-
Notifications
You must be signed in to change notification settings - Fork 0
/
verify_greater_than.py
196 lines (173 loc) · 6.71 KB
/
verify_greater_than.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
#%%
import argparse
from pathlib import Path
from collections import defaultdict
import yaml
from tqdm import tqdm
import pandas as pd
import torch
from torch.utils.data import DataLoader
from transformer_lens import HookedTransformer
from data.greater_than_dataset import get_year_indices
from utils.data_utils import UniversalPatchingDataset
from utils.model_utils import load_model
from edge_attribution_patching.graph import Graph, MLPNode, AttentionNode, Node
def get_args() -> argparse.Namespace:
parser = argparse.ArgumentParser(description="Download & assess model checkpoints")
parser.add_argument(
"-c",
"--config",
default=None,
help="Path to config file",
)
parser.add_argument(
"-m",
"--model",
default="pythia-160m",
help="Name of model to load",
)
parser.add_argument(
"-alt",
"--alt_model",
default=None,
help="Name of alternate model to load, with architecture the same as the main model",
)
parser.add_argument(
"-b",
"--batch_size",
default=8,
help="Batch size for evaluation",
)
parser.add_argument(
"-l",
"--large_model",
default=False,
help="Whether to load a large model",
)
parser.add_argument(
"-cd",
"--cache_dir",
default="/mnt/hdd-0/circuits-over-time/model_cache",
help="Directory for cache",
)
parser.add_argument(
"-o",
"--overwrite",
default=False,
help="Whether to overwrite existing results",
)
parser.add_argument(
"-rd",
"--results_dir",
default="results/circuit_verification/",
help="dir into which to write graphs",
)
parser.add_argument(
"-grd",
"--graph_results_dir",
default="/mnt/hdd-0/circuits-over-time/",
help="dir into which graphs were written",
)
return parser.parse_args()
def read_config(config_path):
with open(config_path, "r") as f:
config = yaml.load(f, Loader=yaml.FullLoader)
return config
def process_args():
# Returns a namespace of arguments either from a config file or from the command line
args = get_args()
if args.config is not None:
config = read_config(args.config)
for key, value in config.items():
setattr(args, key, value)
# Placeholder to revisit when we want to add different model seed variants
if not args.alt_model:
setattr(args, "canonical_model", True)
else:
setattr(args, "canonical_model", False)
return args
def collate_fn(batch):
batch_dict = {}
for key in batch[0].keys():
batch_dict[key] = torch.stack([item[key] for item in batch])
return batch_dict
args = process_args()
checkpoint_path = Path(args.graph_results_dir) / f'results/graphs/{args.model}/greater_than/raw/'
checkpoints = [ckpt for ckpt in checkpoint_path.iterdir() if ckpt.suffix == '.json']
checkpoints.sort(key=lambda ckpt: int(ckpt.stem))
results_path = Path(args.results_dir) / args.model
results_path.mkdir(exist_ok=True, parents=True)
results_file = results_path / 'greater_than.pt'
results = {}
if not args.overwrite and results_file.exists():
results = torch.load(results_file)
for ckpt_file in checkpoints:
ckpt = ckpt_file.stem
if ckpt in results:
continue
g = Graph.from_json(str(ckpt_file))
logits = g.nodes['logits']
mlps = {edge.parent for edge in logits.parent_edges if edge.in_graph and isinstance(edge.parent, MLPNode)}
attns = {edge.parent for mlp in mlps for edge in mlp.parent_edges if edge.in_graph and isinstance(edge.parent, AttentionNode)}
if args.large_model or args.canonical_model:
model = HookedTransformer.from_pretrained(
args.model,
checkpoint_value=int(ckpt),
center_unembed=False,
center_writing_weights=False,
fold_ln=False,
dtype=torch.bfloat16,
**{"cache_dir": args.cache_dir},
)
else:
ckpt_key = f"step{ckpt}"
# TODO: Add support for different model seeds
model = load_model(args.model, args.alt_model, ckpt_key, args.cache_dir)
model.cfg.use_split_qkv_input = True
model.cfg.use_attn_result = True
model.cfg.use_hook_mlp_in = True
ds = UniversalPatchingDataset.from_greater_than(model)
dataloader = DataLoader(ds, batch_size=args.batch_size, collate_fn=collate_fn)
year_indices = get_year_indices(model.tokenizer)
d = defaultdict(list)
def make_acts_hook(node: Node, positions: torch.Tensor):
def acts_hook(x, hook):
x = x[node.index].cpu()
x = x[torch.arange(positions.size(0)), positions]
d[node.name].append(x)
return node.out_hook, acts_hook
def make_attn_hook(node: Node, positions: torch.Tensor):
def attn_hook(x, hook):
x = x[:,node.head].cpu()
x = x[torch.arange(positions.size(0)), positions]
d[node.name + '_pattern'].append(x)
return f'blocks.{node.layer}.attn.hook_pattern', attn_hook
all_years = []
all_flags = []
for batch in dataloader:
clean = batch['toks']
flags = batch['flags_tensor']
positions = batch['positions']
years = (flags == -1).float().sum(-1) - 1
all_flags.append(flags)
all_years.append(years)
hooks = [make_acts_hook(node, positions) for node in mlps | attns] + [make_attn_hook(attn, positions) for attn in attns]
with torch.inference_mode():
with model.hooks(hooks):
model(clean)
d = {k: torch.cat(v, dim=0) for k,v in d.items()}
all_years = torch.cat(all_years, dim=0)
all_flags = torch.cat(all_flags, dim=0)
W_U = model.unembed.W_U[:, year_indices]
def logit_lens(activations):
return torch.einsum('dv,bd->bv', W_U, activations)
with torch.inference_mode():
ld = {k: logit_lens(v.to('cuda')).cpu() for k, v in d.items() if 'pattern' not in k}
good_flag = (all_flags != -1).float()
bad_flag = (all_flags == -1).float()
patterns_same = {node.name: (d[node.name + '_pattern'][:, -7] == d[node.name + '_pattern'].max(-1).values).float().mean() for node in attns}
logits_correct = {node.name: ((ld[node.name].argmax(-1) == all_years) | (ld[node.name].argmax(-1) == all_years + 1)).float().mean() for node in attns}
mlps_correct = {node.name: (((ld[node.name] * good_flag).sum(-1) / good_flag.sum(-1)) - ((ld[node.name] * bad_flag).sum(-1) / bad_flag.sum(-1))).mean() for node in mlps}
same_algorithm = {'attn_patterns':patterns_same, 'attn_logits':logits_correct, 'mlp_logits':mlps_correct}
results[ckpt] = same_algorithm
torch.save(results, results_file)