Skip to content

Latest commit

 

History

History
146 lines (119 loc) · 3.12 KB

78.subsets.md

File metadata and controls

146 lines (119 loc) · 3.12 KB

题目地址

https://leetcode.com/problems/subsets/description/

题目描述

Given a set of distinct integers, nums, return all possible subsets (the power set).

Note: The solution set must not contain duplicate subsets.

Example:

Input: nums = [1,2,3]
Output:
[
  [3],
  [1],
  [2],
  [1,2,3],
  [1,3],
  [2,3],
  [1,2],
  []
]


前置知识

  • 回溯

思路

这道题目是求集合,并不是求极值,因此动态规划不是特别切合,因此我们需要考虑别的方法。

这种题目其实有一个通用的解法,就是回溯法。 网上也有大神给出了这种回溯法解题的 通用写法,这里的所有的解法使用通用方法解答。 除了这道题目还有很多其他题目可以用这种通用解法,具体的题目见后方相关题目部分。

我们先来看下通用解法的解题思路,我画了一张图:

通用写法的具体代码见下方代码区。

关键点解析

  • 回溯法
  • backtrack 解题公式

代码

  • 语言支持:JS,C++

JavaScript Code:

/*
 * @lc app=leetcode id=78 lang=javascript
 *
 * [78] Subsets
 *
 * https://leetcode.com/problems/subsets/description/
 *
 * algorithms
 * Medium (51.19%)
 * Total Accepted:    351.6K
 * Total Submissions: 674.8K
 * Testcase Example:  '[1,2,3]'
 *
 * Given a set of distinct integers, nums, return all possible subsets (the
 * power set).
 *
 * Note: The solution set must not contain duplicate subsets.
 *
 * Example:
 *
 *
 * Input: nums = [1,2,3]
 * Output:
 * [
 * ⁠ [3],
 * [1],
 * [2],
 * [1,2,3],
 * [1,3],
 * [2,3],
 * [1,2],
 * []
 * ]
 *
 */
function backtrack(list, tempList, nums, start) {
  list.push([...tempList]);
  for (let i = start; i < nums.length; i++) {
    tempList.push(nums[i]);
    backtrack(list, tempList, nums, i + 1);
    tempList.pop();
  }
}
/**
 * @param {number[]} nums
 * @return {number[][]}
 */
var subsets = function (nums) {
  const list = [];
  backtrack(list, [], nums, 0);
  return list;
};

C++ Code:

class Solution {
public:
    vector<vector<int>> subsets(vector<int>& nums) {
        auto ret = vector<vector<int>>();
        auto tmp = vector<int>();
        backtrack(ret, tmp, nums, 0);
        return ret;
    }

    void backtrack(vector<vector<int>>& list, vector<int>& tempList, vector<int>& nums, int start) {
        list.push_back(tempList);
        for (auto i = start; i < nums.size(); ++i) {
            tempList.push_back(nums[i]);
            backtrack(list, tempList, nums, i + 1);
            tempList.pop_back();
        }
    }
};

相关题目