//Bmjw1FjVKUhrDCX5rIw7nL6lS2if/y1wGDl63CkiInXUpk0brrjiCh5++GGSkpKq0j/99FNefvllAC6//PK9grhwPv/8czIzM+nWrRudO3fmZz/7GTt37qRt27YAVQHbiBEj2LVrFzk5OQCMGTOGpKQkkpKSOOGEE5g/fz4ZGRkMHz6cHj16APDRRx9x7rnnkpKSAsB5553Hf/7zH2644Qa2bNnCxo0b2bp1K23btqVr1648/PDDvPPOOwwePBjwWq2+/fZb8vLyOPfcc0lOTga8x5I1mTRpEs899xxpaWlMnz4dM29w3oUXXkhMTExVvV566SUATjzxRLZv375XIPXee+/t8Yh4165d5OXl8d5771VNHg9UXadQAwcO5NZbb2X8+PGceeaZHH/88bXeh7pQkNYYSvPZQF8ODXxPWs5y4DC1pImItFYRtHg1pptuuokhQ4bw05/+tMY8lQHKvkydOpWvv/6a7t27A14w8tJLL/Hzn/88bBmV6zWlVwZkAPuaB/yCCy5gxowZbN68mbFjx1blv/322/nlL3+5R94HH3wwonMBr0/arbfeuld6bfWqXn4wGOTTTz/dIwiu3Le2uhx22GEsXLiQN954g9tvv51TTjmlxknt60N90hpDST67gglsTOpNwnYvOleQJiIi9dGuXTt+8pOf8OSTT1alHXvssVWtPFOmTOG4444DIC0tjby8vL3KCAaDvPjiiyxevJg1a9awZs0aXn31VaZOnVqVp7I/1UcffUR6ejrp6ekAvPrqqxQXF7N9+3bmzJnDsGHD9ip/xIgRzJw5k8LCQgoKCnjllVeqWpXGjh3LtGnTmDFjRtVj2FNPPZWnnnqqahqr77//ni1btjBixAheeeUVioqKyMvL47XXXmvQtRsxYgRTpkwBvH50HTp0oE2bNnvkOeWUU3jkkUeq1isfZVZP37lzJwBxcXGUlXm/0zdu3EhycjKXXXYZt956K1988UWD6ludgrRocw5K88ipSGBrch9s2wqSY4PkFGn+ThERqZ9bbrllj1GeDz/8ME8//TRZWVk8++yzPPTQQ4AXEP3tb39j8ODBewwcmDt3Lp06daJTp05VaSNGjGDZsmVs2rQJ8B7nHXvssVxzzTV7BITDhw/njDPO4Oijj+aOO+7g0EMP3at+Q4YM4aqrrmL48OEcddRR/PznP696lNm/f3/y8vLo1KkTHTt2BLwA6JJLLuGYY45h4MCBXHDBBeTl5TFkyBAuuugisrOzOf/88xv8+HDixIksWLCArKwsJkyYwD//+c+qbZWtZA8//HBVnn79+jF58mQAfv/737Nz504GDBjAoEGD+OCDDwAYN24cWVlZXHrppXz11VcMHz6c7Oxs7rnnHn7/+983qL7V2b6aKFuLoUOHugULFjR3NTylhfDnjtxfcTF9DjuCMav+wNjYv9Oj3zDuPS+ruWsnIiIRWL58OX379m3uajSZkSNHcv/99zN06NA90idOnEhqamrYx4qt2QMPPMCuXbv44x//2OjHCvddMrOFzrmhNexSRS1p0ea/yDY3mEBBxhEADIpdr8edIiIiLcDkyZN55plnuOyyy5q7KrWKKEgzs9FmtsLMVprZXm9/M7MEM5vub59nZt1Dtt3up68ws1P9tC5m9oGZLTezpWZ2Y0j+dmb2rpl96/+793CKlsx/R1qBS6QsoxfEJNAvsE6jO0VEpMWaM2fOXq1o4LWk7W+taNdccw1fffUVffr0ae6q1KrWIM3MYoBHgdOAfsDFZtavWrargZ3Oud7AJOAv/r79gLFAf2A08JhfXjlwi3OuL3A0cF1ImROA951zfYD3/fXWw29JKyCJlOQkOOgIegfXqCVNRERE6iSSlrThwErn3HfOuVJgGjCmWp4xQGVvvBnAKPN65I0BpjnnSpxzq4GVwHDn3Cbn3BcAzrk8YDnQKUxZ/wTOqd+pNRN/cvV8EklNiIWDB9K1bBW5hRo4ICLSmuwPfbaleTX0OxRJkNYJWB+yvoHdAdVeeZxz5UAu0D6Sff1Ho4OBeX7Swc65TX5Zm4CDIqhjy1HZkuaSSEuMhUMGklaRQ1zR1maumIiIRCoxMZHt27crUJN6c86xfft2EhMT611GJC+zDfcmt+rf2pry7HNfM0sFXgJucs7tiqAuuw9oNg4YB9C1a9e67Nq4Squ1pB0yAICuZd9REXTEBCJ7SZ+IiDSfzp07s2HDBrZu1R/YUn+JiYl07ty53vtHEqRtALqErHcGNtaQZ4OZxQLpwI597WtmcXgB2hTn3MsheX4ws47OuU1m1hHYEq5SzrnHgcfBewVHBOfRNEp2t6SlJsZCan8A+tpadhWV0TYlvjlrJyIiEYiLi6ua8kikuUTyuPNzoI+Z9TCzeLyBALOq5ZkFXOkvXwDMdl4b8SxgrD/6swfQB5jv91d7EljunPv7Psq6Eni1rifVrKoGDiSSlhALSW0pTOpI38A6DR4QERGRiNXakuacKzez64G3gRjgKefcUjO7C1jgnJuFF3A9a2Yr8VrQxvr7LjWzF4BleCM6r3POVZjZccDlwFdmVjkd/e+pwveAAAAgAElEQVScc28A9wEvmNnVwDrgwmiecKMr2R2kpSZ6l7egbV/6FqwgR0GaiIiIRCiiCdb94OmNaml3hiwXU0Mw5Zy7B7inWtpHhO+vhnNuOzAqknq1SKV5lAUSIBBLUlwMAGWZ/en5/Rw+zcsDMpq3fiIiItIqaMaBaCvJpzSQRGpCbNW8YHbIQGItiPthaTNXTkRERFoLBWnRVppPkSV7Izt9cV28SWbjt37VXLUSERGRVkZBWrSV5FNk/jvSfGkH9yTHpZC6c1kzVkxERERaEwVp0Vaa7w0aCGlJS4iL5Wu6027X8masmIiIiLQmCtKirSSP/Mp3pIVYFdOLzMJVUKERniIiIlI7BWnRVppPnkvYoyUNYENiH+JcKWz7ppkqJiIiIq2JgrRoK8kntyJxjz5pAJuTD/cWNi1uhkqJiIhIa6MgLdpK88mt2LslrSCtO8UkwKb/NlPFREREpDVRkBZNwSCutICcYAKpCXF7bEpPTuRb6w6b1ZImIiIitVOQFk1lhRiOApe418CB9KQ4vgp28x53BoPNVEERERFpLRSkRVPV5OpJ3uTqIdKT4vhveTcozYOdq5ujdiIiItKKKEiLJn9y9fwwLWkZyXEsCXb3VtQvTURERGqhIC2aSvMAryWt+sCBNklxfOs64wKx6pcmIiIitVKQFk0llY87934FR3pSHKXEUZRxmFrSREREpFYK0qKptPJxZ1LYIA0gJ72vN3jAuSavnoiIiLQeCtKiyW9JK2TvV3BkJMcDsDX1cCjcBrs2Nnn1REREpPVQkBZNfp+0cHN3VrakfZ/Yx0tQvzQRERHZBwVp0VTZkmaJJMfF7LGpjR+0rY7tCZimhxIREZF9UpAWTX6fNItPJRCwPTbFxgRIS4hlW2kctO+twQMiIiKyTwrSoqkkn5JAEimJ8WE3t0mKI7eoDDpm6XGniIiI7JOCtGgqzafY9n5HWqX0pDhyC8vgkCzIXQ+FO5q4giIiItJaKEiLptJ8Cm3vQQOVMpL9lrRDBngJPyxtwsqJiIhIaxJRkGZmo81shZmtNLMJYbYnmNl0f/s8M+sesu12P32FmZ0akv6UmW0xsyXVyppoZt+b2SL/c3r9T6+JleRTGGa2gUrpSXHkFJXBwQO9hB+WhM0nIiIiUmuQZmYxwKPAaUA/4GIz61ct29XATudcb2AS8Bd/337AWKA/MBp4zC8P4Bk/LZxJzrls//NG3U6pGZXmk+/2nm2g0qEZSazfUUhZUgdI7qAgTURERGoUSUvacGClc+4751wpMA0YUy3PGOCf/vIMYJSZmZ8+zTlX4pxbDaz0y8M5NxfYvzplleSRF0yssSVtSNe2lJQHWbYpDw7uD5sVpImIiEh4kQRpnYD1Iesb/LSweZxz5UAu0D7CfcO53swW+49E20aQv2UozSc3uPdsA5WGdMsAYOHanXDIQNj6NVSUN2UNRUREpJWIJEizMGnVJ56sKU8k+1b3D6AXkA1sAh4IWymzcWa2wMwWbN26tZYim4YrySe3IqHGgQMd05PolJHEF+t2ei1p5cWw47smrqWIiIi0BpEEaRuALiHrnYHqE09W5TGzWCAd71FmJPvuwTn3g3OuwjkXBJ7AfzwaJt/jzrmhzrmhmZmZEZxGEyjNJ5+kqtkFwhncNYMv1u6EgytHeH7VRJUTERGR1iSSIO1zoI+Z9TCzeLyBALOq5ZkFXOkvXwDMds45P32sP/qzB9AHmL+vg5lZx5DVc4HW0XErWIGVFVLgau6TBnBkt7ZszC1mY1xXsBi9hkNERETCqjma8Dnnys3seuBtIAZ4yjm31MzuAhY452YBTwLPmtlKvBa0sf6+S83sBWAZUA5c55yrADCzqcBIoIOZbQD+4Jx7EvirmWXjPRZdA/wymifcaPwpofJJrPFxJ3hBGsAXGws5tMNhGjwgIiIiYdUapAH4r8F4o1ranSHLxcCFNex7D3BPmPSLa8h/eSR1anEqJ1dn3y1pfTu2ITEuwBdrczjzkAGw9tOmqqGIiIi0IppxIFr8lrQCl1Tje9IA4mICZHXOYGHl4IFdG6BoZ1PVUkRERFoJBWnRUhLyuLOGV3BUOrJbW5Z+n0tpB/+dwOqXJiIiItUoSIuWkJa0ffVJAziya1vKg46lFV29BAVpIiIiUo2CtGgJHTiwjz5pAEP8wQPztsZBUjvYrNdwiIiIyJ4UpEWL/7izIIIgrV1KPD07pLBwXQ4cMkAtaSIiIrIXBWnRUpoHQEVsKjGBcBMt7Glw17Z8sXYn7qD+sGU5BCsau4YiIiLSiihIixa/JY2E1IiyH9mtLdsLStmeehiUF2l6KBEREdmDgrRoKc0nSICY+OSIsle+1HZxWWcv4Qe91FZERER2U5AWLSX5FFsSybW8fqNSn4NSSUuI5cOd7bzpoTTzgIiIiIRQkBYtpXkUWRIpCTERZQ8EjOyuGXy+oQg69NHgAREREdmDgrRoKcmn0BJJjo9opi3AmyJq1dZ8ggf1V5AmIiIie1CQFi2l+d6LbGt5/UaoXpkplJQH2dXmMMhdB8W5jVhBERERaU0UpEVLST75LpHk+MgedwL0yvRGgq6L7e4lbPm6ESomIiIirZGCtGgpzSfPJZBSp5Y0L0hbVuGP8NyyrDFqJiIiIq2QgrRoKcljVzChTi1pbVPiaZcSz+K8VIhPVZAmIiIiVRSkRYkrLSAvmFinljSA3pmprNxaBJlHeDMPiIiIiKAgLXpK88kniZQ6tKQB9DoohVVb8+Ggvt4IT+caqYIiIiLSmihIi4aKcqy8mAKXSHIdW9J6ZaayvaCUwozDoGgHFGxtpEqKiIhIa6IgLRr8ydULSCKlDu9Jg92DB9bH9fAS1C9NREREUJAWHf7k6vkkkhzhjAOVKoO05cFOXoL6pYmIiAgK0qKj1AvSClzdW9I6tU0iPjbAstxESG6vljQREREBFKRFh9+SVkDdXmYLEBMwenZIYdXWAjion1rSREREBFCQFh1+n7R8l1inaaEq9ToodfcIzy3LNcJTREREIgvSzGy0ma0ws5VmNiHM9gQzm+5vn2dm3UO23e6nrzCzU0PSnzKzLWa2pFpZ7czsXTP71v+3bf1Pr4lUtaQl1blPGnj90tbtKKSs/RHeo9Pc9dGuoYiIiLQytQZpZhYDPAqcBvQDLjazftWyXQ3sdM71BiYBf/H37QeMBfoDo4HH/PIAnvHTqpsAvO+c6wO876+3bKW7Bw7UtU8aeBOtBx1sivdHeP6gfmkiIiIHukha0oYDK51z3znnSoFpwJhqecYA//SXZwCjzMz89GnOuRLn3GpgpV8ezrm5wI4wxwst65/AOXU4n+ZRsnvgQFJc/VrSAL6uGuGpIE1ERORAF0mQ1gkIff62wU8Lm8c5Vw7kAu0j3Le6g51zm/yyNgEHhctkZuPMbIGZLdi6tZlfAFuyC4CK+FQCAavz7j0zUwBYkROANp00eEBEREQiCtLCRR3Ve7bXlCeSfevFOfe4c26oc25oZmZmNIqsv+JcSi2B+ISkeu2eHB9Lp4wkf/CARniKiIhIZEHaBqBLyHpnYGNNecwsFkjHe5QZyb7V/WBmHf2yOgJbIqhj8yrOoSgmtc7zdobqmVn5Go6+sG0FVJRHsYIiIiLS2kQSpH0O9DGzHmYWjzcQYFa1PLOAK/3lC4DZzjnnp4/1R3/2APoA82s5XmhZVwKvRlDH5lWcS4GlkFyPQQOVevuv4XAH9YWKUtjxXRQrKCIiIq1NrUGa38fseuBtYDnwgnNuqZndZWZn+9meBNqb2UrgN/gjMp1zS4EXgGXAW8B1zrkKADObCnwKHG5mG8zsar+s+4CTzexb4GR/vWUryiGPVFLq8fqNSr0yUyksrWBbci8vQYMHREREDmgRNf04594A3qiWdmfIcjFwYQ373gPcEyb94hrybwdGRVKvFqM4lzySG9SSVjnC85uKQ8nEvH5p/Vv+wFYRERFpHJpxIBqKc8ghpV6zDVTqdZA3wvPbHeXQrqda0kRERA5wCtKioTiXnIrkOs/bGSozNYG0xNjdgwcUpImIiBzQFKQ1VDAIxbnsCCaT0oCWNDOjV2Yq327J817DseM7KC2MYkVFRESkNVGQ1lCl+eCCbC9PbFBLGsCATm1YvCGX8oOzwAXhhyW17yQiIiL7JQVpDVWcA8AOl9KgljSAY3t1oLC0gmXW00vYuKihtRMREZFWSkFaQxXnArDLJTfoZbYAR/dsD8CHG+MgJRM2ftng6omIiEjrpCCtoYq8lrRdpJDcwJa0dinx9O3Yhk9X74BDB8MmtaSJiIgcqBSkNVRVS1oKKQ14T1qlY3u1Z8HanV6/tK1fQ2lBg8sUERGR1kdBWkP5fdJySSG5ATMOVDq2V3tKy4N8G9vbGzywWYMHREREDkQK0hpqjz5pDW9JG96jHTEBY25eZy9BjzxFREQOSArSGqooB4eRR1KDX8EBkJYYx8BO6byzPgApB2nwgIiIyAFKQVpDFedSFpeGI9CgaaFCHdOrPf/dkEv5Idl6DYeIiMgBSkFaQxXnUBKbBhCVPmng9UsrDzrWJx0G21Zo8ICIiMgBSEFaQxXnUhzjBWnR6JMGMLRbO+JijAUl3fzBA19FpVwRERFpPRSkNVRxLkUxqQAkxUWnJS0pPobBXdvy+raDvQT1SxMRETngKEhrqKIcCiyV5PgYAgGLWrHH9mrP3M2xBFMOVr80ERGRA5CCtIYqziXfGj5vZ3XH9uqAc7CtTT+1pImIiByAFKQ1VHEOu0hp8Lyd1WV3ySAxLsBSesK2b6AkP6rli4iISMumIK0hykuhrJBdLpnkKA0aqBQfG2Bot3Z8sOtQwMHmxVEtX0RERFo2BWkN4c82sNOlkBKl12+EGtKtLW/vOMRbUb80ERGRA4qCtIbwg7SciqSot6QBDO6awQ+uLaVJB6tfmoiIyAFGQVpD+JOrb6tIjtpsA6GyO2cA8H3yEZrDU0RE5AATUZBmZqPNbIWZrTSzCWG2J5jZdH/7PDPrHrLtdj99hZmdWluZZvaMma02s0X+J7thp9iIKoO08sSozNtZXduUeHp2SOEL18cbPLB6btSPISIiIi1TrUGamcUAjwKnAf2Ai82sX7VsVwM7nXO9gUnAX/x9+wFjgf7AaOAxM4uJoMzbnHPZ/qflNiEVeUHaD2WJUX8FR6Xsrhk8mDsS174PvPQLyN/aKMcRERGRliWSlrThwErn3HfOuVJgGjCmWp4xwD/95RnAKDMzP32ac67EObcaWOmXF0mZLZ/fJ21LaeO0pAEM7tqW9QUBfjh1MhTthFd+CcFgoxxLREREWo5IgrROwPqQ9Q1+Wtg8zrlyIBdov499ayvzHjNbbGaTzCwhgjo2D/9x545gcqO1pA3u4vVLm190KJx2H6x6Hz55qFGOJSIiIi1HJEFauLmOXIR56poOcDtwBDAMaAeMD1sps3FmtsDMFmzd2kyPAItzcTEJlBAf9ZfZVjrikDQS4wJ8uW4nHPlT6H8uvP8nWDevUY4nIiIiLUMkQdoGoEvIemdgY015zCwWSAd27GPfGst0zm1ynhLgabxHo3txzj3unBvqnBuamZkZwWk0gqIcggnpACQ3UktabEyArE4ZfLkuB8zgrIcgowvM+Cns2tQoxxQREZHmF0mQ9jnQx8x6mFk83kCAWdXyzAKu9JcvAGY755yfPtYf/dkD6APM31eZZtbR/9eAc4AlDTnBRlWcS3l8GwBSGuE9aZUGd81g2cZdlJRXQGI6/ORfXn+4KRdU9YsTERGR/UutQZrfx+x64G1gOfCCc26pmd1lZmf72Z4E2pvZSuA3wAR/36XAC8Ay4C3gOudcRU1l+mVNMbOvgK+ADsDd0TnVRlCcQ5kfpCU3wowDlQZ3zaC0IsjSjbu8hI6DvEBt69cw7VIoK260Y4uIiEjziKj5xzn3BvBGtbQ7Q5aLgQtr2Pce4J5IyvTTT4ykTi1CcS6lsU3RktYWgC/X5TDEX6b3KDjnH/DyL+CVcXDB0xBovEBRREREmpZmHGiIohyKY9MAGmXuzkoHt0nk0PREb/BAqKyfwCl3w7JX4a3bG+34IiIi0vQar/nnQFCcS1F6KtC4LWngtaYtWp+z94Zjfw27NsJnj3mta4edunceERERaXXUklZfzkFxLoUBryWtMfukgdcvbcPOIrbkhel/dtIfIfMI+PctUJLfqPUQERGRpqEgrb5K88FVkG8pQFO0pHkvtV20LkxrWmy892qO3PUw595GrYeIiIg0DQVp9eW/+iIPL0hLimvclrT+h6YTF2N8Ge6RJ0DXo72X3X72GGz8slHrIiIiIo1PQVp9+ZOr7yKF5PgYAoFwkyhET2JcDNldMnh+3jo+WbktfKaTJkJKJsy6ASrKG7U+IiIi0rgUpNWX35KWE0xqtHk7q3vgwmwOSkvg8qfm8+xna/fOkJQBp/0VNi+GeZObpE4iIiLSOBSk1VfV5OopjTZvZ3Vd2yfz8rXHMqJPB+6YuYQ7X11CeUVwz0z9xsBhp8EH90D+liapl4iIiESfgrT68lvSdlQkktzIgwZCpSXG8X9XDuMXx/fgX5+u5ZrnFlIWGqiZee9OKy+Gjx5ssnqJiIhIdClIqy+/T9q28uRGfZFtODEB4/+d0Y8/jenPe8u3cPP0RVQE3e4MHXrDoIthwZOahF1ERKSVUpBWX35L2vay+CZtSQt1+THd+d3pR/D64k3c/vJigqGB2o9/C8Fy+M8DzVI3ERERaRgFafVVnAMJ6ewqdaQ20cCBcMaN6MUNo/rwwoIN/Onfy3DOD9TadofBl8HCZyBnXbPVT0REROpHQVp9FedCYjqFpRUkN9HAgZrcfFIffvajHjz98RomvfvN7g0jbvP6qM39W/NVTkREROpFQVp9FeVAUjoFJeVN9gqOmpgZd5zZl4uGduHh2Sv53w9XeRvSO8ORV8GXU2DHd81aRxEREakbBWn1VZyLayEtaeAFan8+byBnZnXk3je/5rnK96gdfwvExMH7d0FJXvNWUkRERCLWvE1ArVlxDsG2PSkPumZvSasUEzAmXZRNUWkFd7y6hJSEGM4d3BmO/hV8NAmWv+5NH9X7JDj8dMg8rLmrLCIiIjVQS1p9FedSHpcG0GQvs41EXEyARy8dwjE923Pri4t5ffFGOPFOuPI1OOZaKNwB7/0BHh0Or1wDud83d5VFREQkDAVp9VWUQ2lcGwCSW0hLWqXEuBieuGIoQ7pmcP3zX/I/H6zCdT8eTr4Lrv0Ebl4Gx/4alrwE/3MkzL5bj0JFRERaGAVp9VFRBmUFlMRWtqS1rCANICUhlmevPopzB3figXe/4cZpiyguq/A2pneCU/4E1y+AI073Rn8+lO29U614V/NWXERERAD1Sasf/0W2RTFekJbcxDMORCoxLoa//2QQfQ5O5W9vr2Dt9gIuPaob2wtK2VFQQk5hGcf1+RNnH/Ur7MP7vMEFHz0ER42Do34FKe2b+xREREQOWArS6sMP0goDqUDLbEmrZGZcO7I3vTNTuWn6In770mIAEuMCJMXF8OLCDfyrW1v+cNaTZJ242mtNm/s3b6BBl6Ohz0nQ+2Q4uL/3zjURERFpEi03umiBissqWL5pF4MD3ryd+aQANPncnfVxSv9D+GTCieQVl9M+1ZvKKhh0zFi4gb++/TVjHv2YC4Z05szBk+g68GY6rp1Jwpr3sfcmwnsTIakdtOvhzWSQ0Q1SDwYX9D8V3r/BCnDOW09qB/3OhrRDmvfERUREWqmIgjQzGw08BMQA/+ecu6/a9gTgX8CRwHbgIufcGn/b7cDVQAVwg3Pu7X2VaWY9gGlAO+AL4HLnXGnDTjM6Jr37DU9+tJr/PTaXUUCe+UFaC25JC5WRHE9GcnzVeiBg/GRYF04beAiPzF7JUx+v5sWFG/ytR5Mc/yOy04s4NeErsmwlBxf/QMqqeaQWzyTGVdR+wLfGQ8+RkHURHHEGJKQ1xmmJiIjsl2qNLswsBngUOBnYAHxuZrOcc8tCsl0N7HTO9TazscBfgIvMrB8wFugPHAq8Z2aVL+eqqcy/AJOcc9PMbLJf9j+icbINde0Jvfl6cx6vfPIJo+JhZzAJKG2xfdIilZYYx+2n9+UXI3qyelsBm3OL2ZxbzKbcYtbtKGTKjnb8efswSsqDACTGQo+UMpIS4li5tZAyF6BDaiI/6nMw7dokEhuI5aDS9Ryx7S0O//4N0lb9EodRkNyJvLReFLTpTWnKocTExtA2OZ62KQnEBfxHqVWPVA0s4K1bAOJToX0vaNcL4pOb50KJiMh+Ib+knJT4GKyFd+OJpAloOLDSOfcdgJlNA8YAoUHaGGCivzwDeMS8Mx8DTHPOlQCrzWylXx7hyjSz5cCJwCV+nn/65TZvkLb1G/h+Ieml+TzdJ59Vu76EHHjw461AeqtpSatNh9QEOqQmhN0WDDq2FZSQFBdDakJs1Rd7R0Epc1Zs4f3lW3hrxTbyi8spD/qTvHMixkiOtG84LmYJvfM20iv/O3pu/pgEK693PXPiD6Egrh3xwWLiKgqJqyimwgJsS+hKUZteBA46nNRDepHe7mBK4jMoimlDkSVQUV5GLEFiqSCGCmIJEmMV/rrDYmIxC/jBYQwuEOMve+sWE4OzGD9wjIFAjPevBTCAilKoKMMqSsA5XEw8xMZBTLz3GLi8GCsv8v4Nlu/eP1D5ifXK99PNT7OA90eA4cewznnLBL1ycX5a0KuHc5g5zAX9Ze+6mQWwgHc+ZqHnVhkM1/8/K+ccuwpL2bIzh+07d5JXVEbbNqlkZqSR2bYNyfFxECzHVZRSUV5GhQOLTSQQE4cFAgSMFv+fpYg0PuccpRVBSsuDBMyIjw0QGzDMDOccRWUV5BeXk19STlxMgLTEWFISYomLCVBYWl7VyLA1v4S0xFgObpNIx/Qk0hJjWbQ+h9lfb+GD5T+w6occuqXHMrJPBscf3pHhfTqRlBj+919ziiS66ASsD1nfABxVUx7nXLmZ5QLt/fTPqu3byV8OV2Z7IMc5Vx4mf/NZ9T68NQHw3lnSxwLsSu3Jtpw0zCAprnW3pEUiEDAOSkvcK71dSjznDenMeUM6V6U55ygPOsorHGXBIOUVp1JWEaSsIkh5hWN9eSnBgh0UlVWwcWcha3cUsm5HIT/kFhMwiA0YcQEIGJSUlVFYXIaV7uKQ0vV0dt/TvWQj6SV5FLhUSiyRkkASSVZGl4Lv6Z7/FhmbXoL/NuXVaXwVzogxV3vGKAg6wwv9vKDJ4a2DhaRVpnvrMQRJtzLSgT77KNvw/tMJ/Y+nxMVRXo+3Ae0PIV3T3NH6q+kaWw01rzm9buV4ollWaKkWsrx3qeG2u1q2R1rPaF235hLpNY40X00CQOhvm/KQMuPx+kK1q7ZPub+tq/8JVXnPsv3PeKvwDlACLPE/QNBiCMQmwrn/gH5jGnQO0RJJkBbue1L9DtSUp6b0cP8j7yv/3pUyGweM81fzzWxFuHyNZxFwdgdgW8x9teWVJtIB2NbclRBA96Kl0f1oOXQvWo7w9+L35zTFsbtFkimSIG0D0CVkvTOwsYY8G8wsFkgHdtSyb7j0bUCGmcX6rWnhjgWAc+5x4PEI6t9ozGyBc25oc9ZBdtP9aDl0L1oW3Y+WQ/ei5WgN9yKSZwyfA33MrIeZxeMNBJhVLc8s4Ep/+QJgtnPO+eljzSzBH7XZB5hfU5n+Ph/4ZeCX+Wr9T09ERESkdaq1Jc3vY3Y98Dbe6zKecs4tNbO7gAXOuVnAk8Cz/sCAHXhBF36+F/AGGZQD1znnvbshXJn+IccD08zsbuBLv2wRERGRA4p5jVdSH2Y2zn/sKi2A7kfLoXvRsuh+tBy6Fy1Ha7gXCtJEREREWqC6j3sXERERkUanIK2ezGy0ma0ws5VmNqG567M/MrMuZvaBmS03s6VmdqOf3s7M3jWzb/1/2/rpZmYP+/dksZkNCSnrSj//t2Z2ZU3HlH0zsxgz+9LMXvfXe5jZPP+6TvcHAuEPFpru34t5ZtY9pIzb/fQVZnZq85xJ62dmGWY2w8y+9n9GjtHPRvMws5v9/6OWmNlUM0vUz0bTMbOnzGyLmS0JSYvaz4KZHWlmX/n7PGzWhG/eds7pU8cP3mCHVUBPvPfn/Rfo19z12t8+QEdgiL+cBnwD9AP+Ckzw0ycAf/GXTwfexHvf3tHAPD+9HfCd/29bf7ltc59fa/wAvwGeB173118AxvrLk4Ff+cvXApP95bHAdH+5n//zkgD08H+OYpr7vFrjB29Glp/7y/FAhn42muU+dAJWA0n++gvAVfrZaNJ7MAIYAiwJSYvazwLeWymO8fd5Ezitqc5NLWn1UzVVlvMmf6+cKkuiyDm3yTn3hb+cByzH+w9xDN4vKPx/K988OAb4l/N8hvfOvY7AqcC7zrkdzrmdwLvA6CY8lf2CmXUGzgD+z183vGncZvhZqt+Lyns0Axjl56+aKs45txoInSpOImRmbfB+MT0J4Jwrdc7loJ+N5hILJJn3ntBkYBP62Wgyzrm5eG+W+P/t3X2MXFUdxvHvY0tAWBBNoQaMxRLfgolF2lARC0UlYgyoSBCqTYCYVGKoJoQESUzViGDR4FskKhKsDTYgVEwMmiz0RcGaLm635UUpwWCR0sZo3/7a2Mc/zlmZTmbYl05nxuX5JDdz99xz796Zs2f667n33F+jjvSFuu0E24+5RGw/azjWEZcgbWpapcrqffqqaaxeEjgT2ATMtv0ilEAOOLlWa9cuaa/OuB24AThYf36lNG6HpIoDGlPFpS0O31xgN3BXvfz8E0nHkb7RdbZfAG4DnqcEZ3uAIdI3eq1TfeHUut5c3hUJ0qZmwumr4vBJGgB+CXzB9t5XqtqibFLpxqI1SR8FdtkeaixuUdXjbEtbdMZMyuWdH9o+EzhAuaTTTtrjCKn3Ol1CuUR5CnAccIgfsEQAAAVpSURBVFGLqukb/WGyn39P2yVB2tRMJFVWdICkoygB2mrb99fil+oQNPV1Vy1v1y5pr8P3PuBiSX+jXN6/gDKydmK9xAOHfq7/+8w18VRxMXE7gB22N9Wf76MEbekb3fdB4Dnbu22PAvcD55C+0Wud6gs76npzeVckSJuaiaTKisNU79O4E3jK9rcbNjWmIWtMHfYgsLTO3lkI7KnD3L8FLpT0+vq/3gtrWUyQ7Rttv8n2aZS/94dtL6F9GrfJpoqLSbC9E/i7pLfXog9QMrukb3Tf88BCScfW76yxtkjf6K2O9IW6bZ+khbV9l9LNdJXdnIExnRbKDJG/Umbg3NTr85mOC3AuZVh5BBiuy0co928MAs/U1zfU+gJ+UNtkKzC/4VhXU27E3Q5c1ev39v+8AOfz8uzOuZR/SLYD9wJH1/Jj6s/b6/a5DfvfVNvoL3RxltR0W4B5wObaP9ZSZqSlb/SmLb4CPA1sA1ZRZmimb3Tv87+Hcj/gKGXk65pO9gVgfm3bZ4HvUxMBdGNJxoGIiIiIPpTLnRERERF9KEFaRERERB9KkBYRERHRhxKkRURERPShBGkRERERfShBWkT0jKQ3SvqFpGclPSnpN5LeNoXjfGkK+1wm6SlJj0x2306QtEzS0insd6Kka4/EOUVEf8kjOCKiJ+qDIR8F7rZ9Ry2bBxxve+Mkj7Xf9sAk93kIuNX2EQvSJM30y/kbO3XM0yjPqXtXJ48bEf0nI2kR0SuLgdGxAA3A9rDtjfVp4CslbZO0VdLlUNK7SNogabhue7+kW4DX1rLVzb9E0hX1GNsk3VrLvkx5WPIdklY21R+QNCjp8brfJa1OXtJ+Sd+q9QYlnVTL10m6WdJ6YLmkOXX7SH19c623QtL1df10SQ9JGpK0UdI7avlsSQ9I2lKXc4BbgNPr+13Z6twiYnrISFpE9ISk64C32P5ii22XAsuADwOzKKnYzgauBI6x/XVJM4Bjbe9rN5Im6RTgj8BZwL+A3wHftb1W0jrgetubm/aZWY+7V9Ksuv9b3fRlKcnAp22vrkHfybY/X4/7pO1ra71fA/fZvlvS1cDFtj8maQWw3/ZtkgaBZbafkXQ28A3bF0haAzxm+/b6fgcomQUykhbxKjBz/CoREV13LnCP7f9QEiWvBxZQgrWfSjoKWGt7eJzjLADW2d4NUEfaFlHSKLUj4GZJi4CDwKnAbGBnU72DwJq6/nNKYu0xaxrW3wt8oq6vAr55yC+TBigJue8tV4CBklYISiL7pQD1s9hT8wpGxKtALndGRK88QRnhakWtCm1voARZLwCrJnDjfcvjjGMJcBJwlu15wEuUfIvjaRxpOzDBelC+h/9te17D8s5JnXFETEsJ0iKiVx4Gjpb02bECSQsknQdsAC6XNKPe67UI+JOkOcAu2z8G7gTeU3cdraNrzTYB50maVS8XXgGsH+e8Xld/x6ikxcCcNvVeA3yyrl8J/L5NvUeBT9X1Jc31bO8FnpN0GZQJFZLeXTcPAp+r5TMknQDsA44f5z1ExDSQIC0ieqLe4/Vx4EP1ERxPACuAfwAPACPAFkowd4PtncD5wLCkPwOXAt+ph/sRMNI8ccD2i8CNwCP1WI/b/tU4p7YamC9pMyWoerpNvQPAGZKGKJclv9qm3nXAVZJGgM8AyxtPsb4uAa6RtIUywjg2WWE5sFjSVmAIOMP2P4E/1IkQmTgQMY1l4kBExBRM5bEfTft/jxI03tXB04qIaSQjaRERXSbpa5TZqg/2+lwion9lJC0iIiKiD2UkLSIiIqIPJUiLiIiI6EMJ0iIiIiL6UIK0iIiIiD6UIC0iIiKiDyVIi4iIiOhD/wVv5+eqarh3dAAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "plt.figure(figsize=(10,3))\n",
+ "sns.distplot(approved_price, hist=False, label=\"Approved Projects\")\n",
+ "sns.distplot(rejected_price, hist=False, label=\"Not Approved Projects\")\n",
+ "plt.title('Cost per approved and not approved Projects')\n",
+ "plt.xlabel('Cost of a project')\n",
+ "plt.legend()\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "m1YvWrg5oc6v",
+ "outputId": "55ff1776-ae3d-45fa-ae25-1eae0176070c"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "+------------+-------------------+-----------------------+\n",
+ "| Percentile | Approved Projects | Not Approved Projects |\n",
+ "+------------+-------------------+-----------------------+\n",
+ "| 0 | 0.66 | 1.97 |\n",
+ "| 5 | 13.59 | 41.9 |\n",
+ "| 10 | 33.88 | 73.67 |\n",
+ "| 15 | 58.0 | 99.109 |\n",
+ "| 20 | 77.38 | 118.56 |\n",
+ "| 25 | 99.95 | 140.892 |\n",
+ "| 30 | 116.68 | 162.23 |\n",
+ "| 35 | 137.232 | 184.014 |\n",
+ "| 40 | 157.0 | 208.632 |\n",
+ "| 45 | 178.265 | 235.106 |\n",
+ "| 50 | 198.99 | 263.145 |\n",
+ "| 55 | 223.99 | 292.61 |\n",
+ "| 60 | 255.63 | 325.144 |\n",
+ "| 65 | 285.412 | 362.39 |\n",
+ "| 70 | 321.225 | 399.99 |\n",
+ "| 75 | 366.075 | 449.945 |\n",
+ "| 80 | 411.67 | 519.282 |\n",
+ "| 85 | 479.0 | 618.276 |\n",
+ "| 90 | 593.11 | 739.356 |\n",
+ "| 95 | 801.598 | 992.486 |\n",
+ "| 100 | 9999.0 | 9999.0 |\n",
+ "+------------+-------------------+-----------------------+\n"
+ ]
+ }
+ ],
+ "source": [
+ "# http://zetcode.com/python/prettytable/\n",
+ "from prettytable import PrettyTable\n",
+ "\n",
+ "x = PrettyTable()\n",
+ "x.field_names = [\"Percentile\", \"Approved Projects\", \"Not Approved Projects\"]\n",
+ "\n",
+ "for i in range(0,101,5):\n",
+ " x.add_row([i,np.round(np.percentile(approved_price,i), 3), np.round(np.percentile(rejected_price,i), 3)])\n",
+ "print(x)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "BKYdquMWoc6y"
+ },
+ "source": [
+ "1.2.9 Univariate Analysis: teacher_number_of_previously_posted_projects "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "TyN-Q1aGoc6z"
+ },
+ "source": [
+ "Please do this by yourself\n",
+ "\n",
+ "observe the data analysis that was done in the above cells"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "q9XTOMsLT4OE"
+ },
+ "outputs": [],
+ "source": [
+ "approved_number_of_previously_posted = project_data[project_data['project_is_approved']==1]['teacher_number_of_previously_posted_projects']\n",
+ "approved_number_of_previously_posted = approved_number_of_previously_posted.values\n",
+ "\n",
+ "rejected_number_of_previously_posted = project_data[project_data['project_is_approved']==0]['teacher_number_of_previously_posted_projects']\n",
+ "rejected_number_of_previously_posted = rejected_number_of_previously_posted.values"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "5QjLj0hYT4OE"
+ },
+ "outputs": [],
+ "source": [
+ "plt.figure(figsize=(10,3))\n",
+ "sns.distplot(approved_number_of_previously_posted, hist=False, label=\"Approved Projects\")\n",
+ "sns.distplot(rejected_number_of_previously_posted, hist=False, label=\"Not Approved Projects\")\n",
+ "plt.title('No. of previously posted projects per approved and not approved Projects')\n",
+ "plt.xlabel('No. of previously posted project')\n",
+ "plt.legend()\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "U04xDc8ioc6z"
+ },
+ "source": [
+ "1.2.10 Univariate Analysis: project_resource_summary "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "WA3QCrCCoc60"
+ },
+ "source": [
+ "Please do this by yourself\n",
+ "\n",
+ "check the `presence of the numerical digits` in the `project_resource_summary` effects the acceptance of the project\n",
+ "\n",
+ "if you feel like it will helpfull in the classification, please include in the further process or you can ignore it."
+ ]
+ }
+ ],
+ "metadata": {
+ "colab": {
+ "provenance": [],
+ "include_colab_link": true
+ },
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.9.7"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
\ No newline at end of file