You are given an m x n
binary matrix grid
, where 0
represents a sea cell and 1
represents a land cell.
A move consists of walking from one land cell to another adjacent (4-directionally) land cell or walking off the boundary of the grid
.
Return the number of land cells in grid
for which we cannot walk off the boundary of the grid in any number of moves.
Example 1:
Input: grid = [[0,0,0,0],[1,0,1,0],[0,1,1,0],[0,0,0,0]] Output: 3 Explanation: There are three 1s that are enclosed by 0s, and one 1 that is not enclosed because its on the boundary.
Example 2:
Input: grid = [[0,1,1,0],[0,0,1,0],[0,0,1,0],[0,0,0,0]] Output: 0 Explanation: All 1s are either on the boundary or can reach the boundary.
Constraints:
m == grid.length
n == grid[i].length
1 <= m, n <= 500
grid[i][j]
is either0
or1
.
Union find.
class Solution:
def numEnclaves(self, grid: List[List[int]]) -> int:
m, n = len(grid), len(grid[0])
p = list(range(m * n + 1))
def find(x):
if p[x] != x:
p[x] = find(p[x])
return p[x]
for i in range(m):
for j in range(n):
if grid[i][j] == 1:
if i == 0 or i == m - 1 or j == 0 or j == n - 1:
p[find(i * n + j)] = find(m * n)
else:
for x, y in [[0, 1], [0, -1], [1, 0], [-1, 0]]:
if grid[i + x][j + y] == 1:
p[find(i * n + j)] = find((i + x) * n + j + y)
res = 0
for i in range(m):
for j in range(n):
if grid[i][j] == 1 and find(i * n + j) != find(m * n):
res += 1
return res
class Solution {
private int[] p;
private int[][] dirs = new int[][]{{0, -1}, {0, 1}, {1, 0}, {-1, 0}};
public int numEnclaves(int[][] grid) {
int m = grid.length, n = grid[0].length;
p = new int[m * n + 1];
for (int i = 0; i < p.length; ++i) {
p[i] = i;
}
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
if (grid[i][j] == 1) {
if (i == 0 || i == m - 1 || j == 0 || j == n - 1) {
p[find(i * n + j)] = find(m * n);
} else {
for (int[] e : dirs) {
if (grid[i + e[0]][j + e[1]] == 1) {
p[find(i * n + j)] = find((i + e[0]) * n + j + e[1]);
}
}
}
}
}
}
int res = 0;
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
if (grid[i][j] == 1 && find(i * n + j) != find(m * n)) {
++res;
}
}
}
return res;
}
private int find(int x) {
if (p[x] != x) {
p[x] = find(p[x]);
}
return p[x];
}
}
class Solution {
public:
vector<int> p;
int dirs[4][2] = {{0, -1}, {0, 1}, {1, 0}, {-1, 0}};
int numEnclaves(vector<vector<int>>& grid) {
int m = grid.size(), n = grid[0].size();
p.resize(m * n + 1);
for (int i = 0; i < p.size(); ++i) p[i] = i;
for (int i = 0; i < m; ++i)
{
for (int j = 0; j < n; ++j)
{
if (grid[i][j] == 1)
{
if (i == 0 || i == m - 1 || j == 0 || j == n - 1) p[find(i * n + j)] = find(m * n);
else
{
for (auto e : dirs)
{
if (grid[i + e[0]][j + e[1]] == 1) p[find(i * n + j)] = find((i + e[0]) * n + j + e[1]);
}
}
}
}
}
int res = 0;
for (int i = 0; i < m; ++i)
{
for (int j = 0; j < n; ++j)
{
if (grid[i][j] == 1 && find(i * n + j) != find(m * n)) ++res;
}
}
return res;
}
int find(int x) {
if (p[x] != x) p[x] = find(p[x]);
return p[x];
}
};
var p []int
func numEnclaves(grid [][]int) int {
m, n := len(grid), len(grid[0])
p = make([]int, m*n+1)
for i := 0; i < len(p); i++ {
p[i] = i
}
dirs := [4][2]int{{0, -1}, {0, 1}, {1, 0}, {-1, 0}}
for i := 0; i < m; i++ {
for j := 0; j < n; j++ {
if grid[i][j] == 1 {
if i == 0 || i == m-1 || j == 0 || j == n-1 {
p[find(i*n+j)] = find(m * n)
} else {
for _, e := range dirs {
if grid[i+e[0]][j+e[1]] == 1 {
p[find(i*n+j)] = find((i+e[0])*n + j + e[1])
}
}
}
}
}
}
res := 0
for i := 0; i < m; i++ {
for j := 0; j < n; j++ {
if grid[i][j] == 1 && find(i*n+j) != find(m*n) {
res++
}
}
}
return res
}
func find(x int) int {
if p[x] != x {
p[x] = find(p[x])
}
return p[x]
}