From b1847677c78e2ae94b533717fdd361913a8d6981 Mon Sep 17 00:00:00 2001 From: lynn-chien Date: Fri, 16 Aug 2024 22:31:52 +0000 Subject: [PATCH] deploy: cff04f65a0fb06fde1de6f503253eb20d1b2f4ea --- ...14cf6783579312a39154052e9dac2ef3cff1c1.png | Bin 0 -> 38488 bytes ...35d3e47a1274b7dd8ad1dbc95375be5981ffeb.png | Bin 0 -> 40428 bytes ...13dc2b6d981f25491447195f1f159046559a88.png | Bin 0 -> 42591 bytes ...70c7544c1d9fe5bf87e8d88319c886d2aa0f2f.png | Bin 0 -> 8334 bytes ...b750b0b065988d3cc2929ef27e9eba59a429f3.png | Bin 0 -> 37750 bytes ...54d513b186bc2fd27e05d0100c01380379c5ff.png | Bin 0 -> 58361 bytes ...6dbfa1d9a2cb81d48ea21a4017c9257b53dc3e.png | Bin 0 -> 39765 bytes ...39a14e4efa6906d218be1b124c4dfa5d13de0a.png | Bin 0 -> 46931 bytes _images/fig-01-demand-orig-shifted-demand.png | Bin 36410 -> 36289 bytes _images/fig-01-demand-q1-p1-q2-p2.png | Bin 29475 -> 30984 bytes _sources/content/01-demand/01-demand.ipynb | 35 ++-- _sources/content/02-supply/01-supply.ipynb | 153 +++++++++--------- .../02-supply/04-market-equilibria.ipynb | 28 ++-- .../content/06-inequality/inequality.ipynb | 66 ++++---- content/01-demand/01-demand.html | 14 +- content/02-supply/01-supply.html | 56 +++++-- content/06-inequality/inequality.html | 8 +- searchindex.js | 2 +- 18 files changed, 182 insertions(+), 180 deletions(-) create mode 100644 _images/1d0aa85c356d83ba20e1a8b90814cf6783579312a39154052e9dac2ef3cff1c1.png create mode 100644 _images/2d725d26585822d8d455ff135535d3e47a1274b7dd8ad1dbc95375be5981ffeb.png create mode 100644 _images/2e872448aa5af2b9b46d6c894813dc2b6d981f25491447195f1f159046559a88.png create mode 100644 _images/30bd87965de4bad26b9480db5e70c7544c1d9fe5bf87e8d88319c886d2aa0f2f.png create mode 100644 _images/6827ce62b098c3b33c06146581b750b0b065988d3cc2929ef27e9eba59a429f3.png create mode 100644 _images/76e99aa55472869055d7a051c054d513b186bc2fd27e05d0100c01380379c5ff.png create mode 100644 _images/90bb8ea0b89e32711ccaefe2dc6dbfa1d9a2cb81d48ea21a4017c9257b53dc3e.png create mode 100644 _images/b77d7abf459122761dd893433a39a14e4efa6906d218be1b124c4dfa5d13de0a.png diff --git a/_images/1d0aa85c356d83ba20e1a8b90814cf6783579312a39154052e9dac2ef3cff1c1.png b/_images/1d0aa85c356d83ba20e1a8b90814cf6783579312a39154052e9dac2ef3cff1c1.png new file mode 100644 index 0000000000000000000000000000000000000000..beee04327b5870f4f724c4885df8c85784ac0ab1 GIT binary patch literal 38488 zcmb@uby%0{)-?($AT2G3pa>Eo-67dZi2p=Q=qGyX|S)-xFG|Nj%sJkaEkGbi`%$~Jw zP)v-g-&`HQKw|-~+giQtI|KbA8 z>IAKpKNAZz0X0E&Y6KRceNSa&PwR2)+M0{O-n>&OYp0|%{4;eorWE%I5fPC*8)+W$ z2h`FH58yvd693;nstQ-3c|8vaL2XRQl$f;#Bqk=7cEW8U&3Z~$?Z&I+Pmd4eV-|mG zsj^Y#u^Cp&H3VQJ8w7`jhJNIj?@9h}@7aY2?+J!LjaXJ4w5`O>cf6mXKOxu8urV=( z24LXcw|FD#*ltW#d>qGXqls|`c|{)O-vJ-Hm+0Uhg7?M@@Smw0IGX1_PDOd;nRHr| z5|NY7Eps)Y|NJN)SXEV3+6iOx$TOqNW9_87al`)_znwr8sbkvmaA`EZz2OcU2~i~d z9UaV1p(-)LZgyN2UDnH;j_Jxv~*Oi8ATqQ)dBm# zkJOydP_c_abOSnKbjRF8s{+ zVB8S!D_@U-mNxbI**aE5W#vXU{{;QezLD<%gMHlzA0@X1z1QwC_O2kzMHut2DB0i3 zhKAoiQ6!1e?&vM_?vIqorky~MJ&r^0cXNh6o^@#DwKL&br1V_!Gs zQ~hptVYNzGSut7nWqv-gOyseaJlLE~5cjJMyhB1nxN%hQJ^hdUo$k5#$Zi-?HO)$OgXr@?P;uT7*<3p%}l1*+YjdfB%3l9c(v zy+BNS2Nde%@##zU+CMQ`hL6XqJxK5BzTIBvD>Z8;cAD#wmy?q#>&-K&6U*2A>^ZaM z_V;@_{B4M8#)IY++P9&ha>TK80WszcDGSs2K_mcV81`S&C=qhx*EVX^;H>t~z6p&Bp#@$vB_A(t1Kiis@;sqItEFWcWT zlN{}?n8GaLUE{;Ex3@>zU7H}R{}zP1v9}j-O!H@^JvvXXoPeF3o#48Vbo6b-qG4Ox z(F)GZl+HNzQu9vo-{tnS^Iu_)>Fd1E#=#>9?n;;z4>wOp$g>?baXZV`yCS9J+14J- zSj_s8nBjrQt{5#XEdi}q*Fs+wvv$!9w1=^*>1ORw%M*2}{NwJoT!YXv9>!U;y}5}- z%5Inhi#a(xE!Cf^(H?V$;)=`jt`kWqDV-8C`595P?nHje$!|eC);}-#n|H=O%2r9Y zDm8;`#4Pb5zWBjnp0?7{>%y+DkcbRs@sBg~41?G~!Dt11ERenFlge&X+jh&8Cd*;+ z+Yd>yds#}!`@19dl@5~^&|Z??egAai%c3yEDzg&Yup|CQ7maAU+k`~Eu5zvYlBWAw z&5)0sExac+?4b}_73CO~ekqB&nM$+PKR<@;)+8ogo1C0frWVi4=qNGoRLxYNgp?uq z`APr&bcFa&iTOk7I}}7jVZwUZuN%2{uN;?)Q>J#y<`j@QC@)o;_D+eI?u@xjJSw*{ z*qraBoxXJtYtHGuZVZ7d8;nPpt(t+usFW1y+6xP8_2WH;PN@Y0#FF#h@6Ys#<;7f` zP}~olln-+?yG2g+vct&v`I)r8k5VLVm&gXOJY|D4ezV_hu(m?)nQy2*~tUa?@rb?~12U@Or zj%1E%1~N-^$D6p~XUE+6dgYlW%`d7?50}u?bJfExVi6QUFe)VpG`zVfCEzq8m$byJ z`th=unAoLDmmDD68OJB8Jy1QV;=QAlDAUi@C$OEUg`7i6EqhH$hXtJfUI`(%{@}a+ zT{^n`BOaAOM`=GOgb?NVq59G!x6LsR7DX<51?Ck6Yf^aEJb}FAedq!@Ifr%-$J)SJ= zmiIw6Lf36|w0O(STxV%ONAuZ*So1HR5(@(`x|gsQAjCDx?Z)yTp7oHlnBp-@#M05sC zwYkWh@+bWr9g(*}T=rJS7*7pH%B)S%34O-SynNo=I<=LNZrT~ct+X_7U^gB&xVFWMeF&m>5FXF+4OU{~RROkD{LSl8SO7?Jj0rnO?J{6DqUzDVzXgKFV|wlS*NM+`Vv(`XcPVH%sa86fKZs?8bg4#c z<}G_N{30~eMwq8PLhI1|LJ_6aC9_Mu7Yr-TYQt))e~vWXOr<0xmHq+=u#097^>=Q^ z-yaQabEchSWk@9b?`V&sn|x4OjUT9dL7>|6 ztaM&bo%v}DRf%>n&UtNI6pG2N3U|k4$db1VzB-4qYEb{}O5pBclaQ8Heba|g&__y= z`|d(#D2>%O$Hs{ow2ZHsa@)V*wi;ztk2dGJUq(bI&)7&vNGwAw-E98?DGN2-f=@sr za@C_3?tYn&FiXGEDV$XnYDZMU&eGskLkR5^OrDFen-19*1P0xr)DCr;Jz5qA^7WEn zMK_ONc~F19-*lR3lSr2g`a4#|f9w9MH1~}uq>@SmVn&Mlownhxve)j@@jm&Lrk17D z^^W&tQ4z;iw>70wi|)2m@w!G|Q>YJ7)$Sf1Kgz7tkj>GTg(}^i=p1FZWqmokx)sJU zf2cH-UyPruYMK<-|Lh{x`u6s#<68TPTC_6jzF?V`?A%z|?BGDkkq0l?Nr!TrKKFDM|VEz3W_nNi! z-fto?n*-&to~2%a;w{hW-**K%r)fNX-8yKGLt;ZU6E^4iWC$&!7pwjf2HfytiAAY8 zu4iI1I(*N_?-JJr4}H;d2+O)4BP~sDu3O{jVwU}6>?<#>&EV~wbfZdn3kz}HH}_vB z89a7op1NWIZ{jHWNi+XFjAF=^?{}GX%ps5?({rIJbtUo>?tNF;Un7lWKX}D2Qo4S;rNqXA`L6gySRBRnBF6lh zFlW_0^mq|Us@q-DiIzP{lgV!5H=zi=y2c+4;0Z8wOZau+zkrJT0OSRD+j&0^4vyk` z`di>^G}Z4^-rZdQ()V2De9ClNYzTtC7zD(@*7 z9i>xl3qOWxY_v4cTzVMapQqF3IhSAw(8^A9dmJ|Zt-`Z|dD`>b4CT+vygjP<2|x(4 zD_5=@_`>7!Ja-mljt&5d>X6;hgxv^*OA}Cbp0fDKFVDrCtUSmp+ET%IVcvCsWyr4_ zXjC{nhDu@sNJh* zZPkUH;j=8daau|S?Zs0-!nMwo8 z>b1wi$A{%+h}=Wtu^&%@@(Jx9Nxi}}Ig2`Mx(Mxlr_CApOr_*p^Ls>*q)z~AmDx|w zbe8=6nSl#Wjlj`}V{3ShjkaBT!oa86mlI9$(kI|8r)f-+PI1z(kn8eQ3|#V8cp7Nz zHQU6)rIzzU#iovjT|du63#e`y)p`?N55FD_2tgKC11(v|WopE}ZWey@KcM&sg#;Ql zQO9ar3O1Dw_wnCBQTFcaO$QN>8{ z>hahSlkfOnaWm_G;bvCW<@6(D^ebL~r@u8erV98fJd6Qop8@cYRj1_nlm6U|R$9Lz z_#?(}7iix_L`6N0R>~8&Eqh4TD4+v3hu$567#rpXLLO?s>r=lD<<#KeQuMzlOVU3r zvhpr{hkmLpuVNAtb)vj}YJGk(w@@eBT~<*k(GW0KJM@a;CFM1L=;2f#n`SDf_NFG<*qZLoMa}8W z(yigwb;_)WVER5jh++9*(Qo23`3(d5Mfa7@gW3?G+h=Z2kJ_Q|Zv7o9z7=c!1MV9l zMOOdj<`wdmjGr1hZZ*UnoA+uwdvf@{Y?lw8jE*Tj#BdiNmGKt0j;ic!fHw^9wwQ*d z+HCBrOOk+N0Hi5S^A6IEICjE&F)SKLr;MQJI3wRlKzx}lO9Se8+L41se%Jlsr5yj% zqr;~C7DmE&mCNk1Y&dloN)!@B1ME}4Ed@q(r%gwR{PsNuTk{FRZmT5x`LfS*C4+D_ zAV)gRc931TaN+Xh%b}=b$d;aST?r(WCm$fT6;ebFCRJQ!F0<-k))#HxLbsZrq0x4b zcOuQB`Bii?&j7bqgydxB0!G&o_OI4l?P8PT%}#cAPtTu)M&gFP2j;n&`7a_O2w`O} zbvca%<6m=!GzTr$9@6$eg)oJtFmhVG&@dTlKT?s$-KX&p_69-!`n~%b(;K_HnSk-$ z-qqU;+q3M9eSQBmRiq%wVsWtWY{;vorbf_XlOE!ilu5!dwKDV{;S!iR<+xZQ_ zdu@>%CurMCgAtC?EzQ)qthks2m+A*HubcA4Yf8)e^m$&wxD!?mji}Sfp-amv%0^uF z>Oad)fE>aS_?}XUdTyiriB=XvNRYl*f+&eoxp@bWJkkW7$I9~Ic`>Mx(JD*!Q-fcO48|Lf#oC`vN zU4hIQj;C=E6VKf{`+{~Urtb+^iP@xC^t1g#$z1i@+LbTNuI1@FDA$TSJ5`X8)^CM2 zZUK-U8Z>8SGi{L(gc^?@uOH0M9Y!n1f8Mo5dou7`GKjcB8|#7V!)HX-n*##_+uz&_ z1U^m{hkyW+W|fMaj!wSwIX21P!9rTJRG(eS#t=fkO-@T(if`@FZ|+dIiLW-kr|9l1 zD6tlmEWy=WU0pTnO%dH3tpecPve+dg{}uQ*0fBg6JfcOtTu1wNC8g=xsl2N>8bu9u44Gl0c?v+ncLCr4bckk5% z*qZ_ih3s53=(oC{^(Lxne{J3OXG(@i|Ekzw=x~2m=XGJpCln7^*fi~yAr(im8;Lmq zu9!w|n(~B9`5}P?inJ|&eY~q2X#N0w0{}@itzy}a`ak;6wevllS~w zUYA6*1W%J_bZl%Vt{9f@!ZlG(o{MKTi-M51;2o%sXleKf3XDSH3}a{PZ3%+2*#+$~L9o+onxW`G0dKTc5RSyoBDRVHo!r2~X9yhU2qvVZ5fpYg%hSk9 z7Q#Ty#VD`wD_q% ztuM#3Tpuqiilk5;Q-oYC-fgBZ;@GZBQ8R6M6=qv_g)xM%adURgb4Jd;Z8&#tBINks z`lB2a6T)V;k?6$2uX{HXJ#IwnD`k04WR(OPMVp+*`a)sNeFqL!9g}gVe#IrCb7(wM z%-U(P{-@#9Rn80kg|&w)n{Dp|jwZ2&%G&b|@M#I^b2YA9y)5%mvOhOG_qX6b*F?fK z-_s<#4`$>11+j{hQ^j@(Fo}+ee}4|7FhmReVl5i;a_v;Jh#2~{tMEF2id(YJggz)I z2}DA3IwJmOccsXZ@Z&>EzQT)jCzwaO2_J0qJo~3mS*VrWpjK z^_l(>k|n9<#r7v=5tTACjPyubULvz5a$Prp9<09Az?thc{!2xuXyZJzG|cLGgxQC1F&$WDEtxdEqC+=|wE8M!%ZE{bN*H5~aV9FSKPhp6XhS@SV~|tDi68 zM+c~$z*XE}f=>l0po@|)FoS0i8hv7r)M;=rwco}vOzDYaAv5;Yj; zJ%ErIQXvH4NB)k}e_HUFbcl7!LcKkjakixY;IiLqei43D@$nuK6Z9A*tS@1XxlLQ} z0E5T#+taLEA5QO^puMfgHF!(*-7Q;=?!mQ*vemh{iU^5Sf#)Y#WZc3J_ny3;3`7$aql%d)pI&Q%3wIcRKPflLSTbRcmQ zJ4{Oc77&^|KH=|5FfEXM{etf<8K+)87MB_e#8??!!=krL90%p{Cbuw}Lg1~txRuGPU>F(0bP$mq-lJ#0T zbkY9Yq0cz@?;RXPnb>{5%5_Eit1~mylRW*(sN0I~=tr@FLu9)(cmARS_E}lUcsRLg zz@&jQ?s;djL++myk0OFAL0!=KVoM2EdY|kJ^4N_EJQm+xDxBP#xT(i?mE*>5J!bQN z1%9O26l4d4mw>+TjgZTe+S5ZDkTTvD(Na<21Y#yEDT@bD3%;*8X(V*mW-{x#jQwNm zX3nGY*~CQn4}eQZr=O#iWdW=!kJa}Zlj82D-U2Q-n={W0YiK-$O}^ynaC4`}j4~t1 zvZ4aWz#q99caSHkW+`>QZdqGdx#tS+R!r1+@KpGJ|E>Zv_zjv8dARBtpKTft1Yt&P ze;ORtXny5k15ExtGCBE!KR=5nC&|Dc^1XTL)i4_VokaTb^w5>u}@erSNd^VWooh|MU zn`|{+k`wOWD*jU#qq3{q)_!I`y7k3w>;W*qLuJ+^K!v#~aeD3659GfQ`aE1s6ZkOB z_{0-6mhq5oAolq`$v^@?bOxXb+mSD?@hG{9Jhm)AOqfYBK`<=O;B}#TRByBU$hRPi zBaKQYl}rV?fw+HN%86VGAj5W|HW|4TG%08bleNCb-d%4bd?QwaJaTw0e232R&2ue=q_}xW}UHj-63BVrmZ{dPn>nR^rpNK_j^^oGK!t0B=N=edzm#n zu<4(7B?7)Z9f%lrFRy4$)BDI!p&Loo`_&QSuwNvvaJJ_cQGM5>&-0TeRAajS*h@KM z0SH#ULQUOuv{n~UUd|5%#{`1BhfpIuox|!)&8}FTZ;&n@Y7b0@R~psYlY9XV0`YuKrE?D1n6bj=hz|rP3*h%b z$O{5N2vJ-tn?G0~~743{!;sl&GF88(-x zbZB6`7$9gR*#BYPc&?YgH z^mkkPCcJiU<#$B&%DCuL-H5Prh)FD=qH+aD*BPK0fHVOPC%Clp#cC6Fp9#A0wv_|Q zYbJl>OT)p|8*WCPCvW9;D$$Txh`dA&l>cig-k~Ztb|6_=L9c=idu-TT)OOvt^o!Of za*^~1&8Ey9zNcM80VY<=DlmR@5OP$3W!POE>r_(~ZSF}Hj<(1?+|k-Uv_XkF&6wJY zdJS}GqdTuA)w@(){bxXLLRCHk7u}|^12{~mDlgt=H{oEXkuY5$p>yf40&3iKp@Unk=CPT0_H}3wxpL zsTItN>k7@t8_{M}q%b+c7+rvuNbx*Z3vxq0O{k+*xF}XVCt`mxAsQ8;(Wi)btnch(KqU6CEp0$F zWTpCUAKBTd6s1+Ji4i3ZjFgA)SQ8hCQOvJr)YJMMM?&RzbW|634V((!I%4h|fG&v6 zt;cKqlV0rX7`1pp;SmSm4DP!>muPP_keBe`A+kmlceDyrkcYzfDRT|IH)Jg1cFfY# zGmSJ9=z1`dc$j~S0>U33pL_aL*H0v*SG(q9cVvHme;on?eI01V4Ui($AT-gGQpFVS z-9v*l2s=)&9WHrPpf3n9acw#t>dz$%44EV3fw4zY8h|o4wzg2ORWLYAF6n>0Bclg1qYvXd6{&1A{U(>5u_GVaTue44E2`j(FHd*HxP&s;|V|s zv>P{Wp!p+u+)?GZDz}&R=)-+ZXoO|sSm@}8E#ugYGJ)8GfO!t&(B#rmCvJgLL1*MG z4%fWO6mi^gQG-I4KfxHoPB%pSZIDXaGPM+`4RLz_Cl^^mQeLo6FX!{B#%ynlGOdA!vN zdvFMwke~7PL>1P~QX)GVVMOcc(BY25?2C2-mqmK#$b#OyY43 zD5d?5q71?M1ZbBFknUI4m5$lYxb{?Waax~kqChOd@ainTv(wR9pF~K;h+>JK&*)B9rkkL;{ziA+}ecj%dr8-kGiUL{=;mR=RqGvtQlb`tGT z4!f-0ht|JHo)s6FV3b)s*2D)o`xo=^mFgi2!t38y>F757p&j}&IoV+3cOnCZ7$ib! zAVS=Wur*{}0F~@`_#;$t>AEnBdUMd}BLH@z^T!8Uus|R!w702fe3T=C$GKqBGNYt z`W*5=hc*K>I2|NwB)+@2dj+cU_9+Ff9G^@c%uo8Az1)fbnj?x~PB(F2B@1CFm^)yn zW@{JI0i!+(iMh46w|7UXf4qjnCblw#7k62J&aR(@dqJa&Nj-n@&!OrS1dYgZo}L~d zwlo2^RciL?^$WhfzB6t+yoE&^eWe{GX;1amx65qekNERj9c^MqWzYTs7?BYG+Q=-M z<pFiQNce+aC&?CTqI^pjbB^p51d(#Xih+IC%w+g%Ni7H`hPOw z3?GQ4!<#*%sPLj-(F%^e3)dJL&e>WhD-TunRe$j+_b^yKpOW^0jp^1Lm=X$h!;etr zU@D^+!;{;h^JY60=^mtx+iJU^UhYJAdPq#SIGlQK4;C8o7T(bxRz_Hks0?7+rxzB& z>gvQH<#0ihP6vR#hpm&dz%WS6r)%d=!}=(y`1DaCzUK}Xi6P;ObGVV(lzcv5VNj77 zX=rGWtOL5}3|TIk*a<20b%wrzPXg6hSBAIN75YzDaeI=v_vFtzX1NllgK)clP9zD=?Y|RP-*a2`A^zt%*PswI!^A#}V|xU)F>h~g z_rrxO0OZr7HP`ydYaUWC8Hx2sHGOH6cKRzliHC$*6zeglV@Ozo`_mAtFf$anX!lWl#>XM&`PaLJb_#>f3056!BcO!LyfRhJqF);-&gS4X$1&@) z801)8jTm2|*)X02u2(Ef7};Kq)**znEq#5_fB@D3gq8rH1Xsr7atZYvkx^Fk;2?=) zq3_v|V^S+akNGmIDjNci4sc2RKii}~Zgd|=49IYGMF%v$dk6pkQAf^BkJt-qcB#Oi zD6;cQ4HjdAoR!0xN$qyLn5dHIr&S7SJX$~707PkMUoiZ>dkS;npAv* zHtsbb7u3$8hN0hyOLa|6dx|LdXPv73(fSP0jrSdx)Z13mgYg6Vvbwu|txw*T_HY+~ z9;l3ziH?qK9)KTW00UdoX3I5u`Uw?`OrpQ9uff>9e+U_CJU;dMMcLh#B^ApW&aC|Y z9BRgGE)~`xmsyYVrcYVadJ@uuO4O@F3NLNhm~_;;XNe{TsZ}?r@8Mev)JdkseK=OH*``lSy_y5*=+#b$kbtANbIf79rh_t&c?0K zJlQncQkhg!ZfFXFoni7%hItN^E(It!hoynL&{w>5k|e92PfZL~>lL%%lO2Zok$s{* z-6F9%`k!l(>_BmX3Iur5_IFv>D`s=k@4e!UW!7_^1FUUt8VVk>c8Xwt9bv5oYh^^Z z=zbXQ`EJUEDGvw!%?a$3pqIWYk<`$RU(hkv`Ch`Ho@277Vl#m7E_`>pQt<8U2=dfS z6p?96LV9(09JJoHLq*TkW72Jr_jF%xN5i?M$CJ&v9I!WJp zdn4cqB5G;{pzRKz8Bo>C7V@DA#^W5EZj~y~cO~RCM!R&W9+zD@8JDT&ocs^71CuxS0v zXma^@O(2#JOz3R8Z9DXV#ylM9aXz*9PBV5?MgL9 z_dSEE5Z$k&t}6lC3y)jycJdxPIKQL;A;UoFC4ozTOw_6IS6;nFi@L12sHdoFpPYy3m6r-80kkAqLu$F zf+GOua0jK}F(rUR$CLwX?@VCOz!!yZcbfUSGQce+8N{MSA@c9zTmAmEnhvkm{PMg~ zy-_`jylsAdr3yHc-UDriTv_30s#&0);3P#BPd~F{L!cGj8k{Zc_Wp~N%L0~k*8ppu)1Mn1{S8@=p)wWKdUHQ2ArZ9mxDb)Y z?=ttNp^IbJE?k`48SHL~qxV6EPizUrX%6`8CX3P^u)O4K`l07XM4W2Z9r{Qn$3?S^ zCcKBOmo&9&s7A-S$?u*_yWpQ+$%xqfpb`9+-4D$0q`7pE54`pyV_D}mM1{v{pL%LM zOZd#9H^4b7{|zZ`k=lAt+F%b27F-8trN_UD(UdWanKD~AMlch&3?gv{zA1oK}uWp1sHVw{VxVj?CM!M!iG93Ca6 z4`P}!5J(+S22#%N&o&|EI*9%R9RQ2Ehev{W-PZhvx|BO{!_?+ksQEuzz1=(UoN$gq z=;Of^uVkP0c`PqG_0Pu&NY zm7>3$!J9_LBhGlJbfC5Z*}@4n4HbCPE`=EL=HuGL#D&+!rOh6Hca|Pc-$y0=Sss4# z^XyR-*U1k^G(0f%S)eXz$I5`%5ijN=WG9r?vz+t7I+G>9JYlC=)N6{z*7(Nu-^T?< zdm&K_(~mv~oWn=ycOWkU5!+P4>bd>50k%F_F5Ui-@NVsy_ilpqvz<}YoUVQ%vT$e| zmOa!$C*_q{|Cn}k(ieRXHU)RZ{$!;p6tej1l-`iS6kd#?KNkt(MZNftP8ki7mCia+0!{4i#>BK0B0Ym8 zN+a7d37e!VGdoXbvV7uC7iH-qQ6sU^V~WlMmd=0(@nB)MG*yODJf?PJKg;3p{GZO2 zGRgjFYSD8+O+Ff=sx9-7m^+gr_T3)`^K>443XKv$C|&xX1Q8D>vuq%p{3ZLNN2{=& zj!4Rd3X)Ym)vF5m>e{`11q0=+xG@#Zq!L98B|MVUY^o`2`*h8I7ZhzSz~Vu)LatiV)WG=|CmtfhYXqWrgST_r|VOuzDR z^L2+s)#XALbTH-y-6mWV!lJg32&D%Oh}#mRHXLu_kk}x=7VT zP7_|!;I~FdrHIVwMzJG9GDG|*+h_LNy?3xgX9m z7|ocNbh{k^@N!(dp4(QKcvsQt0f(DxAnbsLDAW7m43Xi&x^JOGbDoFJrOX{laqNwLdLvi)x>kMPPnrAz zje?$%Qq0?ZX8G4isU|UQdb$Pn`nagosKEG=tIyH5oh6kotlNvTX;cjD2ty*r1^nUn zHWg6tn1XUEsKlrVXoK}Dr)uoxSMWRIq;l0Wv#g#dntr@`_<@{A9+NI*Kk%>eg$JzH zMJ|81pRh#9tx!>-=1??TMDYCsR`u!Ei;E<22#lKg#@Y$(b*=G`Uq1TknhrxTDX~c` z+EYHL&8!z&8rLTs7D-8&j0+gd5h&#N=$~^!_m9hm4?h*wzF00`bL4PlI^MvV>3Qm@ z+1$8R*I40*47)9=8GR@0q5KeGeIvtpL3+!4G!&CIH|*7Gr)>81(^y7*@iVj!27v4!?D2jaC4o= z5T=WeIU>b;4h1S%D4h2S1aUb;sNeC2VB$~lj^^nU*{3FCyyI%-WO#vFLcM%;x^|Z5 zHsP}uxdx1t9+accpn^~w{07-G51Mct=v`m+TLKZM>rZy|>eV$*aGQY{ykf@>1UzzM z^Z_{fmTVBUv^X(QQeUz;_c_n+?De3^e6OBnEUQI@bsx2QDm`;?Hw|#izbhPX0edF| zs`gDF6Tom73wG=KwSI@&)?kkW!{UP(o8c1k57726gPW~|Q%X|uGB~4m8R(*ZYR5MF zqhGwbHSx0_67|AxX;$Gm_`SZ0qsWb#WCA0IB;?>9tgl&26QjFIvjG=zkf?)q@#GiUIYCd z5xp&upB*iZ z&ESP=FO+|}2``ne&I_Qy+mx{rMZT>sVFk2IL75Bwl^hi^TJd8v62^B+m8i*DtWPG5 zot{3>$y1?yR9bI+NkhkK5m|*iyNRTZ8CdWK+lNx~L`ymYATp zS^lYi21hzy!8s2u5OQ?EgzTXV-Yq!l#|PT?9K=HP(P|YUngh@J&jSIWh8{+HTTg)z zTtyHa9QlE?0!McxV{QTJl+~MU(j1el`q8J5WMC? zxc{T|$ucfRWP6R!vgckT-MUe$r`O3QE<(>_DFqQ+@9OjW4|^4Mp4sXD%Lhfgg8d{c zBw6_J04u7-7~QNL`uKAD#t>RbZAiG_(ND+_f2tA}j|^Qv0&EM&5lo={5&IPai{XeO z@(!0U5||nM?Z!;@m?liOSDz}?!|A`RdykuZSt8G`rRM^x(Z3w(IjR{Z5O6#;16{-B z4791<7c6@vi%mE@ovVX&s|LzyoKS%o55eJw)z8!(ixh3Tl3`oqpecwK)2pjJP$8^; zm*tdpJ`i(V4qa6H>~Pbp$97L;z9+$4oa6enDZvc}=I7@Z77yEki7gynbqX#7-VQk| zi(Gi&qT)pr{}j>5n!RPHAc3)WCtL8r)D5OuPKF1Y2>Tm#85BI^d>d@KimIxuok62M z=saP()!QpJ1Y2IKf>#B(45a{*O!!#duGY-+=dq?%|3L4BtT{F)7XO1+3dDt|xO~0t zK0iA<3v3Rx+f^Zl3*d%t(pOHkb9yIdi?sdpX^49XS}*8w zl$d_F{mgCRvsZT74Xg1{Rt!FSf_z=U?ECVZ2$m&ogIKoe&m{wih8M9~fsyG~q0t0P zws?&f$mVdciNi#?I(TsaUn!MORK~JP#RlV?ZjHR;00;6Qf*ar{H#E%nK;j|(6JVnb zhRd*HS)Zxr82_LHmS{B{oOVV4tc^6j*oNOxQzbx1A}m~Jv>~&>J`aYY(g?``XX-%x zk4m)}OhZ|s#tLbHJlj(NtIJ@)oM+n`cYFrsBv`7@i$Os_8^D5(T2W6EZ9qE9j3eHSB z!BqFvok_;A&3*OrbKg>|3i(|loIBf}B&d@824F5JLT=Hgzya|C=-`Kn9$$p+eLB&; zHXVu}GF^+~*V&AMqZlS%vM`H<1qPERd)Kwzx1GC{QvN_K{PjtT5WZIcpQ~ttVS^m> z9(LvF@rhzD3rAvq=i6eN_)szAWYk0U1}!7OqWh6pRxUcyGn@f|fgWckdvG=cp>%;` zQ%q;!)F$`dCep7XD6GY~h&d$sYkQ%{{H3+WXD0@;wmvL@cE&l+QGvc33HqDoBL(C32=WOGP%^nJd%EB! zkNIS`Bm>P3I77I-Y+VpS5EN(h#U@_Z?N1}2;>#f2&+j$KWQe061lukm=S<;P*80}g zE%;OdQn0}#H8O0TfftLBEZhhxMa#AIg)CU0g{<{fTHpm)^)K7mLHN%+LNd=P3b$1Y*c`pG4yJVH?+*f;}?;Ee9;t^q0Qa$@O zc%(sA(ke)TbrEF66>b1p^I^u>Yiy=dH+0cktFOQWJUSnfPernNnk=! zM?RSVX1=Y%r9#L~Z<|ZfOl2!PNXC7IpG0U-kA21HPHe34`d*YysoF#dQ%Wy`gNOGK zQp)jmpE9CXAs7F)DTJ7L+kl+@>5Ak%+H34dwpg*7l&p$F^V$g@VN8Qls=`|NWKAB( zEt;|67QhF?>F9{86wenB44ePhx!yu%_?U)pQR8`(B4^bGQU!+ixa9F1pKU2YWAhi1 zSw=o16ZIax8xRQR;gByTfcW+-A|e82Y-2N^o(IxC*tkAF(eOQ(rTDi83=j$u zGSTd*jjOnL&<0sT#i|w-8jJ&-o6X0eU?+uayC54>?5!E-qY%wjdVE92N8ubFcsS zpEy}@#ZIq+aqPX!2LfGkc@|_XbpD_Iub$*gAodOLupn2%0U0dXc#^0)>Kq0lYg%b& zc?LGRnc^)Ieo|0q4_~rFAU{Z@FE<2o?d@9c88vfh_9vzdTal0DG=9!0cuygc0Pl$Ojm5lSy`7vqIoi34cHpjI_aHiopvvD1PD07s)|ZWhDH z$Gm`o?Ky>Ek+pvC!YXr%chJm+FazD6vxNMq`67ZBanOq zC30^(@W+Q0s+N*8HO2~uhNNB*>nPJsQu)h>{~`{KMBf9OlYr~8Hpr;()d^%*Sm><( zkad{3JkyP9b_2S-Ps{sEh8Y|RO`zce%b}L7a`SwYQ2}?f zx_UMNG1alqSX=$Mx4*&hCUj3J!=L4LN>|uLIrz9ojH@?he zRCHr8{+$3Q&bO6#264%UYND8?cyw_{iQ*hik3GNu4gDr!=1~0@TG~m>F(zD7bJO&G z-z6R!&8px^XKWzX2FJcijC~Ei^N7CKss*-AHK=FMi$HhDhCkmjd1n&!aE@ay538Tkbj z7;KM7#Smq^%f_lis}m(T;P z2nb#-RHyu!0LOs%lhOoWs9zjF*V|V%W`R=3q3c0DASVCqzpO#Z=`76Hgdqd@-O>Ia zod3*ld=ggse{%$Vc`+4YFn5k$>&{NE5fTytj%tN7p#G_;v~UauK(15Wj}MQxEK22l z#)L|jLy0u)=LwD21q4=uyAlK#7`SzP)>G{-(*1Y_7Pc zqYIRoDW3nu7Zf|XHY&KkE>%i8lzy?y-hPmSj3vGYFJfxWf`%gn zfVCieW`F@Q0R+?2K1YPwgBYYKGr>?uv?z#U3o>b5rn=4A zwOt_Ocmanj0M1!H3?ND#+?wU?^m~^RH6sZrnYbIuZ5Wscz!LeEMFR&ue+5-)cDZCm zLN**eI5l^;)tjz#y(+kv6(#+;klm~YFOg58sp(@#i0K0|`6q})C2R`3A`oKmHHdrA z(tw9L4l)-hso6V!OsvF$MI-OWdn(b4jiZ$og#9nbRKAu?caX~GBE_xYx~L~9EH#_K zS7|tPfH=4pT1Dw@_dM2_%c%or(6v;}ydtmHc1xP2GPuU00;R1F=o#R!Rpg}|U`PHy zt^|W5@>w0y+^CW;62+}v9&6)nsv^|=jW!~y0oGh8sfk*G0yTPUAlM@>p+JZL4gQO* z4p^4j61cMZAS ztFo1{LuDr`#g{HIF1t;8IKmH znX&QbJRUN#6V)Mt&aW??QwcL;<@nu4@hPmH`A}-Ll9C_3yE5JlY6mdtkphB5pcdo* z<6d!y@A{%l?$!v-fTx#ho>XTTe|R7?nStKw!b`9s3{rdp2uYd`q_f+>vgt>0UWDwE zP=!DwY!S{G)c-G=X9QY&y(jFX&8R@si(8R5c!cy`yb`eSnZcUSxAv2J@Sk(3XU5i7 zs5@RCZChJ;+O2KBG_Pyf{>8vy+Fnp)f;_q6Gw;;T^ zKm|V_DEJ5femF|4V3<=8chqi>O62;r6`iA3Ocy1D59z+oGA0Nz%@;4qCvZ4s?SYyZ zPFZt-OYTZ#C~FBTJcM=*M0rBQ1S%cpEgrUh67Y%>kvW4{t{E>&?#-)flzVb^=*GH~ z)P@wO{<;jGU03Vq_m_dLI2(D2;~g1|&g$Z{1r#Jt_%9yo7)M!e44OUxsNh=&7s)-M z*CHN02Vg>=`zS-ePrBCiE)<&sC5>8%Z%4 zHDS_4IP%m%B%t3mSXOpos4=z?pgF+^Cx~M9sR0J!{TQf~s|aQppBfpBjFMFHGe zjntcr7habUjjRS{$K^rsZMNe~AU1#?4-cM6*PX#WoO)S6efA==PR0w;WGLhKb3gnO zn+yfO_w=S>ybKwvP#`0?CK?(Vz|)naWPbmYGfkbDn=_pqsyEG<9br(Che6hKcYDIA zXFh*z6O(~c-Xlq|Yn_&ArRZ~WDz*h<;PyBZvTL2xo19&R zQM2YTZXM73pYdOO=7S3OL*UW2*-{6hcWnDP!|UD_8LKy_d%@31<=iIP*ILPb@pptkws( zXY#0C(XO*;p?QigB?dp$!BQjy(q2GQ@{k?^MzetFL<9FJ`KjEiZT!GcD+mk-ML5b! zhi`^TN=AKspWo#>(Pvp|>b(^ZcrV5DY9N;^hZl0qYf2Q&{;uFs^==ad8 z83dk!E}Rek8r%@5Fk7Vr#_uqRKGUrcqqa?Mk`9qmTa6;~HWm$neZQ6S5M{6x!T1Dq zj-7+U3uj0WfRL0lmuK&RiY``xiNcytQu0Vb_*(ZhT0N%VB_sk$ zCq-?#RbY*Qm*qKL`j`6o{s5n$L39d{cD@{w=5KV~oMAOaI(yIcnSoTZ($GWkT09i3 zJZ!`*u7bMW5}0Isd_2U@5qLj%wcb*>yZdy#xqWDE+#;iNrRLW8opc|8Gb?TS4?dY} zd`;*;?eL@3K<0bq^(v1SXj$Ua_ffQPu{B{k%Ir8jZ+JL0seA-ox9m&1an*MmAc?c9r6f91DsELU0tgMO7)Sp6}g zEbEf~a6ncz&RC8}P@HMMzS=CExj%&PR14w3;yMnn87oHtG4=erTWPYPFW%bIq-%js zp(^~DlA-shMMBTHxVxjqVD>(c(_^|dMutXadro<>DzI0!7XA>~(b61nAFzNdJMws- zPG>r-p9QTx9wq}_It*2A4tiWHtP3$}jM4l%7Y&L?BZZ~Gv$f$V+N)nr_|f|$cDxJ(qlNQ-XO>A{6y}dRZspYg&O$^|%F4X$utZ7&hiN6j3MH zLLrxbMbP##X$vnKL5Eh_f(Fd)-RbBhd<5Kp@2d|zq>)DddtDOMznk07{s3E6F7aJs zt)A37>)a3?PkbMjrw>B56>uT@GWp+*c0gf;ZMvm!)9jXWD7AgIMbV79x!F%1*|yEc zeiGV4)P6(tkE9DLUN8oKM5bqJ43Tgmn0hddZUzB#s3BT8U2CPS<2lZmT|p&vX5O0s zNmAqGjOVX3E4S2ABR?(A_y5E&T3W`&e+7vntUMDS3D?&kqi_CRe zwT1bI&F0)uhtq$7bpWc2Hd%_MoUt_SRQzFBw!habGt$(rM(oVg3bf-Y11{!u~ z)=+9!`B$xcEG~-E6%cnnzA}D37h3j5oB^KWjKSi~EBAb<34@IPVz9+)4En>fS)obZ zi&v&p+$a4H$O&EF&@*#7Thz3{9M_4?I*h;2KXg6<@Pl}=eI8HKh|+AQXneY5lio%_ zy}5Zh-=U#Ju+@NH$NGw+=c7pf56hNCikg!`z{^39*8( zf564Snwm>1`k0w$>U6iY=*#b;L-ij^r-#gsiD{)8Eh_l>dJ?hi031x7Lpnl2_)r7n zLfniLwon00yJIe;qxgFgtE4q-GPXSU*}K8aRuU_sB#ppCO5DK9sPE?{+8Mw_*&+x+ z7QPel1X$^C49Zz@s&CSrL-io^c-@yxJdIA6#M+P>IaOIl{?Ktef}?*iDv@%jJyRrj zX@n&y(!l44ZW68?d0I=u`|PA1W=>b|aMOxfA2H_TtEEgzwsNu#gyp&LMYRho+PN&%$r^LXJetfBnS^F{9LxiR-6@Nd)FGe&^lM5Jl5FyKk9$Hzod3>uO25+YCq6$d=^4{sms>aJRsTu%KVi6M_KY&l9`tfD5 zyXBq~!cc$yec92T^qeZGHL*QYeP1)-u~#4Y^l5sFzV3Eg9;|OQLG!v@D~r?H%KlK? z2L0jIfW1O_&R2sm==9m~ub`7UFUC39>AllJ-oOa3i6aNrZo)=oBqaA~S!!Si_{<=< zvfYn?OY33*tocl1)@!5M@MRfCYuy&7P6jY#nfl3w`o196nmoHgpeYy~Bm|`c=PCJ? z%`X?Vd#yY1O66bOIZ$n~cmr^knM@Roe!fRl!2FX~-$TSc%mI(oUfARY6tUutJU$d6 zF6k!4s};&;6}Hh&2hD)THW`ul^xIeU3N&!0t;Csn00UOol16wvZQ-*$;J$7p8(J#! zgx5?~d#clZ+v0qid3&R|=WA=@a#C;J-~ssCaNMI|IVN(m+NLE{Gg$dvzbtT6*K|@+ zgvDR?4Bk$#Ua#^`)o9INsf$X{;0!UabWTzv^>^&wmLNmP%|9@rnW{y}f6?R1bJf&4 zD^`U*7tkMG_4Yvs611RA`m#~Qs3eLll>V;Sd6!>RJ8>Vj`gZ4@G5FM!i1&2H41OWs z-ZI=A%5yF-tBq6L%aDG|-irva@*#Usg;M151rW~{u2du?D`PJ{O^x9cnT3S4bu&)1 z=k!jpWNPG_`n4-VIg!Rt7x^6L$c$Sd{s^v0dqjMp6r&d$CRrG5{#dQ8^bGlu{gfB8 z1TO2><=pU^oZiGBv@nQ!ac1L6fH=IETo&3bg5$4%+=-NFCC1q~cLQ?M=ZZRMoIx5Zu6jS!`|bu(CT zCfSISUL9mVtSgAbsmllgS$A>a;};>~g)(S|-KW%U&;2gl`Foj5YtyZ1+H=X=T7F4H zi2h}Co(W~zFrXIFKQyrMul2;Wu^cm%ZOy;>b0{jyM4?Ewwe#)gx4Cbpnl^K(>!i{v z@!%;;fSUAghEA=-M?rJ}0^XJ>_x2{2mRYU&;te=?(TssB41ElhHXDy0UN{!M+61`8 zfXhdB7v%>^sGSFOIfKk{%VVU66eC@h<7COf%B4&1zC-=mCP+6G4xQIDC`P*Wa;a$G z1gvlZ{hz?~0=EjN;3k5R9L@gKmBVUg=18-`aHB$Tn50mHEQ1fZvCW|afY>)7!e>EG}JXcV>UZZEf6tS%6EQZ-FLLP ze#`B$2>r?YO=UM#!~8B*RVd$OwV z-j+?!34VB>iA$(%Nmk=v!l%)E#2SHM5^DtM+DNUt5DYCkEqr*+CCF-Ttm9mP^v=i= z6ru624?&0S9UA(8tjDUSq!_^1w?B%(#it_GD)%>mKbxpA)d)uxnVv zdgoc~TPum$yMxbCU!d~K(l0FA+(vwY17KV5F5(kS3j2gWA4m76Duh$nvg=(w&Z=N( z-Puk=)zY$VS|KT3=`m7b9XYpoMwc1Cx2z(6-QT90N*_Fe$H=-JtpDML=%=tjht{Ay z=Q(jrIeZa9o28`tzHoAD*GRq7jXN>7O7*vRP>)8^{-x8{Hlt75cZsURpOI%xmeyfg zr2L0DFTu2j@j^DttdUqw0ZM-jAmLTx&cjD~#H_EV$u&Hoe0R&KVD=85Mf&NW`}a22 z&+ohx0dSk10avtv6!@6^#3vvzilMxWu=`7abOhMi z?5MB~?O)o96ls5+8;3nw?L3i4pHa_2;Ib9p_Q(85?D_;QUDU%f{@g*dVO@IC86o%B zeWcQP#JD11LGvN=?)=g-@&igcUUF2yT#VJaBhMHXHU!c^066GuL!0XNusJ3EaYy-&iem+{VMkjAVC}+)IS>WaF`_(WIEbnNmV$t} z$FxQ|+YhX!@zp+C6ua_d+3h{qNb|w&3V%f^1YRClm{RR?TRMQUhaLBjI0#bvKQ->* z3vs8Y|Jo|j^`-5V=gi>bo*MIjZpXDQhkBLPk*1+FXb5x#K8EtM@jUhjRZUAB`qVbWVKv7ap1Nh=@Fa;~Av*G1b4|6BH>4xtSz|4Bm!$;C>%Yd}*% z9{!)*s&L=AQ4g+Zxo=q0s>O(HixhMC_A`uJA?WxzD=-2L5?-wv-#%gyfRR}J{(s<4 z@i{%wegSeBoG;l<)vc$)Hs{+-h1Z)lHjK7&IuXh3|QRnVP?@dzz=3C~{*jCvqM)e%DMu$X-g?{Ok3 zf@ooWWhB;p|2Zzbyid0#Z*8wVqVU(kU@l`8~UBhXC#Bf`o_`IYrdzNwixvT8kupFPY3CQxDPG z@v?FdbvAIi5E%G^aMs{FT@04*z)53cuF1UX*7lFvGH7HrwsI;Tn_zEvCgj5-aKYR> ziAzPWZMQIfglSRo$V<->bSk(`{hFVDxK(?)XclC~5Q>ZM$o9FAfG}FJPihzBtcBGq zro(EvX5+v#(VH*cBPGouTIB0{5vO5Bc!S_I?;RdifN9}30CG@Qza|c|_B*#-{dONI z7`w@jAo@10xWMExAKJdk%1WDAY`$;~J{DO)+v&2SD#A$>9`32yYg2R*$ABA|7~a@n zf{Z@(7K;EU$PO!ef@p?dYzzNOg>Zl@gsm4C^ropD*(N?{0E)PmICW0FCkG94VcNkm z_1*2-y0i1B@3p_b9#WF==A~2O1qyxx=P>a}1mtA^{m`8k;Tl)Hy-tMlf6iw2x*r)hwz^PGEg(L@ zj_PM-us-C{Sc{;^{ZZ}E1D+Mf;gJg(?D)E2WuOCGqJhj33^XSg)BUw|D~E1|0fe6( zA2y_S&%u;>2I7_+hiSuZ=;99s{yjZ|_&vmD%JU`S=jH!}P!_U!vB)xJ=6hjVp71`Q z_b;0zZpgHLeKn+5zE^C&jiFxdhim#f>6G}O&Y)b^GJ-Un1a|i%y}jk0kdMM3D)f`{ znJ3&QF-8J@T{aI)yu7@&@7S?pQaPj)V%UGR3j+({irZ58wVNG}n5 zrP?MY@k)&a`*OICCk2vuj?pupjTn*9Agd$@e(1x56KV{YpXCvjza7O+GXn?UI`qL7 z5B0w^84-`nlnaQf0QF;XvL4b0BuZ!b1q7Od#(poSwm~lyEm1zf6)V^_ zBzq$TUN}q_oWx)5p^YuSy~s%z`WhB;svW*A(vVGnISWVhhnBfIfJNBw1EIiB^vke` zgljxMLr=eJmm+bEScZg?Hn&BJTJW@WkjQ41jK!j23?0|iZm?6RqQgq(pCFjYbVC;ITSDt)X25S%r=Y^Ls zb7%U{3Q7Y_8gI*6yA;__;daO~#%vqkOmvuu%1WGYEEr|iFD;>jdsD=k7P0%CfxQ=; zh{SYW>XpNe@e?xIfs!=Paf1)YZ2>9qG}8MKOf$h!+K+WPH`0Wiz4qgn-wCCd>zxJg zG;Srlv(U7rK+H_S2MH?T_uPXkGnZ7*99XQHz4c?SSlv1I3vVK)ofkw@Pc$d_wPmrf z`8D*F69NVjN2#CtI*1VfkhYQ#XbJ+oWlJg@Y_N#t3km=@irLbMUGI!Txy<7#mtf`Z5m+E^H$Gg z(>p!+n-GY`a2d>}>hUlL0$2a3TrS=01WN6o?@y+Nwvbb!{bFmHTfVUtE0MCiV4Z5v ze(NfVI67VIoNB~G2wdNL6z0H=0gu8qriPKpT=Z!1Ptuoq#egZ zN*9+ng>B;YbuO1Oo>?(7{*pHj5p>6kZ zl!E`w8I<>Z1$FasbHq&z{vs$f^Twp!2I5931#Vc20W=t2@03H+TvyGSl{sHg7<06GO~9h8#jX62Z9c&EedM)c+EaJ}b!nT?m& z*?Bz8UviWiyu0Ox2WLAsqKP?YK?KK6W&_*J83|EqkM82W7M|JSl!GeKRFq3uCoEH! zKW)$&^{y?}tAJ-hxe$!I;g7?d?EG(RLi$>;ETfNcwLUvW-YB&h^;QQjhf(UxqFB52 zkcu#!=(SxhFJ%&E5P+Pik5K918lZ;3ki(?c!5v82!#W6dhEm0FnL@_3uvuYSsvY#al!8u14>1~~N0GH%Zx)Q6o?EwDR6 ztMTT?N7eM@g$uK;@v?%p3GF;nWe-P1zgMiCtaz`o`huLgPWs{ADAjRFDG4sNkR)JN zat1|?bl}rqyqN$Tw7hUvQRE@sR=2&nkX%0OMak8dqK zE_FTbQR@lNqY7`(j~tML6b(Y9U-rb{3Q*;2`^gZXKEN>!bu#$x1JyZ3^H=P4)O%A8 zS#()edu49OAOcm~yW0%c)~x@5t^8UPTZH*p{O&{9wS*}d zjK5H?VsOI_(8H*9@}q1H*;#wUl^RG5DQVqRIPSS>`(?H4$?hCZU40Dr8m!ivS7sOebehCFpxX*8WFaFMWI#0!#j8$Lz!hsn=8 zgR7rRaQs-iMQl}Lqk4Qz@byl?Nd`mLR5ZbNPmzrT{a}$a*XM@0UoWSZclpw<8!GPfAV&E3$#U-jj~QEEv?0VQ`P0 zv+VocuP=pYWEjfP08HKr_{J(&JA-+m$7UrkDYHAUN&0qyluVVK#7c<(t<$w!XdllytJq{aJ| zvDTqggSSR?yDXbOh^&(_#DLkc{ANEJTN967wFv|eRDbgoar=k>@ejUY27B`BL2{}H z2LHAU?-#oDSNFO7_2YxI)X^s=WM%8B#VUNFa-+^Y_sF_ld1 z-Qsk~)idy>YC5x>PU$rk^l7Z*O4wn+uHhW$k;Flw#4=$&#gc7x0Y+5qpPn3dO?Yx^ zXzSeQ<{lT5lE%j$RYLNwr3tTNX6>n{w!s7cN|)r-YG)UcPoTNsxwpxMk z|MF?r8gy{jwtgbv#~XAHp$?fid^31)|# z1kCP5pKtVRaGv=-Q@ZXEd9?n<#%~j@_rx3ubIvp311JnR!t$J?$t592N8~jqaRDS; zLwMv8$^%^69$7gkyqYymq7QZ%H!M<93)gpG4j1#` z2%d9AKA7k!i8Iu2huogn50E4l&D0#4=zRP5*&+q0Q(m-Wyu!AnS@qeq3pSV}2AeUV zp6TA#gJEWYbQ5g?>4|dnkzB)!0#jK*nCu{F$si;m;0z}wU zeMAksHGQ&Z;4Ap>Qb^uuadClOK#P%wbgyVx*kRt9Mh$dd0U~!GCGY3Gt6eFz7zz!m0<%BE?avYr3C|Z_zYTvTTU1G%q zP(?eD3I-?pz)t}#JcZMBi;dD23!1Izq1^j0;Kly)StF_&7!F7%7>Gmtcqq0bofT{# zXh%i7I%+Z6yCQSUR8wmnZ7TWwh3qg&<=`Y$VV&wuf{%%Z zR`3r#CN%OaFbA(kc$W?%2QPQJ+x#_ES#vYrYVq9JgeTisX_dnx)keV=Y1?zugOVXm zBVL{dGZOoi%6WIM4u)SMh84ACUK)P&ru#BVZYpgd38ybAbk<#0O5BHbKQ@PxcAi-& z2;1!$HOc#W{;Ul}a+4j1>ufsN32xY$I(d+A1LGz?-K0&V@I!ks@fm zTRs0-PT@zN4wMz7b4qdN#mEma@Q9i&C7J;RZ1sAaaul@8aVYu;$q?bOO;9Q^m>Oy4 zEj=bjr;|M;$zqHrK(jFOf69APFlw^z!}#^?Gu(iC(`{}& zPGPViQ*bz#C(OWDJPXd`Fbzlj5fX?jrR|oD4UwfJJDglwp*$itIB2G`oBdeQ=79#9 z^EqWmE~b^kL@vB#{`L$W;Lqf7qlmI8O+TL(TCP8;^saZ>@x1R}T^M36^3%hDU+ocgt3KWAA z+)vmEF7r|AygFiCD}cGrtr^zlX)(_H<;TAgOr~x3(^m&S8Q%#y)+>eah)Qe-2D=GV zU_hl67*mP{V_%R=+)Xo())~_M8HEosirT1s1|v+pb&crPI5u@+W+7o36R?T~3QEpn zVm957eaOXA?dSe{ryO~6g88L>%s8~7t?~LS>KgWo|#=_pZ=&Q$%3kojC zfUWqxl>=p@dU?$$R}}q(AdY}=(#~?imqGpmS%=poz1wR21nI`Q^Q`Ny{$y9#hkKAY zLq0Tl!EUImQAVNI5GL;Z~aWX(Vz#xq(noBunzzmix?rm zBc|0=u*q{v`GegF^H~PM0J?WJn-u;Opc7c|HQ&B|P6wt3)4V4^eb1 zXs;77A~AS-*>JUYGs23|NuThWvs~DlNL$N2H8Xb#Tz{`M{xw;qb#0HRSN_#~QzqJR z7&}9=_gIk%UZo@Chj!+`WFCw56nu<<5EHUsrIL8wa(0$j8>&ZrWe)6oE3EZ$X{jWEW-n~qf*O2ax(O?}w|~KG78*-c z;@F@$!epmfQmd-v{Oo)3$ChlM^do>COG{B5&kEYM)oZY}-h58ZCjs2s_g-l_uX;yQ zOk`pT3*V&&_$KYZ4KYIHip=-?`U9Azj_I+f)7E&0Hc}gFmjnS z)A!(lCR>w6SnI1sMx2e-GUq?)8Z3}YLsk>8v3s0DTJ2;j=&9(E`j+HM?e;*2Xnp|TEIu;Utc9J zYF+!*bbfYBTkl;9S-Qzb+>nbMb!z#Ro7!_fI_beYOOZ-P=`+k>Qgt&~fq_6p8xC)N z7n(ei4i3F6vuysalo*u;?Zye#ug-qK9^Y&!T3kar-GU9QAx?GhHps&c18s) zjc2B|)rK84{xkEV)wYxq`!aT~v#_x_O^_U++{Up%a^!XLPCu6d>5#A_qixu}i1l+| z*xy&D6SiBP{rEQ5+_6By&S}b^Ir{)#T~UlgF6CKhc&}!1*4e1a%ah@LJ;3`|yc(Vpf_of!Dc)(-O0IunQ67Ipgq{9&j@Uq`oH9Kt!Vra(H;3-00F^q$foqDDTJk-uXKv zF6Q>>aunS9bAA<48NcrQ_+Y+eEG4#gZZvhV`%Z10n(NO^rZod`JwXUUAY({0fpl$! zLlMm~t1ozq!V57hVOBkt_Kjoqs1*qgXRa!ITdPpCa%Pb+>ccn&n_S8@6ZYBXFh=(L zj70C^0T}72Q|YJ?5e62AME?$FNq9*lsZGkdGowATPD~$j+d>!P^r22A-^PYkIWX~? zsNp_A5@4;?48*Wvs+}uQQp?1gmwo8x63tJvi7|<&<+g0=K6l(cPUSi$L6WqyPtT_{ zM8}_|$(mifIT<ClN;d(=nOf9~tcUOg|lCljvm90eTfVs~Z;dxn3G77kz{ zJnF1`(kpyaBVa2@y1D-9)YOn)Nkeo!gPXc#%W~Xjjc>)@$n@^j?fK5@N>9~(3Ro1YOdQcO8zhVck7 zb_fGgzfhz1__RH3u=W7=r=qZ9aK*48)ehw~7trR@3wt`@uh$RA_0EZ!#}s2NLYFYO zp|dF0ST1*F*T)azSZZo1MxkZcJHT2voCRYMFf36T9#kVd_So&=wQ@gA*4rn=3A)nE zQqg;3W%p9sVqL#_rM}jmP(gzh&^_hlQN0^LM7emwQ-@PXplHoOS;Z5BtNNtP99JXL` zYrPuU6k$tXyj}e4>6zGF`>4F`bZeSP*iwuW*HkHugTpzP@cX_%B-xMmBkpfs*@r5XA)yutK)Ti5bu^WfcPKT}i3Eef9Mq$YwMuK{pnz zX-Rs4ZA^EU?udoxMW(Tqdsr>SGj>_V_tpGgSY%C^prXSqtM zMDHnFo$lG{{dAj8hCiVBZ>hu-ZN}t;l8I*c=+F?5r)4bv9YeNyG z$8OhUs>@7%o59F!AVM!3VN`S+Tig2_K2QigVBcohnGOKO`nyU*NA?fD!?o6;BSO=v z=FJf|IupEK+)z=CzOLSXVPEqM;Fna+5{I6n&K)>dr5lybFF}x!(Oo1vf#J>=WPkIw zY^WI=*v(I0Y38y^QsKK0hEWg!J1dG_(7dhD=V}h{kheCKQQve&*l%8B;73rrgH5v) z3J`f_h4LCTWWRkF&PEzX@RTA&s!KF(FY+%fpOU`6*eKJ~6BKXeq_^w$FP~BN`C5UY zwjMWOxlJ!q4(v@;AYXX2&HZ=vM^@hLflt%YHBN$TBhPVwTd&<1xgZSG$nT=LB4pcN zS>Vm*xlU}`$ajn8%z8ZHEe<-3s0E(9xEvOy|OypbYZ{zr$?KnI)&Q$3Uc=b z?UFejXu*vLrpU*mSJeca)M!WkArQ3YjN$XBPOBYerXQxj_p8gDe_zC`;aJOom!~h% z4$lmf?b}^{t;K*LK~`=b>yZnhj`P~WevH4aHYI4hjIhdKJr|?_nJi1OEV-onEFS#~ z46SViF>()&X3L3Ex3yj9og^a4-oWD7DRA0Z^7lirU+(#|&aoM_Z^CPC+$i1avs2#v ztbpvogk~R4{|mkBh@jahsrF}Q%)d}b-9UAOj_mLS+OG%(e)xC7|0PpKV z4{7$k@5mR5Er-tC=@K3t{rxDjsyxdldF15e!G|x162q$_kG`n*_{O{AzismquiX+I zdb?Rb(3Gt7Pj!4AX4>k{Edm&v3%59#fZ9Fc}gQkmmD)@+)bjJH5H) z`Wd61PCeZU&&pzgDSWf{MCaE`AJwR=*Vn2rP2*E+ez1QmcO%zWmft((;(7YcBRr#{ zDf?(Oy{R}26zm)ve*RR9$R_61n`3ehVNMJ25n&+*ZK4po$_QB-0IKR}$v47hKp?$i zXJE3FnLQ*QH|;)6Lvn||Q+BD~SHbtX)7)bFAHBSmvL!05LiEbb(3I-v?_??W7Y`3J z@}-&>6Cq48g^xV!kZzz@x1%SdXqyPa8L-pQrbG&225o=i!OF97hg&{8e{ky4RY`ST zBht^)rHjWm-``C4c7&`k+wa}AWLo#Zj1y1Wn&qSX?hNhr=0;jNz){Ulejn{l__A-I zW!|-{k3JSr>0>K@_{#zgK!3f>w1qd?ql)okQYPvHGd;`+vaS1#xHaRijN}Gn>%T_t z)2RI_MnqI7BbTJx89Guv2K8!{d2TS!M9a+K>c>8W5b{Ip?)i<$E_aod`F#{Whu3;( z6@$+0c3_Je=}hHdS3H(B@8fcGIP%oh!3_Ic(eM}sQ{h+1Usv{=dEr_b**p_;b5^$_ zC!}7~epevPCOTfv&!G%kn6>UZcqDfX&#(Phoo7f{3e9iq8t#n=niO4f>2}O4j%A2h zy|EadKnjVej{NYRl{DQo#{+jqNu)@+D=$5#B3aKC-!$9vV1yg@SmgA>8wZoV5e6uI zK)S{fU%XJB9afB)Z=3vNL1KAoDKtI!D{+Z5JLfNlMn+OSuJ!_Gp7q1k)%C`)Xm+=U ztyjG3&8eL&4?DD)j0l;XSiTgR({t1C-lnc(m4S?Y>sqAnmZq8lI!poN%gf6@mtDq$ zPHFbeF8AJin;;!nV=5G%`@3f&dN^!cOH5{(cVnjtQ}u31zluG!jp7dg; z-4bA&EQk}A*4(6E4ZQ@Bu#NM{LRQu^zLO)d%1y^68phwgV66}_Ohd#;DC~{RL!!y{ zE}+RiNa$C_3F3#@cdLjKQe@}D++TV5J;rGGu(5slD}WJqCit}8OZ=m+$otE9E##Bv zm<|#D`Y;P65FMSB*Z;#uBj#Cqr?=CQoY=qpvlBfI=1(Ce`LUk%=0TGjJ#x>JBqz+x zlN%myr=!!9qTJ%CsHF7vhm&XLt2Gnp*P57Q>V)HN(^qrf#wdb zVKaWsh>7^jmZ9yEY|&L4g=cRwTq;ug*GuiX*LtN2vpkLS_2*eRGlYD;mGfPu$n~YE zJ78aVmdRwMYMi)p*}l5}clV0@+grPX=5-PGDl6r8Ffk=$XKPLee<=3%r;_^pvm!#= zmhH=zFW^0?$0sJTUjzEt);oWPn47K=A&Bvuvs+hIR&GU#ABT>Yaf|0BGc&U>p`q>4 zU0q#{ecn3-@rxXsoCn0jcB18>(-`mZTuQ|tj;Da&4MqugaKOLmYXJ4L6_*YFEqwzwm092 zIb=WJkVh9CRW-&G>$bvEgVl`bh|kcXMM71D9^B`ip3FtdANtnThl>makfnK#ja>oK zw;35vWp8iXJ9AX-uuIv60d5{09r|-~b8$&Y@*mSazDZ8zBBWoAz4s{I2MYU)ETJ2s zsilP)nG79BW@~F}V&1wSg7R%uGc!)mt^&b!ON@`-gx6vl)J0xUtd5E=FXaFN#8?w* zq9E${{yiK2tEHoJ8R+TQo}ul#F_atTR{Zwpvh?E;3%^f(*e3J)F3wX+Te}Y|Zn&GA zGNsr_MM$!K-6x4(F_n$uzzg3RX4 zn=j|<4}uNUv`dJe?|hCt+9%JmOgK3?`|S%)c}d7qlStf|OI=yETqu6^N|i+M+_}f^ zhCt7{EVwJFuu$@H?u>t{AYfeuJ3C?jfPhw$(}{F=>ZzHTZMHc}cCgYR0jBhL6G?r2 zJ@(SmdZH2%5}#^nE{oD(m1SdUP1f3$2sshg`Bq(SZtgNdpplm+GB7x345rZ7G9F#o z^rDYha7c*9`}eZu@$o2XDu!qKpm`>_3%(iC?c2BYiX4SVhT_7TCY)Ver6=qqsi>%0 zj^Z=~_dK+;wDkRUZOC`6*5orFZGR1JGM@@M`_8@_y%2P@Sfwu|a#PjR)M(&og9JiC z^4m>@kBNH1-uaupPsOIvp3I6TKicBue26heB1eyQ*#}CvZ2(v$VE8b^iQrES{&EANrP3F>@U~ z%E!xDO_?sMynkJDJJmVy?a^nb*C@jp^Z#W zf0WxMO_tlfHMji%mL81PSj=;G)B1Qy$X6rBw*~ddo23v!|EBhKN|G_R*;Q>*U^lc7 zmzEJd%Fa%MqNV--0A7cAd3i|$DT*JM_e84=TiZyj;@?5)drn;a(FawRPrA7scR3z= zM@4hTlFRV|1Adl+dpG3C;Q0Rmd7b9DbDk3u6Irv^`xHTutxZl$+#DSpU3XfJnu)Ir z4Va*>Uv=g+H8e=xe1GLu$DELunmY3OLf|uW$eUBtDM(B$EGkBC-8ZBAi|q4fz_B9u zLzXD?Tj6=NsYe1gNrb22>D+1laB935me;TAw6(OfoY35XsCoK&fp0ON+XFbkKGJ)o zvy5<+gckw~sRQtN<))&72}5(t7~dPA|v;} zp(hU)W&76Pm>SEz`=y68@P;Xym?TEjo1;z*cqZd+i0P05)z#HGKwxjz!_cql`kPv` z7clLLSuSN?RW{E`%_WtNJNfm5D^A&FT-0}w4CrJwH~cIaKxiLE-x<+ zi!6ZT5$??;eSLkx1cvR%J6HF9zk?hC0_uDA>`BVVP$S|67H7anC!Y>Ga(5q7Gc&)c z%fax9u0|xEW3}qsEZF}86R~yL42th)17+ZR%%vJKFktG0SxnDyt)=llDqmIkRHxAjUWIW?1_f`X4)bD;XY6DQ6nD{~$?q)gAi zV1|x9F?Hw@9PHvVjA?^WQu)!j^W!q9)Z{Z{jXeGr$&Gi& literal 0 HcmV?d00001 diff --git a/_images/2d725d26585822d8d455ff135535d3e47a1274b7dd8ad1dbc95375be5981ffeb.png b/_images/2d725d26585822d8d455ff135535d3e47a1274b7dd8ad1dbc95375be5981ffeb.png new file mode 100644 index 0000000000000000000000000000000000000000..9bcc34a3a89dfa205ab75afb43f0952a4d57d487 GIT binary patch literal 40428 zcmbTf2|SkT+BSYytL)~r8Z@JN2$>@(q>%@i$4n72l`bRSFHt z*n|c$RZ66c-*M7@-}n1}d#&&H{rB&;ce{Gr&wXF_b)DyN9>;N>oz~J&o;hvtG=^bj zvQ@U~FwCSxhMBnQUsLcW7qKVxcJ`x`hb|T%N}v*-&AhkB2)LP7`rmeY)ks@gyfA$_6&2$ zn7wtA-l6D^jUJ{3eWRma+a?G6IZaGSTYC-Hlh?)$=c5dKhvMz+ALb}&y?&)rvoyat z`i!b*Zmp@D)Whg2Q!@4Tw{F+|V=~vpZ-a5pLp`CB#O_{X`B48cPY1~ zd7D?M=n2b(6LAyFZPr>_F8V)Ai}O5P`qe*05D$$1=xVD^pkEWOMvi?{eVgQD`h8@8 z6|D{g^rGnTSqnj{M82P+<|2u*U?`EJ1#tN#pLF`ipP(4tX(@h z_Oy;V@4M;*wN$Muf4-2UPw+Jq?0@@bWrX*&Xfeb}ozQ1LX=< zR#tjfHXpAw?~|BUbMnXFS2Ja0cb^>j7CTywN9GRP=2)Me-{yW-LfZDx!f;U&gYVzJJJcke)rgVztdi5#*7kaT zR<@#gj;*`#YWa6j-OyXI)K^ z=eN&;1GOo-GKarA{rvgUzPqVdSSS9}%RI-VTeoi2x;7npKXaLam)^$Fq1^f`i>zfE z4wgTBxVmuUU$j)gHv1Y&(w@~UNOjE$>V5J?sIx`JATCL~_S1%JTjkt?KmI;@ zcec@WuRe$3p`M4Fk*MaKGZ0mtVhr4LE%|zim1_uM6kP zDaV&ZYqs()4HW!Pec+SPr=&kCvV}YJ)GvCRXsLYQXrwf9uxkZ(c_xPS(q@uBdhWyr-w70*|3OjQzV=Ac-Er|IF!I2e&k29b4_xAbfme zB#<-bz57VZCOK~Rr;X1KnUyTIIe5?Qp?jJ1>a$Dbbe=tXmSV9$%v55-9J;ai0@t>4 z6Wgk)V@pRbM<%Zpwlg$xkM-5gi*-theC5%)%RE%fRUJJ&z0SezB;1~`Ub5DQlN7Z4XAFFOz}x!% zeVl9C6E-J6&QParN`_v+_1w(nQ`&mH7O|4&%Xf zT==Q6(C~4TOejmnv0h!)xv93qXHci=XJ3OwIEQmJamPj5!?yG&*XqMp8}<%#Wp$M; zu&B*mqjA-_n%LeZP}mSwr2qxg=Dtf#PENg*tF!FBe|#Z~a}ecv&1?qU!kVQU zeNBtK`l`Qwdd1J~>uNCEwd?ZYwN7>}IoH)RV=F_-q?0a>MbvVQsZ*y$N!bJls7GEt zcI-E~b?fYgethk0E-jrluRLUSk)oE@fZpeUPznc1Jbka6ODi5eRJ(HJ3MU>HcN`h| zNvl&)kz<}|GBkFwdpH+mohu(aP{xfL+Sw&XU%Hg%)}gca^({$@FrCw<$D(HBUlKDi zcIK)241TX`eHg*d?k?_+Nz}NM%HelyHjiJlX)MnBI~{!c*W|vA8s)C~j8K+-n!%2d zkrBL+@ccXKf5jEivj*?rgoaWKqSKF$>E8KsvW!=+-Lmy=g3agu{e9MfTTafZsHvg& zz==oTSKwBFVLx}$hfJgX}#-*GprP~2(f{Wxm7J6KG?eCL?0i2H0vD4hRlwPn@u`}2S2%C zQ-zCLnB$M?0_Lw4Oz8jhWa?H6PjHKyr!SUqu&dzk=NO4}He|(a-m;}Gd$)4#`&J|Q z%CWd{;Y~|LXwUcW^;xAO!t7L&o0$_QO{$A$&kYT2_5O8Jljh8wD`Q{Hs!P#TE*%+2 zo3=nKT}U@kki|Nt6SaN(L$_5AfBzVgl$3OCsoV;-!>bz^+#*Joh4oV-qeVO{$Fph2 zyt#8%T3A>p^wsLFcWF7L8X=Z}uid$ExOZ+s?X+LtwyZwgm_Bv<ENEcVKqHc#-fcHH)kpp7G!!))gWjOG6?%*olj=OZE_u)$Zdy?QEE&Hw%P%j?}c zansJfZhCa(+O-C}-d~O^mbSaBaQJ(&QMOgo29L~xpI&YgdOUIbrr+@1aC))A+1dHh zdUsV$Z_h(<$0yNp!WJb(6%{>V<6p)nBqgQOUG(kT%j@=WhzJB2(hM@HJL}Sf5{%D` zEfJr^ni*Tv&WnVcJb4mtPb9GHs-n+;ptQ6eE-badyyW)yrtHb6Nz#1y>Xiv4KUNCv z1t(c6*Y>fx#`#i-vArGK%@PoB=&VgiH7mT~JMweSd|^G6xvMlNxCtf*?E3Y6Q)kUO zkGD2!*?Jb+>vMiv3sy2!KP@U+WYp@{M{c=yoge7$&O#vUe0pVzuyIa2x9HAz3*Vo| zbsVI|AFij!y{kUOqr0i#(ATT1j>odiwKxRAd-m)J4c#;juFCIdhbea_Nsd4Ks(WQ+_KzYZQ!PqM{`~V# zy?B*Be7?Wf^RoD`Y=ZR3-Q!Qz@T$b8u&AiW?cKepY@L&{mPtD|$>$dqUW}e$e`oB_ zDrL@}KR=lyFl^l?p+3|_B?-$Ki|3Q2i|Z0`Qu0X z(9dt2_|J`njvpRfaB+8+ky|9SWDNT%otyK=A6F(!nqv1N$A%M+Ame}t==Jva0(FfO z>A!-c%dxPqc|IdQ+j_oyd75MMkU+|vqg-9>&*H+W<6n6a;^C>t_Gs()R%(3`yDy7tjOB=iEJMl>2R|AiN1W0L&>Meg)~E3nfKb(z zFJI1y|M2+Y!{%lS{19Dd@%ZCQ)m_@)A?@^BLT2A*Q43{ z4s@)dSN7<_8cuwsSz%{xm7*?Q4vtauneiu^QRvl|+T{IhN1k)D`JN}y+Q+BOzrL?= zy{JV=v`&EX_<_6@Ww~(Yt^HTz<>h;EV9W2{-#%%|3@xP8^=|FE4$8O88P5^7g;!}r z2j9GT^TxhLqzJ>T7)lYh4(tvMU4C;sO7fY_nKMWFz`Lz=8777(hQf=Biz(Z_d9zDZ zDE-%7i^6%O!tRnZ;PDi_6di%2E#~7HaKFU@ar3aOtgQM> zv(@8C0%xQx=J1mi>vG3KVGHoyZY$7x+w)|p=b=M(pI+t(YhCtN{PAYeFu-J(j`h^> zx1vM8?dk2UML-f`JJhFNm^g8wUg5#Lcz*HmP@*WJ7PZ0FM98@7)kub^5+;QApu z{&Xiz3*6X*+YkX+>>!2jkwe47b%{HcgoaL-eSa+fDe(jYm`|S0U4HlO7UWP)Mn=Z= zGYhZa_H;x?P}Nx!||=%vKjkXKg+z>t*3>})_HJlnT*G0Q~hMEJ1y2q1IGI5 z&WJRzz5{HN8&1zgh6mkSE9W=fI;5`Eou7>uRrfmI74T}6u?Tl)&4l{wg(ocI`&#fkT{zq|H=BLaZrxg^@G%4B_VMWp z>btT^Gx5qlR4Px!vbVIf#Dh$bTfaVP85L|lBP|yWe1GLEv+FivR(OzVbVWr)T2w^Mi;RSXgoMosuJ6oqNJxtDQq6Oy)4>a*svQ@mn^iuy zR9j0c7-;oMdAZ7q=g-?Oc{DwXXNR`Dd&jZ&dz!wTqNS3?{()Y51SdNrHBLM(Cxl?B zsn8czQQ^<^u-B>+w~F;l!Lxe-lJ{1tiKi$XQQkN?IxH+6FQ?<7cxmm4nM>%AmdNgl zAJ(*z8rv3+!tj9$YxX#xY6&=dRv&DMG*I}=W$X109z1CKU=ok8f{*ZySjoNB@uwAk zw#)^}mN45yuutRC`V`=;X|rb4Cu_%5_xWOp_)76xLVmM&79(d&QZt0roW0e9=-nM>9t1OKe| z8!2LSpmc0Ncy_H@FX}Hd23q|qR;*Z2Tk7YB5Nygpq~Zssk%G5_Bb0M;hpm|%QjI*i7?-eOTYw!<`^!QP@q~Fl4Wa_G*X#HN1UeHU%yp1}05`==OiXg$Pe^3zO74Aj_4q(< zM;tcJa97@+lc%Tdy7OlNN`g}JLbnc1z&s(&*Rau*a&pFWmJup#oSm~!dbA^L)Nk}C zk({w*_x&^4NRjjx09Ea%c`n3I<~|gLT~>~|txEpenRC1w#S9G%=?zgmh$8*PSEeQ* zC2|((Yt(ZDZlYuyKNtI-J^S*;-n7{phqQo#6aM<^uX%Ik5d1%W?3i^$n_80k1&U5~ zpI_%sn?AiJOh{MSy;JY;g*B`CqOlbnP;LPF)*z_r1DH}OJaFK^g%~=!w|MVLTz7gQ zg^bkxt!iTg%hS_S2(Jt~#l}MC&8X2CzjKRttwu+NDI)=6_5CU~TwGm4S(g+J8xT@O zjL@l)ov{Vg&MlyaOh7VQhjxJc^13>G3-7PnIw`YOQlqI#!EFjB1NPk!5l&Tfenc86uLleEO7e`?eCu5Q!SK z6c&|(;9>$bqSq~F19}A0mRewbXcLF3+kbOn-3LIffpp6|-2a)&Tvk!h9E4lHH}M7? zA>*+j)%J1J%UcKHK7Ra&&B@#G=FZVDoi`Jz^UThiJ$rV_%*FBa&>+tUV&qv@%$Yo8 zN+mJ~_FrXcbpJw0t7AmO#%-VZ;^j+WY$qz0mN*wJ@5q`Nz+X{U*B8?d_AIgF;KtBZ zn)SC1yw4FM4!Gw!Av;J4OAvb*H_#lm1dH5hwZOHOr&t#mrJss_6o0HaySX z9UdGU{Nm?lN1R!LH`hU5d}=PW2wWgu-`i1>cj)W88D<_Wr8p8u^aTWNI+efkb z%3Ds%&<4{3Sf>b1(DcZWBiM*b66UEKo$+b+%M24)!r0Emedmd9Srv0=GXlY*bf?+U zZtYrU7fNn!EO6IFDcM_Z;%xus_7TeTtQ2rzocPs-nXkW<;D6)scsTEzxVZNU7WBn; zhkm>dqH=_CHLB|3?=Kx`TceB8V0le4xkLncv*y9cWDJx23Sbt8+{ z79aKyHO|=zKvR2V%SmaF7e1)&iPN&JipdZ&E3o!zA02Aj7`5)e)z^)U2)3fj*6mk9 z9#8T5{!xgHvTd=%E`M4@Jb9{1Yvp1Euj{X0zoy!Lj~5Sas)hH2Wjm!SL^JpI_h%v} z+THe_fO<3ekR~7uj`9O#7+UF*wfRagMHvW_OukAaAwgO!33o#@%FsBt5&U|0t0aL zp~3@k(_5EO)TQF0#5Ildl_1T~RsnN=A!6N<>>wi4SVGH}Z_-Uve|Bu@+_2zaJ}xdU zs!E3k`wfpw?0DHev0S#gCaJpjX1T-+W0CWI%SH#EA1%m;h*%Kx1j-7Z;ozs6%`L61 z2}mex9c&L7zY%Z!Ow$(tQB5I<%AO`b9u|JX`f~-;wYF|OhH}EK{ps?)_GepwUJ%l} z-W)bFHI-VunzqAURChuMw=&L6rl1O44j!xrhRj1Lt11*+QQa%p9qTueLaTrpplFYa z!@?6p;U}m?*xIY)j@9ByBfA%#Fvv7bA>_Pb#b!<~_NzTWFwq+o9saLZ*6_Aw=p+PC zRPyulgJ_}IkY!<*pc>xWJUU`nwQkNy*fINN9Q?@IR*?5(0K#?WXvFI5_# z7ks|l;VSSMyfKYiB>9h(+wE$TwLf+;MnW~Kh>=n=$qUHSYQI=j!>!wq}$o%99H{x*hJF`orP*wJU!fJ=)sdE(l=$>3Q~1ooUv&((`MO z1j`YBD=I1s8d*X@Y@jmTaAEy)uZ^^f7brvn2snatSJlukh!8WI$IYFHvbo~Ez>bY8 zCY5isA24bA@F5YIDorOrb>Pe0+3pYsq|LzLzNdl*Ul5NK1V`(#Xc`fU*7uOkD7+B1 zAr=$5R~G)rp)6oNQq-CaJi*Qh_Fq@tmFWH17Ta}q_QqQLt#!7MUWvCS)ehM4xM&zO zl=%oKT@6{QQPz*sFRF+khfGb%1ya3|h|y2G%rK_+@~*@BH%iuAkW(#ckiZ)j%B@g7PMz%G%jE zHfH0Nb4mnf%ZDLi(MB5v>CYJ%SR{iIVn>v;Bua>zHpY^}Nx6HfI&s0eBa^t?0Q|Qp zE2klPyBs*6eRRsqUYw^?EL*+l`Uhilc#Ao);fg*5_k(z|fT8A#nHu2~*W5lbN&nie zO?0E?H|Et0`4c}Cyy4S}T;-UU7@|s9DS%-+ukD%;cwpiSK?R=x{s;61_uRX8ue_nb zkPtSA*Q+=MU8oJ}5r?-5O?J5k)e;|Lr0yb=wsdu+efhGVtrNtfAnh~Y7A|J?vc*~@ z4Z2YP^c{#Wm5;+m3tLx>Nrf#Af6KAXuy^nJZnmS(B=PZvEpD=FHD-N3-sc^-eevg- z9oqt1O19~R_>M6L{-#1mqS$kxpfkbMW=xzsjW+xMaG792{v*9oo1G<=7oD6$TwI0t zmn;c9@BBPbXnM(-4U2Q8j*(CKPu|`=No2s!fdQaf6QXGI{6>9uM6Z)H+@~8EdtBMH z=EJ4s!p23BsuBA+m&`VWi@lBKXp~*|+;d9I?6mZT6*&{eFSXstDV?G)K@@P++SyiR z(x~K6n5m&MmfXOT{`-MXCqCc5Uy*(4uEK+5f$Q7%ITeXnoRtzsY`mUO z4m@+Fc0+ej9Kldr1!tlL8HPkiuyR_NXL4hlpQ&ieItxh&@0>dIbikPa1HE2Rh32b& zq<#A^_kxc4T!co@9^1A_(#uu)An{L(F^|-<{jvKVcy-RY2ta+_(NOe zEo-UHG#dN>Ns2U{_50uWL*lLl|3Cs0Cmsc&BhD=)NhIfJ`y;u!>gs1uM9y2bOcV-r z?t5&mmL*A=vFAY#5y{Nf!Fm#j4k&gZdWLaFb+`%y!ZO7~&#hhqVRdtBh)h-R>eW(F zIrZ_=r@qqR8>kWoJ{NXhcWG61bRMHE1i(q4V$;X9`T&B{p!Lx`jByf=xn7&9rCDBb z0FPImYBd1nin6dCeJ=`@_V#waOS(wsq>5}D`LX-N7Ro=}(`U^xz)_R&{;|L8{{7DU zwwM}hEifp8FJ8R3uxz#xcTQ^Ll;3_!wtIGUXQ^*7>UP1vGMDCW#EY!i^Tb+^56{|j zgNj$b(GiE2*HZwe<2n3l4p7~wQq#+G(8mcbpJK3gfh(f8%-)xJ;M@=5Wo#PSXIH$SYeHvp~BfQJ`K zP*Swjm)zS}kOxLK5n)*IOEl>*NSZAc68O?!7Ljm}3xk7#f>0I^>4y@hJycUM3f5bf|4!lp;WNB;WLdF<67Ko)`H_nV!)yzfr(NnhEF~&}OS;5@$T+)b&2~}^ zK`5YjyIQ33csu`Q(P`D6k zElCwGOZ`e&6;|2FsAB6)>DxW;fej=D8wLP22XAX0P7zpQFk?y@d+O|RRYF!kP_(t( zgCn9OMs&!cHMYqB)X1$tD$ULph_S9|~L5(3nZqvdq5P@PT1g{Y8gbN6V1-J%n6Jbh<)fA#~OP|Jm2 zK}|bLy+O|-@s4&cF%ro?m{XZb%Il~Fa3HDVpvTx8VT1H!l+^8@`z7QS`9}*rG;D<$ z=hV4zw9zpO@T1xFXT~C|%;)o9O2kWtbckNVX0U-2f$Z$?`qlxmk6_QXOfZ;VLr41H zELt5UfNot>rPp^qn8nsX+Mc&?VKR!vNG!a$mA)k89xK~6d{SxF9HY-GL`l=3r|4*)Coc;w}&=L`0>6jJ&PGIF6iP`uzLuxmH%J0hPic8zl<<- z16Wdu{{ud#;(L*pQt|L!t>K2X>Beh_V?!nOr1my$?9eR`9LZo^J744`UA=l$FUwqk zFelE29+KMQb6m`*Roxzn&6)A>EaXj94gw9)Q)HN;IurDZ!`_m_a5_|xT?I? z=FNXX-%LcoY6Oo`&dr+*ph~1cM$Z>9diwDY^F@jKeXLrCtrp@Z5z1IBqPtG7iYZT5 zyZElVESe}N5YGpfV)eN|$8*5clIY8(h(pE#=pqyteZylEZ4kgV0ZP;%ygw>p;SP9K zz`BL)LH3IAl7Z3^#Lc9A9bAl@St2*N0Ig?(X#?ycXxY>HkP{CD*AN7gE{Jb+4KAi5 z^orGD9Qfei-(f}A=w`BzTM6%>T>gLPN*!6t=3-kC(2t6q!KCkYm&6Ocp*YaK5~aY# z9#i73mG1MeT18G4crn8E!45<)_{W#G18l4sVVywl|d>YtoJS^FqIK9tz2US2%1{s9nl!>hRm1EW-0i$d@LV+2PwgTvH<@PgA z$Iu`1#ZSt{Dhfb?02o}H+Sb5aH*6g{CYDDk-z5d?(J@NWnR z#Y4{ZgP@?`Dd4dFkVGp4M+17{pb~#JID+IHKwLv$gp!|((j9b%B}Emggy%6}5;Zun2|S5~RH*NgB$F2xadd02e7X7hxx zpiA|}G?2!t8ZJ!M)kU+W;!?VxKq+{Gbe_IIEDQ$$e>ESR3-E%j>IA--*ajC#RdZBll~0SlI82h_T11V3`G$jQl}m|pJv0NLkIZz`NtBI(vwiUdlJq;xW6p&%$+u0I3AWn zJ3v^k&Xgo5g-pH%h}E6hR@;c526>T_o2#Z!f+84D4h2qcNjK`*u(UMC4=h3!6NrUs zZ4DndkO=%q8xrVajqF0E#mYV^5=k?+z<0O+UdKybPIz4};lE*ZK=Uc+9waLZ43O%l zuui)&U)^+e1V2snzWbLqo5BUPHZ5hiyJS4UcyO_0lRf zRb~h@y;=Pq;hqKZKm0~|K90*xY?`A0LkYkPLj3$=Y%-NSi24y_XBob^@hOptkhF=A zC%X`0eiwp+s;Vjn;t0%G-p&0#1_#IF?@ONc*vC2A0I24NKgm$IK^!7(@Vb4CfDdXq zFhF1wn3hHM17}it8@`K^rUojO)L}S`x)5*;LRM`1eAqWsV256*ua83iYu5|hsPyX^TRz3o z(h_Htb^{zXOV;W^?}zWtnR12M7(q)uBqj3&$ZJ8011e;+#%Jkyky+GmI1<7pDsiiQ z8##sX+Ts+e4LCkH0#Wc`V`C!<)!>aSFHhTpk|UD|VxB6bq*UFcbDKAB*0F%_ z^ndDY0s^Rh<1SYWx32pGI)85FT>GH;ujndR9%TY)+b3wEaiuWY z{-UZePxs&jXgZ*1bV>qxL5tN=I&Lt-vK(rk%*5O4?0^Ft1LYAWj zH=K-Nr}`GNn;e|^E(!mwQzbjS$Vq7%B=?CdpdMeI2L4Kl~NUB3Xmmo?HrL zkxqr8#Gtcks*=Gi_rc7>0Z}3g3zjTd#WnbsSIM@OGy6LduWtJYq}yVI@*dvr^anhL z)rmX?mD&ehsU31%N)|8t&f-O1{`CFv_N4mM0Zs6$Zk>v|{WctUcMO#&)KHj|QGStw zCccCR#5HYCM4B;Cw`Hkers*^CY@meJrh9|5yw>UY?{B5espe1iyewp^d12F&`BrnAjI6>(!jwRkd0@}nza)~q{QEblc>f8 zf*_X%3=av&GQyA!d7DSpOK;%mIr8uRg1`m39dk5ta#tr;^GEAdr$nypp7A!@{LS)ouP~45 zcy<6dcGRo{BiVimJl{0o&!FrGJ?F}qq#<5JfO?=&a-NWc1Y!)?Ew}gn66g4sH85>7 zLgs`)p}_N7Vw9|NCUBL_!0s~WklqLwBp+W#`Nmc?%PvJ>N7ku1zi8XX3AN+2ZFQX> zI7fcjhH8O?NiJ)Fk+ILn!c(g=zy~)txyJSH@FXCo!_aznlEqD^eH(p?z{b3t0)la+ zmJ+_CBdhG}f7Z-6%B+wz^F*z(f=(8#{_h3^R;Ui&OjQ4HSq@@f==OhZ)E&M1MKdHM z#A|f8ACRueZ*+LZ$=_gFdIb@4Oj-kI(MM**+9iT+>O?9`3R|J<;wqYP!aY@6^@uc> z+Jiu8_*@;Js(ym%e1*}WZ_sDbmBHoo0Sb4J;zGCa=_|I-Ee$ z2*Npa2*K%R`(OgYXCa3x$tx&;XB1(3fiNHv9G9T7FqpfeL)TzIO)2@pKp@uvvyhhv zc#EoUPpfAusZM;+ji;e~n5Y?>37s8&F7j^!JBNX#n0lK3X`}XYv{mEGK`+h?7SNHhzQl_}C-h@&m+--3{tB&9+fa)eE z%wu|v%-Es+{@pv!ELTCw2#JY(KGH@t$D;h1KooKR7iEpfIbB!g1`3h_58M+xo?;}o z3}wL~LEDk~1z0IS*i<$E>rl=t--nn+I37hXCmwctYJwRun2Tm1HgN}de0YFYg9j(C z8*vBw-zfd!4w$({X6n=7>cXxD_xDrNb`Odn&)OJ;!-OkP^{a5mn***e8PJ>7A+jR1 zEa*v$LK<9#;y;mLf!>t{;dPq^kmhcT}~_@I(8LS#t>eFrA7{G&R6-vTua zje4}bk$(%yOPbP=iNqKHlg`fD*Z2~|iT~1auyc*CUtf1@5TgPIA8UX?aJ7er$BXAf zg>5@UxKUWGzq<)f`NZSL7fZN@?2#2X@s$0kB?TC*q5?qd0vg~}7CVCrhv)YxzLn?4 zx~wv*5X*(IK0pk9vR`WrEz|!FFy#!uAy9z@7n3mbWH9tKxbjt!jO**`af{5{_#{mb zYnR{vf|WcDTt_nEZ0gRuRB}b=8{sS#?tPK7jhbBCJHuEVfWq~#w!jP^2O|;VG9B?6 zM6?(e7uP2ky-_4qjW5qBC}+XTw~V76pV~d(_HaBx>2dPU>Id?g-P*qiTE*qCiA?Zp z6k3p7$R7$<&3P1Bv5G!m#ZT3@+4JFHk#~kQh(iWjraqrn5$K zV;wTLXkeKY1v4J2I>p4bYuBa>hAH+;`M4YCC^Huha1vyQz+x5u{BUsqShDrwM<0PX7%&Mo67z9(0X_m~&~VQ(eB!yOk>A^&t;}^rQkV<# zjv$~0cm*xsXQ#b;2}_g219Sp%hiN$gG8(VlV=2TWWOm~7SY$v!VNVW1dVxQ;od~qY z*(V@5CQ|3SwANm;++xr%iQzkmBv%8gX>Y}fPWVLMu`Kqc#Z9uY4dgoPKP~}8sSj%sF9y4QR{z;5(d0;M5%7?df@`qyeRUK8{Kh0z{vXl{v0 z!{0vL;S4M&`4D-jV*>q(r487~^ATe~Cla3kW?v7dClB@FcZtbhyCLH?`}ALe@S`*O z3Up=$fxeFFXjvDq*96kk>mWryGN3XejIzruQ zUS3}E1#u{rz|RBc$!k+LP2^Fr}xpCs&cCT(+p*? zWtdUhx_j4Ar=$G22`dcmAq^Lo9OPrlMkdQpyv0}H@IagAL#NqRJgC;`IsCoAo_5&l zVLFV`IU7iol)=!A0j_zqq~uqNtX1P7lnho-S&okZiJ%+s0nx$`jg4-i0Y0Kyqvyl($xq9tLYjik+7m4FbM_akKNkYJ}i#TL4bjf=Zh<4{Kc zx#-aG2Qnu2JM6)4mZMG=fCx(Ql2dzm(XjplYje7g#%zk3K>;&P7@|Er_n6d3+Z! zfLN~CqLew5005>Ie}3LN;AxI028;fz%7N9f&)x_ zEz}=0wv@{7bm*7qanSvEmAtjEeH{e^oTx2SkitWJ} z1Ox!>OQP(*nP z-DHIcwfnqzhAmB;7fN5%0mlh<2uLCfj2)%6UHLH1%SEnrV{&P%ff}2QT&^%v%xS7Ux;T zaI%tX8k@z&Wj!#703Za4_*$5s$nY98aH?}O^Eq;uIgK2EXyt&t!HFkq30&ue=0;-V zm7c)Su?(n@@Gkj(k(K|gCG})bODt{*;iwwH7PahznY@aoq)K2xNbXZQw?|)cnAA=f zz!4QID=LI?*G#~W3pCmOO%D|Q_OMajk7uasNnr#%%h!w!jk@xXm37GA!y|*;;3sR* zqX$((41djZSdZrdRW`fgBTOMJ(|&bE=`QH+dYzw37F{ek{6mPk6##3XzOTEsX@D76 zMF2Z^_qOfZQ_)67ZN{{ss0B1|be|zM3MG`+{IxREzWMFk0yqBZkAh5(VBpte8~5(_ zsIG|C)&tNKHNB-JCMISa^4RUa#x_U?ZkPZ=40w={0Y_q7VfTyxB1Q`t5bte2-r%Ih z0v|)&;q&(2p8Vc;_H5`;A4~YMLQV|2={{Q_@^SK;w`4f+3TwbigaZW_ce z7Y~n!vyV%;uEClJ|NU{9n-iGZZm18)CPKZ#Y(nPLSBJ3=fWgMjsm)UVo*QvdO{na3 zei}$2Hb;@CCo}&o(;@`nd9RZbls}&QlPSH1k~=gsZU{%efXhs2Bs?-Q8Rif>cpj+g ze*4#P>PDQ&BX2am+k;!NL@5}Ifj&*`jya=#cOI4}+a)08a-9ji=x9H8?!@wr9B(Vk zE!mv*CtmQ9kAEw5S;wAolqDD7KCy()a-WTAH$`M_@93!$3=r~HhphJrfQ9T6w`rwG z@+6r8kpQ~3JqiReK-pv)fr7M7lX}A6vdh9q(&KaL^~TZI$osELR&xz*7VgrizURjD zEKVc)0$-MK;lT{jvrs`+O3a{Al{!3|yt+hHg?bWPY@*4G7*OD;7NY$O#g(45-u0_j zojZPVpN%{}v0M)ehrqG=@71$iB_KsuY>drl2a^O=ry7nqRfSp11^yj@yx^=9x5#33 z)lW1zbHje>UxdPM8|DTq9`7Hpc63aG=bYFDBv=U;UgJy)=A?{IWB?(;*quhf1|NH~zY z4!ta}4XuPs0B;QgcWp}KzE?Ly19#(~ zi!G^r)cj2?ZZyG#Y$qss;X+|reuo`YDaLx?3G^@sBOlYz!6qiF1~g_o2_sY$F9z!VxVp{uE2L)l{g*pLIy?MR$t4?yYU2=q-XHC2?bl0yN5 zIfZ*@YFM77kAQ|1KplhgcNSO+Nu{5^^FLdu*--EJ|=>ra-(4M;KNTqn65G z$Gy+5ZNeSV2%i7y%W8f1&Wi3Rn1>!Nb1oX30V$~+gAEB!m3lS>l~fMGo*AF!QmouR4FlY5-**36tbhK~<9pax$UhhDWzKeoS!v`t^60 zPhkFqu8B2O@^N@0#2t}9vw#0Jsw00vKgQa>E~p32KqHjL0M-%2-6Gf}miYF6HbY-s zIk+gy5YRYr6pNGu3-OK^d1KHjI;cm$> zS-n$u;8>fy9Lx@;01X~#Kr@}8y80uuBQ%CjCwCX#cQ zoFj0QpkCI4&lb*^f!nUWgP&w!=j;s$8r<1MJ~M228PA>;zhdq`{#cGN18683ig^zy z36j;JH!`a_&dQc z_X$sf60Z-FW7_f2Q7;AbufePLOYUA1_0rf@l7t~UkJZ;`n1QPO;&~NedNEtK}r`xj`u!3j6?f|$Q zG{PRLTEOtR4kMqVaQ=_2P)pKAazSLf$ffyBjD*RbI!ZAv0_?deI)wnM$7Y_K7fB(e z02bPcN9ifpw;80zV4YGdAe&XA-7I9F3Te8Q*ve*CIRB`afjaw;qt5uBEW~IebH8Et zVsJqSzR_r2%Co#X#izf~!?=J4)KvLT5ez_)FO7_1#JRAGr*uHsnxrq zt~=DJ(y4_nil0rI5_S=(o}iqm5r`9i`SN9Hi!~7IAU2?8u=Se87~tfS22Xvbbb7}P zXipIY^sd`!kG&5O4)N39?Xr!i2&G~^E}~KobvOv@v*whA zX4~|=Q-&{+`qa3^Op~$v!U(I#osgg!s0DyW!K)oM*oPmBUeH7ed78%np>yE-r!-9F zVpkvTE=~f`nrdCa5lBKbx2@<=_8c{YONSsTO>sh_{Ycke+=0|ihA`BLsX&$OqUxA{ zfSrPjN8uNx6q|!RD}d4xPLayj;P-C3y)aiFwTGZZ10YI#orn$TiI ztulxtumUDy9V*db32$3Q0>T@g(9tq!sAs57>(TGm3#C>NC=9-Cs5xFZ41LHPY0!x; zgwJPoaqyyOS`H>*gs{lq6YKN+0*D_HBbc6vNC2QYGpRO(HHb)|8F#g4mKN-@o!C2d zxcy5n^w;19$nY3r7KS)Q@0zB7k;j-4w&xlBvRVuVLY#g|V=YkL$x{KQPSA`RPvCh9 zXOS@%{|6xq$PKoX4&ioW9fC11mZ3_9QQlXA|%S+3ZQlE&mOzoK(+HsG}bx zEd)9WNi&3($|bSLygt1lpp?FWsrm7i3lZQ6QB6|R;yPwkgV6%sLNe2$p;i}OFdIil zN6`0-zn*cya(h+PX@RT>N^AeVX9y|k2`x7>%1J2eg*}+&v>7x_gtrgE9drRAfXf0G zU=fqaP&jj@K8nsUgz!bl-h7Dsm<4Tvz=gwI&zni8MkzvM3MCx4&2F!}1Vj%oN)9}J zHY#`nB_(Eb7S2unpCloPu6p_WdA#Cz$A$M-@;;N9u?2i4j$k;IWMAV2PMtnYrtAOq z^Ztl{H;g>x*czkXW^JAlZ zOyo!?vQd*~+cIi$G7b@XfLU04tMF>i)9xVo0AU0%m(-E&pOaVkAO5Gh|2xjDzr2u| zK;kI1t8>dtWag%u+|)pURF8$nl#`O5iHgI$x^VKrvRwXxTqr#=U+Lu>lFZK!(}9D4 zn&4O+@0WK+Et$paYD_Hxdxi-S2~r!TGjAq{VQLoeYAV7E4cFp1{84f*hQy)Fkx7_$ z=-5BmGM*)@4zX4K&ELBUWxz%M<|zHpWh*mIyFXG)@f60ZEy# z+NoZOUW=6L<(lJO6g3nn=HRT-Kgw|IPh{R~kHCqIoG=oUVG;mCQqRfLVu^Oy!H z+z~?gg~jU&F@Dki;~Y#R1JLb2(?l?fS}7m|JzJes^cS~;k^nd_ortXM)U<7Vw6|9% zO@JKI4d|>28F+Pg$;DE!Z&g(s^kSM}-H3qC$cLsg9rzU425p+k4nlq3zf)z8`5K#r zCQDra9VC;kdlqG`9CFijbatSPMy0dgZ`9SgrTAe+A-Y!JM_qJ^i}7s0bM#@x7-^mb zm_UWHi+DTADmV(VM6)X0$WD#KnAHx%s+4BzzO9A1R=XKSv65? zRG?}lH#_W2M1>N}WUM!&-3YWt&oiJ_GU6uzcaW9mEf*36gKQ;&s)^1q%^`yKPHMv% zre){fH$edp$%7Sw=aft|m|eSr6OVAvNhVELh3F-~+~x>ECnr1m8OohCG7?P7_J3@V zVw6firGCOh7OHi?U?lLEVAKX?R)KuDN~$J(I>;}B*Bsz&ygf|w zB4`{;zH1UI1$dWi8h|Hb$SBwqToUF9GUIbpRgwJlhS$= ze?$9SKbraBG5VWHZrF8Cf;;fB+ZKP{`GgOBE;}g61W);=UMA#qKAb5WQvHG_erQh2 zfJ>(3U(hRq5#^xau-L$wBsXF2k1wLEQQxAPQo|0Pd7v+YFH#hyo^OmtOeK?#oE%LZ z7;{7IzB_3Zo_}^|YpkRXuH9{-u8WD&pI^(7`A^Vo{2Uk;qX>$egGYcgb2sGuuvP)WERx&<9F;~Q;}zB z^zA+%|BVk!XUg?3H5Pc1M!ygn_-pbkT=oEyjK9cv8(t2?5HdKB_MToanXwM|A1y{S zjso$L3@K4^u8HGQGVp`);%bK7f@sbIC!5>D&FspyF*~;k0a5OjEVtwO{r`&mw&VfHPW|LHDG|18)kk`#DlW)l#AEeZ7^MJz{0D(067cErOUVu{Kh<;EHO)ZD- zp!0cl95K(-Ns0ZIll{}9Di6+91ur+y#pM=%uXxafF8)6m!kiQ)SfhJn9t~!vK}CT1 zzebWl?s*8pWUMGri5rI?v>`CmMh}7`d2Z`X zd&xElO|}B9ktjTH!A)epLig#K4Rigy1u(V`aita(-7rX9G`0^@Nx);#O}zN(zm&$x zugGlFf*lvW(Y@41m=3P67?cQ#lWpipwM0?)cT@eI{L_4k=XBWo-EtlDo50>u;f_6_ zr06m{;0}w4Zk0lRG=_$xz$D@TvU_K)?My=HDZUS{d*5CA;<-`F2OZV5Yq?3=)8+Qw zb5I($Mx-g6YzIHTPQhsVM^7g41<@Q}w8+vNU@=onBDf0Lel>Vh95~zQ3*Y=f8Yg7P za1nF$1hsV)PckoK{)G-Z$%X>=U$DhQ1}nl&vf~_morJ>+#Pb*Fy){~=jFoeuLa&RmGR)^jH*(r#wMbn z2ycK&M16~?0Hm`UAM^r~mhabM@(rQ!5Fr5fh%hJ{8Xt#{Of2m9w1sm0%5@RJ&`(L% ztUfq8x?sKJ&F;!OCBc;iVbYSz7^Xhkfme6Ql8d!Is=S_)zDrK-$pe%0pCzH-z_T$W zS`THNbn*NyxLeGXpFiJ6Evuwfm3Ovh1MNkX$`d~7m`ZP_FTwnL0KSoCcoUca6+unY z!gb?(_W}f({{Ng9uJ#zxYtrh(f1)m)1c04PpBS2t3G-mR5--O zQb7wn8I(cKdHhob?mr#oQInoayhv>1#M{GLG1uR3bcB>67O^1ID2UE1WZRYA8FrAPF#e&A#!JD7O_7M}na5@wXq8!*dXt|q@ z!vjwR%1nGV|9BnHQSa5!o7YZTE=;eS-lC0eT$=br{T-;n=L_j<#VMj0sbF`;Vkr}P z;fAm?Oj8KQNkmw(SX*f(EV|Uw^C$Z+bpm1|R}g9vel`h2a0S6D?m@;)hEKLKN8j`0 z%q8R~A;d!DM6IJH6e{!xl9LGCu30o*5`(0);lk6cIt^nVsP8_IY(lX6Vi(rHCxGd5 zQ6B~|#`-hO)q+Zg{Ga=XP&Nstac@)&gh7Z-JDSkTQ%zI`9PcDxxHGXU z2KZxsHU=TXS4Oi+yX6|N;`sgSB1(r~5pSiRncgyOu)jM3v!}n0brm9xcPc_BW|V9x z*!0yI&h|#tV?qPss6P{}p2Z^rT?QxB0s(p2fv{2z3)+TNO_Hm? z`;mr80oA@50JyMu(Jc~*L24_yT%-ot+dE+z#|dq_5_oB7IJ=Hohsgq)p>}=>0VvFD zpB(G+DUg`D^X^TRtZ zJ>9Fl8N?^Ux5h|cy%~BL7q>2SF>GTEWcg>%vBR(IpN+x#zbHsY^g4~cJeP>zN96dw zO;8*f*YMw>jnY19`XjWBOJ=Yt8XL_p%j79SrQI0FYgu4iAna_=fsrr()s*v_ay?QI zh~dfMXOozYwli4Asgs+EEY7@n^TIw1UK1AYk-~@v6sZpAtSLC~{sgF2std7uG{9w# zIjR_!{NCOaQ)6{r=?wUzuMq9U)`2ifa16wT0k#kI1>hXVWzao*27 zA124)IxfdBG!5%VorRr1GEw3~G|KGPOrW~ANPhUoH_*9)qaBRN+^i0WQ#FWe7&zE} za^FwLe~fjKv_j=!L~I%W1j=3g+i{v*gCNz8kz)oYC+)g~yg_U%iPo$X01|+H8anf6 zCPlT^%4n*_@V$ZVUr-pO(2NbtBpjcyfh9PHesgs$`y!U#ahear z;f5+IZ`57HrrKykQ1t1pI?t*ui8(> zh6{M2Ca8Li%Q8F7~27E{b)J~z?=r8&x*7N>0QO~h|!eUmc+Zv98cERBOBmwz}a zY`}?|EVl`8NfbRjimr*Gr<9&1mPBfFeV`LPFa!#K7^D7G)6SbTV<%3A@g=M+1-1pC zmhvGyV$fu($WEG?n(mbP1Wo&SdHEE~8pIxeDXG=n$C+I8m!5%WWe*v^9}=f+t{MehHz$`f$1{_@c3zRwizDxuyZ z=-aVZw;`=P%wI~6KA}he#8wCDx>Hm5jEjH?9=I?m-aj+tohRhDg^yK_Tspm&0PVyd zGY1PpGo2aN9ygYr_8#@Pq#{l4BXZ`yF`vu*_!kTh11=JN9f7%s&nHZ;-haQ47d8}& zd@W(@0Q00j1A*becrdS{9D2!uWApfchvJ6|{|DGRRO)qe+eT{;1q+^~sFePD6OmzF z2Y@JIMZ1x13b~yX?=He{ZeQ0;!^?cjPRFmsiS89Ny6xMbRlL4F&uaC83;$?72Yl!u zdW?W4;H~|7%JtNBU0=7;t++iq>VmJOad+PzC;5NEiSZVlip3SKT~o@{61qE_t4nZG z7qkR6Y*DKLoix)nyK48(w1Objk0u&+{fiP

QLbQt36Hx076GqM=ZJ19R0)1&v$@7}9XK`m?;D&z8jy-;U=%U& zZ>uKau9wl6<)}4hI5nCWaX>>G6p|S7{y1X7MnoZ4j-uAl3_iOgaoYc8j>d(2Otj+C z$CzSzCJr$`r$m9(VFoNfRsc9QAALX#D$^|%v#)#HxdOhR1Xf|ZAYOAh=v2)Abw^1grpUhTg>h(q7yRb zN#Gef)~;PEDuejQ>=K|GWJ~UNo=|ZB$%_i=e{XM6&@TL99DG~hDTxi@USapIkrNXw zD@cX45TelIWN@%#A?#QLhZ=}!3g!40ez`Y9GdzJo;EE|6E;Fv45;l{p$^>`C6^%ue z7j%T$WRykQEZW=r%!1%skna`GPrhQVZMJi7Rf-ikHji!w)t7ylYrNuyj7J>b8M9Gf<_ULiA61Xs{AVz`CsKqE_RxWl~M(R;P$`tR2fI2CM4;R ze=(1@nsxojJYMEpPU^kG0#1bFGisD`*sNDrs|xcPSa6yNkTu|=LWkdwmlx3^YH|Ob z*Z_p3`c8{|v(F|x=fALx5elhyvVB2zSXPJ;2V6&IoDYQ@5~eRX-^f^{IPGcIrx&ES zAC2FeqNJ*vv~HcLnYo#+PR&lG+pC(^ryQuNC6+ovU z!GyDLQsiz~MhJIF1Vlv$ME~c4(HM04o1)LYzr*LFe@^3HnZ_~A|E}AM2y!(N^$pCn zcIehE30y0YfiVOJM8or0*m)8`0n74J%e!{6jfUf$%B>oe>Ek4Z6X>Qm8MRoN=By*n&MDUJ6f!a4eBaLXnhwUcu5gykFD@!>F6Hq;PaQwjn>m56IS8En~ z;D$+mGN@-`#B~+8u9a|V_}>%?8svv(%X`ZI>!q#{emGhtY~U@$IODvpnLsol#+mIH zC)-caKbN{~-t%k$S3=15{2sD!+fl^*^A`>0PF{@QeOg6=y^2DhAX&0`+7WjOIx>l4 z%#MnI#CBr4vFtn`4x4aDC0bcQ!m$v2Lvg>e zL(;!}dxqLyArYn+j~YWF8Y~vQ1e62PwLv2zy)d(~aykzcNd$|$H(}{2Y{~+GA)ufS zqC=PNe~=8`8s|7KdJ?rZuxHc~Z4VnU2rs56+1k4TdkD=}#qIsNQEQZ#T56 z|1JHc!X7n?K~Zid{U*#(?>%pDme-!~ zZ^NQ@w~O!H|C-f|MGItWUi&;rGpT(%(jm1=MsTxl0i(Jbb$|bTtNZy;nUXlN^}@jG%#}K@(o_my{Wa!jyu~&kIH`gBrTk+LIoF=zIuA= z%wsZOd+GaDSlQ2=I zkz?K46(1{sou{a*yq+zgiA1-7jf4Z`#1_+ro>DvIUb-vvM@8#d`@21T`8K4iw&}G% z-{w;F*OVM>^{xaeii(T3Ru)&VYeF$L1i)OwWiqm}TaX@QG5ytDtOI)W>+~aS!n(w> z&D2tdXFQm(#k~JS?c!+bvjlF89^|eb0g`)1;Z|@_Q~`()rJ8EKK(^6g?l; z5^^;`=(0LCwl}qdjX(yUSk{%*o@TZM*IU1N8~%Eqk&EjSGYbptGiTn(ek|(F3;y`# zGU&Rg=@Q8?sN@%N?lwRt!v%j>opGa@LUCw(k5>oY?i5})d7c3mC()st| zI};m!Gv8)oXy0z8v!nLzZAWdr?8=HRn0i=lu+?Ub*kidaOv88V+?jd%c6(@|qX2T6 zj~_oiHp{l;)+fEP{M-t|xW)^eKcw?n>0tCw4Wf55J3A#pMoD6lQzB}ya^*^;ttS>$ ze{jFHW`}tD@$EgUeXT%0@m}zCKR=^+%a+fv1Gn7pY44+PH%yDZACw!vA8fLf*X8#u z>4LeMVw=CezefN5?TH*+tSuWqa*4y*pt-`maW1)l{drGi6lCui%0rO2$5~h;?DC4a z^QnOHMG5+U?lR{o#D^4I$3 z^%if{mJS^~+8kO>G8vkR&c%lsq=-hVQErQ)0#sIt8cWfGEsBg zIg~FR+IT6ksOQh;G>&XJGkU0JN$Z_EcaEDhX_zN~+Xl|HyoH0+E;3b(Uo@^UrOi!`?W#3?~p;U#9NlUjOqOirQiSU;ZoKvQnxVsMtiJx2{gtHa{Pt?nrXXrzKO&?4ze@3>csw-Jx8+ zzE|V0$c`T*jd=Rvh21liD7(0oftHnihWIyk!sB9cf}Q0CXIdz20#kiP0P5}MXJ^>e zGd+5~-OPXdTjg_dV{37lmoHni+Y~l0^20`t7J7PmPtg$gskni#{+{|GCS+r(`T6z# z@Hh5k#e?z#JF4El9NW0)O^^2N{By@?{MY9Q^O#>T0358grRebFW;wHB9%TN*-=fJr zTLzejsl^|&_kRu8zaAG4WB40ukv5D;ES2f&cM!}`L(SuVkQ@iIHDqOEG=XHGLJueQ zxy{#=l$D*Z#rF2~U3=wROp2ycH+6LN9of<-Zka72J7rs&b@nhDL zhWcejwL#VuYQ`H$z~>_Ws{Zg{jb&^m1*e52j=L}C-@a|`??0SX_w4oS&BWMc)a^PK z9Qj}${re#JE4_gqR#RMqlhBgrZw%B7kg>yl?snlYL+9`u!xukqj^jmeQIXBMkPw-P z$rF7y5Y~GrkSX)5A^#DBzv^3752ej}s?Opc<4i%*9X+!3$d8+k-=Lb+p=(#U^E0-9 z_B|yxvA^tZ09Y*NOeJR>EG;J-DuyrrpoyRI9sCz~ecCD`N{3;q-4lncjUe3Rurt3= z;5v;iXC-8>5QCdT0y;vtaKC%98(E>%muXtb#GH$1Vcm7Ox5P=FNy&o9V#>^8lZTA{ zYzYg^YTxj}>cHvKcl+ZBfTMxZ<}kHAn>Wif(V#jblaXTg@;p!Z^8Q>E-^!xiO*DjP z-^R(t7}9PZvc?ENI%QT9q5<)5L)b`#F+CQ<6a0kShK=lFKKGT@OTn5ux zy{Anx#m=3zL^lBIhdt`6TeVS8=%QGmHbp@?gNa4f*QmTi*tPIU18dGX-K4^28f%kB zX6o7ROaAjt#Q{*_#c9DDFgQ2e-d;mfv$?pdHIde1e36|=!HJ2w2tc&k#Ky*&r{1ND z`?qi3^uNaEBa98Dx*4;wY4kihQ4MT@qpwe-!5F%3kg5j%If?eId{ z)LKr?<*Id*-6jGj`fr5mQSBPy|1qBT95_nOB*({5|r)9b|rWI^fR>DJ5-)}nR{`ZyrjW~ z%Fgb+bm>sFSI?fUK6h?#iz7#CJOQbP`&P(7%b0yKTr3f!q}Rz5afp+<{PFh4;ej=S zDWWt*8^8vj;*(#JmT+^}@i1~(EK|FHhO8rI%FoZQ=1}crWYkq+*XgCReHzChk3Os_ z<;j2c9a~ezkC^bZbd-A5r!HDqMpsht32TTe@)|-Mj@f1_NO9>@ zRzoT1%CjhQnDUbT-FP=Utz=k6H?C-WCfr9vdvbefPUgApr!QPEXJhlGUB{Tc6OUyb z9`iCp4&-uf+uM^D*mT;E#9lEOa$dTh`%-B{Qkn}fSXEoz1L@sZkz=#jc2rW*DU`sqETnOraZd!n%K9mVZ0Dwsm!j?<4 zx*$kVjLd&2Tw9I;U-=+#8Uf@9XLYm??UZOw30?1DEC>zAn8Hc2#-%XNT_ntai_{+YhTsoASNl7V}=LlpR2d zDxY8Z8SbY1LO>mA9urA`GagiabfHZkNq{bSgEBRVLeKLb0P6A&Hq_3;6>sQfr;~-- zL&L*|eg83?2M)FCpNyG%Ki;&`iWMss`}yraIBntJaG>eDkN!G}imnGre@2F6Z2uk% zZT`Ouh9XB(k7^%f>G~r3G-RU;N!6oX_;7;XgL`t{051Lpt^?5PIQv;A#VPGXDAJbhI_9RP&51DXq^(-TwnzK*!=yp> zP~MB4X}<-tThI9{6m5QeOEU`!3cSZvo)@mkLH>pI;mw~X|! z)(|L{)t+JuN+m+YmZiZunqN>2FZkJ8Bp-7*(Yoj3h01^qaC^BxNevEJU$pcy2~NG9%}b zt8@^-06`6sW;R8_Q*atZ2u^Op>AyI&PCSg^{`T-xPgMK!R4OJxMmX-Qq1J5oDz$@R zU1vS3jiFU4NmDn0Y2CYj|L}pVTAO~^|jyKA7B3N9Imda z+C~xyLeRrD9TcbZ5~H~!f(S0?>!l}6B#0oM*h4)TC8we<5$>J3a3O@AeiRxOeKY%F ztx%9=HE!H5?(Ti5s5s4^zlrKY?Z<-+D_<{-Gs+vgKztljG11b-d-3AcQxn%GCl3&O zIga=p>d7_<`cRIgbSPh2D&~zc+Hn4e{X0+=;M>C-O5Q#`Yo;c`Wa+1m+7~aAESG&X z&QdyMjrF)=WE2)ELa1)tzWsHW3c7)}qeKH`>E*kxBKRWVqJ$)(RJ1t$l!e~YG43$3 z=CYvfR|klrgC+)r1o-i#o-y;aWcR2V(QHN{Yh$a)DlYECxM$((97^vRpC1z~Ek_ek zlExom;Z;?I(e!1{mF_jmODO)Etz2n@|G~58&znMt_j`R$5r+hQwN;Spd%wcpe-5GRaR2H<_h0GB>{AwXBfj7*wi`BVmc<`_Az|;@I&OP_E%Sq0Gjgp5?!I^c(to!bvuW98!Dxj zmX_Xe^YCcH#!dKJa0kENO(<<+n4JXUGh(+sq#X&=!Se-JhnVu= z#tt~B(*`)4nf?@pxfo`cf|NZs6QwDMycEmRn~Qod&`bzrshYZE43lMeQ0;IAGMHPd z3(>VcknkfAza;UTtA0Fu5)m1>nz_@Hm~!{--OGn28{fRSOt1 zm%g3!s#BB>oja$*@sv%4`P96E?%!%^=0dk3((lLOXbi!OjUTzM;+2^F@{0rkr8&bV zr#85?2#pxN4xKxPq}9Fgaw|Yqx#Z7BmxfXBEKGJZIp_7HJH9JC|GGlkksKk!cIgEL z3c>GdUy;1??Z^6GXtJF__F!#iw+@KjiRDe`bR9Y19n25)X8%^=qDRq|m`)SJC$ap< zR-TiB`s1p93R>vdKfHm2DVMYqZ8fmn62I5HRjYEWQx#}WwV8MsY-`V>dTSKm_foui zlz0xoiXs+1bDx6>UAD6L&A|gi(|GsdCyCh0$`P$ZjS9j~lc0vR9GlWpcHDZjscD#h z#qN2{gHHe{&w7H!KP!!s-I7GOmmRN@uE@};)kdQ%st2x ze1z7sy(G~-{77-7&XRrk*C@3uXrd7m6huKqdCUq6i;bq{=53|-G=l(cih1+t?v4BR zr{f*wH1Ghy_TvRc?0crsSNfA)QKRi8xxgir$>@0@E`p=dhh1qZ+0h3N4iLw^G>{tZ z_V-O9NVmoVH>Q@~iZ&P{jU$eK31nv;Xt;l(=qpZS8*%|+SeRw(HmEYf+qUo<<6sT@ z2Qn>&i?G1Tc@2ap9wo;LIsrct6Y4KdvZ`C~C$=9mVXI9)S;yA>oYtQF;7P}{MI|Zt zUpLXfaQ_3xs_JK0827v%@e-X%mfcF|zS~t;vM`y4vk(gCD&pj+NZ-2uV64r5jZ17mp$RIZXPVoAM-agN0LN! zGUZ3{!Fo;UD7-hVl*HSa=VXMSO@BchH#wo)sQ>SonWImqq;!$aus``cggCK@Y)Xn? zXHolH*=`3ZbJW9=@$ut8_L>LRq6mo^Wn#PD!^!Eerj{0-9idVOP+1YihK8P)m5REZ zd$4*7k!%tk8QJ;ymaIGZH#M(d7kk>xs){{!Y!l7(qzGJYEwj6;sPvUytZMkWYQmSC z?Cds@DjHbpOQUjby<9-OpV2Z7D2cx^aJ`3_s1r$i=Joj5j=z9}+183;;=&FWv z15%vr4~0&JL;*9>i)B5g-u(V&O!(&d4o+e97Zp}rq2)dNOFg`Ti(ui18ChEk^T=@j z$ytYCUR#DqV0F7Jv&Wm-6@RmKkjd5?8-?G#e_xet^BWE8n$cB{&KBw%eHT|XjG_bb zNGa}*m?jN@hb_cvsV8fUUJxD{DoI^w!8LWK&iAir4O;*doM8{+p?i($mH|xLtg&M! z+!_+tk%ZvlvUlA%!415hru)=!UeXD>x%Bbw&61^RTUxT@^`z+iF*73Rd0Xb41_wi)PFK-Hxe%*&DIE*EW|GRNl^65s?mc{%_2fwp`i|sK>$vfG!@70pd3g!5R&Y@A zh<7-rvo8N0=Hlx5j1%$H>C*g;5WFBN)56XGl9> z@Q|LnAoWTre-xoMmVb{M=H9Y{sjgGIFB`!2gqm!I#-Kr+NM54CW*>YPew7u$48O){ zhPV|3p$t7?cbQadb?Bi}r|!7d&vz}CJSz-2H#(CQj|~dCdf!0d4;%J|XTvK_Zb@BQ zcLmJ;hjV%U&70Q{b~W5vT$7qnGk?xRVmm^cEe~vLZAApt6LbN+AKB`k6xPTB!hzAw zEqbKZ@GZwgpN>zVtvOX@ElN}9F%0vd>p^cfhU#o0>xs<7UEk}Aw)?`w_&Fz`1pXU-;P)slnidSsj6X4WKg%_oI=MZ5EsDu zV=_+{7=5%#9g04rPgudMuIz;>16^`Ey@~lP+1bXXqi9NEKV!yo_@CD(Og$?vZ^jrC zixK6wM33(l(TST3k3twl?h<38qdRK{-<7B z&7CU~#Oa&+M|MeHdwDs7e~L2Z_Vtxn18&jjCBa9|)Uc9+=U$v^?NmmmotCMBj z8T}|_8c$%~a*f6lM5K+G^6CY0p!M+ce2b;8e!o>+==3x#dr!iW_U+oX zy?Oh_;65Wqss~pdTY(}+zt*R&Z{X@#rAuUW#J^r%;W$#0u*S?<<>b_pV_q)3c8IMF zfkTtpltan=i6YmWKR*PqgU&3Su?077v?J6rb8zVXg_?5G>FAFaS2$SrS5{VjhPQ>z z-IG%j6_u2lOCo*Es|z9%(0Vxkxr2z()7SQ1t)t7H0kv%?u%4W6*6M~)m4Tm}Z`Hh; zVB7|Puw}62twF@a@{MtEo4Oe>WN+7ii8j}eLy}sxCx5WoZ&>=`3xTiwIrm8GhkUg| zr%w3JV`gIQIBr~PNrThEy}esd&?qdUy+NFHvXfU8PJlsMm=jDt*!5!1?l+okr-@Nt zhs4o|rE|gPr0%mWZ8%s>xHT7eZru3sgHAk~eiy#pv)%I!WKe3;C(7AA>11(H5y<8P zoi}$MJ?ci24@nZ3XGl}CNv7Udz{i9KT*X0&I$pdm^?mt8TPA>Kn5>Sm_BWT88Q=Y* zi0x#N-)zFeYOs{uftI64xTJJ6Y~E1&W3ECqdX54_D`oEpUoBWVr(NJfIlxUuHs ztkk(*!cF1?gvw!IQd`{&VxaE%TX+J{-6?0MU<{zI208ah#yNCCBgl7vsK+D^6aIVSbi zi`46EX!>ZS*sfhW4|>;b?mEIoL_hYr@K6$7UeMLnRs{FWnz5Y|vj{lC19x2kPmy?j z*6G*9mq*GP*jotoR5(~3 zGyWksz3R^UIKM=S=FcJzwjYFF&#f2Rw7;drj^K6L7{=M1+nO)}wtf+%-K;&wg-&WS zUO5m3^{_kcNOT6j&itXB+j3eL%~i$ER_egRw80l0b0rJ7wBmLpl_WaTpCL0lO(0j6 zMx?Hau`BO&ECEf6V36~N?&^VCO@2!ro17Q(bynKeWYDm6u+;G6(xelaXpJkA!C*6Z z{SZ$f@%h-SD5BR|?Cl+aqI%Dj-w9ts4(W5lcxZD*3`_Of7CMfIb+Bj2 zI4Km1bP+{TZg8dVYsky}6q;{2_}YH@I)@-UyxS!(f+iXqw|aL0kB^eQhnx>~#PMtK z(xsiHGqhRU{sXy8Qr^qmp`kl68zaa`Hql|Bq;_K+Fmn-ME0FJdnq3ImA_%F6Pi>Z2 z2}|uLNYrzzkr}1uG;HJLyM-^IpUQ4JPB4=;%}CmbR7e1!M~@vdDKw0O!4*RWHV)@F z*^H#AIO6m~+_Q~}Q`@^IjUbxwjzR$p4@U?2Hz+HI5d)t=N`Q206G?R_QQ^1m-}9L8 zFPR)#1(!}L#mQu#IA^HDFi0KAsI3!AX?4>{#L+j={-K#!H2CVk^$EFa=ej|n>Zqos z1G)Oh)WmE^lt?f83%eU6=Q|%(5Qk&o(VOB*hoq^xL|X!7v?MQf1?%=f@D}ra(hT0r zf`=C-kep_teYMk>lIqLRyd&jtz)@lG4$0=Sp5g6X`FX0BK#a}rYBiRjbAB|zs4+*l81jB%4 zU|R{H_O4V^RgCO7JV$UP4ybWT^!>U`WB)|a7*U3Lc1BWX60s9e_I5hTkkQw$jPzz* zJT-OeayTd}@k0Ld{@Fg8Y-Go6FV2#qxNAH_wB!_^B>$roBw;;3A;^Jjj|j+{xqGM)r{LKT2FZ&1LZ`%t4aR&PmbiZ z83bmLJ9eyticpress|{Uz$!?p?!=DoBDe(sI;Zu2*2QIJ{|N>Ezpjf{H8flHYw4aP TpWA&9d@2jGiKZt<&sp`*gKU34+ocf4t~v z@rp`{!Flp8-#u2oW+#sNo^tSZCJY>Wy^fvmJ?7>p=^!RA2zp~zOxawCY$H~X|T%}?K+=sja){$7A~ z`cw!-WH6lxHFeKirs*55hQp?Ea(iBHmohVZyyO;}crei|`I}{uzGLzsck2rkgN)*n z^o-}z25O(x-R>7Suvdp$lWvlj8a^}RFx0nm?yL@t-P^L^4H4{GA<_76=5lBc4Lb)1 zhe;c6$Lb4f!}##e_`8nAn}mgh+s&BWweerT1q*mST^+obZO$!aO&y^XI-GLuS(npV#y#&??Oj~x)Ya7`?VfE|SXlUGI)2~aR;sbs^rsWgxfc6UQw7D=GD=z% zYIrQJEHD0Ok|?NdXrOuV;)R#Dw^oW;aG~3~`!2Z_p4UW;BDL;Sr)q{3m-5V=T9|kG zyRuA#T))0HXyMxp*Uks)Bqb$NO>AL^MAR0(a^CrneCG~}i;GL~v5#v4=O(3oR-LH&&Al@Jg$*B4 z^Xe4?AshV1_sz|1RBCE!yt_`z_Vo6ioa$4Z=qjRGoSV|Iw-=0LUiY)(_gK>fE{W;R zLnnm9#Tohe`Hgnj(ua1Jc+|aoN&n-=kLb9#sLaeQg#GWa_tuRMtxFg+H8tnI#HkmT zo*M6D866#+{`G73{{76ftQ(?dzkjOh>f&{2x!aI(ZiQjz&Yg$Ly!W`IT+6oR(AGBc z`rfTTp>eFcc%Sl)9T#Mt&8NNmLPT$KdU5^q!*rcE#@)Mjw>=9EjK6x-)b;PHYoZN5 zzrB8)-^sCQFFh3%)yZE&&015uxy|lD+u^`-d}woMr0Ua?6FT1B+bJn2%h={m$6$)|7*d88HW@BT+FRYJZ z6L{g%qDp6GX4a8oMwe%qFYY@L!Nk*=sn3&bF5Z!A!6fJMHrzU2y6AEv4J~b&LtW%Z zPnq1(($d|rDZei-F3~eF)n%oey@1W(=|17?98vImrToqC7GVY?qpAr4!S>8IF5dO) zou&tBkcQP*`Pf~G5)w?OruyCo9C2}>BDQbeUg*-o?>o{;QR49-F|(6(0n zK!AxyTGIE}kt3VQCG|xd`3%2}$j_IGWD~fIpSfNx3tm**acc4+p3T1L`qrDW4wU$~ z2!V4;MI8#xE-p@ZFfytMd)#za#VHxj{%1D#TT1=LEs5$vhq|U2HDU2BWw&Ocb)QFs zhtm_nVq&`VLRcs668HCOzBILDBU6| z%7i7~c6!>rxm4;x9^AKVt#xykr5wC+|BXR z<0-*5tR;%A-z$3dL_c^SneS<2^FGfsN519SwQDEmCT)Btx;Q>OwAtq62=9eMXiiAK&ReQOzV%88Un~&~W^zj>oyH)zuosp1sy`t+nm#YpMc% zi~G#E=;`T|EeEgRs8EZ^rbZRDs_>U0_a{4BOndKM;qBYkw5b2xHTdOA5t3hPD#s#^ z8xdH{ui)N62=*3G6FE6Kk2<@H-OS`Ydw9>SEMy)1l&s(}FffqHkWl_WNm-fq?Af!j zN=i|eF0pLbxKSb9T7b=cj~~OQ?r!02+f07_`SW{x`p1v0zK3x~dKN~erfd8sx40U#+uL^827Xr{ z#C*nMpFB~zc=4jwWRJ>64>D~Z9xgk7WavK}7ix}RfCn9JGUOqnVGyM1JlCF0a*u_mu9D8$T=YjE- zu{t(&YU9%9A8_}ZR8-a#6&3Bsi;L#p9`I90+uR2ETKno%&dXbUO2@myn{O#Oy}G)^ z+9q(zHaWT7H>7O}Pfgj@zj#sG+-y*4O~=N6F~=;+5%tRJ)F~Y-*S&{z<$mL7wp9UL zkDQs#F8$E4va-5f_VD)PL*sb6%onU8E^nL7@krAIqhlfqc#)G%d~&k2>p5Lr-I!lzMsqEN!be)~g?ah; zapfO+!hQGd-967vVLK>8c;#KMpaM%3pF^;3d7EBpUqeZup{=8X{M)i6hEKtLZTXM> z-d>v-EPkuX4*v-;{K-DEEE&e&=;#=(b&p-{=o>NbbN2SBgdjrUeo58S8fq04m9%}= zL~46_4sTHL&S+ghi+-EFcZRv^_de}C-Q|7~rehыe{U6lIC<)*BBKRi=(Z0v44Wsw9E zGoL(t%Gp0#JM#}k?Y+eJ8EICH=C#e`?S}bIA(-?zWiZwMg6o_064GjWSB;4-YG8d=F{*W6tcodIy8Q*Ww(T=;abL*P;vt#eF z;$#&RxX`Q{_~nA;z3!QdH}qDVieS(5Fp*&A;}ZuI5I$^UL-t4Xx-^du4;{ZXB?zml z+xhf_P*8>IWv+>diP@2FK`%7f|6B&3ikdk2W3XY(c<*DExRFm!3ILYYpf=XFwVB`n zb&h>}^eraEZ@e=<4e+V9qr?34>C@3u&lU}rRu-p>decP0*-uUG6EV<6i0D6fVwPoy6xo+YQ}mR(gc3L5h$6DOy>H&^zX@RU;?nw9 zq{Rh9d%|f|VR8Nse>MwO4NXj3RO&lTg)OY=$zd$JRxD>v|Pz8TWCBz zJ(HJA*3c?wyz6yycK(NWxzgmH96BjWfqebHL*+SOWRoNYp({6TL@g}^mFWw$?~II$ zl-<6){nd3l5>T6qAOoKIjdLSize-2wo=8ecx`(KgRa88C{}-wvhe=M(dw12wm0KQ7K%tQO8m6MYzdo9$i zFP^}NsQ6G|r(>QfOO5X}`hS zhBwu&LEHlr{Vx>1`7b-aPITybdeW-&*t)^N!GW)((rEGmkx z*nhBS517#1WOmAfDhrtb87|)(ew5zYa`(im(p$PMO%m@Hn!3BMCMHHAvmEd#Br3Ih zV0G`K(vg?!C_=j9^Qd|VZTt7R7DR^1SL79qk&zLQqP#~Z^LoW&tsCrGy?;$T|C?r! zXDPdFTMa7O$=_oZGeC!69EF928n+aW7Y5FG=6m#(`!S*0p4ZDfpOq!r`QV^g_9xk` zTN$P*f3c!RI{-@pxe7{3PQ;{qdhvo5%bFZ@=Z?+2hb`;mj#j^a&owvM`>wL!K!Gg@ zNdb(Bf$7h6r++l?+%wG?02X9ZnI(sCeDmhbbi2L`l1j_xE;vEDQHok& zNl8RmnF@MHIBE=7Bj25!r)Y_;?ryDn#`g2mpN$^qrxdQPwzdC5zU8cxcOMrf?|&V9 zFVk{ktgG2hF*K*hA*W^egWb7%XP5tEA1L6DWZigyfm6hOtRu%*Y%M)KeRXvxReWON zeFnOnrzU}eXwfOyh?@!?+?EBlm$v99RyQ`%p>NltseA_LBGJl2Ip?OecnCVbv5rvO zyrYv-+hZ4_pyl5m$nD6r$Rig5AT-_odp8k67BS%P22fK}?H`|`1cZfzH1k$Mspzya zO+TZ)MU<2%Bud*{cxY2G*pwhq`1rBJ@08spYRfZbOTgNvhwq#!JoD?Qh1}vCR{_C(-6a-qK2DlTMAOPBEpaMff zLtT|;_g#mQ>gMP92PxW0YJ^qQ3z~+S2MX@=Jwr5&v9)EFh z-AHHtt)Y@TcQyiV-aoVa{(zkWm}D1Vz>CWpV_)BpaYB?TpZU4j`iUnCG5`HZ|G<|o z>1SHV#2Bn+*t~gjb$vZGA&XwVv^>|}Rp>y4Vrnrl%n$y-%pySB{XXwN`k7xt){Q`c z?xjXa+i94%C9A>X?=xI|e6(2$4O(RXO@aUbtvOG_)C!0sXm?)~+{NmK}ZC(Q!_4W1k)gctF z?HLTj=+u1;&1gSw@7(LX*<=rx>DYgrwrk1xn(4+sHF1`dg6M$3lXfg~+D=BXqWmst zlFPk2KY#wLd~%Rl@kAdpf%Z|0PcJ<7al7wW2Ln3!>F*^U*m-%Q!6$`ORW}|gJyrw0 zKtaUE$G?2}vX#+3q}X(KEVoo~DOY$trJI}E{9vq1Veq1V530tQGiP4Dd8565|Hb=? zK+zB>On>p8IB^2$=WZJn5g{Zc#WFiPYd!q-&6|2GpZ?MW_9QGNC1uF(5}$$>@Ss-X zd+=Q#p_+=RXR(@Lv<@$?2w8tn51f5qdFnp9*5iz>1c?LoM~;M(AZiwk=y|=pdH2I{ z6w?}L7vLk6M{faC0Xs(FH3~v)et_yCzbapa|M&ALDFU?2ydmfSiDOHD3_DZ(LE?h` zF3-`kurwf`$&8s9|6ugkjy`nsUDg*=fjubULBYXAV6^%D+W~{(PJVge05l;hD~o-g znuaLiu8`Cuy_x#vu5~w6*PotPe=|CJyP4S9%*nIIK0DFSd2E>!8RibWm|n6*D(Hc| zYwD-pyKhJxima^Ml`pL*L=9Xu{i{X2uDhF$f`VeCt7y}jHEY<{uBA@U%PeD1$D$GB z3U{CqkN40>9j1BH++1RNZl+C#o{_Qkwu;Zd_wOtTdJzZgg1LYJG9Qv}0R^i@^FVkl0HAd~JN2dS%<#tf#YHEuq^=SV9(0(9GM`~bw8WMm&$3rLZVDn?KvL>zBbZ`) zuwTa@t`Yi)k~KfRG&*>CvO@Ye;_U2pnE?e9h#Sur4nj!QNy#DxEABi?ip5!qb4x;} zwrFcV+9q#2P}QfPziX(sPr;AB{pZi0g+NrGS3E9nZ@2BLt*u21zM%ehiIZr3XtVQa zS(yX+7TQQXiZe|H!>=T}*wwcJp|m)S*GBC&&?T-(WgAx;slM2oYBF$yzKd2PbD(!LvVl<9~Q$ zY$bhH~Sl^1$l z^D{_QLc4Ztz%6$iL)okgoT`cf)OTpl*f;*lWgUte9@1LUtzppG8YR_L%Bv}H4- ziVVLAfH3ii@827sIcgs{l7VdFLak(nD95fvUxaQ$p|M%S{oG}&YwS?-t=M;2MzQEo z(Q3he==JsWx1C)&-MkIdHw`FkaQ?@aL5N~$5RcFcV-|i5GYMt<XFsZsll!p4;?yG1m-Ce&W`*~!7i_XxX7hN zkA@{;E}pW&eqr^b8Cf-#kouI(XkH&GVbqlw^%+ryjA+}Q$Zw?Fak*g>8EfmF?ey73!A()ign`}#4!i@ z9eZD2pRlN?4!ux49;^YoC5o0VqP2T>18RZ{DO}(dl{|ac86&hFSQTlZGeviFbU2Q; zWnO)Dpy}$)8O3ayssM{|0h3Uyb~M111}^r<`E~fEOP4xVfD9d6UBwiScbiX?JbLs< z8>-L{$NKeoi>b7`7BscZUyTT7GYDzhKC=$DG2mD=g(0?9iE#|xf! zZa6pIDb<#DK!%j(+&?^&LciDoYOT-guBCfP*6jX%4oKv+U0qhnJ9jd{C?IpnKy_}a zpQkR8g%e^kf{Ot~>*Tj4u4Wa028qhbN>r2>FJIrawx}`H+ z!a{9T6(NMBr6H{WvALW6L;;Wjlsz0^{>mGZr#k-Dc zW9!9>8Oz$*2^Sxp=Sz5yO5p&6;(bHQXx{RUTd8 zAzhPequ;)L`;5ffB7F%*SdLhiA5bBh5q6_S-Tmb)36 zD^qpc#uAQ?w4e{9 zrHO?PG@EVRy0x&hbT0tyg9i_qhJ~MaQapUvzU+Q#l8BR{($Y3xhlWV{FA&G9pUZQ` zm;RT~v-~CES$kPhO*Xk1*Ys6+AJ~l@P9Vap_lR4qJvHZfW?T>-q8F-}FYGri63oJQ z^$9B}ORVMX5I2ot4T0`=49Gp-CUwa#_0ZTfJ3~zpsk8JLUQR2)6R+X+cnsrr*|D^k2VyOBh$U@CB+4 z)K1bxktvn|%s99Fn`iGu-XG?}Z=0JVz*Dc?HSAj%%}Q}>P1SULcb{ctdCu;(`Z<2I zh&^CFq(4^nT0)MtWzyuHAj1iDXws~|)o(>2=$+&m$ z@llY4u%Z9-g#mE2J@9Yr9UaeupnM?(WvKeM@7zHx4MkP9pL41bhaac~DFZ&@!02cU zw7<3PCHwUBYIjamQUQlq9XxmsU>2T^#O$xjSopx%2~EK4&ROWxz;SHAjq@OMt?bY*KzaKt#kl7tEXNL zMZc*ujvbRE+YWi5w{Ka|v-bG<`W7{&D4(PxIoHtJJF)mIekgTeQBiczq9d{EgUw3) z9UCeDlTV*HQv(qMnCczlNiF&y@cwMTN}v-GvXR`MXw5MbJ^cLaMov*fh-x8P_r!k4 z?UJan8Gqd5{%-FWWz{(WWuLv)wilwauQt7W9ogKz(h_u+V&~E83#$93JR{2<&G?jo zI@^(&Es6B+?T&J+4QGIIExwkK2Hu-2s8U8|W=(A^B~j=zY zT-~A%z84lo$L0u07bRW0@$yE64@ujd8Bt%tcKD4|cXo24(vEz5Ec$HakH^iMH%WD6 z)4p`omKJ45MGv$U&w+NP}$o`JPyDS zrSbRok5D@SJ@+#L8ostYG|lAiprVZu1(lTR*RRjW%KCyjr2X!`0rZ7Pw6c5W{;nwd z41v1ymwww1ib+N^=$E~_`voW)?luxqQr}~+lh6LH1P1+lB{~m*y9m#FQ9zv^YSEr2 z=lkyKpp4goOT!>&z(SGa36dM>r78!`N?yEliK$8yBojpaG@wxIl9DmIw9<*bivaFU zD@zNcW(J@g_M|U>39_aZSX$A^FMEM`*iZ!br0>1twK#j+K&-FWjS~PY(jjsT1!#e|0Q*3~~$NDPQ zp}A5KKnAoB#kWgJNyXo}bLqsh1zIe1=L031EW?c()Pi`C5APY>;RLiY@?&M;#3v2? z1_g>B4He)}Qq+*Pdv+0u_ZL7@*WPmIP*3{LhQ-Cj4XKg_YYe9-yd&ZookSn0%m8{R zK|&9~{d4`Pgoc-#aF*;a0MBrrxPaNTTEjk_0D(;XeU~%|(8`~l{viyl@xezmcz=~Y zn2KB#Z8s{ZhS2PlJr=*U0B1Kx2{>4a^(=5geqao&4UZ;;Qo#NLz6*X&e( z9Ka(_fRVN~HI$5B^$iolh(c%)9+bUN0%xP08ZSG%y{$s(X(XW;9Hazdfke~s&}My$ z>f8oM0q>ydLTm;Y+4^Hgd3CA?rXRLufA3@2HBYCHUX!#gNpQ5cIa3Wrzw|B9FB82U zFL~UX{dY%DB=6{`>05cM-Pg@yMvCFZD5;U6luO--AyKdd* zk`K1K$vFa+^^xe2ko@=f$ejh$hwjWsbK&;w4aKf)S{{cqyTq>`h~f8B0-84hn~>Ty zh~M^2wsh6`8hIXO2w8=0Sy0x`ULR=v1rXN@)$Np!*Bkh?? zq(DU?n$dQekhRA^;Uj@JzF^sm^D>`byLpp0KXrEAC7|b;np5ccD~luJgPu)nOia6R zXNaMaQWs}uuEiw%PaDrdBhvcZiR~d>9wO(rH-bFdEQ^%{5O-Ar)1V{DZqJ?Xs!tV( zI=|S#DnPqkjv_&?F903mDr%M4+?R*r_mqQ0AGOW~-Fq>*GhW$yT)4bq{8^U6$4AcK ze_?rfc}H)tQv&7AFAS$R96x?3B!nPsSq26MkalRRT5EVf>9Y{C&-~_ZOo)zL8|#%Y}Mfs>p zL<-Lko}W`El{x4~=`ZJY{ayNXbJv;e&}72l zjC_H)^YrZU4ls)_l0U6HRKtu0$S-9qj||Ku>a+8o=`c{lAP_vmLAYu4W8Xh7E&O`w z|D6vKJhU(x#6Ho!%bir=(GM^b(VO*0PC`Lb_6SrDxi2@A}v4dN6&11QvZl-% zl#OpDB{6^!{vZX-J9BLwOhWZ2+VucALfAW!`JzZ(=2h|j%K7)X?Gw*Cq`wbabnSn% z+Yzd}^*JS=lQl3oUF*puXCQgeaQ#f3_l z_EgNGeNOM7chq2w!2S|2N=gq84=`RB2Dy&X0gH;p>5(1fiC2hS_ePVWbp`%6dy-X< zTCQ?4SAVT(|fXK%>DugsVe5m(AJW1_RWf6UEALH+1)zQXSq zn|ynRFLCi=$cXDew?Y}|{0ghqrHY6$F{Rok9wiwNN1GFG$JZB&Fj}LtdGUb~R!W{N z{Hf=Us)&HyHHB&#cpmSDf2`psJpB@bBlr)$CAXb&$En1-j~B1uef%}4_t_ZB)x*wz z%?|^iT}S4KqN1Yr4U;&61(b5W$w#g{q`ue}UQ}KypZ<6q0 zh%zQ_WMss#|8E12T`FviZn`t+&p%^PNNjwoZ_H7``rJGY;M<6%1Myy4p| zO0){W#s&Pwk43IrqoSsJZNtK0(qL7>*!6@B1A~keUjZFtJ$sZl>^jX3_2*lFln^z9 z&!*pe4eR7x**$y9GtU$s|HQpX=W<6kLP z_#X4R^Z=Ff!G>o&%mUKXg7u98uMbdhv~eCedh`NH#08)Xw=iodZENdM0UjB~lOtEy zqu7`}kBBYz`1oG871*))yUh2pj6`ahRQR)L{cY`swU{{)CS(v85$UfskRn~t( z-={?cDX?>>YTo-B)ZU(vV&lE5y}ikN5y7C1mXF1RPGkV8$nZO?a1O2wJ7W@NXI|iif0yc>WRgJ7@LiKg2on&?M_#n-(ZrxT=d&Np^N|Zb( z{PxaHQBrqRTbz({aCaAfX!rbKSt48}*S^ZKRpl1?GdY3+hc^IuIg*}@ zjfdPl+!rUW(cN8JA-yyJ8*2Od7AyOWU7!EaD1epQj43HB)CGuL?qe;lUk47R#6R4Y zJ$l8Ky5!Ik{*~!6ADw4AqNDYUlftZFd)1>glF>Uf#E7^e<@Wp!P$b$ns3Xp|xwZ-- zb`BmqSc|N|N6^l(Ay7V>9Oi*LdI9LXc?Hu?^u!=|1;PgtXwrDF z+4^7D99vWv4_lCxOZ=+VkUCU=uSQtV@sOoQcDj;j!b#6$ zELSV|gwsUL#0Z~XkE(Rw81V5D?!W5_#4SFySm>czk-irYg~F$Bc5)B_naGT;OHECk z3Q&SEHw}zCnu~LR8&PO59{N9wNOWxLf@Xn5W)g&9NR@QTPX`9>#&`nE_B|*SIpaq9 z`n%CO3!!3YEsDGExHvN6N{%-J8NWcKWx=R8N#zl58W@ z#s-Ct%h17Tvnp}tA~h=*O0N76-N1)d=hO+(UhnDYAw@p$AV*Les5nFhw} zPlv{TWVBuTznO-6JlroLorNI0WeFU-BZ7DVI!gWkIkX;*5IL?l@`sg`)%njaGDMwltMh z-yY(O#hm+l%CvL}C#Re}o*iOt0cnla_kF*?EYyTM0x6XOd!8RmMax``0zKUqI7LB_ zQYUPg0kpoZCnr*dl+kR+xWB1`zc53EN{_$pxo1NM>!A7ylWpdnx* zkx~_+d5@kRW8dj7ENI^Y0McY!AirhNDEBAJGhjHYhLn#W?|ueAB6)j}Ynw39-aiWa z10{|QV+@X{{&*&g1>L>B0{vkVRvx+;rf-O+{qOmOU5OD;dHn zVT4PEkk>`VKk@Y(ta5=U#?9_keR}ln-{FbGR8fqG(csSrK zCak!~(M=fLgXwWzHHsitDGKOehHI&zMv<;lzN!v`^W z%PyXf+iuiykNte`vHu^7L1)Wxx(Bt4oy$EHJlVp_;~0f}gwpAVQi8YEqDxLg1*t>GU~KkE zh5XfZVadu@P{cCQw|TlglJT4X{Cqm{5trm?+zF(r{Jbuiz-|O@cv)3@|z=)WKincbe zKaG1wHU-YW03m=g#rK(rC$#ijwG6>;tL&sQxJBvGqIa#Im2We7C)NNZezPeY99);e z7-kOEj2Nx584DPzeeU)-ApQF+fAmaI13N?|M>dXslx%wm-Rr7^xpz2EYtIn@7q z#_+_-X3#KyEQgKe-0)=Y&rVIekL$9gK|j}n#j;Z}S5jn7NZ}>(d*tts)}g|c>(t?q zO&}Q1kp)3JT#iutPD-x&RvacJwW*ft*7~lh%p4XH%;*UNCcU2M>{@tF zv}$T0x7LHGY}m1R)g3d}ghovjasHhzw#{NU-nFMD*!}i=BHqw#Z=5Gt?i>FsGJ=AE zf#guQ!SkB=kG%Y8lNA&0PW4LsyF(#dgY(}ike|B`pPMSEL4U@B9QgHaOtnm^oENq~ z#$5k`GCuyFoA>RaX8!hVN_5>N*Zy(2>?SAUykp8K7>F||sY$i`xR$!4Dll{@=)bEp z;H6?u7OO*4uU=`mX7{|u{hFva;yoBfGd%lxl}F~v)0Q+vWADkSI^2m#P5l#{%b2zN zck|yO@u5FwY2822dV7cLj#`cU=q83RYv&B(LXuHt^Wm8vfKjd^X=$z`E|+Wn)y0aJ zUEsgnkjAr0h>E5jlp9^>tNQP{Sd{Hfa1S|55?J&BconR2`gg+rJimi+-UR=5GAz=>Be2R6^zN7lI&`;tRY)n+vWbX|Bmaw%nG zs(UxSY^Gu5zy9x5IA}|9HSXE3UVy7U)zad>3q)z==Zf(zoSBvUpQq2@WOlcRNZ-_2 zSvC{Y!hcYoJ2MMu-G%S&uar()z^ki&)2n)Vfhb(04K&?dj&8ZR>SZ%p@|>UV$;Mxt-|#y59W z*OOC*u&>C;A#lJt7&|DE+byN9&3^y4#!tQXOuA$HM%In`8SnJ|O8;l}dn{C`8k9hc zEQ#Yp!euyb#1-pzLoF$BEozI*q{)YyBg;Jw5`Kogm-ytg%FQH-XV2Pw{zY~`z{U=Y z0!D$$3^avx-YYDWC9#`K)yx_~5GMAM6aA5Pnl}UpKnYUMQx2GMEgEiq`*yFM-i6Ne zrU6n<(YA=Rr7PKLc7FiooetVQ>|{(sFzvr73k#Ei2!T~VMZg>_=^LJyc<}MSb=avj z-QCu|$oZ}3Y$k1tTH}3H8n$;UOOOC26K>>wUNl zlT0#;{Jx6^tDa&Nb1+mP6CQ^YEE2+~TGJwCmf}r{$jW{O71{Y;Bj`Y8KGONH{PiXW zxu{4zagTm}*=-b_Jw$EYH?l=XH(^#m+$@K%vl~^ZP{&aV@r}sb$u@EygmcYtg>nd9 z|3}SmMm2a};!4rgO}TYz^{Z?DO0RP@UR}qhc6%wYHwCwmz!+xjSG_XtO)dF%gLzex^C5|2$e z!ARq^vde3+^k1dkibv&PWo^IhP87Pttp=}24qg-e_xR+^U&G_C)mkl7BQf|lr=4AO zJ@wNwob+rrRtr@CCGJi;ld}8Cjej*$cM6}S6t|k6@wVt6o{Y3>CqB`A{r2CzW5LSZ z`Zg3krZP1PER+-!N~j6q0#(4Vv@sj9V;@k z29Ix^b$RCHYpVY#nBuf}tzmW5tI*tRR?lybs^aEy^?5Yz5pPrIJbOvvDJ(2biC=X- z!B%{1t7`vaoqvs37odIJ>ITk`i)+c=asE6ZMB=^ZXhy8&+wLcH`wc>$Di8d0{s$Zy zaaS()@0(gtt=8F$DBN&`&gvy}3-Gg3z2*Dt=BDVpeVnDps}y5hPBq`6^7n5~P7yWw z2N_h+rOM@GiE{t{S`PWvwz^3pRxymzw4-y+cxluWIhpc^Vc$n-XcZ`TsfOHLGiuaSAWCm&v6X6Fkzo`g(YC`~+Td#ACZ}`CpGsPlWNQ zURaH|fC$Y?`~kkbM*lrDZ^sD7vu7bWTfN4)y+*IDMvO%u?&nI**6G36|0?jS%bJ&p zRlCU@(|&}b^v7v9`zQO^z7926Ga~2w8dLXnCo5dLKc=fsWq5nF&8E3u!h6>7669W= zA+ZICOtTBmPa5@Q!ARLGL8~DCz@B_+4ZRDiQEB1C>~4NDiVh+Fb(o5dZFTKTN^nGJ z&uWJ!A1&MU@EpK`u0MXY7zb7(D4(9@h>pERZh4w}jOL{aM_uTOJ*8A#^2m>r#5+!} z#`#sQFg~uSwp5Yuf1d@sWnSt3ok(DO>Zf0Rfc!cDah$;7YUx;e`p2IC$?^?hdz}`+vF89bI3!R%>R(4F_!ZP zO>fFAB`PGRkkHRg3{{yM@V>GkEGTK1ic@xqHfPN?3a}lJB8RKI>$nxfKmH!C?yb%!_G6@HNtortVwc&+@+G{fOP?;?c`C#*pa0oVE)BNj+j%K>^GEOVDAF5$ z25HL5ZNK`ze_K+JaBbD7pvlKgYP?S5vLmmfP=k+AjnJB8#G~hO(JBON7Zt5;*uyuv z@OCHLll}@(I|E$zJyD@H`s#l;{HUK6Wuc#htep8cx+JgK*i+_x0K07Nye-@0V_7-nuc3V{Sw?iIr}+RM*%us*)3bgJ-3ocGe&r5J z<+36mH;M4IEm#q%8zU&^zwuPpQYw2>TRkp@&S)tK*Sz~XcydT|-Yh=k^hu>DDrNx;D3URK&Qw1}(aSh+|nwRe0d7>oibAKkN zee=KzmNVmkQMtlM8KoC-ba&73>l!4K@BT=mhbH-ke3h9cwEx@Ksh4~*EL6w!iNd)iB?4EJxnkW^Le{PD(sqtUeR5;oOBNTUdrD)LIFo!x(<_5QWf1zdo2{gq$k7kTHcXf!Zr%nF<^|4p6drlC2Is#wz{Z%Ko71thOuU$Izz6s8cQIuq z=nd~cpX$Na$mH zKH=#+uZ!zl5==RYM=5AOQYo2@KMDRJDBkc<^z77!JUk zFDWS*f<$3?Rv>Lh;K~{MTI$h-iYdxhuO20mx%UxZ*(~q9>&Hi1o-GWm$J7WVW{GNF z#&0S*^6Dz43^3%4r+sh+)7oR%j^bbQ3J4jQfguAoZL&ZoBm+r8c29+zX8nmz-Zca& zGZBJ;R6=m2XrUaliVBMtFfBug<;tf^;FOcI|G0g0LFPF@YQ=y{CR@@zXp({|gbC|U za11C(*Ej@P1L-^s$Nyb2Gc_e)HYBQ2EsxAKz7zBp`K43^RMzO~Uwgt&hM^V^J0$Is z6J6Wjh$uy0yjTwfclx!=b9;OX$N!1o$fHMaCZforUD#-RZ9+XH=kLX=x!w z>Itj$Q%|!XYnTWj&qlyxLpoCLQdK2SfH`8QDtTFpet(ME#^*~vnJ{Ea&ihGP7t@on z;co?HRUMj-Wt=$QWh@4E2b}b8^Sqp2Z440TAbT-Qz~XVY?#tzVp>i%ng5GLUi<>7T z>0HW9E%Tw^;TdS+8h9*_i`1SumgYxIn9xf z7u8w43V;INE2kRD>KY2=Q>-@?^jD$b>Z^5a9P^{1qYEGG^h3!KUo4v)9|UQ-T+_!V zQ@XWs*XnJO4S2Ia1f^9mePL-LE!Wa?SPvK3h*1@<-pG@XJ#lv?s9S!ZXiFVgiRAEV z|MX{#xk(LwMOjDcRLj@@62RVg)56xZ)!1fkZVfNlLa%%OE`xsF&NeyOUi+Ppb-qx1 zdM8=d16_T&u9~na-EW;8+`>PqLjEou{7=KD_48vA zqYD}PsxPfyZ6TXC;kxRaA_TszBO`-I*Lh6hrd%oV)yT-|spnKLUR109B|JJ`uHGM- zp{}}uJ9W@X+00THTgd$B)$(_hB8+de;O{ba=LC3_3|H4r9KCN;Cew6`QbC@& zvw%*~^I!R6{B6E^$_;0-#EMnre_Q$A> zb$on-m_ElSL3{UEOut~{UI?eWU1%)BaY`Pe0OYq6z?=8Ju{-Yd+eFGwnfe%RBqR z1sMM$M*t)qd>bC#gkvvLRdaXW#%``}j0PwkkO&!0>z}@JD zre{B$AO{cOQg%+rDJo(djjp@&_#x?tL{a}>OL#LH@9tOQ8!xO5J5IC&maK!vRtx6RXgP4haHc}$$e@r*hzNgb0k<*mhGiCC)xVRqVTE5`Pv5)5= zWq!t#JI*b>eRun6w(kzVtBDDeA*cE%+TS@#k)3jvs)cdjT< zgT>s+BSWUm;$J_Vpioj06la{DFe1F^9KTF3D{)QUjHk#hwqAK zH>aozU}mhA9F&K+Q2XiAdIH~}LR;+d!7z(v4cF^VZmUYG0L)TDZ(8lHqg`eOEhe|| zl_N0qFyk^dcAe||J0Ejz95#4xNVK`g|L11=W0I>FqCtFaRE04-GLrm839G6A1u$_M zGqZPkJnh+xC*s2$jwGpC#3th)EjciPQEb=a>Npum$|D%=vUz_% zs4LBKPkjRg%X&1e>WPolm@^;~!bIp>U)p`kyx2+}gB)}Bp#z(8y)fB-eIp@zoNwCx zH#0J?X)NcwHNMP47H5|rskoK)R-WO6>Y|N_Ge64>CQ10-rq=vh@)VQN9K^Ykg6Jg^ zIp@3KzgVkMjM^~?4MCln-99?0gN=$;{_oRG+y(vg|6|d3!qw( zbyvrLK9rnv#c4ev1nXGc(qfd=U~&CtrH+)Hl$X#BmN~PZ_Abuhd-=I#<&8&X_{_ui z#G+0RK0X6WXR7OVuO%-)B0=jvjZEw?r!L_e=~<_Intl2gmH+pv)}N4j zM=U+V7)Z?tqCEE*Qz%81i<1@e_Xdtmx=YUotvO1&_lu!7t8o6x?(*#v@s@u-<6n4j z(|pj?o-LNg|6$4d_mLc^tpD~RDPe1NL`1|rOcFIr!nEJ1Rn{l`^F1YQj)8c3Voj*I z)99Jp9|k>2F$5vGJS_6_{fA7cn$uIN zZc?q%HX&Eo%OvnsX8~!rAmG3t{HumZoQaf#(Ej7i9t;0Dvy6j36!P6@p6uNkZkcCY zbJF}WGfSqYQRbTYVS$0iEg`{+A?hnvDz+n(M8(aF$1#RZiaPMvxw>y8CB@(%TRKi4 z?T~o*=+Wct0T~M4i`IA1cr^sjQBzMmxcGHzVR=#El_7JgkW|6Z@$QoLqGQcY-^7>qh3eXf5O8NAAF`cdnaUqSWdh27BmoGOG`kap$A3o%>uHxfWI~;g# z_PqVkBh(M9gmf%$VWXK2&OUg~%Nsf$mr)z`nY5h7~~vpZMz!HrDHAI0Jm6WA(d zBIiFhoT4C7_-!ti9GHE5=&;3s)#FSX)LH-aPp={7fg#%PD5_`AOkELn?VE6km(?1f zp7|35QK2>IaP0B3o2^S|UD3ThC#Q!Fs=UtovwuJTWdg1HzCq}Ked^g@5V29)5{N|k z@sN%=aES+pBm%|ORww1TJq=c0-@kCVTEh0(OOs)T>dOUQqiPic;@5Aj_Zneuz0cw` zb+_1Ev*xe|c4|9>DEqgiFI*>`DF}MTDmJPJ3QONbUYV!z8m9hywtb2$Pu@+vKJ2XU zWq_FYNHxDeF*>SIU|Su~r=+W`{nN?#n&w>RERm6#Sio((F3H}fV060Fe~+*Gu0Jck zXxe?43RX0}y=*tNc61-m5LDvfmDlC-)qt7-D7LQH!ByN{;hKAgEd?oAcjk0$47xmQhzl_{|_zQ)!rH3ZTmAT`KSD-H#(7w>4^7WK9 zV6T*zaZt*7a!Eq*_aDmpkuSRVgDE*#rD?Ou^6Y`^()Lsjr|1``|J`s?*(7k1L|crt zsUp`Vk7u-{=tytgv}O5o``+Uo^3}PM?HfGwTTV2xWhpgTIR4HwCghG1>MLSZD?fAw znw2u8O~^N6+??~o0lAKxds?>7s-G2V=LauW1^ozKj3+|2>LfY@*K4ZiWw5DT>10sY ze)ZYxINgyWFKqykEwJC)$NI|c4NGd%cQq09sNn{Gr;AtB9KWV2trY=1-lo$nx(Sh+=WYc;z>MexPp+vA_l z`iuWLwzz>|-9E0vTPUt1-rRAT9RyqXoUOHh{C3mHTvB|%HYfcJQ+YpoXP>sA=jZr{ zqk3k?CV$h6S(OQje^dN({4eFY+fD}j2FbemhG))Dn3$Ma?ey8Z`esJF`Jh}u6jO;n z*_Fdzw;3K)?CKnr=t{C0JQAcF`91kk(Ay#rHY2004ZWZ{Ok=d3%-n)~ygn3jOkWERdP- zhVIib?mc(+^8VdHj{ZfB3!SdvT)k?vgygOYF7?P|8;)-#CJ*vM|E^Hko?Z8{iPH8A z4NmO-dtL|QcT{gnMXZ@hZhWh7nMIplYVO^G^F~LX8)I$`LSFk!dwk6>F1YE4W!3q zd=Lnx-k((a8{??DqHs;MEB3Z)eP`H*>3fCzdM7T%|BJP^j;iX5{zVTUAV`R$bV#Rk zmvn=4hmz7M-5ny*T}p>^hm^E%=oXNY?!N2z{k?bZ9pnA^9F76#Vehrqo@>py=KOp< z6Y)>m6^o~rU|iW9aqIVcd5Kp`WjS)i&q1o^!E3eUuwZ7z2RWJ;Wn(k(P8jBSj8!JF zX~245&@K`xxDrD|L_N5??+>muK1{*G9w;NHqlKJIC`FbD46mV`iku#50Bmv!>zxOsZ!_?y z!;FiHnB$g}SCGy)lk{qT=dz!b@8wsIOh8o;Lbrmu% z&t7Cl>pgkF4C#~(^X*#E3UW0hON2oIKEDO=C67HkYx`4T0h)h;i@rS;-bd06?439w`w21$h=prp#eKDfKiK@QjXU#RylwBZ@8T~U&GS8^tylP zM$`^_6E|s}iSPHq=$_R-Znt+Hh=ETVf6Qie;Nq*uU?^0psX=f%MDjcXQjh+^KK^w! zn-w6>cSanPM#|2q(pfnb6f!?FdyfK=h25U_lnwrHM+?^Ew+m(u(0@nb=be(c0(ySSxS$Q4+eKiqbvarvvE++EWioeYV3 z{nS&%4th{t;nG#(FqgClf^A(DY#eDJ4~Q(ha!4%j}Al zbdWf}1JAy-BBiUwa3#*J#*y8s;wAeqWBq*DZWh5hSE_T=-jQ8cAD{X&%hfG{*9D}$ zej>P$gkJ`G1B|;404%mz4K$8i;z8=tXfR|xDj!JRI`_Xms$3#W{W!OMIffrD*HoS_ zx0Bj-6v+A7ZX|6&?QMH|XCkAM7DzU+o2pDYqlUmQ>A`HC{*Ss>#>Dtjzl)Sea}3u{ zpHhQ`^+fvb%b*s*tUEIKQowj!_vE4)f%XFPE+BPJfpQV`_-2>*e!OF9qi!e|fSJ{Y z(DF8m&XI1cHCY}u<9@Vvn~t@)%MR|zy3@M#PYxF0_+8;I_7h<19i%~Ysg2*;1=lM# zsdzc+Gykow8$;86nZD+*__4KS3wgBqt8zw0fx|Rd;b{!aLUkW&{uw?Z2s&P&{!w4J z#d%hT|E;=u;zYxQZl4(Z!Q(6JB1!RA~5Y71=U!vrt@J>a1Nkd-JXBzsFH zVZT8@Y_9YEXBcJeWbGcl1d!Drgs3W^-A1J`<*|YB=OBq-eC4on9#1tfBl7qKi7+@+ z4gnMR&B0;-xCK>Q?PeExK(8*T^8t|B*?LRgQ+XSxI)!t8uowg3EgNcHKlcngtqDN ztyyEiG~_9*uWn7lzx-!;E)w6=+me3D*_>N<4isJ8``pTPfqY=e7db2_;En{rAPV5v zYU2ekkxtIeb@f2qhYTcJ`ar5VO328~jT>mF){-VlULu!Ui{)NsdxC{chaOXPP^kQ? zXBoSJpX542l;^z}*EwA9pa*sZYm_TB#R&e`e>m z3-%t7a(+pp;jX&IgbV)k5s5uRg^zjE(jt>M52N~X6FR(N;OEq_< z{Fy<89?*&jM0^F|5fA`8y`<*<0x67+8Y}}5r|lx0qBd{5gNpZS;pINjKR7&W+i&zQ+e78m4CW z!g%QGG{uAi+mC?{l)mEQX@GFU&x&+Kvv^yZ1k*8lFPdzY- z6deP~h|k5-j7EASZd2ZV^9PA>?hl{7o<@_(2)k7)nP! zi-?Tia|0PklkK1eRgDiz5&&d8PEm}U$15c@F{YRb>KP!fC;^C;b)=vIRMpTR4Zeqw zKLMo!CNR+h7&Sn5GZMz6hLN#>057@w^`=y=ilrvQEUsszekE6{iM#i_XVo+};N^ZL zGeQxvi>3w=VsJ?;iAeYgS!mk2@LOZ@mzCF7GM6>)1#jm8k|HtodFREx=aX9i3kh&_U8ytA(;TYV^Yt{gBUmjq#U4*4nQq1V&Dc#>7uKZ2{P3iL`pmJ-}B|e zPHmbCgy?mKThF-krWg_kxe6-AQwWTwnRW~t_GSvP@(vCA3zK0j>DQ*}VNMO_oMMmzQW~8)O`bYUVUmPKBJhXY*WE=}k>%LDs(|ax|~+09)&` zqGr;Wv;D>2Fp*0pCjZOj1m6Qt&g8L^q1s+r^v9wqs7o|63rL`KeQ>UZ(NNG6d5SX8 zl)GwiXN-&4dv=uxyJlrB1FUAwRnF!wbgFL`nmId-SbdQ2odq(D(g$@6vp82*7wiM7 z*sRjk=v`xc?_R5Pw6~sv5VjPmzJvD(WKaR7p?+>b-i9WQ3b0Deg~aZG$4@+p5*Qel^*NYxv{p+-PSPfKEdm=)FjsL&t7$zrCyLx&?8 zM+&6CCISz^hT9=)H~&QNv6b`9WrYDhNt%*`I*X|pKpBxP`=zHmg_bkk!+V~WKtG$? zvA8F`@2*f*U#?JwgtsKeU^%mh`aMijn>x-BI z$$_rHS+tb~vXBNsmn}h?#JS$6i8kVZ05yDiNUbHsNH4cB@L*nTCWpQK=;0-AfMVYYx9!mToHCDHz*UZLq}_4-hvuVF zW`RG*lkd=cPlP*EEj0(h0%IHq%}R4K1u!sDq7LU{{EKs6yY**Dor*}C{cQ5f@%>Os zr$Jd~BQM5GgLL)#S?4H5c=Q*ka8FOUjxL(LhX)zTJW~{krINKnR_4M6lc3uD&E$Z5 z=|Wfj7WbKjPnwzl^W<-DMwF6DudWrl_mng}~ZP5eRb;Wuz#2mm*un96|a^*wFr7@f?`;@y_~$-{e8ok-Um1Cs&^5b-PT9OtHUp0&o;=! zfvsIDqkCdE%eJ!>Q%HT(@hB_5&aC@tDNwZ+pn9-eZBn~_%;E5Tgungqd4omz$Iv`( z%gsplSY}_hcyV{U9{w-ueS$j&YlM@jYo}!CvB6H!8}!QoEKnC&Ele&rh^VtERLuh% zTidM^YD$LkFE~37TFT1C!vyqS_;?{esAuB#f*S60I}_KY;OaFO?*15pF8u8%;_I+ z4w-19%9obE{0t6~Bkuuc%f((#38Tt7k&}NfPGqAZC49r>o}bMw!zFus`nxLM3$xr+ zIX~nna{Ij=K<4)ZkL61|QAd_{&6aDr zqykvIoRn~^kz9OB#tV8JRJ8IHT$49RdG?w018=w1OA`V-)+&#mDgrFB-~^YAjTJ## zyy|g(N*etA4O|pH!c2vRwv~kXXfWjBFC5@fZDk>Vq(uGs9x}1WgM$&*Q>*u&w%AKR zNVhtpCW4HM^DVTA1e`bc;P1b6c0p0M4kWwW@1Fo=BgF5g&Ktlg=*dNIa`kbDh{ze` z(`rxdFX32Ot+XFzt2^s$)p+Q!b{hJTQHrN9za1T)CcvlW=GH!03VEhx>~+AWBk#NT zzXQG@15^l79Ye9PZ1H%w`l4(Jv6ytO$|_fOEH6j&APVodBrHGTU&5q}OZH|Yv{P2h)ESVOvMx=Rs z5#X%4&?Ru7|q(s7faS zW&5fRFP{@JE;Xp_#lr!S;m+kY5OGdWG05Etj*d=v`aV2N{2o$L!oB4SmvOr1cet#8 z+Ro)8J8Z?CJ=5-DeT#=TF)(txUU;Y{RKMp*=V^PZaO&xmow|LnEVnhYW*o>~5-DbT zS$vz)B8il|9G>6iK*cB9co~Dax&BV z7aDxxGS06KmYJ6-s_e5l^IBjbsJA5?9Ioc?NnR|n*w?qd-Ki}hGYl+onp{YAuvtKd z;C+bg?Vvr#m3P+j7A$faQ%wAl85)QA7>S$g1_uF&S7WPWlx_9W)ZxTE;=N7Pt_dRwDvpQ!RCBI1&f;QlT%3z?eLT`tVZ$oK6pXkE4C=Bn8=Wbu3P zpc)Yyh1jb0M=shIv57vDX3cCUc?}%92D){!*~Du{$0yM-INGOHW+~}}g9Z~E3$8*q zhx@l!)m9UJJ^6%}Jq`O(ofC~Wqq>T5s-=Z^^^Xq;feZ0en6#5m3hW4tR>Hc?EN<}C1Rj-`b#8q-P0Sd@1iusa7CDtkk{)%BQj`m`Cq2=#G$@-y*EyS7g?(1mFOSe>cYIX>aW$W#@x%R`(zThQY z^+0K4>c2~R9xCEdc$j(%pk>8J6>*uTY#-U#ytv1kU9YDV3mC;A$*dx1=C_w3`pf11 zVf{ahrwgNMTNe_(xPDSWY|iv0TM4cBQMu(#F3nt5b$Q}}VI=s7L^#`&`#;sSzqgqq z9~{p|aM@l%N5}zKn!RLDjG3Mp|BZ!#Xgi@cXFI8&fx1(2!CNc7)T_UYHPKa2E+D}ZvRID>d!4CNbH`szftc=NY%>9{;(YLK`)npB>cA@eJ1Y>pUYU{Sgi zu4&}mzXuTB6Gg#zqXvEaSxZ>7K~$ z>``PmYwyfsbn#;OOQT>@=>(=SwKV^^H^s|)Z<1rX!!)Plw=5X_nf(Jor_WQF?vGH4 zW^hGXuUP&nFdkZJeHQa><)mBdc#I_dvbsrK_nph0#r3rHhT+qv&X7&n$AYi$$QXiX z=AdECAV$=mS`^N!$x2P%$^&!Km>XvK6hZAI&D zrT!8ZO^(je_8G=B=@*q3588#1N$HHtW17#0W65S7E=yEocy95Z)Bq%{#?-C}od0m^ z2PVD-lA1R&Yj#P{%!S!y1P(BaHleI!p&VRe6~_D$Qs~Jk;_}r2{K2UW1{ycp@h_ z+xPPW6;nh)0<`4M8if$4-{_9mwhjuMek)xaPo^HCRu87zf!|WB!#$Z#~)VG~igTym4( zXTG_)T8bTz;^m2O5<(cuU^DFJ$mz>lgO!VdWx2ocmZe7VEtli&7byQRuk&el5O$=g zy^(kL=@F!4dyK*}kQQC3$?**^tA&QTO95WN*0C}htQ1c78HH!@0OhrLw*{ zWQ3tbCgS5cXE=}icCu)+vl@X0rluc7f!36%t~T%ETyL=*7$|YwKRd5l8q_7vyyjx> zo7rC$_hU6`tpPK)7$?7Wo|KaC%S`AzdhBb=`>4L70KW-o?FZ zbu`gF_u^Y(LUxqB(nCb$n+NEJx1s@GF|v61wk_&QROf_-GF0j5=YgM50hoe>O8fWc zY_+(!+kgKSczu=&dK*1ZT7)<9uAy)kj0-*_&Yh3|lTsyAku?$2XqrBwMtlz5} z1QJ5-8tL&KGh4$dm_Ho)46(~J7emnCJ+o{3O)x?rf9&U9yD3SC{S5VO3z)oOUA!B3;Z zMYv_p(xcmRm(1Zvr?q8QZ%1$3hjzCo5aV~o;SEGL>mW<4I+^Fh8ZiL&sww&+gGkx_ zuqZ0yJazJ;gpz7djX>3%RHBx^YY9z{Q&eo!;WfQPx6N3 z2FKi7=a>k9J{$d_kjRC!wiS+liKmD$Wxl$(x{2HT*|YI8w_^2yIT2O6L8;^yfcziu z6;m@YE2e2~KHOWBE-mT{=nK(%;1cJnCmq}&=7%%>4E(dn%ubKN0oLg}<1N>-ub9O% zh?7~*L`n7tosz#{6Q9fWmK>Ug&MSQlmmTO1sEOFV*57<6-;i~JHigT!y?rNx0O5M_ z*=Yi6-h!h0Kx%E_Q{60{E7~33{tf=L;T-09(8>Y-jCH88 zE~Zp}nj&90vWDFldvCZfz1_*0^}MZi>MQfY-(izP$CGo+GGim~kk;*a0+`R)Hy|3) zH@G&1tw21mFO^QI@;U)e>_hUpB$5SM!5A;=nBud`dgu6&=L9+-Bm^F;hqfF!-)mnJ z?SuM9jSx*@pARn!UKDP=`@L18$98!p_3FL+kYSzENtYIDD~d=%($sGY2AJFE&vCm` zV{g~SMPzh-QYiF6!oqicB-rdcGIb)fYk23n8AQsr zgnhK&UQ0e*h>uT3hgg0%3@9!)>W5Tbut6v5Hp5HGO2*l>Lty@HbCcZL#|ho80JM$s z(3$D1-3m4Rq}*?P%~1ogm5Pw5FS)t!zRdd&h`^gc-jb3u=enx?%YA9elM&n$u(>lO zGGuh%$M|QiTkbZIpAFMWQFP$9a~%pa~hnoNFD0= z6Ir>d4t2vt3HbRtzwzw?dq~N98AitXqFm4VBDl^N0Ud(tAMXk1{1YE-o`x~Bt9X5s z9hU3uuFau6{=uPxN%yhXFPHy|QB@-3VFdypq@EwkzD=_J6%u0((k zYfN7mm5RZ#A}NH&7L@-?2{b;s^00a`D*er@(GMMMcZ12DFHzT82`MS#7Ws7a!-N8| z8W>xGZfhh~jHl@Po|Th`qTPAVeLAGSDYfZ=K{A*H~g+Dx?N^u?Zl4%0&%PWg- zW?pBGA0h>#%T@b1ot5GJqf(i>kyryVOFZv8bO~YGZ)T9LxtlP2dz1e#F_(GVi4^wO zF4*fN2L^|_28YD1gwI&@l@%e7*>qhK?^9ooj-NwS+^>_H#3}Q>wZAp>$mkRf>9>Q$ph;P(gh_ zm)CP`pp$G)@00)*iXVvWPn^4WHx}G5L0OUoU4^HmiF+DyZ5)q%(IB1rR*{#4mwmy1 z?$=E1Xq`hOBrpw>Bl`c?NFQBJ851|Ts+Q{26u%*9{k<9WVA$Rm?}^`5@1yzm<7|m0 z0c>?$0@_w*%P9-hg%Y>$_F*U>AttvJFeoxZXPx%x+EK2tEe`Y%At{7}>zPulCTc@) zx_hyp?o|+8kUs0pMUY-WDg~;J)9o;b5N_qg_SO`J;dBLrH1bE1kr6G!%)bRIccXxN^Aj zc6*kTwGzui|I^#&I!Qty+4Q3gb?FQW-MO5E|N9B!wSjAPdFZoiY1s!cvd$A zD|rv2>O>j5&V>}LSi*ww|GaA!q#(6}mRLU;#OC>>de8WVr~wg$8OjSP4cyX5>xVX7 zY4O_-;}6Ecc6EAr9a>&z$KG&mUz6B1b%nr6!U{^;m@Rzg-Nb-8{YUD`OzsT}lqDY| z)~~qVF$4MQ$q##a-{_>zH6Jnw^)g^n7`>T4zLs{)I-NhYdoQTZ zGCn-;gte(b3>N)v{6f;~%U~&@1U3(D@=C0u1VtP2;xLIp|hQW?&OFryjA*@*{frN?z1a0P5{(+0Jz z&Vjms6q+^W{euzlG?`4N^Lg3P<`F-jEnw<5lLgtonKl_oY|~vBiBUL`y0`NfEfm%j zn2|I{Ph(T5qW)6E|8sb#Z*-61-;MI)sHkb*)Ql}dQCVlKq8?o5bEEW}m&YpsbP7<7 z_j6(1kgE{uZ}}IeWC_f_&7``&^(Fn!h@2T|$!gt7qNbHxfAuwyTI=vud3`C0lm&;s z*llc>slzNYy7j|IJE6JT_TCf*c!=MUGc;`MtBWZ&p_9(zZ%a2VBSR1VG!2D>P$Lk2o{S$J+`+E zi<+6NX50`)a&s}Yi6(s-$rtjepC0_{&{B3y|D(Kq& z$AfGyZTr#K)n8Ld_)f<_vU(5u?~V6j{) z!1Zdi&gXX|vl7lVab#$y{kkrpc)B z7$69t1n?zpDbnfMwCpzg5ZSO~>sYJJjeHafVeX9e@69Grgn%{h1QYlK=Fs z01MwbS?A-}9Z9mAG6)}C(rL`U;qs5F6^k=|Yu079x5JCQE6*x=^0G-MT%kQ=pddY5 zA@)sAP-VOY*0=H%m1TP;|Ba}I29Lk}@;e0Vs9y*eruH$M%7YJa1L$RCqrD_}h>M1@?a zb^c+6r$Ja>g)R5>@tH|{YLOTPJw-6Iv~vb2X+`i=>5tRM@vdctv=w$UDQOE?jLl5p z>}|9>78<+zn`v5Y_1A3QVlQiQjoU0(z)o$`m!EUHAWS8b}2pnslAp8PXCrj?gr zL)9-ENwX2%Ek;cZGGD$V$SV$_P2=}4mB=TB6hv^3EjC@qG+6Ogyjqd~h~m7r>(#<1 zabYP%>rzKn5!~5)j$TM+}bVUlljA*4>VY*2e4qOe%q<9lriSe?C8cK;e zI?WTOQ`h0LEmU>U)V&n!*MEXohIl0km#5R<*B$@Jz4g#(>F&P~i_#WjOjT6mE&ebF zy*X#1YA$v%iz3{K_OtOKZut_p^z9%&F%I|hNS}fj3yx%^9M4)LEA6 zsBBu<@7SYt+*K-=_Ign>S+)9iMKWt_x(B}E4{T&Xr6EGrX#zQ*;9;#Rh~}!qU_;<^ zac(XDfAw={hFW951%LpQZ0D=@EWaD`HJ%gnV{g_NbX*(NjJra&+;n-GOZCU1l11*0 zj+D#WbHIa!&DF`|6#wXC>(7fI?SW$ zy}ZOq_Qm9xJft{{fA1(~3R2DJ&H_-j25CiSuaTKRO+GDWFKBI5SmA`iH)d=N6H$rx zH)wpu#N?z4a+MYB=2?k%q(Cx4!u8qP!L zGPxK>6)ftc#BcX?>5cx4K~Ld|-xb$BsomF=-tx2C#?1I|ARZo5+tL{ChEFTs*bY+u zs19kGP152^L7FXuf7}Ywwi}8xGX|%HG?ueL!wdl0rPl`=5El@ntpRyCe? zPB@`v$@drH{vG;BSB?8ub!PGfMCMXsy4vZZM@NdHqGEDkdPtCAZFkaTxLwH|pyO*_ zTL(}-;$-zcsLDS!Mc@f!*< zgq1VnfGYqGlc4*1;$Uq$2(PK}40&wwfP#;f1T@oV{Op3Q^;z!0eZSy)d|*b?n_SJN zKx6#0=c+r%5`u&o&xGGJ%rnPlrJu_TP5l@z_*gzwk{D2nd|SAM`9|AXNh&@+FgtN@ z;E86Rd6jxePH1P{hF(bQb={r>TKP=kv(Ik}`*Wmvo1bTfw)||OCUyRghcjLq`yNq4 zGEw8>Qk)q`Wu)O@6j`mQ{B{IGQcICDc8} zB~9f)N&x>f7lUGH+Vci)u>5wHPTt~3(PSZRUTDK zYQ=$t;NM_Fl)Ej99x={Ux9Zjs)4FjD5z8%RPRhDPwx2%KWXTSJ1w*RU2j9L_r03T5 ztDc*iT1J~yGJE{K=iPLjtOamrVQwyY{Xl7EXk&6>-V(#5OckTY;!gz@91HeSXNR?i zbEo3AJVC+<92Lv%1e~;C(qNjz>6ySI_2&iPV5m)C6UO|kutfjhnxTR*^R1qWMmLzB z?==idB5@O>(glZ?>jZRYt3}@f@&}PdNZKL=rJe@hKiohp4h%zX;;XfhR5};>a7Ela zj1Kjtf}a!kIbcyH{I2az4G<5Yam$(&F~%59{OWnnH#ncDq^@)9r_G>Ah53wEn^FGn zLv4dvUOY0s?YCVjx3|jz4lsiC2pg;ANMPjMo0U*S}DO~JDgX~<~o!{U{x3?JY zFWT-p^scTCi3Y|hFRrrzg(mfN(Ju}T(8vz7usb$9Oar8B654~cD2`HyfCkjg6A`7103e{Rj-a=`HAtdgR;{RyiG-3+J%< z;f3(^J%ifB=>`ixc>ZIOhwMxbVsNZn1U41Ju}FYMC%sqzRmAMB1D?|}N-Ty!-I-N> z*k=q`iCb>5H900Cs&W+^Xa5azLLLZ(tSx40q+I$MTtU?-sD;Sh`bPDvoyz{3hkp_* zcy38@!=#%r_=MUNw92dLT)$>L=-|X1U}^!XaDXlzQ(R3UOtc%3yudH|bhUxRQM)nZ zSu>E~02L7`otK1kY&V;_1XDwRCsB2OCFFfAjliuMP?~1`Y6F5-dPWfrQrq0(zwa z;A}sv6C%)u2J-qOJ3E-tC_tzd3&=(N0QUgx7T{odT!~tS@zvIzy6rI^j`jtXtGIc( zry3O$^j#2D8~%+@!w6M1;$XSmc?$!`J-|4?pz{|T5Nrb6*?)orpn(KD1lA4(a6?yt z;Dg6n2)>-_^8dyD-n_;t!m(Q#>jSVkhjk_HVFk3KIThvFqxvr`Ou$$&|3_P*pPH5y z0rK}RAeZIl=7L^ZK&(6aPYM_>ta(9V|=KATTRy9X3 zY|>TF-&zHx>6Z5ar1a|EUKAkkB0%g`+R=gbG|)M;B-sN^a)25bzE{Qnfy8ATo7kb( zPJ3zcXTflLViE7!+W4VQyKLSyYSR5Vz`v_m1OvcB0~0Kk^+AofY?hl5IR(I^#zVp&$`oKf!Yw8 zZ4oWg2t%)k5#Z5$`#QsHE&eo`L;x?H$G#5;fv)ZB6xVeCWnmyWI}4hro9h9IVjxyA z4ik1}Ngh-M47jUZW>y$-%v+sbSpP+U-sOL<+SXHO_Y}0G?FY=#s`o>9&{8esnkAsm z1q4hWY(RAlJOBb{t>~Yahzn*F8N%zdAyZuWLp3{5`fOi8LC+B#jL*c@E|_)sNaB9} z&wpEqHB2Rf1PU1b@e9eUMzL#viu8%5H4_MuJlvfszq7D_NzDOue}?M4Q^!a9!{wm- zvO~Xsj_fx3@9B!-+$aIB(#h}0pF~8${~X(`G<}Kl<+@HoYEUJGeUm_`Nv62mf4+q7 zGy(NIkQaBWyzCfVU&JICw|Y{Rk{FX$9r5oWa6T8ISOHXtUu+5KhTyx$Sv32v;6-~R|gznWZO?cDhjdH_B^0zQz366pWf%7g3Y z(T$WT)wy<}SvKo}5#wgJ4Tuo&K%XYByJL&?_a66>_n8+S^|$PZ}N zI9z@2de_Gu&2T~sw^e8UcD*GU%PZ?<`L`e51FZ>FYO`>^H<#7*9<_XuW!??&Egg1G zAXgG7v||g^4P~$|e8>Lb;W%+a&i+Hr5>yS+J6eqcZU0wkXD<{J_*c=}nsO5x=8%`30Bss#?zFq2? zuooTwz~$jSDCx`KTKT>I*;?Pu1zoKW{KAqW36}#&op#luItO=>I&xi^4zupvO`0o| zUtjnOseN}C@~*1JA*N*@M1eTdUplIcAloL8{HfCy(1A(yRmNgh4iZwG_8K;|x89DZ zStW{t&Q73P}{ zH$Wy*S=c~=6sdOt%P}?2#m%qzJG+`jQZ0UA2<1|p_v;C;>q@=r`Kb>`$@D-X6by7* z^T>P>f-ezFlY(LcpfEi?W1IOtzO@p$Ag47#L^xN_>2kRjtX8YxZ|FG!hdDLJOd zVL58f+5fJIFtUjSvw8sxX#V%Um%M&6G90AL-+x!cn-{@m2nYMW&jm?-ew873*g1-D z4kjwHVx@geQ;0M*Baq&m=EuOuYD9P*(3}I$B7>1kWH9TR1D8$Q7U-7jN3Pc@7E+8I zYTUPhQ$V}dB18kVtpcG-(|^}>vUa~d+L?*DIub=Fsl4I|(n9I%d5t&B^xafnN$`o- zwxiiKP88m=$~o;Uut4I(m=%B$)e~SW+wKn|t8tla%`d$VR1i+Sud6z352BN`IMv61 z#z}PIY(*hpm3;Z5mWeHZ3C%y##?~jT9=k2aW9F_LFyo=aQhoB2*4^Q)I3?ns9M`Jf z=y1=9Z+2MN!OMxQ`*UVeV4(!TgW=(p;9X+Tr_2>~H4?v-xg@=+M=ZBphJz^;BVi{? z)2cOY1dsbFx|3RV0;~Ka01ZE;QlKL+k!oko8uEFLCCP@wMHxb5!$HxThn}|oQ7B&t z(IyWsc~>8p5(2J>%j%=ADrOz(Rl~3cPBfdz-BS)Ji(WCH!NrfITCn;K-hmyCeg*6u z9&2rbL?GThpR>GNeHVi89@p)Q1}`vdjArFZ+)v52;$5~6cnw%DrIbX;DGA?YoWG<2 z8_g4;@_h3;%i}%6Y1L9Im)x@M0Bl^hj3S4epICySBkxqq^egDcHPRAG!pPYgv9Qoz z{WD+Hg2vQLlvlFdy}GnYF7=I>f`?E4hL2PKEbF?`ch2c$W|rl7&KeX>_x1I^i8hTN zqg`9X+z-HOuxDIYy+HCK2CrL%t$T6qx4C$pEaTfc35j1p|K6X3{{mIsotj=w@BZ-R z{_{#bo0%lL&MSRvR67nc{aBP^q)|F*N>u!R1{L0H<9_Y18;J0Ji>#r3~mK{Ya{5nxNN1(U;A-nG~I@|+=h=s3=n5xhsYG&p4C zhTz&^u)sLY{w=UyBk`|LR%Tk@*B6vB+&h1*J!__=P(uGE9lYSY9!G4)qAXEO4tBdt zl<@7Zz?}`NBe1_kPZ8!r6jtpH86pXIS-7Ha`NpQDa%^j7UjN}j|CC%^QKG;b6i4)+ z;YexyjHU|~b+gUi>c_m^V%H5cq<+e@^JgA;s@Dvs8I|RcMmy&*&YhKB6gj;g>B>sZKjj7)Fy{vhRNMqqk0lihU0VR&kob?;Kf4(`~Ql&@( z9#4sEdarDZmh5G0_niceq4VfEuIkdN`1=^_#5!=feNpfom!ci#T$|;00f)N`Du)ho zh?Ok=hD&|(`)@BlCD?TWOf9Dn6TY}a!8_u7q*zrdLWTP|{dQUs7BZIU8@(k4o6MrJ zoz7lei-wr37E366sNQ*Ix!psxeLW|F8n&y-xmglD{yufy!|xMfurX5+>La{#N+Veo zE!E3GteB37-Q&(VG=&y_!X>zMt3#}4@KJ2CWW`!S`)A!)l034XRc8L8)Hb`;b!tqt zte&6WVOd7ZJWh`ErmR zLt!r1RnI|a1okBf7v^sZVe+mOIV{k@Gz`vpFVaW1Hd(V5Y}4lAx}PzMBXkR>cZ?%u z9GH12;X8BixWU$d+AAGKRAthCdGA?f$Vkqmx`k;kn`tBvH~HB`hW+&bRxc`xhr9$Q zBvj{|V(F4>J%PNd!_mh!fhfieQ=b$?RbgT8XODQ_(>l{l+lrT}{1F&0DV@ zsihKwAgd#Rlc$2WU#DB^v0Gi1)46^TX=!x{G?emNL>FjhE)XrD_YARs5%)pwL+QfQD<{Luaf*ZC#2cAYbC$~T>^(cRu$%Hu|n20ndgZZvX#Z( zlx|sv+c+WDjZQT*uI*6`6swEM1>%88$|yeok=J^h@2EaCq4s|(G|z$F$~#&4%eaT_ zrB$QYW^@1F}4nKg+~E>qNauK#HJY{yakXDvfj8S{>ocy8BzfWgs2S z|6Ie8Ch`U0{sVc#r38l@2G`=5b6U)lLsmF|r@=+=A33%v7i-BPpyC{X-_h&iVIFr6|yk8b+ymZd*8OCOsc@ zgtLQ_xLFAWg7gxWg3QD4V=~uRo}c_R@;Lm=v(`xWC5O~@-16K*iCg~#a{pW}sS?dom__vF$$aPq`zeVX z7T9N3J02X1$8KE-;SPj#mp${<;Arv*Q5*?VVjkEm4)_ny-2XK0RrD8|K#RpuJ@hA8 zxENU+xM^`qyJdv&ggo-I-^rU6%nLWxza+x7 z^r8NqM;oF2{;tpAtPG(AengkZ z3$`KG5k5;#qibwm3b9|e3bl_aw-N0{Vb3&ZUjrmYf|trFS1f$-zZ-spK9?FZiI z=FxFC#UTT&J%bs(e8Z4(FYC4KM#mY4f)BFXDdmCxEgH(au0Pn+cTW2|pZexPUN|-D zo;C;SX??PBHxN45(QlaybNd!vKYBDX^PTn{oE?l~Cp%|f9z^rwqVeNKd-`dWt9}a< zs|-|i-#^bf|MM9eqDefm)>K>3?^hT+o7yJlqZ$8~7< zo_DKKX?LH&pn+hj7%W3ZBY7R6&A0Hi$kB~I29-YnHR5agA$r}d+p(WHCW8fw#Lj5E&0wZ?v`;u$I(W$W+3m+$m6hLJ;AEy_F3SPz0PANF zod{OK2@@9IC<~PNCuu9=^;e^~SF#RXg*l(LFkK&vXV#htPb%8n_S^Pn5WC&nx7Tk7 z_3Z7C?EU`fI{##PF;k0R=W}Um|3u8+kWsW!V@%oEqTw2h?p(9f94)3}=;4kXVp4sO!hpQ+KUC9rvx%jyAYV&H+p?c`p$uV9#$ z8vDWQ73-H`6!bt(G&O<0`QOi~!*8ui$-$}vf4vw*36!Wt~Y^f?U- zG8YSBqdeCGl4n4O)1)g95yrU%J?>!L>tN|SAmN|b!U-~HdA?CsIe*+*jsd0KZ14+x zfHTP1fF{9RpfQz~cl6MvIFLjeCj+0PEc`WK&^cmlY3V<<^+s1$cl;X2+uiLMJ?yTE6}KGXmowxe)BvS zuAJv{U41SyD zXx?M_l9Xf$Bncr9RUB1a-AK^1I^>KPJT2(tO4iAcFAwDY{NQl?4}+YJ+Eg&w@drCE zbM1ZV3S1+u0Qei|lKlX!Q(uFw%8SlpLLU2dGvm|Kp`b6}PXm}usCGz7s(1m}epMr* zIMDnw|La#IL`1|Zpn%w-$OZ(QDI;I0VnHFspt%5ryQ|vc_PM9v?cW-)^;^rMW1oLF z?79?xc_qB)8Hh8ur~;dELKm!#Rc6@LYeAp}{y~inI6&|x#|LgI zE-qZqRH_Fw(+1ggNbB9n(DNs7pjBaf%a@e51_m)kcfWxs%Dbo0QdBT~LLi1VXrMWK zeC-WuJ>=x%WXwtU+O+5C-Hx&!s@0=JGaqQk#AiO75)d7Y_B0TPHMu=8NPdL^>sJo? z51D{ZzaPZO5c1N@GNl5-py$@0MI#*xOCM;sQ{{DO=OIXXw?Qi+rl*&__`fPU7k8-h zJ&unEZCHbp+J@DvkgbMNtBF+8v&zvDYqTY%Q!YC)IH%FhL_=kgd%2vf8O@Sh5~rIQ zrQ z^Q{;Kg@sF4EY^$QJJWA|N#;QWS~>eiF|KN+$!}+UXj*r(=f=J6S{Ou=#>c~n%9;&E zf@(aos`2o_7KG(vNQ=hmSA|YQo(2sNo&=+1;FI;LPjm3ZA89ek#>e)ibsam#U$Li^89C`z&1y0O@<*a$vvz%=iH1 zOh$$=eDD4UoUF}1W+c4YL%Vz3osGnyz!&n=*4scHfAQiN>_#N-!ZQsnL0h|vzzm!g zW)!JcuEcK}tx$hg`5~$ESY2Li?M}pRuN({l+?E}-2)5g=aMQd+#If?X&>>#OQqCs) zlWjv(5qdPH<3DNaz$(7&7oY1k;%;AihOq1%@y3zRlt6p$7Yb{<`Au7cK&#Vj6p~i#Ns;Y!SV3&T4ub#msrmq`)zDI?DpJ%MK!c= zt%g-rgHq9#w2cRw8n?3oD)N+1eWnZ5f_D$&K#S(!sJ6h3k zy?3XJ%Mzkeggg1rXgKF3u~j^H;Lv$$Fy}?!CcHxrW(sjSC2^0sRI!$SfkFK4uwXBB z*aG?q@daLs=O{y?=YAm14clW(vf-PE-~C|XCW>1Utx$>MKC6(B7c=ec?bVwPliH|Xfez>t-dmFW`+ z3QaJ=5Pp2+-FiF75G+wTKZp?ks!1fmIyF8090onT$RPH;6RQEh#Q4u$@tW6zJs0&s zjF?+eqJuDPY-*|{m`xCJ{XlzeeEPJe$g3FpLCrGR>z^Y2NiDa*2@`}2SghznkLE@% zVXtlYCX4`3MLi&@%u^2MgO;){+dd>so|o0q-fsQ1Zza2_sVPlIGxl^f%lb58r|I}AM*$ogjSmG%}iQkkJ=Eh8so;RuT~_Hnwz>aEaAVO z|7;AXRv`8N`R)Jt%YT`5z!$CIydxswR%gC`YAt@!y``|IsFn!cQd8A(+~P(?xHi6( zE4)h&nM@oUty+kJ$Bq8xkiY+zm|p2ztXl+<-La(xhK5=X?ae(LQJ~|k2Nlu=jFEVg zBR)iWvXwvj1*uIhUwXJom?nvdiQ$>r_|*t8?HDt@)$TkV`UfK~6ojkIL+=&QDnk@> zQ!>f}3SKxnRB*ktwBAm^RHvYxZ#y}n{S%kNF~7@gGuW!?dKVQ(>?y$Pz|~F)Ig_@( zXBLN4TujWO`M06bv1lRcI5j0cw{R?~QL5$#HW24#$&o5rjM)x-4bSht*Zliw;C+|F zio6T%x*o}(M4%Tv-)EXCmHzhj<1!;7zgIU zkb(>}xekS06}259pRjnTaSxEO6~Y-?TRXd0+7UKetn?M=LQ^jiWMB$3^I`Cp%1Xlc zS<)#03jJs1DFZz0Va1WpsVuX^&c*uFF6#h=Nu zBMiOORwkSYhwoJvQz`AAm$RraZHn5sniS&cK^Br6@h@lRHV^49Uyf~>phcf|E5IU( z%(R`SvRo}(Veuh@Gc;1Vl-9~qcBArljkk zi_O&$*sR2k6LMX&ua%XR4Z{Ni17!zqz~6n=OuK7Q*PT8E%D%YmRzTm?I2tLCNv2Lo z0g_XiC+=-~!#H@u{ta7SLoAEj=c`CCvCCBsm!FrWcJD!R`6N5^(FN2K&BO!6g@rYwETa%n&b$h)gZEZlsgP{HI5|04Jq9CsN>0w| zEFpygU%8IlBF9Zjs!-k(Y+9*HJd*I8?<#2a|96Q`SA93t{crduFe)n@ReSaN%%wP} z>oD9*Dk`!TqJ4@)05PD1FY$f2691uYy0GGAmCAuU88j;#kYJr}9L3Q^SlMME9rm7{ zo_;WswgNlf`mvR3PXtiu>FI%ifp5z1{CfOW&1+sRgy6cmy3V38@2c5lD9y3SPO7Xf z$!><2L~;}G{$V)uuz9`Z4YXZ=I^keFkBst%Uwh*}Tq$RW{1OuOim7hF*b~G3emLI6 zp!zcvYm%8Ucpx0~bfkU2I?Ud&sYm$YoP-`ytN2xWNW!Wf>CAoJ>zz#1bRV`1O-#s( zVJjG(ah@{5dY?qiC+fS?4fDPmEHtFDt_Mg@8-pA480p9edP%?kY{^AL@;BjhiE!M7 zC}Ky$#epfL@Ub3Z-DvjNy0A6WZlCH@Pq(&pF#Kb9xEu@9($d0vyGgd9&KM2jIRgzf zs1!(!Ng{if+=ubOguLka_UiOPpm}`4WHfq8*$T{v{{Po93#NR&eN=7TfqfLbxv<=J Jm+th7`48}gMTYV5O#oZw{S<`!i6AD4* z-t)#6Tf(DaKNG)?T>f@$IkI{A_-f?S51TZQ(;Lp2Ajq~qU=ZZsdZ^Hkn-kwdzIb=x z=Y!)?4qCZqvi+vI=e>O?cuosl*y*68hE;_R{xMJX%8=q^M0c@&`(4~rQNe}sLkOZt z{pqRbW#d`Xq@{VEir|h_9VB6gC8tFPmp)xav$wXf;kaU!4vr*DKM*vnHo4m13%^r} zck(nqg?727?R!^nnsM&bPpLJ zNI^>eR`!!K%S?~8UM(!tyoq+zS(uxhno52A`0+>Bn3$OE;b9$`qyxv!Auz3i-2D9f zMo3CIrNIJ0_7jLAUWS9T!a?Udk@muzUgoj3>rSq&Z7<7+2?=a?pY#Tz$l1-UW7~)p zRQpbKwdK_GG^bw3)F~I~F3jCF4?P$i8>^-@&EsX>x^;^(Hk)y2>$R^ujIL#BmK7DD zp#CZ8uloI6}W@Io|XX zFrKP8=(3jjs`G1WUM0}@%09@Qp~{44prje zl9ns(_VF(yCNx=;KcT|{530g=6xzc!%aiOIiSBXZ6K`lDi1R_;@!|e{jp3@3Y4`5k zbEyB!$;sTp!pX&j;nDA(w9s3Aa=5CoYqWtF8$R@CTSU$H1#BP}?{Uv%{Rhki3ix9m|$wYPON>7H!veq~+%3HujG- z5M7Ab2$J~ZS_~t$>D($0Utg`!(b2svb#-;v=Rbbw5d$1_y!F$LPJbX}faj{V_Ge>K7cJ?fG*|KFIBl@5w zE&)Pb9bX?+eeD`dyT=BnTIq7+^pS1TnK(yBS6A2V{x!RTJ8o^P2ry}cXFg4-{tlw0v+IM_22qO%Nzx|nagg_9 znT706luu*OweIgB2p{W@Uy;cA0aWxvSQw?C!0^P06Z;oV!Nxd7=_XMWUMr#8dcU-} z{zZfFTbAbUxBgYhYI@id+i}an^yJW^!qU>r3l}a7JdT;hb7?}RO?jMvon;#zb@i*e zHLt#R4eGh)_H<|$EIo$r#Lj_-NA^B?^r(5LGK_NP&PRvK0`)pNIs`*uW%TA0b#fL9 z#-6m`P1>k#xIaB4H~!;$`)_O0#B>w3OxTG|kuO7@tkMEM>g(hpGHJ1j|v1cke_4__15{ZbHu1ePDiZaa}xo(zC6`i6TA=EtktZyuB@t)|Zy<1UHiTI9S9R6||dm zI+92vm0ZE}Qsczq7dc@V>5yqzPha1r%F4>KWlKv-QB|uD#6@$Vz9EPXVVWfzqPhGxuVuv1{S(UzfsY`)>C z&;@V2$8*&$ION}l{a1(m-&mes)|pig{AkHZ={lA>C!y7H+TKT=JiMky)!7|>>H78S z$4{Qjm>sTW%)jZOK%f{)mdk*=TMT{=`KAUIoQr<^pCamJt9%|E z_ehj+&}5ZrfRoX2x0k#!?VlHk7+eRXq(-Tba`Mx5S{JPa0gAl3kqXVHG9kxLoLG9Q zFF6A9j!|k^`(W3`IBy9AZ*q8eYB7hQ-6v8})AFg2|VX|FIS4UG* zJbJ#<+BlFnTUjG!r;&ZUjjrW;8D0B}_4$b>K78m99h?BAp&=oYkf%y3D?C@*K{3%P>N>eZd>94XNIdy4wv|# zK&?!%E$IWGfG^eRX9p_`jf`YxBB7pvEgPLYa;Dts^Tx);pkf(d#tMsyta^vx+r66M ztgN;8-_!BGvAKW0^)JZIu9CTcieR^W*}HcX-@mW&2vrfI3GKDheGk&Y${KdJkkM!k zgG`28z+tXLPIn(TC60jn@%7hV=R+i^!m;#w3f#$)laq1M*=n*i30yk9$IX&XPM)W{ ze*O9qtXXk;h`l;ZHeuqPAcS0-uj-?#6+gheN*_-Z$IW-U7;FiGrdOqYrVT&+uImjd ze@UTGXgVY(+Ah7OsI0X5<6s;P_oA=Q+1=g!#fukLD*_ON`6*c1W21uE>FG3(2PaR@ z9`x7``CEVzMO+bacd@NWyGZI+aQl zXVWCvAMtx2!eS(?-uoj&P^xcRlQa26FRcJ()aJb90!4dr^Q-?8OZ$Cfe_>?*3pM`h z%X48PHLR~BCA8-r^m&ZAxp{Nn13$8jlE{(<`okJkk&YXfJ^YJ|j#Q;?8Lb`>eB?EvhseM}4 zI(q9mJ!^CEG_1Ny;!zeLKzngAE9ux6#jf-p?L|<3X@E;WPj7F`3kmE|M*aT3f>4+A zewDdUDORLX=%7@GhckE^cNdb=s_loR{Fq7Zo7)8!V8zj@&hq3 zU;ZrNPRa-bMeV};eDisYKurz*$i_}_N1Dz-)<}l{@(~9hh-v8aA1S3bftmUW z4Yq)&KrS?B2@4C8pUv}ebITCAxBu<44tb@I^u)F$6ciU1XIT+~A5~YYWv*Sb#u0*> z`R?8NF>Y8a=duKaGNFpurd+UM$G1xFulucT1BHqmjq&z}zXWqn)fhlLG^hK^$a#wS z0)d!ACeIkY2WkiW>z{^?a0nk-QLal<_scR1@{+B206=QExkR>!f^EWi144H!SqvYUq}RGk}mkilx?2(nrrYJ)%%iI7JgOXDelQ{ zuK@jK8=xg$*e<;AoWRuVSzCgkQ44`#rwhl||4Dio4e5}5*ewkeDEVlbHS;i?_rQvN}L zus_Q#T>>|SWpd{&a)e4OpDK;0hi?ksxLhN>Z@1Q;pV}$Q;F!S_&u*@nxbD{yl%4+l zc#cv;Q_7ErhpTeE3uur3slj9AQ4_7N`F!;KlV+b^ASk>sNilHSlXKJS>tgwtZrQu( zYb{51eN3Eup;feKEOn3236+ZYWH4Th4w6~X)YR192^yu!-I)=|RFX%NM5C&+AcN$+ zkxM#E32pwltDsrk-7zGDt2uMI+dN0e0$MC%kYp~2kcG&qo9W={Q5YFpg9B5X*4Nip zKCs*1=pL@>sEeVHOF5o-OI~pDc2NzTX~U~AP!aC(flms$%7@ATW+sEvXtv_!5I*M< zTKVFpXFioD4nfb`=Ms6f0LAQkhmTy<+Y`BYvNI2@a<8k@KhBw&jr{Oe(2i$=Maz?4 zgU-d(En4iWEWzzxNO^#IZkZRANOGu9TbihAuNoa}A^W0(?1(>}zL8Sv=KN(XS1HU> z+K$1&9Z*{4%Yi3PK6P}=iRtrwhv49B$o6q|aPu0jNC|j{1K2FHwY9aeoSZa+RS{r_ zy&i`SSrik4U#;QF_&~C<97xHkb3hadFPXTZqRpJeVH|m)?S_lfd1*Y_i*bSmeWgwv z*1>C!2p$v{rvlG%CK9FZZVnRf0;2BG5Bk3DCK@GRrkY1rfspw@7RW`M8!YNpw3B2a-WF2E9N;Y<==qSS!JU-O7K@;<;2$t-osV?1)$TE z>z20fVI9kIy#VRc=&EJ|Dq>xGIuKnm9i0`ASs)U@ucPa{v0986<=_fo;!=)0N`^wb+NMSb}{+MmmqDhvD4mNR!x#t z2LVf@)09%0h6W}PFR1NI;&~-~aN!NW0eYsM%{!4qdDy=F+2Gxes_uqES=A$_NrYTA zrc%ynSG>tn6b;l8Ldv0}W+HqrT)`5zSf+yJJyZ#HaA$6Sj7w5*Ut;QbkEc`5uhv+1 zQ#r~{u2%8fR9Mbz^*pg-IUFRLj+q)1fhx>hbntgbzi?&G1pvk-G1`2&+u@_a8OWC@Fbs$E25yFslvZcuU>(_ ziM8(VhCg_0B-Ct_ER1dJUs)NU$h@+7Z)Ra*W}<)B&dAEz#KN4Ng@=WW>FygFoA=hd ztgP?;&j(m6tX{J|!Fc`yz6AUIb9HMJ6#Q4nzo?l)873$wVY8CrBFYX4tK+Y2lm|vX zZZTrlyx34t7ME8RSEjyavm_BRq2d%yx{L35pYD^#?!%h!yA&Tn?sAIXz!V|+dei?q z%Ds2<)l{6ZH?D@%QHL9@Pim;g@>tJz-n>yh?wtJESuM)w-hKEdxU+u%^Ar4&PJ*L~ z{Do|q9u534L;e5%KTWi>>lzA2*AjTFKjx~J%uG*DFI$O=i&ICIFa?+n0@fq@Ez)9L4xDzr2#jGL4+aDn!WLZI9(9L8u|4%9Wf&`A9Ac zoySJ)>F%GDxI2ok;^EDm9_^qI(aF~}5&M1m)W|%5$r#@?e^sTzYR<}*XNLMVyD`QT zeCA(Q{L6mN`}f0`zE(D^^qFSExBQ!tY8**(mn$`w6&DZ7Q6|kzGdX76>)Xis^oiO& zi&G80@e?%%CL?T_fL5Wf5-T3h(^GFracA84#c2<}^FC9J(_WfkTUfeWa?*VXfB9NB zS2Q#u7Z*w7e9M`?zdAhUS;3X z(BPHqejfWxCVso|rkwl_Gxg(xjUG9nvwz$hjea+um<@+8sTYSZYjRGw?8tN{@+~;j zi1}WB^7aqiVCl*JT0mJ@*=$8w8CQ+-fpKq&$iL3ma5!6bm&5lhD@_5USSgmX%?=I@ z+)4OUf(Z*r&Osw3ua(lou^$_@)_G#$wnj3Nf(;f4mMDCA`u*MLev;6}CxQoyLj_cG z?U65rStCAudj5Exq`tj)syPtL-N##aV`BcaJRjAVnvt5?Z75)c*RsN9i7=ka;@h)e zO2h7iqx_*S8SSffe0X;_|NZ{@Vs*I4D^Ig*d!zQ^cbY^1#zkCbvQRP{PKoIdOY`U3 z4bP}t8wc|=QHN`sxlpVZx@ow%hquV5T0gr@|@|S19is{b@P)L~6guzQj;Jw6*s-JaV2_J3G9c?z?qtaa0x4`#3HhK((w!Ky+U$*YmGg?ld<1XNqe241m zi|FQth6Z}vKLP>*8#r$*Z5ia^Ip5_jP*PG3ukB;$2<2zB;}A1!u9ox^!@}PV=C)C} zpVoiGyF;i}0XO?=V6vzixq7(Vhnhdk{p9b zwW)e9a5A5aWH&Moe#h+_Hvy_KPzwX(_Iuv6a)`h>=gj_=AI zRbmReJJ>fn9lJS=+KJ3K@37YF61us$AqPXwYx9Y<_B5p1`e6})}H&SKK zDs*wmzV^5D3!Fgp;YsEWrm8mt^x`(tT&zm&$6Y?gPejVtSC2-e+V{lu}V1Q$|p6nM{O#T$d8-{@Dbo!(_a|`D+DNm%L6$SJ!^JVkr2jB!8L;nUgm2R{mziHVAihuQ_R%C>#&)E zsa9pbVV6*1(*Ljn?2Fg+*rr8C&|B%aGcR_o95uJ_THOa% zGfF+*{HH(Bqn4Zfkh^jz1)S8tyh|Vmye4K)ZhhOE@`3o)twrvI!>w6WuPb=D5Ct^V zON>k7xGc;Q1)MntZNW5+=Q^T$+LHvT1`2eAa$ff&sSaeTP!zn((->HWi^@HKsMz~< z@@LKL(ce zZB(;PTes{Y*WRjmBM)-7i^8~6sI@_%-*@W&x{eC{<>b#*(vir`+@#BJoj)sX zS>tD7{3(OFJ`d>wIXu_!^Rok8sYr&Vg4*+T>mGpx?gF?={(~`V=>+c3f}h9!sOVQ3 z$uRx={qKu?yq2p~5!M`dXL64RiL=MlKHlE)5Pb4=YNURcjp!%dAt7n*`|^y!HHtE- z>k6N}=zBIIIuw;`>h9+%Z)a9kUOQ&W=)n)}vpsUj;*=Ni#KtPqlu!#HOU&_4M?N;kC`q=>PW z66HYgP+0;E&m-)Bo0b0SCp%o&-839YP{AmvMZk(mru+v8aGN8qleZwj3LfG?I1Ik4 zl!cZ{^H7-sD+bQxjhmHfZtEEBF<$qC?YWYQ6kP z#gCAtHCadqf_#v{y?ggo|CV-GzSe{^2FL@)d4JV1p~UsX4iZx&gNl_g53DY%Jy)kD zj%(5>{CNtEr7wd=_!(_^da{b=v)p{$+V0Q?&&Yd%DFxcW&st;IX(7;m1tl9M;o|qK4V;vFnV&K+Ge@hv`Mrj{E4oebn{#|VJ0*8cY@jI0?U_3=qcXxM< z?{7qum5Bn$z8h};-Alh`7oP;1NLUs65Z&^`QZf+xx@zs|Hm;zcV9>(Z$pKahcy?zz zSFniJ6^NC1m9{I*k&G`L)=Gzls~xR#tIA1Ob)?~%xAyj$`uoEHNId+Th$N!0?W3ck zzBCD3h)fW-zL^^uSQUK^Fxj@;?r-v@54TKn%bKXk&|dRG>5e;tPifYZTu{U)4e znQw>kDUjs-W{$?CVGvz@`O7{_J{#vHRFjN~V%3$+QOzqHG5c;YnFLOP!^+AU6sRMm zk;Wanf%&_3^K(weXNh_#IH#~g$ZNc!DlI`25Jj%*=;$PHqq0&a;0qs{Q)p=#k`v{w zHyL}S+*Pam<5D(4c=iDH|Dr&rhEBbhdZ|An1Cs6^2py^?{^FMEnqg!*+ zuYR7MQWhPT4`eB|Feqn+*g^`g(y4MeDxTfinr+Fuf=8wXr~0GVxa%#4#l#q|^M3B^ z9ugV>u6^D+7j!*VQ^`@a^yUbWmFv*E(j0WeL6i&N9V+#-H{ z{#?NE&PhA1wPj$bxy)*Xb=$kU-%)a)1d8f14%j;$%DJDXx2;a1MvyZ|ZSwA*gR;yz zn1Hdv^9~o~DKQ~hjdT3YY~>Z%L?#yP%EtMw_@%xtSg^sLD|=9^py-v2 znhY1-i)PW*2XjJlx%G2N5%sJ#$f!O`DMY~ew7b@gV&LuzdT8T`CtOee zH~7ldP!4X(ptp0VlkZx;{NDIch|B@p+7<^gt9fE4#E6V2gxDFdmR018X>zJ?$m zIJkp`i8EHpW2Xg+CSg=YwORWc$*lR~{qe3z-6`r)Zz?)~*Mpit=Z%^cB*OwI-rU|! zgG<^vFTFt!`sWn@z99L%^{S1>w#$F2M2YLtSXui}*!jY~$Zaoc+wvXUDr%2t`%Ed& zS~e*viAvZZEdaUuCi|LYG^>O8b7aF zY2i>&PZh-k5TTBg2wia;N3+2~!+?L$3nKaK&8-%?yKc(yi^M)Qf|C2H(AjRdL4!FQ z(>O#FF~E^UOaXv>*i3$>b6;feKPJrYQkQkQU#^(T&y(cLvJ?AICYYiH8`ttrZbt{$K9zp}cmG{#`Vz(I zV7&{9=8Y;B!`X5%<(b!JlsXQj?;@3r1c@+n_&7|^a#Tf9MT>$-SG>Z)- z_t(b*f`jqVuUwmoeVvs0G>{Af1B30|-zRm_LwV{YA6qD$KO?*W9HA0?9E^CqTo$nS zEnXWsz_4lhP5xR{c7b+le`(5-AV(M3uBiGG(Tn=v5K}t1?XQlQ{QXX^UTl~O750Gu zm(n-s!;_QQm6Z;_NRkWPiS)WZ`T6Wt@46oEV&|&>ObCJsYjc0p0=+jwj_RRw%==0C zy&fU?<7fR<47nQGtuWoIo8DD6T^_e zB!d9OPwd7XUrhSb>GoLu6L*_d@EbaCDSKIjKX*j4-XtOtmzTc*_hV}dC@SolOd{_< zQFyBdD*7$h2)dYxIL0ZT^&KB>G4ZH`bjTs}Qm(*@ZMQ-~ssnI;1ofB0b{nm>b`Y>R z>~OW;UKZ$}TqEZWd1TPc&!&u;tAmGE5N9G>@WVm`M~wxzwP2`K4Dwk-03KvXhCl49 zvbR8iT-Jz`hz0VPg>TwbR13*a3WD0o><8AqJ7@!tAZ!9_ph$hYIaQC1qvC#sd1Rk| z_rWXi2sbkG@w23{uYdI-(T4tYpf4UMi&M|t5_02*fQ_lw8glP583)4zc*MN)o8Z_h z(nDWetDVIvHL`J4`zV^k#Kg3<{J1rDH?lb2k`PEv{5+h&1>Od~4vWgAjyBmPEJdD} z(bzuzTu6%$zo@`|>%x9>wn33A;)3ec2EX-PMxj{6X9AzL5}LG_<~ zQE}=KGA?s+bgb(bdW*fOfX?sNUtB*q5j$hVMJasyr}2xPNXAgCnxb|g8UlEQt2v3I zA|4=LJE;j#$gMeuq9aAb3*{E4*{ud&eD}=yz}Wt^&K3;Do*;?@b^Wv#k@fAsJV7K5 zfog!8>uyv8?YqC<$+8FuB%1|KR@txMQ(mjvoNhqK5UOQf-|HV1y6^g1qB;Lqb>K8x zY-G5pn++smb#?V_a1oT<_fH@Y-F|F%73IOx&w3Ck@m=#qN%Ne4n4!{}WdtghUEW7n zcc#J@^3>%o!Gccd^0qq<54)RcS&tRe0(rzWeI-u= zb0GgPG*&+M_t)vU=tKqMFvUw=6XWD?Hkd->?Vn7AAdfvd<4%w3o#=JIoDlU_E!$o4 zuwi%03cipDIDI!@*i<;(!b&(lr<+)<+uj8HM|BjJACgU45CBlb8V}epf(K7g=4I;^ z_i=*XHeY*VpVQ>&Tfj<0KNGR?@IREJ;3oX4I1Xk=@5>x)m8nHFS*5IMU4Uk9}h&A_kZ`IS$(bUO)B`i7Zn@Uf3Y;k(B{jc zzx=!ae7-kT><9`cloEWsTDP-=V+aGnLyHnC7C*6L+4=U4B_%K6@r?3rt zk~lLhuP~bF(xHU&+yDJyeMnpNURdmag-{;K#EAo{PCVxsDriWPn6fv;z4Nyey(eNE zTk3KZlBU z{<@E@Tag;M0A9>5(!6Jv#I~h%lu;kx{D-m$SL;6CW?uvnG0koM^X<*YLR%Q_BHyHY zbJf$_bQC2=7#krR{0mi!l7Jin5dreFA7ysFwinHd6xZE1D*fL=I84*rj1~JnMS?lR z7c&J+)Ht&{ZW{ttjo~mQN#wJa-R;pX#z@PbOpjc6TnIKxef;_%@nwC(1y>^Ayl=St zCkwb%Hpr{Iw#yM1$)?{>?-WLv?dQmUr*m+oJzjW7EQ9F}gz)XEaakxV$y47#6)s7b zjpBBM>2^lU>)6STr6{tIJ!;Yjl~7}#xNkNTG_z2|j8#~hBzxQc>xx0eJB)H`8GnEV>`(I#MZD+6djSaY($E2ecJm z==W=XfLb`~bC>ZKVD5wDOKp}EqkR}Wd~okEU2`(3DfN*V{V_E+SL{R>{xlbiM3Dfh zUVy7=P?ACA$)x$?voXuq6t`2KlTP>6abV!Q9z)_4j6lR|)5#PR6cB&|06O%c3>g9q zegoTkcJO}luFdl*47n;i9VhJe2ul+gzf0$(CjN9?%F?TrKRL;^4GsH!qu| zIthE4hs6I`j2^NW^YJ*y^r4*ZG*t66BAEajdt%<8ypFyzMwa)s7sYDc=AD9{^aG@2 zMXzjVNR1#h`0{j_coL{emxl^AmWw@NBvwp5r7v|g!CsTEU?3(QN<VjPtl zC2w5cf6(mr$kP=2`#qnL&hOGFsWIU=Q()x?A7iuhyU1zp?ebvW%5t&((T33Gj#q-# zzY3+5P7$t{|M%J7g0i~$Xg(f!0*b2=sG1E)vr*=|ygpq$tiAtY>$AT%4snW$L>a@rH7%x{q_QDGMKNua#f`?Y&wpnO2C+`@XG@KPKp@T%gFG5|M_62kFRfkt~xt> z@Wsb#x7Dib-W6X{LHY3E{lBZ#5lbkJK^q^Qm`vrBX=$s5DIm#6viVm-0|NAb<+b+C zhSI*WGS}IkGLKCCcra~`YXWF&t(WqI{g>DKn3#m*Y5zBwk#fri5akWQqYjUcktcZV zud5bZVNKf(n3{q`FtWhX^tMW3M zn6^($tRl>Gc!FCzlpFvvsXYf2MS5f(-P*!&94se1pfX+8_%1kgri zoNv^p*<#(!u&b*(j~Teq36NeOX{F`t6~rFBvytXoro2%}6O)E}ZEs#*_TSQb?ruZG zbE0HLa8Z__i}J((UmSw*`3o?-t(ZrgS%dX*edMyv6%HJCzj+DNxqKw%VmLZGU3Xss032n)AUr4b=D;SFU`klqbH8t?Oz;d0=Wq zj)vZKb1&b&X{o;5xa5(|qP$cDoe1_1pMx_T zoov)5Y6IMOo>t|sbsxyQ*MNSY?H*lMC!FLse;ZE8#&qb{NJ$7Q)gNB_9D9}0xAM6$ zrnoPR6DV_$Iso!h^S`!m9-GA*$*%ji4Vpi{`kgKrWR0|Kfgoywz&irPITYaEz!s@4vSW~2OJ}Cu=d`Fo&bWL_*RdQabTq{R)WSp1*WF*2PXB-8>;i2`7ErG zja<&$u8qr)FLmxgr?>X}7}sOc?IdvH=SdI%IF$FhiwfO9EyGz-Y_!44pm8t*?WWH= zanQ^0_V#W(Mj}e&sF(_X5o{bBsnS%O&NN$(IF8h*LCr5JU2zpMnNn9XCW*NnHuYe| z4$D~?z-Ik2F4=0MP3{E`Mu8Xnr$tl43i}HhT7TlS`{wEAThptG&~7GNg>F9N251SQ z;t*?K<6Ff?XkoAOs035%{{;H38N7qdm^yapu2da#!xq85*fMmcM1ObnMgcZCv zwVv-uzUUnyhw=y)&9Ji>7ynKkJ zcXsXh7=YFO0jNOs@R-@Jl2>dUTIL zB}JKjh$QMWkAND$Jik;i-`_RP_T9-sa?mPrJXtHd&1n`hoAAGObl9PYet)?sd}eO$ zTU1n3*Qo@hL+?vmy>=}}C9qyHJr!Fqi9FU< z;F0s=6;^)|W+^Zhnio+vw(63`ZG>;e$#6(Ne(A6aoiB~PXYjPYsvYlQ%~qWXL3a`B z;K>fo&O1PKDL@|;ntx*q$|9X_yV4xzfpRgwolW>_NeRKz^dnhH8HnM4Mk7dG z1sc_G3hCD=JS}QDxXx|ODXtJl$CC2eyf@LN|8N5yD8_fr0e3;q$;C3PsQ zaEgBF^%MCN4vrPsxkO^fvS#+v#0C&{9NIu&UPR0qe+G;y8nad2A3Y{w#wl&bYT%lT zA^lUupmQ15&DWp}4a)}}5!o;2<$m+E>rF@W3rD8rqVGjojL$M%qJ}ct)!|1jE-u`5 zt1%ChiCMIU;hQ_D-0Kb|<8Rl>QZQ$_n##%t49?0R(0V2c5Wq(eh zh#Nnva=byo>^Z~1x-NXY+neSCkyeBVZmw~ST)-&;yu<4B&{8UzMFwsT=tC=8brxbW z99)u^mLifouD2LGR^{I^iJl_|G}c~wasC1t<2-Osa{OBuA|fK@RM{v|tiCxfQ^m0} z6*zu<*TH)CDqI+WVKbaa$Emue2Dt}_Ak^@2aQR;FKio1_jf1i8s4P0(XqYKa@xXL{ zT~^|n+*bcSJx~_d`=f+`iHRf@xMil({X46FF-?98w*)mlDSq4EOdjEYlyRZT8=&xM z9vzJbVo>3m^ldbB^tNQ7+MEt6o=cI|l<-dVE3wuMTU1UnHmoOjF?#-~fFrX3|FFOA zMwo1*JqvkxVYyhVdy?vS_k&V~e$d)5YVFx1VN#&KC#kM?v61#mJ)BFXC~I)K!FOwG z>mE0EOtDc%G4k+y7nBUh!*Lww9saJTGZKYeH5_=Eec8TgNI@bQX^yYb!@u)cbby&N z{&rR+yD}=j!CCjtsT77uQO%L+Z_;QSWb@CncNUV}XV%ta-oIyq0!b;eva36>DC5F> zh>~5SH0XGhKZX%IM@j&>K57*tL4vg+QaRYbFPx&PlWf83>7z z^$QaH2Oz2!dXg6^7Ls5^zL1Wtzodx4sw31;N_no4tt|PsQV|ycqmobp)if=yq`}+3$0h3Hz`H$uZX~Y;6b0Oa+f(l{_{@nV7 z%Sxv#ApC}|`Xt|Rtcojv$7FVBOT;D0o*c#KX{l1Clla>k3=lJ2&F` zVP$z15y*O={kyzetmthzl=2LJ$Ds~|PWOBeS4XF}@YR?FbfzW; zoX%1aYVvt85F9LT|740lg#e*aAyXG$dhJr4$X~5{~t=dzx@Q1N2{TX84q|0i!U3sCw z?}JmH>>d~H<<%9J&7kr`aqrXR1*jiEdpT3PiW9!30UQQelHoko#$cHG;u0c5`A|OO zsLGejzhl*@y7J&zTnm-kRrO+zvNFbY>C#JZ-PQ~}s*PJ&+gn=-nNC-4(*FAC3Y8n1 z+bIQW5EcH#8I~MBDg|Ft_Qku{Wa5R<>j@7)NZ2vC>fuw(kyP6b?#TYZ`g?s zPj`%kge8eC1F|9@O=f6dPD6nSm55mC^1VDQ>^oedl{Rb!Po)X=lMc?b9@IdJ&* zdffH<3ZQ3R-U*q7JT)804p0w&1kw{o1EPg?;>G?Je#*xfNlwc_H=llHdq+}Tv!T|- z()|rFdKLmGc!6WU#=}EuHkY%#AsiKalTAHtXObkB$HuzCzCst?jys*ReP1?iwG+O+ zjOWy45K*6HLc#V!bl}0^xikA7*1Yrau6@F0?M3VaF5aDA9jvsDuIo=PPfZ!hbpXn< z&?)|trx^`K9ez*j3f$9u32|X?Fv|>C`O;+y+SLg>H#g&m<#4&MYC-!;epu2Ns4gh5 zo9|dmZEO_C?_F&U^6|pDCr7z+$g)vu@w4n5u2IKBlXvTv+;bSB7R}PF6@2yT)t{V~ z_y{94$zegWwRbT2jeB`E8tQD#%Z{ULpUy1oJ(5jW+_+jCD z?Y6XYc9r?AX3gK+g7$>lf`@f99F>fh&pZJkNgDL}kY_R#9;oK3A+lg#iv0H{-Fs_m z9Z#oy<+J}#(27emd1sxUZ43`RC5*oe2mXO~xPS-%?uIx!!Ej2r+<~Ay(hC)RhWpjD zD0Kf`<~t|c{ST9vU=Bpk6Z5f{PoJ(r&D0KQ2ZWJ%P#A2%`i^$G{!Dhp8f!Z-y?SMQ z3%8RjXLTgJ`lQUALosGVj>DS3!2*oOTWM3sK~zGd02h+!*Q(UM8L^aHvS5& z9K_#wYDue0bA1Bj!&hi5gYfw`P-q~SNt2(WPIf_i79?EnX-qX&1?5on=Cp5$>^{q7 zsFf`;?ji#s>?zQU%o^Y2Gp*8u&OLer*@J0iJk3UCxR(N0JKOhZlRU0dgcb8w1R_Vk zUkrxBC#upB#f+4IzjlwW8pv0ew94gE+x?8YJgM9~nAG*Q|8YC1euzb@cB9a7K#k*+*(Rg;c=^63 zU_BsS8n5I4BK#$+aZ2y7_JTe5S&;XA30UKyWj_s(-tM9^HLE1U<*VdX^R*-cNSF~V z)4NgCR0e|GHC*7^16W0Sk`A~{8n1r(ghEA?sUtw&5zc)HCOq?i>;12ys>*H+5tjhB z48)MiNI8LOE($Aae+fgk?t~YXi~(cs8PY`{9XKMuxfvO`9ij0F51CG%w!tf5Wq@N|a6HeFVJ=pKS5Xl>)X`o{s#s42In< z!8d)cJ(?UX^~y+=_5V#xi8#~051^qD2e&PP_Q29_9}sa)FJ-xlCUhCI3*?w_I_$_~ zY93J1nvWWDUYCx({t;iUop26yHv?>L-E{hw57dm5&;)^~9{b4Pqo~ULSpM5?M@_4V z{FXBUvceYf#^{F z0rw*Y9B^L#^+~Gjd6{A|8n<0qV2Rfs+plW@1>kL@jh#tC&* zArEE3{?Ot-gM82!2%><<^|Ha0Yq!`uKovo+O!LA0B5(x#{TO#^;)x(_Fqx5^k=vHU zo8Q!u%i+FAV4C^%P%cRt`eG=zxZmG}i&M#zLW?pY`!-pPJ&-M+XS{J}8N=DdPbomQ zdlJ5iz?1S+L=3PpC~yu^4E@fSM>r~yhD(aW#hAY{xNrwIPCB4nD=r>`sWy;9tKzqP z6*=p%PS6D`jaPA@0F^P{FDC@=xgX6UGWm0U>*5^i>x;>Se-NrLaXV)h`Os)akaTGI zV74VVV^`5-HQ{d;WcCJffuYalCIl}m#=9=sD+F3 zGt|Q=FZ@Gj?IO>VP5w&Yncw<+JA`H2Rd%8j_viWF)pzVxhKdoimqSD|R{#;TcxXCz z;K8^+u+X_$Dg(BUZ+w!9-p|_ozpk=Bm~Qb8^P5jnwns?r9ydB7?^3LQ8I{NHr-V^} zl5d6y4tUjYMsi$D_|6=A@P_G%>Q$V_Vj6wU=u-Yja0&AVh4kxdm8CJS4>zZAR9H3_ zk{_A&(8_wZP*(M{*;S3`-R^XQ(T0akt}|Ll+{^j{Qj7K}O(iL4@lS!s+Qw31y`^|6 z(O$a6o7Z-#i;HUWijdH730AS8AGTUp8WN1sMZY`^)CWBUipy@_vuk%aJDZ3rGAgWJ zwOntFXfylaGFksClg^sL_RV+#92*Ns?QSUaMz#RtdSasUMcOMa_BqL9TlLESSd zk*yhghlXm$%^_W5_jpZv3#s-miR2REilJ~)!;g4vPckE^YtGN6w~aF8QIB^W>)N<1 znwgX@rqEmCIEp&L#nYf;5UQ--_=y0zrNFiMFp&POBqm|ye3xn5?fnFwtT~347zq3O z5}j#Gl0^tr5QZZ@xrJ4zFAg7T-@ch>K87XMIf~nq&ahLe%#Xj!+@h)wM*6#&43bhaPngL-v+8&Ie z1*Jg6m#WJ0=8f8h;iCDi2>LBG2HSOVmn|Phek()%`D-*4FCsWpGvt!NB{~1KM+N`{ zRLs}nL1a}eD}C;_5p65-cQABtetxpiNC!|{1zrIx6m)7})v5Ax`ke72`OU`cCl9&a z+z94!-Nqg(M=P_}4z z*aEhEmj4pOvXF5GFU}?})IBiOZqmxy*h=cF4`wMvMRMdAeK3+qBJbfUHGMq+V;5RINLF(WH*8#-CE#) zxd&`)Y`;ASOXi?;01c4~cnpd(FnS;js48bbT^zpy3IeIfnGxpcI#jjtUjCq;59Adw z;rtMhDS#z~N*j}(NAq_kTo1GnaT@Fp6`AKifjOgqJy5!B^XOFdFZO)_a=B_Y2XxEb zESlof>M#ok>>wgaML{AW^d7XeB2S7(?$TY2V&UjWKRxTJ+=*qc?_i`PJ)FGgeCjC^ zAGfCx_Llo>A0&+3Ahc-B)Wog^4H`N3dk-LC`+3k6qa>Iv_!14}g zEg)w6EVn%v23g`XKO$71295UeG3PBnjWHW4f9uJhk zXk}8{eNN9()k~_xh+}g9ZCrTZs*#A>H*O3QBssM&arm18Z(4J_oC8W}?!h7;is*brL|s1|Wt(0rT{-|32>5F>Gd>-d?=! zDhpA)+WBuWrroN??$UGvexi07HM%UmDm*a@Ax$5OFNBo@rW8r1PP>b!9=^U<0Jsn# z5-5G6K!)F+ugwQS{^t-fYj3q zzR7Z~ofy1=gVSO{`pQ}`^?gL4xjr5b!cRmA0)^k=SVal&YR>ib!44DIDuwn1CN^L3 zij|o0J1QqrjJJsh2}J=;R5`!5s_94Ram9UP4UQk7j7|Kp++_BKo#j`URpLWC;k| zeLK)TU?fR?yzf(c?kVb{H<%l{mKs*8sTrB^;v8Jmn#`a2noBO*hP6opYRn89O*#t&%o z)T$jGLFM({R-Mon2&(T?byM|QE3f9>@6vU~yaGBZ(c=}1 zqAdmBSz9}*vEJB=^IhlP9e-koIT%NqVkLAr#$6Z>AOH734|ouSdQ2MMuObgJYd!@j zhL(2JSVKngFA!iyF%=qOgTBOrYhw~WfF!o1&mO~n6zL*M8X}4n=pBLU0dyooo`q&V zymYKVPAC?YmW?@+(w+aqWrz#v?22!|W#z6Bl$<~oOsD`;G%#?36tC%$;UB@Zddn>h zUPjX#+#p2D(}>NgQ_Z7H6Z?fPRQI=Z{(4=okZc4T6N2R=sgW1I8;wGwGVo%gpaaiF z77aFTJnpzP!)E&yZ74xgRhqOfh+?{p_U0FH$@$CoBGWsFY6cib*i{rXp?=GkjnSII z)?oi7`3%nc7&=q&7M;Ixcb5$237ggsAjGW>Rq+2Nw)rOr;GohTyx{Z(!%NvI%+-A; zeUb#a=0D6tAumjz`@aZptf)dmjRgiuO^thMf#LcT0K%Y?eUTq#k5FHXg&}4bjuh)q zV?b>z8O=g*etwQ98S+_PQ0g^a9WL#VK9i8ceE8fjz2fE#y{S5kAFreTAY@J>HuQMj zj1<#A=6wjlEJR`hGYp_qa`d3!)7OycO2C!~Xx<6@uhO{CnTwnU&2byb13%TA^lJ!Q z3~CGc zlYXXPX_}PJA`FQhI+Q6eUkIWtAQF7CiRy|w1wArkMV5ZES?cpoE+PZf_$HPUn#uiyDM$rIuGyy9G(j z2q+uF&X`b`8HKht^dP7ye>KRM`t-_g?)jji6K>8==`AGDW+B(|91Z&9ed&@n0a=M7 zt?pVk0qEm^l!{Oe>b=_Yx4ie6)KHSJW6S8}>nau`v(uq<5$b@0i~9u%DL9T-4Oiee z3_D0}adq>bFEi4qv3(%TRGd3cZEHY>@yi9jQA7#!od5qO>mig|=n<>3o3}hz|Hdxr z>Ek2v@tS2VNsZ=?H#UCXD`mx-h~k954zx5dJ(K!C`Q2E#LMj8M-?|c@QU0?hAo~>4 zYBcx#@osuiq2!&+`Du|ZtJW=uP!DAi6id>zkgi!paBr_X8K+q*%vu2z!48wR|9}X# zw^a{AQTkT*5idlr#w0J~(X5!(Klcl-fgA|$!!XwYavD^a{grjH`@cH=h zcZvu)OvAQ@(cl8VHd8vJ0|yp{a&i#Ac7g(Q;r1NW%za#vy2ZZvtpuLU<(&DVr_40h z5mU5;35qMg8`H9}A;a{AjyuLWf#+B%ir(>D(|Kjm0X~(ssjqu{%UkUyV@cLffN|Wf zBdEX!HZPP9$;qHkKp52jAsGt8aM}Yp4eV5574 zE^f#aG-@x^LQ_o><`89px*aJpz=AWQjM|LSH@QhbD5`Y7;IWI#*5f=8j-kq9x1LHVovY_o{4he=kUO_oVf$lVg-`opdH zEl*7OqO^X~h(Aczb7t^=s*U~#eWU-)S{rlc0Og@9unAIAm}uxSnsy$+f}ZnTi5kh} zSa86WnlP#PCto`rnp>d&!wO+|LdRuG0@jN^eQf(?00%TbcrMzN)SGA^;0KtCTfG-$ za+P8G214$eFTqsCpKO%?_-L+OPr~iNf?8*5qfiXwM#=*hS;YN@~(H>7OM(y__>Tk;wo zR36AL8Elg!KJRloM1}r9aE7c;7|qSic`vL~3EX~}?*`9qakDABB|1O|`K-S%fC&`G z6-15%Vh*#(pNY`Os(|>9@v=Y^l!FX~wx;Y9w=76mVgyjcM5p$K48EaBB#1*GRm=+@ zWkt$QWLz!@dYC_5`H+rlPDj`?J@w7?s`sn6BIpQ8`mCzGed8a#d=?yck3~r6c{EFr z6fxIV4%Pc%4C9p9NR_6imm;ddQ1~WvB)ho-mxT4>>d5TT(+=o}Jqjo;HuADvxof{J zo~JSv4xX0IdvSI^_4DV?)zPwGsH_NX-Fgll189Oj&HdbO#M1cieWn%0glR8azuWIt!Hp8kdD;_5n5>t6dnIg(xp0gMm)KR?kN)T+I%l3f>a58DCM z5e-xI^IMI6@;R#d5p-yXc2zO-|HyxUv7`Bj@0;xYk({T~CMEhM|75vEvidk>4R_A7 z;6_G8L`o}3gD62DD-A=(73!$FbabCGpz;|o^1F$FS&zi8Ty@Z=@J~AI=Pt?F&R$V2 zFn^k3gOx)47+I-5T*&_s(x?^Q1*HT3R^v^`>IqXbO);n$-HA|KIsDw3mw7XMLpI5q zHrYFp@#e6I^1tcJ^?rx-0(pED2M1X%6Kj6wmO``J>5}N@ z=P4Htsj-nRtz!DrlpZ3SfCjk_E~#p!lo7~8e!6zeDtwvpA)PsDCT7&PGf3jZtFF13 z${Xs8$p6y0`%;&ILm{G9^ahm;%-YW(ulv;i(Yo_-7KjSnFJOZU$*Hc+JLT@~i@$05 z-V#-if_pyqhpFD%h|a;~kPR94rK5YE$`E<`F^1bo*ORBZg>}2TF7V4Co%(x)Y!0({ zx7dL_B=QSD4CofnDu{mJza=LU^4r2_z<{{>=DXP3svS=UUdpEk^H12!el*E>zt03# ztsX+W@$}{W?yr!dB?*8)_kj*Q2q-PRvq9!kRmo(TX1$0p;e_!>aLJgTuX- zt>G=Js4>i%X@m4uLdXdlZh*`V1UT04b0z+ytlf|;h_V%LcX$H&Jaweg95h=aWu3kyWtfk*;jEDLZcWX2i8@Q3x^WI_Z5n6zIInuwK|X8>McZ3#Ao*z1nG#P$R}I**W{#Gn#=1< zG!PVh)*p}VGUoM#+_=#&5%7NqgaJFIqi@ zm>4rpqyFN2VfU|i0y1czHUEFn;)IFIfAt?xKGNamPkByYodmTj)J7fAFjysXvlnZE zlWs=iZP{ID8B=7#Xi5W+<6RKQ+u+wDAb^X*II{Q0<}(c&)i}24A2s0*9&|k)&~=Y( z+}j%hZi!HtVfzh|c_i1teUakgX5#3p*^o9=N)i~DF~zHhBZu*V2ZJI70}E@XlfCB#C}d!k6^@BIZ1F=z?ZwA5 ziRn>`t_VGwg*`OP&fR2#bezuS5A4PXXegMfJh%IE>4 zLikOY@=7L2>L?@gdE9H>&>38FBh(f6?VZs%O zDaaReM85_(FOEvqSfd}CY1C~84FLP-a_*<7%o-l!*D3gZd7w%vW_)6Yi+i5N=dgJf z5eD(u2fa>qjRN_w)#L`rBgrjJ^UrM(1})77Q%k=vtzmq1^LT~LwQ?OLf(W@l!h!#% z+Q$kesDwMBjHj}!UoTExpjuqT=VBZRri46R--8bx5T+rKAY+; zE)n=0%btPUpUt@o+`vFKl(*#Qa-5o-%X_Csuhz8=*Fmw~HHMlw#Y`Uqv5?vyNG~PO z)&PYpl;nQy2!rt;Hffi@=cnMi@>OcwV5)6$a<$oIq4@(PWuZQ11bw*joIf=V0_iG2 z1Vo{$tBX9V<1md0&$b%`3xIf!nn0bzW({Z39e<=G{zHaV#X2{9&8|*iZaM4w*{5ND z7{X${H%o~pEW?ivS$|fpfgi{LWjRoWcrN?5nY7*wIsoN>42Llk z3lJk$AuqCz{&1-MU3ce=?C!|If=O? zFwH&zi2v5u{#8_m9(COgPkcd-i5i2T@sVMM<0Efu`_*Qqux%h9TE*a3uF62j1jH(i zin(Fq)qX36cN+a7(_1YYmimV2l6uf7TmaeCe@3Kx7`2AUEq+rgtdL0JAU=R`0fl%k(FRnakM{kHz2whb}>5eL#K{eQLg=3za)>)wAN6iOwL)K?M`qEZ@3 zNpl)hqPdUef#y_1nvf#RDk}9MO*CjyN@)<9XPW0h^ZdMTd;Rv_&tA{|?{^$)9qU;5 z+~aj!_j#S?`~5l**#;ew-%Usv5Uw)h?V`8y`fC-?fatpUz1dUAkVvE~wx8Ruopo!p za7Rz+^gwZW`F--ky}w6NjU<`EcJ__!uqiMpJf<$o9h_8bK0n?;B!eN0C>QR8O%Q{j z95O3nCj}-@oZo{x(!m9oWk2Z2x}K{JXRO;VLDfLKjJt3!7|u@GCTY@%ugKRsf~9B-O%{jB~eN z{0Ys{K88bDpfNlo)Z<8n=jn=I%|nVU@6Ewms8?VKwTx=oC+5lzMvBvIrlYEyrz&>` z3EiIWa3XebBTcEqs^QHo$Y<~UXPiSyz z+q$L+LyZdGy8*JC#uZPBkN)2x^`lKpLCbBqw_f93mXc}ldU&0W~ zoa?J}iqhBSb>+7oq_}*UWNNXxla)L7od27hkOgc`+~0I z0Mz!V^xNW#pfw@lG|sv>G36?Q?2FDe>}5I2w<{Wi>DT|HFH4N8J2zLDvVP2jJ>L^}HzdxY?{ z)n$UT25Ia?uyK;E<(>wSECW@#piMM1G~JH`JO6?29QqQ%Y=@h>IZGaTY&*q~Kk20{ z-siI1{-v)faiZi~G|Arlw%ShMy*l=_3k=i+-$#PYOj z#>d89no9>CrUSi8lQ~EQD-4l&K=RSNAjJ16Xbc3!5y&xFBtoX9r`3{f@?nD?suw{T z5^;*4KjyP>i$apHdu#l=n#j0oXG0sfgX_B^#okkA`lea6ohiT6fCS9lqM{ra3 z_qlm9-O?o+9`B!Qwcx^L&&XB%sJdS%zPqJ0RzSp{a!FX|KsuY8o<4~2iLf*n`ThRQ z5_f_Q{%&-a{!$sDl9{M|dv^HEWQUW=`y~0{U9!|j*S0q!=h?GW1FORggqN7){gVc! zo$dC@rgdD2Zj=j8UZAwM5hCS8h&^!1Z+S7N-!LPgt{b> z+A!+KGGy=!{@6&l@qqm9%x#LD`JX;ma9LTkQ0nUPx@EPzyC~I-glp-ew|Ye{P>O~P z<~&mO+8^zcape(0r%0_fLqBx{7otVBIE<8Z79_ghX{fw@{6?Nh){b~irAR27!Y>&V z6vS`Q_z)$4BkH+vkMO>Puj%ONiF2QE`J{eQ^OOsVeV zQPcTwDgJ6c^)zy2<)4n1smM%j-62qS=luC6h?4QkDdLw$K@1|8oiAU$G;JU=ZDT&6 zo^&h+ zb9U%;;-QdG=C{{KJ;^8YK7WtvFFSBSzf<&keVT9Gpv~1Fb;87(KijC&YdsYP)6^-sl~2z7QdanBSIb9dExU%^kwME@EE6xl-r&I?jkppc0A4ZPuadC7b? zs`uZCi~F8fX(zt=?##;K;ogc37LA_>_mEVOI}NU}4GvlCQ8}q}{vS}SHLbii^au6JXiWP)u&zgb znEJ?On7HaV4z1s{>o0tDzIT1%I9gxgz0ItvPz*)Dch~byLoS7PkY#`L_6+@u0cC*I z@u`Oo?<6YzjQi-;G$ue{-y~vlKCtmEoLI2%nmn z=iA2};9G^YDV_pPJQ4a&3UGn~{1^{&tLKKtY+juH*-W~_G~z7Gk$y)ag7#IEWQcE- znZbigrv*_+$Ghst%f@PuA>DjrNt*qW|MW?#ZFDzJgg-o9^1MF5uVO!LDL5St<^K-5 ziB;))FsIxhd%i8%ZOwbkPx?TcEdGCZyn|mw2l0bse0GQjM)4gn9Vij0!~j~Sb{ux$ z2zDm^K^(kEgyD*Ua1J8%kMXS4cssn?K{rvAiXoTb@5&csO#0LN6@ll*J0K99b{y66 z=60GJNqx4IL1#OVF}uf6RA@}&{>_dzoY${&FdW9yGd4yLfhVx-&cC!7_(hf}eO9R6 zfjaM=O;72z(T$d_O&nNS{JO?CDfhZ2TlyN-NY3yuAv+GlQ=9b(4GE$_8jW%8(+sEt zXIV}8Z#6pTu;<$PPKi0aGVN5!bfq10+|{)cDcyai6tAhh@hyEReud-fCwy{;x{4$y z2;?HTL6?(mY7W$Xjz&JRw02#<((T74T5gY z7L;4<(uv>{Xi5sORoEvX&OfG}`=%o=PL@%~!GCAQ&&O2po|*IkyTO3&-<4{wE85i5 zmSEyvQ2?KEsW&ufD2pNgr;&8?hMqeWQliOfto^dw=>gl1v!pxQDI_rj^+G^jDox;L z2*)OYpMh2k!e1cpkod(4ecvbZ%c}!Si{S%TpBwz(xb(_}Drgs64W(3nsWUrRHWAbr ztm)73s`mn^CjvZe$rMrHPg4Es^_+=EqKW_8t< z8i1WT{%3n%iHAW!!3nE2ZgszSdt?q|jsH7}#=%ZHxVNMvR-SpVb3ezyvr{*3`M+2T zDjE%}d$+$j`i;t=;Gfupa^59`X!P;;6!&e_>b{5!Y?Gd#)4GdmMry+zxwZVLoo>5@ z?RkBOTM@^&l5$)YCL@t1l1N$hXta65$$b4K^}gz_bLS&n3|icpN7=B>W!^Z3iy~O# zex?xYZD$u}<#nQ@WfN`wKqdP#gC|Ug{g!$;mw0i>=yJ%OrhtXFq4hsFNKrtB%t23(+*IebcvQkQ~kKx`IoqnUT>cmBngyk52p-hV_QO zJe!fG+A|CODq}XNW$WKRooFO8{U>jtq&^v|d~*1jbAZrY6Kz6H zgXg!AAlxj?jg7Rv5N*CJH!hD4eFfRrm+5{gxc!{l3uHv45mhCGg@< z&e#prX*Vp2Tc9u}R+G=fuc7I_n*HFI=0BbuAXjMWg1K<(!awIyb-64MX69_!Ar~OZ zi4zOi#zGMlep))N@_O?a?@iA7H#dl#{in`?$;xBZQF|H5OEZ^~80-YG^LP1waB;3( z3*q#8veUGQw(;$$+AeoyE`>YxL#QB$QVq5-7cNM~$(43s0q1-I0ntcPAeL@QLjC(u zn(p$Y;kkjB?@9Em;@gLQ7QZ+9p3JDv<~U)kG}1)(<&hfBDucmBja!7yi6Dn<(g!pL zACCs&78jN*_*5OnSazMTY*YjGSbuyjpimF7+a8fCIO%n>Mz5qn1jWw83_ zACp^6U5SeQE-~UoOydrn96MN7W{%C5(UU^TrXh;4hQxa972MLekNOS zqb#@m)XSC$o3=C4x4-|h(93vkt>q_yY|C~c*E06VB0)8rp7>3~=Z&8^$+sU|2Ck#D^4n{8B<@IG*% zy65+2MaXH0>PZFcl#f6?;I-)#B_vaX@<=BO5{mBaP!pakNme^mPQ&Ci@Z#Q%ebv(+ z9TY2EN7J=z_KUUhsBGbz6|~g)`HY9-C<=L7xzru7dj(vxr?0OJMHC`pC$0))ep1b+ z3`2Ga_tx8YwRr_@3psx&j2U>U{L2%D4T&|O{&e4p0*v>z%oa=g(dHl&oVsxg&am1?#|=B?-ipjEfQhc0z5JolBUZC^tiON^bd#$34s;z5df)DVc!KcK({3oP3f{|)oB8cRvibM zObVfLLdBq62`52a+XU52;v|IP2)-iXB)b_XZw+*=v%>FpZO_OD?%NA-+L~0Pn7+Fk z8H=RoW!-Vc6e*k$paH^%gq@;x?#)9Wy%KN666Bt-*5auiE>Z0()$^v=R}*!54)faQ zFvr|Br0ps+dE|RZ60vvAql$`4$P@H!)d1ccnQuks9PM3wV^)$tE^`?#E`}FsWFNb> z$D)s0ytxi_ioYw56x*YVxL;(d{s7kadtg8Ysy6JWUm-t0lzGh7JxuF1d#rbePPFg+ z66o_*dqY}-Ma5dO2=(gWFhnnt)p;6wgxdp@B?Mk8hv^IR!5xJBvg|Cei-R}`awg+IVydQkKqB2l6+SRKTs+!>ja|<(Hv!#1T8(HC zeCB+oO&^8CU;Q@(5oAjBB^mm^C6DNJ-X~Xw*BohR{g5uHahoO8rp53ZBfZ^b+(8H- zuR=ouW@jgVhfq zLx9bC2J}Pl^<94T0QqVe7|bUMwy3?17%-{)^iq0qWqRIShm!b_5XdT=4O<~Qg2w^~ z-@DM2XCR@7d;EpktE4wT+^^|ITc$s$m}uKh{#rdb_Irc0|G5xuC9;N8`wRS91Gp>5 zb#C4#BP&Yi2XQ%|kF;d{9RW;6BZpE*42h;6=pON@t*s3u{?7=VP65uxJ3_wM z%d2+Brhq9md!l&*#D?D6;1WeayZ)`2u0?%C`zkZ5Wuv-A^2;D@dOHMevgt%h3a(aw zc#Z)DYX}V(N?r}bQE6z;bO;Mtovw9vM|CB0>+lAiZCr|{mseUW(R?8BlgOEEl6q&y@|18*kw6$GJ}XpMm?lsEZVb#3kY%gyhp2`@`bmZhI&63q^Q<0&YQ z#*sCS0rlG)2gPVI%KEBNz#5@Mh72~6<&3EXa}jvCK6bO@7G+W~<#fIzRo%tkL$85) zHY%@XN!IfeIH+n=F4bk&Y zEGxOXCZhh5wD~-& zM+=a(H{*pOFIE3m`zdn2Lf?ka4F%Z_Bji|!W+td^81pNtI_kYdEK)n_gmxEf;x6Bjl73N7D(8U<$V94sIt62lC)1 zg5c2v*ob^EJgybEhM-WHhQtSKl$$@HZY+y&2AKuB3yMzc&Na}%XWXd$hUM!kMz-Pe zlP7lXCj+!Hw3VouApH}(vpg{JgSv=g*uV~!uyg3ulYcVZ?%;dt9h&dXt*xZpJT&M* zh1NHO(7W)5RD{xl;?a$h_YoSm?s`Bguy<@M`vC7wn%xS$tgPEnR~c5#8q1R7<{fKeQkOdt{6N& zifu^Hvobh8F#q%s?GWyB{8zY9(FCb_d>DdZp21xy!0z@H@M^>=uW(104`+3qHpva! z!_$CIKpDi13P?h=WLfP4ngYu7KmS0*OrGcoRFwCIEWT4TXRQC(0@NGrv)Oj9Tsrfz zhrT^IlTvpKoLzM#o9th9f!@iWW+WgLamQ?@Fi@dHEQOCEBvpn;56(x?@*dd8_)Sr zaa#%&!87jU)5dqg`D#q0rGlR>kOHM9j6(M8daD`;bCep2G=${}syJ!*-U<3WMo8P@ za%6G=0WImP*bo;7Ehw9Ew7HiCC5qPjMI!pN;lT}*`xVTCo?P%H#VLlBnViroR3J!U z|4pXXSA}>WH@ZlI--5KXzkR%tX}aLH3v%GrdFKy_!&|%VzK8FN==`j=NmVte5>Sh9 zuaKP5|4p-(8(l-XNFEnVa$n2{XHmElz+CgI5mcl_w~26*t7bFVLB8>new{AYdzAp< zC~ayAMY1XwO!2>>jo??&B1X#VWqrM}w{%6v+P0i5G?mmyR3JSwuiisUWwBjvIc2Zs zI|pGvW!iL!|4X>{>R1scpG@GFiTq!`oTIax)6G74K=_BW{OYFTS4D5TV4ehdg>Z(W z%uNTe0HGGdq$e;(0AOHJj~i>J-Oe?e+sjTDM)UCDeUH^x#eF$0jKlSJ^*m11w7~MW z4gXr1!W^#Ohjp{dJ*0dF+I1}oEFUzU})l!b<3FQWK zV;k^1UH($9pG#%(WG)O9%>QaULCtTyUGMgWvVh2ep`RTc>{@8G}ALfJsyFf%+79I^BKj(iJ^mZ5@F#b^araWxRs9!?W8AIl1fg5 znGTdM*bR?>@`cAJy0*}R{7Ctpcn@myOxj9nb$St@bd$f1`jECaUhqMP_Id~SNyJ-+Jd?&`1& z=mn8QV^W1A6HC-CdMDU0l^9uBA3}+TuptqyIs_uBpge(h*Lgyhe;NTu#I9$Dwryvp zEpQE&9-1=F>?kNjP8KS?)WXvPn0LEVu%{D}@b|qW2b8js9Ylpt5G{_z?YSVsVL8zQYlYypYOgS`!xSLir)`hu+6T-ZQgWpVFUXo9E zy?^k!<;!KYhNLN9fdJolhL3tOY+nfu7f7A=$pB<|b8F_>ZV+~Q5UO`3j$7vpa)NW? z?gR@nJculEpQ)oY9ACpP!fVLp4-z4%cycbk-c#^@y)sy2L=Xl;*Y)LI3 zNoqW1*9OiWn772ZBzr@1^ef5?+lpj9N*+JZ!=#>#{HAzL#1? z6gW|EQ%^DMM>7nOi_l3B>JkiCZ0N^-&zL!n9G{#*ec>O?6O4%-OVqlqUyrh zo2OaXA_s>;9xQ~X&B{M->~z_3@$vnrv(bO(4=YFTelYZQd2yKT_FQ;wGOz1&FPCDh z!RI`YREv0+T&!uX+|(mp7okZLbqPNF!r2Q7TNuchotk|0eN<8?k!uS$4rM=_n<>TUARon6lqW}DWD?Gw0q`eM3&F*0w99DkO3%DL9 z#sTF=DjvINp$)6c_hMpPUI?b{l{9ZULE1V*51f>l4QwF&ix#Qj)pMhnO1b&IzB+X* z$NcJuhD!%E2+0H%4jK)=qoSHhl1;GSsQE z?{i6YXB7cR(ADklL9QmR6YTG43=1CkcLj+@gf5-1h(;jA^Avzez-%&FEbUTP#9iz8 z1Fq&ZMukd9++I8T-rT{-^PbOpkAjwoi7wBYTQ)XNTPmMBRQ5?r^}>SEZM!gOfaPN= z0D}0q5psIe{y^?|R@2qR8QCV-aZG)yu6x5KavE=Ds9uaXuVq->gC}c?<;GdS#!h=t zDF%{vACG$80;mO!M_EcsK+Lv7OG2X&Soxo{vzei=wapFW;&@s35tSAzzN;+Es3BC~ zX_I^U<*hfn@U9GFyGj`XPk%&^uLHJH|vVZ~v6qN`6 z3L3hl7sm5s){?Mk7j{rMSld%xv*r%f=er@KK{;gQiz^?YlgUmfnBiJ1&#V=fM>K_m zB<4@@=ZT_nB6{#y^W7(?U$N7U0oX zrrU4TrbF|AJA!6hwa}-{(0E@TQ|D>u#`yVJDo0ctg(E)GMdSy4oeQpZ8p)ZJ6Mh&)5OWll790bhP4R1 z4J$DE0SzV* z&=Ck+XbZ3r2$0l}T%Bcp$Vwf+e6Pd$aYM2ZC1A(%o~fasE%ID1-d#Ht8hyIVI2%$v zWO5&g^BFr2#+<{myyK<8J&$iLVJ9Ju2SW0~e@ZRo&aSQ0Z6YVg8&N{v6E=1Ot7|g5 zNp@s-+4+0FR?r;HObwKhBUkH_*#W`wlPczBY6FlLyX66h0`q}%18z+_j=PX{zdyD5 zkB+*LCc(SIWz5lQc13G6Vy>`^Mhqy6n|(}dO8Pw$2sf5gd>*A*GB(FVqzEN&^0nNI zi{$Q+U+1yXL!|$fC7UPn>Po0yb>degS`8pY=EwUp;GPfXi*#S}SierBYYzSN)!?2% zMTHQRy}OoM0xf3=av4BIM*`o}Ny~aCP~uFq;47IV7J<{CO>&F=Ot8wzYkKGA{3+^e z;;p5!fd2gF$3eP_Q;CyVz6^Mb1NJ51z{05!htw^oBsSH=AtMCd;E;uL6M?uvgo1Gw ze&-IbE&f?sb8^zDh-5}YfDKS>)pPH!PZ{4AqG?L-QK~oUs5f{LmLni;A(2W=he*hq z?6$b-v@m#ZaysB_HN7;Y>?P|OIjXuWUtMa`WeWW9eEpBqY-e6+>`7Ib{Rl_e@0Tj=cI>sPR|S8B};GPW6Ck~Rs&B!KqH&jt5om3 z^#YJZHkvC(+yAHP(y2AC$zB|iK-91pldfj*2Q-8p=i3$)b%eiu^mBWP&dRsI&O}TP z)h&utiTaRIiXq3^kGvQNvuT6|@vojT*hkC_E?VezMCWJt?+(Mjc-kZiBWHDUCMi7H z8fcL9Wwdy8Jqq}yBrc>Lu67yp3d`|W6~;nighaD3+EgKi>>TglQn6~*f8pjT`Q{3j zir8Yjn#AyugH|CcfFv=VkI(96a1x&N84pJ zcD|pH1e=_lH9=;WMkCKL{M-k#r!M0|)G0cV=Mc^*ttJ(?!9Jd`32B3Jls4saK00h< zXP=%@7Bguqb8{}G)nsGqU%pR$H3vzl)+1U8ynh*WBaMB?z!J1tp z*AB<-Dz<>Z3OLI@|0aGMsozJ&3AA%~6{1WTzG9W4^zUJBo{%}y2;Ip}Y- zu$T(PFw@&H<82b%{*pCQ*?ZF$wx)i=`>(*HGVIp*s(8YBR41~IZ z7n_>N6;`+zwCg|R*9$FA2;53EvtmlI)W#LPKehiS@X*~Cin;fK!nKdEw<1$6*y+5H zz~P~B=5Pjs=4}yDr%h^@bN=k|1m1iuLrF9^k@yS6Muan0x zyzz{;6Kp-ATlM6mExJh5LTIgKlO*iH+FyN2@5VRLg_TW?jqiCD=5!bnp_&tIXRUok z4Vc0vvOkl6FqY?Uarz@9=0VJQ;4> zq3e9W&I814dX+S}GlWtcxqhN!1^n3P<{SmU1fn?^X8H}FapvZv=omd7sM!`Rd_MF9 zNPis@7C$%X6g>E!jg~t)4r&a1E6#V}Qdyl=uAcH|QVcV1`FWoJGM6Uenf{x&(yWqB zL*{W(9ztnpNC3?Z*44sQ_^QHoLczIbmN$97QbKNPk)*1W02d zVM7Jj0Lh5XUwgS~kH=!CnszfCID5hNrDdu3LNTv1Y`$Y zNuy3*X!!jZ;^DR13lkEzsy}ZWu0M4_#wLHm)Jkr5owGZ-wj*hnDW>1_PUT$`qX#YS zTP9w=j{|kFIOM^JL!o~u0h){8KRTFwkf(a)Br5ohqrPW#lb-AiAFikNXOf>Z>1lIz zpVZ$YT>oAXP1t2msD3Z%O)f`1>i;7GqAm-t1#jPdG6;KNSJNm!ASf3Vt4UJNwpPi@ zYT2`R;MzxH;ka^{#Xm$~8oUz!#Ir_?X!`iCeyvzH3_%k4DxuzyZ^lpywBpGyQ|W++ zyd_~r{*;{z6&b&3B@8-*>l%lbCu&~KEI9jq8Ns9RI}yGf@Zuvn<^5MHRuXC&Uqw(H zuqmm3DQ(;5f40BRWPEU>v8Mg^{GE%@PX4~Ud_EZOsQ{*}y0&E4c5k|tw|jn>v6*P2 z#VLEJ$Fo5#6m?*tvTBgoVv24JNQssmyBo(T3zXBbD`Dqm>y%HG2QUl1DHU;4n6&+| zIGtwqidt1CtCSXTFLv!;&291x#JQHUe*&V#Fu12DLRT zFC5*#NBUVpSB%y)ED)K(JB4lmNtS*~lxui%BP+y3<)X#U(ox&#Savjo<2-vgO->3e zhv0-h1M&(%K16Ohm`go8tIvsUUMl-|S0>8*$F(V&QX`w{5(QEnMmBeLPO(G_-}<63 zm7;UwW311EFZs_;z1sVTtXZot#l-z=lKpd4)ib=pVAUg9hX6@@4h6Ulx(DMMZU_{B z^OsxPV?phyRxWjkiPMW?$E#wTOCBnHutCYEeg3DT$jXvMbyEEcF@lUBMDnjKml@lM zP;C`QgQ8;h59mv9G@|bjAP};QoYM8eg4?|tzc(gOL=xSPj*Z9`WhwGR_ePcIyHyRSl{2qY^Xaob6-=}Px~a2wGrJ&CHaB0aF~Du zfuj2bM*%DgNAdE>e0oXhe)wecZ7Uccg#+Kl+W+AC+V6Tb9E?B@VFaONsEy1FVsHF3ikW=k+8xD6 zg|Mam$Sqm8$k?XQ(6IA-qt2x?nvM#J*KHK^)dnEu0K#Gq*nf+cS!zAL3CHCA4z5(U10NX?vK^fjPHYpri6x<)BIl}$61FCloXq3 zSu4U$8I99wAW63KgLSl-He10Ub(%?a_0(bWjDtF2yYex{RhbZx~)2 zQ1tbmP%wJRm1eHd?#2rhiY_zpasF+fZKud`$mYMCD#6Ef&b-#^+HGL8ULSpbjZpzw z<7R`^i(PB(8}{&bi7+|W`{FUC7`gkFE1%d7c#)vf-A z`(L8wXMfh|V)o|9n)e0J5m?~u{pJS-v$&W&}WkeBDp>^_A`NQk!Z&H zj=TK#>+@^7R$tQ9wp82JO2tm3G@*}Ub<%+glUfBVjVYg7)93@Y4eX!z@cXN>I%)r` zmW(^Ct|!a8$Y;+)<~t6MO@EY*n2z^Rb$0sQvO=)q7b)-6fUPp2JccmtHL|S=VZ3)y zZLvc_3x%E$|6mG6vMx*8c58t~R=Sy@*;f77`Su;n<&QsCk#M;cEGk zmia4eBwRuQxmLodm*}mw9mLYwnrqCRhQq4A)e6F!+6YY?(c74qTo6ms-S#w8plao? zjH*(PTFFv#rqrX@Xk9S3Ve-_@=zz6;yT;2gv-Lfx`5Ml1W$)83zNBGN^(E$kV(^%{ zJ}fP0`fdO=<6|QT> z3I|`>Ak`7A??VZg1(#?-dW(mVgZWI#M5mfUt@3HO3Q>>WJK%OPkgW#1O@hSgNpK9BG1|@!Ym_(PW~0~khRc<`KX{UM z^x)hjjcWr4D1F;ce7&auj2_$@-7s;aKaN4Q2gZW(#TS^*PoYWE())G=y6$hzOkX^X z$@S&*IEb)C&2dZSj+^V?d&^-b|3^OrVkW|Q3t$dwIX*H-6cUx#safYie7wnwzXI>BrSv9iztn$`Q&A9!<6NL5m|PYu}@;c-FIP zKRQ9;c1S!dGsS-G*H(&r(q22y4DD!oF5{5ZQ`GM0-rM zJ`U&>2@6Z%$I%Clg6(R03B~ItRB8_?>&E2vN<@@|a8pp&?pTrAM?rDNVvqTJ&Ixg* zt@tCcSgj2d6hik6sVFFZ?eu5DUtc(Kg@S^DHtzqAzYw*io3sfF=RC^bmm^9|L9u7Y z+BmDH(~~#3CjvD1Swc9mz}EE1Qc!#{Wq5QkBsA2iVcN_wWjMskFg*-4mN z*Kl?H2!Eb1&qPRMWR*nNu5+}>_jpvdXvc59d1?RGZ{6$Hlb7}hrf&Ri51>KAxj+}a zk1y(`HjQ1rD1d)x93))9A@JnF@TCNvcU6&1cwVaXns4!pSS8ab@eH??(clIS>^g=& z@=^KMUwrh!tqmncTB|xbW>r>J*8lkNd+yRf-Rsw*#|xLOk+4u&TwHYR4U(xxoiwc< zBb~-uGD67iB}@cw0Q6BnXP%p8-9HSFE|HU$SF^IRTG?}Udkpv!BgwB{`~=81l!)}61;p5uU%y^9F-bu8oYC&mgSEeY#S+Z-moGW`dV2?->sbH5D2bR1 zaQ=GWER@Nw(DzJ>ii!%SsKaP_Ve4^Z*<)$OjOyO`zW)Bof$1Tvw1g!;s6O}Tm36{B zVS$+TY9{FsTC%5N-vfoI%kad6liPdxl!OH7IF(C)=V%xiy+U`2q%CaD=ioW^OV!S@ z42M1^83lzm_*bawsAy<}1gHgCMn^}xLJjOtzTb(H^{~%x^m8pre)&=|JUko%!BAH> zHv*4u3dH4dV-$9?>_(+{>amSj{FrBVdO?mfD0YpwyMmS3U ztm_z>0<%1(m+?lqrVV zLPcUuj+VE#xAD_WcvUDIC^y^qu|B9nQ?ulsKUKw0w63hJ)s&U>Lpa*8u!!!;M_6eO z8wZ7kzRt)voniaEV7~KBVj|amVf#zLGiVK%^x=aBo!HD1&YQMXDsu%XDT?AT$_WVx zQvx9&A#%#fnr?1xKS|S^V>X4ftI))=u(Ceunot%RpI?S+O(KWCVURJPOkGFkjlVxl zP1vam!MkXE@Y6#vwV`Q^6Z6MdY4dpdDn6jNG1gV2hw%~`jfXl77>_xekXH+D=jwVa znm9N*4tq1}s$9A9oc!iZ&$4^Mgr@QDC~OwF8T^uP(|h;s#i{EtsF=2IKIF%G?esHu zI-k$DTVvLr!JYk|EvD&~QRo(DgQy4y_*@-iWVEUg+>x9vdDSx@={Y0_SnX z2F+4WDqTawEtM4&Iirk9nB%Jd?6fr_|1d$mhZu&4HU$77TbMfcPb`EPrVu$8h_wj4 z!P{G1UHv%nF0XgW8ULyO`ST^z%oROT6%+GMKl6r*x@1`Ajb+_80&V{ds;AttQ>*>U z8aDypmxT1H9ww7yEEXU?#Wcbht*)tg*pIcHcm$g$L)|Awfq?jl;{4Ny9c9A|+S=L? zVs2Rx5fRo}SHCt_5rneY5N7luW)8FDsO29~PnI+&(>`Ql@QS z5GNog*akT8+x-0Y%BrgCQLgqmGirB9y}Z|ig@vnorkXKQ#$d|I0-0?eAL*ex>|;{` zkVEpt)ZWkonVPW4XXzJH9^>YQX60M1&|-z^_3KvXbD#d;!DbPJ=>%&0jM-04x2ZDb z9*c?tXR$swpa9|Ilr5V9zjWQlyu2~gSx;xijV;3pWP0e(p~lWm>y(s~Gww_FIytrm zsso8y*Nc(HOG!)no{^DZ2@x5=-^i9>nc}=YHQVVnQPu=y%r^*E4Y4F-qmg_wmK1Z` zu)WRT_7kj literal 0 HcmV?d00001 diff --git a/_images/76e99aa55472869055d7a051c054d513b186bc2fd27e05d0100c01380379c5ff.png b/_images/76e99aa55472869055d7a051c054d513b186bc2fd27e05d0100c01380379c5ff.png new file mode 100644 index 0000000000000000000000000000000000000000..482fd03e2c430c0e51afa2ea656af3dff42a36d6 GIT binary patch literal 58361 zcma&O1yI*p^e_6uKm`c}B?S?sOG;7{2|>CWq`SLS5F}NkyBnlCL@ALjX#r_z>3Zvn zXYPA%=Kk;8Gvl0d;2Zn9_u6ZHVr}2aNQq)$5M!WFC@it(LUJh71ylHAeH9&k!ksAj z8u^#Ku!_CBm7%@UOIrh!>AYoL>|9QBV^3P16gpWGdw1>GU)iJmlgHIk~KB$i>dI z$YWB-0z*R=LU`ADc;4csL_CM9vp%Yp7$(zT1f+a+-B}i2P*i-t$$48?mhiE=bNY63 zb93#^kh+F_uka;wbY0F^lZk4My(uq&qrLTpBy*|Eu&5|PeBtR$QgP9sCYUOH0#`(PEtY{ac4K zRuuX(Z=|V& zzUueD9Hn?ZjP3jp&l~A^a;V5vZ#yR*a)OFqMJ_^MVIDX&P*SFpE7hdo&CPv)dozHIm$MkY;;cgrWuOovr{|SUBonf~SQ4x^~ z8#95-tS(#nYGtO){CnfiG&D$~qoa>EzT%8qf5k$cp>A1~ZYdCli}iud2Un5BZeHS+ zOku;RD+dFEMA_Ktt*$ALy$RD$GX8YYieR*lD_>Sl1ULJ`H0TwreIt=1h_vPE%QMA z;WE9VEdCBWVk3^8mR9!7n>T~m@|j9>1E>45IJach>yOsd+7(q)vJQ`qa;<7N-^Rqm zgxKgd~e9iRW4K__uPMZKC5c^%MQbunTGoM3Y9~1w%N>ee?N|< ziQx_E7G+&Tzb@mnI;xm2xVqSznv+7a42zsypxvN#d4R)gC~kAq?v|;=Sh?aeLBWCA z+FH80Lfo0-c0vvcp|WqSt^JwOUdJEC$2BagmomhMz4j)YP{*_6XIbHV zu%34~V}oNYtKY#UK)+7d7{_f#r@`j`iG;#}H^a zzgkH2N`Q^JF&}HySLN0U0RBivyNC#)oR?5b*c>lJK%(t25!1nHLqs^ISqdQy)k&#zq=<}K9^7S80 zxtA>b#CkODokHV&Fc+Di_vOo%>vwoQL9BN5Ur5iP+n(=CHR?_%wVbFHoW$%@)4GcG zbJY=6(PX6f!PBQt%}0vU`*vXYw(+%5ky@^_kX=(nLoa-GKd=>l@gkb#rJ(N$nd@RQ zozZBK-W6V_wY-hG>Vx@MZb%vF5iNGvor#&aDXd7MAG}RQ)|K@14Ki_<1WezS?3GNP z(h=a|qMmqqdIm2<33xqrtci!A*lhfIicQA%TuJFRfu?;gQH=m52F5e)5 zl>c02I+)YsFg-n;V0P98K^0P1$lMwGXwSXyhhd3PhPmS4e7F2n*=TzY42muYmGPzt zrzuG_HDYCL4-S|MquK)4Hr{T0Khq<%)KZDQV+PfG93^ZXLjamg)^el1`r%Nsu)MFb zTd;-OS)A51{~o1}j7P_o=B9o%R-duHi*-+fm{0|HXwEpF@ zw|!W&=Yb>?YF7}+q5JJ><3x&l*iAeJKS56~vP4S+5px72 zdYwl9{cDdTwt~tTjFglVQ@(Y`$epVdQ(dqbh&W8~m9<=d^Te6-oeq9G6XsTm^L{HJSbLz&jYAFVsLqp2Wn&?vn1uZe8ZCb@g&) zKY7<{-}Eo#t+ig#=}CG@7%VdBvJj847td*-7Otf|xq1NerF^J00kx?V0z+*gF^o#` z9vfSj*U5_ZEk`?=z3py+66ehsx+&?aHjaHev_4!`@JVjr1+n~YoXVOGw_vXLDMf;G zel@<@KRmSk)rdCV87pdPN++Kofi}*2`TqU;)=+@h%!cwxChZ{I*sqT6Ib(>fxX9sxV}d^VKVCVR_vgsZ^@%X&a8WUic14P<%TGyA6dS9}@@1Xmzx#7IuDG zM#k2kl5Sh55=GY2g2*!+*C$u2%4>NUd3X-<_Qr}0Frmit8@-r}u4ZxIi8mUW^}j*c z#bZ}w&=FxiRvv7W;PN(}*J%p|y4`pYXQP9;VWZINBru#_IbnNSD)Djrm}N~cx83~4 zVrnShr0?*}x$NkF%(XlZ45%byzQH`W9B;OA+b`k@oE@{(*Viw&PkemvqOHCCU~E17 z>$J{ft;^u|ZFq1`fhO;y*O^C4Fi9(kRqd-m)44ILhJ2P9g{wBF_+=R)xfm2eSkCKp zd(JcOsJZMH-y3O*QTQ0=r3p)3omTWbT75+3{0oh?&j04pqNrscXWJ%9r^4$B(v?vCNnVVvY;_{aZhV z)55jOEKTNO_ww)d_V!DcE*Zy(AU9*FYH5)b6%`px+?lhN%X*br!*=)XlYhW`;9bu3 zijVD={ztU_5CQTzl8TC?*jJ=7dFDcalogj zjTkh2z{5jKPM(NajqGo@{l}c`ho~rjtwL%lDs*yka#b1)|Ng8TaoE~W?e0E&_(3UO z?PN8jeBmBK6a4Au85x`BY;QpR9yA@~3BlEB*DcavC+2qjO9L;9>YU%MkCdQ-sg$)K z=o7pvq$eZaK)DtBzn$GIJE_R;)z6~cYgV~dunlJHv(-d%*Z>awO72;HeMrCt)?#_t&7lIPZSXx&JPveY6;=z7 z{BpPXQcTa+%4SkQG5zy^Y`UmtQ9MDzQ5c(pZ3KDj{)FXL;HqMEVvbT_O(|@`Z!Imw zut~d%d@%|7@>JQX9afa4N7G+K_7!Riyng-qDi)Rjq!>~j`!>7Nwhxpv0ZmXx0Luy( zmPEq_{AJDM{Oi>fzCyRHcIv8=-7y4q@fDt!4I2S>DXc%FbDDIahQT8o4Cu{g!363= z_m8kY^~%(cqS-BQ<{pmu%o`ZN20(jOhh>FH_iah0s^2$fW@oFmzSFCI)hee)SBVd=C-4#GO7EN!*KBw3!sk!{GQa#QO#1P3 z;@L4Zy;5G5wdT{OXrX*tS0Np>7?vPlgT?mu^Ky$ZrI#bVnF+1|Kmq#l)gS#ZWCPB_ z18nW({Ez5Tv*D1X{!GZ1Q`UgH64{2Kp1LfhM>@|(8|@#i6cPz|@|_&*WlF|!qV|uD zphPghmj4N$*=fq-5zH6g<~KaW!*O`tm+tP+qqUm#poKTDU!zn?jc?#Q-oM+QA*ly- zjX|q6%IkDHk=BktHcS-6`Dm zT?6&`_7jyM%-vKMTQBn04`_3|LN`m{A*re+UBa#`VlXszHyA%Wi z!!K$j(}S$5$TR>5{Rsfihs41PwU*yM(T>}+-br9UX4&g_^9mHt>8%cCYFgTJc7a9g z(`%dtdcfbc2@-3krR5#hr566z~CzCFpH0bT0r_n(s+|2FMKZ zCK?)=;_0~JD%E6(5e|UnT&*%jL^Y%JX6Wl@sBmw=+C%iJ@ z{)eWyO8L4VBYgYzEr|wW3O0c6c23R~0&VZy2?nkLOHImUoz%nuc_ru$Z-lou3U+7Z zNm42^(PpFCB5cDTbr@>Gne-=&_S&l)?)AM6Qgo*ZveNyxb zbzkKr&jnueTn_rs;kaezifwT3VNeFKBdUQzNQ&lA_7LT#MNiXNW$!oqbI zgZgFBg~+ETNGo$=#(x(T z9#FQmz#L*6s-;}>rpNC(ksuTvpcG%;&{v=v8X6W`O+8LJ%FCZ-UhM30CBez(3HMSAIB3&jb*^{~>Dz+c%C zy4%~)k~C`^VcTRhRROc^0RYx*7uehcV8$76pK6irWtb8@2piP?{{Am}p4@QBxY!Jf zaD-66pBS@k>-dmziu~DjH6BqSL%1?xhL#I)M?r&Hwi<;e%zDmLVFinqr zeQGpbY-+vWvyiAlQZ#{RsnPS+(X+D@twIQN{)ECaIxem#;HZy}H=d=WrizJ+&tzvN z|fD`Plt7gV%R7%I?D1gQDQRf3nh0M#eS@CdzXWkrXT-9g9scQ)jGWwz3vguR*#oC~ zp4z^LevGmF{Z>1C>j(4m#9rEv=BMT5gHY)Z!pa_b+crjZ(X8Ejen9XvW3mu2dz2)`i90UcE zfqJvnaONp4E>6g4P6(Bc506?ZZ^%Q->%_tJ@8TD)vm5o_q!&G1_NZLtvrqr$5pk%-PIT3;uyWXnWw%Su78cYM>&vko#=T; z3mZ4ry3pVMDgveVH)p%|wP2w7eQ9FhAq(^KN@mvcRr;0(uf84NeQ|h8r4ygv^APXa z>f=(8$ro2Cmc?ys9=?0`4%iQ9sAVCuI~q&`zzy{NF80Q(irg)=DVPect>uFy%T;h< z|9;sD-f3cMXU7lV_BXLtXwTX+lSkA2YzbzMrsWY_or1;#c#z!V?+s9RjbJ+=BIUPl zLY7r?xARlqxqdgpEZgEx>Fe*OCzXbz9e1?y*8t`B^{JB55cjb4!)OV>$O_H_Oses! zS1E`u#!I!rrd=G&B>+}s0MBF4u8(tE9W}WlIUuj4p7r4VecW5OnwcApXSgFGBU=x5 zR-l;Upb)xFP3_kiD;>OZxHGJ6Q>B53&<+U)g+ZPagvZZ{I4uHG>~O9Os9$_|cye<1 z1TgV(;?JKdkY}G+S~7v^jL2Y!9J!*BLe_83`l{1#_Scs;2@5b`2=f8e58zD8GaUYJ zP|hVF>YqP<{_9{N5rVyiEhHcE&2=JHAE>#pL~MpS6=PK(R91m{z#hM;+C@$Cv8$Uw zq?csmY}(^D`S_C`Nj00-0tR@_CHZAENz5_;9Ev~B{(KN6L;D4SiV=(qfg1Su_$&~v zpq(rZ7m|Yln$JRG1&npv>+Iw@DHkqG8OTVDkft>k66ehA(aBNAc-0@gtS?>`<9!ud zhV=kImcQ%MenAU>!V7WLxilCcbsK^_U{ptS|Gp21B10mz#B;;7B&Y+wilm(7%lX-q z$W1L@%v!TJ*y}raQWmj(ZcE9;IB2YJAv`7PN}5bAr7Jn+P{tY~*A|ZUPse-6&y7jp z=g&?JCKAiPS&X9JfS(D~-St(wv-N_8Br}4B5#b`sg;4Kr;NvUg4}+@7W-(f7rv(5W zYHO#KI zO2N;6C$+Z?V0xGHX+h0e3c%+Dk28?xK7&57?df5m4oDT~#$Awf1Ox64lVv!Wtc7G;NIMtD%BKEM3B|2s^YE}ou-<`;y>Zx{(rq1)K1Bg1V> zAngRiB}zy=hGP0wtIl;3o>pu&%#;ULPX^64~j0DYXQp|R*Af0R0KS&-= zkewzcM@~geVYSujit@J6=wsBW#2E75%12~_jBDncB!G5|j`uhJLsBkXNHK)BWHjwS zh5h`Q#jra8tMZYG7l;iIvyHk%NQtjMJv8gy0VEAX%JXa z+S;CjriEz-B=~!3$vCINf0eFnaCk)n5Vh1v-$T zj81BuCL9PriNF*S6T21SwKJ&9MT(6;hQ9O{OAyAO+4;PE%LP1sja(v0p#TtP?I6&ZA_h=?&TezeGCgD0_g>LjE|2se3vaqZ6#U_FTbLLOsj~@ zX{=R!`-4agK_EMbR0dQK*;RWQN2f>Y{g8jbAu z7`u>j5+gvS5ir;)H@AYQF{9-cFMt(Qf-~j0&2YV zr>LtpU>rA^TWO)uCIR|CS(Rs_y%br&@V(#gV}~;w9!Tx+EZm`1aZe) zyK#Y1G(>-_++xu_bJRA$b(t2XUcAC`f+e=|81(#GlO2X7C#y!6oB=nv0KbPcQnwt8vFkAnFT(Udc?_O1$%VNIV-*sGScPyv0|Gc-TG>g2Ct zP5a^sde@9?0~foj1LOHUKVJ-%A>yk*Y1rJ^G3ZSZMywZ<4(I|JcAXr+80F>Un!vY0 zlrR1x$wyX`af7+a+c3!rGy_!92^z^8SFc@5hD4sQ0Ort5sQWWeG-e?zjn*gYkb)OX z@~E%GNE&sz*KpPg0JqyrsZgsEJdC!swnlwcG!}#J`1J?#B*+#9aZGt>8>m;elmLQT z0#d9Odni25PMp9uL~n%BAT!O8=)QFgsMep!x>!I)t|0<{d!A`{o$MH$Ogb+0&BY}a zX@HQ8#1+aI99vLDr}HZ&dGwMwy-wW$Bb)&p;LBHHGwQleL*svoUdeh;QCZQo^VP*G z#-J34q;BS^emSYDnGNCPyF5V|%GU%A)t67S@|DM19ROSJ(a{9}+`Wl0JxnC?uju_BN+RMB%>&2XvKMb_}A~#U}S7?iA#|-JL;1>T{S4tq7XVU zco=gq`z2kmUQ1DNE$-~@5i9nLoMyr-kFaR0e}p@$p=)@}M+TAYDQyKq_#X40pI-r5 zL(^d)BxEzZ4nukfHK0+4g#|zrNC963PB(Et#7FE4{x_RAU~9a5`7-@=N@?jQusRgE zl(fvl!FZJbb?U*3i1#ru0bi$+va;IxA5;NdxsLwK_sa>Rdii}WuAkfPkoSOq2tIp8 zKVFlSl_jV=r#%7W?Re_!guLNomqb~^<}xyYj~^$1sDHtlfD_q1E5n5gP>L!w))K|e zIqqs<;!@%18e0TCv#qq3XZh0uL_vaRgUC|m($dgyAL`Z^T-yNqTY=6JUfKZ=6wPU6 z4#*0!7SG;Zf4SI`3_0M!o8+|)D%yc%?=mrxfWC3BER4|guL8;R52!;vdO7DJy1%QW z>?czPfdaAd#)QA$OD=2X1oAH(jYJd&)?ceLW4-swQqqo#6q2HINOn#@yZ#LLE)T#+ zf#lWK;N`{2%BoUsPINoam*Uy@L^WqDmN!gPPnuX5#vYT^G~L3=iu&|{UMPPH&_pC< z!EAlgEkfKnu&8q5rVLAN+_}>U$%!tWcbJtZU#)DW?*+2~EY5X87VnV~BReoR-2$d> zP>SFZ5VVStdk6t-VTufdFjo4$JKX(OnPZda?7LwJ@D?1nO@2wk*?FHxyC0km*fhZt zmSt-ZvtSz4n?q8Sj`}zgQUo;}^m0N7{m0L|o!H~4wH!q_iHEgee z$onHv08-|>HDq_!Q#s42dVZ>~cWG(&)ymCPr$JD4>)O*UF~kDF@(N_nH2F*^Az@)f zLfk1}EFe{=S0o(rPQ!}p8yUGJIIT~{mzJ_au%++eU}Ewv98Cf5K)eAEl&pcutyRuq zqres%sjwmkYC(GO3U(S`(OZ)xJV+QJpoNa#YPev6XdUz-#DjezBqWsHO-e}U+%i1= zKk?>1Bk;EB7OFtu0P&#~^h2b(0{omJy9Fr}6i;h#2i!wrs2EKh8u5t(C-s|E<(|tf zqrI-Vej#b&r)6Ba@M7*}p)7#K!aq{HCN4x-aaFkTvSJ;)uO>`dTV-65_7BuRIsoQ6 z4xbc$`nqBIEy+Fg zyLXeC%$pj(E4l^lr9O-o#8B{v)|YfI83R9lgN~&;UTIScfE?T=GLOHq47UR_=gdI5 zfz9IwQcVbSWxN6TB<$nICLqm(+_t~DYp9@8Km>6RKm#B{ylv^1M5Lq=#>O;=sn*-u z3ryRkB~)>E%A>^=$(djo|EgXo&>JZ>a0kf4pj!MpXpa<{L#*l#s1VZ_aCZh&EK+{g zPoU~<0U_^!Z7W`g5M;!|aQ@pX%I$f~1z~X?MAJ7{a99BYz?ZhZ!Fk*UE7=8V;L=b& z349U4DUGI^d=sK`{zr1|FaV-{v*e=*pLYGjG2MgLS%RINor-82j~-PFO;XN9h7O*P z3uLXG?LRGJIq|PvP0t++4s}qr!^tZw+rt<1k5N)kNL!n%Q)i^3<0%}@oX^Ph%2?%H zq2yq$dyAL542?2_$0hvKwaWJkJGET^PJ ze@3t=JMkbG!44b0zAS$ar&m-|9GvnzlDs_d=g%LE!WR+}3P9~_kzNVdN6Szaa{-lT zdu)8U!aocRKv^Kol$o+dpSP<(#WfWY^5KCQ>gE9cwhZ>|0Q46P8nfphcY_i(2=_Fc zkOh%ElDa$qPcClSgzcXVlviGoDr^)`j6-w4ExIH?6K!F4WB|9QO*=r6R=5ZZc!vnS zU_dO4DjR|$6=`IFmI?;|DYw?#4&8EdaxyY9aw;YqV~KCy&WMqqDg%Xf8S>*vg_m}B zqJVZC_=5^wUS5O4!^*4URV6$wTfZ>`V)rK9q%9_EtB|RHh|4W8>fVi0FE#$)3gSvO z=#)8yg@vx0%>=oCy7%I=D=g!Yfez}kW*gC`ckR^3#aBP0J!)Y$g>MG<_7PeZo;+Fo z(ez`YCL*Xz`vUH$9u0Sm()+Si>XbrK(XiaL?C^hUsi7gEt9uW0il|OS@*m7O3ou29 z%>W$(pu1%`klK*__x$R|EB+iAWeY0+iuO6yrH0BA_2Uq#>UpxG49E{Oje8s%;nWGv zufa$G(o7Y{;m8`D6he5hiRG{+Q;{H(dWK{S&HHsKuQm4{H4$*%k{{MgbU_CYc%64( zgWU%}lF)1=Jd0$Iw$U`KD!1X3>bNW>0(7&xAx#=kteTk%!iF}1i5lxez<~6qvO?H| zDHf=9hsPs2BxT@a|3M{z*r(Mrxa6u06++@(NSM*Ynrb?`CuYi&JP<$cZ}b0-P)Z=H z^DKMwrRm%z3D?kpo@NzPt8#%9=YzZBhi~fe=kJ>I;GCdQ@eD(`OL^2ygwE1X19dIo zufL4gnBA|`k&TE_4Ie~FpzP`M#IA-dPzPD zm0fC-{p9yxyv{0$(Z(#;N{9h|Kal>9{H8esp$lVhV8uO_!n%xKcf-w->H&3F878oG zhrGKkkB$t-pFQ1L<8kYToSQtnLd0pV5?_~j+psgnH-%=wofJ}3UST4a%{@r=`DN}1 z#DJN704h`Npg7iAh~+jwzW*W~v9%y8Mj+LDu(=MR1CacB)iS(yu*v0Slo0P@}d?QVc71EBjSI1+H> z-A9ii!F@6P*d8mEoPnmNb00m|4R0uA;LU!E!{zfApUNuUGBS}3Cl_9N_nX@Cfq)H( z>X;|`U9%Nw_+Lr^8+!PKV!g71Um(D$`R>GSkh@?K2qD>R#nnJ}9$-2N-<4HIUI1-B z68K3_ksZy5C<^2h0148T1VWHofi`Hp0Vx~sWqkkX_=cIF>H}ZaVU6|= z4J}mo1`@s-bVy*7j7R`qOBD&e@C%Glow@JfU~JTh=le}cmA~(U4kMM=(g*8}=n9#4 zL+T8T()wJ@KGuInJS2K4pG zB|t@HOJF9SDtFm76bU8kgx(myBiF%zm;?Su$v9e}L_y5whxEg`UYgjjE5Zi&=mlyL))3g2#Ba-ztDYf)i<00Zar^6ynb!SsaSf zMZ~{Tt#jodci(slJ#g@D4QNP7SfHSwuwUwH-advFDP5qg?hto~hWKZqCUUMLvILwA z*WEwY8bM$Y0M%j6rE_^OcjWWSi(sh15}`6AqMM*=?JIUr>I@@6A&(av z&JMc02)V59BIFeXl7Qjf+62<9f>@6LuwavPz!Gil?NNj4V>vNia{@(A$@ppBI!tBT z5*|i?G-)$&e@xS?Tf6kQxN!vqF%_Pme@;J9r@fnjLz$Mmv-=d0de7+io{jIrT1A)j zoKc7~5>9g+m<1H!b#!n*zJm4f!yD})3*q%3GX5B(e??QDpZU0uYouQ5?4S#z;ki&Eqyk^>(D{3a>s z9~WpxbA-B?oSb}XO%wV8lb;Q$vv`2Z1NB#lFm(tFDsT;df;m~|y2G<#7RjvL1<9-h z+9lgNI=)U@%Rupd`I15@cgJc#j3u0&h1QF;XwDQJ0 zvg&$I@eBzefRcG~Zx2N?vp}J97IUiy(0R-_gG_0VZ<4GX3_OG3+LC)01=7f+$FprY~ zd_is%2__bXcHZ#qF>_9^wZM!MPPcO?BW(fk3u%U$Z4F%rSJt8cZ5oslyJ1ZySv57a z^n2M*2|~M3{kE6*PIgNNshkUz-eAo-my^{oVMmdEIuG(2EgkQT0xS9xSoba zR@ASLFPJDeIU^3X7XTZQT0$ZU5~2KMX~P;V0TJ2@+!iCWA(p?&u#*^JV~DwyDHZPz zMmS4l9pncHjB-oqAh$<0D?+wDilnP4{>o4wp-Z`lA$RJ zDL7DJt~9o`Udb$(AsdK&WYscf`w*HinCka+)haACSEEZHG)@Dv!oE|3^R zt`L@WK0R0f=O$qrY0Ct12Dm*0Oh|Ij_Mr(qpjmg*9uN5%1cFRB41Aj6Ixa~pmH@so3k`@Z2`h30T=)@E(lWGEc8ht4I@C*mOvOs1U#g; zOjJA6!mARBtigDnhkT{sIAU<=%9U;S^k24BAT$S4p8-Vz&~_ED0f^Q~{e%7Gw2E1f z;^~s+=jVr(j(AqnmtU!d<{Sxl%1Fiuh)rxBK6jYan;6WCZx}Se1|pr4l5)=h@}sG& z?1v%Q9CPUZSq3Q6?Q99H5_Cx*HE05*ny7QDz{s+(vB~L}%dyVyn3IEMmW*^P+Ri;HM1K^D90GCmOwJdzR|LaYH z8K_eOAZw~|L`#@L|2}vq8XWiT3C2Ivd%F+=rlA8kBc>7(K?tvbyB$EgHIvN z6lgY9iRX87^o64X^Aa2^EE`ta4C>_)clew?6O)qW#dI2$LAWeKoMmLBr8yTIKo8F# z?A~0FR9TCmyy!y^dR)6sKwdRHJ3Sfv^-Bk#m(Vn%w9uWn&fNe?-VPk3P=bzbj4asl zUa{F3@heX0JPv*-ImK485CVWVAaHNu;>u*Md$=#T;b;80^2BJD(rqPFNXwDFh?1XOlvgI4`%bGt;p*|L=7bf zc2YO;ciq(<0;9)YWDbgJGiX`a^3;H}T|g1w!~7D^lAqxClaut;?g<0bGUl$2f>?b( zPI_KXSS~~xB>?}%4kG3L2uQ1YrXs}#+CGD$1!Gel9nCN>C9zXu>B->l#<81=I^q62 z)XkrT13p<7Arlz_r&4Rh)q1Wrz@9;a5wSRgsuT|_YN>39_{XRyd}9c>JRYoVIr!-F z!x^GSVJ^mkaq5yMAnrbyJ5(G)>TuQGZ;=(BIRexiBdtT;!Ey!90x~K= zSMsW?s*KG01*bVd7~BH}Nwu(&1*gV|CiM4-mBHIn#Y$HxO#M=5ghWO0Zrpe^VL6Pn zG`1SEYgxZg=<{P^~Ol1lHCfs4e{=k29RX)@dQG9#8`SVZrm-g`L*I=(_EVKSVi zs%=~9uqVu0lT@>KH^wfG_^Vg*;k$%?On3GiM4`!OuGyG^{o2;_5iw0E;jk6~_!11V zj1$@`SV@m&XxcLNzumBSbACPxPcF+PddtQ%AmuA5F=ktRB65!&+!LA2CDlp(-a`PK z3;z~4`o*kw{c5XB`7euuHuir_u*B3b8fd{&(Nnva^yuJqN-8^V_{TpA!C}awQwm^E zzEB!3thHZ${B+HuDNPYMEoSTv-zGS;IFv+#T4ZFEI{#T7@-x>G=8T>URD#Fjbm+VN z?@GCP@POxd@$rrB>sA<;5sASsa2+IIJaekjl2+e-5nw#eMFfT3pRiu(Kc+VqgQyxO zZehGB{|v=x%BzL zcP`|ZTuRYeaJ^w8u$PHvN`03`G>X+Y?na9Q0dtty} zu@dl2cZAZ{q@!i-BH!bTo`2ClC!0O_t_^)ohi^)l8bq&8)-`Cpefy1pbt~}Q#-n~- zic57;z3gFdtIwC2P}j5SbeZL|0YRj%MIU5w91xALra^x%?53>3=`owvT(R$ z`IcD_;$kD)s6U-`>1ZO$h)dbiyl=0@rn<{scoq4yA|a|IwnJx(vf5|rGKvhAhy2^xr1imu3i?QBM1Dc9CEJOkX|G_3K0c^^5Fq7b%Fpp{jWynE&Kuoh zZREGP+on6fdJ_VwE^V(!C&a&1hmj=H(K@W<-TC|JA7uKkwsWH{se7OnZx94Y&3Zh3 zic#j;F`AZdG;f3;KH&pmY9z##GZQ=1`eV>lS%}8dWxJg%3|≻r*XDG8lQ@;P9l@ zxC}Y!*ZlY3?Ao#ZZu5=f3Wv0Yh!1=a)%?gzc2}6V zNe8Ogj6T(n`ZqaO*Oe8P^_%PQ8nZ3C3yLNOSFeFC={E209ORjt#FkV|icdP0?{FWM zy=f(%$NDvNKch;}yh>_>^ObA&e(W-U=E$G9_*W&ie8-$Rykz!KFdmYaC)YEJExTm| z@Gx{Xd;1^rJQw>OqduO&N(-?2q(9g zU{{`R&e|2!&y$CA_M06yg5*0U>m_E{;blHfw$%!rrzN%(nZ1}b$b6uG9WCW|eKCT* z3fcPnaxpnF``f{xk^U#vLF@Pi_Nk#-nN>k! zC?ZKBXSd+gR&GIc02ayk3z@9{U+d`7coiFn{8SGf_<|24GPXgy5xf#KIWu{9&uEzW zzjf;NGlz);{cc7Y^Qb-0|1_FO{ZJ|kl= z2(K<$c!Y#)!UUS%;DA7v>(s}OH@CL7==g{)n1z)mAXNs6AaVv}gXzVY#O1p`rhK$A zf9dt~7QNeZbh|)Uifzq=oLvSpq10mRHkk7LOTU4AzXbe_N=vVbWu~O0q_1USW$m+D zlhATo<$yLE1-CC8x}W#;-kClXGh|I4$>zeaW!XnJxdTmxJ{uTw6A5!A{Jf8_n)G|j zh?cBe90EsyShT}gR7AIeKHlkmX#oT1FGpIO3GAmpT#SM9tlgB{+*NOHnlXRY6hLY0 z>e}v|B-;=pJB63@N83Wry9<8<1f#T17I!Z(Tgke?F(Ra80XdSXW?C)kR=TqMOu*IfS55fLO^SZ z4)ntw1KpX1p6^T0i3JBXDUhR5puh>k-ate#=qT0zwmtfG*gvIzdN>ac{CmJuvY$Tq zb5w`_10bFEjcygMIFn(ly}N|spRH{`MlR#F5buO=>MA%?3auk|!BTWvtMY@ByI<@& z@uc~np$84*5;#KW2gl)y?3d)=xaHgSvReZ-sOVUNSvuPLXB&p+f1v=osesGw?%yw> z>ubAzZjz)~WYNhD^hX|8r9re^y?*^ZDE{84_3=+-JaNsJ&Am)m3i|F{7~4%B)U-0Y zgP^~jAHi%x#hcGL^C?gKvC8}MRdM&UlQk(t9G0;Q$x^AhLMQ(O(xzQQ2@{Ea9xLXM zLiV09C1pdDr09ef&fBAK2e%eKW1?)eG#Rs`YIcDq2a=D)nfd0O3O(Mt77#l6<6+z8M=G0oZh z1b8`kbmo4Xv$mg1xE${Y83ebWz9JB&=A1Wl9w4^kJ2*`dyUD@AWqje7BPEAhWdD{^4o zEu)Qx(es!Gr7eH5e12tZW4Q+m5aCj|DK<1VTn7$T=%^bz_W#DuC7rDFNwmHFKH$TD zk1-t{eG~mtoHQz!=K_NWzHqWS@>fm}6pK^{K8$Ld`=+XKHy=S(#I;Z`Sp=LajB1R% zj+bAamylnyt`~PODF3lq&u(x{*7=idzBWEOP?b>Bu+9Mn8 zKmWb7wS{s-|JJ9OROPG1FoBS2R%*qPhpz5FTF0&=s8@`443IO3ya0iK)i3Q8(YgDV zEmK5XMA&Kk~&+kTiYb>PTur*LmfoOk#`K z2wuHfsXmDD@$8c(V(GDS@rEpXj8G1Gnu+^ogfc6sZ?gMXN&`LU?TPh}2Kz2jcO?A@Afk)5t`(V2 zGkaK@67S}Qwq!E_Yzg-FQr*ie$$LWoJYr26nT=;I$+y?6(36ZbPOKy^!nGWQQnP)5&-VzZ=BCGD(9^0Z0Luvhj{!!iJsC!GPOb;5fQ!FyRi5 zn#exhAN8~If-lm%ND{K=pF^u?-iV^}0wBO;6pcf2fP{w|2dRsLf+k zc`C0#m?O;2P8VRQN`(zJqR)gorSEdi+}sdU94vECpUC8P4TTM*td9vc&g6lKGVHFm zBM92#5I^m#xv104`!1&%6^(%56wjjY^W7}-cud~JdLjXUTdF>W+1oG7mo%{Bgn=uc z6GkEat+C1Lf0%CN%7y~Ug^hFJ2UhNR41K~E-VBnL$KNA=)%Qn1d|S$x2r0H%tlj3_ zC_D_Te>tKQx|b#ryZY{RKU_M+2YgG8KNf#n{pb!2#5l{pCChc^FPjMy^LA^=lsrFy zy3@FRMM_TJ=_Tvp#v>9Fay;+E_9TZqH40xfN`rTn?XkRSTPD`wldcT9+`QJ{Cc67e%B=O?KuguE8*2-81pcFbfHcv*$q;K z(8b@%z`hte?0z`f`zhJL2J>$yJGH*;(u^JC>U%dAXI1aQhDFl9Nm6<&mA|pCb-n&6 z3O}7Ji{%SMzRv~~0%g7rNu^Hzw`&b8M#-9WnpC6I%g?B@n5cbQca7sDkooyBCr5AI zR4`0yZ+081mKqg&R0bR2X5h-AX9^F0YxeD_W^o{G`W(myCxGY#j06?u>#`X1*xQYlc5tbO6%kOTH{}7DW)3k}5vJmzA&pE)gXyi3yFr<6YXH*7x7pQ_~yqTWPr>TT>1itt)~b^x@M zUj$QwcH_YCM9!(BJhtIaF6R`~WuQb|l5bc@cGOyPKy9WsMQIyWNs-O-*m zr^BTn65-!vYncKQ6A54H9}_z8xVCT{k0i{&5kSJcS1KuL7i6OTQr8zjm^WYk#}4gY zNXM?446H2nJx7=nhiry>oSNs15@br(kg*W+eyaEIZD;_Abr&}I8tX`&F8pj1=|{HL zJJtjn(|76{7Ne&MdkY`#WHCiXAd&^UE`ZKA3?lA-tI-=O7PR3nH}aNeH1(yuV$ChS z8O*3&ocfdMJnyrg^M;0NVX~qN8Lx<`bJXF>Q0^DLKJ?|hJShC7_l{TeNtI-Y29nYX z@eUrC^L@msY|V5C#A?wu=0hSghAUWGbu%cmI>r6p=3ManX=7TRIjEoXOv1b6-7?5IO{p*s za9|M7FP!3V>l(RPVR{QTx)9|jb$z4N=`e3MceUnYf zO)y{C{VGpd%Z=X2$aHPz8OuPi`7_L z(g=|Q7%;$^07F6lGiK3>c6D!$f~rlTUnj8TT`35zS%?${%Ae6ore>mds00IE)E16K zA02E>fAk+qa;oJud1L+B=Rt0R&Qo_|so)8S6h7HhV9C!6)yGIJ?$4l9 z1!P5NkMUHAlHk$Szd`wWZ3oN_;Kz5dWj}GKYLgz%P-I809(c{zin_YZ*2^~@>W?ac z;lR;huGB3Lfo;5slpH$LDWj`%*8=%yo){ByeOOM;@v#vP>INEAQD1!183y-Q2O(%w zS}>G}nIrqTgx7Z|5!BrPwwpx@My5ov2*xO$Rl(*Kc7$xSf5^TpY$=VrgR(C4vRVJG zca0*}xZ5iwV?|zubI51f5*aJy;8q@tarfJ>=&aBrY-}4P*sXrjjJ8L^Yu#Ix&<=__ z<6c$6-;dgxObGT^Ern7})s^Ee7INJ0NXc^OtMkqj`-zEEb*8!kBxWw{D}CGCFX@H9 zXlCvB;|%e997Yx@92Q3gUtEgnWjF5<_u5o#=E4e}syxWg-!8}0JicZfD!DSw4znT) zqkssuQ9=(C0EgpAvl2(cJ`)X3-O+w>XBJZ?)d7+@t_!R(#jes$B!ok7b+tE`zuE17 zq&FPvv1u`chBA_U3CtIvVV^+&a{o@ftoW>E6R@)8seQ6LA4n^?XzBsxb-Kx1$8t-2^d z{%x4k=1flFI$=5R$xG4x9qrA&=$6(kV6%_1U-CFeN@%%Ra89{e`G~) zV^ZYD-xB)Rd0d(Ch1iAmKVEhicK=o9@761@b@JoEu%(e0@w4i8bT|)J{=eIafKy|t zDqXT#Oll)P70$%nwDi1YZ$vbn-5+MX{o+#T+AQ~{inCB2aU>7a^CW1t_5MF}y=7EY zTln_9k#3bzQjl&G=@RMgRFIIaO(R{>ozf}YDJfC{(%s$N4bR-3{}UhH_lswYGjy*t z*P3h2JFe?Di=RM1rZCF)R~^h2X)W-?{T<1IxhXP*(Y1a$;s|usnewXS!8do3fvEsn zMsU{+%CF2LK~G7y#xri_Quoz;Wom06tnXT0y?crwOC)5=aS z9=!_-9nxSi$|bMcZ!x7Gjk8te7O$eu&b`d%K>XGuOHYWeF!;w$7^idvOOg&LFc8QfGoL zFIMn1#RMJ}+rce8oDkXNItLNUN|T>` zBO$m*{az=r_M3S-zVd!k^TPd4MWV2EQRmNreTDuaDue>Q|1312nZHOFeE&KiQJt=l z_sV*0J}bXQGK1hnSN!sa!ewi8uspS*+Z)ZkMDTu^I>Oh8m25-cwq_|Xs*V{$3PRAp z$F$iG%A?B!y4XS|oYq-9B(%Z8pOahC%ug;#M(M%UfWlH~G7FU=VFsE1aC4FwN!|ij zq&`Mc`*vs7At}W=Mus}*!Y?gmH5x0ue^{0UH?AcHqVvp(-%7|u*eM9F=zqyfPJIr; z87Bh|6kY!aGpi@^79w%&g5;>p0d|+i4Sw%RNyLC!6WBcW>*65kq2M39kGOa!X&>G- z?8`5V1{W+p3K7${96!-BuOz6buICAk($Ye+AWj#u zLp(~&V2R3S6M$Rpz_=lRbbB}>Cp7zcsWrnXq+*>IK7u6ILfL zluPj*_Ky^w-CK1LlLoZMi|$lLpjb=}+A%vF5~?Ifx7))$#*rCc8t$mWg-aKOTZypI zF?k)`d=f#A6qsxgxbA`25XhYMfk!ay|BLt_)ZP)6Jn)(FVx}8TLia7Uu^uU`vH?n0 zU}@9-7fkI0&Ts2?KHz|oJLGDU>UajJFt4dWp>JT|2Y^oiD+0`S3B*4AKv9B%hiKS}RWjtV zfrK_hkZuC`?$$3XgFok*i)w7Z%V!D< zA22f^Ofcq+Ou7V$%80=0hw1g_PcS?#s9W=I4y=KS@M~7qp;LejENR9b4ix?5!7K1y zF?J(IF|iU`)EeQH_2XAyRw2v-k*%Wk16Qo1SX$$|63NK#T-z6X);gc^e|}_ca5@|S z>KB-`@qb_~Fr9OK#;w5p*(eZ)d?f|Er+2X$DRPGf(ivv$uR03(t^KUs~LuP!Xp?6t8s+-`vxol6C;U3Ll%I`e!+YqY_OD?!~!If>;)Wh4C2!i=(FpV=^<1H0u$fe#yn8FGOBC^w|(c+GJbTpO+!uv_g zvg~pyk90tzH0~ZHm-m{VKlSM72(24MITs098ZXP#LgcJ& z(q5m^WWA8R>U0t{K57GVJd2s=_L2o3r0?fO#e5yuyh_thz62XV9HKOmz${v=?h_uM z5-O}&vb3>b4bB4S86b@tJMe+ckld=^j%&y7!yLaj%5_Zn<)R(LtOFzm38v>cdB6=lMQ;g zp*Vd)HOdzWam}<<;S}}BOg+@>M?+QvEV=u2~oEcK?QEl113~0_H#DA!9%_ z&=E0?h5CapZV@O2dI4+eXi`6`iD@6S$)zhU2*BV6%-?tegQ)Ap-Z9@J=;^@tRWL{s zEfW)ex^}QwPEVv~cHPw~eXU}2YH(3?;GDbh;t8xM2J1@#=|ZDY6q0ke?2QMfoO;cy zpUC%9`Z1W53s{N(KF5U+Xt~vj;$UiT;A6=WgAe}Jy+t4s)3ypnJHQpZQyp`gLRi6Fvk}RS_*IqZvZn2pHV|0 z=2`?E&*K;qR6u*GKUA~-rt zgHI1b5CNEq13{rTcbPDNGMECws6Q~7rNdA=Kxq2}=BKa&9mz59d*$y)E?xz<`Bl+I zjLczFIx&vITJM4My)3n(d~=tfo4v;FEnHdrUsH?o99ss=-NOb_d8+_4K&l(YP&)g1 zj~MVgEI?j?a@hAlw0GoDDFylhY&N2%0l+vj1jAwkwpLsyY-nnaWj*O{0$K~keyBII z33)ZJy}QP519u|-e4|rYltLCXXvdR*X2QdtpT&0tN7B$zR}2T%wEA5H7(P3`G?L7- zK^abNtk}BK-$L*7DemUyQ%9m5m%(H2`}5~BkbS~L_CSCL0gw%tWBEI$wN5U-kUtke zYFmKOq+oxhCbn{tL+D)x6K=Xp7cqX311!=shHm+Vtxk*P#4-&+554fuOrI4(3%_kP zb>+(@vcdsvIPgPA0#Yg|9zg*4UPZXy`W5n$yO%dQxKW)E*^>dFT0 zRElxXH>c&(NOz_Co>0+@+kQ_==jgzsefz(E<_-2 z58j+QUhQ_dS`K*0W%D`AA16$H4s$T$MSuRqbJ$u3CPc|=5S3hoj3diMr>tAa5>0U5 zq?i{3q1%BU0BEl)YWaocgSfTX8uM;I9WrB2 zF-b|n_!&`LBDhliCFbX{HpNZoZyE)p0ua7%YPc^^cK3GuaIhkja7#?@3L>mEtI59y z!qIB$#We7m0HPd#2@HXvRVIMv({=?PJrBmDE>>Og^CP_p;r(G=Dz zMDS|=7wP4!)uY#-jwGq=7J?lrnIjAgHrdO|OKKB_LE21ny&CjU>%%7uH}gRB?)!0^reFVw-7wEJ0+&v8`T zJ0dk`H9(wt0%%dnA3uKF{-~(F67Dr|%iYFaTs3IPF?KPvOtL0F?Nu&Wz1 z1Hpze?e7R7Z7!?+?)giUxZ=%-L_LPNytK=tT`j5nx;Z)CJt^8Ku#t~ zKlK4~nG1}|p^66qE+;-`R@g@t6dL>TRhAKAZOaSLAO17bf+6lfP1h%o)3bC8Q|1MV z8ElubkDSakn>u|;%77+y<<5}&1;T3>gB`fH?Eowpz#f4c3P`~x#RSL|&X9h8)fESQ ziqVNQDiH5GAGNp#(D*viX}*1F$+v?s!vC5^!|?~;JE!uQ8Xdkj5T zPF!Q~nMT&!Xj_#NW8Tt~K$tQrxk&qlO~aMhD4P^9v)dWZbdV4{$UDEb*J+A_0=(WC zHvB8-!)Y2c8W#R7)UFX<A!4zW zR6$H|*5$ijOe2a(!=AHr9_RCkTP^VUD`1H2xzI>xvuW>YfLN%k|D!8{b`X5(lgB1X z9qMN$KrpLVcHQOJ0V+^`pB)4t7PPv_n93!=1cq52^o$PW&aP+>SszA>gBQ6_3ZU4| zpTrd<-^+@+LJ-TSL&)ISC%)g1{deQdXZIH>V6uLYDBULX{a1^G{ryXswqb&h{+zSh5tAbGz*Bwi$tk;5`ZrMPrn;4< zSP7sRu$u1vMH0&z+=&V6o%VUx^LaEo5k3f=;5|Vjlk_a8nkizZ{9!SgC% zZJ_AvOJR<42zYbtI12@;j*e}mn((mmoasDFuXB*O4Ii z#;zZ_xH+I7ZMlZeQi3b)8( z2Zc@@B=HUToc3(ptgW?0Dq)mk^+juW@@5Ok@XXX~)apMiX$v9`8--N=7dfj}St@M( zr^E1*sFu~URl&vIBcA{x*P{GP0RK003#pyqlP!CorMA_-7yfUEfKC;m4jwql`MI9` zphg%@P%EI>;B$SVk7-#9L)!`yXMHipuugT^=SHPFA@fj)Q5=l_CUui%~rw3=d4WmUwOb0-xQ zCA*O6NZPm0%|o(i{Vrenb5p>jMj)z7l1nc3h65c0w86=fA8gtB=fifhozTj%JObFg z8Lkn)1A*0c?Bh>$Ts&WLOn1#9t!sxY#~1fLsJq<6(mAf(KE?flkw34I{|A`)FDbWN z$BnJL@p6?6$6xk1lS3KjisAwRp4of9)|XD^Gl%(Rot~-r^ohkqkeWRn#pEZmpMrIT z2{1e|y`)C!tRp>5aK3BDo4|Gf_Vb6{54ba_TMlTP=i!~*uc*8^qtm6BwtxuOc?gQ} zjU6|4g^OJj&X+v(C}R~|Y?xMWHFL`z!GSQ4j*?KpCO%BLZ{`9AvHL>7#sZsa`c1_L zl;L{Neqx;4(TUD3VC-2QH*^Wt%20mAw}u^Uw`4JY@A1%@q1-iYTH0l{=y_QDe~Z|z zEkA!U!$PGW_*UFqL2j4P#OhAL6n_VEpcGJ!kt{WIK+X`o*sH=fg?#tlCgyUfKM;PW zkILDK(5v~7zk7CY3RXJ_pf~I`pOd!ryS=u_hTTApXbJw+3%9EkGO}pZSl_zdz62iv`q5UUQmc&Ijm+OXLsvsFkjhSU(#pEkgo} zj4%=4wsOVl!7pWPWLBeq+FBGBfvI8Ie(j?k$eFxn2DQl5+%peeLW*BPr?E z<%CScy?npXrFF$szwo~+A=W%X%l%1H9S&k?NhP$(+q_>6M!B*AL%-T|TE= zrMn8`;1=cjPCF>4VWN3kS1yZa0`pwD;LA$;&$Sm%y^mtz@Qf$MRZ(2risx3aiNMw4 zM;9t^o?K9U!7tyI;DGFB!*4AxYOIQ^9Kt?$CEH+U>(2LSTIIg&G@nHp6*G4JFb|FL zjWwG+RI8GeKWyQL#c)^%ypOW?Fk;&$y9>QarhYbbqkpG$Cd787kOK8{Cz}hIk1uhM z0c)b_;e%tOegJy5&N8_9;cY{2ZEK*`WnzHVPq|SNsrr9u9KBXw)R~h08m+1zRZf*6 z@o4k0FodQhT|!Ie+XR$|J+%#4RPhKEg{JA!VavVvs?$M?Es0i6@b3e5_bTn5VV)mA zo)X-o&)esi2mh2{rw`BaHHZxhfht-n{^^EvAIhare{2fHNifM-(BZe{9DX`((P}jF z@YbG)y{wO<*B35Q#8iYdR>V(c&e}L@`GHx%qn{`9v_c{FtJgi*d_Xp<{4VJ9Dy|A> zJH_q^^P;i-FlNLjYo3S_!2{0>xpc>7N0$j)-p=mOh)ZfVI*r6XYs-XSnlO9dPib}Y z-6D&%d1Cdk0BY}h;v-hg(ak(i@( z7Fe@Yfe_l;s-n&B<{DDI>&1&?z6E-G&JCI50_81;-;EyCxv@J_}#@>!yBMBmQz z{D%W7Ua*C<$j)YR-YPmuid z3)E`jkmYPXMEvkdo14?|yZ-jn0+T|Zqj_tIp>IK7eTOt`go7D)A5jnN5h1YZdVKQ` z(CJ9b^ms>*{ep!j!sLGStN`;nT-cs3*0m6?wOfh_ zu!+YvO;G@Tg2f9ETjewa*qw!9M}a}S1cM0d6d%kj`3))O{Y3c%Zv-Uh31|$L@ixYX z+C$s+)nO+7ohH;wg1$7Z>7niGLtHNHd0UtwnDv;c!}E9w(Jm>8MF;P#FFGBa-y$0e zg!btaL#03?Rq(KkPo!YfKSHOwzAwp~L|g?}Kpad!>3i@Yz4f4Hsf$z=F0qyE`@}NS z%lUJyv#eX>n7y1n6qkW@4~$WACl`rBJFxqHi12;xDQhKdQcd$E6eW^JHi@-R&F9zA7_Y?pNV*czv+%3^Hy=SdhnAvKXw64~|iHF9LY73Xd z>8vH_hxah0AIIwcDJJgUt(p;()06S&M zdA+}Z27vXY%-ravqYtAuSdqgb76P)Td-yKfi@-5Vs%K*DTSPKrUc3spmu2D;7hh<_ z$g~y&@Ijg#G3Q&>-$FyjdAL$n=e~E zy}2pU@avkrvp6H0?~R{t%8NK~zmuT@g_By4;`K})IJ^pQ3hLT10A36(U2wTy8Ix?~ zmI#nSG_hu^qKLG18nmg%#Py%d%=L72mxR8p(-HA{2T*0}vYS8$aSpTS#tPJ(A+kq& zemEfUk-T5`1aeThQ|(7=(L5US-3a3A9V*c6SkjXswqOy0bne%Xi>b-vx#d@JSwB0jz#xG9LMA4b_^tU-sqolUe%xf>5TjR;) zTM($00TRkH-5Bo{rgzk#z~dXW_1;OZ908&b>zIgR-bztFDwMQ%_nekT&g$x0j3<$9G9#u4Qa%k|N%YTwy^7gtoze$ssV>3BR=lqKs9 z1~K3FKRM|Okt-QkFWh~DNbQ081x0AV8`JPmLk`poDMP;_1pf|l&;AzvR;KGa+sjZY#fQybfTOdMRJ1)f9e6qoyDn?B# zM*ybfreA+E>t(ijEvN?N0}YtzUhio9j!lCKPz*MkUhi?mYj0~+4L4heyGgu#Ei!WB#c4cB*iY`(d?FsTh@fXRe|B z``!1IhsM{;9a61o%OHb!2jnYZHDM<-935yvQgUnwah7vBEy``Wh}ym{7B8{1{NK_1 zS$RN|kJ5~E=-L(SM>}w%f-Ct7e_;7TDc(~?(vcoCj^(R%(-2+(?s(1}-v`iX z4ixKJSGx9aMeDW;hI`?p>C+V?A`5z|2A-cFoD{z>emTu5(b96C`V`7O$^Ln|Qc)dZ z5jJi@4ra!@u7FQF6?*vu&`ku^8?ygXQ^(;)otz?1p;rcN@g{)=9^xy9>qiOAi>P=- z|EFPp;&Uu&X*R*B8wg35b920MyAoO7fV~p&D-CGIL$Or`|FC3g2FCd)(SRH~<^0|L zYi&F82u1rqGhdxy=#e4CAhSzNDFvrl@Pg3Uy3=PYJ10S2G+T*lQ>1~FCloBr{y*AD z5niotzRY>xQSQqJ;}Zf$B+bUJXf8R*lxa-6HN!;-_oKf!<6&meh7jQKbkryKTZhLrF3w@~g)p`Zi=em^dnJztNJ4WWsJjiX z?Rdi5+;uxiYF~ecjSq7UjL(sH5FDxzq*!M2h{puddb3DeGaY@QWSh{hml5p;_L=IR zwQaFnM^6T>83#DgQ+OY_zd*yZ46?Aep=x33NH|3njGg0xI$?JSq)PUZm9p1_J* ztm1x-$dl+Csq6e_SYMKEXwQ;wNp&ReCcj8UbG_Or8mF=iJDd8v@4(iBx&<%;p0@wj9-IXB_kPpeYB{JH~4uN?hs_(;SZ}J?a zzPrT#`Z`j5@AGzP>*D0-WOr}-{b8?|{?Eb;|>ymGEge|ALwZzPChQ2SkcMbYsrlJ6$t#EcQp`g9OF{0iN zr<%JR7yv#1B$c?=y0X-Er`Uvfc*0}G%n7}9v&s_vbX^6)9|Qe8zU?0JZrD8vb)VWZj zipq-0p))U^85wlsL^Td~g&d$)A)7rj6(48Ifl0SpvlhLr=k9s%KJ#5aQt9D>3ZR#R zgE}|-nXO2J)2HX%)dUJYw`~}J1XZ;~{ILFj&!hAHg@YKH6uQglq|#6CG#H|mM0IwCy0BdtDwa1YD#fs)(RW0I@nX_kNu*C)4Denjmc zUy!TtAU+I>*M^w=0kcF2rVh)W1TGH>cp1pwS&j39L0jyPUpdvQ_mF>i;{-Ub);V#< z$7p41c1~+1S7-JtDN8$n<$q-=x(r?(yzNt|hyxGT+4kz%fp!s83&`5Fow#Cv z;ujCU-txKOFjri@EHH@|K&qmowHgS1F)il1k9*?~Gnns`(u*o4+V)d|O*`X>cEsUY zN!($KW~Az9RHr6r_>CC;xd&0+d6-m{GIy;rPcA6))n8Nj@aTB&RNL817_5;@W&FD$ zy|pZZLxV)0U0KZaU<)cJ9M%9`K8vI3EiEo$u^9id2ek@b%bb1j%q80vCZOCBddCZa zy1;Hs?a{#D~v$v0s*=`y`tij0>-SJJbJw1j=5$K#l>|> zeu8B=0-ow`qI-`e%I~#GAV0P#7^;v2mNB22a4Iu^uG3+pACj4@EXkqhZ4hjoi47f9 zy>}S)DSq$fysCo11Mkv#eFwFF`*z}Q)|8G?OjIZL6@uTW{ndv=;rXg6Amk<1y&?7Q zb{t(HE5n(pWdZsJWI>m}JCW%!RTQXH#e9#`tg=l(p)rk*r%p6Ttk|ExT=?W9^U@A} zx5-CrTN3?DM&l1Sn+|1;Q6-7&Yp4*VlaZ;!ra0`!#ISkOvWljaIShQyB&=pK^H5hs zeUMz8*J*;sDHJlhK$&sg2`Cm^N5}AB=^26zR-17)RZb@=6}(jt0{LBEvo=XrPgKAx z_x*h}p+|Y5eq>)o$wwCF3)RL`(FP1f0@~(A?!Q7V(z*Ul81P;j-hU)!77ts)^OQGc z$FW=Iy3;*_I`{9bI~+PePXYW;Gw*^~xU3Is3LfqDcyX z+XEp?$c$yw8U=4gOT)Hj0mF_~D)-qiVq%ml{ zh+0paFK-^(^Eo3w#kNQ78LE+K4%Rh##OjxXBi1(iQL8@^0i`9x)dRnvPk?fxw-JbN zp8HpfHBTfK_&eQ#)eSz5u+>oP_h7IjCe)ZKg;nNRiU&bH31mVMaX|Vet58 zfA9jG0*s(y30EgN)jbTPCV={H7U@7Eus$i*1%>KpS{&}${~sW;*WN1 zm-yobXP7^FhEVgUUqXI1deW4uTK`pKf=*RVJ+|@Zls)+Thh`LMuNDrR$pMFga{hcI zJ5*9tvissa3-BH_U)O>i4=i)_d#Ujl=f6uizTZY%ysYSZl$}fr=lUcEP6`MaU0>NH zSvvuMxjnAAT= z)>@!bi+reL;tsesy@ue%@$|4bKE?Zd!8lDx81Yp#{~pG+25d#3>v0LkBOo|E^n6SP z$~kaq063X+V*f%;yw51`u@^*&d+kH_^Ib$Md#4KDfe8)Kn|| z2$1Ax0JYOBMrW=I?heEoZWRwEVHgh)N9YEBid z6b=FzXn(0IF<_D~vRMvzWM;iy-bmPCPJEiBRsw98XO*P`kSgzX8gyV)o14>)Uo#2a z5zREJnuc)`VW*_DwdGyB>+A1d2RO&E<`Thz|V+BfSjH1Onv5U_88P}MnY6Su)B{AZ~-j+}@NFYV&d&(_FhIu;%uV&K#H zB$kie9f%ZA6b)LYzoz&+zm#JGey^+hB}vG`G>cBVN?1r;fAQswFks}mz!WGzr&u!b z6G#XFa~cI4E^NaG1dG+x)m00p|F5)fd#a{Tw4SWL-QD#0-oeA2hdBLp=esK1ye!%# z)+@Fdzq*`q&?(MHR)eCZfP`#gRa37wmq}X(=m4a@~mqI!XflA54kxGN27zuYsnu zEJ^cl++WMq_6_WW1K1gH7NtK`6aSxcbkKD-vY0_3Co)_SK`T_l{R}K(cuBo1v7IIx zf|GJxi)-D-P3#uAh>&^}f^@4`eOU%recHtlH8t(toB9LI)1gAn2asWA@T7`h-x0K> zB70{=HoL#{lzS<=au*b9I6jw-NiMRlpc>~w6w|wj2K~}V+cLe8#&|Ku#NB3~f>-z>_u)0v=xz!$+ge?ei)T2If-nro7){-s;rAM%E`~NH! zZ210I?5x{WY${@W^geGCv=_*rll(!zz`pr$xndrmL)cr-9ejAskjF(gejHApcS(dZ z-w8_D$(tm8M1e9VM;KLcjyDsFi+G`G7o?^L^Hz}KBh`kCaeZp9I~`w6(>x3JAqMt1 z?*ADMIGUgmXbiz|fEzAnd($z1SpT(!gD~u${&8||wk`q?*#R#zTkm8>y`@A&CF3RH zR6^Qd>FUpSH>3$1t%=9(hmfVsW(KabWU8R$r9A z>YU7eTaWy5_O$8`sQ zer~G_4utXR^FLm-G|TgSP0doR7HeBC$C0VQ}swKt;pUDKHowphcTM`ziNnzKTUI-@3sb$ zgzgbgcPj(+867neEpa0~d`NBdlS;Iz?^R#muo7aVlR57WYwDD6{WC5S^ekt>L&tSN zsp*B+9DflVSEcXP`$vkMU|z}VZGKR^j%hi0D|c5B`A6EC{G_ttMehXx2z88m!d2c_ z9(4Bcb|5Hd?0oiYzy#GhBG-vBwz2b|9b2%m(1bsp3FJ;2lTnOV{m#4Muv8D|p+DKd zuPKC`(*dJCa?aVnCwy{z2{fvVAL|u%H5>pv;%)gSzr5Si+x-IEcpkGee*55X^->R{ z?1e4vACMqT$uv=@CvSO!*rKvZy1WpVY-yT8rbEACtoTgu^csnV{BNeRp`Fq?fc)_- z%JCXoC#yJpETuZHlZV18@H&BA4Dad!a~tPk7J+nMn>pBEV&*j@bZ0nLDCC&941W`x z^jzt5-&I<`8O3$z0z!F(Gch2MuL*Y)3)aFZ%AK(LKM-#1!>*!fDPq2daYv8a$BP5r zmYtiM)vMiuWS6Q-Bmbut3n(jHism)pJb;YrFkbs$Ha;;iy`1kbVYXYVM$DxU)qE-C z71```&@X$?vbadb`4I(y9BnRnjgJhQG_uiFINEjb^6h}JF4#vC1a)Eu-zmS9-`Uhq zZiv!ecpO(u*rdUvp=Lz$LKjbI*KFTN85?A1Axfz6@4^h(qFr2XmC2oW8s~{L{CZPw zq3&A}70c(t8N9-fKq{97`JiOCAi*_Mayfoc#jC!A+bQkY@F#23qECrRHzPvO;WTdg zrZIxCu`QzRLvu}DtES(l4iuJ75Sd|iP1&EZ(b1A}PMnZzWk*Y-K&fPt1%8{B(i~n) z4vVMGIrud9kUSsTnthMCG%t(SR9)$}(uGy2|3MRQM&)J<7=nMtSQ?t!VPD<>i^3-6nM5=&fRbA-^c=R{q?F)tkpk3SQ~#Apbv_@=6uHc;HHw4p@T;*(puh<^F2X5erU*QQwXqW6S_T9-xqCcGj!R= zdDuc2_5_RZ8uM@V$TUJ4C)A3@Ug#^cb>w7@n1DZ@^4~BDkABOZ*ikG{p$+y~fu=@t zmOmf+T2O{uGl50p)Y6!WckAAGBhX^WlRc6p*K0s#&c2_)>Q3vsYRl?S;*b>gHm*-h zmsXES!g-!q%gIA@cOaK`;RDN)EQ8~>)L}nl$rNwT1)-X5f`Z?!WRwOQzHcd> zDi++{?VynRDCLdzyN5X1Wn`v)8t3Qyqz*Tz%P;qP=JIn9uh97BpdPcvutN}Ge?B*NVnI0WA_z{XkX1Ku8HPI{yx`1Zc#7;wvw*FA0PeSn_ua? z3yk?-E%j=BPkXDFKErfXoU6a(U~^(*-#+&6H@h3saSRK&#|hO~nMd*sUYS7=)5OhZHV99qF7<=FwSE0dmhamm^f_wEc#9LU=v*2vv)V$frP&V39h6 z2DlF1Kg|FR z7W9Nx2Rr_r$YkN>C28Zh=T9v%VfzPS8J8-BIk}zq$AE9+hf5CAaDgw_y~pgVsQAq7 zGo%Qz2JKv$?jBb8$G-26Y3}V6a6f2{%ImUy3+c*9`?hn#?3DL?CigK*ub-EeRQD3z zQiHwAkCDC0Mp*gV^S2v}!qG^`^-5&lZ}xH@o{#k=^VVPJ6499-P?C@QY5+W$+U1kV zcqxzj9Z{{RdqRO(hr8^c zg%)UVXg-N=_ps#r$)iH+ilFl+EC@S!)C-)-p>IhjvP1{yCaBYJrPaKsX3b-|K7_w~ z$@VuEKarHA|J27INb7RaldFrNQE&N^ti6Ez>LXd#QAcJ@QgppT7bc}BWlF79N06OU z^>EX^-Ao8aCUI?*x&aCmy(gBUOO=hLcESA(IK1}(p@D-+B!VXp{Q^| zj`Su65~2RSL=C#=@-yY}uNhBD8mTpl`B-@WuB}4rjip(_1A1Az6KT!N({F6#=%1W1 z^j=Mcah%D$Ydc@rg%Ca8}l;ZrQOVK zzP0t5I@x2|{<}sv36zM}oKTcW`5U&?QNu80Ry!?1)9DAQ{mx`}z2Xq9JQ~|Al`OHp zZQ~0f{m}#_vsJ{9I5FwDoDj*h%eQAgt{|$+B1bnC>P(NbN{B*PJrZUrD4sf%*hi^C zutlZDsPXZlhx#=(^PiZ=3DM)PrgPfX&IKF6rGzc%i_7KVV*bI;Uu8lP_0aPIodr{f=%%fwziD;dc8hK^V42k$Ya0K4@~ z;tti|awR)lhLSm3N3KEW;49d(5g!mG7_OT*l2q8ueZU_B668B$HDv{Ja%P!9ZBAJ| z6a6Ku#RZj$FkZnsl6@=&dX=>fBirl5ke?QR{Y}P_yvC{ILc!#iJy_QW=5U;~hdfQ< z3C(|IcQnO&hujLEkC{n1&?JTBK>(jNySg4Vc%ihgmwXb6HG1kX`DbR|4%zNfvyv{4 z2AF}WuW`&;+@7f?A2Ol)rk#Sz_ko0r?UbiA|fpd%uhp=Dtdedh2Y&UmOi)^{J#$ch5(5{W1FMPmia+_k6 z6*C!&c8uBGe_*HC%lcAv%A@eO(aBxN#rxrf@XVGNsGbE9y7Lia57vy)QF>% z-@5)UBk}v=defORwwlE|bYtM0(uf0FAX;X@&yG-TbmfCHfk!ur_azB81`2krO)~Ch zM1&<+wkyA#uV+x<1n1NNWlQ(QX<^|44h`*VShyy)^3TU&-RC5PctbNCL8lF=;Q0;J zx@y+hiNL84l05V6%2YBn)wnHvTynB>X6!k&dgalJeYd&cpn|V(zCD_g>WQqk?UHxD z`*cNx!TMlnSswk^84q04Q9b#X-sU_OtRG$ZARCICkYzhJ+pFxieJtO}&n|$3qJGa;A=Gko^RF78_fJI&bLyimXVwX1!Gl{>}L^|A3CHpX# z2!xZKOP*J_9qt=#Ts(mKO(O;o#oP^Of1AVTX8Q>3|p#RZC|)4OSli zJZ7@DOPr`6IBTv5-C#-|u5=G#$#4*TX6cMEoV^jlx*q`cirfACY}h(h2I5cSGRu|S zW=u+v7xhL`)UAn}ltWb4HN3@hm)oz4=`{nykF!+G>n+Yi=XehB$mv@JeT;Q$Li<;CFgmO5uqg7n7q}&GFf!XtiU*l+JXpx_8yd^XqQa)gjX{ zZ)TRyO;!XG(IwRf4@lC(NW@IzOXuenV}7E~IQ8Iy-j)$QW%Bs9OktTd7S3oK?GdW{ z3MGf~xgATq(f8flldYTV@7vYc3}ZSRJvd6`{hl7%cbahjGN!`QodxN+sG<#fyum^% zsrj~A6En?{`L$lrwA0^P{~Qb|y_qi}nCbq^Zw~C^7&;^kDjJ=a+UHejrl-_~zjYU} zx|;B@+#B*CSw1GU@G3G(!0D$>Pf$6q%l6Iw{M9-%j#`0od zPjL`D#ZW<(?CPH}ZK!%5-*ANa8zXdQRwILw2B&Dz)od_9zQyT&_?wrnU3OLk-w3$N zd=9}`OrBi-rPV-k`fxr)By~Jhq9I*Ja_Ir~L=YOtjs;JK^gQ&JOD4eftm3_L(QG>EClbkej~2aoU%hDY zbPE#}3M~50fKwytAKUr;cHYVK1g&Eegumjab`~4Qn$gznSY5nJO?`)0-^4sd|4uO3 z?H#)D+$)xmd%w{+q1A7qV;<)tij)37HnNx&4R zAWM+;1_qkFCcjxZ$MIQkf`)2C8b|U=FGV^RKBsLQ5yD#|gAc>0RV8Ws^15NnjKM=W zZHbp<-MiJ#()jUf1}2pUcO6%1w2!$gr;_P^tzInZ5}AQ$m|F3*5%`|X(hu_}Zvx;k z)kyD5IFoy|pkJFX!m&4f{YL}YFCK>}07q_|2={f;PbahDB_m7tr}g7?Hh=Uur4&*bSl45c=g|q;IGC#osJfnR4GLXd*s8` zGDA)zgU|*DxRUz@c9R!ZM}5j@%?pI!C@_}!T#nNdW7#-{)`Mbx?K)6Z?J&6Dd)IU-ORDQ$@1K?slOh- z<<-!d@@n6wnl@aknl*k-g5Tu5W@zJ-RDo-m<8b-r;|3CLSwMI%|I+!Db@s^1!1Rj` zApgphZz|CGms1OlF>hUyJ$&Duj*+|Bi~{KtJbAulk;!`W=0uiSTWA~f?~CW%vQ<8I zDwuAEW-SY?(VVq+2|hRXTyt0|`Sn&ScynyG)MJI-jdq2Crwx1dD)^t7=H_S}Ddjw3G>vFxL$@A=SaZvmld%zrlx zzRhX*5<}1CxXhqs!w$cbyby7u`0`Hzxt-ko)7E0VkIXTuQ;BD+%~X1UKR1EjBsW{Ps98dOd$Nebd(bqhyypb0 zt-AZVZSA`Jl0_x^`MdI+`AJ}*Aw&TSP0hR9yN8%3zcC1@jl17iDliHrf5+LX3@@sw z3RCB3>bW^#A~vD#EOJI2_dn_Ix&8jmL@T2YC(nCwJ)_DgL;!?*M@rB_0hx-TFxk!GHzxi)8wD0@pw)KCvx5S`P8;KgA4W9=ozJnxm_apNXR2eS5LEE_) z-acs#X|y==2YU~e{rd)2i4?cs$q=x$g`a%VU~pWmWWTT>!nQJJ(8-4b)MfyMmQ5z~@`;A>dYVhV3)`T)uUXG`~LW$lnoLu&1OAMAlN zHX}wfH_uv*-8`kR?ZSEcz$erGBNH?_5`!JaiDglYzHYN-mtuA7W}{>9K)i87|rpx(vts8p4AVBo;vPYF;4nxc06zUmFV%xcJbf+k!auYThAJl{;sBB+q&ik@QbE+dC$mO4UIV z`_fy*3n6_oD~C>wksK89f7)UKlWkF-X&QuUNiA6vfaZ{0cs^H zm+xoP_caKMW$(<}wJpjPI$OH*`E;;BB#AuG5P*I2_y26fNX9HwBu5D>vk-&G3xZsEq=n zJd(13G=ru#(qKndJ3}#-YNXHf<-6tf#R5G<2Y`XA(2tpDYcJ*u5 z6q1~gm#kes3U#(bLS@kvYG~9=r4i-bPMs!Vtq_FrCZb7_C6z?@o_#|ZAQ6ao zU!j>uvfu3%nm9xoP4Qe#OBN(8rmsNKLZF6wI<@HXL{xXt03Ua}(28U+w5X;F62Slx13~@8W;)_Elk7u2GvPijsnKOLuoG-AFe`cXun@ z2uP=NcS=el-QC?F-Sd3gnS;6J9{ydl9<qJ_Vps=qn&*5Qf!)4qGn{~r7rZX|bhg6p#2U)7wD|6B14U?U4GuuU zpeMqsjH)!iX)e9sO^ZL~P_P&a5JOF7Pu-O_dCz6|{;uz)9nCY;wV8l_wlOhZrB&QR z)$cHI)D))M7^Uc)p8GT@*yDGK;;T9*WDrvXZw^)8Tp2LpGQ&jrdqxp)Rdok}grm^L z`w=Ai4A*o!8%w&MXDc$|huNV-DR#~dbEDo|U@BZ7hGu~*N57ci_n6wZmP!OMi_-G` zGRR#;1xIy{sV6@hF(QTo&MS4M*!J3E;nvmzk@|~La>%V)2raLHZF^h& zn-xn(CG^oc6SC>5BhH~qv6jluxPoIMJt)z9k&yR_kB(x`@geB1Z?xy}(fX?@sYwI% zb_^REEkOprf!Q(V4Ypleq$26fRD&myAhkm5%B<7(A(?ryAo3>{4zCR{LrXMUtL28HGb0dvVX@;dg0nDR(;g)~I7cdH@?cSEd#`?5n zcPC$znTRFOV`Qkifaeic22BLuH~ytpP}Ad9YDktBX`^Ff&RwEV=<}nL;jrq7fg|m# zj?_I}c$4!_9)JvNj1+72j)@~XcrjYQW+;*$t1n5+LmnF@mOilBusSzI2LePG{m&yGfrlW$-cJfbLhc=XX znR?GueBecO!6w$#js7xujsEO$Q*cnb#qxuWEp)X0nN=tXkVLuh}*{!-z?p_b){yp@J21Bt~)i^vMPVEpzPMs4XyQj6S+;T zH65QV>a486_p8sfgGCI5&zxXQJ^Rsu>b_bwKVoP4A&jH`>7Crnukp=3;VOM*@et|F ztOp0|wD+E+ite#IchlbbcH^d#)ZVN_X%ubCau)fqhOstc3vV=wv6IZ8_}XLgVMtI9gd2`b2@>QcwSX$v3zgh_vs;^8cjctwKN z9ai0lqiTYylaF6MuzkN^24er)rv|*$%T?3Do-u`p+@O(M7P2qFGS>kOWgkoq;p}k? zRu*n1W_T~1q6KocfZa#O{gZYcm|pcg&vlWt#4YG*eMrgcj`e3@X9dTP`x%K}rKMu{ z*?F)bq@+fa@{KHvTSFaK3H)C~&Co^G{L;d1LDpyLa>M>QDLfh>a)6wR`J03N4ilXR zv4+!16c=+=PdlDGbb(nl)5e+2DfOveWnrRKE5$dE+vp1-pBU~(Aem5{Sl@pifp0U` zHL$BcutyC%J(klsp7^Qsswaf?+R-K1j#YKTwDk9!Mo@JrhKZ)oOjxP!%+_fT$H>~Z zVI%1BYfXVRa@O}kmOb($c7PA5Sz~IsONz%J5%chNV~X;r#BBFr|9f;UyKL##Yj*x9 zT{Ar{-}uJE02^e#(^dGb8Smn7YKhQJ^qOK`D1p;+BfU}xwJ}V_>-DPWg)8+y{2zSY zo9>OLv?rL-Z@|Iih~+Z+%vu`1OAh>G@zyqOMK+J$!z>eq?dyT=QeTx<#KRXY>TOxw z&r*@he@6pu3#J|^+959HsrislOxs)H>Gt8cq-pCd^_ay|B!N7wOTW z;7tz3WRjxL*z5@aWP$?t!Q>abWI6_A8{ZfR3=F#2p+J(1Jyr-nXl9o_>0vzXFh;M_ z>l)~!JG2(t?i_^pBMUI@0)`$tMbu33O|6wP2$)!`Y_&26c&Gq~S=~|Y!8>3zb}Xk3 zQrDHi$JZu^DJ0nz>;Cuzf0U@vi%?x(C>Kucl5BV#Av25JF{m~ZXiZ~i#gl8ri-G_M z{C9=W!lHgpx%+@0ZCOh@+fMtNtR2s1Eu_Osve^SEMnY|~>QvH;Z`|MY$*d^TodTrq0fREf^!+Gny!38vXenf9Pe`l{p{HnaC zjp_T24J^EbA#6VrTL5l(w^ZwjPGZfHnA1lkm_>OB0S~;A#*ykoHU!n>zvp%n6TMsO z<gHvGZ9T_E4eL5H$6aJwRo&eT9lm#6 zVV0}B)>YZ5vn|^3XaU}e{q99H;QOdcUqmbiYY>L^UoC;R#@`zBlwIdrHi|=8HZ?dJF*te=zkAAf9rN0@-7MyT$2cCudDHo zNaj#-o|OqZ@t7|_BbM?3`)cZo(cm@p5KH;>*}=c!uOLx9@_}^Pw$BLk!B|J9!f`PGfQC&xMoH(u5L5nuxXW z+|%(^`c`w~^nE;G3&syW&=kkbO4Nc;^A!q51BEjYL)x)2#x|@#ZjfFkPvT;NdyK@A zF3XZuE5cgheP6H;WE3fC@b=T0>u0nmo1@g3>-zOe(5|Q~Do%)S!b!dUo-%#IIuiM% z=L;+CIr68v_19M}R!<5)iRq{Vxcu_$_IBa>LWbZhqhEaZB=a2`x2NV)WeJ_Nv5`C~ z3rufiQ2}hzL?;E0d4svVai-M6@P!7Sjqdq-y1F`pNxJL5LIA)%p+Qt%!SrglkWP49jV>cyKZWr|_F=0=d0a6MF6 zA=GR-u@QTtlfP7dRa86_+-nB^w1$mx0m_a{jtJ7#ZQgCw3x2+ zL6nVOVG&GL0NY+)_{GYO<#|b~e_eO*i-9^kQbNMkJx)?Wig?W41)+vV6{!e0-gV!1 z5cqD4i=I72%Do-Km8jRGGNaEQvR)Gah>{Nv#`y%5s@>ELA#?{9Kou^*V%q+0*G9#f6Az$No2_?#wrTg8J<-6BipWzItn|_xtQdmLTvuiJ(S#z7+Y>AtgymQw`2I7&AbnX4Jv4%b5ksSe0pzv>VSOw*!FykT{kM3X;1z^ zfB8FscZ@n(70vhy!iy6~jZ8rAw zn4sKjV*wF{C3{oDih~my&EU4;qKFjT72l;JGH#{b;7xJnjgAJR;SYkBkI&cKqbabU zuVuy0V3&G2eWNq(WFE~IqeZphGWh*gEIxk{e>`~Oj~YfK@3Q%+biV7!J1b|)ZEmUb zHSy++2W!gc0>P|%T7NkQl3k7nc}B4^yK#1|zd4(FLicR(AsZu-XH`p~JW77=wL8#u znlW@@*E@)t#A9gO=FN=q`0ugPifq4(Cz(o3;;}I&#+V5bI$a!HPbM~cjk#;Nzq6C) z7R?W0=3MSuGC>Ugjv*eJRZ(sHE)2dE+!N8FdGp7EpderakLLtT%%_FjWchr<3y4U} z-=I&`vpo05fv9PEi6_D9@~F8k58<@bpy}Cn4f+_fAh$Xq%GqZ)z6hUECjdtZf2&lv zp~;;jLKgdXTD6U_=lm{|Ds@-8Qx=Jz$mP+)X@FCr6}>bOH^{k|Sea6rw%^5lcZO?h zv941(-W>26n3b;%8sCP~($U@6&Ix{XoalzSvz5k`siT|2C&nQ0nP+o+XQnE*IZii? zFI?03-TJ$X!=FV{_13E1vXbDx2>Tme{KL&qEw^2cIH~ZI`er-Wy5BV$zzn& zI>U`bXx-tZRv~g01<1A^RvXy>Wf070j-7(iUD5Rx)-3<~z=popEe605eZi9;vBv2; z-OYCkV|Co_Z5Bh&#DX_{w>d!&Oz-_9lADbKS(~>HMN;KY+WRd$xC7dUqk+ed&*r}O z+LWOkfq&^dn|I)8k!WP=!~RZ7n$xv!q}zJR{rqy_mV>8GRbviT|f?-+8I*0xJCWQ^xmIny7^1)A>VQ5R1J)|^je#vmB! z%b?znA+!9N+|;~CjP`3`$Eh1B$P3M$+SnDJ<~JfQvSmB76Cw{MWNhW)orB`YJQ6B@8S+_o3wfwYy{le& z`LTgNJVT~2nWk4eRNmyRZLJ^zFCqpH=7Sd-;t`Udqj`@>4}?6KksA>#j{fdkrBpjr zb=YqHj8j9hMTWHTt@?zB;cSyIXi6141{tjR(oq?^!|xT!b1vF4D+@Jd-yKe^$p9$2#&~>sA)p^8lh_d`{HNfeXLPkB)C$jdKHreo#PD!~LyY zGOPMg>hp#9{sKM#DSJ#r9nKP!=u^J4XJV9QP=l-0WX&*uRATI7zyy>JrOHjV?nsw| z69ufi_D^1^u{^3zBT*lYxVo-mGR*abB}oDH;#pCeoH5+Dy`+Qj9mpkK}$6Rfh1Qh04%Ie_%h5XtBOm54mK8wGgNP69=!WeA512i0LpE=jgU+( zry-as=!Ag_HZZWq`3-;|?XbtRIOxKvMf>b*R}wmpz6jl_#1pCsS$XiuOk)85TQfH( zwltmX8q6x%cfNE@N@Cs@tN|La>JC2=9vh1ba_TO#!N*B<$M88d*B8G3ntH?N?Xlc$ zF=Izetx0*{{c?q1)8&gUlQt44Lp!j?Ju zAP&xm7r=tV*V|2}y{Z6W4{#aqTqeK+?b9N%YNXgYwd}ppC9HwnGf>ky-C`o#`9I`@ zSie^w2wG0)#tSwcnM-yliJVf|6IdBQ`dex`yB zQvA6-H}!0ooXUBc)*p<+oaIcLGN5s@27mB&%xu5&S`(a}q7KUg- zxj%0Wle|RJa=+z@(98kR1GuW=@o+v;?;^a+C zg$ex4n3;>69mR@Yd^rAkoZ?Ih)KB2z@`2*bTe-5$kA86i+NmQ`ip(!etGI8LvX&Zn zb(E-GSA9_oy8>Yv=36^0t1Fsa5sRhRKigR4Q`8kcLvI!>*^gv@d*XYpbbazQAMh?@UK;$bW z)RY!rV{N23S1D$P>TR|0@aqZPV&Ig@xFRi}A)5t%F`s^A zo#;r`8JlxGR|ui{NDJ^a0X;AA&L?7F;jx#LYP@|k=dGi*NsTriSuBhF7XF0G+SRW) z;Ayu+EYx&c1FGWT@U&Zk1)Ycn2a`I`4H)#4{=9X>p*t90KcD3ou{~K_NQz-2YM+9) zyZgba;bv#VbYfH1i%+BSB5Hpw8Gl$o|7@Cv9qKH1#*M{09jU@_hCN$O8nA2@c zh_diou_{}!(b8%3_ckSbo?pk+)2y<=KKR4ILTra+f|NGIvw$H#t~ESStfOzg?W&$h zbJt>pUfSG{<NY6t=KTy@~kS``y!|ApcA7!)=`;Ul%kdNtM8!dSJ^eW9OTOAm*v<*ED0T0}f5 z2UW+~T$Qh{q^xXxRD@kF)143(dW9j@^z1CBb0M~kn1)`!9KdM=!tA+L7$6<#=o!a& z-m+VBXEx{zhMi!cg4vcZ5PIr9}Q8uWwBpeg{{B4NfvqZR;qT@31C9TzwiL-1w+Sh05H+$ZXbdSoGd2 zed1^<7M~3w2==;c&2XuOdruN!*yI1+cr*stY%@P^i#<7NUIOA5uYmu;$lkwWSLVmACiiwW zE(58b4$IH^e)jn9-EMT>VmbXqIx_U|7$*3v)uiZ@SrYpF*0tPf%zJM@yJx4s4F@5yN z7%5Vy)VHPfsK$}=_KO9Zs%-qSIYn$1rKeWKt6E8~$!I$I@-P?+RPfv2a6?@U2JVG} z68mJZIu1W6a=F|jjqeM+Dg{2byp(S1(rHWWu=P6%W|@hnC@Xt?Z<`*~VCL4ZJ@xQ` zVE%n3R`aQ^bBti=j8(0OXr!hq8|^(*Su}#4-CIP(+?8<7gNC=8n_2q9?~7zTuzu8`#)NX}JXFRPVFrjag~EfF>|Ed`|a3 zZCJQK31oiieHY<#ZnxneKT^=$OIz=KTrm-dDEzpHbN3yrit4nQ@CB- zlwnV73On|$T5kJ7;5VA1C6wytDrdEx0I5e7gKKPviq3tScZDwUGpjT?jm=|LsWMHw z_BE>-u9=G?An{cSCD_R9dRDQunE&$H>sOPeUXr|@>|!#Tq$be%-b-g=$!A`9{3*8D z0ML1)!Z?ktmee5A49RLQwvcqQ{S9o-7Hq~rA_aioq~7-IG8z!G_$^mHUXBo0$RSVJxH(g2C^ zPkJGnom9uEn59cRI&$RX ziTdROyfzcnZMYQS(Cnn=-`F73ES}0j8=^=td9?Two6TOmI`C&V)D$%(BiKsmJ=%&4loM59o>oC6(%7|}7ONlC2)SZv6ziifd4Z=RJ zop%&G^tA0$*Ip|-!5C39LUs<=JQi0K#dY5UugGa5od>U+Y3rP6Bd@ZjTg;Tq?NNi6 z>77Uo6vUX>*>o|8!*qZiniePt!)PRD7i!nUi&gB#5|ylzc&9fC(~TpuMXEE5vu{VOFia z>p1V}qm{NK3k$Up6IdNMyw_Edi+RPZtb*&mUL9_)E%E2lROhS?tr+^j}S4= z`^na}+HRS}o0B0&PQGwSma{%G5;tQr6oPVJ$=BEEJgL87tKeB@*<5NACY3s#!11@B z?XkReV!d|d4U$RFsNgK&lTAR9!uxYG3057q8ytWA&PXrMs8scNpC26e&bCi34(O3( z_^EStdW)PaL4@H_-31e$#}@ljaQ|?Pez{zc%T}?I^?tt-A$=U%g6U=PDQr%wF^$j3 zgUYHfv$f@$vskZu8(|RqRKRyEl#$E^%buL@)kplWLet`XXTn;^q0=s+W~a+A=H%&j z|MEqO-r*wlG7l$II(%7}?jXCz3(NQ;E2s}ZfbRz{deKj@@l8@54ag6`>CCHXOkLk* zeh!2Yk$;%TeIvFUnfmL+N?FaBSvGbCe<)KSNq@+YaH#?al~h~pSOAs8L~NGWjCCo` zQ#|i#Cjy&sQns~X%IZGppT{z<1e720azeJ;*K<#Z&p4!wI_xo=AyM5U}Q;`UNYE*|$GwLp)0I^0~R3 zYN?Ozj^f{e+XSn(MNw{<*<(q;H4a3NXElyD(>z0X?|Ypls-d-h-tZ5y z!*>rE{a{T{oY#`gZS3KI%lx`@w5zePt$8p#;b;bQ+Z8vzNkw|jyO)ig2DZ8jPC!q( zI1w2TiY3-|4?PWxU}205Rli~4;(>{i3>ey5J722xY|JM}*cla<&+6}sqA-57CGS9& zW(E0_$`sWJwgdhP8Zv#v~H1=&A$x= z%rgp8Dnf1+=y9dWlXV=c%FPXY*0e~)49#=2HP?*V?%zdA^-Q&p_T&pesuuG;Nm#+~ zr34Br2-OMB17uVAt)mhE6#cg&^gWz~m*P4oCxaKux1Bh|161Z?y=H59w4C$wms&#e zdc8>tHAdGjyxdqRTxu|5wT#4vznUJ*gvDz;l{%UFa6n~@MOv$ z&{Rk~G@OErIRs7d8aV+i`lG%uFSpF|JQWr#cbfI`l2X5bYMjE7G4zLv3jEYUd7`g2 zj;01?@L_ez6SLmC;v^9o-HVH_h6&@O{m&*nqui4vT|D@HuqRXl>(>!TESWM;$UHM@ zYIW>PupNz{0sZqAa>oVHlIWlHP6LS$Y4YwL!XOA&Qha~5R=IL7y>v3+E_R^}q#_c& z^M!g&4UK0jDe9`@;i9F)3|uk(Z=pfL)oAhb8T$|6M=b)(%Oe@^R<5gIy#-7&gltm= zlQ`m`(p`JbUtDA%1~<`HUrm_xH&Wd z5T-}Y#V6qlSLEzJY}VR%1g=)dl`wsWjGm`24T!i6W_D+PGGc&Rxri((=*ml#C#*p1 z^^+F7aU%akju)a}-_Jv0N`Ks%X7@*7Yab6>U5v@<;`zZ-!DEku_q4j*wT!-sNB;&X3bkqAo3EgQ z2@L>J4ht6+Ha0A#G$4x|DgGh%pqqn=_^IM!!t4R&Mr*Ufl?@0{8(t%f8d&I+3q#4J~IOYH>)z&)4O0%V7b>yVCQO2Du9%>wiw3hT@icnfFG|Ie zL4t|={-3oe_3prV&?6P@ipD~b1FICWW(WR)LP#Liz%RWl9GXcC0i@;&x364pkFvDE zgTZ|zf?b1T*e8vR_O|y><0%0XaB!t*#vn6hb!MF~wYqw4>YqP+XV?1XDq_|N-cI}X z@bcwJI?l~iR{`65R2>BVpI$@1wp7=?dxCzXAuvc(}rKQ3n%05~*ZZ)>(z4 zqNpJG&KaJd96xHky_oYYi@SKJ(oYqhU0bK|W%MqPm&|IhYf&Iq$^L*t$Ek%;qF&UF zDn=A=?D#zkJfQS22|I1_?5L@JM^*@I1UV6Hd}4(uwl?|;GQ|uCz&i;L5ix<40Vx_O zsJ?JSBYS6rwl>>WKi#os@!!f$cbJv0ckA2a192vXCN5YKATlzotsNV`ypHCPMHks) zr*?4-=DD#Mft9TU9}iaElnrNp0e9~50G;BB@Plk)wA>(!VSUb9Z{|xX-$=>a_4*ye zUbL)@5veQr<;4(?Z0HtCse{@YH)edOf9%z`9i}XyjZ2C~E;)6Vuu^b{C9_9!MCVcF zl<`%Dk-IJ2&^TM#_Ps&({^4oVF+P8{`AM>hQv;s%r(u^yU*8s**^t%T%!+(#LW==* zi3QBD9f{AV`BNP%FxfLjZZ{Kx=JSU@gUjXjzJrTHce)tyl|(cw(COUaTf&t7uK&5p z*|f#06Xg@}<7BZLL@VsvsqEaprbV0_wT+z|ztpKSF3?RT9#C48@^0w{-5e_wxH?}7 zB*nAIFTV}tm+?*JJhDzr@&margVfd7=<%vcm~$);;uX{sd`uvR!HUrEqauB;*cZa! z#@WCw6R@Ay1ShgeMG1m%SEscxn$=D)Z6*eUg;Qb?lgMSqdstZUL9`?ME*pSeq?L(}%C-@2!-VuNCcCe-&!bjqt z*AcSF4-0#$43x9UkdRb`mLc+u$fD$Jy31Gs4DO0qfnaw^0E6w*&8k}0@|Vipx;L$zO_QtDLpJCShFADxo&ds-5U|lPlLB>)12w?e9x|%m1%vlqsLr&*<0C@!wOx zd_8QWKs$1JHL3eB(#Nf&#!5LBBtN6qU15zwDN&D_&fi`(3iZjvY%Ke~Wi=c5R5u_c@qU|ns2MAHuGUtehvw~I*%3rRI<@0zIQ$v;v%Z3^MLi^ZTJvX zscmw|u6Ed5@AU2?THR;qLS zJ6EQ`9#?C7Q{AePt>5$Abr?HZ*wdfr;}kqog*YMG*v{aPOlDRtY8;%iO0rpXW5aeF zB8cr>|C2Vm3BD=?b#IsIf31;+*hekZ|{8b&9rfjuzY%*!a zNy72%wiA^p;Lo=!!B;e3-zf`}sLRr0BxF($YbCpn%~?RzE=NmiQkxcgGKiDm9YX|P zp(peXq#O*m{XHNaWM4s%+}Wl$TR0Dl#lY{l`orEjtKItz#-jc{0JnB_3Xw+ASTL_l^&M4O0~ zgUa^}#wHUJO`ucv5N}&nqC0@qy|OwlQdx*Yl7u!GP1(LtYQ84h1;54{35lJ3Tm%4X|!>&+>3D`tL79uibpQcOP~ zJ>EABIz1T#yd!7K5qh5XHkE|+zm%p^)ZWZ&VIYMz6f$F>x#C#2b!%EOF;#fA6E3c= zq+!ceh%VS?{BrDF_(=G6(8k2g$u@P>MhD~WB-(V{`Q4rUye0jU`<&^81~xwOW6DhN z=~Fy)x>{8fdGX1I8+D6J>c+D$sx05eHJ!)E|jM%Z>@DH^&eP^R{qMhlj8g+EcBu??CN-qn;?n zkP1b48P$QaW~pd5D27O7BM#{jH-IWa7fhvQz6_D}f?=ue9aw4OYCkT+qzPIW*sj7j zv}V{~$-bSbMa`}Kx~pnFZ^?UgtHZx65B;%02T;_xw;n(7=_fOdtgU$+9Kd<&JNbs} z6;L7%q0)XsF7gi9J>`K$e%@4pn(AVB_pz~>{;Tq5$M>+zp&#xzQzklrcXIXaesQRM zFl3AvLc+fIbt@S0C6k`}FhO(|sIJ0ts`66|ZiSSuNqmO)#%Kx?6QIfYy{?&$ie6;0 z^#p@cDm!i<=(>>~+aDfx{z+s7WKS8#MO$N_WO8YHVJ#IOQ&hw8?H!4;SzfQdJxKph znX`@FKdysJd;FbMXQKp1zv~T+_JBZ~+blK8b>``B8>gff`9zqDYxM{^-JyR%;I<+!3b$wy$g4uj!q{-j3Y} zn;M<+F-IPJ0@LTq6gG1(N|BP#^Yn$s^)VSKslVAo-r3DY6pQ67i?v1#E|ONy`W%Z?7uAsL&-EetRvQBlX^ zh)tRtwSLJN*St2F&0;$BzvmM;EMq@E=qZb96t{j@#c2N|1fUrx;2MKn}V{$#l-?=@EVZ{=HhI{_ASv zp$cV^5_Sj>bNkO`qLH}pxVXU9Ih01?d-o{=m1ILde z#p{hjZ`Tb@vh`fm>x6;sB$M>LHW_PcdTeZLNFS}ls0~}r3N_lLr{E_&HHB9|gpc(T zW`#cqc-LM8Gbp&v7IoE?HCwF8ly}s?WeyaFwz1`WV;D5*4v-K>6--6*GM>o?nz~`0 z6GPCmXme)=`m?HPkWM)THFeQ~6)GxfVR13fwgKPWZuZ04J0H%ttxzZ&G{WKMw3LCB z*7+4HnfZD%Q-R8bkZ-xa^>+?B-1!%jAx6kb3@_4q@VD_xlg9>P*Bs%1Q{ctV53XIR^0#kD@?cSVCO*f#HP$H? zl=q7p+M=_hw$ih*Lq$9qKDki)drs=lseUK?x#_5GL9N-9iAJ@Il#Xu5$4x=uy=;DL zU0t1Zw)y4dB`Fyh{`naK3^a`2no>Ni??>sxbcorQAkdZ+o3Z2LlYg-_gb(UDqrEMl zgNOF?#FTLXkvyxl{Ac>F3hh;Pet#zdPL|*WkXj}&amHWQDUDekakb-XopVxY4yORW zg!c&_Qdy7LcJn$6gHHeU?-m%-%O3%;LHAG;WtY4 zSJjJl}h& zB0gXLKDM?92NE6vjqh@bL4IxCjfDBVQkIG7y`T*Bp&9k0lfpL&)GlO>{n@TkVNa;9 z07|C6+r!z`m}Zmjtta2-&Adl1B3aB7DOLC>UyPN2J#_f<43q@nv5n6w60+?LQ22w{ zt9g9Am3cpPye^f?nvS_wKX-y^KJO;Y&IOy4J6^y`fBU_md^5AJ0Q|Y1Y&J3VBuARl z0=6HBofj{Uov)^Ap-;16&3G%myjly)Byhyg2BrNx)C->3Mn-g&rKX*pT^&AgaDiPx zu^6bnS)g_kpsgUfl@`qTrY^Le#7}zM(8M0)#QY6e5KpcR);vE9d}eOL*dKv-{Px8? z526`!B`r3tSc$nY-dkl9hEnQJ@}Th7zwOZ!0kzt&Wvu_oOGp-oa_P3{v`LHsLcw$& zWx-7;oUbSCjs^k~@o?7h`Ms>no^_jGPk_VeON*j`t&2^deUl9jnj`%OURtf19XS47 z{Hq^|Tk1@G3VfH(7>Q%-1Q+EACAh;TK*|iom zC2`=Re_S#~Bq8g45maH_U@=HcM3)it|Av@L2R!iP#`^O`;%8%oNCSIW1eEb}>9=+` z|A1lWSdjjv$;8pFEUdQCl2Q9-j9?4r$PWl*ph1djp}=mPPNExt3??J$WJ3*{Snt%C zR6W?k66X8q__*4t+^o2|;p}{-AaY?wBAWSY3Kj^LsYMV_ie6emZ=O|gwOdE~6NXOF zK_6V7$ne=w#d8rjqAt6CQ3&)xV2m*Us|I}zf5>KUSHYTr>|%Am*Zt|lPaE)-V-}N( z4p*POxk<#PiM`%X*gwR`W(&%rEiRc*FzruGLZoo<5MJspQ#ErS zY85B*Dqvi;Qp5z^!aTs{qSAZU~& zr~d9LFJ|!v-*t3<%VFwf`-uRcP~>4Fa-%^DMUCf6N4+ge(3qP5v@aoe)*VWt zXaB)oU6zv+N-$lB{ZBjQAdV;WzGKUS#Q&}2zmMWvETd+5)=&)Hs<=V|Lg)r#b8-;Y zG_5TBj{mCy1;W-ol7w(lmE=u=SO61j;In}ci@!)C$_Hk9fkPIwCsKRvbxsJfLbocR zG0V&B8H^rLqmB!Gm=w?3?qVhT(yp(F=@-paYWt{|Jk&!ROUmW_nxgMJH z?uP6&h^E$dYjEm*)H>b^2vD+Xjev|A_ye*zH2eKFEHLEc^?!sM+nE)}xglFM4=wXF zphTU>MVjvLH`dk72)4Y0N<{tx3Hc8S2Ew76!EZC9^*LjI28tzbSEi{`wHMeO);k;A zRFE*EWG>|-t|rBX(6WpG+NgJzEo2?6)0uOK1zA+J=`>iPyBGi21DVudFQ=pC*4FU( zI-wVxnTig}eTE>aKYm=HHy?DKq=pD~j}tl2TI!zbeIbfl_<=BWh0i;>0_^N0p&26t zT@Py^1yQC(S(I=_Lut)Tg)v8QrJw~smf+=5r2V+rWVkd76B$LkycxM!A(8*C>c7{t z%UUF0(8ZiS?;qAU47xmE4%p{3P(g4L!6`tfHYC74X_eW z_*Q4GVToX1{;jR2Dw`EMhE=h#g=$lzpCb-i93B2);blNlAy?(YmRPn##C{6=Di5CZ z@|;pXO|fJFC?1BNuxPNihXFXj6~mz_TEKW7Qk_aoWo=e%Z!`<=FCdJi8gTjZ^>7wV z5P|jICA?_`&8}{2H4yrRD3)x+ys=N*>KAB9I6UrK`8J#5KwUrht@eBZL+$o z0XAqLOjVxJ<~XOO5c>5>&DxO((%O8X`lnh`Zxdx)hB8VBFXq~mjxCxmb{0#8og)&Y zF!{wuE+PpgEW7vKVv_o=0x>Y!Ly6&(Nz-V8!36&t!n#sr6E85|#<#67MH*IWhxAvI zYP*N?OvwP>@g1X*9t<@GH%B76XM&%uh!Tz_EZJ4hjp;x#`7t3%mIWw#;DQ#U3_M1D zBY5)Yh~*_?B>`1xXb7^`=_@%R|F@$5+dNMFC_||QB{U^`qg?M)_unPNvs+iM;zt)ip?umy9O^GZaiyRXH4T1_^=@nnUo0h zd)zst>3zaE#o`Za)c&9zIXh3E%^ZF1Ob zE^l6Jyz=RY$1s-q%)Ui zj(~mfC?q3WK~5o563~bT7ny?gEm7AVq#Y7zLC8nV=IX$EjH4b)ho2J#4VIobeyGF+ zrh7TVmM3X_C z#P?H6_i*|0O8=k72qoBw*ew3&`SngF<5pw9ykxEexf|KV!Zt3FVGLo}W-3!~_1%|_bCDv_SlsnSvWhP4rhd{W1F#Wq%rlF%H zFZikS^{LfM0RF*o4E@n_t$NUcClaps{?8aP+IuuV7^pLicq;n$E}WMa!mY?FSL(SZ zH$_^*jhQv*D{u>>MayV7?(Wg3fqj78lR4g9nr0^IGRvMSXxtbi8U%#55kuJlQwe@^ zPGhHpV?pFWzKO%okHJj-bV=|dApo!t{_fDw(u*h0v#6L5rFT`~Kk@m$naCo^B(Nx( zIP*unZ78G04r%L>U|?UW_4`Txx1jk!Ppmr+n7HQ^^oothcMoc*tDkkG{#spJV}+4v>nk*&Xx0qX@OW&y;3B25>)p0$=oM=eq6Z^||DXkzUH@ zh?N!v89Cn0CdHcqX7JndV-D}ovZ6RC1d;%9v*Hd3&4ZsrAU_uj!e`Jq@nZt`wsqF% zLU5(Q*FKPa0&^I_c8CL-1&o*Vf2#nV7a9DY?+@^x|9`(F7t!&>?~n3mP_!6QUujUl zLkRo0Fxub^60V5);*2gYBYkvtcmMa5u8(8O%aQ$tchd_6KTty)9#dxya`W;6gM;5H zQ7dN-z-s)LB0Eyk(1e7CBRFzF$9od`26;04_s7qZP&Pb^vZlU1HYUbbnU{od&_V!hP<^Obxh zXq9Ls?7u%BR)S*X*ij*?Ecl8FTmFBt%qyTKoX}{!D@0gW7|i2t@5a;}1X=J)?RY2x zk3%L5tL%6E#(TRXPw?WWaD#>U1_cE@3Az+COK^)Loz^GU#vF|XFt z)iHbBIXZIVgK_IzuV24@xGeV}`_Nd>`k^<)HdPsjabx-0Qd^;`5;U4X$QRJY{j>V3dUjnd&@)Td$Y2dlh`Y~ zEL9v_TnTaUFWsT&gUM_(qgx2#D#dYj8$D->4kKsz0*@g~20f>figK@imAu$k_Bb&b zN@gq3sHGmwMR3K`vV9Q}64Lzl56#m6eanRc$nIS?A~;^E&9!GK6spyjqG0NJGOgmu zNJ&VnCA2+|0UYlglyP-ZSC=pZJu3q!88~`{4H)!VeYZOq zBLH{8-c^9f0WX~hi%M=gXOs{P_Hwq;!0mP`0a|(V|Etp~5 zf&do7iGYdf?d*IfFsQ7mjSkt;U%$Aa-lL*6X{RS9?zYLMast(?UtU2$Vbg=?4iOYDQ*72PSR0(JchhRtg@bBwkDJdzvD#-eFpxSna z4nB_o(#xMjEOIm1qHGP|BkSNsAv&5tYXF!F3cy=S^yTH{*SZw4sjt}1N&yN5`TVgg z5zq4>4uC?v`IYm+0`$B;oUaW#TByH&hBWssF8dV<{*par`cixSE2G!lMYhJ|;YwS^ z;NT#XGOMkVvvZb;ix2jMDXVMCGL$kY6u5q1x`F=Qc<$2xEe1R;yCnq1`fno(<<3eW zM+Jh2iV=E&o9^%9^{wBKn3R;XeF~8l1qDT{6cGU)o`juUWf~z})Md#Db0SY>BU+4L zO-$ep1((Bm6X0X(5R44G*s$+wc-Nb?p#HwTFI~YXmJ4+eZI4Gbi?*GJ-{?zMsx?aS zIBnaX?ZClWsJEdYCl3U65wZ(U7x@BAhJDE3SsS09?jK__X)^Xp<{g}Y|L7f%@@-3g4nVHeD z#|kz#Hz}`|Tr$>eIbUjPwAF(F0tC9aWi3}4BJyb62ba{>D?V*8iHQZE!Mzb!>^~42 zr|C#Y=JkJkP|5$uT>eiSSMY=-z!w2aIzK=EQacoxxDVp-E_mYN;vh?ularG`zisG7+46 zU@)5>uNJ@}f5p^s{gx}0!0fcIq@khlQk&SlB^~s)hd3rF6v0C+22fk#$`wg+Z8 z{#(QP1vD^+WG#rW%JobigF$BycoNsc%3dhfyS@A*ZYOGvWml5g+S6rBN<)bIa z`7X>)CuU|I_et?MZVbY;Zur*GA;@kuzu9&K#s|zcI#7UFA&)M%Cn$m!pXNVef(V#G zN?sl%G>g&m=JbC}ZoNG4^!l}H*P57_&AagU@4NE-pZ{BHYj=YT16G>t@&A8a|95(C zoIWTffq9G}rueL>PVBBJ?ecXJlTWq)NAXQerT~+JoIP+vA9&2d!l0GA?yA|?%-MY2 zZgzNl?bJ?Tb*2xmR<8$T2;eOYekqWe-hVA}&+nGsPX*2m00+?p z<>b!2ulsJTrKJTlM_c=}{3V7-lP70pWW1=oXuIR%G3m=KL+2CsK+^E=C+5CM!)wsp=SQLO312e(@ zufT*}QdaiMK5loJ?#!7p|D9!Lc>46|-gTbquRs1+vF~y&uzUs%kL#}A_e%?y@PR4u z(Tc6*z;>vw8!%h{Jp~NM?!ylsyxDv{?dhqhAz@*kfXy3&`hPWTe6pvQ`E3{u+}T-N z`R!)<&272Tv(59LJ-7c~x&7isMd!AFz`%pn@Ao(t78;(n`OE{HGP@LmR^x0**7RDf;Xi|ctLjaq;i zd*bBDhx_ZkC>t3YTLLS1Nvjf#>}zWjZER#3_W%33e#!FX#>LNk*6sP^^={{LIVWf5 zzx~AzTg8j6$Cek~&fRVZ%q`c}#r~dqD+yS0+h&+ZefspNqrcxit5^C*S>3-s&+VUo zI<2n`3_SID6^m|PHwM=EMa9K4Z7M&N|Bwf!;Z&`sF5g!IyD{=#fepw{+xP$N1%_Og zX7DnWU321qdmn)QE&$%jPy{SV*>}kRJ1c70pm4kgj6U{Fn>I!4ud|)3=IgZfo%CeR z-rindLa@Ga^{VH46Gb)+P;;|GVQJ9Hj_&TqFPG1Mc1n9aurch^!7xD(*u3Wm`eYZy zanbzP|5i|&pG^T+GJzVZj$Xi|2Wo#$0Iux;bq55OsH^~9j1FqS;#TrcUR%(;We@8@ QSq32RboFyt=akR{0Kx4`DF6Tf literal 0 HcmV?d00001 diff --git a/_images/90bb8ea0b89e32711ccaefe2dc6dbfa1d9a2cb81d48ea21a4017c9257b53dc3e.png b/_images/90bb8ea0b89e32711ccaefe2dc6dbfa1d9a2cb81d48ea21a4017c9257b53dc3e.png new file mode 100644 index 0000000000000000000000000000000000000000..3aa680549eaeedbcc11dbcf780a6282539d2e355 GIT binary patch literal 39765 zcmb5WbyQVd^fr1_1eKDIE)lRO=|%(vM8cv|N?N+ZphP64OGN?c?vjoJ(%mH>-TloC z@AtcR+;4n;T*r8aubj=^Yp*reGoR;~a~)p=IZ50r6jx9v6t1+C#4{A?yfOUu<`O3S zgg;*P9rBmWLuH%i76vx0aB|ys;Kw zV>A1o3s^0z4B5Caqzd3Bm)}UKSffz*I>>+Ll0}n@P^hTi(h_1X9Af^B*xL}lq^)0D z`AK-`GRyVQKjM-CAL(R2(qDS_Od{&iV~c0R7@PTjQn|2Y?_a%0Kzucj{-tW5X5voV zRjDz@6SB*XK4RoV%C5V#4TKCt4ir~@@CdM<9W~*^sktu!e_}rS^<4CUKaEGXlYQZD zzS|eM3E|4Km?y!KD%NJpVG@c7L$dKYo(E2PE;@( z%)2fhC!`pDonHPvd_oh6HgHbt8_YN1x16lK5FonI%DJQNyfm24W!&xK;eiqo5?bBa zNpd^dXI3v_7vmO58*#7HblcN6<)M@epm81F!o(r-KpRZ8i=KQMBBi8k*_`i6QB0?Z zp?kZ)J8M+72KfHvGkCouKG25N4#ye^$ zDq88Vf`w1hDoN`qp`dWpqVkBR*m`bup(pily@id-d^m#NdUkbxF;n!Jznh!ePB*7< z_pP=V{+ft;x|2)zI5>Ju!Hli3g5hHCF-LZs#@r5A7$1j@rzFLlrxOy2dE`%#?XqX} z>qW}%gOy78pHCwBEGIF>Tz9BB4cn%>Q=U(^Ms5Tx~ysd>EYvltL)x7cX>i7SKi#OtQt>@b6401cl9Ia8v zG{Y37yi6q#cG@hObAd;Uy6%j4Z~uJw@Zr7Jf9RUSSo|_G+2%WcOcl??>7t{!*V;<0 zvF)cDgIw0?NT=K5Y31eRo5R`K3(SU=i!d@NaO?a?4LiO)ynHAvH0(|5 z=7ToSh36&8#~;T{%`|`cE*s6`JNVP*FF7}XW!6xkg*E)pA@lFw*Qn1_{J*Q;V;S{l zO}L&+#S^RMy*?N5^A*$bZt!3srf% zf7hRqx85LkZNM@Wsx<}_t8(} zoK};ymtogVZs)_E`|XL%sq-77;&^}2VJ=?4_Tvr7&w=-JAEB;XyCd-)6IVI=)kAf8 z-AcEk#whN)lsu+YeSM@Jzh0(3E44GTnrl1i&mXni{QLCV_wOu6)`ZgO05-K>1#JFS znPireSZKl4IhSjHIV+8K=`-)B!~5lt(pmG0_N7m^`r9{Q2Y zK(GdAEK;|v&oKm3%=aew@V$V2&TZ2BX{Urp$i>A4Rphww^9y5VnhK}7hQ^e+`y&a7 ztk)g%nh-$_*KcPp#PVA+$qR208+9gLx1Md?-P>E+Xcr|SB(!QTKB?$&NQztR%e?Sr zeOkKekpD#O>jTfYlCL!SH1O%dB8@}0? zMHkKWElYiJGHj27pfhWX7ZufVKjLl)XETI1?M{Arp>)Kpeb3%$>=@1dsUhR~*DJ)g zJffqcXWZrJQ-T1vm49kizazf$!Uuwyh=jzzhy~eF0L#p31)m_aCa0#vkM_5wVmBuJ z*d`Yin*R;t(w4@qRG!4S?5$_NnRuXDU@8s4n5>e^1n?hVTQ1n1K+SJ89jEJ!NA2`a z;N&)7KMdvl)?%Oa{^qf{-S94rJ*i5Li|K_vzP`nCyP1{8&7D7Fs5K>P zyl|zXd00Z2WM2*B=p#9S%c!$f@FqKZAO!HnVrC_W&hHP-89IeSQ%rrXfr7$%C;teB zN^I{&^IEv2mE`KTJW6@?10dL-Of3l@T<_%gD8LqdKrZCK?xpi5N5AF3Yk^wOjvdxT z!bD!;3B?mS`Y_|cyxY#(|0Y7@MRfWyG`K8Ah0OKe&9sE)I&CdDJU2u(q3vQX<9@oR zg@pwLk11JSZ>5Fv=skdT2z9m++r@ea{S>848gfnp1f>B(J>FyCLyY8N6+F+>6eeL+ zZ@imX_FIOnymoD>0W#1P2sYP$nsx0W2cN<U%GVZjTAMkwf6FGv0h7vgQCE)X0Ea_V7C3;(FkItz-RFXo?(&!ait&ATpK}{nvr|*LmfS#hf`dK1 zya>t2$ihWw9*N;jn%nR1?%qOplT@%nXhS+z1VXCL*wFu*N*Q+3JT*0C?&#0kJW6eZ((6!&kwlm`CG|H-auMlQN#!H zjMg?bx;_*I|0DCNhPj1d;)scfEvOI?NIxR(J{GsJ;quZMpPTaz4-fB|@ev{s6%|EN zg^f)fOp+AGw`z<4DPg1FnE4$g2?odigUhk_)(+wx3)zL_SNH90^vk|lx^01x0`#ka z*4-toT@m&Ljj$7gvG55GB&f$jh6zO&_Heh}5QNUN(qDde{BUupZk6 zk8>AZ11KQz3PAL4q%{2L_ea^zJLVO8vy`bVLQCI?diqPqYkNTLZIG-qh1{GU$Td_C_y*eH{cDjL zb^5b(h*?yLJ^D1Aaba?RRe8ZuJWrCF*_(@>Tb-!UYYz2=nfrWQ+>70EQsRzMMl0`_ zOU>@uR8u(H*oC23PD8xW(NTcj`HBWky+%~kw}*azN6Q6)JNy9oz^qXc3M?_0(@^f0 zQf3>z=wTIb{0LqPn!1nIreIK(*R3XgdxkQr1Oq+)Q{j3baa8Q}@TuPo**sE{mI~j$9 zg{LYqY26QlkTeb>Vz>LJjKo5z-4bdS@`nl#4RPllV5<)*T=w4B+q?hWVTXAIm?0wl z3z@JE=8%lviUE@M9OO6*3=D-_16csCCSb4E?z}+JJ^%TnsH6mfY~Mjti+~{L;HiQP zoxD9MiL3HtP}_*J&?kHYs+0DO<31*~x{c!=ShSw#90(z}4HFS!J z=&jjS8q!sZ?(LO47ih#%BAs(nOaZ2#Uhee8a;hG*k~vI!3Ow)W)2Ek9kmBIQke(zTFM>lO z6mht>@f?u!r+mEJn>PrjJ6AO}MvLrrHZ3_wk%(@qsHniWcySHQJEoAK&i_DMe7-9w zK%6wi9b(}U$no*2w-S#YJp%{^si?su7b69#5Lq(VJ9?meh?$iGAvh5VztMa*6S+x= z{fZnA?^{Y4R3O7&!Grz{6|Q`Je>u)=-)Mh(NoHlVoZoqyIkRm23Si>g-;VE3A~`%^ z)w;@^?SVsx1H-+gQNjhP0j(s_JIAhDj{~C6aeqDup~1O^?e#4!e#6Dq7iNWw zf%YV++2B;oC`U6Z!1r5<*mHPu3x{7sr})@ zhhb}GA)(>^O7}_v8k%DXv)bB0{}Fdj3KKgGPP>z9#_;d>zfJ+hFerdWi{S&?eu9W4 z1Np#H|B0MvhrdcW?{&uo6Qhxm{Eh^%_Xjkos`fqJaO zHg#fo*&MM@;J#o9BzNSSDBS>3?p0b^NT8gBKQ53FZ0Y#8!Dmj4d>_z}F0KjJok3=3WBkfbH=%hU=GG=zA31lV@^VxWNPAtO$H z20Gm608@?&`{Ra2iA_CcyO3_0YW|(&T_A@3NpViitDBo#!3&w%ua0Q^d=jM$sGN82 z5(qQfA4a3o*le+JaqIf}!UF@Zf;ya}_Ve)>ha@tMjt&R)qWt1(V@StJwojvYYvcv9 z!TV2I%NvG=wd-*}GIm5cD=!x%?MaxtM7SouamV?O#BX!-SA+{}?}pwE+2lTweSaA~ zk~l`!@zV!ezqk&p^VJV*(q(h^b>D$flB=lWSa>iX3Y>y8| zhT@J6)Kr^~{`(QP9kawku^*2WigS8;hQ&{9zGq34yxQw}){$L&Y)hHb-!6 zXb(0%+kk5@SYRdtdvR@Zlfh!N3{+eUsF<70TeOTeAAK4tKX^wM3RhFj&odAWA4gj& zemPI>Rb7Sd;&(XWy1*;n5G0cpC+aS;%nf-FS;!^loe_KL-tG5!CVij3+*JY^9_jp9 z7ED73`L*un@{GGB0P85ogX8lUHOVJt2ir@bENWp8(wq>fK*!pFG28+pv)p;7phSou zsN19-r^x2A)tuK)+4PLrx5V9qjqEt)4<#9P^QU)73bX{yS8dBkDqFe8yvtlmo?xY; zqg$R?T=YX5_&Kkvth57?OgY&@gx7&9HzfihNfQP9$scX-9T+mobf~}|{tjZ4A#rha zO@SB&x6WlcUaj0|3mBnpeQXf7J2n7w^}CD6Tcs*xc7kzcHQgu%S^oCZZy4Z5nw4#& zzD#`t6a$`yrIMrfRW4Sbs=QF-U~5qlei4BtBs;#x7XeRVKd$7bTU|Jm0E7r`fx1SXXHB8Bj#e4HKtjmz$Y_dj4| z84a6bqPheGd*Kme){pT#M$4;5Mh2Z|9{A-#y7KTH#~swFp|=OjXu^n z>ZY;%aFOLF3hs}?g$0rEb0d39!J2mn%ALa`CcbVfvDft*7RH4Zc%$ecH1{v5L*9>m^LvnYQEs}E!r^WMFCT&De}=F3vy z7~!>RbwD6tUw((hMpO~vk$@?Pf@nM0Xcw1YczJN_%x8xKiO6m#Eo1g8ard*xpc|6N zO9REltO6)d&NaXV3XRwrV2zy%gjGI&{`{nf5*U~ceS6?ILH@b0*qi=cv)n15dpp{q zqREHg29RG3b@>tS`;CT+?m<=uJy>7LG6Z=7+=y!XF;`Nyd2M%H^^z`o_fx>9;P~fmsAyy0siAmQLR8UZm3uFLfonao%2eN62@R;^j z!Mv0G5EC)r^e90``N&E_r;ockb4+M5*Dq z^73*^YwOY^0|J6#{2Gt1;^-yw5jrzflf^y!E5?^Yd(j~fgHF@PhN%Bmap*WhmhB~M zUYUyaOv;&_Dpc}n*kToaJS0#5|KY~9;Ca&S5BQO?al9G74{WjJhfKJSzyAyvWHAs3 zK|^c+I1mTST|Z?JP@oca3Wco~8z92rOsWf(Gbld9cIE?u0`LXgCwN=S-4~qkgLpG^ zyl6bwQyYC+?gT)fpFF`45fNEy1A?!FSfs#;>`G(7>>nX=`b;C-4EPFWyJFc9+$fY) zW50r1Xd!(8Si3@wUQ!HLntzw$T zNa=MAfxp883&zJGaZhFFqS228cDMo#2W{L$OId0CNjp)ma0TK2^t<+s0$kE1acw^T zfz%JK0XeTZ72KVkk1qm5Q-g5pNiv9<21Jd)o{I!;33gb(qCdsGR~WFhzH3#wLDu&g zAJ<;!PO+A!Ji+1G$#vW?08?HJwz5iz&211wuVD9H&e)1y7Gm2*yjv1^JY!p{@U7aW5 z{+skNkGgE2i%=z&Q;#UPURP0Cl!*Z*fOw_##;28gLy1g_{qiuv-yvfW5EIveNMGS! zfv}Ddv}avD0zLP}((YI(1pf>zTF(SI=kNl^9r|_WyeeAP*7ktq_6`VI7t3 z?ua=L$PN_e7}5b!7h}~dBjdfoaqE_kMa7;M1RAIgMOeDG;o(Z}hIY2Me*!R-?Tk9d zh`PrC^{A!BzH;RixB{kwdA@M@>h_R@H57C(3X$mm&`0FD`_UFDVw`q-bGA@Qk`D0# zNX!L+=5}&q57zD@AnVHqX-WXVj=%`O<+zE|;=r|j1$gizg8eOcb)$uN(dc>rCw`Y* z_IBYNs>;K4?1sU3L5>Dv&_44j_m<7u@ z$VENiqZ|nL9oi4Us^8-P?Ul{t2YRqa#hktiMV36dZsqA)aFw_Z-c z=C+*6GanJq9I`7N0na4uX|lp~z~B)eIGnJjb<@-em%om!d=>Zp1X`IK(jhN6NT=fk zMBues9wxVMi+4XZdXcF)A{D~q9|S)0ch`gMdiWT(hW!&@JsF5UE=blSJ9{u>^6czv zM3zWMeCPn(d;=INrZ!TojH8I#+)r4+>pec)2@?ZC&c_ zZerqyb4L5ET#xyOD{z0v)KoID$m5+>?iut;Y_aPDcnc49u&{4_c2_^Ul*4uFntCbb z-iG*8y`s{F^4YaBz8~K`{ocA%;ac6(16(TPRA(d#jk%e~wGdoIrK_rFpmm?0jiAol zd!h!tL?cW`F29+cz~qaRAi-i()$sE1Nwkv*|9yNkK6PQGOxKoMUP6rJw%HgSw{e6P zHR7lIA8s)9vmsAx(!YcGcY$lxKxx0K>i$AsW;;X{(ab&&EIL?)Guzh-=Yq&V>+o{- zWf#}<^tsE$DjN5HahQ;#sazOyxiHhrpB4#K%m%Y|Ko%qb|Ni+}j@;)Vmr zA&djulmrQ1La{va*tW`Yty)Qn~>Mv_(Fy_c|DDgRYWR5NZ#0@`RF5ch07*+FW*efnof)(30|$l zl`<|*a$#LRS)G3(9vl0;&3s()Jos5iy$d1xP(F`@sytieAqPmF8-T{5$Gh*L#+wCP z5V4TJEk^NLj3xpY06w0B%m)@T{9~pu=mt_T7ac0MTcUsx&>TSH^%2(!Z^6R5OLorc zQfgpv0_n6_9*zVqo&!TgA(_843#6nDI~u8}(!_FI-+65QDuAmFod7;Vqyz+F0Afus{G71x(51nr*?uLWoDDh} z2q9zCjg7^FX?c~1D5SRMCM|$sBJcz*sQCglzh~Odj;t3v?i^su1v>DVK=TCxYM_j} zldF-u3qJ4dXNi}zT-GiYT8tS0kqGEs?)WZw59d7?!J?aG;F%&s9{hS4Kv~4$iG(H- z$f3Gm_&qx-X`h4JO#v)J-SpP71Bedf?SPpfxernl2e?ZRBhy8%x_)vy z7Z9!wW=$OT4Q5@}>64D$_I-?xi#r3q{Q?ZN(PMaFOK`@#-L@f+pwt!zjU+(w*Vfjq zgN%V-6n-{Te`B;j7&-}>h2R13(ng39N z;i8}&&TKni&sJ_hn1r6A0%+0iPzQAZ?_Uq}j=8&()Fq^r4V99gAg+*z1!0v7OH?!$ z>2|cGgotX$2e)7TB4(@Dr9U|sJBi@4MC{eixBCq^Ekv27XJ+)>dg~aEmDn;rXf*uh zZdNTcmxT-p>`xasF$7Qu6v`xz`LQlu)X5zn)UT=vyeiFupM;AAgmgS2Gc-UfOA+* zVWJ*>B%S~s5(Ct9x&Qd+pcv?(x<3l6xkP9fIE2n5q^=IL+R$^dG6;*}S?WOWQTrgH^1Vh?Kog`uKQWGI&gycsEI6j>jWcP>*^TK^LhIrzs3Q8A@? zQih(r%5VMKmnh5jZrM@6-d62pYj?uMt|WX=NV>p{sRV3%U^Kv_pX^k6vmYEBOwG(7 zE=Do<{NPr44BXfTj}~OxxdQW%$9^O%t0i5}cYP2;7D5@y3*%4+90vfQ;(Ox(8s$0k zlAw%x)1-X~8G)i+L`ID0bOYiNJ65jOJ2O^m!eWgGBdU@Sj|77f(F{cn@hSZuf}<$TvAF( zYIrfeoEL8j7-8=Zv_VDTeJF$d?MWpCa`zLG2(wm2OuXB^FYFrB@bEAhINq>l7-6q+ zz5avp0PYwCelCN1W_fV*x561qUEINEHOs)o(wxibj~NOH~L=3a*riL)=5DSa&y; z5%C%Iui$$65}}ulk62uvG!mHBe;1jFZFD7|nI{^tdXY*$7~;jy zW>cn_5BSjaT@v33Fb5pn-T9>WN%S}O!`-!_`%uK3m;A-Z#YL>8r3GAcb#2Ypo*6VZ zQ0ov#1`PP2^u7-(8|Z^y`IDVrOstPJdp-BpzD+7AurREgP=DCN?JdPtQ9lVeFFmI%jP1H_qzDe#{o-*o4e~2^-&;y?!WsPWesXQ*}>EZkEJo5>=K`R*)o?e3| z0WJcv*TDm;qqeuT)rS$<{Ob>bgc!`KApj_ZhPt($P7e^f$v4^AZ|3-?N6RNxRIr~> zw8TBNW^#HY`%C~FW~q<4+HZ@`i`9R6v(O#Fwi59nxQ^4f$$veK!EpcRS`cv^`!XwO zPrgac6{E{P61HiVKRveXe~d*hJ>IsmA}Xok=fj|us#NotdiIK_MyaZXzc~LEr*Run zvVlUY)!w>3(s3aD_Qqod{oJ7?^$M3r`1$1Q&&qZB;PW`t#%^X~G&y?N1teHqm4heM z2DwOO3WP`-2uNtfn9eRLDhj--#Az#$kS1Riir(H|3=}NP&u2IX*Gx}Ne(SJ;$xsxqxkSRsRd}$SUl7Ld z?WB$b2<@~^?Ir8lxfV9@>{ob3ueRnjLL<7~f?Lc#y$>&q^rE({{8NeGZW&(gYrifF zRpI}~%eDWQ;(y9uYxn%Au{%0ehpkut<-%=dQesUjZ7@8R!arxNcguO_grdm z7^f;XKD$Mk`IwjG6mpB|a~opErMydcO3{8Z|MT%rdGD6+>+&?#1a?@v_7;QG*;igi=|T|8}`*hSS(67j$ssPb8OD!XG3}ZAlucWDGB)-O!@)@I!Nt z@*f+yuGwt8kvceecq%Dk+H>@?4DlVD#gpXlOqe)$K9Xa(UDUqsNfO$k+NfhDj5o4R z45OUm1fsYVYfq>9$eWvU=MP2ONXg@En@FRl$t5*|j%QM0Qk}>A!sC!+0xClHyyx(GD> z)ezO@{nw4wcuT0VE|3;m`|WgsdiU35irlE*y&M0cMAh56r`8u?tIY^^5^%SmI4#Ne zeEIgRRSW~=dhjlFv8LVq{FFT#eKSo>?!d=q{LYr%`5_T!TR^~iwrU_ZkcBeObUw?# zT*B*~ZF@UvlclRxXNiI5H2feE-Rz5#HOs5Ix^!e^M>aTlzt`LjyN%B_dwT^&9(^`) z-L+SIHkVvnzlvjda}&`JHSLawo}bM%Vl9{^au1gO0r3}XMTQ9gVs5_-&LN(Oac}iY z^(&QP8Jovkw-xGimiXSC-io2zc5ysFlunl7Z!a2xq+gf(Xa}QEScd!eNDo@ajQ@XM zhL~s-msO|>1*-5R-RG45Ud%~cn?QfFrRx3s{j4Fn8uzo3Dn=4TbB&8#-0_G zAk&1IXe&RJRX}wX>8x6gE zl>(XxACx=6UfM*rvz=MoubJw!jgIu)sCJtiANJ&jC06{Dj- zLRQV7^qn&RQ|2`MUFUa|>=HU!FfB55;;T!(1v$#Kh3RCJ>uf-hgE<$SHrWfoYabq= z?(I$#mMNkplD=Je*p0(H1!FpUJH9q=+NeU2u0$vTK=7vjy(BVLPUcaeAEj+QuI-r^ zS{4=vii}{+ew{(R_?3C4s=k}8t*5wm6+4{_Nn@Bl%Z7G=FH-_0(~9WSDWEqE%2Ww=+-CQ7YSC zId*Gn&VZZW93^|L1paZTbQvVRoQU#uGD|%@;vhBYbYz>XxOCi5VD3r6LYRKLR3|`< z^_O##SEA*HRGx|8h0|G-R^ON%aphTR6F5?q=ia?d&$yzL^?+4*%>2G6MG@!8Tl zw8eS0#iGqDEN&^aseef@Rk?Ht<$fYz(#($IWfqTLC0MsOu^7qPk+H;l)*nddtrPM5 zje4ayW^TR-7~#1}>Ec+{Vs`TF5+>#~#pR~u4p-%s>`TH-17G*qGMzn!@28ySwY#nC zJSJfS-|f87VaeBVwRhWAP_H!-NzTo4FfQcBdYZd_gl?=5K__CT9iBqbgI0Byk+*hQ z{PpW0Lzdaae^PC9y$kdiPhZcGBRl&~Nj|@lYR|7f<)t;zRK+z^^Lxf`o2Pfs%d6XI zXTT(HFfG-eceyjko1Bx1=l8~E-RpCE%YU6vqbwmDBwFrQ&u-@8eth{oX5^4=!>Ieq zcM?2I4%h8!bbw`gy;tLfc)o5JLnO8NzW8tM!)4Fu~Ih~23 zH!nGbtzVOK*!e$&rbMRFS8>vRp5p3d>qU}0V)!HEL{-ip=}+qPCthF=}4jioz(a-Qy+AW7>ZfwH}y#UsU>-M_vtpz9$imTzF8 zO2Umlc&9oC=Plx#zQlBg&C(Ua_6G`oM&4pbk2mN>^ATEweTo|`d%5Y!VA4l^ig=Cg zP-KhXY*4q=?q!w=XO)iP#(6*C&PLj^mlD3Vz4|!VF4prDW`u@4u~*v!XYEdoSD$qH z7acA=VHaeht!_bww8@vp=q(9gpDh=AjmP%V#KOy4DukH$a-Fl@E4z3eb`Q1a{K74Q z3zq&HT{TdcA2QW77b^DZ52GXsG=yp`4BuH=TmFztQ3_7eFgy#99s5H*n-z2OlNEOb zdZTbtisCL8o^%xjZmR=6x0wruXRQZ2IYa1&y*0lRo-zI%5tNP=wK>A^J08S{AR7Lu zcpBqYnU+)9BLdbobFGo%3sH&afWa+cOw6ryA=&KK;*dPE|DLzDG={%YZfG7radB_s zrqPCBO$PhHxG`!!)GRpBOpx;Q6^ri*P^cDsXq0l8xCmWTO)_Ma2a?~G?!9Q!j4{l; zCcC~J>w7w9!&^-^v#f9GwSp0W%cB;|<1ReOr1kIUqDMu_?m(X4SyIh2qjWjUE*3T- zg!0WawU>CRCbUbK#bQ-;MLR6~x@A{Qr4-!Xl%d8WcOG>iq?7Twl zhZ((N@payaLAvpMe5wvsYO3EuihdIFTKY04UfQ&k!zIT~!VL_2nAHk~kEn`Q){E$a^vf*(_ z2n+>x;!&8%<4(sqh|42(nhEmR|y*>%oi zV5+LhDZk(&Iyt-ynN+LBAXh~-Aomokq*LhWTh-$3-TRYFP`2jPb8W5Xct$+{=SCwh z7Vd_yi7mgJJQ9u!KPb2^Z7*MRcaPwxQ}60}@HD&Q)5z8ZRC!C;$5g-6A6pDqr#tU< zhZiopRbuhcO!)Ymp_y>iu(%1I^WvR>PJ>DR-`r`eH&sr7P1?wOl*_`A!i&FpsfA5V zgTSt)t+A3+YejS6nvjMtbH**l|E?Q#CH+k6JzT8wPdPR9+<201G(S-O3Yz)XT89r) zTcml;CNEgOW!#Ugb!on!To*#zJY#ASRHkMk52-0 zK!6)Sj-2M;HE#unU`k^Ow0qfRr%a-3G>N;rJ5>9`pFDZ;%>6C^eedEhIWW54o)ca2 z=^2puzSz#+eo0L~k9 zbbkO7E(=OmU@1r5u4iPBpjtWJH(yD7r zL|e3a_OTd{VG8%jPbfaYKmk+U50G!H9KfkzPh*{o=g@Dig(e9HI5LJ9J#f6EY=0pY zMJ41Ai1cPcfg7 zd$TB<4FZ*Jt_^nUn;(0K(PqfAH3A_*BE*TP9GXjiyOK|#@X*IpF7 z6KH0scZRoSknz$H3AZ~E2xY;(fT^rOpuPQbYiRT3urq12f3=$7q~4LZT>E-L0r=@< z<>k=sHI4LpgL4D@-l0&uL(B*05t@vJbDWB->P4t3@GvJm^8_1KsGI|#H3COVYph5q zp>8n_9w$`5R{3G3rMj!DY-WDh-1Z?VjW0hIz@)akkP>r({(WzND^Wz+mOTk{$hx8@JU8nBh1j90mk?7@`$=Dv7V%Rm4bu1}DUP zlL=?7i_Nu~c?>;Dx1jVA+{X%Gp!X=i%b)VPt5d|i3+gdbqVrGhb!?8ZZ@q2M_>*gV zS;r_~5RB0V@ExTx)Qgd3eb{08(7K(boP8erK%~z+Q?tA=^fnP}MQBa`0&hJVC z(X7V~PZ;FeSDN20COM|xzc$-Fe|r3gIVm)7SZ7cBJSZVYpOBjq&DXL9w73729vp0Y zavIXnpSPMT$f&4v&2nVI%7|y8Gke7JVks>!OzIRXV+P*Gi7vuXmV!FohThn{5X(~1 zbE^;iY4o-`M^b7hsl<`K(dlD@cFaPo&D5gex)uH0`>(rM2GeOS-Y@;ew)!gWN?315 zXEHME+DJGRr{v+$PSt1hTgc%izEq-{36H;& zUSDdn){^5e9PFG@i?AG5GVPC0%;lXI?o`!y_Hl~Jy%T1UaO|r%*l%zCMer+Ewc|H` zc@H*QUEhWC(5aoX&gwljzBE>U?oY1GjXQ>H<|-_=BTq#OU$p4S2i5%XPDbmawwI}N z)&{Gq?9M#`Htcgxb6;CQ3-RBwS!-6$u>|Fx!!ElvcV!l&aL?wYslZGj2~WKe59;0@ zuK{ro9WV_8v?=!P%lg~@Xjol6QgczGv&d*&Rk8z48WRv0X6sxKIw>RXyrcMG%&n9+ zQRUy0e*Kb6PNmEH2`<==53XeueG8REQfMuCn)>B@lNxliLb<@<{$0IBZQGY?{kVb_ z=``X}-7L+9ED~cmvT3Zh>rPX1_Mp6|Sh*8;Lbi*)+eP2QF|L;*y3KL%Dy~kXn&xp& zGWS@`Su+&FLnlu;lClxBa(6dUQT-{p$E=E>si~-B8*qcSt<$}$59Oko&Em;1n^*L$ z`_zxBz0>uxdNEVnlo_%<`JhnDO7$U`Gqah}X9gjrUTedR4C<*4mm>i&Fc}@4BD6fiE^gz<-rCuJID<%b2yx)MR(e z=}O~SwWtn1nfxv~i()T$EP1|5u+;a*l8 zLD^69RQQ8mJL3QaX`%FtD=bNT(ZGM8{1ASDq6Ydiby~?bjB`v0ywcU)bF*-5ra}v~yRa9x>+~}hR^>EA7_vvoF0)nQnDjju%*%4P*PUi$`|@O7wN_Rj zjRyOEUodWRTyE%(EuT{=Gg;y`qMm8pLbAGcuWu<$ePH1ijdY@;(Kf6)7YM2W%vG&+P*h;EMW%}w;*Ym6jP z%=CJ9F+F1;2xP&KNxc=zI@6D%E30nBvx?yiCkc#+u;_8M6E(204WwGa@!d{@2R?9l zWNx$Q?lmnrl$3Cm&z2UI{=#pFJiB>@uyexWYkbz2ABpdYtHL)zC~Y-<_KZntuV*{A zJH}~tD~!Le?pjmj=^haJyfpMxmAlA+;PIDtwu^MmcB!dOdfD5`qw3rr)j9}-!pr$a zWVrK67>e;vIsS*itaHZQ9wvR`k%ro6iq(zWl3y6)lx05tb2}4D%XNL+&Qq_RGrW1U z{~UI^w9l8j=-Yh2T%Ef?zjNqi!PNuKTNv*PS~0Y{tt~?OZdOfxoEAHU6Pli2Mup6{ zVxew7w%=@(Z~|0O=?fhYX9(_hx14cot(6kYf(Bt;@V_F|e*G2{xcinredMTQJ=?!u zv}rA(TbA!OG{)3>r*N0(<_@H>O4B?*;AFb;NjzR=CEmSztM!xyuQ#5!aqd_Yzwyuk z?@{|zJ}X9Ii=O4fb*;0Z7)(kyY{+H}f&Uu8Pc$4nrmkD~{f2|}%&mW3v9lLbyNar; zVITp>S8Yg4i+SO`XVqw3iW7z!^Bd{7lX(}5F0RiXVi+Y$T0fz;AJ8^0frlQu=eJ}lxm@RWrn6OQi32sQFfxAn` z8lX8ypIh|efR~qNq_g%aS*2^CIj%qLeJb?kV=uFswHK{x(nk7%*& zSXz}={%6lWe^72cj7>z(0zeui;(h&^Wg5w^Gaz($H!A#coZ&m(toPI89kBKis z&*{YNU}9<$kU`%bqjityvY-+)*iIf;+HsSu|E8<^y409~Ap2=|+siP#x&>8@U1mh+?aF-4L1#yHX;b2B|;OvY(X5QWgIuO&~R%zFwUM}NMAPE#AqEjCc>ITg8 zoNw>oO8(WuC{2%K-=NSNcdqPjz9rT4kO@zaxNLp#-S*N7W-hVbpD-1wBDW}yJn~3| z{9JR#pZ80)Zo`DsbbO!nc)K)&-iZ~g@gXn>P`#43+#3H0TN9(In?ks8a>m5+;p8PG ze*_<*<8Y}3A1IT7Rn+w}a?$>$!q=yTuM3@sF)=MjT;G;B-ci;F<~xOX1}$ET2jQ%< zC9$ZNzaqY}u>Tn>q53z1t7Wx5%ebD{-rU%{1Tar^>NEr=Q46-J#Y%pTu>OimgL47X z!=yRZ-yKSzW%*8AhQBkkYwGi&%B5F=dKYqP;SdQZd&le{kk)_4Xuo|&kLL1Qj~CCS zWwd^U7$2+8gxz-0W0{e1UHvm5i4x=I)0EcK@I&U$Pyb?K;;OruRZ3c7Kc9q!eIa%e z&VN6m^trA)Giu{Dc4|=Kw|Rc#{>u5yF_dNl98w{eO!7QRbotbt1+iwqbhIruQB{4rQh!9*sTsNB5x>d@Pe#5Mz zP6EZaK_d;FU_?g8kYsxhln)xqI zK{2K!U2SzXdbXSL>sN&oLJX|acE>Qi-@5chhZ`rmYyC{7RqxGLOSGS7s$MzuYT9n_ zku`^TLN#ZuU1S&4o8dWJoSwnlH2kSV_K5MlvZb-0W(Li!lhZ~5nL)$2P5(8h&q}L) zXP}mChtpcUoH!Be)#?hucdl4Xvn!D$E20;ggS)qUqPw*?e9}qrgGWdF;uqW{mN!+3 zsc6=#+IN$->biPvTuu#5JatNYORO#q7I^-ULGOSJF|jphdS#{|{m*I_S5sZc1J)|2 ziBnj#^6=hF4haSwdwG0akMB#H#pe7|J8a$T%=Wj=Ia1REo0rn{)M~Q}4=H-F(3IY_8#$3cLKi z+zNBr>s4~ZIxAteBs|>*d2%rxeOlh=X!MRnxqik-Bx~%KmnxI1Tb$i0hcpnbf$cXv zuHkwIH{49^(f1`n8dif6bG6UqS>Rv44jrLdF6R&g|H8Pf&fn%IiaS2JvWDtWkMO6cHOOH zR}hWEaAqj(2+jy03Q}G@6z0>qF9W`n=TC7ic_$PMM@paDN~t-yVB?12&DuR-u(kT4 zD}59|+&L{e@TozWuC=G<3-qZ@t*p>moInrI+Rn~R9v+^KD^IS#mjQvMB_t$#7Z4Bt zU*zD!Ao|~F-=aMsRX>t9vp7Yi(FY~=ycW(spJ9JaOX_K!fTF5V#EObR-+WRJ#^YXs8yB6}E^I7KJ-z*W9? zL%PM1#7k#&f_7}Rslei#L#4X4m(a+w>#{U0y8ipn+AWNQN9E&O316N9U-#08d==M= z7cahD1II<~Z!e4WcvXTJzKG$XqV;{TI}kFiyl&S>J4I6Z!|>ycegrZFEM>nN9I~iH zPt8tObG-E;J7sR z30Lz{Rm9xrSBn8AKP4i(4LJk?EuC(_W@^*q;dEuSC-$E* z{<7U~#mP?Ebj&KRMn`cjdHnAdL)78_>g_9|vTD~bUqC=wq+1a|C8VTF1q784l?FjN zrCUmAY3Y=f?oN?Vx;vDX6clOZ-hSuII%j6BS!?FUe1BYgu-|v@XFqvgWpwL zoo^>7>&SO?JXpQ9v(MKjXpJr+(%phdCnWKV)X7C%%|0S9FgR{QLwD2qr-rb3_0T(D21>cfI$z z-N@Y@wWGD8W;JGy#$J&TMIgDr~k@=E8-SVl&mn#5k zgv2DU1g*c$31be}Dv1tr3G?^A2>wpij*bfXkC<_K(wP}|tLEI_IL>-qd(aJ2aqCLT z{X)&r(ItJ@`##yuCK`A7d1Y;;;o#%h13;Cgf0Q!CSsh$fas=0rYnJgLpaoT8j=D_( zTL*Kk8uSL&ghzML^!o@&m|+3V_;E*Qd*wgo^nsy-low~QyJ~ny>nTF(fizDNczj69 z{T1#3MHCbaNnlO)ZDl1U_6|V3>6E@yy|6RSQ|VD0{TL}2w<)fiLOcX>e*MAF@kWya zu166*o7v7y1%oeU_G%H{qN6;fT6GTBfzt~D2y5^j0zzE-Y=bM1R5PK>8K9L8<(^O9 zT9-wPEhb~H7D(cZmw%}r`55L98u@|ZV@VFtaZwT@94Jmkjo;pj7ns%)ORT)BTKtWpBh}j1xlW=3H~Lucgz63`kmk@Zpm=G$mj_iSlF8zh#Py9{ZcqCk z%^9*`w^J(Y1xuiCyYuP$ALKCL!-G{?-;%w!)B6%W;-ScBK_A#@^n(B$3h)$F+feTO zwJ{O7vdxARQhOJU?0Hf}|0Gfko}B7#X{uH}zPfo8_OqY%@Q!VM?%OASjR+kn!dH=r zWcsaocN1h`ETGK;iD4K>SivJjVYc2Gn#}+#O8z#R2uG{ut0o@+4Z3dkyoROGw_>^H zPTJm8zT~+Fn+(UcaH=LNC4c$6^}|7S5Au{>ky`|v1N7uC(0~F?J68}o?+1{~1*j)N zsoHCy3!9tCB?N1P?)?%Llsd=l zWiZ@un*RyK;xZ_&vv52FE1?^_q_uWlfn+^8(SkhPv1oZJ_glP`Rbtq>g^DA{S$$#K zpQ+Yj>ZY;s8W5*^caXE}xwi4PA}Z@KmkLdoA2H#!DhGw+mpVMogFJIBKpTL>s~Gp0KI7FxGJUaC~aGf zen3rpbF){mQ7F6$b!Sr+KqJun@l3X(%(B9mKlHfot7(mU9Ww zChCK>_H%oCsqKn9NX>o}d(*+62FR3_*k%h_ZzipHu|DU{p1z^nJy{z;+{&4ApylYG zE%qtt9JMSH6SrW|_yjunx8my=aP?QvVXVRohFE$zawmiK7v$iN69u>?e0Yh&^{=ww zV-fMW4sJMfhP5Pmr)vpYIp^1OJuMLQbJy!wy7qHFslh%fD%(K`z@nhs%Qa0G&NpHF z@go8`AYbc(XaTgKK48|i({;Nk44A?fwAO*QoDLo~pcSD9EDl+M0jl_(1bn~$mT|;_ z4z^twq1gZL(A~WzIAyOCzZM?O(RIgEtsUOrq7j|MH|dFwW5p|fRTLI2Ax?XkRHZy8 z9Q+=1w*W0gcqTk%l>J_E?rYQ?8;%SSkeq`r+JWjA;=Pk3>}Uu$MZRWD1o%1vUAPA} z8sB>nMIiW5=)$@T+OrTqJ_bNnT)hCqedMkH&_R@uhP{bjfV@o!1n>oSGdLK;-@zNr z=fcLS-=`ifBFdJ(n=Aq?0D}b$O<5%_|80llph?e#_=1D?s;wZsRBi1=tO1-&voS{k zL{z}Ei^>1Nv}EAy!aoAFI_X17kh4La%d(JFai|AWIU< z*W{Z^2_~`6d4b=}u4YhS2HFbq0NV6UNY*|ETIU;1r5r{M}8A!qI91YQigS_F}V3LuLC&LqnV zSFf?@PxYc2tZ(?%@Mr!r&cV)oTV60%TlNR?anGN#Gi8;nU%hX&vPMHs4|hT*;LyR2 zH?|m>MM65rG*MEheBz4M)>Ue zT6p;UH*3ewM$brB37hYq+L`lgs)T-1UzDq#X^2%Vz$>E2)wNe+Btp@A*rQ7_fDGqJ3_tvfCWT3$H7cuB}8JalX?19a2xwfEpg^?phf4~&dhWX#1G<{s9Kq}NarKLl%ncSVB% z(LQEkR_ZL_?-AD3qV8znos_#8uf&=|vRUj_QK!eOse%&v=A>{yZGSrxgmz;oCPlE~ z_$jAe@A*N7%vYqgV7a5P?xEf^i*IZ;8VeVtzINqFU3yj&at)vwC{M38x?iqJyVe=e?q_nx zbq^q3m|JiCH8V5-rkHq4 z_pjDD8k*se{H^aq)LKj%W0jBO_59h|>Mu;9>bF@ch0C@=gZz-yAjD6*d1U$1gTC@C zN8q8=LV+OOf2jYl7l@btCGb6m)h|bj=9UWI{rI{%!N9#v;#d*2t36(TT7(NzDE{`F zr6p>RNdBd!Hs!Czv+I8fTGiaxR3=tNEPf@HoWi2O%%Z;xZ zy};L*6##jDVnn3if@ z?9{rSTFPJm18jF$t~5faEN9#p%QCqocHRf|zB4gK(EjKtQ>5kXpc4vFI4Iui1IFT! zr%@6ZJ?)$OlrtexfaK#wM@^aali@CN7mNIR@txO@ihTyHt}dqq^*cH|kok#2Md8L% zX4$TX1%?coa%1)+I6;Igkwz|!xf4N0&M76eY~lI{pFN^!Zv~8&ZOfN~X_g!Dsk$u^ zdNlKf+Aud9@PZys0CXc2`a68qgsm>DRjW>M#`^Lxzdi1*-FL&FwVpArjPl2+z_ z4*{Iv1J8ekD;f&hrn_XbsVP}Amz>R!>8PI4x5lNpGrZXCaOO0MwY6^h-szFyHdS)~ z$?|1IzJwZiqi64Ha%!1!VM|yF^G>%JY809M^FdtR%R-K(;M2_)=hWX11H8zB78C(X5&oF9F04XK&bL@Yf3 z?i$dqWK=+k_laG-Nz0o(hkM)dfPd#4o=mJ4t?y^H-D7;krL$+(IDU+W)&9CK;LZl< zklsQY*`nf;Ox8yO3|zlX-IDvtaBlQQw+<;2B(4P7_kOH zAL%N~ut!~Zf^UFWK;m%Quya&xIwat8Yg@3pLBb%As|Tx{i!;ACarpU(?CgQEh-^?Y zISd9KQ&Q6zcZ_2^AA#i@-=C#!laN`rb@rX#6{SLlesnP*{nkBB4q9Tk&9)OkJRe>7 zagFfbfzxvXgV)+={;elW&k+#2W2&^x?aX{2t*%QT>Xw0+$7lvlb)ANK^0YnA556~5 zy)VC~JSwJf;C6B0DIe4*zo~>rkq|Vp6p$eVz41F`NlCGO098MqWqsXw8wFJGO^5qY zXe?!5wpCk{@EPh1C|*|8;3rXY?cx?#Fz3m(AtT;;rjY=|5V2fVpEZ>)IyyQn5ZDs* zes3!%P}s8O+rR}Dp6&n_kK)Q6&itOKR!-ETr)K`D2>O2+P!&$=w8L7Lk?9z&YjztK zwQ40Q%|}OB{`gmPa2ss*xfMHOfw~4^O{;ut$Gj2}m9^2hzpJdSw78*PIm6h5xMNsq~FzInRt9H8RnO#P1X!G0heP_fN z%z29`$o=aY_ILwXcvaCqkUQmmUHUytTTdu5c_y4WTT26Ed@xrj_->*iOtm#6^ntoq z;dpda(AbC$8Zk?Thpg0MQ<4adN}+^Z`GhUjPAidP=vXf18!XsWQ(u|?teiM4A5)QH z`#nq0QETBOit2P)SpQG2xwQe~?iFbCU63}0vGld}snuL|KfNRSHT-Rz)jIXI<$?F% zgHg0gtD7BfbCaBJZV$nN#`sr(wq-zBtcTs5gtxaWdZPJHf%a>}+Y%aw#@VXGKQQY^ z>r-;@QPhf!cwSYg`aIRz^z1oOYg zKFHIJ*Nx$ua&RpFKzD2md>Y^%@V#tvkFvxTZD5}gfaq_n*%|}DwuiS^0mg0!C>=h$ zdSq|Q**slS>`>sGM*>E@_y$EymcHd4@&(_viO|qMS+hCWGWG&$2Fvc&xMsZ; zB~bv4o_@KrmyoV|O;AKMGQ-We7>LHdCU&lu5fxxv(U^Svu3#`+Wmn}>){|<+FY)lG z56MX|@|5GgnGY~t#H(}N_?X>oHJVSg*n4U`c5HN`Y=U%<4H%|#w3Y6K1M8|;SNeb@JpP)B0oK|y@D+lAB$G-Qc6xHp>wa99pgPu73k7`f=EavI4IF}V7wLdM2nH$$**V!8$@N{)YAT@$(l8qS17 z&P8B8P)TQsCs^5s^Rg2xCj=4&&D?I<1$c*U74r=;50U1a)~rFtBai)N-s)R-JTvpb zQi~^XBoEtUNL?jeBpl)M>YeJhE3b9#d1cnnTSuNHWN}%X+n`PwxH*5+RGCmed;SJf zQb_>b^WqgYeDd3TtrJB}@oz3P*9WT=#8dTB^YgJ}Md|l&;={h6w`Dz>s@Pd5#&T{R zKwhhxCs-&167EZW9r@T~P(vffp9vuW7?F`-vMR$}{d{?msL3_oT#YC3js>oujVe4* z?cWtLqUP4;kVg-UD{KT%P|)Ot{(H-4?8>F^VadC4pCA5*>1*$=^W$wp0gdA3#Mu3i z)YQ6be0XG~g@)FYz@mnm0a!IQ^3s$ivS2GrjP2O{F0PaymbHN~tNgbX;RV|1eV(q_5s($bn z06|uG#^uZC3+-`3h5)>s+aivd@0i#hMJNNqk@@V9M9+bJ@n{aMz{)pKazaml*oF9b zt}p8}5|8h9Za@a2FbyH6HpMC*NdMMOU<;*ctBvu770bVz2@~fCUQ6kj5Io~C##iXe zGQDU^FIJZ7`!4b3ZN9!w?fGx!>AKn-#0OmN^OJk`bx)jlQfH_d)XHzbE*q<2cL|KT zXxE%q@-hSfWZ+rryZ&zW_kB$X*7sLgFupd)N2cDYu8r-xVrjyi-1Y4$QGJMq`U@Z4 z@Mo}%_)8%JTp;I()n4>r)7qM7lMcEwZw&>7M-O8@BOm&{;SnO zYmOZApXSim6^`=jRT>4^@kEQ@YY9Jis7cZZQI$?4tsQ?;sfwz?81un6Bqvy;I$ z`p4!}dpev|3eG%)9Wz`*1=oCTecpu4_}vK_)$y%gE5(cE{tu2AK(aHGFdKOY59tr9 zSKjL`Wc6CHj2kLge7LP}UMgpzl@SeX$^-#V;r}@~LuTREi=^CXmdexSMhW5-!Il zY&Q|TYW#RTQ7PxYr|^KlV8eE=DEt|*&>`JrH>ZgqgDikj%UO@mO{PivfoXChNA@cP z70yt00@~&;6WbRdw9s5*@@VXsz|{YD`F@T!7({S7rg7?lvN;;R?7FDGr5uH5>HZ=B+0!=Gx<2QM#ER?nj0yA{k^`p22qP#g7b?~~TW zu&)4*`zYGtt45o4bC=v*Ey=_fXhqsG!kuxjtVSpkh-i)0ezGH66EX_BmAY%|u$_Bo@Wo?pPme(OU$P2W&5!<_3qZn_g~%Y* zGmBo2f4Jw9@l3LkpC!4D`%T-o)H^@WEI(rfmNYLxu5_qU5u6+ZG>dgtW@n#Km?KUN z>NQ_;RN(BD>>bY}?yDQJyfI7n=@aPHPJVoU>02rM;(A-nW%^IU4dTc&40?1lPuTW? zGr}V<35Xn;f=$N_`I&mRxiBo9e=~UEhn4^Nz}qT?%~P*hKlv;l-+B%l2B#%5TYC^T zttO=Z)78E?c+!Ib?L`6~WuZFDxDlVK@yi7;-i7@`4(e{pOTGKU9yfOdxET8;$ zmM4}a=Z!@XFw5|Pay`aL$b)`*=G#K(2gg@d_IFq+e(!K%Q&9Q}`o%Ms%I)(d&Gp4< zi5DM?8@_9D?F2e{s>)hBZ|@5#*d8@y0T~1YI7ce-i7%W4er*#ibR=vCk$MT*rrNF5 zt(^RGSpK34HM6!3J|34bBG40aT6)Y(ldV3l<$7-OzQ4?XF#_R;+u{-WlC$fayYIaQ zuG&`&ZSCmj>jB%!b{BYv^7S=$?uGbhqnhF9NA8o74U*3r@i&3B8|cp@ih0LczNCcH zg%@Uyfq_exbU1R(z6U9*Fb8aWDlmIIS@!m$tNSw4P*L2@Su07Gf3K>h(Su4^P4k1l zzdh;j=fgxH%mR(p$%^G;UxIJI^?r`U)Hd$1$)xv&f@@{oG;ME#BHlffW~{OWrbQ>in?;u}hR? zcb9WY%ShYECtNAXM6hEJ@T1}HUg=xz=9&{fEw9N1fDd`%YoM%TIGbz+Z-(Oa-6tsX zabqCTxV*Rg4CV^z$SvCfV|Bei1G_*yu1Z8p>)RWmZlj^;U+ZzxKGHMa*I%<9ob857^~ zin_y-BG~f98iMH8S$KfhpG?FStV@|MQV}`OB3^v-tFU@6ciAa0Ig|S5%j8{P;Vq}KxS-qgQ?V-)yDct!%lC529xU(C5WfYEq1>GmS`y&&d;CvqKOiIN@d zVD3UVSx8Oxs;Lg@%3?Et`)%tHEl>L>ptFMIg>@pk1}x(9MNQqwWsR@DrH3}(Cwk9< z4f4gTz2i7XC-ymp)1*A&4}TI#EJ8E&qfc;67#Rsc-W+h78B6SJ+^wzsUZEzZ8TqpU zQ+tD526*be5t44w)MQmnm4q)KI-3g&~f+=VNtd~)1Y{buhL&8?WtnqXZv3{ z6G4^sd54Wscn2r80G$q&E`Ebrs?OQB3iz1l*JJYSn+n@oZLEi^PdV=sVp+yn_pN~5 z^j|aQaIY304l6maEFI}ElQpI9A+35Sz12GT!O^G1Fa7m3(3vnaYhS;?d@#ndy`x^K zDR8N34n}Sah^NcEN1V76oCm92b~e1Xs&!iFi^O{tz2zE!)rvf$!q%>Vt>nu0w&i2f z5uN47d(qhfQT;g@Y+{vh&VFO1N544WMsy16)I^PB<0ZOgik2BVu~Sl)-{=%_RzKKapP*`OgFQ#D-3ltA z0RP}XVddVYD?PZ%>0qu>n%QMH*XLU6^6wH;F~NCxriamuTQHC$+6Z}4&Q+qzM#hd$jNVbQmp z;4Aq7D&>kE_<)jrFYsWmeYPjEcW_n zE!Cy3L!TrNKGPn=X$I{+RD!eAT7Cc{L%J^*U=rJCv7Zg@r!L@+sj$B>Q8HnE0(!xp zAvC@%;L_C@%}%4Ot&N!RA+EB*E5NS+Ct7rfJK)yulmI`hi+FhVll%8K71MnW?R#mR ze%$2AaCS|=`{;4ra8Lbm9h`?vj#U(oJI)s41|r008g;-Q2LvZhR~-cnhkvwA@UL)Z z_qq=E9lyH=u~N7?AO{3w{DxX76WH`JgAf*CBq4DJ3H|_%AL7pM1}%k{Wr2PY>~*OT zlgAb?YF4YUxelpVL6W9fBy*6HL2$IWw=)61a(KJK& zG%NP@O6TvJ-e7SxEt2$ROo0cg()F66aUP#FQKw1=!PR@9eaZ&2hIq1k=>Rt80#;QJ zH6{*WRe-V<6$YM%PRC_nU+lO6{%8ls#~s33%gfT>MEJe8CIzvd2j^|ha8`LV!#-ay zA&?q5@9F8G{dP0J5b@qRcfHaK)r_3lV#nzcHWN3eJ2|+>P=6^wtZ5!E0ZYpro5|E= z8H8*Ce3(F225M@^7D)9W6AUoy(HUeKFJGJ0)2O-^$1VHfDQ?B_E|+>fCH1QmJU$rP z?dv|ddv3jh)pc24o04H<6UiUH@b*OQ9VP&3jF5J!PeD|hF+5i`hkfA!Vj<_05)=^d z4KWo?X+oku!2+A4X?4-EGpz1v5BN#i)>g+>iCurPQDc)BTGgZb?FG%YAke&n@Adsv zKi>jMiqT^EpQnhYuY?5ZFD_0&P5l*A(1@xO1=`w0;JzUoz^z2U&+rGqMCqkVsPo!3Hk`6QKX4HKI`^JXn@_n%5y8Bvtu9!G3w$}C zhg~;%^nQ+yj}Ihe4pjdE^Jo?@KL^@HI5@Ha`vE@F1AIgkr+?7`{2fX|rJf-}tPQpo zkRs6c{^nEvkdQ3E^ugV9Bm99I?y{01>|&-wUEtU_|4ny4*M1fC>`*m_UA-j2mt5~QR2VAUAt-y+z@%~YYJc%n zFj=cGg(Rcux;atHvYQ#AzNcf|o|W^RGoGU`cVfNwNFrKwIq)s8HFn1V@ntboKO;C`#2v%_wVLSZZyJz=X=TYQOz!071EB?xY1N<+hrbfH4YvI1ZPMCtB_XeA( zg-}Zz;N@%U#Wc&S<5-8cxQjtxdN|`j=J(H%^yn)$&{gA<6dwf>GVqPKxw9m_Q+B6jX+Pxa#US!(Y+8XO< zh051mReociG0S1q(A7C4fB#bj4%6YEGgG7EDSang9p+I$LWSDskX5ILkjnyXisgB9 zji39q{cTU>+kHd$`TgFdXLrd}fFyY{%3Ix(+b&1YxVaU>{h%eWQbRgKU{VRD;fg({D(jW73?9Ez zE5vI_W5-TH_wVBmLl|FXoqbp0@IEkNj&T^?lKxAfGI{yk{(alDd?7wj{YKNAeQ3;7})?0vY`(nHXAK1;iH6P1YH(AiJ77w4>V9Z&(3DOU9I8{Ahr=9OuG8|x)p z0@2h!o9^DUUI3dLvvups*_PTbSN9LQ1$N9dC0xadc`>@0kc|L)p*%dh7-q%$)z3J_ zlf#;J4Hg=!;{!he*&L6S4Scs^JAR!)Rp)o&b*g9I2%w5aYz;Ejn?0LT;H_^q*8N+U zMGifo=SObD=O06Lt0nH-dUhs}eiM4Y&PKI9@X>2IT! zfHQo;0$;k=`-`Tf1-w4wEfbi7N1k8Dftqo(vk-PsiXm+0Nxz0geiNqH`Q2z>jaKk* z|1y5=4%Ty9F$3!gV9tg@>tCl5r-%406%||OoMwqU)`#5xu6rOjXR4Zo|Dh{=`AR8; zk(Ez0t}(oTjT6PudH5u*m`bj`?yJ(X657ChvTqC=*ND<*Ab^zokQz;!B#Kwm zh|9&bjC;XR+BHkZtZyR=cnt8yy#bjgx>cSERky?@`(UKNe3JN2=>fi*bT}fRQ-&u) ztN!Bkhs|RzvR7L$p!kMA$sNR1NB&Yrv6)|($MpBNHP26|e^rp%oKXQ>T#y=XlG`#{q4jhyQ&FWht+&G`=Y zH9Aw~egx8fvK&7==}U3)7~+NPKLm_{EY@YmrZEt>D$p|^Vm>0MC*i{*3ftpIg;aSu z7&u|Jx+*3ht;>_&MxXbYUOFh1R`?gg2*gA%$xjjW(-8#I+&>30+2SRqT442U}FBtUMj$J;qZ02mSDuf2a00dbf_=l z=k}u$sW|36g057O=pE0KAV$Y5&s$~G=bL)PY+Y6os0VKK7995-yE`n$za&Ayy5dL? z+#3I0VNH!|+G{$+XG^ExNhJQ(<#&Do3o#u~;zwB@fK*NwrB3RSZ2es5`+A&BHZ|fJ z0ll?%b?`bE1|&}JFU9E2BO{L#ge@bD2K9B{@W3boxG)KzvFT?5S!5>S-2iTHMkI8Q zB+?wmqnLB4JKlh!Ho031&WcqYG+l!v8h=?pL#F%8*;UG9z)*GuOE;sTs@wS*MugM{ zKOfj$y375iD?r@1$pt^=)2sP!-`hLLrurL(S*yn*JWymXGcmyx+^&4@=*%qp;xT>j zz@jIzmX7W&;EG)K+kGg~uJ;LX6~{{4kHmslkzq$qI-J;6sMX)tP$Oz}1!TG=f(oW^ z$S6Ov7x1%8L`&89;_IeV!frAx@=v!qghUlAsLZhzNl0E8F2K9*tEx4i7X%~QX5|n5 z;R4OejS_u@n7E>pZ7Cpg=5v6CmTBUNVww75d|opw7KM9W=$uA`)wQ4;))ORl3Fm`0 z20JPgxD9^JFrDe#SkePTo00Jg0GA`P9t>{a2|a+=!|qxf^G@E$A;Ceg0`L14!aD z1%tmdOj=q~|}*H)mWmpV@!H+F9vt#=pYZDHXPu8|%nLjA2tStjaqzJFBF^>)m71 zCZ}J(Ce`(9Si8q8zT%Vet;&YH%mfO?w)%9LC6`u>FdI4DOJr8d^&SWJO4B}Y?Frku zHKz2rS@iKaHe{`RPwrI4;wwpH3LpB7iVqw-+Qi=eYW03Ah1 zdnqIeBVvAYSlw!p<_AxV%IF=oJ>GG>jYy&^xd{o?I*!fV(MD#@Xoi*KhLwaGUHQZH z5o}$h#f~Z$(+4iTY4QB}^b|#ToCUNU9~3O(K8`o*H?xa9uZ!7H8fyux*=+Awn127U#4C_) zWlDE>u6J}7z1y6<+nla4dScRfJIm2Zx(EHSA=UW-6E@w$t}FNNou_M{Q2Wd40^f$n zgoVY?))r{r_BuU2cyB5isn)(5yn=?J_nJxr%QkjG@4`0@tgFs~>Auk^Pma$X zlev_i8;EnG*0PFzzhq`O>)9R|wCv7emx?;|@$DCi#7ldq?L)qwwgCMZhs*J?>#vIr zCgHDV4U7>Ox6DjK_^-c6I+tzmPLFCK7f#z*>t*=DZd z2XR(j@DdG|fxq{uzfJU7-Lo!_uF{e29eU^$HaQ08uA__<@fMSmUZ)kGD|UD`OFUt{^kRqdi-k17CHtQ1zp#huXZ=i;nJoN7x$lPUe7BR%t< zvQ@InxjEg*SjW;Tt0yeiLwI;Jq6?NVV<*&OCxpz|ZEg1)2uPpaa$X%mFQ>-QOL0R* z$!}GUf5kWy(<&Bl!QFjbJO7fE=$TN>!V(LE;%6e`2HSSV6OE?LeVWe8fs^`o?}pQ~ zAIiT+Zu`IceqUD*j!xW^EsCGx^%8tDtHE3%$!=>*&|6G=~^Awc+=cy0b3zwPx2hc-761@83ES?botng30*#!lq!3TIKnBzb|#- z=%{*{JHFS0!4FPXb$IJ3=JQO-n(JiD6Ys{cv9FYLJWaa>U2DKY=SdxrR)hANmB#ph zT{G#oE)^ZS9cO8=b2G9q`8L6?`#MYCSx?1WsbXWGCoDV=Va5z`a2Y588?PK3Hq$?G ze>}$h6%_REUNb4)|MTif^N7aZyQw80uQ=|kTJdPk&|*bH*)pEL?U?ilB!Ewqbo`v= zkaDnQLnUn<7rbsr;_LV8fzql+KnU{7CU2=tF-5)Hw&I>LMVAWn8By<@mIc{*Cr?;B zu!?g&CbD%MJla3*yea54>SE+3CV*M6K_}S(Es$oY^W{a+};Eh zQV;(A?&XuGC8AOf!pm(1Q98@5)|88L8dmTd##$OS(_7D*Vf^!N7}r^LV(1>BpuO#aH>^IxnFi`xEOf^TeVvDx%to`;)0n z_pbdciiYMH{W+wGsXcW{+}L1sfnz`9z^#+F`iJ^I4a@E+)zkjk=ERKc^b8Lrag?eu z@UbFg9%=JoCDmc`@ehM;@1`0rpg1%87=Avpdi&3>BH&lgCPr}ar$k7`9#{C|tiCb% zmM;0XP08ES4Br$c$obC*VM7mF)!Aw5P^fPY!iIZ&=AW{~x7s6`SA3ei-T!qKErlo< zi@%|4RR+FLAC1kFk9lE{us-IG0;)L|%|l8h6x9M-F#k^EUOF9@jCKb3@z793qP+Nh zc21J!h=F_Q4e~oQ)<4zBl8=ATX+pQX>rSNG-r5)Rx91>tgYnpqMA{)8tr8+EAAxapTv4+YWEFaJB#6OO>0`vaC{4j>z|H#4%9$ zZX!6MB5y9hp`MY^O!vvt;%nk5twCydC=|*4l$M>4(0}@|a$8!KBH5jopVRQFYPYEA z&BjQ|u95t08%9>WCr_`GnYZsvEq{Bqgn6O5yd{2>U#H`5<7^4Dnd0&;G-r>W=n>ME z3%QX;qANUj^S5o7P(ksZ+^h|W443jTQEVO?WFo^^Z~ndvCfuNSZ`!73{s-OXXsCDF zKe6Ba;Fb8>i7y98$z6R{G2*oUf=BVWBiX52ov!w9(BJMBt^?nu6W!zAml#SyCjKF* zjAiufOm5t4^Y5@>Y*8I1z4BWJt5Kwm!lgh|EGQ25RrcsVm!cQv;OrNb9sk@vQ$RyK zI$}u+{qyE;PYqXsU%h`}O>Z5yeb4t@OdY{pw;1EU{Z!_z>hOh+xeeY%P4Qk|Cru>} z>{`6tZ~ya}a9h)uJ=waPxXjQ(wAmyySRC_%;?R>uwe27fgHef+{0`b|&nfnqvkU*m z9S2nk9x@A!ntxsTInB^O!$ZXXqw5eF3eV$@k!1NM8z1b$iEl=m22MgK*(FNKi`dxM zzc!~RK&5_(?&DqMZ@P9bPA`jzp52jtm4HXZeYy68Uaz*@KLj$%ByqC>(;!nth>3+o z4{R+vdwQh$l0}K>=z<3al?Dc`ba7{G$+iA`YKRTU$pK$;!$3wCET+f#6MzN#oQ! z9=}F+A|Nm&OfAeT{LeMGYx|PJG>6->K;3<&tjs5Zi-)IiBKpHgYpiAeuOK zmbxXVK%szmMu$bH`PI_e8cu<7P((z8bl0PY59b#ah8E3!xrqL9X^^s=akHH4d0a{b z4;ro(7Q}+?qQQ#+mrn2{q&yi~vs<01<1Z~OrH+p4G1NCO0OyZ;GFe9xyae%$xlb_y z%1q%!{K_+TmnJ|(L`D)*Q1}%WbH4TS(}P5voWeqBH@EsQk&0y@(q~aE@3Mkoskm`( z$E1&HcI1h}l(Aa*?8&e%5kp96Dfi<9K7zKkHqg(tfu_l_rny=Dmpa`(fyTSiyr`;~ ztl&s5WKs0rl8JCWA&^cd#(IMm6%}P=Z%;<&hs;_VmM(rhDd|Yp$WUfOZcGxlE$#1* zivQn!bV$Rv;lTptS zRR=TiXZLSkygaj@?G(#-0S)YqiCuyA(H84U z!jQcJeKqOl&&eRD=)=JDAscUR4qCr4ukl!6Qrlbym~Mz?C^sX2Shi&SuHemrIUVgv zySoK*0sU=eWJXqk85#az^m+ND481`+6x3e#i^hUN(oAWM*5SM8JH~|sdf~gyES$K| zkWPQkS{iu)G9Ofj;U9m}K&k)b#~xgGbH1SThIs2#h%Xngn)h6l$&HAQ4}=)9=C(FW z@QP>wm>?Lko%};GO(Am3i%C}I;ls;xQue(m;-OE{rCVBCF+xH@Rv{sikY415P;_qW zW9E#Ej4L;8T!jB`Jl7~X>%5X=cseU(ItjW@F33Xz7m<4rOy=Xo9|m01qPZ+4c>!u8 zhrfn|#w)vfdu?wkxY$g|{|~dpvunb_GywqtNM05<56=@76+f0_C-jk#k+k%WO7ilA zVqhc&z{Gt!(vcdlw;PnGfU9+Yw9$HFoD2C8 z>|t9W%1rV>nHqfFD#&V~nMN0nz~Vp`1l_77FEJtiD-Z_*(lL4MN0Yj z`E|i95%kG1M{caIvu0;y;Xcl^%*@Q>MhOZFYrw61%*~CsfA8L6clYBOkMpzLw>Yqd zDMdjtnU?!v_yfrf#fGc*eLHb*aDt;n_qus(ARjYT@&~$vc9Z+-R@<@(w&R0?&h5ry z%huAsKwPz=u`ZDFk%jeF!dc7P)XWT01+PL}P_b^Dbb3p(7e;2}wKy*tONRPt*@`N>d>*?Et9uQXNW3ot-i;fqYy15{dGJ zFC+wj_TJ;i@80p{0K5`*dV) z=gMZ9aSIw>05Y&0HYcwO1?G~HlfMKLgwF2nw-7kJDv)cymjG$PzJNwypa3ND0T@~b zG^1>$?5iO3ZiPt45;ycTv&pjyO_3KQZ>sp&=6W0`lwEuLnoRyno-^ z(eXg>)^BP6lA+b!f&)Q1*jJ=2$g<8k$5Qyy41MR$woE-9)Kg72W z)SOXXn?irm9G@Mn(C6JqWyCsc3_D4C3?<=GDPJ=k^Bjz6Qdd8G*74 zTv-^xVq(U25O5uwk#~1@Q%6jt9z65O$;r{MWVhX2l!X+*iw`s8K?Uz6J#?_30L^U9 zhxahU5;9gn%xdyW&6tB637!FLn$?$Jn81omK__?T zG6@ONh;BdID8TF1L|~;whqHNL;E9!xJ^Wm=l-LBr2BwTRE9jM}0VFJp+}xKTk+2;C zxsl8@(6nC$2|g*E+;d+-xiCjSt_GL9FGNc!I$5pjr* zhG&AVO$Z8ort8;r!Mz$#bclVrq@<)Y525whDemf;#u`_TN{5bHU|j3NAF5>!eF2Z8 zT`<9c@kfS|6B`^Hlzi~?&TMikH$>mvaD=Wpy8hb+)V_-#BMuD75Ry)RlFX^=y|KN0 zTUbD#v!$hF7hufA_;~7p0rOD^Z%a6F6yV^Hk6xmwT9uKN4Ttb;g9h!}M3kHoV%Fc^ zj`#E3i!hiCj6>$+0H+Y7bQ*rIBnSQ>zDXMNfB9p0)aG~zMg-G`w6uG6q>M@eusSFu zefo3{S_ly(3ndYvp`pcsWxM;?p;4ZZGuT1FFdQ~k)7NJT3=D*o424=-TeGsYEpy>x zR1!n3kAlH?g^dmW@bD0ctAjBI;U3CYSXuGl9;=;xrmgzJz=S>lt3X=%rSMO1_u;uP zq1?+J(w(ZbSecn?eJLH#L?~1QlWwaoL9q7v^0M!*U%z};;I~2` znZC%v!U92v*REg3w70h>Sf6uQX9xf7?-0j%S4ZaxJ{E@bJ4&zI+*_z-yxaAj8yn^z z0lyf*bT@(tqN583KJ;JNlIR5e@FEuEsc?sjI5=vuV`Q$vK33LzTK;? zt>rW4F&TvS!88w{otziT69E83Xxj$0C*`e zj{)0+3ih`5)YR0<_WA994Eu^>V`04<%#iKu>})nGY8Wk^Hs`x0DoO`b3lt>HJ-7xh z2*?oLEjpg^*>55vNx(Ea-i;_p9{WuTN;ZPpVqs(B9au$VWM+O)ND)JMmY4JX+MZ*8 zF5L4~L9#NG$5b*ysEJQ6YiKRLA_eTHuimiTn%`ZTcRkhvoSW=o6o+bG-dhPmc>imJzKyq=mObZ&B3Hm|DHFzrP=x{3zl=*~B#C zTwni(`ya;EOMqKsK3z==UBwAJ6EyyQk<)6V|Fc%ugFwzRsBxP@VN&4}QYfgdrUVj% z^vjowsOGLNJSizDg7v+r!X}>F>#fH zgV4mp1UfoQ$Di3(W{JaVk)6~tBuOvlekeS~70P5dcfoxqc1GiLLFN7r~vI!9qt5NkmxyCr+3XTNC zl$8GP8COL_XsLrOXdmBTWxX#gjRh;Y^EPkVF{u%3RY@O4Fgdxnyab9ArJzm5s(>UD v>hJ##JP&1NoQge1ss*(~|1UG=@Hv|IkE<7ITk9^N;6GU@dC9_iI^O>S-WVVF literal 0 HcmV?d00001 diff --git a/_images/b77d7abf459122761dd893433a39a14e4efa6906d218be1b124c4dfa5d13de0a.png b/_images/b77d7abf459122761dd893433a39a14e4efa6906d218be1b124c4dfa5d13de0a.png new file mode 100644 index 0000000000000000000000000000000000000000..52f2dab17a0b38734465708417eaf2d2f8a408d2 GIT binary patch literal 46931 zcmb5Wby!vFzdZ^zQUWR=As`|m-BOB_AfTW~cXvpaO82H4L{LP!JCyG3?(XjUne6Ym z=iJ{t_mAuI_-r?gdbpw8K zZ^73S{=@Z2NbZx2sm>=Gbqj423H48AMy8*P^few@Yg<_Ao0_oDbI~(Cd#Ly6lbPjn z1_tB*`vvr-7P<_q*F+29B4}o!@|Gwl*y_k%)L;B5`Y0%c)vpC#zPF8C9ka20uRYwb zwUK<#`T7=G;v>G z-2LbiDtYKXorcd-Eywvi2$}CZ{PKu;?w};Igp*~bHR|LWnq`M2|A8hGM$HSs%RgeF zzC);9mw(<1ixvLohhKu}aF9Pi(%-biFMpPN_sJ0M<Bk< zmX>W;uaf_o+1NDn^%aO}h8cOoC%k{@p>DQ1$P^qB(uO6J{5MrLgXrbUmvYa-X#-?( zso>qx*N5;jo?9(X&dgZ$Vf#~PoCH&_u!P`IOQPH%CU&gb`uCH6N5Y4QeE*QABav5w zllr#2q5_rEeEOQza&L*o>qH_g(H6yOkDRk^XLt;ehoRGc%&gVO zc|Tlu?0N(9yHo;Sz=_SM`OR0JSQVL;?J*pI27SMk_mAA%u06Ytu2^VPl6gR5`0qU@ z56WJ|w|=AHwp*KVdUL+~Fw3bt@TH7(?(xB_w9`a#@}nErq;D$h_ck{-zrA$5QGPh> z8_VZZ`hMcT;it=`{Z=d%JIQ%?c=U#HwY}p% z{`(+zTb3t62rq=Lq)5kd=fsIMX`kYw{RlT(o2W|o_3O#>%*@et3&T*E4Fj3;AvvvV z`ZvvnfLJcepYO+uis52D`BTQ)?~;TuPtVTUux3hI;n{AIIsVhz`@TO*RaIl*!@tW! z;PFyc^8AA-p}bw|(fQ`Rj=iY^&!)y^+U_Haq{SbeuRJjR)YP~pI3Ih{E0^B6e_uFD zrQ)!|<-BI9#?x-6je|s!?moINK7+NrQ-MKWB!_AI%(-D!g|L>^BiK7ugI=$qar>6k zu!Be@O}&vqx&)_v!l|jLYd3CmXQ}dccXy*Ga*h4|kQT{ic>lidb>BJx0fDbFgj3C7 zv_~td7h+;!KANrYUfYwkBJ?;ReYk{a#hz^9fXn`>{PDqt)Y@>t*8cuu3W~3hkp$m1 zyX)u_3pq8uqO%ymUBQp9FfcIK@2|d=mhPq+IPDT4!yzK_2@J%><~w{yLqijBwqdcg zs$y-;UgLpD`RLI#RaI4!$|D`wOr@pWXuF+xocs4Z;N=HnHmX6ok1q~quwg6RA|mkN zbF}(?fB3w1G4WU;n$dWeHDznR%C*AbKxIGHL;VgOUX5lTZ#`uo&)?A!OW(WV@APCe zkpv{?9%yz-DvD?5Yw!&8Zp^&Hc5JhUq$A`CKhD z-H!OVKR3y=x|3hOiDdjDpQn?f+d-;OXw)=fT7~%n7LB9{b5QIyd|K15cS(a44jd@X z&d!ghsadR7<=Bk|UwC4XpbVDVv5XWN&y;Oc(z1@jM*7Ba+vI*)l7=*?8?SKSvRPLO z%Iu?u6o>m|bUAl~(6iki(p?(JB1`+2W$lMVsH)2u+l0#nZ)$2P&-vjD&&g_@<5nHM zkbU4nyh8wTMYAb^<-W9r??S#_0RcKE`)g3KvYpTDNnK9OA4|rHCh$4Q6&evHi3HMj zm#8}Jeb8x-eZ4c^7RBfE+-Aaw<0cmIH=VX<3{sv*2m%kx2lE7Eu>5O96Otj1CFmX6 z6I{-tT3g?gTCE6+ir$KQZlzK0M|gOAe4pkgZC7i!*L(YYp#prD5vumTH8q5+djAZm zdwJb`%Ew1q!>HGvE}z)JVc74Nr`ut%J=;W)U^&|u^l7=*dvnulz4F8aKCpg3)n$#f z-k^Zlbesp4`Sn73oZV_pgItcrb(Ak(zS!E@LQQ=2_U#=gn8l^fsRKw!Ng)X|a^#3L zPft&OsaEmvI_!UHee;EmX|ekUx<3)yQ`Yg?TEXE0Ly`CI??TReTIu(PohWM@KrfWA zop9LTeQv!f3afRr+am=#j9GQIAEWt3R`&kRLPv`6Na3jS$=d1JhKughUw2||>($>2 zQg7Zodi>bKwDQQKJ&wDl*jy92cjKb5`Qm=K0uBjD8$^<~pWm!IzREWUA|aoPl7;x0 zFE>fQ!S7q6SUjt%Uo^bwg$f5TQ#7LhtwKIq4b}A~cI7k|JhXU~^O>2I)er5Ka3uNR zlYWYBDf#OZ3MRinicr=0UKYyfhRelF;fRT){Wv4W-@ku3KP}#YywPb2rqXefe}sPj z*<`IZp3r)EXh=v6R5d6or0|?Ib#?Cl{By?y@?XXINZX`%%A*@oPB8fv&zQ0tYhmAq zhBN1faYgea#mmL!u0-9riK;>4MVy(k){9e9?`AEXAd6b#d1IVT_JiW%B~?^NQBhGP zHDSx+`YEs9ylFXI>#b4e$R)*h^avhE=XiIixVSi5?avjR)=2ZAtqz_Y3~ZiFlo)p7 z?;?SuyGuQul5x-Pt?-VGjuNxzqi~FxU4@FEIgqJ5`l&|(#m(Iv2N!pmpeILDBwd!a z%x2^9lP8Nl3lo)2+($=8g2KYjdE?{aB-*0cPzMVP@u9{f^z4vuTWdip_~>5+C0%j= z_ujp_Oyx3^UmvqbVU6ZPr1++O#+Xc>Y*bNmbH`LVov7?PHZ?Ul!n;q8SF!>cNS$`y z&9}!XQmDRoI)odc1q$M`(MT@w@bb#%>)}9l%+5n`tU8^`opIP(uKVM9^JuGq zOuo{Q%Vyk;8v2s@aK3(V@nCTO*8!zX`xY^K`{$XNnMR|t{8eex69X&W)bW!! z4Wyco?X|VFo1L$)rvRA@Z9#-Rq^0$ZF|8chic}|%%aGk)9kP7gEvNL9@@^2b)qt|i zRvX8}KM@fNyN9rLdJ~mrAF7yWvC{g)WMyT&<2DqG2D86ViHC3QkC^TZ=_YKg=5=gO z`!X==wiDyx;`%6`lT&E0f5bwOZ*P0~ z`dW@oK(U8_k(`V2_Vy;`vZyt887sAdNbk(o@1d=~(V3~t4IjY;fJ`Eq)x31*!r!z% zeTa(WqCZ2?rq5E9hn|5U(EkC)^Ezi(sHv5e7RXU3(DFfIw^Z%s?iCshO&1%Fm4-o$ z*=eFqxC>SG9pDY^VDx^)wQ2~Z_^)8#|(RUNl{ycf^UPIBa)xrgVa%jezj zt@{hFwHq4n6`iv-Y%%a#C6ml}u^^u?{AC^f-JU_07S?=Hc`)vvrK{VMrz_=rG>0D? z9E`NHu`(NKX69f(X9wF_AeBqV z_x?TZpU`#y#7PMVTuG6Pd-|!LmWL;HclVQQy4;^snUvVzO6qvquNUVBRYGDIuq1U* za~by6$65kNxaD%SyeYf%x|7io6BGRiSv(-zoDZiw#dVgd*<}t+cRKQ*@3NbWHbR9j zo(oqbrgBqD6CmU?d#G4sGUsw}LdH^50;aECUbj+mYkZA|a@{3j*tcr&q&jo8#ZyLVu=!h45}fUuB5LY%yu3ocK-^zt z1gxS4y|~F1x-D@Bol5zjnYlR=78#!rt6pdI;#gTxkKxKdmMH=|>K!&Jbl)WKjTJBb zjKQcz7Ndu=8XA1myE1EI&DFu2dbl}Lqw(?~PP56+s01=8l57|?jF35gs8??g#6#Cu zAmDc{SI?32^CY!zJcK;<%h7Bg0_@8SQRWX2fyhIhfd6baq^r5b&jw67g zdU$AhhcUzcbS9J;NDEfzomq!AtY(uhl7KKo@bKC1>dj264t(x{=e>L@tfujsc%C7> z&Tn6)*4B)TpbiBO6dLq37oV(``9s8X*zR_TU{)_xeNiV6hI-)#+5dcf!hR(~7~-A5 zdjV<_8;}6lDnDA4K(A0$Xwod!>!bRy+&1f_?I97SY=!IMY|i73^@F7heT^+e;cwj{ zY$mHwH7BdT2t#GS^sUoCsXsfIaB12|uJOcvz-zzD=;-9+4;wYpK<2`F|K#h37X3)#H zUU8tJd2xOgu;6mG_c7^1nyg1eL_}AKrS1$Ack@~;f1ic^NEUx<2IPL*}aFxg&jXE8SAt4`ozRsX?QRMjN>-BmGjxjBO zfCP}<9Oow!7b?uwkkL2P-b69a`M4x>@E*i=mD}wIByijB{+gPe);I<3^K|#<`#A;; z(!$>{4%u&19ALP(xKOgN^e|%7ERGaqZKd#^H8El&b!xTnwbN5mHvonF(N$phF{J?& zuu|P%j;3eN%=M6r(NU$DL{Cy?;Mx9zgK`a#KyYjN`uZXn)xY)_7MV_%6ql56@s0yR z5eWJI7usQxcm(|owcZTH0b8gJ{;>BGOJwY2(~lKDa&GSW@5c8mtSPii_k zI^@c%GlmkC@Y4DWSWQL;Z2=XCpH-|j^@rUJSCeI}I^Fi2T3bpvD*M9OQ=84oG6k*$!y16dsV+^X3e$QIIPfh-(FXZC62+wOtu!20#z(WDJZD)q1Yf5-D;&jOm4;}7l_4ch&W!T(esOgv;*{j?Ld}b z(rG0)-d_`kG;G6qJ$6edc@=5#CS#>J080TVG<9@TX&n3jB*N%?Y73oLz}mWSX6r9| z1^|>P?G6?w#@#(V@}-|>K9#n+?uHAETTYL5 z+OTdSy3J#|*&q?y?Ivn2>s11fQY`Y9D+ZyF@voOGkeXDTS@RuEUj6FoYHnjg4Y=nz z`h6wlb1~&u;P*|r+AWdH+P4uoM@2;?U;zO4eP4F~wJP1e?~7$B8=ILio*nO9QWoP4>Y_9q;mw^uc4r@So2F; zC6w*Hfl2hKuObPmTMdAR=11|tvY{)qh)z^{7Xp~fN0m};MP!`V*4MQuxq zFC<E6(db{Oacv0~r@FAaEzlUuEc4EY0K77JsCQyhDy5Z$~|tHD}o{- zGSJWv(1d6i5GDv0&2;_(JO90ZgF*v~pPzreH43@?%;JI2v@}?&I(=(ua`G>AzWAy= zC)U6<-O=%LjfR*>9afn{oGzgL2g2)slT^&c2-h%jIvwZFRAyx{fQTYwUj;Y<7Y~oY zj)#jYs=#nS8unR4qZbG!q~lR=dFi9#9N_A4 z>lZ*(ZyG(&Qt<|83*aqV^F}5V^n8=CW1lQUIC;LVbAU{RGl)DJpWYP(Xo+>HUpp+3Cl%Te9$Toj7iMr7%9bn z7D_1+zz854o)e@j6^Au8s3&{~=z#@~V$sD43JP*(zp6i!O9j*(Vbs--ZqRX1vgz(u z4ML+X1_1<7JYY>6&yN;(wi_v-am@dAQH3y614?oVfDHP7Nux^#Y~6=AgozE5TCX*O zq7=odj|&yzhkA_%yd=ua&CO7<5CtKBpsFDv4BD+*YRkQ;<>$vMKsA{)>oG+B;t~;w z!I~o{rQh?or945rj0JLF&V|nawq3ZxWX@K;%oBVQ< zSQ8LT6NIeo(Od)}pCc#c19mN7&b18v~L7*1tlq(twK3+z=q$#h#SFnRA3RbSA#aT8Ra1smw@M zBRgZDQ0|%0Q0`pmcuG2SVw@m>v-6V;$K$0GL~NRzR3o)tB+q+=i$hLB;|-8PCQF4E zG%&zxs0@{d-(@J1a^K5+?@E;c!G~8&P3@uCp5XWINaG9)Aj3Njk4tTUV^5yd2qnN?Pu8kT?id+s2Orn zzRVgK6`US*xX@cHOkEN+X;eZF^S(U=wUhdGMn6M^EH-FEh=O6g_8sD40QaZYdkYVB zMhjyMmskmn+2Kg(iDa9`f5-vjY(in{`XP=FvJR3m7jRup$3sR$2+~Zi(d;ydOBWJT*&S;?u1u(&KPJ!t66U3(oB~7@5-AYE$?TT|i<=s^- zE(Qac{zXL`@U#I=)abOzqq*9?l#h!UYYJ_*G$6k=x3|9o8+k-UrEJkg=Cq3g9O>}z za1+pm3e#4xtu+HQWk@#=b-qI3gT~1MAOFd|4WQdCbo82r22a@8tVWg)ggFA6{R?Fu z!tS}wH;kHZAd$R@VQ)=zIJwWOL z075#1@WSTpu8l-2F6vFs7+++it5(GW)rdtDV-Vgq0r`4w%{1UIjb>FIKg}xNz8%A1 z`V*QH0!Co$LIlJdASy{yit?K`7)2A#+#qGpbRXsAbK+b&$)d1s*X2aDu6N@49cNHNe( ze|1_?J$~E`Meh6e@5D^_A5Bc?p%RiJVTS?(85)2nGw@_Hpaxzsirb&>NRR??8wG(Z zOJijmKu*@Rv+~sZpuEGyrJ*vRAZjlFCFqS)aW>=X5EsxuxzFPP;2{EXOE_Jb!70K< zG)F?Af@H(?fRfk(nlOmscYyv_D2c;ufP7Z0Rk)%tQe@iD(Se;!m2`f7IirAXtHc(c z_Ad9st+c-8AW9LaH(AUDg|NUHST&5I;^Ijv752r&zZMq_GTANX{&!h+oQfnNZR-+<{-Jt(Ne zO|o)wk(6Cm76)@EWz)hyeoX@>8c2SP2SRKjS?`~H)JhPI0y16h`_2W|rcc_Z1MEVoTzvqEct<=hOd7R7 z_b-QvB$)+(*{0MqM-JFds2j`>9smml{wk8)IGXYugKgXOtfKVfl$4p}<>q?-2j*5*R`%_D4)3GmZKu%?j0hU}OUN~B z-rYMe`TOYT@9F6&6QvG411UEwy6v+&9sE_9wxLG%{+_Q10WS1@L*@hXTqQ{ZgQrkx zf7)2)$vqQ#x^VSyX;PRyp*(-;MWwp-PE$oXS7`_-=5U0bBb#A=vcthTG7Br;?G~3@ zDFnh)56avhxK-jngc|{mdA{Dz&=3+8wNzZC(?&$ZsyEsDeg?`xT|f&AGhy6fNHjA) zUtj&@Dii}`z6t$BIhS-z1C~$+R1XYd&VLZ?5_XUo=6cXKFsq?eB1G^-qJuOD>Ieyr ztQ-D6mDG1PicQ9zD=8`YMX~* zoZIPi#QQ@#gmoY;8ny7HJh}qSSOc~KTBbh?tr1jB3cH>be&?(4*#}U32pQE-pv2Jw zcAf!bnl6{~71p(<%*GUXEixneDG^f-$Wh$L$OwdKRD>Tu9RjrvB&gQO)uB9qaD!Xr zKxzQ`YSen+Kw5H!k*FYpAxQbF^r1NGqa`5#QZhuDl)Z1eB6*wKXpvs>=x5wB)~+kr z8vlek`w$y8MP$RTfI-|KVl$|9#pV-*3nJhL2tc|@#c=AIwK1CsDtLAzsDQ388Vxe0 zSmc6g;u)c0?~OFILgSHK2#}USrK(_PCR5AHVgN!RhS(uQBm9TdPKzbACpPS9JSui7z z0a^fX-~m9MtCQi1CQ~5f>Od<2>f!-?sVP;yDeO%&t2bP(>!-v6XAtJjf!e8d2W`Ow zhnkvtAy=7%p-{5{3#dFA7S>O|5tnovri<_?caNeO8Z<)pJ#O853xxq1XL53~o(|$- z5ep+s;Lgp>1#uPyP)PYt%$AUDNsH~#xdY|jGkBs-Rl@^#8bSV~ywOWNDS3`Z7A7Tg z;mmd&!CC}20QMnFzWj8%<;SrKEUxBaXQHHoxv~-9qGu}Q#htjdKGTT8jSQGxzkUts zSJC_b5}n}PK^ka#SrWfoh91d$M5g3OP5{g282cpSzPxA)yablK5h#ie4?1N;L|j~3 zQwTN08V2+Rx&py8&d^I2ji|fq|5Fp;j833h$kSn9|tdZU=V(-(@+O-UYl%C2z(LVbsFScTt~k(A*?i!^alU~ zW6vb0cW+`jb9P-rnG^pt9c3yj5r0}UILX6s^YB2X{1E>Ow$EVl2GR|fNvy{fI@;PQ z)-CV$A?*~nm)(>*KHLpDR1uxS%_*oc5%L()rT?y6V?hi*ne#az$c%5s*XtjcK7y2j z8qmHq2rd8-(BhyNSQ3>1YB4EWV~4&k3>fJM^cMv55_gPX4s5ca6TOixMa3j8suxR?{D;TKi0h!5x4v0m{Bez=R>MIfVJdE9VINNSVr(qA7 z`sugA{H^XPHcvHFm!*j+evssld3i)^i$;#pwhabioB5A#Ba?gl_usZv6v5f%?Tj1T zxZPYK(IWmR913nHQ_C7m+|O`uQjM5d{&Z{%tGaAI8nss3QjLhms;sQDZ%PW}YX+@{ z_;oXgX7a^mbF|00*@N)Y@$r&|kenNZ15-6~&}^1J=&QZwWx66wlT*6c}!39&OJd zmW>7IBE_?gNMq{#_3jjg%!s1^M&h|@e*pNF%{H^%lXTJHH)#y<8baMVd9QGSnt%HZJZkDgFcOSkSb%{;sK9`X18PC3 zmXf0*4~TAz(77odKKu+bMidbA;_8Kjgh1d26oL#@)~ha@VWZvaG)}%-0*Teq(dn*m zumMCxTm&?aJM77QA<$W2;;#+UC&U6bJ2%G!)0FQ?Neod=Wke3sA2-kI@??bwH9!70 zkiJs=-zb_+R_TLs$?HP!RJnm%koL_^XCsT zF3wQo085-WlSNQ>&hdd(y-QGa>fHtR(iCY6FwuR*r8nZ=pd6^*Y#4eZoaz6k*hBg* zPEgv@8MfCyx3+THnD6cFuVlF=EDWgn+K`eZ7~Zx4u8Y`J5Sb5T9sK9>AlZOo%7XA{ zgp2}ozxq!|$P8U;2Z>)6h zUPFd_o`)xyb0orsVVu+hbq49j8&wzU1T5OkcL7PY!S5Tv5wNwl_XG3{kj29GwY@?k z9n=1Jiessow~B~kg_vdxH`Q&|N`S236om`2!kl-^n*dS4r~a-t)n|kU^OyccC%dB? zA8?rD^QsQXJu9@R{61a|Lyx?OvZ0IJefn{`X9KcCWF#aKFv$lR5s{vE1yo^Hm?G%_ z(HXT{h-3ZNHFf{!6y^oU3^d<#BA)+jNeXNS*FHlZnps+U4I}PLpMkrF$Cb&cDbyEW zM9axa1L^RyaRuR^&K4+D%eH*{{1Z!gSuhA$p)Z*L2}mQ5W-+sD{qMj)#J^NEx8-qx zh277rAu%bb6c|e*TjfW_f9|8H+ZHYK=@Tm=6__RV?*b^CfnjnjBL?`$ni_*BOJIhB z8VPj{rZL)E({*4X$m-nD(bWx!i(4yBh>lhe_(*MGZ2c%%l{v{OCxoVCRa7*^it>Wl z=eHvhhU>c(KC4lif?@=Xf5I;7dbdnYVbRte5yQo0hdW$UWmfgOTINx&-mMnmJfri6_7_zV>2Nw7`)gq%uO zDhdAf?IA+q#ThEx`V8j4Lq$nN6MG^KlUA^2ppR7es&mP5;D6% zrGe}$N(%sVutqh55E9UmQ4s_O7~7Hv59~nTv{@yPiS)*!26ND2@laLR9j2D3-f~=$ zkA!qmqqX%R_+oB5m}xpig2}Uv=Um0gyK(uvB^H)>ysCYDS=eZ3+0MMDYo>+#c(_J^ z5ka3nqg=Ui<+f8h_{ESRhWU&z;(UZPs|CpHdq!$vV&Vwmb-rHLSLl5fz|ervHXxk| z`kg)ygs!eGg#54?4c_?-jx(UtEzm3_A^7Y-qq@y&Q)DuROn3mC%c)%lt!IT05YL#FIWX$LLZ=bwTXHf*U4WL?S|E63rtMN!e zy&;*ZQ_$Kh^@ER1QFJwoi@R;UMm#zAuIN>NmFVd6)5ap%oOJcA#RW4bbQAu3MvdUB zG^ZT3)%32A_!pvUAD2)9tOExKOs`&*mzOus^8VNbeSziEVkhlBAE23M3i)0TPIp&E zL7=)QhNk*jOzb;MG6(SWsHA%n$a|V^g#-r^pIx+_lOOEv*7o%D^b!c(Ho#dI$#`)< z8;;u#jx(V{tNg``>f4!pPk&9W$_Cz8L$~|kC5l6MLuqt+xbC{o5V>UX_vZHYc_4*| z!3B`t)2>qCpJ6yAqs2ksL^qr9=a`8#MqXa=d)qQn;dt9(erX#D)xRS-zi?j)DBn`Ouxc|)>yN(Y3`rYnEVc~S2 z-pzQ#sKI!++LLU!-w;Iiq3B0AEKU$;;6(X6JFE5cO_YW;=e=h}mWp~t&)+`ll>4gv)LQUDFDWE;O4YG@eF@yQAI+9+lrFBVwVmTVni zlm-(fMgYesDvn!1fT90_jwB8k06|yg=H{m}WEUuAt37NmhDK;MNDhdg4|Rmr+Ud8b zT_@vUj3aHa+@$-709xkKOJB39r(8+e3rov?N^k129P;sIx|kV!iVNaeO4x80yqfW=Ge%&?3TqbAwVU^;4X zY!j4kB61E&&wiTXKcNV#i)Pyd0$}k+K94>WTUG$4GepD^=27^`JP7$W{O8omu4x@$#*6Ur(ee zO8w>a-aNtShPnCV1~%T~ND_%CNd0R!Z-V)O#KN-g&xhn+Fw@R@o}`_kC7v8RY{oa_ zmnfR3xa)vw5lPkF{r5R-ipt8$zNdfQ3Hpfmk_a{@ z)}-We*+0I?@e$oP=1Jm{C;Q*%hL-zYP`Ob^3p|!|(`@)=t_ds zixwL)DW?&=h`59rn4_WW8r{*hV5N|zA?8HsNf`;4aQb)x+v6>rOC^nE{3KgNoc?fP zYNDyN;JdxGYS*iSFv4gSv-jX`Muvz|gZjoc4ELx(M zQr4*>!Si10)7_rV+#jh^UZQi!$RZ7W3*T@bPOu0aYw|QJDDIS?n-H3{Z;L}$ED|U% zV6;vj>hcn$`T;K`1~5|0tN&T-7K080`Rd)#*cVc&A+QLy>9`1m1M*1%Nze-nqKE># z-m4&i5R@D;M9gn!cr^YqCt+wRly)CipuiD7XocN`IF<*kE&2~jM!nwm=t->_cT&XtFZMd^ZH&DyUHUCq-S2}qH;X=7tK1FJ59tc!+f*1dbF{(k7k zbDP%fbJ}>*iXq`_HEmcTf=_cls(dNuDPE!X3Sj3Z!bzP4nj4B2HFR_u{|~BOMSorR z^U^!kZ+q_GlvwBFWNV=nmnaW5g5CQr3}R`h!L&xrF!8Y1<0g4Q?{>wv!JRfHd-pWA zw}P4POz6vZgV(@OmZ&d-+|1LL$jwYWA%EXuL%r4HITT}Y%?6*NwBOXwnv+8Mozo%t z>ag|-52ryWvXu8gzDOnplT{b-D=N44Rk{h&w1F!w*kqS0xwNZKz&mWsV-jm@N{17~ z3c+9>1rS#;RR=ef7P7ZBCeHQBYih z_|=Q&tZAe=$eni)cx2EBJM)d&kb%x(El43<2dBK4K%)J)Qa1$FllD%zJPcZp5gt|spv2sfU~#RY1T9 z4ugqu!SmE!lTAxJE1<98OY5UbX5%wBqNfltpY_V9z&p!20_x0mPc`d!f|(SQGXevDIL1HQM`Pj#ZHqu2 z6IzDeF_3L(D(tz*8Ej5u${}Tft*?z_!?;A$6;JF}ww&dsxsb~_`C2Qen0uYk>Zz@M%q<+61f=*R9@a!9>&(u~ED2Z^INCt*>XT8v zB{XZG;((c(JGnnH_2p)3fUw|fF7j$}2Q>AvTP~wYeer|zT-0;MO5H)p#VD z(BG@^15(^5o0dvexr_{tGUo}}!yo^GqUJN%BL%el)~(N5Gi}H{{6_8}$lt+;ZsNgp z2N{;?u~oBX%rtc>_O5>7qzG8=S&Qy&Bf4?aaeMUTUM3DwoFED?*+~me@BczqS1*hm z?bvF~J1liDH>|jSxsiR`8`U|QoylnBn_n;2&l|cG^FO9+gT)PnDzv{-tD3q(8Cu$H z$jkGbxp|cPAn$MIn3BCoFyW5pBjMRC6A*lQ17M4`nw0co{e|tV9g83GzZ5F*^H)#L z6_z0oBlecl{t3A{R#ua6VPwrpK_T=LVgO@Mv2uc7DlkoM{-uyG%$1 zC<&dVR)#0#()RBti`-pl(q1=_O>$iMQubH4=rh813sY;cz6Np+!Z?c_O}6m2t#4-#K|9$&TkWcDp`cQL62XfR*OG~R0rXUm* zIxs#1DFs_qbwPF*1lVK%>0rAE)s46F0NqM;iwB_UBSywfb97A1iusj0G5atfqs#83&Y zG`;cDWhx;!3iqJu;+z|i)Ou!s&Li~t9<3~+-L@83h=kx2Ya=*kS4$Ad0?wGugolQH z8XKUxa;KMmdJ=vf7wPfV4_AVrV8s6 z{hpuT4|508A!679Z(<{i9WtZM+Tyq);DgM2BsjoW4gSCeb6}ew;jzKN8J)T2Fhm}6 zk8kPeky$BCeh&#?qxYNM?fO}0G1^tv{sN+R9a6sILbK(gO14W>BU?Kiue6d&wqROL z-J@HGSj^xI$J$7dE;#Ry!5i2&l(*Oj2??Jm75@X;;OXxLQ}9%Qw5tIejp|;mXi%(J zlln#1vuF25TEmsHpZ$>)7!-d%=qvita=x0(xk>p+e}7#{e(3G!)%OaOTYIjjOoJt$40EBzVX{{BC} zPk?gCBd2+e3LOqikb$K$IQ+!h7r^TPgV{qkU-?>6@+TN1khv)Mob@HbLsQEgT_qd} zs$|tQ@QkV4c>fO1%ugF2jDr63oZIm*am}{>nOWb)4V+ZsHxh;5qj9KP_?W3=*Q5!@ zTIv}61R5M19JqDr1Y7fW)SfToW?VZi#le|2z6|?ofO>e5){Ww!Zs-G??ChY1#3qsi z7@9YYjbWkSQ&-Hgjt&E%>1XGxftb*N*xbxrlI>l&uQ^JUp& z&Ukm<>%$^?E*W3LN%F(){6!x?bW>z% zdJzLtx9fO)NfScNlMOIi~doz;xx})ReR$%~WrXk-yL$=juEhjE{UQ2p}`=4LWaV~G3 zkO>Y67-KRW@3A2Fjtpj#ug%UX43&1U=l#%X8R`Z~H&!z|qtTT`9Q0KG%>HndWn`;0 zO6}cMa-3A6-6oObYexM4NLpvUY(ug6>sk&FO-VjlZA3NgH?>2llH6jV_mdu@bbA|pseyQj0xiZnPe6=seIxQU=f1`mrJrw|O zgqF?G;3bWgh<74f&(UWrCSeNn|2-EW;pXv5;S4~(Nj2bbI5e6NHJLp@GDF0CasFxO z`NpfJNT%evLZ?mbek@gJMGkVUihUCjG|jOPG%H#g0)xz>*s2U4fq(Gl?pPjfB+>!# z|8`a&_&XNn9Lw(!ZD;bwUOI*J9;{@Er1`>tVJd*~WlC<*4qg%Egk?}a2a$S`j!A|k zFK^aBVs>$cq?E>O2%G_O+J@%Bv!%}&TpmhlK)DI;{|Mip_|SH7epA&2lb+sSkDlT~ zG#{$BlIMR!7n!!W?B`E|Xd1_fDHTAl_~6@j`<3T#K!WX+;d~}2lsGI9F(p_5xPKc_ z3LF_8lJ9YrwLhLRFi%v}gSG6V>ERw%q$B!|BL!-iG!~2I}#0V zvKGzD&ut+d2^pLoQjB(Vm;z+)2zp5%i=T!cAq~U&~{wL9snh z-rQtF>ijl*8Al`Aa5gvQTePXVa~m!0D7&HFos8Ej(U=ImX>QI|2Mow-|6*hOvNq8p zD}Q4lcW21Cx__JZDI5@bDc%7<&FIdLpX3xD>U{2H+cFiG{`Dh7meV30_SP`l%H_G; z(T$gVyuVaOdXS771gM~25iWW!D8eSO?dPSGsjaVsM)>0P&MljxkI!BVKI>yHO1LgvN8p142|RNoBfmbuh||( zBh|GuPj@P#$f!ZHVHlSl2ge+V`8VFwxm-c9zGX4){r=!_yBniNOYUa^8q*^R>Bsc} z?ma2SKV0Ep8vt%@!HkV*F0_y$U zSC={fGYXX=zG5^~H;NDSf&72Fe@w2Mj8w}B3f@La8A0KyI3>fxHx&u&qP40JqNVJQYbSPNy0BJnDh0oy55Yr+#y6h^kR>N4F4I# zPr82GmDAGLHXTtjg1VMPC7o(Kfkoz|#U0OvuB3cfhOcx|3kOlak_)r-3D;jgbJRoU z>gV};wqo&W?=6y5-D)5LJdw-TjHr4ML9ZhM+eVHQ*ROu*j@G341&)E;_H@)OSoNrP zNXB16syt0|IYU1`QQh2iOO-)5S@K^b5U#~cUn&8G)PLA|x5qNoS`HQ&kxD5xG{k5W zxpo-#@gdJBLI<8AE^nd9C**#;>9Q{&$1NDwuEl4rkAl2L5!RC~pKVHZ?PiS^&SjP) zB2j$1hS7_Af;g!LQ>^f|53j0#twV(@aJVQWEQ>W8)J8c+wrag6QzX+VDC(fv&pzEJ z;cXbo=PBn=(!*H?y=%_L$t7da3}n94&~Zn+?w-U~H*Hs$kf=#DgQ!sw8eL~a8D`(F zsgdAkw$|s0IUdu$BcDXRAC5 z|1oS!GFM~7=@V#$R2K_YuLd#s+;J9Xaj*UV^6SgzRYwZXR|$unY@*I@nfO+}?IKAeOVkN&49$|k9PEG>w>HvEZ zhT{tQsy^=pWYb=bk}6vI{YTzfeL#4T>inR5EWasF^oRLkr+e-n8ky>b1|+(lass)8 zkvxlj_aiu6EvlqM3p10tXj5a&NRRtGCL(=mFB}Xk4?S$26%|YttT=zJrSmtV=J~z(K97RG!_H{1MsYDW70~b^`*R1%f8&bYz5eP# zoGJMWp0yz4j56K(xQO57p?*BpWX;#|RaP{_JF*4A?T}!WUy$ol6pqm#^V|oLml@@0Rh~hZm&Zo8*%go?|5LbAt+I-ZZ|5!S3W}) z)Bs;rcGylJn%uZ)@S&g*)WV4dVohlo888H&-5dDgeK!40EA$+HS1^ChtpLunEsu{R8!POBDhtI*L*9a4CAvh_D9N?0V zpt<+vH1Ulz%g)xGMWQ^QYkV!!BT|w~T!A1ln1D96d+?v3?QSFkhhkwHdJa=Dp`gIEdG>l` z;470XM~sVdKm`zI=f7V<41)9n$}478A67KW^5pf?c?;1$FEWChpStOMbiMNEhLV!n z{2R~)acHjJuVKWAK!O!-!v(es=LyoKN`%Y%6UM+n~-&^)!} zG`~VYsor?!vZ3@sLy3(@FwLe>IWfHVn7xZV%}Q5Kkw*!M5cRr-k!W?4Hwjpz!+&22 zCbPoDxi$imF}geEW;WKudft-d)zEwle>}K90KGTpw#gu4W1IV;9t@2xufB_19lxjn zE~@FqpGj}<#mHt^>2?*#1g0JULHGTHi|VQi%*@O}dAiF5w*n5)o_CqndEj?qWYm*q zi9L2!5M_`ipPPfje}yyTufEB%$kaeHd zqML$agvhJizEZhG_dR{GF36LTD~-0fnW*{J5$0H%h&%ay$ewR9BGHm#_> zS6)i6-;7-{;*q{-i*Z%OnQ(h&D&FCnB1ax245=(ajs7p*-a4$R_G=eiyoe$xQc8$` zfPi37Qi7C}fTV;VQUZ%qI+c=^ZUHG5EwLy86%i>xQc6HdIwT}LV=mtP?ccY*eO>4L zb>4qoFI{V{IiLB&827mEdnm+NTxAXmAyjMM`A5Z+ozmqIIlu`p2AVe|jtJkrome63 z&BYxlak%T>^eBT=N5xxY{9KmJ^5?$a1(pc-aYa}dM!OWkr5CttARm$wO-l|9$D8(7 zh!HH|jj-Hph{eAp_n*bMLcqAa^i0I*;j}#NjRLZ+5JyurGH@=-(u?UI&r17I-mc`; z#Gw$fK|m6y+gf9=Wd0~hc1d6JWm%aHh|}}=p<2KQ>F;#aRGn~2nu>s`gl(~hA983o zyxXG5&Xyd(t_?OKn4NqaM6mgVqhj1CT~(f|_I}Yt&zBJF#`aTZbN@8d#J&I|94Uci z>`Epm-rJ?7xDM_|m@?-J9TNr-aaP{8{AAmLupFBKB&>Y~fC3juQ>j2xsa~d?QT3rS zZY(#DXPAMPH6IxYfHp(t&8FEH54>L#13z%TKyx)P-RGpLYT^wj{{spPFE_yE<~V~i z&v;rhM9Ef09M6G@a2I*Cm!NLs*6b{XKIb2l0%hA5-!BhEbIt!5VmPa6I{D}sJscYf z=-2iBYDhpDmc%#t9`B6~xuMS(a_MO?xHj8R-5EjaiO|L>NZn>;=iZ7rP-bkwSbqMN zg)HtE_GjtoNMiWH4<0p|w-63J*lTttHA277t4~x`M0j4hJ z_SuiKq@L?r>iC3psRst2y*-(cw>@~4bNpX&NG#_>QDq+FXmK!p>ViuuxMD3r`iS?4 z82<6BqJ+{I2GEfW;?%jXA8e{V_>m)%@r3~p_c1rho)n=+?3A#8&Jcyoz7qoM0r_3CW8%i& zJ)P=xIRr9^Du4p7*5|-6+S)VuGy4R=mK@(5W-lUO43sM5cejQtuy?}_51}%EEIwR$ zNK0-M$`|*d7NqXKtoL7=trb#hQt}aEnNfEa2|H&jdO`T?^XCZiBohL4Y|Ya_s%B57 zpOV=Y(+or8LV2fs#~ubUR-cmNh%D1DR@CU$O{5^1WmCL8i|7t=H}MMrS*^T z!I|D?_-iY5*eT0iP{BEC7z-!n)$#>gB zlC+x&3eSYbfrxQ|6o?p*RKGBwgqz1OiX?Temt*5sZRofWK8t5r4lmqGceR84#wC6m zBI!T`n0R5pihOv;qEb(2qp2NsjAZ~0e*c~<@`aP!k>l0{^DfxCpeVC~9M>#^fc0ov zZJTm)snegQ-E5y+PHk^z|5U|ZWEF@T$;~$Imnp>c?nAb)E+FHIR$Mf2zSYQKiqb1_ zx(<2WD^ig+mM`SpHhNXp4tFMIPxj^^`8Sjy;6^NMh7wc^8*bZ^l1o`(09t7$8{QsV z=*OiZpO~+b0~+TnW=c3}?}uzKUz`BkjMGlV?N(`@IGD`s+9*aJjQ*m-!7!gzn#hgk zRNmjFc`V9fxORCZvw15*^?>4R+f zs^}5Om~w&Vu32K324q=;Qx5t(p*+MG;UkFj$AH7Gw6C6>8axtn^1EJxNA030L0!k_ z6>Y{JC%-3~06bD^a;hWAMD&$#?*M}|JOP1*L;yH-rGpacEs#)u{`~oCxRM(&i~%vl z<);T=a_R=skzKGpLS*>B%0%i5V6h|`9vTrb3xR3G2xvESX%bjxUMLb0S8c2b0*ZP1 zcZoE_fymSg#Jk!^vb)=zM?UJ7hrrqLr*CX6mIF0!Wd6wiG-V<@E0j61!0{v@>@OG@ zrLO!P|9i;v7X%Hu;7tkfuf5m`kg(O%)aFm{%ozSBa|FV?S{#un_LRiIL+hQDNxb6- z;6-eyqlQr&kOslYul36pq);mBe%IWb9cbX7S7@4F2YQ@3P`;8u5X;vk)&$j@64zHt zOK6C6(`?lpY=%7{*X-toTwcMF%U%kb54YcPDl`eLpj}Y zX#>H#Ck>G*#>EAI+z2!`uYn&f>%NS5%_8ytKvBxnTTqK53I!xDfI5*Y5IqqU9x$hy z!Ns`yH*_aU-G0IZFjMrlv6z9M3~23&~ zi#!4-V&oMR5HXM$Bzi#GU&ucVTHF|fmkWhWuy<)+cZGC_p#@xyUIU^4W=4rH1delN zR+D$a&V6X#wxfLp>8+Hsbjk0wPb7iHHO4_rA=%*@R2 zb|`#7F~%8n8w<4`gY?eiJ+smPV=~!GO3I(qUkfTMj!Z z4h8oj)E-Y)Zb0?uPM)C9<@p5AZayy(o?RnxUAz5jbO?bcvZ<1i(P=jwo`clT9&}4! zUWPdAfP>T1)gO$$;J9jFz}umMSe>S(G8};g<;^q;SeC#gJ_)Ky$f-YrE>6+W@di*^ zp^$hXj9!Qg66~CUB}iM|@?FOV)+exDGICDSDiQ)r@=0dg>r{dEvjkd%{tNJddfR`N z1LvPg02w!As=mISvHX$x7Wzj@L_blclNd(-L2D)Oh(56oC!1_q*>CmeQ*g5B>f$iO zex1zQ__)naJx`WL-SW+h$E5Qsg-h3Q0OHfrHICBfDL7^M%q6A%@%MjkU4jJeFJkeK zE%km;;DGgmzTCs8RXXqh9F$S0I}fryLC{bz3&uiVvWQdOtBQmrN1i?jtH)|jNSdKKaw+Ry0-Xj z91r5P>z#q5z;wV)>6X8jZOnp*{$qInP+&zY~fOa-b%B{&`p!@q<%$!b%|-hVqjvJff?E2YRvcHGjd3>Hho)GK4ybLY}=b0H}d26iw9G z&={{sn0Clv$+sIAN1q?mbM4|6WbTs{Y)KXDeDKSBAbNa5$fvo5#UsUo`0xZ;suR8H zwJQKzk1g8$4cwx&ouJc{$BzkF5?A5fbEJZJf(tv{`?z%q6bt$X#*&q#ZWqB1dr@rR0 zlM4|fKm(YA&*6R=d4N#3&Ys7`?2hs2!N)IL;(RCJ~6J~e6ad9&nL z?bs%Yk2s5YiBvCIr~u~xiZ;jAnuhKDjhMD zdIMY*(C+v@yS=CvPPpF7;uWPHlR|v8-c;24$nEiPA1=%{fPj$tGbWZ{n@K#V`BBOc zQYQiwf~>bNULKRocglIW%;^Gy01gJpPDMT)SU=+dH=Vy*lLTicj&tHikN1nZ7;3tT zo%6ld%)^#lp$hUt4^#*`$a)PUMOL_o3_=qj<=D1o7Y&yrH?lo#g-~eY27i6C-@Z~| zMW8BXjN6^@kY&qU0`%PFl9>*`y*<8%SJzZS;ZL4zYkzfZG6*}B#Anla9T;52$RwvX1>}Oc(AoxHO5$;Rdy#Dv1 zj;i78Yyuh{TI4*rWLN1n`yEzw1+Ty25S~r^SG0vly|blCS4$vKws?EWrd)5?N{IPO zRUm}Jno>hUSkkZ$f_43GqL3h4J^(P0w)&V>;Y$o%ADjPKX02${zWp}%nAy!q?ekZ3 zX^i;xZ2*^X%Y-^Cnul`-uwgsG-_7H9LVK1s3U?2Hh13m*o4Uh6HNr6!UG;5jSb`Ms zC(PuT9|(1$oAW=Z8;gPhq6|@O7C_y&8?e1>JRymjokTD@W37eVw6RNfPgOJyG%qby zfuNdHpoUeU&Wo5GeY?cJYT8o~&aWlarr?!zk{5e7ZMj!$NhCj_m z0_6DZIcai8p_70J^FmV%#>D_(0G)*M5ARNoYWY^5_m%sKS@A`j{qJ13jwGL$ z6UCfEbk`r903%K_K-WPqCVXLapoktZ&JQNw(9%)CX-fF?6|t#+4Q)R@gHRUO%nscX zCB~h_tZDA|y@dU?cwC_09QK{gqpZ(Bp4^vvfacrbr}&|2}zO-wD8NghEW%zZ^C zZyW0P+@>x=Se`iMBPYeS_9_bhq~xih061u)9q#h!bEv*T2!IJeX}cK4!lK>lB#0QbAnRaG@I~vuTE(7A%D6$7jjoFL`?g^Vf@JW&)=ifzu@0v z(kjEQr3clw)5eoF56Z7t!7|58L!Hxj2Jpy7L*ZjGh5Mf8I6cCm;I6VVebSDC>Ai@k9NmMjeRJJ}3v*z?)h0GonfbleFLP?}#D}Y!&8*$~km(b(el}5m;5z5K1v&KO4S`jHEze z7X0T|HeJDB8(D~~tW(MO`S-F;f`(}ZZmDs)2E3nNgoTlS|LjlKC9purL@Z1olZSRH zkc_&{#Oa(9M4v-}DIJ)IBtWM6t;DF2rTJxYGU5RUe|_S_n<;(EwkkT3Ve zkS@{#XXv4Oiqtt>jBu90tc0R!8Hk^iE{sF#jfRGXK`MD~?^_@;y#&uuwmbzIU?r%& zre0WtVS`a8fP@ww{B=7lmEqRFT&&zg*%%6c3U}{1)hY~qk9z6dEJHkDs>ln9lJ?85 zH=1EEOa4+3)1K|LOlg>;Yhb0o41a8bQq*u&6`S6}k&bE)mys!2FSpB(>zswns1^{9 z^CC|#16TKn7#4gA4Z$QHbhNJ?rTyRdyI|LA5(zb8C_$%PfFdm~q=8Sw?0l9SO^6UX zTgccLtGc_pA3g9hsN=)9v56Fy>AtECuBKc+XCPnvQ{@v>U1Eao1#3#C`;gft%%7f_ zHTN)tILse*SpmptVbau02GS!MMX-^{hCKlBcLypj^`ZfAGr<&s2hsQ=JY{g{ECW!; z`t)KlQo976Zwn76Cq{X^k*k10ts*c{mQg3^yG5nJRjWXtXc=$rsS4DwsWTkzH&u<( z9F6X6VduacNb$RX*K<;^V??)gPF)bk}yU?rN;Q> z=AA!*bPEo~&@!YYlF7w=2_(JXt|9!YN`eODy!^S#)HISF?(X2yp}X{bX0MWPCrdkH zUuzHzf8uU>({^gVaG)8C#7vwE?%*$5bEup0S%{3gIN%lZ#{#^TZB;#c^bHsQV1>K} zMpql7Pr4pxyw*AgwQ^@?=gcmrrSDO|n7%2F1p#;qUCD9vcbcDFKp+m>4~(1{6BFD2 zn>4mfpry3Ssz&XPQ{BUFOY!m!2Rn_WjycQKvc!MZq(}COGA_Q+XzA;QAK&2G=okPC zCbtDl9^&)_DqJ0g{g1>~speBz<-#&xpN8%k;Q9C&x-Z|F_@!*VU|ogi+aW$f#K=Fun-CGdgC}f=J4XGpt&MK@ zsk*+&MJc2mtBMl{3um-}tq>=htO^!!KLb}PaC=5t%Oo&byuBZi`u~bEC^taMt6;!F zt^xPrhwBt6#H@&08W=}B4MV(D|3{Je2576{F(8w@GSXnfm_lIhvAEDjXrCopZ4{UC zt?c*Ht%qZN;INgI?Ri!IfBYZshnI`ls zQbN%htmx7<%RA(4i#PthJuDKH+W!3+Y0Z3~WVtk#(2wzLyTGFxK_iQmkD3oPkPQ8& zum=qb%fzN-qB#94pC16N@Ma==kj~pd^vvvR4;bzOuS1J&U7kADl_iC;wWhib#BpE7 z5vrcqDIruhH%@S>sRkbRN)^ch^SJY*jm*3j3jMZi`8D1D1 zEzju@PDto%lO93+I!}YBH>taseBOJk4nXLdkK_ zmBv+|5AD{>p(H30c^6)Iz_762|Jtn69?7X(p~42-xh|i;SK_#gCqKh_*uomL_K2w% zcpwD>ksrETEN&iv&5#bu2Zfo0q_nOGe-g=7P${y1S0v1$fBOCrCOKS6rg*3)XKgAH zJ5=a0j;l>zUc(NU51rBgx{_3AVbSW2ueY3@q3twzo3zhH3n_8e`$@Nkr?_tNek#+ymYDLLO2u?_?Q)p^^bg+vU z@d16K3=C8opp^{bI9;f1ZQ0BbcmL!16_uRnpYyhvTCD%Z&LF5Ncm@YBRr{}RFH=cC zDnAv8t0rhVG%I4kZl-3jxQ=0`&S^2Q`Ozd8bFf`V)bxf-$%bxsYQ7jmr{`;Q3q?Q} zb)g98f4{JHLF5t@h{mtD7-4#{s28eMyScd`A+PxC%8CjYJp`X*(~=(DH3j*S;0@l# zGnqxx_kTa0FbV>o1lTX~%@5D5^(a034}$#*`E@$ebAcbg7kF*+UAF))7#jfOH;g%~ z(`#(+H#MCppUNnj@rX?}xvA@p6kbD?$NvUWbH8uG&sD*_bc&3`)&V$IuevRPT@ugR zhuI6?snP=h*Q*piU5uz_3G^GRfucZRW-%go?c_*$I32DS^u-MZ0&IB{xydk(`T|Pr z!C&|1!{O6n2BXzk-t@?HJ!jte+-v{hWkR{IYe>9LamtD9<&EQ66hsfqQ&S*Xp6#JC zaw#bYqoIgk3R<7CX`$qJ-Z$52@<4@kZhxjGK>wa+)(mpfWrvKsv{v{sHnK9jHWNpOP1GeR*6u}Q1>HpFK zZ$X;4A^Z1+LQ?r^N&ju&i5&bZxFjQCe~lAd#@a#MqT%sA1aX-f97s}3Q3GfVrv_-o z{;&crLOgYunIsg*s8I#rJo0BtXKg#MH3qjhvyr4v84(RyN&3|qLIDqot22Qb$Aw1& za4CY*3_CU1#H^X(1L5Z`kQLfAQz1#Hoa(qumXrSRzl4_Ao*p|7fPs}ueL0D^45-xi8U=pX4o~Y&m;E2)dzon>z-p3)Jf<01=iOXAYP;XT z?53^Y{}7LsEg;VP5{Dz>4bwf^T*UEhSagt^L8Mgw!KD*uasCIF7Vz4QiTpWuf+WNl zayMWyf1Rf+i9HWM<0$CW5z%EKjnve8M0BZsOScG7th#nz{FR~m5ccoC$ejQy&}1i5 z8IT!X>}CekQi`oU{BytY!ok5rnhOru%a%tzhs;G|$)<}}tq7oKi(t&J#*L8LXF}8~ zvXXjpQST{ILNY-lb&6tv8nT%bfKemvRuXskx+bP(73SQFkR!k|S?qiS!?Qrr$()4a zt0QGwOnVg_I;@IK{~qL*5E&h5Hj*0JCa+W0e1f#cCVAO)n15~K2JYgI0M^anJyOF# zr0zA{SCrx1BUGP)bGH~kav32y(XfAf>HEl~%M;H0I7i`|QlKX=lGdqcvi$Y|QuvfQ z+#m+}DEP|u*Fh{V4>P2%8AQ{40XWHJ7(jW2?w2R=poaq7b!%5+_rhT?N5)-x4dD4u z)X>1^HQDm!%38i5GHfD18@^C?q?}3-l9ojMOO;|7gmQOme)yb4Wpdx|Tshx5&_Xh4 zH?^q-oWAiET-35k9~S^p>#yc|u0+ zd4Kay?L1=>~xX?_Yj6GE(;fLdaWD*z~gyA62~W*cgTN@jUY&*OmQgk9iTL9 zQyf*-zA-Bw!#v?El-NF%0cuMX?LuFmG#flH{!D_Muk9vZt0J@G!JR6Xuvgkp-`e~BsukW}| z5S;)VBuKVO!AXI9{L}K=PAl1goy_EPI?3<4q}&o|a7Z9iQP866BU0vlYhrUc0Tw44 zKzWL?qX0l7SpB8{AWgk&%a%duKX=;WuXv32FTtLL4SX45s}YITIrkVOO~E8j5B5bP#YESr(uG{_3%7 z21MVw)xedp<4s5gp!Bn}b3pPzL_?`xl+CAtT|t}_jDo|z6n(zB4z_g~KpsqC+6Kes z^bv%86!?CEh_J6D7hv&3ZlOUz;CTKFJwsuP&}~a0)Zrj0cCck&gSk_hAC4 z!3~ra^$yq5TMY(Au^#`vCUUzt)#I4G&{!GUsp@XfuK(f`02Wkxop=T{n@qn zFIK%wb{|yi?n3Pr?6D_SS5*OI0lFtS*o-y&v|jnYD|40h9rNE+i*qqwQC`~pd`@T} zBBNNvX$&hG7Ksm7G5cH40{H2Gk9gFlyr=cS>BGtqnjt0X8>r9o^Fae} z;5xFNtuQfXftyxl*#<>JiV6yNym#Len;uJYSEG|k|7V5%sz=2C^56n5Hp3ADO=H>t zP(zhwIJG!OMaSH}TY?hl3+4wOlqc_Y*|YPS?h1X#io|i5yuJcnzznqrAiSBjV>szmNUPdJBB@W0Wkvb_r^n{JIG8+g3VvCXY-ZuTV?FP5@0 z`xP>93ml9+rYeN>%%cR=5ZLrE(ZH1S{I)&E8VTY6L=wWHp4--}6NdN{gMt1e;Ip~l z9Sz(E@EC&EHjThT3*Vtf$USIy13lL~>N6FY1rHn={7WrSG(ZO&VFZC8_CExM>e~%R zbT}?sqS(;!{7A*{>4P*JX~qVOc5qx(fLtW>U>E`IfI@MBN9yn|v~fhd_Q3yekh0j| zb0Ac%3jBbbr0d)*SkRBq-|7nxWLvkr!yl)Ss6Q!tz;YKx>&A5_b8G0;fOH&zwmm2x zA0HrAd4{&L~ntQ@=~>QjdQH0O|=<-*XxkSkRyYT*$?H89aqS7J&CM zG4VyaEOEZe>W@x92HOBeecCDvc0WT{8+u5-IKj3FX?6=R#Wk=}Eo$c?*p6TAr2q4C zG3VqNXW`wN1CCa(PuaItpnmeN=mKr#5BsUs%Xu?@opQ&SHl+*J!xi&pMvDNspwUZP zf$XwWRidQO-XoeAs;jbkE5cSDr+OMx{9$8`Edtx2IEo+c++v$JQpAhITm$|uFGDz? zZ|}e%;Qde_u7L7h(v+*?K~ts%29ph*!e%Gdb-ZHh7h(R zMzK&EG!wqJ{W82faEIshlxUtBbBDRQGjg(sM(sbSdO`C|xth#?WYG)yrZc_!9f6C; z6Tw%)pq#XBnPz^IH2ha({(8mh9U7ES3#C%hmy0SbbA z4dfpoJcw!%{E~30Nuv^|Kd74(>Jf~46Z7(3dy_oEa?)3Z)NXnOL( z5W9!Wbhn}-(#6L&>ffFXc^=P}3i~kdyD|TKjtq+7V7_rSkOWtR!Er~altw`ltz8i4 z?dpbTqO}dlB$$2>Np_utotmrWk1I?UXEBqLuC9o>?l}JlnUQLDu`xC1z8X~Zg!gKS zdxL=GgYrydUKSfST@<2yoi$lpcN`Lr!XYZ_%qyC{eCh^jxddpB$ovudm66M=Uc+NV z_V-8#M3bBI$EP~L5Ya3nwO7+1D9WI_;NPbX5zeD75Z?lORMXte4btF$>F+qU0OuTx zXw(D5G->Dg&lqybbjNc-v^py!Hi&6b&RkaH!xpkPx|E;8{(WKy7O50I#IJHOKQ*`8 z_13pn`bW(3ZiHNRY^pGRmK+phyy^3Ggm8gB5okoI6n+L@QOTYDIcc8h#0qJSJe$8d zTiAIMrD{E_f8MJbNOl`V1l~DL5Ll=9#^|E3#)@8vL&*viYk3Jx|Wrn>W+D($bI>aRyL)W&FPVsx-JJd0c(E zXb!GP5K9Nb`pXBUpSP;~sSN3C;DyJF;OIMC7$zV8@AvIpf-HNFhg}MiVVz1dJGxzM zLd=YUI8+nCvj!)^qArHH;P2>&F4sdz2T8@S9|vFGV2u=nj68um>KUJwZ%Ytw4HACo zPC`yAbVSwj8M!A=f_-=;u9imzYyjN!qy~v-4U2xe3z#^;FJLzh3bp56YX5O_1%bc( zX;HVHfuD?!)?Jj8_zMrv47qFZ<;nXrc^Uv&x@2le!+`!vBUR@FBR-(P*E#=7^TMS_ z(;=W(tFl}Q3W8%JdoFeAU+rXE_dwCwdJB%M)8CJPP%>PXz1-uu%Q*Dm)ougX6hTnV zossFa+CnmcX)vKW57>s+zSP{;<3kc*lC~>KB(!|}M1q{*Pr{x!3UC-GdAvV{Y!$E zmj(4FFJuV;BW~}lJ^&f& zCf`*EAI@%G&8OnBbphg&UdhaKBM_e|XTM!4y>P6UoZcJKug4eLy9`YbzyJ)u4{S*!#JXt^0=z%Xe~+6mcgT%k5lKdbx-E&57?`dvMarIURYHYJsx_&i_`jv08|paAa>67 z-M8a;d!0@H=gZVrEw7}Le3MNK(3mV@aPU$h*!l0wcM1%mQ)%J%})S)jT*B3ef2_phH*- zIj}H@6NS?oU1p<#txP@3R0;J3(2>!sLlDaW0|7^Os%$OSR69lXesdnY(8dW=ZHyqf zS09c=pGJ9*nMFH8a(`7PIRFU@+CheIRUfbUxTJw-Xvlsp?SGM-)Y(8Cj1o+ReHT$e z!TD~_&K>U5a)dZ~ag}NnOr-xkK}(x>UApK8l%v{SMDyVBF5w6zkk~&GD6Dw%&G*`0 z5d>TE+}))eusB?{>&}lm-cXqpvHs_qex{y) z>%I*xcEG3uw-KSJf~Pw4{sGaY2vWU8dhM(WKq>aB?Dg6_d|kRdc+r_9rHzfp8lF zv41JJ&Vy$vAilhixFI#$kP>1-LPXpbF#-hI+30253sFbIG|EEF=TO^cegq4{q9WQ(Vup~^(`ei2|C^e&hWO2ijo+k#&FSMt+=$b`c6it-iA_*Yf%(BvW4&l(WLfRb z&7-u!6KBuH7rvw>6lL*$BpIr8No_>Y#^XUXm#j^H_gN}g88wH~6DJo6)G7lOpTDVk zEl_px(aZZ(FG~q82b8i)ogFBA>GW#9#WXPNgska?viYsmL2E;|4KWM$Mq#n{2aaEN z87r>WxhP$I_fXV(MYuKH;~dI&U{>22+t%LBrU0!DkG?u#t~Hcuc^V9DY>K$JxKc0tcw}*}GT(}h`s{SU^!IJ^ zpegNJR>MZ2(W{SRR_avqOAfkALF zG)k0&JUkErD4-5!Lh>UQt*Nfgq7V`m_SD_b)HHi)xXR4joQt2oZ~aAhc)k2;+u_V= zS-2JHU9zYW@|ld~h&0~8&pl(&*%f~>+3(;VNET=-=;}tNk0*tP;T``xx48HNAmev$ z%(OR_Kd`dOM>@xlLi+;HeD?q$ArFl354TEu>L=30p@U*vLW1Z8u*9c5(6b2#9ldek zpkrCSeGJKYy6 z_vwCeczEbEpOat(&6=X8@3(8|>E#1~{Z3s^k2>5yb@L!035n*zhZ6w=*B2U3hpnbh@fzeXFRftf{FP3$3RaZQx~9K+~F>++4$o@8Y+QY)9T`J63HI5j%&z z8{y&CqmR?5){W+mKdkJIXOQq_|KNV$04-;pOyQy4w6zYH4fdLMcV>6#0cdXqCa-s*Sk@FCTH~ z0w^Ho(+YU6ex};DGHrr`muj-b`fRj}0C2AU)wwAdL)F=QBPIGB4`PtbBNv8*h z>|3C^C@^Z|+rKEj_8vdKxOjl+Xzf&7T--dgV$pGS-quZF@+c3Klh#jGY$$Jx=ksXY zvHltOWjujGqJqN6i%sA#C7*y8-FzKhG3E+%{Wd=}X$xaY1&acj{yHuFN(%mh_0mc{ zYP%5Nyw+P5wAUV_=uehV|J%YwL_I^NI5|J~5DZ7i)(%Oe6_sKf9kbV`a;UjGA_(7; zPmrdIqU>e_`w73*E@=>IL`%z8By);8si#Cx$w&9xFA2c1aJR=lCO9GAB?hu|6e{C% zYkWc(ZHv6ZtkC1mBCgR(3UmxVq`xsXcs#Lr&(qgGBzP?z%{K0_c}?g7jG1KFOh80@ z|GcC^xaXCgmxj#9LM`Lmjlj+})8;(?hx3MdvT*OxV_2wsm-G!EoAkcXPOm0g`2I|G z)0uQYuE;UglVeDV-hTQ8zeU9IA532M8E?0LP`;wfLmN`Nb;*nfX0tRc<$dr#LU zPK4m3wX3OJc@tg(*!Qc;2JoA{=+pc_jY3tENAq0O7=PG504PT2VP&crQ|Vo121+5# zhFcA=ZapK5^mB9!-!fjke{pxMOBjV(3H+N@-=TA=z^V3YzRCx0#SpR^q6}5h4<3&g zg>w1Zdjv9@nSO8hVej{}ncDo$2^2~Xp4N;39^NH;+Ji5sAi{d_TRm(HH=}u~!TvvH zV+&IBWQVJuTWLP0v?M(y9F=r7ij9+X(dD)DTY~DzqQIL(2(m#@SyEMLZL^h@HR8CZxLDO~>KF1&GOkhmCnrIy_m ztW;4v9*aDdV z2pe$)sFOR8M8n&(Nta4|PbF22$xDxi-9IEUVWoZ$nUC+ukuPkd z$W`ufoG6eMC6fH!FEGGe^|;^?Cr`v-FnH8NF)3PuozB{P@mx&;H)%HG^s=!=+-vuBNq!=7D@ z=J&u-owu|VgW2^QZoO2x#Y)TZwTgEG4e1I6G9TIYB{f=iTwx}3ifzSes?2Ll!x{C}i(P zNf5QhpK2d}z^S09U`}NG#F~7y8xyD}TeVuKRLhP`&CiEBN={BazrOWc^?`I2ZtD)q z(1x0TQ+TIhLkwDA=bi@j$BI8xA%X9`JU4=&U0rl!-s$at$<0 z;knbIqs;{+iX&KsG!cbJadX^Vu)xkF*{Re(zIa#n_iPzVAUU}moyQMP#bn`Kii=Yq zmq3epZ{EWw(emMjo&p|}OGK}L)og2Hr~I+n*;ef*%FO;FNql!ioRt?w1_cAopir(P zFo32ofU)Nao$(GRM$&BG^mB}Rat24Q+Edm!D#>$cwiy5Es4LX(q&`KXo=yiZG^s zP)Q?iIO6Xn2gU^iD)1h8VY@KiaM4kWR*yd4Z&jSJ^m03%wtc)sRmX`5X3d&&D2;-s zi{gVi#d3=jMp77R3V70=1{-On1;YDOAKOj#xG!bYw|;wHz$jtMz0RwkD#jcTkaQmT zC^LN2F{47RrEQV=m)*Db*$>N`9Jq&0CFh<|4>)7)F-=J_C{R6{r zjAnbR#zjZt4uA?Gc+km2Dfw0xj=#dX+4yleL~HB4U6*&s%HREYU11SPMa?FTK*?|m z+EQgRcqC2sR4osQGRv3zu&^sG3#u_5j3hCTzEiivASdZfJ`Ez{yKE@bkLRZC_)FZk ziYVhqi8gn>`F2LiO8+_d z!&+HTD4OHL^n*EgOYd51JWtQ~k-4a0spQ7wDhK?4|KDA4$s^m`GuY`Ey9Ukr%G(Nz zS$*7vDMOR*N6rPtMj7wBPlfk$uh47F}i==Zu(~&N9~^gn&VNC(=hg z-J1(Szu&V-$V9n@2cN9U$xzpp4hemn_eBK{Zd{P0sk<%r=Q)!p4dsZFhI5;imc#rb z>-gmI4(MD`l&=uWkku4&Mr%wK)|99)Xx{6;SNWT?`;Dz%2id6~vo&+sey4I)#%x+? zV2@S=|0akpLF}0b#xamzXF@|@AhbRh-%Zsqbd%LFa0r0n8p1iZ1pVF~B7PkPk>NdP zx;uXz`uFKHP-}n|Zo_3H#Dv78KAzHp`XhH8xw?m9LzV#JEi}yMpm1Srj zQ}FZWqn4?nsvnM9BbH7cp{fOi`L}Q5-CCekZQYq&+K00R&fFsOXA(@Up5om&+gh+O zg!vMD&~Y#cJ;+qXuRf^N1PBB?fn&V)degCgQh}@6JHHRD8@2xaX_1IcNh#1zSvH1- zI&a{=P^Jp{p+8I`R3DW*0=}e2uaZ$a_3st_;Z|5G3DCwG`)v+eW2XX$*@((vckUlu zpmcY0tGR@M!r9zmDlnZf4Gl+ybI?Ra4t{k3I?=5(?1LV{`yjRCp1yuTNC;8h9sP$_ zcfV3eS=7kt_dm4Jbi6OLMG^`}w=1y+#zmoaSK zKCB1LhukDAp!liR;8_E`DzluIzf#?O>I`Q{qzMtTo|01~zgO+@pUj}_b8?z^DBqMY z^xaotKu6czgEn)0Ku-Pb{uLC^Sx`=c1{zvm9bKp7!NJCcfvGwS07U2@K0bc`Ta!C^ zL3QnRT)VG6Qb}=)M63=@E=*ai(!Sw-bTXNd>|OIax1LOCb*bllOSD2T9qW=r%FNCM z9&P4HSb{&IUb%TV@aMV~-Jp5oAWT9Gly|wmR8&)On$y1baiV4{d)V=q!iVAI?$YQm%PEIXNp?qmkrmgU-X^$u13IngQAnDeFd`y&Fcyw{& z58NW42hlzVPoe;rZ~|&Qmx##lI?`)}(T0eaSj)g*X*0F9R^)KIsu5Ze!&tK_Y;0}y zgHm_1!01pB>W8(!u@-pxOYIPF1?`6q9~Ly;(J9qoepg}f;=q%W$Ht{BSA9{*S&?N( zihFmbF$eV5{}tQ451#KOZ0v&do!TH_Kk?oLOHM@81Im3L8O;^DsbWP1W#$8HWGME{ zx6*vOy!&iV!ysI76)D(K#_Wi$#-1b>ug{*{B#2Is66KdA?`G{4K^(ZAF77*hiAy~X^En0nr5lbOS#XR&`Z>{Ht$umqEe1w zeYV8m@y?P0o2@imQJ^3-kVJDX1tl_sd%U$X_0-z=K(v`NEo$(1)o^}y&Zed77B_)? zBTVi1D0C%rU5E;1;c3=$KhJ)Sc!)33IFTKo8v1XmKS<*@58DhiO2kD9CYSVWa!(VBkjb)P6i=Vb8d7a&I^g4*gdl}&tq zX}-_giRM866h<;JE$OBt^;MT~o~=a-tD7+S58+NIIJg!o=hiG03J3QDAr^5s4S^YP z{a${BS6v?_X7g7TF1Q^=MHdM^>P4W965HEE#JSUmN4u4lhC|p}2lz&4su-vELFuyV zR|bgsa06-c51d_Z9TJL&nAyhDW|%m;-vavZ=ai)ke{bys%ad98mdKG@vL8+fxFcQg zxoH9EV>Ew7jqhQlUbNSHh|iO&nKyQ}_=M?Pv;Q94aX&WjR`MRTfH!;a5?zTWN?f4z zz(lKMyJ4ZfzJ6%3I&Mh{_GbkTUrf3^W<2)e0yr~L9<6BQO**zVxv6b0Z zG4`$3tnKO;j{+V29S4%?_ji~S{_Z7AuiA~gKL?jTb#cfFe0`CQ zOU)-VN>Q}BUiD8`>#l_+xB@y8@s1_cC2kxSm$ELNveND^CCFFTf)xPZ*$7 zm4{~Dfe?`nvq$p?C5%@XatCnvt2A65E26B7BO)dlIL2{a%|_kHF1s-wt&}}thnx1@ za#84-w|gfG1XqoHisDU~&|JG0L}k2jFhFFPS6zkc+hx~Dsn&#jVid~Y99({T>w{HV zaV6K4@2cV^&pXIkiaY_#hXw2g4>o#mDKn#O%`}X|m?!J0 zh8kiZ2;rjf-Dd}(1Joo_wT>nsvWyc&!Q4GnMX_DbCA zteo?FxM95KBw5-82uWd2EU-+7gM6fb6BytT&;)4*-^82;UuG6T*cx2LVi}*NV=L{Q)=5 zTW3i$nOL2<0n3^<5cZkIzhlnt9zL6Hk_d$v^K(KYfPQa5veIgyaDm}x-i2?mo_1gF zZHPaE8z&@@PQKB+y)~PXL%|Bb6l6PR;0H{NO5%FzvaZl50;45gB-f^8yOkyM^Cwc| z^ndO$9yd@N_xyQw%@f=>x*{(M`AT$$d(rF?+qecx4D|&nbK7f=_aXCMX$0A!S1lDi zv@wCzJq1%TDVnkp5-)BhCQJFN1J(iw$g;9$&?0oWF1BB&dH=Ce*^&Y+d{|bdY{q=U zMN2Vyuh~T{$eGHww7?GC-6EU9reF!74%1>cvwpCPLb8OB)%cI&@njit)qd?}tdaVAt%xy$yiMjes)} zf&E+nN<{!Hsa~B9?{yKLGinwIpuOep&D`^H`swR=2bz z@RlI|AAM1OQ%=z?|BPS)g6nWZ)%UZ#n2)QL)Y8I%08etM7;TP+5SCFefB;UvT#F7o zdFV#{a0#1~V#Cy(Bq3E1&-;qXVtjFsyS@*A>&hVe^wDV;lVa>!m6~yM)TMB?p^pI~ zu4?YH=SSB0y5yJdQ=Wzu7irplcX}1erq9``9Amvw-eiQSZIFvv7PYi@jUJlJC~}{` z!{o~C4RvK3{T;@g-U%>$@dcc;y=qDn&$5j-E@$O(`dh|&wgl{LYRsp(Tw-EUtjCAc zs5wtZsMN+NXMvtX)_<3qm!*5jel(>1=I81Yxo3X<1AB~aI$*dx8Mkqp%R4}$=x=Hu zC`#vY$>nc8Dm1NwKeN8QO@Mf5_%)oUJo?$)YV+$Y$8+#}G*1k`C>4z~U*YUm4qwSD zeg7~f>voF9J!VMHmjA$Jv}TVx0Stpo+f9Qa`tzqvA853?oDG@P76d?&KH-t$rN=R^ zT%|-DWfWE7dwP$r44H1s(4ESY>?aEzpa9OZqFbogOS#IXV4@2X(5mZ#{&f-s_Z4Bz zi|_mF;l;bK4BZ$?;`B$Gj*jL9VHclD7d;Yr`YnSu*gVJ&Yd*}6X)pvh*!$=SE|N72 zF>RO0v!<`~@~ONuVC|*voM}U3tmjE2E4|hl61@@%-L1BGPBp=bzPdwrkk^2 z;$}fwYToj&-`0vagY9YtkK3-9WeXYRiG@Ca6nvaA3Y`RfQ)h&V29L2Hs9xOx2&KiB zjQx(E;1p!^+vt(?RAHoYH0nJoW2Nxs7 z*%>8xw^pwnu1Dh5n`Bx4@U4-1xy`ykPYd4}M)y68ThUu%8rurBr4zo`F*-5&{_pa5 zhE@O=HSoMTthB$d@!MvxT+pV>s}VM|76}{pRnJ@%){c&jzEa~Rsi1Xb7QieNJX7;P+qYl@XJ@Zd(=~pNZ8Wr5;l6xX9!y=d0SGJj@!4%3eJAOa z>u+DyZ)Kv|h9w+7#4@^^V?imFa*af~cc9^lbaZ26`kqq=pXj9uf|7c6ul0bw@0Sl3 zbO8IprOX#wr%k!9UR9l+pVw>ju6J~F)HE_GfzcU}(0RMT5W3ib2>U+0AX*J-srs6!&pL~8>*46BR$PT8>PrU;Eh^VE(1{o#Bxar^fpIGZ0ox=zw$ zb8C!A+#Sg)A-3*?F6X^8Bct|Bq)-jf*4B=n8Z}FJkPFpQYiNplgG3tgwOU}pLJt>y z1$9UlSy)*spU$g~fuP8u-Wnc5j8sM&uFwv&|@3X%_c|-{U;l>a1U#Z|(T+AM~C?jbmQFmV(5O zcI(M0)Xs!c7+}Bc9|JldR&#wvgSuPd3 z*p3cmAhC*E0AnAC?V{8f8QCUTn>kAuA}pjum+M&Y^YG)n7wT@4P2bQBho+oDK$6>7qI*b}83Q0%717 zBcX#l({F9PzM83Bp6?){e+6qqylm2E+S;Lk(TnGnyJ^$kFX1PRCVAPFUkaih?+yo& zVi)1Z*q@}RZo}Lderpmm0R4CuBt)-WQ+xL88SmlwL(1p<0)2lAf1c|M2-+*~kt$W1 zvcDr7kP_!Jz4Q-zcwqnaS^;+NH>aaA@2;&!6%Ozj0jM|Xum3+%&{Z@&HFXZu74x3t zC=WaUD|1th5>PR%(U8DW3>W9 z@*^-`-B&1XyJA+xa_~=~dx33!XJiomG>1H(FQ%6edc#(thi-U*{0#C^he8YyDXEs4 z+RIDx15nQZeRFJ55~o7)4YLs7;^tVSdub0EdK3Xcp!ndxv;JVCJ^E5;^J@Sk#MeJj zf;uz-l4o$#y3+jV(_@g1=DzEil_MkUH9M5r>VL+S_U5tLT!i;R`k5ssRz2ru4S0Hg zjjsOsHNWu$8~m6lUvk`6JB-Li?)Q8nP3Z3(KM(tPlsNaA3UoQs>gcP7E8 z7+AlR)`MSXR_8t8mAxx_w_o!q(4SlI(&*AP_%+|qwxaDJN7^M97#}@iC>(ap&=A~! ze?h(PeTjy@MEMf`|NZ|zNsPXtuxUhV-n(b)cnP_cAql(h5{lyl=|K=E(JE08nX;E?k)eQs$dVyOlp!M`1(_Z#4wf1jEubi%f&l_b7-6cF zAu3Wv0Fj_!NKg@30s`Ol*#7LF?|k_a&LMg8zR&aA`?{|?FE3H{aa~>NPw*=~ilgp| zE!5Bxp-5bL+{cqUR^*hgi&^SO?Hws{aQ?K76jqT`%go$>#^e^-_AJFrHz$*tbm@pz zwb_B5w`s{O%0q*~YE_Y6aIKh&7q47et)NfY`>?@o1sK~&CdO{YQAY3A{_Py`7s`rR zZqMVZy(H&P_)SPE7x4KGyw#DnC-nI;n~mo_wS!XQ=v{l z7(Jty;Q8-4Y<<$u5Rg9JQGIHn#nhw7A)OjAJHc?C?uabXJNfqV!d%VbL5!ldhJau~ zRSra;{$EYrMbQe^ojV^oPRBhyOzuN=wCb3Yv@{V6+NMogU>kw0c>#`+fK(Fv24tC@&vp-VWhW5i=rgbn7jfuKpr3gkfhr~DF{bKG|;(vz}{Z3 z+v1w;0kC@9?2VXq!Ka2lzJA1Am>sc<>z?EWj~0+@8Tu?RQH*!M-sKkBLamUNOOhRZ zch&!886#_9mRIAA^{^VMD)*nA9%YmKD*b&oC&8z;M;TNjZRj2y7#(F_GMqJYi<;+L zkC<{quXSS!=|Bj59W7CemQ~-*!W|fDwa>{Z6^#`ZaXlPx^S?b=)8F53#*Cb<;G2Ky z4Lb^;4-sWogz@it%J(Bd+4^N>d=mL&-R=;<{NZ4XebJ02(EQ1g6!{c@fFOPt$c;S##gkM$?b5)&Typhp8LnM606$g5{S5MVv=(JTMu}=lCV&1zFz|^lZl$>1MF#&dBLW@u#M}xq04!O#&ag*e z)|4p}3K4brWB!>rPQGhIbKF|ho#379t_mxa9mYDe!MD>utAKfLM2)(-dQMT1H4a9g z?m8S%XwlFhKBX*xIHrn#7OAPJsiXIP5Zasi1gNWxpCR2Tohg_Qjdz@4x%*g>UJr!MA6LlQDE^ z&!X91=w)HwyQlWmY6LI3gu>DtfE~qBH}H7&!1IJ+!hr^;d(A%y=V-FB##rmnFJtxX zrT%WaOiYBRHGtB7qzx%%HaUa|M_5VOe`mw3Ml32FF%^yzG-8Jx9f?|;jtT;Yy}Yt= z^SeTe1GcuP{NKir9?IkAh3d`uzoHS{BV`y~21%cMt~V+tC)e<2!&A`El6|{#J#;q{ z#qAVtl4`FEDe|j$uX!~qaCOw&OFoz|wP96%mx&oh%Z*Ic%wU>R$?-pk%z^}iK)>Ks z_9!!5qvnG^_-_s<*;O{1eNIF&GtG}{4ysEvJ#~t&SnGEOA7G?Abo(t(@*4wD7@U47 zCdS6a{?-oE^57jQiV>D$=YsN+D?7nM#uE5%QF zVUJ@H5~hS{N@S-R`C#1I!Xa1 z3`UWFA#9U3O{@68ZMqN}yA4n@-~OQ?X*_@lP<9usD|*kaHuUTt7?1>@Pz%ZWqxzrw z&Z6&M6>JM|FN3EV%hlN?o@;wwYE8ci&L}$iOo|SDPzPu3XdKm`8&tY126pq2N@b}V zv?}2qc+}k790IwBKXYcO0J96#A#uPE)=4L5qOhfby^RB`u(q?rH;wTsh$jgTwGPy@ zmT^6kuygTcW!m)FiQ!`|;~imxB^U(^0XhoQ-q%|MLf?SU6xDsRTEEXzkWW;v37Yc8 zV2mX}+p>+^w=)h~9c)=V3KF=n3jeQ3N(pA$8+s#?mY{iOZ-yqAZ>U*N^d|UHJmOCt zS*}w%O3#4lOA?$*CPqf5K|ti^47_E6ag$2r{k_izUN$CUS66EF95OaFmBtAtBUIu* z;q;*M{;^8}Zs}C)tMlt3Ju%*}7PvumJO;fIey$a<392yQ8*#qLKgfxpqe{AI*UM0} zmU)?Zk5z?^7~mYZ6AMH33i|UHW>H9PJN8_iM0CEDlaUA(Ny#NXJ6m?+`t`LJVq(-# z8;Xa9st@uf`lash+Giys4~i_2SYFpxCrV=d|M7m66ywBWcfpJuJ&(&NZD1-=sBDPO z)lHT*78Y?B(kixY9UH3ZEx2*=sZB}tuDNjO?*ziR-iI{>*)Gj|Pm0n32L}gMJs<{3 zO5_rdmk9JjS|i3M+%WIE?wiI+DBJn@6(DK}dh_S<`@h&?3lP)6^L)ArZlJTV>_LjY z6FegPX0dnsmUtQt9aGo!kks}$`vbG!744o--|LQ zDp211>MACasg8|k=kfFkwqqWQlzvDd(Rxtca)?{CdPB0{@6*fyT(pH=5?6ATi+#KS zVG7D;+LjxgQR0h4iH%iR+0!zJL)VU3KI(^RPv7t5_dPfZCoM0Q&p@WobYs`jz9Or1 z?VG3p3a^KKAbwvfCnrbF@^_UT7_L$x@<^M_Td{n33vO`|=HKV_!{|^{)_}li*5h z*MQ9n1CN$W{qp6@LA;zw%<;*-F2~%=EI`(YDJCP650vtkk2ekicppp*tc|5*JlqlV zx~jo+4QEzr;>kXnl~6+Rt{a3sIb7t424Y25K33!5qer;drr5_P>})#14LV2)1G;)1 zu8%!3EhWdhGBJV)d6(zIItvR6R{Voo#U1lIVn0Pj&NR7gK~g}$F7E{-JO{7?QtGUd zW1~o`WO!S2=|=}R_bnPc=d7A91InqoL3dlZ`Ap`I#MT0@kRlrmba`1>C!^}d4I@DE zPlPW5`>J4Q*lWG-7bYy(=d*OUAp7Wa!7|R+_;@RPk=wLA$#U!08{t$69DN9MW$w_C z6{k(ZVCHR6|1U09kHCynm|Pp^z=HBYDca`EKA>@8X0r;oyOpaZnBIAj5GDT`R#=BfaXu)bx)BLLswUhPC*6Qk=an%8#CA6u&RL)_mYGfBe&m0M3w9D! za5RB>5kV9LMNYEZyo7DJ#N>Xvnwp0hQD4sNF4&uGL7|S4<~Bq$Q7VAjRd^Ke}Fj zS%1zw2e--{x*mqw+ca|1q}&Mw*%w3&d#4KF_e3|sY~$X@4eK&WR2!neNv-Hs?M$Q5 z-sLZ&7)g_GvRD*~5H3JF_|}8)B&dqwDpZ_bBk2dDb-0Ct-E}>ZMEQEsasKeCUG~4e aFRbedr0l9nq#_`vP|SB(f!_4cng0T)UAD>q literal 0 HcmV?d00001 diff --git a/_images/fig-01-demand-orig-shifted-demand.png b/_images/fig-01-demand-orig-shifted-demand.png index 42d63791942bf0684ad27cd323103c4659b7dc4a..29b87082a3c43973121f148572bd718630ae3af1 100644 GIT binary patch literal 36289 zcmaI81yok;w>|nI3W|h+2uLXsf^;`3A&mkCQqm&b4JslH0@9@--7Vc9@rrKL~)Vi%=qFx9-i+F{Qo z=itD1Iql7zG+Rcz&}RP&1Ac)63bGEjZ_*^+X%FolshYO`88=3qv`O^%rOw3CV3k<^ zj9t~H{D_OzK$+9e=(&8d4>~t#;J?#Wb9>a)t5-uh6uo35BqXM>RHNVz3G;jZzyDj? zvxM@PvlSF@JK(;5|Nej}Z{d`WkB{_qLsG2#{QPTo9-%6Z4{W5PGuY!r-D2v!F2_=e z!(|IXh!_+fr9JwxC`zwFobvhe&01n%e*S@JZg`f^@TSJbN8c@V98SL{$UliX5yT^* zpvbDHg@1EsLTg}s^RJftKRnw_70m`X=CpId@?%WQYkSK9-PJ zDX(c$P7rol+uiMdP)$=>%Z^J(Na*9|ckZUg$x-RHb94baWkuAz)R3$4E9#M(ve3_{ zIC*%j_el?fbqfdgrh>)H4+Mzl-T8G2E)RMsVVWgcNdHY3+Ogy(G`no9UntO>wT`? zPJ2i#$p+fy%YFOpwy#`ng);+FxZuWEDGkt*v0L ztN7HS^4Twn`7Os$J*i4_<8__^6at~)cb^ebQT zl9)*C1Y6>>x6qfXE%q}`py7+Sca)F=D>0Mmczz325iiT zmU?Lr9y#yYZxyBW-e=nRCjB|;?#mroC7gCT=hn9JHgyh}ghxMrcUc;tbJ^RPJ0|_0 zqsw{q>VCV5l89GnDPMae+g$bGN|JO4jquhl@vP_h?^IG1*Z*ebmQ$-|J?9v8nxk~y zn!j&p$$osed)lv}ZP@S9S1u-N%~;hlgQo+M+nbOcGVj z+k0yb1Y|s~ujw@h=rs8eue8MTTfI|^7rY8y@%%YywtDI8d{@%Sq09DP$yi=9$J688 z)>uBaFJHb?9`6i&OHSs{|8b?hzW$DC+Lfu6;F`b3+OF%8ZJ!uDYih*kWIv5>_iNW= zSPpmO`veE4J`AQhkA)Q~=HV{7KOIJXGMwmfB2aU3aQE)Boayw`gs<=}pYA+<$EsO= zg^WyQp*tC)|Fi`T+JDlS{WSXqysphy$)Kt0?ubLt>t4S%Z&1i`!Mij%jJY}VZkCvj z_>Gv)4dm;gz`wn!-3~*A9L(Q&dK!0syEIf{R-v;q6uxko=*@`v)b{lmryOIl-GRuv z1Z#Z+6;^^zVk9IwV5RBY4;B~_TsLHP%lSN7BiX1mE9?zsJEET*-`)j}NqOCyVLDPC z-mmR(9MdmsJ$;c<(Dt)JEU)QMNgxI$md2CvlXh6_=XozN{7Kjh*C(5fHrm;6sYQp~ zJX~FcJH<|gVJ&rM+QJ8x?f;aR`S&bT2Hqa;E;LfIp8hc*$`ctABU@;QzKDaPyZop4 z=;Uw}maV(e$p&n3xKq9OHF2s^;w;>MrbkI^2F*A2P167R^p6nFA3vnA@F{-0!NBBq z+W2-T06|$kiv8_Kg~MhOi8i}o2dU`cQlTxS|1I$kYwc_`d6p9oBG|Nl#_*U76d1JI zc{Hc1q;?k>t7JUObw|5tX=$B5fBxHI6j*#fiP=zrUJL%g&a&Lx&-iFwvp+nmgP-qX zg5%@dYYC$C_4Au-q4v-RZ~mS3*z<6;=Cr&pitLsOtH!>CDKB{^H;cl@Tm}oaQM}ss zb`O1JWDO(^nH-&;e?9c|`KI2U>ptabx}oVYHhf?7XszZ0pX=~jOl)>s&yAV()5YVN z_Q*N-Tb!83s2fhUOc;ITTK(mfmLs>m3oqe*pIFo*f<+H5zJb>$u$faFby=-iG_(?o zN8bPQ&HfE;SOg7Vhj@axpYgLDtQ(ji8blz>B{XaO5~#niBT zy_WKtKcenOjt|7e)d~&q2t@a8qI7h0T=!=pVc*&!SlS_4NlQzQhdG^Bn+`D@CHwL_SBYxX1VPbht<)QA+WreFeTB6z4fVUjLPRzds+j?xQ4}6EozRN zKj4u=CaP~~!L|%vy>R(DyV1`$A!pg&oL&oT!Fm5;eI}#F{VVn7_ae*?NLd|%|bDX~5cbdB=ZihRME9{puoB#e!w`u5yXOF75`Nl*j zpr)i5)sKBbZc%w(U!RtQRl~BAnNrOCsN^!y_nc8Nw(T8JTDCSP<1{ z><>>*lf*1WE1wyxudUsLhkJHR!DaMw8tiWR*B9}|rlydH2&pwOUY)AZe16;cD~ybc zzq8f*-8>-j7_>)JO>{ZdrogQP3Z5h*lb1T`92;oAsp9hrIwMH7MsD}X#Ksa zo}tPJX6drC^u=tbq<^@^sFMoZ@BYeg*@)hPh@DMgWo2bfxmn?0j^IdNfq@*7;i5S7 z?mYU80{f5+XVSFuTY4%$fsaqYKhElGWo7j{ODzl>NNaPThT7kw-L)$5HVw_Y9LX*b#{V}<~V6dv2m;`MVOJG@6H%$uqhoV{gKzr@EpU}`V0V|8Sp?_ zP3hn|>~IG1r zRzZP|j?N1Lxb@smbTrp#jlHhCJnq9Fin4T5u>OhSel0zSByczHklPQ-S2G_cVHtHM zH1+g^L8eQdVyJeDs9u{(=q`)yF2%2_&KWJ;-Xo?WuS!T8=n%7G0T}6eyxmXBz|aHh z?tZ-eOfinX4&K%gmgCOzym7o-k%Lr-*02FuT9C7LR>wNC)C!~6bd}m!sJZPyQSthbIMi2}r1Z{oTYK}tpH|J6pdCp;CF7%`l zh=0J<>CJeuG+Y*@RpqQ{_j+wi7{WF8t6y&*nkHIQ?|%SGwc1dgp0tWHsg1u&!tndf=6s{o{8 z1K7UGgTI-ke~K72TW(e{Yeu17U&qsvI<>UEP;MB$lMtBP^W&nThAg{4w2$=8<8oVL zi24$~gmm-2(~0QhBEA72;x-?S^6|L{7@&LG8NeU-xj;uOUob$wwGoH0G9%TK@&Uf8 zC3_(*!;Y7*rK%aKzHYpNG@zzi}3qke%9L>QJGjdq?s@KikhK2dI3(6~1yIRh>D+{Mnw7!*Ku6J9&j_&Fk*Sc!?1$A#_ zr+4OS^1!xkGcx+#ei-zq($UJ*%?%wCmR`9#>ViO5B8H+V&*93&<9J!6)x0Cz9&Nul zoR>Sbma^0Kn)mE^>3tQG`U*Eyi_Y-xQ`f`gQq$q@A%If3oHq1D59V(>?<^VHGqLfXgN+~ zgnyM>Nny5;UCHQ|kxlM=A80DWBLaRik|nmN;usbtir;4 zfiL#z4+7O#HlAy5$=H0pT#q8fsuZ@sPI50RY)|zEKG_$V44BP(q#1jespoW*a3!C> zeYpLh*fM%e#0sb&tx4O4*Cmb1npH=S1hB-OH;e3`|B6@UTaqZI%7(!mG_*_Z$d5BA zDDg3(hqCXMx6tQ`HD4|)4f*@M3VjjSB&|t1FQiS8djIvoq$lfn6+1LBHQU#eG|YW>w; zv>?-d8)+usxMKU=uVt#YY$!XJ`$)z(mmFL|939{k){#wYruT zZ`b_|BvH5nI*D};JlI}DXcVN4VLePN+|T0P_;CQxVVmZ1BI0Ufy?{!Yml6>YKG^=- zOD1T02fVNBE?Gy3-QrV0`z7hoN~iVh?PLh>TZ{d{z$aoUmvh=9ye^H``R$XARq&pS z=8S~h#@GI~I3Ug1l8UgyM(01J7M*?B>e2jGG>5yZM&J|NuYdahuX9hm089^1m^XS> z5c3KN$wO7uYv>rBq+5%{E`>UQ5bj|2#|7LSAwZ;4Q?=|ekAjk&R^!xLTx%L3R&fowh zkOVp61KN-a;-SHGXX2P8KgBbV(kGcurB+9)MoLMTpTAVi)fz$G!;gf`9G9H8Ls~)M zxL^Ks#@QpayGN+NO@|Y=VZepHIcpU@iezf_HP+Ru4S9w-kmQln7HE{{ z)+a41d(hc}A@${fR{#JxG6*{CK=1W|*xVpt)8fXR`ui?4F3xmmsI(ImP-ZiC174lu zYf@4muu(E(VIZ&QK}K$tR#fB#9uxp(NFFS9@;%?}&|YtMWkf2HRWkq*{EgPu)(<+Q z&EC}RuON#z0Hx2#ciA;hQc4t+di3ZQ3o(5IdjNQA2P(j3?k7lKq$(-$900K_I^u=; z`Ca$&I2=|qki7;l@J@&HR6D9I{H_tRdP&DXl}qX4TrH6#NWfB{l>|VlLIZR1e+*z! zZ@l*H%C1_ObutHpV7<-+k(FUc3p~2Iy5k2-s1i`=w5e6f z4sQqV4EA(9x6Tm|%O>v;UdN(dLJFvw3t*GJql*jq-KSZWVk?tP{?7uBAuA$A!J$)s zehPqeGps})fFd%W#}(!&9?CjxFCVfslHq;GwT(;>Ts<~j5+k>nV(|0P|9pBdbFvUo zCe^iCF}ha6D^}@*HYwSkK*u_-q^i%3TCWJ$%#sRNPqRZhLZS~jfRuuKNPd}An54N? zJ28j$8X9pJq+%y~Njjwc*FV)5=A6Vxf*s5c7S8d|837cL8Z0otOYK>pl7pQ(IywqS zbU$ci$8GqLC|1Lv+jw#JI6XZbF$D86_G6HsuwF_?N!@^L07StJS=+u>4`KDUg@uRN z15VlG^;&}L#>CtXY%$rN=4dQX9gcevARB#RMDN|8bN<2wGO?pIPnRXBmTe$myiBTT zmc5GzFzaWLr*_}_0xr+0dCLXQByF(Rjb6IR&RjY_t|8AEFD03`+(>NW z>Fa~aXS@{WSL4`l`jbIQdvkcxw~KFkc;M4}^`HIKZZ3+6qUf)Z{;x(W1x)&~zJSL8 zE1k$_d6KT&bXs-RcrDbLg`1Xw!pHfi5)|MNb z;tPPCl{rUeXJv>{>h4NYonFCayyWZa>j#P@wnjGg@>gttg>@0?M!$yK1tl};FG z8f6<#^gP6pdC}N$PTG}MP>}5d6a?|Wa$0*r=p2JsLwuCt9p{)a7@XS z?|Q4c`g$em0CPZ4CsX$X`$uDp0q`s^T^dOkoxxC+>AM0fP zvGkP1;LtxemyJMp4Tb#V)|?1Js5}!op5L=*qCfOFxtL5eH8njhG*n1Y zjCV%6ogRJsc?UQh#%Bm`Krt~u^oTO?^Y!*_c~W|MvUzG}btu+y;w}vEs1@Mq{-i(K zofk!SL`6m4dwXl!OxQ|M_j4L(Tozd!sn{)_X**+P$|@?kP8#>_)$-_pV>YtmMlh>A z0BJ_8!k#73Z72Hh1W4Mb^CAnNSO>I?o12@(fl=!nCi&AV*T>PntL+wqtcXG$vR+M` z{5-dZ=h|P4wHw)KVlRBPH6@W6Yqpd$B45W`*$am_r(&f$du?Z@dE&eC zNF}JI>^8IV;9TOCmTNVlY@j}a(^x}VIQKCkqInh_oBlXSs+^0Ko*tnr2takXbr+bb zHvx4DXp{@?Rg3#z+4~3)+?(*m;J2DQ4@6$N-vpu7ARlS+l(<7=5uK~Urlx(CqY*&L z@ebIDw#_N1s2B0@=p0st8=IRU$E>nSdK|5{D9mgCv;ctuVUwV7D3_QHW}cjaH(?#_ zEGMa^EAwqTJH#lq9{b={iMx>&y{FkpYzl10&3_2rU)hj)~DZn0QYTsgZL~#J*zhMa%0~uCmR}a}X z(YZ1)ggaigr3XzJr3q#OaFgvbHmWwomWe3vi4dPn4{jy(TqIS6!66-1WE#H8S zmS-_0ibO4RdbbD8#fvYO2J)HJ3f@1>evz-+gcC$1(gy!Z3fK%28~^-gaNfPc!%bkq zmh->9#5yn6EW-Q9MKDhQ#j8m%tzK^?myhB0Egg0ChqcWIkOT%?XOdeLk&`Hvl*WFH zt<6RtWtS_HnQ;LnZF56dXpaFq~OfW4-$Km#(pC9hJC`T1_=u z0Zs!Q;XY(+GVWJbK!TU)H$g}qBB!9lDZ# zwS9-`9Kqs-r-4X2X5+c=7x)OH7cXydQ{c^A(g$D{xi8?|^G6+z*_ zv}>y+>5YkF=M7#@TP4KqW2XlV9m-|_gV8r8%9FT)0a&w zpT6AH|5lRrI8KoP09_)=U z5U1egooX#4uFAioIB&|9K*}A&VkiBIVDqL6Hu|%!dTmJ zpJHKTjO>$!Y82=5Ae062fR4U#DB5rQ^E^7Y+a2P0Km_se8D=6*5xV)SC2YOQq^HPL z3#Hs0C(L1Yd9yTu``-aLa6n^!yXR_o?`MVLb142etWNZB^EaQQSu7$bvD(5mcvcE8 zx&BGNF|tT(7hDBAbu3F%n!dbG>t9`S0l#p_ta7BBMu~?N@Xmay8}6x9?irJnOk*Fp zz#AKQ3*EN9AwDy#m*g(ead*>U+%kh3xU{}Kle|OMn?u=+`xR|R#qNDucnqZ6dUqL( z|8U6y&E$k5 zjN9D8x*IKrOgcRS^7I}__4=XBGaKv+>w@PG9M9#g&l?B^Yjrk#*FPikKg816qtncN z(`-!g(f87Y?{`p?9pdg#SSvo#HF zipTDNrw+5g3&ueO3LQaA`up1_m!(4DLnnt;s&INZyF$XN^&C)#JnZS9PrDqh>RJ{~LGslDJFFm%sWH{;*? z(G%1AzgFcX2s`{u_oIdAjY11+kJFYjYa?AOQaz?!e5_ND_ot~oYP5z*0J9Qfz>WTc z;_ch~c642cQbMEVj}zAPgo(61>+Qre!TN>qH7`d&_tGHoxv8_#aj2a>l&8Zj2bV5J zD04d8EX4kxBK!=6`cG9{Gd1boM)1I4TR*<`3s8|8*yGAEeriZm!>nga6eE4(zs@Mk z>nsu*q{Vr*=i5-Nw!L$J8#s$^IA&nR8%tH@=^E9QOU2^{77z;-U=?yyep*>p2NuT6 zs&bwFjmkR7pxZ*!AO|x;b9Ii9LL#(?cl9hDCbM@#rPlv+De; zE2jUJ&#FWqboI69m#NP9^ij!B=ER=6xx z1@<_ZFH6ULFqH02Qpv7&9V*7sqRQzja@`d;P#l(UwT?M6LQXchYxI`kDbGwCCVE`3 z%3G=jt9?Z8iqfIe$wIeYX)%gTIrlYpwqw32#%4v5MAxN%5vnzgStaUZqb4Jp%;9u% zz$|B8WhZ+&-(WT5Qv~>@Nm;49dCFF{_{ZGE^3&{=+_m}ni(hra{u$=}b5QHH?wq2y zVr$-&j%@4H%ud?}H79Thgm3?5zR}!qGBJ&_h4pfE@VQ`M!1(mc`Lm#>&lH($=BXo--^%qY3pgTJws&m6@VHJ*^u^Zc5X*TALIXvgW zO35b_nhfuu<9zD;n<)nK4K&`A2m9-9SKs+})?GQ`l!4#pBPasTkEcKIu*QUl^KGnAfqB&Z&zaZHwkmru4hX$@vMlvT#DNjTO53zn`;KIP zc}p=YOwB*B6kE^v_hd-hJ_exHBa4HlhNiy);vr=zsb#QZOz&Ktnd5CRe*T#d#ld(< zxM=N31m(~x*s%4TqD_Ojzrrutx0l5m-bBtWzwF5MK8q06y9Q)rLl_{;GV% zf(oTzEYjS#UWk8$?Dcxy5b0<&ryKcohv2GGTLS9SBBjGUUmxj`P&yElYa-cfsNFq- zl2PDD7+qvZq5w;H0Oog_PwQA%k3i{$#VUIsxcu1_gn4P=}{I0 zZ1iIMpG1jcFkil0YogvP4wMxfH03>U@G$;RoHb4rd(A3<#L(h4`U^T(5+dd%w@_{T ztj_LuMYHF{^-C|oxtYzjsj3r34OA;<7Yg2N4R6cC#I z^q^XeH+DIu;M2#LM(ynNh(2T&7l+W1buwk4u&Z22RVqQ?&DgwD8Fc zr$;QAUwL6`%B8Zz{ai4si&8&NvWlm2SyXo^E0oyOlEoA?Cb}Lk`uZuHg1?o3maO#Aib*sB?i+q*0iRR4 zgjIe##`wjc{rUYP8&uw6_v0IAx3{-BAmtmf?28{o@!X7)y`VY9`91EVY$QjB1XVTI z9;D-;$mPpK_hvMj)J9hH{IF&)#w|P4ZlEbUR^(db;amYsx2V2cDmy=Kj4P3GQo*Zy zdCnGR)KNU5P0dlEJ#kyH zMZS_lif8F{x-XsmSfQ>~BkT38+k*HHD+{J!|L@Syue{xznii}zj{ao z%R#QJQ-103rDu+>Chpp5?O;Hn;t&c-hR#1N=QIlOm~gvbx6;`wxhw;|J?Y)hj@S3O z-j;}dMeXOw-Bfl+mgxR~0pWId7id3o%&=k{HP-AB;pN%j@9aGA{4K_}Mhqal1ISYS z_zg-j<)oy;oy@CKP6i{pg4v%GM;iW9pBX|uUu!W=h$@Kwrs{o`FmjZ<7UZh(EcKJHbCONPs_jgi<{r%K+B&NsG*^_(T z$Of~ozrE!+py6%a{FcY|`2oJKaVuhx2Xr{jiP~ z;@f!*e>UV!O-&r+X*-)@hVABXL!wc=OVNfTnoAoPFHg((1p_o%*8MM?J!)ADP7llL z$CXraFRJA}M^d}p6_u#*BZ#JK4Q-pftPABq9PfP$%SmM#N~s*ZvBBqO@%%^(s*=@z ziHV5BrKK-IY2`dNb}Z#w%2JJMXy~o|^*om-%BJq0O|)HRrnJ~!Cs7x-9hPOD6J!VW{Nxygu7$-ZZ@Fl^Rw|wP!(5k@4EO+VJ>f200;QNzseZ6YtoJ z8Df8&!gu*FCvhL)ihi&YLI{lSN9|s{5G6n{8Y^PS4|crEPCZN4gV8uDSg~D4#II)< zF>4_<#;~|X_cENa^L=XCb9P$OER8A3d5S`L_l%dRd9XVjb0EthZJ%8Ksm}V~LSZEu zo15u5@teKhv@cH9u>A2KM#Xi!K&V+?`VGy+>ln4{Yu@r-KXB4dv5-ls_M@rkK_4{;7ha5{4=n`IQbc^hCDIJnlo1SsD;U~b!d~#Fy z0944%aRy>ok}5hMA6*?YKdnPfD;y;4&Z1xwQT-{x`!}+oviv0j{#n^_m=aF>80pPG zL`B+B+r~1i*LiY4S;6}EMcmd6M{Su=6ZK26Cgfr%l2mhL(HtAJ}^>0!4uI4o-dp5hx@QQWJ znewO0A}vHJ2(^gO%uo>yuo5x3I=yIs#KnBV?5%j2V|BF`cDi>NgH(ySpFaz;c8cC} zq&(*)j4@z2O{m!{Va+JogqV9MXcN(|Am<4e&GYyO>$s?S1BuZvt`mpIWJl(q64Hq{yFvm-Kgq&X1$;ByE>YB6rGsg4z2w*O% zaHoo)Qgdj#b@b1>bT*%L#1;?|(-V!T(Nf46;D-bck#_-t5#vb*COh{+Gl)IpO{IWJ~KL%JM)j5MBSS>)KZn}J1HA%n{hwhScPCj zY@m1){Mt(#!$(m*8S1R=VvcnPI1Z%)rh0Cs!7nf6nBfy{D?x4kz?~bN*V{!{c2|(-3t_zu<6}qLCQ#rYMUDF8=Fg!#ufTe5fsv? zP^GV4eG-e!^k2+XJ*sB=jJYRMOj~)XJO{vsfH=_qujJ~E7j!{_qcVi$}#3_2}h%MAjz3i2uYT+kNW~m3$!WxXOSg39w+PqB$E%l%XL0j$HRKsrm;$=PZFmr z|2BwTQD;kJ|<9uKTU)dLT#o%`pO$Y*-?kf88%qa(9;eUHdniLfER-AV^RAIl# zV9~p*V^1r`6wdH*5I|T&5A_?BXM_vfOz%cg_5Q7lFS5JYa|Dx%6AJrzG=>lJi_!*Y zK|iP+EzC!qKXm4-b})lBqBF5!nDNDe5P5n+#cxO)j4WOV;F8r>K-8H*vA7$O4={XW zpmlu!@4wWUP)6_xj`Sez@}n&bJR`9d>N&`6Ey@p$s-lKdS@Gm%&fVnby`Oj~_IZiQ zjEV$pg^Es_?&uJAAazg{1JgQ=!d%UdRU>=Ih|1?&g~|FeucMh}|KAc$qdb$mS_jvY zA!RmgC)8J!NvBs6napA(gAgGnrxxn?G++O!mb!(C!@^Cd3S9LNIumv{{BcyShc)o| z7-Wy78c+O1(WcP#7`Cz_s0kq(p!huYX8Nc2>`achR_oT3e1nbspc+;18O5f3y@*t5 zh!77YZI{wDlR6PFb{y8)n$=`px^CExBW&YgygM*=7k};NqzEDj4+g;9W~L_4MYC)@ zNyC_+GBF%KbNfl+(ZL7i0LGc%@)_ld z1eF$BN?|7Zn@=E|$1dYZltuaP+V+Otn22S;|0yR88zVa$UFmRv#jlsn+u|d*?{ehv z92vV4kxY7yiZze_?D(Np@ul_6Gs^JI`{_Z1M{kuzk4c-dYCUl%B_lmuLCRs~Xw z=l7k@cI{^`8`gEhV*&>h&k=^^T)qe`??bLotY$iqbHBm%m)ob;XH)m}@lk zI9%y!NY(={#@Nh=3fjyeH;IYbVH8Dxs6vvH=b+2}doT{VXP*gr4*Qdyc2S@j=~KJh zG-zv<#4OI@#YHCh2hkK>d&!VI@a)WZT{u_H1ZktFQk_XIRZqNHW* zx*aB^B3Ag%1k^H3Ci!#sCO!`%1mlTKIBNWXGA;qLV+iIm#b^LPM^z$ZLxtA~p8dqW zm(ei3V5}Zhw*DOf+0*uE?7r$$r;nZ%9e+I7*E~!qX6$+c5K;jm&A;gktoYYuhD&i+ zmHZCadi_*q8FH8@dyA!CT3TUpaoOLo+Sx^TnaZ#wpSgkE5me9SWBW!C-ZU9T#GZL$ z(TxBY&b?SrHxC1TE^cC9p2DmtAHcyF!UF_b%jFyN&p(0&ubB+b%Iya8xS#TytJkhx zExW`dZ><7AQ`U>oZQpcJqcG{YA9QT}I!-3*EBKF=l~5S?A1y1C3Jw=1Axr|#zpEh| zWH7&~=cIQm!Pyn9AvfRqnLp7s%kQ|8%WAVEZn8C99hNW(!B*yeIAOz&6vtjBWOaAD z9eOHoInMU4THb&R6uiT8dEKl(#?j^b$sd+6w;)j>KElL*U0!8ZiRsI3fvV76EV#K} zr39+N&^l(-GuH<(DqOS+U6snBkh94>Ec!umqOOz%wNgVy`b>e;2!=ZrrDhaO9zv?t zu{q9c~+TJZmVuS7u?>_Tl@3 z^XJxHMN7Sy-nf3PlejjHp`I~X2=%6rL&o+-aRMd7Kb6-bHN1MJWa+!*dt!!?4UKJk zB%}CSwQf<=yp2!Q@b|sGZ z+1et1uU*Ex$tn;?HD>X0d-P1ox|qh^N}0E|CfKIv9;Yz36HD2ojPxo3OuZ3~#=B=7 z6XqVqyWUXJgSatlQtP9d#6ihO18Pgw2~Gl5M_+9vGej-hb8=xXcVT&<+DdRQrsw6a zfNY@D!$=w(jKvAlPm|SYN{h{e{2OKPXxO=laK^xQ>VjSN=Tocx zv?xh5o@bH|oj9s;jow^av}JN*gI-GPk;veeTR)Tkqg%-lgzHHc7Odo3Jf)rt^s2Bt z8*5nsO~34RrATGeR_&vMr>+-Kn4YP9u1ziKhOyxCP;Y=zQ&aSn^y=W2&mWR8!BJMau1n`M$rR^;%k?bsd{Yv#{URJB;pvI?M)#Z*g#>`*aV zLFwPRn&`<(M~)EFKFacYHNLSvN>*srCoB|g@3o47Ntz)+&_qUQ^^p#t3fYJI8C-av z%7NFnQA6Ew^AHb8d*>d}TijGR_)Vvjmy38rmbiM7k3nUPu^<7PbKt$syRYChfb4q4>4WbHe918~=<6vKq>_xtBD@)%!>Da;Z~*bYmEsi;B06QhIbQDV2# zIShW1F!|KSS51Yinh+|W7J!_kI9h;&p9W$!=A$&m;R?t{q%o`#xvy5!8oH3@c=wT3p}A+Z;^loqy5Kqi00A zcJMCVwPN=3*`~>P$#90hTt&IR+UM15AMNaZy84*&+nd1<=GF%DsS)0A$FGlNb_aY6 z4oOd@v^cw76w}Z|d8cLf#Ep?W>w6Q(yr8Wc#H}fC+nD5iv)ypq1p<$zN%GXEVIYuW`zSFSq zG4I1$yUW3)9TTlQ+7p(7^6~~E*_p)ps=F~zb3OT!`-fbzbCnOuRnT& z800!M?=fJBW(pkHzAfTTb>B~%dS}7PW4}^MN#fXFg1;Awdl(N&VmS`vjc+d0Udf z4UXLjzP0T&tnn5-a^v-e#l~-qNVv$jj&IQS#&QGe5M{~E6oh}f-)iYA5bz&0k97#! zoxVS(j3{#UzR4zr>Pr}v>Dgzqy2SxSf<9$>iz_x*eW}t>VkibS284hg{%npx0^%l| zDOXFE%{4<(Z$#P#yKVJ|ite3t4(Q84 z=9t-YcIHajziZ1lbROkB@om>Hc;E1l1}V<~RFW>Vu7v*i-GO;+g3XOe%Cpv#&?*2C z5z{jht)LXFNz6p7vwiC*GpV~>z*Lr=|r=ldTo7Ia%%3q=RuvSAE zXXL>{{!6U}YN^KBPihmZ@U-AedAeWSF|Qr`_rF=Tw7Zbynes%2Y)-MY08Sz3N1t%4 zfIJBE`ZaHU$Xl-0LGn#n4IiY<No69OO8J}@3&#*EXGp3*u%LSWC2T1 zjL5ZS{Wpp-A74SGVt5)^=pC(s2nKHG0$(CH`2?(+TD_{}*eetB|kklksa>|M-*xjJruXi7J7U<6?Se&GvBSQ~IyhB5lK%9T=&NTJ2r7cIeWCz& z!chbjEj$JbU}laMQ`|`H`#-H1`>m|wFFCkOdIl(GKK z8*^+ubnYPcAdWi~%H~rOZTmpbc&oK?w1sL`#FT=q$U#~}5crS4bavn2_Y9du`nF+4 zBZaa=yGQbn-98=}`G&^YXh#pruc(0f)SuOzq8GUUV?fY6gV>TavORq14qk@x7CW3; z_Wj<+M-4SShU@H;Do`6YWGVLd;;8ZfsO^ZEcPNh=FC}I97hw?+5+?wFr3H)b_I|t& zjN8!JgZ%~p^1tezmBpP^^wL$?->ZR`bY=2#?ZoAE+aq(z{}67Ze&YMB2PCKsy~W*& z>-eaflS}3+iKjGkgse!Ok)6fY-yzy&OlY^GPIre5nveY=X_ zJJ&x&$`Ih%S)|h}gbDrdCOckyT=)tfr5n~gFKUhn`+?B&kW&YBuht36UocNL>bj}G zs$DI=zcG`m_B;2!CsvkrO#(~?j68i5(vc<~^k8XTFeWH@l}E@g*$X<>%9JQq7~?O$ zX;j5_qc_)I2;xFQqg7dUJ-79=G%}oigU`GJh6@LvXObtF5oU~`bzUE?U%L5}CORTF zb(cp^+g!cYA~pB;@a8FcY$yzRuGb$WyQ01c;)3SmrADrV=-$)3mwVtd4wo)p*4tSc zgfBUai%~y=NxL9wF?S&gI$bh7d)67R;v`4ME|Vi$)38A+=BAb&&s@Q0sp9AdNaK^B zgV2=wnLgIKVxGyqJW>%UX!rLcbmcCJvce2pT3XtW)7`6bmNyiyQ~IKAaR{J5x>BbCIe`sxKnfnkd1oKY{B8rWFmw1J2sNCas z=*Z7~{41ZdsMN6UzN>_go{Ev?MV7WrjULXGd@K|ZGl9yUJ~kV_%_A5d{1{}*Z-#j zCX{mIsm^O?;zx!jx8}P}_oH&F5BxUgIyZmZ4j%rg?)%)&d&IL#Az>yu!)!!P+=IFy z?}rRhxP*D^pARWBUY3@bcaB(xrly$P5>SYx_Wv@0wW zSJdRx6g1ghW~)0s9Y?jY!lRl2vfg6SIqqL zO!hJR?6;-fi_iL$Dt>l3Owvz=^&nw%&|hC6c36*>@g#fZX8Cu=_1j$E~|K7iM{(MhSXt!buo! zSkzxA4QbJSx>WV|%H%3i8p{8=wG}j^wQvX%_y#aM31jb{{D|*P&dqrT2NNXAhU@?wGr&8KNrJwHD_V&4sZC$8$efPZkuV#3%x~7=|r*l^{&dLxUp8q%!JGL{B30aVf*cTOcqs%C7vy4f7eU z^oXGI?y0LFPqAiX?1Nf_>X&=$g;?)Z*nbneNg^Sdht34g$5!BCAz6P*aC&@+7^1k1 z389Dmu(M?e>>0i_U*lb;=!W$mOP0B7EJS~` zmA}+YHV5g}ch!JNIex1LLP7pVDht2fA7koTK-yU$jz^BW%lp8s24&~P$Z=0h;;c=6Juy7u9%P;L}AJs_FGGnP#5B?EB+%GtWgsB|=wua^JjVQr_dm0({yB zneT=)_V|mg0gUe}ES49w3UXP~zU39A)4{rV0YaHrx`yFWp-AJ7?}v#k?Ncir1BqfDC;wMtZyi_Vx^)dNL`)PB z3n@iHx+EnGR2oI3JEakjE=5uV0Z9o(LP6=2lv)ykba#n#H@x#&dd{=I{l3rd_wB#V zKAQ#WzOR^bjycAd`^Q^S+GqM_1^QPNZ!R&&kq%abE)d#&@wIVi=d;r6)_2rCu(3Nt zuqE9iddttm_LIu+eY%x2WU_#67(z&zlz+Clr2fhtAt85jHAw?jfRxD^XKAe6TBUFa z!BiaQL+t}yRy&*sz?J{0gbGa4$oas+GW>E!6X$zCw<@@NbEq#R%kK!8H^d! z)?Lri1x>5k@I7Z0ak-IIxvD+*QR~r!(9)rs1AC-vl>6$hkBum2jGQ>$BBGyHaWG@u zl&~LbHsox|iMdm;6WNo`>RHJ-$LA+DVTU~y(r=Ch;W|i3z;$G_)FqodU|Lh}Qw5Ec zZmR6w&0bmy;<%`TH@*n!EA=f=SZ($93`U{_0Hck9^qW0JlY__P^aVYv`&*_pHMmdi zhXk1p2e88@CST0hi8UNezmd#_p4v~0&IWtzVY)^M=%vB` zCK}fLD?H-jC{`2qh;Orp`-D}P9beVgKEcQnGSwk$=MuZ&SIt!YX&z>coKu*34^>vNeH+KVhY1>dVVBdN3Z*KhCxPf`%CRx>mndSg{oJ(2SZz3QEG`NFDJ5zV z?+#6CGq)6VcR9de2b@5GwzDYvU`(LfsG#8FRMPe{;#bRjoiPOv5 zu^{IL8v@VvR7FFjXLbIa?7I(5*?RXXH=|ltDi1AE}xlNdfBezfWBwN!Pjqo5BV~@RW6wq z#KhW?#o44tOdAv6_MU{JBi4*%h8^cP4rNdu@=}nuzv2dm1?>= z7_ot(=x)Awzq=d5ebsaLQ%v_GL({_#fB4!t;@RE1q1|iL0(^nS9S?xJzILz}gQ|_A z+w2EBXpN}A4#XAwatM!pAf*fHwd0%wyj>Clt zrXpS-o{|X586f#Saq|9Ui>q7C#T4M4R6l=~v^Prg&lF zvL%l1^Zh8VeJd_eve!sJ9h}>zplu}(GqoivI!6f+YI~JxvSeXkE;BH%Vd4|F<{uJ7 zk38G=kLKKqfa2Gw74rINjPjlecivUDCax7QpL)~x&EqhNun-8V!PWpYSFM@4_dpG7 z&g3ss>)S^P%)wzdlhSYHtDP=ux6_-G^zZ>AZ~A)s{4d@oB#R7b70QYCj{x)TGIMz^ zAnR64bHBKyzzd8YOb|*8uJk`AI1bJ=a^N%aX0HlF&!-Em4Q4cN&!45@`e;n%)j1!M z=5lF#-|YGm&)893OWMn4-2r)z1Qx;OEl$_r`^1IWb4uD49AJIyGWZ?s>i1Xm6XBM+%NbOEGh9|ltM z@1kQh^#sehh4O3;LXTJ>C#$s?WiTSB+S}bm`8?EVV_;5)61KdGm)~O^ve?y{)U{Y7 z+gSlbijvd65UFLvH0KMF@Y7T5Ruq3R(z!P_XOqBc1=*c}%JRsOBbI@RpX59tML1B& zu2kmg;^loN==v2P=us-KT$G+TF)ZIlfOu9x(R&S~O1Q=Y?A zTflCP91K+|dbfLylYksI>z@-;ND@9T{C9CTLC(&eEsr8VoDX`@-OlYjf%Wjvbxn2>O7dC`SqE<{LMS+Hli84BndsgJV zj?x26Bb{1OZSiH%*nY&gIJ&Z^cWYkY8cW<^_czz*@smvr_BujPBJUrZW>E_l<4xEd0dQYEu61$47X(>>G0}RNTYamZ=;|ejy1KJl?V7jP`PSga5}I(>KW<^`EZ!>QUR-B+g$K z_Y|*k2CB?f+Lr&+wgT7ivu^jse&XZIVPo$cj+wga$ja>=^YxUjNX|(AjR$P zthd1y)!?G*>`XK#Mx^3cw?;;m0aq_*3ONv zB*|r5x{~jKR`o*v2RdQ+(3b(b*w{e}AR@P;Q=JV5Ys@PEdv_5COPCGUb)S< zBhIdPVKM4KJrj<_nDRM-RI$UFgS8udiVOECzk}o275E;DIZhb%$sv^<76(KuMEE5l z77nCS^6voi)`8IrxZr#wF^JHO8u7%13^5Xe*kbR&^3KZK@G)5|@8Uvyr;khkBG$;W zo~ZyGlQEeHIeIB}5IO{#O^wfo5J#g9kF{i~<`q4%N zbfFf9(~UnZj?1i(_wL=v7~jwbY#Y~639|V&z0g*2pd%Q6>J5EYcqIPs2VX3&VmQQ& zY{nE^h- zwc=lXR}W#kG!vCIb}ibp%yRcf-ncQY-;sN0HU%JSkkM+d@zCw0jb05Vg)B(Si<8h} zvNM3%x#Q9~@~!?EzOa!g?a9%AM^mI4Z9+UV-u=$GOYUhzBpm34>wSzo>^l5*_NCa9 zq{UxZ>ybH=hM=kelSf^pRKJ~cafbCSdXf3b5?UwuC{d{dcxuv=+n=0%DXh7cKQ&Hk zs*~L`?!5((1v(s~o`>s~>MB7rsq1#VLelz=Xfom^tPba!}yNL`jl&KG207!<#5vFGNZkLI_6_a`bh#QR)IwaRC46->sn-kr=_G^-ITc_6< zuw8QRhtSPyj+el@yZ+HLJ$zbmjcvQB6&OFwzMtSus})9jKEN@}@%mkEhjT?gR;LXr zV#h(L@x1Uo^T#LMg3#b#y@}3>fNdm*fUGa$&Pulj+P6;v6(85+7_bfNuP2CF3Lko8 zW&%wzMCzT|ohCjvbfSEYi^Jw3>9;8+U-ZYephxD@#|`NGd%eea&{^gJY?8v?@56S1 zSfeOC-hKAAz*?8z_o?krkM{E&z{bUr+H%BR0jo<*f*KS84M+7JBrYA~bkgFhw%Wo6 zw3r&vuDDbvv{V<1mSH2QiZ*AB+U{@3@L&*CPmIXtcIKBloca2OH+oNe@8tv^$bW(0dbrMXHi_ z*tO2cn)QA$nTok#BOyq{;v71T*Sx%%%3oyWw$O%gaxGTub!+qcXLh*lU@~1S#OqZ1o?XQ}a;txr@S- z15##doI>>?m~s~aCTrPebpXqvq|ch@&2a9$x*}}NzU!O!*7+e5mQfK>RbNpPoO;O) z*oAj_9l{t3C4Ls|ctBh6Ek$kC*1*H(TAFO2bfieev*wATVP$y5CZJe}ZLOTKrw)rJ z1+>Wqa9od+yvyHv_fr;^eHH&ur(|-EFH47Cw0G#jDCJEvyU?3cU#3NjkPfJCsKYGj z_D%yC^xj}-T+oC~1hD@oQ=;Rb;2NDC-wG`Q{VK}E1TLe9(t&QiNDb)f*HdXsf>?)c zUj62z{(Q)c7{~Rn#6Cqj)Y_u`-uaZaCTvvE-p1zOq;3dgZaODmvjk5$^a$DK+MdTT za0$FSoBz=Q@$=;P04)%LuW847op{1fRB_-33O{vZ9K21XTc8hB>e9Ke7b}eU2j>tm zt^UP1gg(aM4fN5!yjmolMRkg=9{feri^$9DvQSnw6N7zu0>ss(B+tH0PY9DZGaKk0Y>z| zE4UDM3#i83_A7`O#z~Jp8J$un0mO6cnWJ_1<=>z(1pxBn3#N%f*%4~bgr(*+16A%= zV@|z|zPtV;=yUgZz;=Tg?!i^b{K@9=&5oSyh^+T%KMYjEKgybyoq`Ki_Fs%cix#>t zQxRYs1~pV0=*3fz>gwnKDs@>vAZlnx3mJtIh|;QQH>4#Nt4(vv@a&Q;D9|SJ+nY~N zK|AamrsxFp-XiaroQMA4_n45_f%k)~)H+5EJGUKjZNuT7k&-AD_x)Up>qm6Hd&tu1 zAJgi7esWH0rl%5}MRGWcH1*x~=2VIFYX)o2G=Bu>Fi_f(QRSuIit|Dp2iES& zUzxi;5x3ycvfcm$`#AI0Q&w7R%PLTG`&U0e=N8e?d#;Q->^;ME7%0a6b{NFhP)4OJ zFe!_bWZN)^3=TP^q~MMT#jN|nbP+mE*_Oa)lF&)4gQ_<n7Je{)+sxpgX0HP%t!>3$v50eSr$6fE( zEIOx$DYvy+31c@`um6$Ky8O5WQd+tJ%Cx|j<3&x)h9h_XK>t>Du*Jl}^nlh{s9-2u zwtjTI%kH}CyLCTVv8TU)%^sy#hg~l*9-SP=E1y5i)&g2u#nW=IIjz=FybfEF4^==A zz2KgjtyWLzBb&`B{FqqDWJElKUitq`Je)fT`>S^8E38q2w?=jE+*XDgP(n<3-h%Kg z`Cp_%=z{+-nEW0CM8G>Vy@=cI#2PmQfw&<+#|Tk$L6rn@jRUXQy21h8zt1T98g_9D zy->+*v}PrG_m06m2EBkcT+O~H2YSDpcDB9pKyl=XJq6?0Hdj|2ik^#iM91i)`}6&N zx5kbENeVH)_D{u(v$O0%-AUwy3k*84kY{k;vSNs9DyM(k??{eE3=w5TFGZij=jpQ2lCr?$89C3H>`EvmgS3(G4>rU4aygU!QNl8d&} zesh_%(}9Z>GiC__Ih&bEA<5l%!0{nL2nNp<6~Bvzk$lFn)n!HY>%sb~N7(Lyn=~*5 zu*26t;BqEY+{n2ANJ9BnCn zc;(c*?{ymEH|z_9XTr(*Z`4x_T;ieq2BHJG60wueqo%ieO@!HQsz!}&de$jEiHT&` z8&)JLXVS5V+VpGua5-CY-g5c#@PgMDVDp$Tyk!GPQzcjlcddo-TRLv?C`>EKj{9~(#z-ec?h9P z^KfoNTRy=vNwqlB0ki z622}0?X4xmNdYMMn0vlA{bk`j*dnq2tAA8l5_&%`5gAdxmpJFDLO7LbnJgS7=*rRj z^+~G#AD<+;bchjpl(@}tlARDAEIq+j0yNhengt<7L0D+n;+%dGrKD(;BcT=|=6K+D zB{Waci^FV?5v~kq@76f|%i#xPOudpkiLabtuil5WqbW{Ar?&Y7v(VR|UvCb^e(bB5 zQ3``@tNqk_tApDP0RIVN?(SLn0C@?-uSbcB3}&myp%p@0d&BnaD|XFJ0qH}BJX|-u zhUs?s#%PX4FRFAIzeiGv9BpaR({O?Jqf_%N5**&&Oh{;AgzAFeyz z+1zP1o>NW)VKJB1l0mQ>1sy$PL2zf#cmS1t;KY3O_HaqRZk%aMB}r;o)o>fgT|qGU z`a!?($n4Zsfl4l~ACRdbr-sBTxF2PxeV1<=+m5`wyI<*L;-%L&r@yk{aFF37s_|Qo zIYf39ox~fUglhdi#zG*Rsg*&SV(#5uD5XJ*$L+r{DCs8+4BJr zD25!g=gPHEuaF!&c8xu99*p(=&U+-HgInVCuhH6# zfm|aMVKxlINqSkS{)%E2dU$Zo3m#qeI66=#;epyLzMaS-W9a8R;#RN` zU5~R(xf{3;KbHw62qV*v4(HIm(mMiMk2r+DaXa&4b#D$M<;fddqp_))#6Ddrw!x-t$@P!dYR%A;kqT?qbQ_^2R7?zC^||lwghDr%%>=OpH4*>+%vzq?d3Fs z{}osrxq#J?43vKQ4p9_0fSeT9Z!o#+6nCkO{`KwVWOPz;evY&J23QPWB|+Y0BIsR! z`0q0427+MQuTS1BrRGIcFCRTQnM&XOBoe%Q6HpTzlIfOOip!SFeL1eBmfiz8H(&@h zBtgm|n&s{mmI#VCI*IJyEazEkXR&w zI|vFLni*^u??!AZgpPZxzxe796U;~HMk_V9QqOPo=Ow#%8@mmxQLOesf3ti!0K#6$tRx0v%OIh`0d?Iy%JAT_2g`p$e|=eEQ@!$ncu&2ef3WVi87m=H#+r zN4aI)`0)cnx70WT1N^j>Gwb1YX^?{3rRtXP7(?~%HL8bK+0SFP)1%{?i@(j3eg0w4 zdPVj%8`rk?!xFLo0#-fvjB$VB26K{HKm{TlB;Hbc`-3v@RXixDcAo4(w)dG9XVLS! z<(<3?=JZ1fBG={T%Sb zp71$X{Wh2|?eLFLlSW@N9-S8`)7$D5V~Ku?$i(^m0Jg3;(lNCr9-1`)S-VmBP{nd?{6zN&eRR(vC~J|G|2fwRAoEuRXb*Sh|$5;_81@{zJA5sgE-5P(72r=%0bZce+CpK7>?)5k z7(w2`g>DEv4mg>-zimfHy>|O`HO*AT%0lBpCLlUF3aaso=sI=Obk?svDMW>M;9n!D zF>~B$kB|M-5yl}MTWM~+n-Z6^ZupgX+gjP=vU-_#s99`d0zle^#E+`* zF<(h>nxDN*GZ(__fS``_M{trb&z*%x2UB@+{XF5SXt|BDy9=o90fOYLvN<^MmM4-66^#0||3SGO6kHK*=)AU!O&12h_{ zPNEP8tmsZ`{7)0E0i8!R{&mm$nag%qqO)@{^3Gr55VP+q%De~K3JfQxhh}X z1isAHNA=Qeau+&NYGEW`vSLE8sn1R-09)T@&%+F|dR3<(!CiVYI*xYkB6+y>NF3WQ zR}BJ)h`UY3@*tsr=JCekW#-@(IfR+Q!v1(u`t<19>OrmPMJ7Q3f#;yFhWp16oy6}a z_)pLWrtiE^q^@Z-UL?bbVQb}#&;9u3|Nro&s{MiTi6F8br_F<4&qGxHJEZq<-hw_W zZFLl26pUw%7_31~MEG=e(r!iP0L8t#mh2Me+f`8_<-RnzX3)}{>M!37 zW$`0mwS(ikfhw6KMihihGlFNK9Km&0puIA@S)ZLXdt_;A5~KA`Zkqv)+a`1=+K)i( zJgKIi?EB?ktEPPMOOcW2jenO;4Nm1V>2Z;2ekX___Y=PTp^zJBAW&)(>;l0{fi>~gaRg_*sef<*S-TktS{!-%;Up?_{thRYV+tX2AG=1sOJ_df zZI%po#XdCIpSCi|b1zIQ6S`%^r8sSSI8DlP_iv zRrt!Z9!BxOYsdwK&hmGn^i2NW80al=72LfC?GmtgADyC0Ji4}w6oHrsFsJHDxQ1ll z;ocMc4e?jlpaeFa*wgGAjBs-3UoSq#@l48Q)th$Z2wM&G1V^;(V*K9zorlm8N48Pd zk8%WPwLmRzpR6IfK1;;gH0D<3?9mD^ah+pN`&HZt*`55{;wLnT1Oy|&Ktv4_LhCH% zl?4J1`Du>Q;(6%be2kI&wYrQ=5LnTUqXf0SuJe4)hLaN}WA5i2(Cv&#+=6J4MTO#g z;T5Q-o*yM5{8l-!^)a&4jXTEGIXvMSsy~oV74V)eyJ}!SR_A%|-WPgCZ=C63-Dl>lg$=*!zJncnULf{k)`i5OH)t!l->d?!-~F zr-<^2CX?ch$XJ3srahA>7r`$9*_08t9wmz)l9Z(g^WCH+K*H ze>p}tKQ&aH21x-H`wjR5z;Eh)x)=d)Cem_Bg>KVlV>|dU)9p1}nQwRu<3dFja|k zEhFBY%FcQvkgHbLS2j)tDtwUar$#eA^0ep&zwqn9UqTI1Q7Mucit-VK`31{n0i3l? z#tKE!yefh@kRCQ&n)c9uB3SDTXCX(b^tHwMOX%q9Fp9`hO$hD?1csU)bg#5*S)L5M zP^g<(_>H*+fZLYa;}?30KReA7aeLdFeUpin2~Fz#^DdT`7WANhJf%6MjUhz5US8x) z1qJD{-Uqqj)}+%s5Et6Mj|%cm6UkBZ>}(+UJNPaRfsfntcC5j#!E?FJ+&Y3F8P*3{ z&VML1-u>-S=k}gNJqzItdGj0e)HwJ{ED2!%>8=(7$LCL!XMF89dR-O|@8py8>U00! zIA^MRyLBZG(28Xux7BPqRB}>Bwt%wcXp8^XnI^QG?%FNSnuyg~Rsk5_$S2kC15VI^dv!-sWlR&hpNBi> zHJc!9ALJMR(e@qO#8_Tp3<&tp@nlB_oe~7LigK1DTG@M5Lhe@+P|4mG#HdQ_pWYo6|IwxzWfoUx+o|^sQIWc_jH?30b{Gihl~MnPE@Xd zAr3RfEi#;Rl3#Fcx|8KE=Lk#@~2}5U8HOwITmof&-q@uba-+SIwJB6ztoP$AfzH z@Kq%xB(?h^)vqzA^#h*+2CqWBjfI~n#DaSKc{n9wxW1xlCqg)a&7e=WZ=&1-i1bmT z&-KuQPEh6t-?nHc)3$VP2mQU1)-s`xe zggMc1PL42r5bLtt`o)?QaYY(uwzb`uR35REBX8P8n@679+l{TD<*uShgd~p~7wN}~ z?|;A_ROsM(%M+%$x*RhyAm|+X5rTE*2LKOm&+QN2`+PLjaR_+I)-u8p!A=5@DiFfkz~v?)PQ7+6G3*jQfO%0a=SZSXCi*Z--q z|H};Nj`@K0Xm?nvC8y=;`L?&Kgv5qxs1J+t*vaN0lK+1EhF@jv!`3`@yJhi^kbY9! zTA8_I?;fU`+l&O^B-lrABDLS2;IW|oSM3MpY``LoSU@$lK7!Vvh2j|Q_L|N!1rMZt zQq$EISpY^&cx7Gqr{1s9wd)5A?$rClVuZpiP4BUlHC^qO`H$79$=%NwUIh2bIA14M zbV(pZtf}&|o6-`6Sm9jMIQP*r0SC^8$9s(Zbpu2NX(qpmmL8V&<(0!h z*M-}9?^{;!mZigbSJz;`!bsmNUvvkXH15G>p-p_DbHyPxrKL`2t)k~aagnxhSmfnG z)vbQj=S01VHFG^Rfy!@Xmdd77#bmPACa~yp)b0RBWjh^OQki9)%gpDI8U{xckbg`6 z)36!5hZ6@Ae$XT&L`KixpfBj1KqNEhpL1@@5W#?2|7W6U|l z+POP9#bJ(*V~Z4Vd1>nm>O%~Ue=h8vi3x_nJ94)YOiItVLn;iYMS1#m(_6BcKZCE$<+{l| zmB3R$!n=Uytq`$YY|ZkaW$Y$2&$7c#xv_zPaJ^8X`uTSHB!ORG7cGLUb+W+x3r3GWcGN-Hio<0TIzND!50@NBAbR zKCt+nCKyY%_r~&#$_-HVk4YzCNwv1TCzTrrE*lU!3QyDqoDuHk44+KR z$9A^%Lf1?G!lAfyzVh=-Lw{=5Ygmimco7d}?~blvW9apMUJ9Dl|hRfFLpk-a_Is))7%) z@c?HSzdD(25rm_BXWfGAcx6U6b3a&KoM?KjB%Z9|xe2tHVnMYpM%`)IFw5Ha#hYub zoVb{)hs?ENKO#S#>Dl8`MN3>Q(G!iYm44g~UFOO&G}|c_#3(rp9YFI3VqP0dP~zS- zArG*GYx?&Eq4?LeT^cwmm^UMY+^ArMac)$D0ysCSahNJeLGf*~Ypf_1m!^)L{PkcD z5BTc@7DdyQuEWDeRM;r*{?}56-C!jh)K;B$R>51a1sn~*=%BA17rLnJ#Bdam5tbbx z7mSjF4ilIJ#9RDKd{}+p@_$XD)qIixU;>lq{#>LlfzHHz1mbpV;R8De4|!72EqkB- z1A{RH!NHMjOBPMTV1Smj`0L{l+gQI+rulTV6Ro^GC)t|*qlgWwo+cg|H!;6@obkVQ zR4RH)I)Ck`nkDUaN^%i=@m<|&sEz@+)RiW=MOxYYk?pD39^jz>Ci&k%HH^2gn#Gl+ zDh&oYA!(h>D6^oBybm4kVhtE&sn5VMJLfiCUx#q2Ho&REYEK}X3T$>V^|m9guf^h? ziB84I_^>|R>I676B3cH{Q~kk9Z>CB7OYPbVaA|_))CPrv2wE%R5M&S3@p5nsgaecs zD;Mhn%n!tF%iSXC4XE7ZV_C5PmJYR;i+3 z87S?~R|9aen04RY-)KMw;wtu(MJ_?bFELIt)lWz5g>-It#VXXDbmYF;NKcWfv%mb( zXE`tSj|Ejp$&WykRfuxp0TAGQVr$8^gmNx(_^shmg~bOHMrKXUjr67gDc`a^`hQp; z=9}D)BF6T6ik9D{Gzz{N9jvD_zM*D$Q~rqgn~ULH4MUtxkOrD#m6G_=7PUZ|MSp~Kk1^hJnC}<=2U+k8F_w_c(`=gdok?b zsr#da=i_8UAGJ9RtVa(Pp6N^;SdO(86|EBQGUYi(7+vALf9*Ji_w8HV2L;y}MAprl zl3QJGaOd@?w@s8mgKQ@;A zZ{{p~{F(Xye(>U3?)|Qs4CzHRmLj9446L*{9&APyC*FV1e28g0J2=vrx^9*7aWC$} z0Z0yfj&ICV4f@n;+?gBK_1|%(43|h(Q4f|pYTO!~qkQ|wqQ%Mbbz1$Zv>#vA?FrC6 zJ^wRXpT38C8GmS@J)3awOjBg={1=wGYMaN+Z(ebE|126Uski8~=-f}^|NHaF((Fa? z;Ur_NC*50V2f3VE)dJLn44>$yC9Yaai*4qAD?Zbfa&z?0Q;I5vg0os}TvC~+QhvuO<%e=O{3Evx#4Q^duE-tQu)}{>@c9MDRN1%% zfj4tnL+-Uzt4R?}iu?0>$Iu1CT2uCkN>geNe;BU>ufSoQr>sFqtfSE7oZR>inEo{fJwGQsMk1_$`4+pYD;g)Ub{5cKb>lr?~C5 zpQaGr_Lu>cVg>AMcCx~xtMlzWuQ*^o9A`9+wh@;R6-@}@s9AVBBRbHVeUjc0KT5I{ zB)dLhSC$6`o;q9ck+@Hfi@fHWG3zspy5c~-wSv|#QbyQ}LL_|?%cE1KRMTI#CDN{v z@=y!vHX}WQ)yVQV>VfKAta9QBZ1(2UiTMKcC)klXwQ#hgVpmomlSp`_DMn%^i`jGJ z3HMbM88X;pdC6ogje8fb+FlHO+tDAHw{Og5!0;1z`-ttcD4Gvuz)Qxx*A|}>L^Jhk z;%@IAkx*flj>)ncFAK8n-8Y3ryYmdfSVEA~Cv_rQQMSa}*$No>E~Z6G>-+-7&Umyc zON77r1$<^SSqzo1=fC@_-0C%ORR|xGTOmjB->_<#MPOlkOhiT9OR@#MiSJx99sQit z`L5+@^Cy+m{T||;)8THY;=s6O*0~S|b1IU2*BdocCGcBvaO)KNz*cu5qhEE$C3%T8 zU2iXTpFgj4Bqcfoy@2mrb-==TH9BA@u}+MUzj(d1RH?>ocU}{=#pYGCRDzX){X!e_ zK7|c4yOQ^Muk(xVEY5$rpv(NZp^&d#-D=&9112}0Q-l>?GF9#q@k%;7w}ahl!n3#N zq<419^?7jXQC7dCzh%bbmX z$-poGvI>h$Zcb8$L-gci%?0y;V(}X{Fy`h&nu%lb=&g!Yks38aaPkqOz&)kt?|0~Z zQp+92ounWE`0`?}{5cYml1@`lNGHq0!0@yrm?Dk_pMuxI6PQYrD!J2rf=U<$$KAEH z&1+Be@u`O2l@J9Z$T;m6v@~2+AGNf$8iBeCB$?ELg3-^P9|&Vny$hqN#3dxMzP8;9 zd;Qw|hryN0mxn(EoF(oYlb3}=Y8oseUV*|3ru<36ylZh8nIxD}7chJF?Agz1g=oYx z2~0}W*QcE?UJmd)yYJkQuG#cOHUC#%VfKH&gdYr$L%+b%lKr~fTvbz3dYvs15fRt` zEUvB5v9bn$)dMF??LA)qCG!cI*s0%i+uo>*IRxp(Inwcg(DnYC@rx6s6o zfO*o_dvtYmPiVmiEydA-r_&vz*n{S`r{ezu4}0i z%@vjETJ#lYJ3Bl37ZnxpyX`rDi5o0QpyaWalAc%q)nN^CKF4ZuLs?c)y0Gj#u!NSy(8AenMf!Jzgwl^Ha zg8X@&o}NNEjbCfFwzfFUdal7QRW5PlhSg8Y3xv%X6dLLYQwQOHnf;ukp+1)>km>8Q z?Bnap;ZDk-BU-XGIX1>;por#>`a7(UCIttd&epF#2Ls7s7-z@F#|>aQ@FDh5Y+!m` z*>?5~clhN`L(Q(+&ai{4WkFHVTiEsT-Fc6jsqrIV;9k3sNF4QD_N`wC!xPylo5 z>+84YVX;`Ua#)I@4&9eN*3Ifx)Fb!hd29V^U8MMVW;))$wSQd;Jw zreIRFB*?)oF)_V_A+a5N!oabOj}cd z#6%Fb4-ND?*cQdWkj$1cw|(PL7!j{Dx(8MgwRLsz@7@jhwkc|Yafdbxv;3@*>j$&v z`kP~egDY}PI^hT-b-ZjY9kGKAT)87ZlcdRp1{~wJt}-**?99y1?<-+hSy*UcZ@^$w zksM8Naq(BPx&6%()6>UqC@XjCws+o#d*X$c*Aj^Lg2ThHptwIWWN-UOO|9?YmwTd= zfvmN@K9#%sZOhBcpTL16+s)jZ6~m&EbBT|yKm%JKqPy}C4G4s3#CcY0>OskzM9(15t(d*A68%8>8Xj5%an+p0B?FYR8a$O z2qvnJ!!*C#wcTGI0{Luyozl?I05yJ7^8lzTF)(aU#mt|>tD&Lc;=0}H??;%gppXRZ z@@y~oMM#u1eGs1W&fIE95c=H(BO|$VYY6M=>R_DkQ6nQGm@*6hhric(X6i6Gt_|m& zdcsA;yAc5*XBH44F{irD=@afa1E8ynrDzam{bLY;+)>f8j zH>ZxSZmK_(fX!8S-KO1Hp6KV!ox9tbBwgFol$?<80%qD~SdG^iW7Wav1P0o2!a>v< zt$DTbyZvQF#VyKd zk)1gss;5T-|JD7R)5`)zU}A`I1J879VglaSE%;9a1O%o%Illh>gnoX0k2^k-Zf|W9tYueGDukU3=Ls2^x!Eji`BAg5oFF1n?@yODFrb6WEg9~+XhDZ1-=;Ud-&@~X@Dm%I za&vP-(=&zlHgx?t#>U4vKr5YEZ^a0cSsUU+;^4}L5yCu}Fjn=H44RP&aB!hsdJ!Y! z6b3>7K|w+Lz0FDAz`*pUCE-2=hyKR%U#$Fa$Z>HUu8g*uxFjIqBrZv#etI9Jd&HkS haC!Q_Qv&b(!|Ga%@@x+Mh8Xxq{Em!h+AXc;{|5xk4y^zH literal 36410 zcma%j1yojB*DivHBEkVgKuSSEx;qRMkW^4nN?N)b1Oy2w0hI<(Qc4=68%gQz?(VvC zznt&C_rEd5bqo%J1MgmYuQlU&o;m0CRgjaohJ6zo4Gry@l%)7GG&FPt_>#SR3I5ON zPigosnt=5qWotz1*wGizf5ty{LbmR1I4rd+H%tX#~u-dbCmTM4qU znf%uuu$o!wv$Zl6cfv)km`lF0LPNvTM7}Phh$S1Kp#>yMiQiYUk6s?Jv%fwwxx2Bp zZ0cy{>G_Eg-3PPwJrR>Vv(HD&&!d5u7q0A%UbrCi=)%+GHv+pKuaSLZKwtQD4?RAi zuXVN5bzi8|(%6$XV)|5-xKB4HmupWH-HNMShq8uSmJlEQ4QS)0Vfetm{s8RH@J;e+ z>OEihp7-hh>&N1B+;zKBbv9aBT2D{UHzZy?7UJUK2?1QPp^J-#lT%X`{HKS4ifOD0 z@E6vr!vl*X)YR0SZP$s3LqC0556dcCL?|llx!40n1=Nq-KiAw3vyM9j9TzDX z@D1jKDe+7ThhV{iS!+RyV%4K#`#UPvQ-+9%%*Tq}INrfhp?D--OTfd!V?3C5rHeZw zkXp;h-QB&mu5My!sig1d*CY3zX4{s{@10FaLmsTjsQD5E@77Ii{4(gGL&w1I_4V!W z`0!{q#2}KJhbP-)h!^|n)jy4m`$OKkrxdVK>_XM?Gh@rS+z&EkcYF!)t`!P~_%z<1 zvMu3|4Gj+`K}SbV52VpDx^Usb{{H?ii>b$vk&)|rdt+%Q{gZT?OKh^U2{qLQyWzs? z)t5%k-g)-~i;Lq5syPr0i0$tF>@q#-#}mNirwa2(4ZCB}+ws(1HoPo7Tvy}sD+*~i zhQYfk*BQ`~YsMqD2#e+uaM4;^lRfLGzAkz_!4Kv&tns==;#DOtc9Pey_A2i!{=~$@ z*SWXShr27ywZ4QIfgOweN%yME!m=cGgS71{_|eq&b(rK&^|{ouo_zL^G*VJkZD|aq z@eK-U=<5qhNVt<(w)@(4d4EoYL(pzj#=zjNh~swu)Rda#AKK~Z>1FBZvd%&?4V;=v zcAVqmS{vBo_PODsjPpgjxSj zxDndLkn(I*n^7~SJ7;rCD=p6XmxCl|pNJ>$++|?+X16vvJv+NueUT&ZPFAvXzwctX3HVtcE>{+Sey?baBg4X?18!E;v;T)g8ehrC>Ywt{y zUKlMC3R8EytKATof2X~wv%6co;@ye;xH}e!kS#OQi}dl5weqQ-X_=E95>zvN8m=Qt zE`_t3x+Um48gtvebW4-s{m6MxYEm_l>{~Pb=<;7{c+%Fa*=(N?!2PRcHHWsHS zC-6Z(*5OhOdrC?Q+A04By9Nq7^ICj~_2u05kmzU`Wn~iN&U<=#N(vm-%J%ptJP9x3 z;n6cPeza;6@P;kF;W}Dbc~8)GS@OXH^ae^NW<1gTTUK*zx~Inn&f6UlB?U~Zth1AT zY;?lH(T$CgmvBfby{?hjmWev=o41LbIm7*lYH4d}&P+{1BPA*M zW}^B-3B}prQdY8b80*DLmqH>Vn=%SVf2&*=2+dB($k2rcyNHEFNKD-D5Km+~D9&kj zdBFMfV9xn?qe0cC=Q+7WEq+2$5~uz8oAQ%g6;4i0x3N>I_E-_8!aYj(-LORiMM*g? zjt705bI4YkP|&w;w^qxKObG}G>^J|=+c}N>e4b{`Pi{P1gzxt8BlhDUN?92hocQ?o zXvf9WboH`Bs@%1!LpK=Q6rCPhE`7T0ta?c!D`R?BA3MctTNzwt+Kp2-)Qc{Nwqkd? zybD6m=IPOz)y$WdrxP7lDTHiw8b94G-R_hwSuv~kCnbNkKau`A|D%do*$&G zuE!j>-X884Sd%-eM`BIh*T^1=i`QnR3KtH^g7sa#a%IAgt$aK!tDKsjKm7FMsH?j> zZ^S%qn7#gZA;cjO<^15LJ7T#Z*5yRpuT9=U;C-sCzTjnrraH zT8 znd8o6UYFd_P+Ig+(~WlbL!ky+ys6BI)ZyZyPjQ<@MGFhgt2bkxNPb%pi}Y!XGqiRh zwLfC}N`90tgjYA#cMvo*GdrslNjLJ_=BTT$#AfNSgM+|OfyofhjO}7-vgL?P-^$?Z z-b-Dy*|r#IJw3XvWO=MxTwI|%M!n|X2B#)Bvih38Kk|cZyfFTeDRUg|babcuDqE>} z;R-Rc@;xvTqrOa&j+2+J^%LfQ6Q#q{;${-V)T@_vHoFz&R~(t^sy|!>qt`#!oQZar zjX)EB{CKmGCTQH8zpqwl*F~PsMWK=h&7xo`sPkHo7oP)DH)iUYTDcJ_A~q| zP7jw#4;Rz0jIn!qUw%7X^2z&$k|gG_q+94tosCRPTtnMpuaFrdb*FmXG<~Ae-s(wV zmcG8eRrgbgmEAIkNQYE=QPI(*Y3yi_2%o;#J)`;%8Wq*78>aTy(2xaf=S6^>AAMd?- zIJjU zosYWCPDS}AeQ4%;GlnwL6yjWVNp*E~ac**7-ZzmkGBou0_;HXY39fYg#*Nh;rR7*d zt}p{mAuJ9PV?jQ)M*W(vmy%lk%$#-@)IQ#SMIkG$Q?a>au|62%eY)j^HQ(<(LtN`Zledt9@$)SCfVL|z=Elarict-_ZB(of9GcXVCt46SYa1G- zb{rQvel(aW8ag#kZG4J~DoNY#>Fze44wlH#`4b{$d~}q(pWEWPCs2NRXyk=MS{-9I zDuuZ9)vHrr5XUtlGH2X3oPI#qOxLJ5r7E=ICwFB~akUNIk2?`1;nca@E_No&H*Ai9 zd_OtbgNTj|k3BUxsa)=SKs8!eL1nPvWHO1}?MiEh^X9M!NAU6fv){SCOS98Ym3rUU zFyjZGG(pmJiTQdw*p(bF@#v97J*obBEup-EhDODZkxGHF=ARH+RmjvVj=vqjiI`qy z4zDP_16(7#tNP?Tt$z zDK9^^@={s3U!6+7?jzA1T3QQ8U|l74W)RJ7N8XercXoEJZ){9JtQy%V+uYoAb!M&| zuktvU{}H5|Z`ebnZdEeU-P?;^K~xKWs+RTq`SYjB%0&_bm+&ZCB6*DVC%mcbcY0ou za_Tf@_Brk>)_rABF)vniCFz=5mkL; z8*JyY8z_HdX9vGKIovpyi&F#)cM(w#TEBn)9?oY*>EPht3`s{OR@fnH_xa104R9L}Y6-`jx2^#y5SeNS znj1SiHegJ^R zA>z#TYX{Nt@e%K@P!{UPxqM|S-+!<1?%;!Fjn{DGz$`cU^2WYLC{r$5&1g`@38 z9ZJ-NAPgZmX)exHl*)Pi0vWII8#p@zl(;esA1OvLDWG*|mdlVu$vsX+`?)BrDkc`B zfo+r?NK4(BsiULw%W~$)GeyPX{YgJ5X=!b+m1xVRyUvjHAWRm#b-jD{E)tQLRSNuT zaE1IKdt3I&Pn_({PJFfGCohGM0p`Qop6~FG3Z+~5Emf8{+a4#cs!DEPV4!MVg_*8a z@)dxMFMX`NRv#|_bR^;3p`){`!X*Bip~Ck#;O3);4>2GzIoYVXA;18xV*xf|1>oqH zR^3Oj6RCPvPM1S#IpGcQHjzD5Ik6LKIsS=@fx?@O6)r(>aa2_A_HQdD%jvET7n3_J zXOr7>KZW1X$b_?N_66)icBFyZ=A4VR!i9b1MYalV&MDdi0097tNJ!nQyP+{&n(J*s zYv!F&^c-5Xmw#I?R6`bNst+LZ4G1vVAX&a!V_atxuk`#m{*4=tb#-UdPwIb~teekG zqQASFUe~8Xy8~H~+KOic+n|7{A zyLnD|f0z``h^E)3SMd$VM|eIb>4lcWvW(}(?Trl=`1p{k$_sB?1TPlB#KaUnTF#Y; z6O93D0DdqS&#U%ryfBWWcxUtaAtj}I!&SWUqF}r7AyaS^{DG^*#l<)z>~5U$#==o?ZY0|^E;}y+&Q>Ha;fxW1y`^1nRqS&{Kdt0WlES8(DbPY zTf6;2%>~E1;+l%>q;AWux@b74APlJ7R^=PoAtioQMp*Lr66e028c`t&G z4Q2*y+|l`yR7mWCBxx$!s}|qiG<9Z-`#GqWrj6VlQ}624>y?_RRl@9oF@NvT3q&o3 z3yK9%Ja<*S{TkM1t6{eXLqFTx0pz4ja*2qDsHA)kKyYYmY+%=d&Sb6c5l{R2M2*1N z@z&mw=*nb!{p-_6?C!ILkbfHUvPs219R9K}!cd%@&C%8W(UUDMZfpeL=J;srjE;i? zUrbC4f$NYh_7~H#cI~ME^OGkgCVGDOuyQyG@UCe7yB`C9b_AKHB+gaP*0AG{<6>!Q zYHlwNgr+JcKYRV!QGrw0r03^zNS8kS{mREDCqOCQ0PO)*rcAN&?V0;wOoFnjp1*Xm zb^@Dbxb3P{cqAA-J9L@^b6te*7AC zw3O7;`1Evth^zQiRPvINjqV@M3UhLE!G0%>)+**;Pv!t!e3uBKJOLqceW+SXx#VUtgx0QEy+L3WaXam$0xXw_@jm&599R_PO>r zvsl;D1HF6q+#+IQP0Kgx$x77Ew!7qIE1B8Y#&*Uk&TJr@pG`Q$y*o@bh)jB=q@;s; zle-b;>QycP0xb|$+5zGZ=daDq>RELrNa-mnhePN#(9_k8c<7DGgM~w~9_HX0H@COA zxCp34W()Y|*viq?TsvQh?TX>y!9fK4n}vv7zLZ~G{eX~N!*PLj%ac%!{p94Nb+pVW zYG7bs)^5y2pVDDESWiLW(?Er*Yi@eFaog=Bam zAk83h7SgGSo{moV>FKH7Sh-6p(B{(x{iCeG!Pi`Zf`h_fd}rG`XXR!<(%{DXO|!~& z2aRUem>O0J$4n`K$jkyIXq}$c>0-yRf*`1;sv5npVQ=fS<}eqdA4tNX)z_C*ar%28 zS6{xXy}eyVN{V9*s6f|>?U_MR#lO)g<=)AMpRWrYR8}&s3sZNK(lZbRV+U2P@-jv>IpmOEz>gsCUm}*!PY=fVSMIjE){lU)TwlZxjs z7b|Agk;}f!Qa6FK>e}Af;SoEW|DiUt(x0texaI=+QSa^Blwx3fTw-El#~?ejz}apE z3a#!B$($LvUQe;jzA-v_`HHp0*gW^DW5K7M1D@fWUv5#C=&g(kf4RQP^=Z7&J#C`3 zDc`4Txf~%O{4uU;4WMbUD)Z|+9}ew$cF08t{Q5&5*Mej@O>c^Vp#p#?b2-hd7~^2D zQ^69H6QGv-a6LOMF_~Lh0)$w>(m+H?Dg{S+;qv9n-?FnU`ufn?MfS*n(j><^8uo3E z{dcO>5-So#W>y+}m9+@XO~7h)9T@rAOyfN`(+mB-G%-NL8Q&c;n~V3R9Lzua{P{XU zafgeoNO_I>Gxua8I6pu{x?sMN-)A|X8@2(s$qM8K40b?PH&|Zh867Fgi`W!SwMFp- zt*@KI(Qvg1%tfn>ot0R)KtKRMGXL^%g!7h}BVr3NiXSfJTpx(Th7hLV{UY4+_WCM8)yF6FXWR5GnN**ys{l3$=q zslcC~o6gis-Cm&lSTZoZI){C*ootEZpZ@9(#Ojh#Qdi8%59k2+Bm8rFvB#*86K(lL z%KP{4FJHTs2=O5<5LmV$plP7Ew?QEQuK`iU;O*O6Vq$R+JfBEQ3(SUV+mv||Mo37AEt5RjLoXan z@EUI3)7^)v(qEY;I;Gj_CiXKj5y(`s`rD|GgMv#B2hthP=aoL^GjSlS?pZ+|QJ0e0 zmwKp04^pES*vt|Ns%iup9;*Or8@#LG&BhgE-<_jf=vh%ArXOu_3Hd45i|>y zpufL9QBtshur(1c&GDVpp{9S}oXEi|nP25h<7J(!NjbT`0-}fZ=g*(+?rt=8*VALM z>qN<2#Y27Y*k@(0cPqw@PV8~Wc>O{2SqE?$`uVdbphTC$?Sq39M4mZ*R}8{BV&e)_(HJ=}wmG1qC2OyDLK~c|j2SHfE#DR(H$5 z@@CD(tY#zh2`DI9K})g+S2|sHeDnwt^y1puS_L&VSre0$%n-;<6!?j52Ok!f?1p_4(&`L0kgk`^`H$DMDb<-E72wsz$7?*JRvl^a&R(i5GMlU23m6F0x zU0sc^WYB%|E8Q*(+w`e{l7h(Tz{%>nQx!p-93M2wnsLXXyhTIf0r8&GYPLn>osSOa zRM)OuQ+oMw3sf<7lR@qRv$3`u-DX=8tGO6EPR;6zaP9fA3bBBIfOOU3kj+g?I{Dbr zzBoR(4#Kb?Yb!o~{^-Sv8zADd3^wd2-NJMcC;`==<=-@fn%>tH{pQ{}E^Kry00);k6O zrTXq*rlibv$fVE$qSUAG@Ww~PYMwO{Z$NNNf0gUyv|60}Nc&foHJ;K{koJFZO_A8V z5Jt;#eo?QTWmY{kQn6J{O>Ij|P7eACc@2C7F$$3Jun-5*uJ@k+c082Ta1*=|PHua3 zBnrwDh>bwG1If#XaQ*%&>o=7`Q-~QKy}Z2CUM7GNESOm|i498e<2X?lh(Vg;mF`Z~ z2nd1-kO1%~2ar7ZfoHw~7CTa6Hl?Wz>;J^ zpx^tv|)Q#Q>UQ-p#Gv)b>^K(AxqxIp5cH6L@?JDEB{nDs{@CJ+`h*T<`@R|dZ{ zvzGWbH8rVW(t(BqK`judt~bcepNZA&-Gx?*w1aYEKokao8WI!J3Ic?kQ-(&xyV9Lr z73cLTEQJ3dJP;HIzl4N@8!o3ORqT6vYMMt+p*95pQ0c{s(-~Ujw9=yyTuPTRk}l73 zZ*QxSZ+BGXkSfthR(!lWV7zC~p5Y$4P*R(8jGaUbcCE%UDL5^p|M*cf(Rn8tSGoN6 z`;s`8gpM*ZK9P@5bQ4Lrx8f0s>o>j|pSpiQ;vA+{mvMC~)nxs6i|i37!o5o0b~~O% z#1C^(2iz0Gs<_^3Ii={J)XS@as`udDB1$>=Ch>$FFHnk}yHRR&)-h*xCa0{^>naUg zzLD~&`=ETM5GJR#@ujEnqSwQCICV`aX@zcP0F|ev#&W~%e%D>>A%+(qPcPaOmN6qM z6A{(y#j^9FfgqUoJJH$SJfDo^ATeo1g`-!-o>W~8x}Q2b;x-rcV43XllwK%yXlb9R z9ZtE1E&dZ+wl!w6b!t}}_4TjSH{4H)hkB+e%9V$cg2yft!=l_DXgVJt8Un9QB;BJ& zkBUZ2!C35A(iy2)v?J+kY-~P%`GQYLDW|GBOjR%ddxvg=*2CvmbX5G{#Z1rm6lc*! zj?SSqUM{edeg#EE!Ve!l9F;a^`rNa(=ZCm`+?Cj`^zF58k{%mEY>6sfOqy5P5Yt*3 zwo4+(^_oMOy6lwiG7S|~oLbkUtDby`_YFePN@q1()8EVy1I-`z=Nl}ODpbWyJiM)r zYLy}X7=u3i_AYVoiwA@YSngd0>I+pfAD?Tf_b9}@G|lTsE&N4V@KD9S26EuV5PpZW^NX$wi*{p7b|O^m}jAY=c^8$DlJ3=Sd!ccNT| zDoV~UT5N`=RVF5^;dem(`PySo-3>obKXA4;mk}HZeV<~mZa&p@klvJ5fG|*>V=7pj zk-xI8j7D+c3;u&2L(L|B*!zop*eH^InNcAlvLY*V$UDj0Ify+{glGW^J-$yur}5dR#trYq>a;sC@89m_{PT6=(RCH|$w~jnJ`AxC zxK^&J_(#p}s=?b$q!1;Zpr+uSlRbrZWezGO`v?5{w+kbqh_5Rsjv1pKidP=9Y1T2x z+x#qr`~68w`iOG#&em3HiUleXB*-ed8)E#X#YE(9{3=%LCrc5Wd_g%M=};S%_li-$ zMEr>=8aVLZ+r!?iLu3)0^kK3?HxYlN?xah-mw!9v`$;$ltA{6vSi$q(eb<9%hL#zD znnI`LxTYo4A3|}jB@bv@o^6rsznQ^BU9LZt1zYJyp?ia+-j>nK&9oo=fkDkx-O{1+ zu1a^*3H4Z5X7kyaQIDl%1S?0xk61*R&d!Rp1n-|qyKEVOIznEW?2GC4Ua-9H=c6Eq@MFbx@~A8&%GZc_r<) zZm)#;Q1uN=>`G1kBIXTCxgZfjH{B@piHs0F?rZtPZ7YNid+U7p$=5rAW`_5wFGWU{ zp*$x0+R$}|{T1w{gBaH7(tUTdQk6sAtm_q?ecgX566ID%|FArKW-f5;#qsMu6z$hL z|4wJ4Jc;GJkp5F+_?2p>13Oxr$&sf%A9J<#;`G=vm*3tNed|gPox$^FlajYmGtE#A zD4C{@l(*?^=9_;_2lJb+kF=TD|9-=2nl-ejT+qcO;&~*Ih)+JQqxO`duf17YKfnH| zxcKy1f5E*A>i}h$N}q&R!7rEMge$yw^LdTJV(* z)wPh&lY>Zd%*U5AW#ZhjYJ!#*cZ9zRMGelrPSYNcvur@q^KZVzTOAfcfutvCi-@Ka z$Zc`iF7D`!I4e#0YIKCtINyI2xD5z!rC7gwP0?&S`QsRDIi`)`xLYV2--WqrydR9Dq zzT5*ugr6wKmuZTAp!J4;rXs@-am7f+=efRgqin_v!7>##8N{*w1=A%Xr8@O}+9W zid6xv99N@0DInQyy2E}W=hyn(^5NZL*vSTVoX5LC`r=3v$+0z)e0ecx)=Nae9gO4E z_=Xnk<)`_FM&S0Lj*N^tgJU3GVX2u7v&!!xGv=4qBrDm+#m0>1;$MC|cbNni1LAX+ z;kIDcw_V1oT#5?YoSp4Mxr_jBWIAZU{NtgZ1@9d^h#Xc&MGA866{MS`O94Yrti4!-Y`@4X)p%gSRo%`@ppQhKrp`a#^&8MK9LxCn;69SL3n=k4NcBpAY$U~5A*Ty zqnI&HG1q@R#!A`n@?MY}{hdlFTMG)sxtZ+TCsVM6CMqQ?3TS0CL3+l6U-n5vkDnDs z(r;46pL@)oW%9;tiv@A7qW)j`?su)M26A#cQ09RpQvzG>?L}4poRo0gZa-8prjYvNovg7+6#Kb}Ii&fisjd7aS%zFW&RjKv(~0Q7hO6 zA<<$@9>;>U)a8VqZ8g{AXEvV8Po@vcK=Rq%`bnLXpkmzK8Jw)(+q$j9!9 z(c8fi;imE2JW<0t#WJ`&N6+4H=EuIKY;*95UNnXP5(x5w zidTYp6F$CuDf`MyK&K4>M=1h1EM^V0HW6uT18XM~ z5y)u(v<5v|Z7bHI7(!|nE4@|5rs}@a+RMfqtNdJ>z#q1Kgk8?+Vb=HD0uJ^+jxs<4 zYfWqi>T~jMVB_GF51$IOUuUh<26EDD8@PJ2UWBIW^19W!)%|OHqF>~nXCQv^T8t>A z%-Xrd*I$y<0|Sexxk4LukJ}*%2~gfi7q`a4tsh{-OdJ2CF;b@-V&Vw|eDXULXc7&L z6PM@-qcaXwuhMBXVR4YcS}Gj>ijFn5&R{>z_XjQvj7GPNOeqtE$WV{98HTW@+nU~% zHud7i6sOa@)9aFLGKP_9NX(YXJ{9H`jVY4UDEQ3Bp)1EqR*>TV(MNJA0X?58!CS}N zWY*?l$@{xMhZ@rnFEJP?{Q5CqUAw*rCq(;X;MGV=w}XQYaUaTXrvYp4hSpZzq0`mF zUnOk&>h(-dPhML^I|9inoZa3A+Fjtzk~U@DWN}UUHsvTMS^5r3*=z@CTh1zJ9Si>Y zVSvTeCl4tp7x~nkzjY@+I{B$t!Vl@#3RxM)qw>F;d*mZbLovTiKfPyqH)7BUQVcV- zUhG<98(l@V@WMN}Rr0S-;#T8}qGVUqpEc5_*`jXoqJq2NE%1@>{u#k%@1Lb^b#F+v zG3TW9BB$l-LOv|a|DntA@%T=)|I3f|OG_)LwVt{QDxj;~SB>Ea&b&SHc9VBge3S+f z`yW(dxG7W45NvfMt{u6)9~EV9aPWd99%?6FpScUV9mkyd%U49!)Hrn-^KL1fl9vx{ z1R$AVf_;ClIHqX1TN&*}nMTw5y(b8ks^w%7B6SClBlqtbxCSlEDsz9AaBvbm0JU4235_xl`T zR^e=nKJ~w(HEwnlLsfZUypyKAT5Z(SmgYdn?%>u`eQOIde=#h8cAPwIqdrusL~F>l zEynnfj7_?JhI{{b4tw>TDaJKf#H}pXQ_e}8+_8gdIQwO{pu%^RS0A-c@Yrmcr9z|U z+%D6z^(~Hl(UOlU#50OR<0$x*M+gj!pJx}x>&~^h%JH-njbAD2cO%Pyf#t-EBD9_p zq4h@CM(51zrUX8|z&g-2OV#Zw{xTGPUFMq)51s&ey&qZ#p}zp|bvRZ-0^yBm>a2v= z)Gf<_7Xvy7KQNerPjxd*O4cW<1q4mh4F2R1{(5wICsq)_P>#v>pw2?5XC4KX|4cNG^jUw^N5`+6S{2a~?wjO+~ZQ2m!Rl7gh^6My^{<@*jO4iW-c z0(#FAYux3Q=@w>cXX^gJUmqd{x)_Z5k@NMvyfIOgya^lS2*AWD*bNAGD8 zKYYw_m&;G?!WAXHmvD=hFnJD;!0xI+Z-*m2vH!68?QZz+(eWkGLyP3|CsP1c`oQHu zM87U}>V1Q5r$u{iyBkYsy$Ga4RDx3G2(Cc?+NBTP>USpth=x!Y&%_N|iHT?)dwS8| z*ZS&;TxcPJdZ&^%pChX!cfFa!j3G5w6ohF{)7>rjO6GmJAGoDmm+-^A)tX&n}HXhc+Sw z4+^_CM5>Fm-(tTL#eFfWWVQ9)*>Eum6{C596hBP1<_};B@z#E`z7v?GtiX;}*k=M( zA&?`@uov)zrg5xlFd!eAP~tw`4EO=+02dKMlpyaS|KsGq8r>r0=NmLuTXEkyy51r* zBldbNRM|bTN*EY2^qYo-3!ZbMkpF7|A_g)c>hHv7auqkBsIc_&-AwlIKsOH%gJ#=j zQ|RHMyfNYIRJ>+pI!(i>ye3A!5C)Z}1*E=@Cr_wPM~1qRRPw%wDBhf~cz#I}?0M)v zQ|$=U`ndZey;`=nR2Xaj9DV=Iw;x*1)cz^ZuJ;zLeqc{o`6z(8IN;>5Ry!$4J$ z3b=|;X>j6KCE19QM%{@G=ZhbMP8c2?@yOHcj&6WTMDe?uDr5zS0akmsfLwADkxNY0 zExWo7j>A=8o51&VmA(yr!adDa4HNjHT%p`FGSku$``AJ)8*vhpiqbVdLhJdsFl;F9 z?szi~5fa*iUx;J=4DekK(0MkiB#335lvEt)ZKd}~BNY0khBo$W%!i2XM%%yTZ>0=9 ziW{rMV&Y+8q^1UhX6W(2`9TrymLLRy)V=Plw{6V5FHR9Z-mnlTI_Xc{%n6z}|{OG4ED!^yQ#oLm>-2vGE|V;2*D{vb8+BO7_+el}1(qu$6=~NiG3kYAoKE!&o<6 zP$~VrKwFw5cgkYpm?ddS8SUR}u-=pPWq3p8_BB~bWG5Q$LmUhw@w$IjGNXzC~!2O8@6#~`BN#tctfhi2tUcMmf==hiMv zD+{L)Be92-3rQV=joSSNd;uZwNmHrl_ z)|dA*w*ns{S)oWqS4lj91&(U&x0kKC*8!vXk?+}{3MF+KnGZ&v

4A4^1CPnyrVthAv79r*Gq&vsLwj}QN%#LQ3tDCPP z)N~OS8E9AfrV~a|fs61Fi8Fr2;Tc#@(S;p1`UZHc*F1~805;pK4f0Gyi`zW<4gnwzCp_Hyg{Y6U-ThsYk?%1D? zQy~k#)RXxp(H~zV%V)JoIp-Y%s+BIHTJg-$n|DZ2poO2wUGWoR=n?d!rshqCrT+9y zH23GZb_q?sEwz88%paFk;Hn9J1*j?bWQt^z4cCoWbfhWtY{0({$p~6685K4Q5ek0y zUkV;Ow$Dsua#9IT1!*K~J7DJL76ICRd*4vRfgwI+5TavKq~7}@W=Vp}Dofr%ntgJ? z-lQw-Sbu9N(rfVQ|7#8cnbgUV0Ixgtyh`%d;1=4NiGz2TpGKt-B0nYX`cL=XzPn$9 zQ?9P^$E5wb!r1&dYyz1zuQ7t6eKMrBiiE_u+(f{SkGU45Ss}gTs}rdg_XU+>G-?9m z=M>fYPzve5Lq>&8E&94`UF9Z8a{m2ybA`fR#IXKNCBiHqSta8WjNd6K3QXPF>VK7C zaUDM!gNR{(N#YS@4eTE%R>!I+{{63F1%Mq=$vOW{1paL~@Ol(d3_kt=2=6(4xYxv@ z(>OEh+9xFBb{r{NV;-4UWgro^SR19Ya#V+P#>lGj(Fc9!1hf_0D}(uDS1Rn2Oy-Iu z#r?KhyxliAg`5Pxtb(XLAm{v;cdRsRZQwkQ2sXzGx8DB(Y_ZdKH^Nj`)+&hA1W=W*6y7V!Pl4 zRZe{{U^AJHS>uLG()l{&-k*2G%h-A-`u!&X++?aa=vUIFKH?_L2A^y!sLuq?>Gx1= zT3i?^jVri^VAPH+w0~J33%^Uj)`^Vcs7~_dEDh`vat>>MH zFW{Llnhc6aB8A@*YRlEvP6H!${xu^4ch^}*-(cB_YERs0wf(R5#9C}d1?cbziyCD*U zQg)F}Mw6Eb|3@cduW!=Y)2<>ih9zB>m z!`n)t&-0Ot;DLPTH=&lCmVFZgIlpr8meA~6d;Fgv;1ELs%sk;(kCO>+&fjrT1d(bk z`$rRkFM@6FV?JT-5ZZiOpQzyr+=A_k*p~Pz4Yxg14|Ijp2+$*Vc|B4TsCZ3H-T-nc zST+W6(?>E2V$;_Jd|Q&2x~hH^HF3j{Vxr-q87Yr@}oy>Z3_n?z`cwdQ9j93Y&nIyNdJfxwGIR6o-CgwiIArA%!9B_%iUjJJeLP{qWLg;D)3A8bdWWLlNOVHcZwH{?pMidtqv&@Y_(-EDvK!3}6E*XB8{`xY%<84g zqrcqRo4+D=2-Z0tVc{>xMCtZYlxZrP@89a>G7AxdK~J<-D4=&M%a*(0;iXE)!fRpW zX-o`G6W>Dx%~vpEIB@LehA3L>9cWr90lqhmB2U$>$xqUK@T~2l5SbgFwE7e{iqiMp z2WLONBb9PhIggn%rlO;P2RBDhVs3vR_UHchnk3PLVs7qNh%c;9^zJ#t&kLM`txipp zLiJAc(wOc`i=}F3Lo#9Htg?x~n!a>tx9ga958?Nc2%|A<9P}-S7EJ()?|& zV*8Mf7{(WrkBB6q(-v4cZ~FrO_V|~7&-_pRO^f2+H>dB|S&6&?{;ht_zf~062~-w| zI-)ELUQTH5uN(E;q-=Nbbd(3qY)oIKc#ErE?;ncUhZe7(j5_-?=OLh`Y2bjqCKLp{ z9%&^qwPO?V>awgTZlU5gSD-Y93$@j-`_7-)0GWY@gk4in0uMPwcH*_8`K3NRbqNsq zCx27x&B!E|N-dS=D;ayT{ohLT)EQslL+VgR2<6JXyyyGIsOAP@>gn+<2xuamtntw9 zTKGyLDT~NcZF9-aY8{052V9U)>1q${bU>aG+_!n7--U~aT2?1eR2-0#bn|nPNb2Ac z3HJhdiiL4}>0F*NumJ~Y1qabWcm?Jig%Q;{keRRdUPokR^yBDZ4(2aYxL0aMj4j(k z9*Dlm??Uoi#z)BccjHClWtJ@|?%q%Bc38B(^WVrfl<2#h9)Ui!9p;BX6O`*4rreW? zBAmybjP#eXzP9i{O6jFu#cg1-r(QM6)IA zCUp|~2Uv7!{iNO()?6w=4cJU;N7Cz}A0@beAM%2C6tPceof6rxqM3autul(zc9R{|?#j4@v9B5Q#C!gl{ME%ZdgY)=p6b}_aoKlWZ zY(4KTL5)5_7kG&6Om}}5BA#8k#ANII=Y917w-XR^T_FkED>I|P22i0=&W-;Hm9VEz ze^^`(-UWOx7$e%zz$Iuy4w}NxO{(yyGk)1o1V^{s{!=B)PZzWPhWLPX2kQOJ1x;Wo zzCPsF!ID@h@H_lmlQjaeYQplLS8Tp*GhU2@_^m5su;Gq?7@2Uqx}lp$UAlD$azVn1 zBHUk^%KUBBP!2?$!puKFYG6I9$kEC@@D~HT^!M&yP!2XS?{k+K)xF+$0o-@xwW0Y< z!V;O=wM5lPhgx8?|N4iwxdx(x@vypWM(QQCHEWO5qtq#KcDTV++KaY&V6&i3F&GUu zJ%l31;IAIUK`58OK|1GSuZzoiAP%DcTsD`3c9~Tp#+8yZ_A^< z*X8E%ALlkqm(!B%uVcyjeMAZ>w3|Y=MdMY6K)?0qOhJhEDs%7i45&)1?EfYoHh;wl z1_H#p<)xqfRGJAA0SC;GwIseVeKPtjli)Oe8-#Xy&b6m6zWj%I)2aWBaBpZpW1q`t zWj?U?`}+4hgG|fs3m%h%*%FD+1lDRhLiLwY!|V(ZJ%Ax-w*}69>=Hs>AC^!FKeI*p zT>4|NKR0Ta3#j_bkk(i{rGKNfIb5&5Z@tujI8_ZhiSug-Xpgz#)>l4QzpPtlUkbXa zmIh4nyVgK1h_=Q|w&llgd&yT;J4AcdfrwM%MI@PI|E-e(@sQeB>NhIN6?@dcSU1;UJ+)oVcCI(XozuPpSrQnnJ&oL}#9 zfHY8l&MK$~+5pg0*i!bA5+0%B2QvoPUSQh+Qy zb^oLL1|mo+}2Lq}VzDQNCqX-eG2nlDKK|@Puz*2ZM)BF*WaMSc^}#!p>KB}u7oK2 z!{xEdbT)s!TfL!%ia3-8@2ksZBA^BY6F|x4o$(XgPBN7Cniy+Y-9W|jSdUb{!CN6< zd=n2E#O^>(H=!IqbcNc#>03hjlZ&PTr;w5UzK6bfj<-c`s}AXM8dQ;T+mqQd>+@E; z$V9^Xei6A$8Mp7L#G?rw&D~Bd^`jifo7B`L%Zl!sFjNP{UQX4E2vbIEKAue=>EV*bDMqM%s4r~4IEdo3Katx?vA0X!66$-_QU z`Zn7VQ3F#n?RS%-AHYzUQSb4F#vtrNLSo`Z6&BTUbG*259au?!9+Lp)cRtFln)mMy z()&*nk?nxudkj%Kbc3SVpN3|%xEP(k!9m$54!awf;?&W(lU2Hj4L#GY#cGA7BMgk4 z*YZ2di^y5MlKp4*=LtDDUgcPDKpy#f?(ku;1kGROY=F=Z4MpVVoxg@5Jy#yn@Z@lZ z+-181dJm3QY@tu`^OuEFOaoVPFOOydwz=(ot_#Wq3q+^62iFi11YLFPx(d{|SkBwp z0()h@+>`VW5|j`#IOp^Y-dAvHQ36AtB7<@XESxwVTOh4DY(U}Ota+&P*)jEb;XdQ# zokAR`su^zO4I^4RVa0ncKahsEPFzSBPo6xPgaMG#A(LTKKBM0B+cY%V8o0DtMqZkK z*;biZ7lcXN+6!Eoa>;H?a3G}{(UF=WBYQ^ZH-Z*Ja}ZUP`uGs+Js9D_sDL!!!#gut zqWIR>3LW5e2?GTtWY7e>TTcEYL6$%Dp@tW2P_4Vin(e!q|E|V~F$RpI(J%QeA!?jZ z8Wb@t*TGt#L6w@B*`Fz^G{l#XK1Zt#8_m$j=m2IEiYL6tir~v9FmM*;zDC*HA1$xW zr)ZOg@=}IPXxY@s3kUBpT#LPgxJ+N|c?hX}H1YKkXaza>rBIKf?vx{$6&-CogqZ{@ zn3ViwH75tnBFkFh3z0dyvq zq@4Nm5cl@2TWB!A*4fn+!LEr8(=g5IU+9AiGNmP7(pg8yeB$x}p48G7aX+!76Nxia zGY$S03)ZXS4ZBbH6lZ5b3Q?j*XZ^|+Q3{6C%WnxH45?!+i2P{%l3<0n#?xO){NNEn zNf?cyifuGSi=&pVY+ISn{ZevFxQHB_@$5G>cYE zcw>6BA53su%+>q0Xc_ zfWQb6K5Te8k@-e%m;0k3A0jHhKaN4#bANC>G%(~Xwz9YYU7E;5rGdw8>OB#d((xzZ zm^6#~X&gz149mb&YkwGo8;6PV37MuAY7Tba*YYd~?l-jwM4Y$1p(+Dn*{0@%ed&6o zADP2m2?gZxU|zkrRd+!ciHBbQ)2>IJu30cyw|{uJ2?J&YZ_j>XJsJGrC@*5QMM+;s zhecK6-C-~V^g9K)<`j>^WPohxmg|f`_p1$6>t|SgioTLYb_%P=Gt-HPoKO`?%gZMh z71<-tYWi<4khd3w*N`W zD~wGvKgS?o$JuY^8*-Tca^41!vj>-nv7hvXdBtI^sAji@jm7`O@$7W zVMhmSQD~&-g+>Z4OlTHENDOaYyF4}Y(F-DD?M#|0?~#wiUHw@+74cv( zs#J&WqUD~C(gXArzCh}nGm1R=V0~TP4alfgFk~^YVUG;3NAa3ePi>gP|Hy`XRmLb! zy(vLoAKkM4`6&RNlQy%6I5A>GMoo8}wkWLjJ@+}OBEO+9hh(Dr)AUQvzx(Mln6Yq5oq2=rgI zw=L=kK0dUBzF7G7DpE>3JwJKmq2Cq1ekD^IUeM5!tA_4DR}kpxxB7KkCyURN!mEY$ z=s2_a;wefd&5QOe7VbFeUwozh4ef~?FH%`E9vBc;O2OL;l%cs>u=DvTzCaORm_he| zd@_6CJxxQA{Mv&CE9fezcB#SJw-_Sy)0ak!3TQ$< zhlfjV#RaI4UA|@wr@{UE&PAjlgW3EZcK2kR-vttW^INxX-!3U1RfN$Vla5`$#AoSw z<(?8&`icvgw?MrG@J=_#=2$_gt#P&M%+LfA``gcg2o++YPr0dqXku7)II=Upl#Gz3 z5*u7ecNnqKX7v+hGWYf2SrI$a0)c=W&l1bpDSH$|QKVd5R$cJdDyS;^9pNWS?* zwaDlV*qhhiJJqVR1#<5iFx+k=t$j|~7jpe`>B}R*?{mTFrwfI36&}=~^Va=n)PzBU zOV!&IqfX!EMAx+C;q@KxDx=}=d)&okNW*Kn+RG1J7ZfkicI^51U=S*Zzor<$pzXx% z;q60OPmEJoYTG9o_P5g(2to!XPh_Ha1Hv>MzQnya@oAX4&7O{-854L1jyBj=f`BBr z|GTU3NfwdcCB=MQ3Yf`pDhqN&-XieJeBwd0oW9@K&@u;7;)pv{`X8O0cRZJU`~Qui zQlx>(D2mW!mR%YonMFoc2pO4KnI)l&gk&ojC1h`somD;|dy~Dl_#N-_qpR-gzVGkv z`}^I0T#v{7=y5tf=Xt)@aU8Gb>+se72n&h8+RLB9kg-d`U0{_5NC7H!!}SqMHqKKJet2@iu4w)(M-mxKO<^`u#ePxv6>L%HZJG-@aZvLfM zsHUE9bL>FZlzkyHGSV`0N~d$B{MnzgJmBPT`l)AzGimI3L0aPpQ?x6O=syNr7&w$gJ!(cvf@J|mng~8$1AdXxCE;SdYrQy-H3)JK4LG%#-MMqp zAi|o;AY!4tufpY|B12cPRIapiSJg~A%t@wKvIYxOG9c?kXJ8{@Tuj&RLUsdo0#kRRCanW( zH>Z+Y!d;zwj3G&gyBI^7ncLpn*xca8BEuOUiKxQ8OS{me>;wvVmP?;z0FMfMd_>QPMKk!|VPK&Bwv5_B90_DHKa`kmo=hGw9VU*1jk{ zTvyu&aAs^2q6;Kydd@%rj#WcLLsS!55OQv=8m&f_)guZjTK?|^*iTJ$*OC9 zSXSwUOJ%`2i{UIEDqfJw>>MiL9(hC}2!1DkZ`hlpd=q$*!2$t9fu`A0XD`nMU+?j{ zoDB9EZbub`6*9Sja~BKak*qi1E9*1RI(zO~c$M(}!TVhMz)37`PkY?qjC(LRssR;; zcw1*@XJjmJ!HtA+@7@nurG~rY20m6N)(=(}NElA@J)?OEvwi;#8+Vl6gOefvN-OZE z7lta>9^A@U%ra^qP1x<(YpJlkwH*c81+!PwiIy*q3q-#|Ev1L#M#n5p0om_1M~^t z*7AHTIo}s3ePGr`TGLs;r~{V2IGHf?jnCX*(P8p>Ac>Az9V`$3+7k=fh>ENV9(0ht zoj`#DXd%<;=$Qq2WCPK((u9s$#0lctM}dq3&qQF{Du60f0oN`;LBVxE{2>DKht~rp zGPcoaPpSyfk3}VfnX!+)adfrnqCQZ`M#X?<=cz%y((jpZ3%25pyaZRXW+k-plRu+6 zm;h{j=%Yv5z`-iNoo&>E&W46Ube${Ca2C$#<4eyNEpLghi2u?rodNxlgOGdX_Fpvy za#UmBLNx|X)`5T=}y)=@U zPMi!9lB4q*sAbGILaFJ>mdcVkw*bK;gKe6e(k{84*+pIG@Y>pNQ!yIM3BgWo6W6lg z5OYHzAkrO5#}AT^LMVHs<(cVe`y=*@Q!^BUA+!gumnwUw*MxTKbuwsiTFaSs z^UPqpStcoF(?2zD;JDgEOWzfspB@rFJ3QSo8s2%rt9G1P60P7yrq;?yf~h=sJ! zU9qPv^i?%Ax^VnXO=h0f2At>Od5kf=(*bfbUdvmqJ4|oouR5XcBz!FT8y_ z7HxSpBlcMOY;lupqPy16DQbzPf;(}E{eL*l> z5hYjbYcR3UO+3-M);-nZ-|}Q8)VxuUey#)GTU(%-bg87DkT z&CRcUIssA#`}q04HWX%stRsa;Z1Ut?s59h?V_xr=x8<3L^>N&=+74{5DgE<@#mGXD zZldWr2kFz~^IjSBQ6@h=-hNeVQ6=g}|Dhlus`%c4%Gn^aeKDH>#AOmMVF}!z49lr1aZSmyAWBb5y6)#n znYtg6nuh+7loCAWCXA5URw=1BwL=0Dj%dYc>?aNZvf>99!;@^F31vA>pkys@YFEW> zzIXV3OdY2OX()nOV@rF1wPWu(Z;E8c?$cR^Yuse7IS1az0WK-{Q{#Qe3s=#@wD&K3 zP8D9CsS&rgZ`Z4wqL-?II94+x>z)ALE*>X!p|=(rfi0(btu^V#o*1EVz6lBtvBjIi zAL{{*xcW$L8|b6BKwPf3M-4?5l*i7Aa4|=idOi4d+75ZmDGiQ1iM(PQ2i~D;$A2el zBV>e8A-&ETQyw29gh(Rja*Frf!=VKoSqZKw&PhoBwZ0wRMyr8;(KYG%TE=71yiIjC zYCnfuxFA!6W>0rZ^~5Cwfg%YSq>_s4{wN_jiHe`=JJDsFppycXr1cw;*lSa7`@eRm zzE8Oc;Y9n)e}U81DbQtRL>do};MVk2CoJ>4IopV&A7Ex9VN^ z=GH6K?v#^BcxDL0nITPUMerwCp&og0tR$t2qrh zC|U=ncnyufhYy?8%Izfl%^0XiM%Uq_yiKiylMj z?S7qtxa8;zOi*a0!Ulpu=c=Tkq3zqheM5PhHyV%*^>=%1=Am#XRD_7wEydQc{NY3U zoI+Ey-oxibU-?6EK;{wSTxaKV2hSXq@OP7e0Yx5)C2XxlAYuFN2}1}}HMSDAOK*R} z2s0?)S5C0SFp|2#y;K;_2>3{16GczKi5ux)(+vUpF=4^bJlvL^@Hd*5VGmzeCq(wa zPBeBu@jp+iNJ86F(jGOG-03Yj2h|#%OTW^!L|D4kpI8#!#;K+f(HCPpDJ;#!OoNk_ zsDhG{{2j*9e%hYCNJ_)`$$bdQqi zJ>fkND$J5l(&7>LR0x1 z2Wg8|s915AKlt2cX1r`EIt2*lm9Q9e)n!-SXNkPbU(RNbn&Rrh*DIG(*Gb_c`{J}w z)j7B4H{b_FKmVUs&%Y&i6G5L+Mn3+hN$M)@WXc1gV6*L3b){O! zTC;wEX3$ChpHNGO2xLo6$l%2I?{Y$+*(obw!s&`96QJhuu8i4tA`K*nVsCCBt&~(j zI8LWw+pUo}WxK=y8I)m|^L^TzcL5=Oy%fT^o9=r~pE2e(@OJ{y7}RM21sT7040a@n zk5DL_8I22`#sst@g^aoOnCe!!Sjn=I7gV?QkUP*p(L&?9L;sI@!tapB2d@#>I<@c2 z?f|hA)ILQte(7#ULg+t%t{V2zwB!WevEjjMnjn@kWJO=t2Vd4evt;zijoNAlZxT7A z4T@LO*^8@)-A~!~+FXiQ)oSkh%`Q~dPy>k{rJA6~`i_kV=RHN_qRq-F{dn0e%AH*o zBH;oyo$iy<_ktLIK%7`P6b>D1RX_t*7>XL)uWF7HMLamrOvNQUeC$8z32)ccFr~af zQmHI7n6d)*1%588Wqp+QtESQVH31HhY|OR6hIq11?=CN57V9v4HRC?Il^S3aFFUN+ zt`%J~F+QaWxxK8@fq2cWMu(_S1pOA+cVP?cYkY@1vy=YJ2yz&JP6bY|e`W-EE*ahn z>sT>4rnP<@1bO~S5JQTYaQ-(v;c)+d(i2ui!7KFVJNEtHr$-zCk`(pP{~JAF<0xng zu7pwc?CyEzZ47C^lW39@RIX?bU)`D{pkG3XK!TxSg-?B0<)LZ{yQpt$TF<1dSdgdh z*2a1?SUKDLy|fg95Ny>m_0hb0W7(Dc<1V2$G}y?(jxV+o3zoj24wG_zr# z4^L<81=jOVdsQQ!m<&<$NT#$0?RV?qHhgN#XQT#=BC8w%@w0;^-D)qcG8U8;I(T1F zJ!5;s(UY^moHA7YhmsIPQd>$wRzBB5{k%VDdZk9{nUli;B(4Gbn!$kXHF=UxmzF~D*44?Z9}Pove16DZHLWv-d8oZA(hzJ zbGK)vLjru};m>*(7!bLEW@T}6}g0h*=o`H3geTIA3 zrT(zTvd>LR(>nmE->wy0!aw#d=k7H^YagUYA3p;_(BH-Ua^;5l3p+s)5-rnBZ-ZUb zJ=}O5i0z(!aGKnR-pHBT7W_$pW01?)5P`0UqmxRJu7g^c2TIs3P{po#$en`Q6|# z7##|V+5W1nya{(2^UVHg;%@Xi)X#Ipcfr8GniqDfDvo40Ss=d@_=RL%7bK-epZ||i z!m+b>DdCSNkr~b~9~m9q>Yk?!;EhLBD&M#X1Yk)1)JKQTE72gfjkU15$+aK@Vq2Au z{9|ko$IND<(X@CWQ0p}4KtRzh7MuSZYVfV{YKUXmISq5P1EUp3MXW`h^9Ddh66q|o7)bdkWP39rDeVdY3iT-fc`AJ5b+mW; z|2zs(!lpy}tN%?(2yPeyPxlFC%bkwf=~tZU6&!2^1^p@p*bY3$S%7s#o41Dt!v&B^ zt*;9@X7?XKn@FklG@N}bT3J&GkfGD|sUS2oxOf3(K${v zNG#w{z6w0bH;Z6bJj!>I6#Ip>2<5ZKqkK~34Rg*T`Ts!qirP!OgZUfBzY08AKsO>M z@aVlIKP&~@kqJT9DSMw5eomy7`sw$i@3B+>SR%YgN$#06Aj8A16KFlFBGjQF0qIE3 z!$%hg95WV(0YN8EK>$X?J(X?Q8ve*l#kTcEM;cdD8wtoq-q4|;EBF!E5VvEJmq2a{ zNj;eQPxQ^uA~T#&D-U_8%h6G8XMRfwQy-&ST`tk$xFb1o8e5fRu9nh`wQ6O^c}7%YcHV?6UJl zqcBD8olBg(CoV@W0$-Q%>3`4?c7j0cziA1d^U0!nUA*Re4MqC#uG`*)CBhGM`xHuq zu5yhE5PlqM*>Ox8L?4r?*Q+YA;5$Pb%||M-g`Ijj!DCl;UXATisAS4bSJBD@$||dW z%+egER~_EPPLx6o((SS^_AJ=4+D@VYsC4uTrndb-)fT~Q#w0g%wnA~6uosDR@$ z=^a5F-|b>FhYiIM4K7VrntH9Wx4for4;kd5ywHxtwVOlqtZ%A8CGm&(r*}nWZ(@=6 zINJ3Yle}@}JjV@B0x`G8Rr!h5Kxbq2z3qCOyG33R@8=x%E_Gch>aNb9=EqpqG^8{W zyLrr`x98KNrz^@Gxda6_W>Mt*4kB-$wE7;`AS;@4o3RhUMEK1s$rD!>ePGmHVb`M} zF{q5H5#Je1FfG~YAyPb}iZ5b92-m@Vdb=otTaaMW-xH*)0=rYLf{tAO?3-R1n)lyl zPLS;y>Rrr3JNIujAt;IdYH4VQc^wDxDjjsrXXN|BvicuUKEdOE!>+||BHtr#qC06q zFTP`qYGi0ZPB?=F-g+8MDabG+Z%7CYi<^!hwv7c1Q)wK6UBhaICfH&c0WXGIHU9O# z0{J@BcS#|Tj}Ofd9p1MkhDeoqEO{?q6E*l42nmPTplr9$qct8UlRq<5e1M8dnP5}o z@jfD9UREnM$|C>3Gp2e&tA-|bf5WcaBlqNXy^bqE1k0SRDaZ-SNYE=ZVS^0S7*G7Z zF>0yY{BYP0PA0P>t=TrxoE+QRY=t}*@7!}h2i&67Oi1oDenyeVcNL%o!JlDEO$amp zXfbmG8thYJ1B-$wZN%29@31_Balnm3c+ENp4VSFl+Ce1f~Vi+H!r+UFV zX`Ifhl``WIR9)JMe+`YlAX>J823z>e~LX39T*sqPBHL-QvCkLFC#Uvbk=KYhKSg z(Z-W;jKkxpKdY_)$LKa`>B#ow-H{C{Z)6aUZ>mH`n8S3zoO-cLB}LImgb9$cCq%1YB?#v&Wf%%Q!- zlPEto2CKwe`wN6;7N8uk4{NiOVevmm2{*3&AtgjHw+TulK-u|!BPB#J_epGisG$7l zn+O4s0u~?uNZ`efCAQ2!(RVa76YU^n+qs<7e}~+btr@4u%aW*sFD9kS_Kc1mP=iF3o9Ut$oFz$-A2fOi)q9JhfxpAUGh!- zkqOWhT%<_4i9vktT_o@j-vtW|e{>PRNu5lMc+RyNC8qj<0j#PfL_@vNSA6+0*IOwn zCfv`AsU|0L=07&p#s-{Zcgp!hoO_1zFO(uJw}_Wv1k3j)Ju ziCGv_4&EA#l?1bZT`4=$gQ@1)f?@M}PK*w!Vo(P)zfqA%yRVHndqm%Kqkmnc2#KA* zMn{_FRBZEpPuyOR4@&O9`<@Y8zA#POr15 zh0H}^aME3L)b||kv&^B1#jZ8{*0y?^zTa%9U+SN`IzdXNJn z8=baYXb*1nfy#wy-(WapJH>xCo|<`QIqBp~EK>*IMYS`^sW7_Sg5wg4I$n#HJ%1Mn z@}2nOQXB7c@K))8J^kZZxKNa-Ttm+nmxEl;lAnvvmF7AcB6ra1Tr!+j)@wcoFS+Yko z9hS&PTdBXxy?fudy=B(;v8+@S5;#Ml9vw%Ly)GbWxtQnEJ!*%mLc?mBXW_t6t%+hX z|Ff2NmV4EMxCuo)7+Rag>`&S9W!AwNCoN*Ymk_ZRfK!|h4$U!@@Eo8 z=PO1QI_8VqUvF!KKPn}RT34(u1PdKY2RJ97?W&3pW(o1{(A(Dj?J_>}wnoA)8+*(_ z2MNEn9CVD9(CR+mDj1{d0*PW;VmC-6RKP)S<|XVGX%V`4?iL{4B66eyHBN6_{OsFg zoWM<#?GPhR_?zKFoNH}E)Kk17o%Y4yPd{UDJ9nBtFMJD}>+E;cSc?o)sqmyVM?O>P ztN%Bjsj**;3EEDecP@Am0`LFXW=gN7o*8xo-F~H@uUIVwiYeZ|F;_tNY!-L3g#uEo zCv4&GEOMH|?H@K%M#|W$h`ze}st%aiKy(|(7s$o#a2VuD=#ap8$>}8@b42YUjNzN! zV)zm}u>t7D@tfgu*kbsKkR!(a!vlRqUkzy^4@-l{LXC=QdLj>!pP6K6lIVEdDZayO zpieo)AP0eWD+Jyu`LGXW?ML3+y>G$i>ws-~b!WrDv~}door#JmP)*^AGH2G;_oofK zm=ym4>Nbq=LdX-Zf2_Y}=oo9brPwxlPH6{wCNr0O$gABAMXz3k4bSlX*w+|z*^CJ} zvT+{7Oo)Kt3%uYJZe@Z3@4_N{;H?yf!a2qlbGEBidaGw>scZ!5^m*rIqXxiK49$L8 zayRydv9c3Rx`Zmr&a7lz>|cc*ftf2>Xm%lcka(ZrA5~C29}M}l9q8#TL$=3DPjx~4 zNl<{r-I&RgkqfqfDwRUq&1f$G7CH~Ts-?sm=1N}J!ogjNI^x@doy5YrG}HCj!Y?;w zFC&+!wWrvf*zguQjm7<~;HI#0MzcFZ8V80@$n6$PApUT>oyZhY3d431@OGpLZ#N_$ z-p@hQQ<^k2qw{qi{;V~NF??*`GBuT!m;=h*%sr5vY6YqU9_nU%Wn^{F8+I^bvs@b% zQOF_KO5lRVXUSU{_3`-4@Ks`^6vm{snXfE7jC#9eORGQ6PQ47?JPyZI_>*AMhha)z zjF{{F^bP5ad4#sZSs!!J4LZa1%SBfY zoN-}Pka<9I3NkA*V8x~!fY|3PD>lHnJu2cs=ZrQUm?L_nR6$=+Dw~qB{R%~OPh0K3 z<)#iE>8+f%ICR{0KE5C?oz>)>XY^uuVnH3hms{~)>_<5 z4xP?CC%|~{4~r=Px>IwV@di3ykb%xGi>Y4>UmB`;Q>MnAEItW#R$p0+4$VDZ3QK6Qgoyk-iev(?6}PII807HHt8B{!_Q@TUlVWMRuKi z-U1ct2yqqV{AJMl6F>eA!59M7#gF!0Ma({D>1uZ~5K87HUUV<*v<+xU3YLD7#}#H! z+NM)kZE&I&VWH-1k+K^`R(q`T@Okq{E}jOfM5Luat2vxIN0&CgXD0i z;%jtd7i&8T_Bp~EA{^2*+dfvRiT13#Ho)8GczHaws{C?b-EntOLvmlU`^q;yJ6KJ@ z(FSgmF6*Nao@DmN5ZNp(D7HOCNN z-HzGk_#;1H+@F5HCJ=Lj!wg(iH+InCct0+=qHuD=Mr&xqgy5bC>BpQBKuxKTY((Gbw5h|N1%(f9%Nx?ZM%!UWT`>-)gT=$Sz zy+fEMNb}G!D7NN8#+)5#LYgmNCxnUX2;k#M|8d~id26eK>6ZTh_va+k}>XgzTc`&gZGK)8ae`u<}qDfRZD zpktvElJwF|&ARJEqF)>WDFXDN2+rYs<;)(TNG56o@Qn?eShTfyiZ59ZC zf4WNn0RHKa#AQod&usv}Ii273BtzQvj?s}5SJBHGZ~={%s>QJRwP7iO0_{Ct?bPM49r7HDumf!YCfCHOsOg!em24je{G7gx~*U=e~tWfAi z{NDRQ6lQ|uwy)=pEq<>CzU&`aDI;|P-iqJm%lvrrc*#~bWp*8!e$1%7s(~bUuTunfCn2s zEw%U(y^kwo*3*82d9`oLR?DwXav11Ct$XYVI?y3YXGnc-Svqe>6KW;Dg-L={QlOLq z*)Np49sVc=wu{IpVLem?9oUOg+}e|`^p;&h7PcLmV8W)-x*9Kzf3oYp1tEL7Nd8?A zvKhlT6Ut?5$erSn2`;2anhoY?3;?abEFtQ=#4OU%A4Yh9z9X(@Z4J8D;Xo$2&Qw)-hNez&wIMv1zF`0MJqb~`sYZ&WAlH^N{`c*oQNjR;RP| zjG_>f$ObL%Th9#oc=euM%Ccfh56m^jRdHr5S}UUCli@{*toxqBpQ0-3%=^VkER^Dt zqTlBMm&p-t>`6h!V*ScJ<;Wq?KyC+_!_;%^r)se8-B@;i+x$Q|2X6X<{jA0et5Ue? zMadvzC;MdH9md0TeUg+JcY7}^4qECb30_i4KBI>%+XLjDvtyq#s)7ym%`RWAR(%n! zDXp#dswq`nR^C{SN^bIEC10dE+xy##ZKoS8uTI&KV;@}jcx^l{r$k*vL!Do^acepy`$XMbS_V#G7aE3oH_%@yhptOpCm}6n&0(qpAOwzi=UpYpG<`$GucXVW zC*^%^#BIvloH>Lple0aNQsK_sQ$+CYoy^8uq1E_G+KAcHcj!#1@+LQo6US(<_p8Wr z9*INj^{0Bx+`AzQJebqEM}ISGKNG!)d+DPSF7-O?B^}IX0U6=RY1e-qqS@s z-}wHvOxsmo^%Y2taa5Y}UZJ6@?I&&{m|je#<#V)qRbAvEkDjYchn|mu*}eGu6cq&| zg;u?@S58kwqqm_=BfWfMZ@)(-X-}aO^-4c!s{pN!)@!u;iG{m%nlqgvLVy`_`J z&FkgoybLTW$B36lJI@I|8nEXl*I=|TW^QWoQQNxYQQe1`+f@p?4cFKSvJA}h3>Fue z^Y>WuJIudouDvg^Eo{#sea&#D&u~J*z0+;0*vFDB1J;(*?^sr;F2VT9G55bzr+T@L zOx0~_awjNDX*x0Qw&i!b#6lLbIjNc)q|E=h4S(64JNdmLhh|TckZcBLN9`GIR=BGK zk?x?#fr$o&3fqeI(u$e+#9FmrS&Na0Vqg44?_7Ea`bwE^l~x2R7xg5~|C%O~W8*bP z8mvoN+GUNDSgo4lEMk8wYD%C%NXfET^TO%nfepsV$HLtQB5&PjZV*Ft={ zUk5lc=B@iX%6VYGmzJ;3s%c_}qOxjhiX1;`rnp|ixq*8YY&Ehh*RS7zZ6X-=Hi`df zlwY)l6a|O++gn4Ur|Y!}GI`#i?XQoB(JAI7z2JU^e2QVIhScNMll`1U-C)Dnz z*;#IjXuEHboA6xFxWRmNt&t=Jo0ENvLMxAEuYWUH@BCTKT61hB-(8)p7{p`2xX%p{ z?!{vlZ=3Tzxth4rl8swl9d9B@!VX}47atb5y`((j(M+F|t7zd>_RU>A=LKXRgZqd3 zD~>d{<6^9=l7ocpteu2BirL>UIb!dF8rR1A?2yLrmo9eCPoIgpq&3P`o?D^cSSK>E zzR_Ag@3jbP;lPsQA=-7JVofV-OHzMU>_EUNUiVrdUH{H{soGku{EyGs5*ow`Jt1#gCVhw3e!;LQTGk&yw%))Y+Wi!Nxs3X z4yC9lEwnXlI5o$4d?q)}Ch#PxgcUtWNv4IePfcp;?zl1%US{SG&i!EmelUklbK8aq z7n4QRa;hzsJaF5rR;es0AVxn0(5(5M#f8I(=v!D)e>h_5O-9!sN_x)Qt2(ZBbFh@* z`g>pN7VM;#EA@T%5m={dKG>8Je)lho7?|4hHf)|Np?}MdEnfMaAc-8Eril?=KkQnp z*-;l)>mwlTQC>aCfnTLw9h-POqj-gugd|E`=wtq&DS0%4$C9y+V;MY3{XJ?%yFt6O zLV3kQHEctIjrO2YWgc|bfYqa;oc_*=6tiu}!~EX*?p?*&O(A;fiAA8I2}T7~M$6ze zcNg0@G3m;hq4JQ#cvX1ci8spOAq}ycFS+jMz7i)<|0Y+>ibtwpPJdKq7u)Dkp_wHX zg!(&(dCIY9`i9H6IuM8kY8>UZK4w1%`F=}D{N>MVx+X$k=$vohQ%}y3?z1JU&V2!5 zl3;8=TKX9dwuT1B=l7S zyc=e(9{%BC96KDZc-ncL>`qn`_^cX~<-LDEJ<}y9V?18+P@!eC^?oFLor`$cb)AH9L$K zeIUb~{!4Z!9RIHbVcPvOzQuZWYZ8RZM_ED!#_zIS7)99 z4@Yc#hg`}-=WoEn!BZXBjq@@yp`xPN2iPyP#R6VPsS*~RToxx~yU{7-=-R8FLOtM# zrlzy_(}k1*PO`DR)~)nCaNt1C)Rfk+Ks<*$>Q@W?3>iX?VSsn&0-m*loIKg8Sb_Sa zN9hG<$qYOT&0}qATJ(2oLgFMXEVzN@`)*<_Ix_GL?Gj>ThenQB!aw_yVB?$8@F@1P z{}=z)|30rwKwTI=FJNcTdet*Hm>T*7MjJFl)`swUKufDcCca$gtwvMI^}X1oxak^5 z5?~lz=L8-|Wd6$~k(Ge}=#Y*}))2nzM=!Iv@w2+VUjOTBap*Ob2Az@X=UTDE8S2nf{Kc>aFl||RdGFMe+`W6Jq3a^Ui4!Mi zMV-T;QE$2-jv2LjgbvM?r7I4LBlf!=CvPnsg6AB&^-Rs%PZHgJ}M0K^_A%j=W1pLYg7yGpFw?9t&O44UAn`PDL7cr z@SCc;X|e#V)U-!dEL;uRs_uLV9p>M+EW>}lsXIX@UM`ur=9Kf$IXFbvW}K_0rpEYg zN4HjO@T+_f-s#ugjG1##PIp%ZYky$PiS{px{8&kjXRO?ra6?O91J z%Tc~-7L!S{3k!PR60X_V*?nu9oSdv5ODUF>m){G$BI9y$mLJbmdLJqss17i`d*t+; zyO|`VyPPCorvLB`cm$=V?thT2DJUfIsKkfIw ztQV?Z*U$tfth6EYsq$?(p?_{*U?33guEj2^4ZY^iUc9)RqFI<6#&0=LbtIV@Iu1hn zX_!BzfsPAjpnsh0Ww(QNghp9r9XbB%>yGfzE-EU1qpLg4n2iW0(|6Wm%^$m? zB;NUTbaaG95fc-ejeUoY52GO!esh>FI~!XbNKwvl4-XHMo>x_Ey*p@}aO~3Ky>LHh z&|U&v2NBawV6e#{kj$^CzJxy{Pa8baf_JUR&EwMWvLY zyKW~w!T`&L-$Z*hF4I`~c|ZXC?zn;iTHI-FnSdgvHKNRv`#%HghSZDu;MKqsA$YHn zO5_TVx5fB(?u(Z$Axn`YZx+TqJ?h08Vr3)Vw1WG>>Mn!b3yh1L5f$8N$*Wh1j`Hzk z#eG~~-mRd~z!o9uvhlb*+oYA~<4|1~bQwQ!@?=8uoV-DOxZ(F|fd>}-6@Y1eMDQaJ z^fLbUd)=wSlc&9|bj}yw5Hn>H5ebK`>O`*4)>lDZUVixdjYOpx=zHJa+gk$t^^CG? ze|#Zy1v?K7{>sxbKoOhfbOo_16a4u07H7S-INn+cOVg+m{lbi{U}8g1mRiJEe}5^= z6IOQie)u~E(9_w@-k#f{uk0}?6(#tHdsQ{u1b7mfwL|B4t~+0j7X4gozqtk`Bv+)R zZv*&D0PWthnw1N8(}Ot+EP}F;BC6?y;7*cjH9QMF?z^UQzJC2ma7wGFpn37zH$~Le zxm`5XWiKu5Zu8ESGm9O-QJU}_fo6e~ZjhcFNpLkl&@6GjGe-HSk<#f*l zSe)zNL;vV16fSgFVum*X1`FhLLSisAVADcfZkLyrZ_cePj7gZ7oPtjfZ9CNk4KI5p zChES%NI=&{9r(G>kZ?Y)zdlMds(XEiAN9Eh*93RypXnbKR#W0eIs(ljVQ+F=Y&Gz) ziG-O`T3P7Rx8eYP*O$9F(@It!N{QeM_e&|6rYX0zI`#F70`@w^4*=7wJKi5#V zMs#oZ_oRj3d>12V_f0Ec?kYiV|A>s51G&LiT3M-nxJ3vJx^wdL`9}q_?zX>x2D&5^ z^tIIiEUf_hqK@1j9}xSTvjy~*V1A-K7(9rIuQgl}3ysunUYI#Z>3{#^sZ+P1-6O5A zjrXfd9%=A*Mb4gugTOpI;WG3DMZX;O_e>#Q&(lb%)sam4^n*iNB{r; diff --git a/_images/fig-01-demand-q1-p1-q2-p2.png b/_images/fig-01-demand-q1-p1-q2-p2.png index f1fd09408c17f5f4fd1e70da496f745bcc794dc9..0567814925c526717a65e2dac9cc9b9857613e5b 100644 GIT binary patch literal 30984 zcma&O1yoku);7$eBGLlVB_JT(U4nFXBMs6WN-5plX^_$&(t>m&A>9qq-TZ6cdd_>! z`+sA6pJUv^G1#^CT64{L&1+tBhbYQRpdt|~1&n$9YAX3lPgj;3&OhR*iZcFxuoMo(Q$9i1%fY}puj7@6sxzIJxDcj9GYvibK3 zjCPLZOzaONzk!<|+DmFV!NH*$Lcf3Vh4L)m;M`rLM1@t|(|2awoS(Q%cO2|lOEEnj ze*XUFOD1y87paW~VoK4u&f9vAA3q?i_eG)=EC0tgRB!X?2T2v_4a#`u;a;=etDv5% zeMOXKCY;?TJV8#J^-Z&lpO|Y|E7__S58U~Kp??|`$;2;2!9RHgQ#tToTUbF+2>81@ zO9BT5_{Wr6K}AkZzSOQd2A$QA+>;7jhO4551&$sVaaP`UN3NdkkD-uwgof6^j8eG_ z4okwXAGmi74CIPO5NOip&HLn5oK{mvL_WsCGIm7)7Z#XcVq)g26^>buYG_^Q*xNJj zkNcEGM?a1mfi4$IN=OismF+t~bL6G9^0`|7X)Y-l4108ZiqF+~f;{tM*yCxfz~IPV z$^LunH|Tl2Hm(oA!I)*$vD?nid)JbNF(cb}(0T8ArlfF+=X)EOyv1G#$4n|guLRCY zYKn?T@FB?_Y`ZX7!$~HV0Dq?CNvOIzm|GTjgm`RvGw^xlVrD(tWF?hY3OdLF4i43M zvpaPjKl>yNH;tbC(`j25EypB$yk`nuwG^jsro4Kj!SP z=xKlMkC9O2qr~v+or3th_!SjL_ki0^^QC)d)AzUo>dpXXtSlf zVDC6Dqkph7m0{M23Fb!ng=ul}wWqbL$I8Q!rfdu`MlOo^^GF_9inpMXJVt*MKE;Y{LdA{U>qw0J0qtHoX`M_OP9x@p0 zn4T#fW)#1?-QBL`M#lRK{qRk!yMCrMv$WRWuyUR1n6!ar)M+^BPwaPELe@(|Zr*L1 zj%n%A(DY#@RAFv8nbN%?b>L7B`{A1~jemN{^@Kb9&*+gvOpBk)jDAEMA*ua`v_2tg zY{zgROg~mkF-44_II2u{vRPr;ZtUlV2~E&~qKHl6jszGyi)W ztnbkW2U+f{s2wR;lSc@#thHX-x~`=1Y_I{uzofNVm)gmv^%OisBN#)XU=awK?i^Sh zY?S)*29DyUJN%(Y$VR)#nO}==+sn7_y^Xj_ubM{tV?aG%fscwT%Y;ay>Jq}z#>lDX zh3BP^H7g8D|Gt5u7Tx_H|9tOzduUcyRV-r|6DC~h+28VuuMcKntM7WW@ehv5Sxy!S zHypHxmU>#0A&FGT=VC zLR80O*}rxM@cYV{WE)1N?J!Es8(vrM-Fa^)U@&bEA+O6d`TII1+eAAzyi-N zNbXWxi`bD`PPTkT+MBap^Tv8E?lo-uG{#{3^c9wmojQ)QUHo3NIwI9rU9T6-r5gM> z4$R|KiF7n6w7N2B?a?}lqD{Ep4TdfS{+I{rrwVnn2bUMj%OPnspY*(l#26no9dhUw zhjRU~uYVG%99srEJEqZJb@mf4+1Cp2pO2mO-C9(_CTN8p7`VhXCtWE@eX2)^bwKC+ z&*t=t#Y{eb>@!`0)@n7p-H5rw2UmQ~69bOP>lB&EvjQ`!)7X&}I1nCE)v+G3R%Z8= zNSQa6yOD6RdgpwDvijk@JDfZzUqVBjGD!PFc);gv}m%n&Vp4Ypr3GMGt zaD6Rb{WpWdn{lIR?en)MXwVzLqvidv-}w9@HMnv8;bb?`MhqcRLK)88I#)7BY|MW^A)!#^&PGP^?k{Z~8XFomqfh%y78+nF@k zK?f%(*}qF14>kZi@SRVbI#09TYCf(<&vTki=Gj*0`?CSkDZm5rh5MP;BI^AnHfV{Y zyO&POoq~muEn#cKgFtJAty&!Xcr9{AN_WRznf0*7ct)3VoA>W=8E{dajg++tAKbg~ zOultTFR3g02Q4q`W2tw)FZT2wBW(Xrp)PekWz%r7;4(8+K*Lxa6f}PugYG?H0vq84 zF0EBUaKGhZ4w=UA-qsjgcuG|~jsA6L=Q0adGFYSZ#2#%*<8r+4&FK^b+eW;1N$W*s zOA>Ty6Trna#Djw-cn{HMy%9g})e^ls`>r<_x5wDB>YA1=3r@IA0w-|pPkn3PUXi8` z{E?ocQ*+n9XV0y7cgbHZks}ZMXwgI;+S9eI$y)p$w}LZwYi^$PuDCoGVzOT6Z?C;} zI>)WK>)xjjnpYeyNPo+*{@kVKKWmg{A*#YVwkvtZd1Il|SR67R03v?7sr#`ZC0s>C z#UoTyN;bAQfCVa-<7-#b&e+ZqN@?u5Ys(x^bA=qRy5SK~t}UO^p_Me7l`lH;DZHH% zI&=Fn8?q^oJMy&XJ>sSqaNt=>uILF>O=_nV5BIMkTaWJsHB8pAm2+-wzg;y&O)m?Y zN?qx5hM^W3nwmwW99s?*q6~)uv$kvBA-U{JB^obrkQ4Mc<)k0dnXvXD3>r}?`t)$Y znUBU9+wsh|{$gcNVZcclMADv@rgHKNSn1u1mZUc)0S>2wXA6eS8uuqMzSleZ0cWSG zOl#%n>w!BLMtH`9UFB25&-l=rqwH7&I%f1rZ|wWstp`f0!Em-z!^K+KSDWd?=H?f^ zzP=knpAityN!a;}0xE91-l`MnDs8{a%3F5k({iwfCycaxo?`-Gi6jmEI^*Sz2sqFE z9|%PJ?$K#>-&0ET>JN_wg(~eAMF7&$Z1NTeRPvpD;W$$yS1Io?wmw;*W!*Q!t&(&M zfE3L~N2M_^^%G@=_Z=J@;GSS(J4~7;mD|qpCNk6B2q zEp;KLdP0vC^xkHxpNhP|a67{Y-p$(Px$Vsr=~PFapPxI?S_K3IJi);sx#OjyLwGO*HV{{-Jr({w~*Vh5FOHq|2YrsfgYc zcjx)sIhAv~u`2kU3GC5yr7BCSx2MNwZ>|wq61tL_rR>f^wZez*S{LCAe)z)cI<#Z^ z2Lu@6J-j;G6I%YQkjftN^XJcHA0s0p=^Kyd3Ns{JjMC=d%|mCz2;>0lQx*L=n zud*7iu>3{4+i)b`($dnys~zyG+*QIlad>l&Gb{p)g;;tOb`e`ClU0`2DZZH4ozH7V zGP3t`jUFmhmTH+kw{I$!)Ff}FkC}c|3SU)k>eH4&GnVpZ)$nIai^w;d>5g_>{k}{A zkJr=R7&P=;uq`Ys`m%&blX}}*0+1Cvf>j6PrnhW1RqL?|(Tf?CEGplAsABL<{CFb6 zk^vTUbtS=L?3?wZ@5pAhN}l}n`EnFky@LV1y)v*zO1@uOjuq=jRNKz>MQV}B?XeIS zDm4t&WW*xOkkFx<{vy9E{)f9lS(+&w+>3H0!E`6<<%eSJs!wuhob>wN(`ROMhlhug z`P>-6A2@gn+kZVR`iIS0Ap7^I3yzInR3#`q}&2$>A0pLHm;akzg#l=vK!?KZ(`C?1JSBsIrY1?|# zcfU*OBROrRz#F$5VONUO7q;tJ<9`c~vC>1bpBg?Lydk!9TR6*{9~y5WSpJNQVc5SI z%;rB7GRqUaNaZc<NL#ubY_r8)Wm^fGFakfIn$8pmjh|gdRRTQdi{W z9X|n@XWYUiZt^uT@Dj<~ zf>I!EJ&w`bPKo0l3W9@Fq*3Agjr>XNLLPIUMt z9GDZit?E?q%87fwP<3WE{**M_#udUJg+55>W@;?|px#_icB+H4hq)HK>_tum)p~$H z4S_>zE*6GLmJ&wq>t#2*pw15Df}~2SYMd*e(WE(dt2sHB>}_uBsz< z)~r`kzCTbdbI!{b**Y(`_R}qHNP-$fHF-HxxdFbg{-8^*+m|NwR`|Ln8gC!i!7uoQ zyY_WkcMnlka+eukl2lKxWCKqy*GXsYC*5wWY14K}8;^)#rTpwp&uccJU zbda~z+A?Do+3A3TW|3>JwMs|E{KNzOD?QPbH4M+f_x`C;A=Zq>Jkn~Fq4j??GpCE1J4!Zd0BcpwRh={Cj zC}yjdo2~Clh`e)yeyDhE`K5z1Z?T!H>=Hgf-5IP<>F3`?QUz=%ewJkas3IdiS5mqk zyycEtF3|at=Cx2%U};-q*!-at8_k8I@~I8QZHDlZRT8?K74VX)Nj<5_RM#zp1@l)z zU(xwnMlfU!*h0@gm+>yg)kizJ3mvFDT>R9#!QdoL;X1PB|R}?i@=o7|^ zrYZUict%|aQmqjIT~?3%AS2hzf9er2sVBd1z^fV0^u zeWpA+98}Edz8>VTlkg|hd?3mU(-l>dAwdZJ!pd7tC^39AAy`X#5mGO+a|7j+SP2{l zNW$gC!GxR{bsudzBp9fMQ{_If`71&DYt!&5{+|`186#I&fGSw?DyUvjd@wUk4NsPm zRpSGjQKdIgIF&AXNNRR6W4SZ3z^`knabPvEA-@r;|8*$MyZ!nG3y70BGMXT z>!KA`eiBkTcNvo`5RUTiNp+|6P{e~wUnvh`P?Uc8Ueil%e$Lytsgz%}RTF2EuVXa^ zIiT6?dIOERca2o`^A8n7yV1Z-a`m5N2BeJi!1QCXoCxgq!|v>zyHVKvUxEn28j*IH z)**MpS3TXjI7$y^85m?x9&a5gTs}Xp)ixKEMYS_%Dl0S=ndM0M&rfP+0RfS3ST1i! zE%nY`gyhjeNeE>`TCB2pIUWe=m{|DQW@4z#MwKc}gUF(<+= zUr3I!d1>Lsc;|vFkL8UmU+b-=Z{a@K*8CBsI_Vv2KVU~3zi%+-KS>+eT${BUI|4w& zfp<371h6Fp8Z#2IQJpokuW`}+Z+x-2=nl6I9Hk|c-HMFY>s#&D%+q2OfFXV@D3Ypu z@@rAvXb(>!=)-+}obUHYTf6t*S!89ur;pwoY`d=uhB`*3KprW(4H*3llAW8t$yI}7 zee-92;_@d#pMx0!e&Hw0B&<*b1!oPDN{Gk8R$N-tRIaD$3q#%T>je|-2WHHijx0YC z@451|;Kz+7w8cArQ`nUdw)BOaJdo0p8t*|C!T1R{J9eaj<=T8Pf2|{KP1OX*sGW=6 zop*b6^Huc1>~tO6n%4irL}D9in(*vn^ySYu7^eMH-PnB_*}L1ltie7Wa6AaN>@Zu> z0-h0x;)D3hCGoyb>T3E_qDnqYcG zDiG9i4t}0Jii%j?>{|VLB-6ZDeqgk(Ahj(|vh zk2KZx2t9Y`Lp9hkkrEW@!!!m=V9UgK;|r~^KU*wJ;yyg`*ocDzENnmIzS8Bn?E3V3 z36I88Ic>MBwY;t^e%`r|YrC3?PFR+pO}$6(JB!q7!_|`GIUG^N{O&Cm0GQo|#D}#q z0p{hC1#V}eMc%?F*C#Uf7|_||I9GaXlnaEU;7Weyfac=&5hg!5uV|`|)QDqvjhN$QYH}S&+ z=~iYGuuI`MO7Z2RqHR!0>TvF(3$1c4^&iVf-8j+IoAbZxjj?l8{ln5`E3=^ZZRsH> zUae8rkiX_aSJw%^<|;hgI#iaXR(7>DSpWKw`>3)%l9rtOUVf1jCH5N&g{?WB%-(xg z?&O~Mf`M@-@Kx@DIczitu8;3dUxYdWo|T52{8I&0f<_f`NzSbRlY_7#>u2)B#|GRJ z>Uixn*|yI}1zJwKZ|qH;r9#U{%kwW2N}BFZ^y-FVFC`55rOZ<2J+?bP!Eqyex`Mz$ zR*S4uqR1Nn#zUtFFLdA{GLxaJ=t3|ni-uujIw<( z6Pz-Na%Ap#Y-Bkd<q+>A9A3 z2NLz&QRKw?$ay~z42m)2#wZ~1*y?vsx~&eTGrRV?zccoshlNj7a=^FWwNkUkf{hWJ zuN5>DBV)1X5q~c#V_l`LjIo;6L-4Kds0%V|_7gzt=%SgpUx>+dtVh1Zxmo}=#+i^L zhWab%owm?)&C@|*iQyiFK4_^D-hq=XG;e%gvu`l8EHf^}?5pXLlp%28%*i%|lU5MM zl#ITi3+`Rs|huxy%V(vacP=XkWuy7N8O5bJK5tB7fVYo== zK7)P4=1ER&B$zh&k7z?iyJg;-9#+{U0-HgvD!LbwZF7PI ztzUeU!93L+$BAX*!EB#DpkFANFL8jpS-A}XA9r8PmCbQhaOUjFtp>?4f7}BTCoKvJ z4%zpV06sW6DL>rYn2ww;u|{eAFjhrTehKf;dZzM-nMjt;6(h`%Fc!cl$KTSrBYSzm zcjIN3=dhha`v@Q}&cgN<%6_B1NW;1$y4J6r~7ru*nZyC8+5W*Aj^ED9~rf1Vk|62mF-Nmx?l@gkCJOD zKBQE!cYyENB^1Or6g_4FP z2Est@+xf7o0do$!`i<+Fa%M(t{3j${;DgjGra}VG zlpe$j8Sg_u$WKf1fNGMm2-(Rr2G_9w!9!eD!AtWmT24IMD5k1LZkVj;Z3_4=<`&)m zoD5*MGSWTcR17Z9hb|(;vca!JU3740N}h^SyP7K`Mx0mgQF_da|2a7uoGg9)`8Nb> zECbdripE|S7+=feSiF?XF=F0=Ll6Tdgmr&Beq7nOU$Pq%w6SmQ1-yzQM5g2_f ziGHTcZqM3`y=%W`^l`rs4A28Ao+Czi4GU9vW*=X4EOd3Ui}LFspUC^pfwuU8>r@rL zMp7ZM9y@)Q8|gs=XCF1=Xa;n=oTF^;M$Qb^{Ly}kU~jaV@HLXYH)OTB;ouo#mJPJ; zX%N_dya?^@v^DKm7KofrWUIV{9|jA%opSR4-R3T!z(PK8?U%Xqr77f}Pt(R7*34Co zzI? zHHVc29-W#fg|||nfYU#Y6Amrz+Fa^Y^U<3*$whORu;G28tqYQcowTfGaF0PsHs~HH z4rKc4?39DctshW@mT3EOy!UX+CcOG1=|HItU;yYQYvlz(|JcvAM?iHXL%h*CGj7g1 zgOaOLRDi%5;=EbHoCu?Te>-aarf=UU6dQQ|Rp%C=0qm_YFQdaH@xyjK(Oqmk0vX?X zys4Rzwyx1k(+|4K)|KDN6av}hr46FmJabUCk(}eA+jTdxQVh-6%a~Eb+;*O zDi~g3!0y})N}{r=IZ_A&sBhD9-%o~zY0KtQX5EMxhRbgcEPf?|S^hB0@`FJ^L{t_> zx0E3ws8Qi2njD~i@|o0D4D&}&2G86ob{+4%LNa9wnFUJ-7zOU5qF?^N%@*jj_xNwL zkCvInZXuaCE4#UxUzIKIcy!Oz|9~92(LKm*fFf8mNkb&~$pe3W|E{Z!9slAVjxX>m zfA_&Gv=0Wp%{+Gf&KDlOLkIKFrhWVF{3Mkx-TjJ+=tW+>?C$G(_Uu{PHn(yJwrNg< z@zmqt*eF(-0<42bNl#Sjr~szCDj&>~-P9MFzYAe*n^JXV_oILn`Kt~RO!=ApP0`UW zof};_Ur+gDKZ5j_CPOPtCl2fnxt=L_SnL9o4XXAv=h_R`9r^Ei^;l4~HXW%S=dtuM z*+~A_2TBFeq6N&m``qP+mf8}DE2GQJ*XulW$M<2o93S#sPETs_ZZE4*d~S3=U8HhZ z)m?oajsP`X)_tVcy=;of8F?mx5ZR8jKHjcknfrP+jp))A>GGK$Aen*tS!$y#DF2&1OVWT%MT3A67BD41(h8D+;;=c2W_xA< zkUg)llMU{)M#~8;()NAy&cX$o6}BOAB!h&-dJtQg^WXe>Y^itmc>KYhiRc8ArhO%Q zsbFcg>rg@oYm$XH=)B=9@%cvm{zI3|iamE~--EXF^6B zeJYH%yttj%VC$0uwp%t4lHI)D+eZBlUJFW@k(!}dN^PV89PW&@blpK{kMG9dh*D@^ zi=+GjERI>Vmb*n)LIeAX^fu?sFBTom-d%R0ecs}GBkr7zi0{S8_=qter)uO#JDqo& z!@Ls>bE^LAwp(@tT$HP7r{5#C-}*eea=gLInn^&Z78?3S-yzD7^R_Ia<7Mt5sop$f zxQ9aQw$jickIBi4c%JdT!~>Y;z81;SJi!aw7IkRlyLe!!cijyA zWLXj=;i=_Jd=g^*WHLZY%Jrcch(lrd7QN5#{s~uQFjG8nI;vc1b|Mw4r{qi`y4)rJdZ!h7FxRS2 zVaakE{ijcbY@C)Xa$a#=N9W9BIdp`MLK2Di702{^j2~-z3&j zZTG403~)GH(Aj-PM<0RX4Q|-yeW-SmK=Q*!uVuOQZze1ww9tGV;y%M`2pB7!Nl?Wh zUr#cu!tl7N1Q=|ia!UokBf$ad*6SjimD-(S{dzbJVNNJi7*)a0%54yo$IO~7*52xY z$aUCSrWss&fKhZyHgkQ%evck)PG~H1&uIzDqCH29bm42+H?A;o>a!rAw9@o?W^^7b zKW$icLRK_DcIqn~tduv(GnzF&h296X_>j?m!$(E<9`cK+3$hjL%nrGbE*deHhOh~~ zj$xV&xTv7g=EyLY3s}M%?=>Cb10}psu&KQT+q`|vv0kf^<2{ECmVGUU?H7JzJGcA) z%73x`mH)nBtVQk)!V1n}g_AI=fR_A00tXLr02*#%hmU;eL6*wK&q=>ky1=&wP+G<*1G4Gj%vT7Qd*n;XBk4lQGv4|BxB#@0-9l2s*Rc$HyBL$z0WbCSPb zWKIXsHF;u~3#0w2M{9;OM4`c|uL-zLxFXUpc~YhU8>Em)b`wPju|cFxg!g~)Ip60B zu%`H;0@$FtcSvc#L4c=W(6EH{%iqk!1zY=2oT=+|_W#g@(=a^|bepEZ** zdc!wyaN77}m52=xD3SpmfpE*bcnW@8=`Itu_9=6WIeFre9ruJbUVqI>3CMnB0p#Fj z#e|T6GFg66NEc7RR0DFvZidKFGYWvjR1?b0wi4U`pE$5n`hg0AQncewXg98A0(_EQ z86CJ|!S76f>WAdcXo+Ds#*fBR$V^*K7!-+(3A1xo2oY!N0y~evLrH{i!%D=q(6v60My!c3{~3n{o% zY1%v7co!~HZg(JZ`-Q74p~%`m6=caYNq^&yvSVbQiK{HJtfe#(Rvce>FUETi@F31- zH%sI{I3IU-U|cb*>sSO*Gr<7Z2QN-`<*=U#NCRMh)U9_e0J2##A^EMk0NCv{peQn9 zi_V9oJed+5I$ca$;b?i<{G|=mBPzH~&Yjnh2ltX%(LVuKg|D1E5AA9_lEPw@8g?xg zbS)B*e2J$ur-mSB+P$EWZSJLZz{0Q-9CI#4Odq{Im*$1vZjT7)-b^}p=}Li#^Sxy; zYfdbyX{0jYWZtP-`>mh^4u^%D(Yv~ob}lvz4GBX^{o;tlP3W2#v+ zT6H#4;_)tZ zJba-edIzNdM)j<7u0T}JY(=`>2x;?b7Z=}`;NWqPb;Yo%G+Oys&R;*9^>aN^tV)=$ zKahDv&y)+SeO%mCp4gX7Xd1GySCFgeQC-QYR;eC$XGG<1!&>a!XGynyp5J~%lOe@Z z6L((yP&qyW@_87gz}O+X!E?TWN2$BL2WVl;g0WL=f@6<>Z^AU;k(wg!77cU^p8!HU zCf(itKQh_|UqC_2E$52%yc*ke*-kxx^EmWPj-Cks^f~ac;gQ=d@=C|mw`e>2+dKN+oEV#1${mI^{V$>LC=)V!Fze8aZkeun}v-K(T} zSyTYFP|&{vPQAcbNIY;li=}%uWDwD4{VSQtt|lz4Q~{egSYy9fJ&cM%@F_2Ax`R@f z#Y&t=n5wOP>lIAxOOlVx#^y%S zxZb_RKjxw`pPf{f!p_cx&Mus|SNPMt%fo-%YCt81uBPkmDJXBHPsObAly7I95rxnR z!nSh?SaFO};}hiUAup9jQT53|tr|m=2I#i*vhq#gdzFL^8^1Mpu9sDvSIIC6P@r4W zX>EIt?wzq>6qlO32BZ%16k79f_-WsubDNk715NtT z@2fNrXeoE5dXIwu@_=&YdYW2WKEJWMcZE-(LYrUvnlZ>bW0V0!>@xy_%$}R`CIZpz zt{liti~;;|FkV!?y9r0pf2n!H3AQK!NJpR*d=dr>MKVC8QAU4j<`PBE@AS|fGWc>{ zp~SmvVDM+ac8SB;m_{J8$^k{3(EjCv=)?pGZS~B77OW9bT~Fkb-OR4`_d#!1jqtw* z#>v5R;AhPQ#J}_i@v(X;rUm3^!1HlHG{8lGJR=@^1oA^UiYCS7+%|s0;?hsTcN!L0 z$vqog?GNzKmWX4*<+i1jl`(;Re%_x@f(99n1Vy2wFYKF=pM~v4*qPISu{^3;sVsdS zJ`^&`9h=yC%C$!(WRV3~vos{M?I~V(Yh%H`?M3i_50A7e+1`p#BK>2y^tQN2ZrFMC zWt_+Bdf3Sz_Ym!=YSxwuCS-}5Qlk%#dL@dggH!M?0w;rbZ${#DE&_T99&_O2ly@&A zetqul(i$zoX*=H#YnvMBw!dNnsrR&#@8rd}tF7ZX{#oRCvUA~ zr8oOZYdI#b4pg$Q>zbi;Fb9q&wBM4WrbMUue-4@dTS@{ z;DEWuj>Y8Eo^bD996e*ag2l!5+&>l)6WXq)+LZ}*jn{A5If1dv_F7c94SiGMarnKb zb-?|-5+G{*$wWeKga(Bm>3*ZLoF4*A7(=JDfvS4FsKV255QlQas$=hbAdBXGaPMzL z*W3)$J>p48qSnt>?)m7aok|9e!}8M$BK13i-3wDjV8dCaRc7+)bbz5e*1O>;@g)K^ zqOf*L2(fh0fVxrnDlV_ZlpPY>v{}T{W(A>{wkv!bWB@>jK#p6@kSPx$1wKCRp`1LH zqkwCm^*N%3FyqP9HA2|z_;w8-j)n{sF$(q}Zu3`bzRQiDE@6WohGCPzkN)AAhYg9Y z_yyDBWk)wLAY4F{y(1>Dumbi^OnWagrp1SN>`9~4b>5@mS{?n~7XkeK+4T=l%(P!K zh0wyv1IP>tM0K6nPTn@XxcUGUt586(svn*MB$EO0tyjSE;UbHkK*md?@x|2UYWy&ncBv-Z+S!T=`T5tZj zrSZDZ3f-Pl=+!wJ&VTo^o~&5S<|r>OA1&3-%JLqDTRj{wVyQX(6sYT=^pYM&&sdH& z@b898rsV`F#iv|`I8}|OpRq~}G`=zM&DBP23;c#4UxH>x&lCcw=L=0uyrZ@L&p@f4 zr#B9?9B3r`nz7ZGObhGA%R50O>)_WpD3P=g7uqUR!3YT^PWB&XhP{#%@E`!ikPa#r zV;$Q^eDj3z9pA9QR*sSWB5KMYD3}S9OF-N6i>(A1DEfGKYM+6rbbNK8UMwGnQ5hT> zX(oHDoO%vbo)@7_+ZSSRRwN-geeMUnJSOdd`Ix8I-A(AcL=*|b7%v6}+oWG1lq+Gd zoZw@ZhjV%dIk;OlM8D;+aE}`qz2?3S$!YCn-v`UFqM)E7#aA-W(ZHWkQ zi_~iwpL8I)wPg+Zp5{3`xd$M`OECAwQ3B$xUq5dRL|y)YKx%Tb^$TugZLPwv^G-4F%m6!fP+DUjFW~AHepbg>o{xvR_XDh+uzzTq$XdD<;`ROOVIuvK5oBe zmWmoXCUjsweqW;%l9}}~R7YoKMjEEO^B_cZzD%H1)2y*4Bj$B}uJrSWfsQWh=TAje zHa0{=L>9hCjUKw^pDdba;H=X)eBp%ZyF)|=grcV9TEUrj^ znm2VrzgpWI4_cVo9f|15_LFLlcz0i6AUB(+bD@h8y5;UqKCZ*09D{lcY~?SdDFM66}7-f%gj>{tg1>m zSE;V_dT^>~B$K0HJ67FWq@_heGe#$gW;1D_L&W3GkN?T{)Gy`zAU#I~cp9=l$4`By z0061tC=u_GgUUWH{LXs$KK6vefsVHg6{Ws>&v%=)Cbr;DGse*ANV&jVffNm0=sKF1 z&o$ju&eM~h)cc$)2#uH)tSfGrCQ9Ac0+}RE7m$w77Vjh5Wqa@4*&F@`nf42c$}6o1 zFd`wB@g5_2PM)Z#&EZP-@!tGhcwVUoKgs3E@6KtvCcVFV%Xkfoi{&UJ4Prq+xxIeK zzM1eViu5|of|VfSqcguV19V~fO|5sh!fp$T8{EIyw*(mbHVcKhrJSA>HY>33?63Ft z2tPeUC5VpxFwZKMZG;$VBQ{gEIg0AS2B_nhF>A~WGXA)UjGL4)uO2u@w9JbnEsPi+ zl}{CkNl8IXO?OQtM`vf$e0=p_f4_QK`XQLgi+Ut`&jf_F3!NAJ9qjllamlo<9TH5r zi41Dbz5RIYL z_|W(h&d4ZC_JyTfS0P9pJ4?zhJ$1PUA>CC)ut)Es^S?91n{gTxXgKH~q$b+x8yHxN z;F?>=^w|AjRBnHFbC$$i6dcS|i4XvDO)dmSvTdwWm&7fg{GT;Ca2-q7`h8G5uHkJ7 z46!WFXKn=zKE)Q^9|+5|+34x(8aI8 zLVq|Csn@5WCC7c;szY>nii*vNL6fLlTd@gVxeNRx0d@q6Y3wNrtYIbI=&}-x{1YnS|HA!eXBg z9|9c>C|`j0ABZ8HU+hc|Z15=(AVC3%w5euQl|M&a@THf2%hu7}c=3~%(9boq%SER} zUgwKJa5J7q{SOcjNbl-uc5Bx&E47)(l`-%Fg(G&)j82f3zLdTqZ+>p%c$rhwRVa}; zJnj6se%(H;JcEzzQb}zLk06yBA*s0SE7`i$kq$i4&3*&R25)dqsde zq|9fR+k3F^N1+9=y}LF0ncPZ9Ft-1%{Fk4F_W+4z2{Koj`|GBIQvzo*eujAdfq|L( zRjO!j;KiKrc!=Mr#UWrWF8$+_swNBIE_?sSmx}!@+t zSKKnNNx^fvjtOBtDQVR)5V{4uFII6O$*T4np!=ZAqE!Oqr<6&AHbj0p{UtwV66T!> zE6q=_vTtuApa(tx4+OE_9Ejv~->fFcrgO)DaG|KFsi{5L)~iYXkm0x3P{pfwko2V^ zoPPMiPI5`ISnj}2TpRA{jrhcHHD^@*ztuq5;RzeV#OhWDLFj~m??*QI$E$hwoHx-h z4saMH1U&@ZBe~5z4C3r-$uX*w+zImM4;?Qe0 z-`-puoSfu&u&jSK#~G6Rexj@EBrjaD^3B3J^~W$EcSS>(R?M(vspKG zySawZmJqiC_XT@PnAf<)4-_u`P120>SR`t1o*by|W{q(VRBR~@`CY}YYf;X^5enw_ zu!{sQ1GKWqc?$=NfM7dRg5=GEyb-AvFW_vZzJBz+xx@?n@$qF)&B>UK%WGB9?09h3 zlal-SUPoBE7+=#63X5Ap)70L$ykW_~qT%BzbDC02znC9?A$b4(ednGX@aA?62M~VZ^}wVq;@pkCzY&3R3$-SAm!S_l%l4NggzM z@#N6c_t!+4P*IIAhd5u3xbyCt=aM`I(5NWEU5L;S)V`?ltQz0x z_Vq8?$8*Pn9wRMDzf)l9j1j)bZ(uaAE<^+Kmh&Ovi&=a*qCkt4>gr6NrP*LJm!lAxXE2+vULo9Fd13=Bo<&(;dF`^-Mb`QJuqHC4q#QQbG+;Ny@y3 z5{53@HSW(nv3KsHLA5l0efQ7M<#y{iMQSFrR(Fg|Wx<457Z2VA49@2`sF1(vQj2aa z*+h^2?t@&K_o@d}amyFXL?;M%;dd$4IwXJ!8gj1wOK#{H22b194w_3|Zf^6&mq6F{ zY~hLm(guUX4I|3Gbm{P&0MLz_U7C7k%?A4il-i$n7Hph3#~gwVCDCl(@;_=Ra&7$| z`yk$9Jwg9Vto>Up#ZID_t;_veco!%QZ(zz0x#lI@ws#yyh!xy_Xtn9+_0x}MJqix1 z=2#wAuTcuUp9H(J-5_IQ6np@vp11n{u9ceZj?1lzEE+}@J0XrV<0MiJrgg<^W;sp&1mEAH;jnB!# z+{;n_Fs{*UDO}R@Gbqa_BL#3b3xt&OBBlU>0uRl?ehzV^L`a&WHWa4I;PXTR>Wu-vfx-*!ZZEHPg7+_gij$x^S*ZUMRHbCy<7B{^GdUwd@(z_@ zrq$`~4x-C77qpvw&N|UN$w`Q9j=|F0{yw^Qg^6JU2;^T?y0~A7-=*N=vNBb|OW?|_ zFC;N7!3bn!9;kP5RYtR{X%a&;8wE%>fTWb9P@nlmeUPGS$pCO@YbI6X<2x_s_1Bhw zc50W{n5F1aiQG|eQ$P8M&bzD()IC%dzQEvkj8>zMr~L{Bplo;wBv55A3Do=wP<$Ah z?+21PV6Q1RogssPfqsdCGG{zhU@yIpM3yaGdt9K|Af!87&ud0|7N~HRFf1`SlkvER(0WWuF$iZy?fyYOn$T^+RhchMm}FS{F=r?m+{R3G7@R;=p_Nzw}k0h8kPQ9Hqxbx-yX|*O2m-#_I4lAW#>+ zGz~MnM&~GP%-Yhs1cYcC9bi^o4}vL(Cn&UogNn26m1z8$JGgc5|6-T8Aa-e24$X@T zeuw%ojUb>~F=*5PUxa$uAPKsJ@RUz9Yyn?{N%FsCPPTDzq4DUK`!P>+-nVvx#>#&d zGGJ_gy?4>0QyDIfm`zx1<9zC}0WPDPi-0wYcM%?*!GRq23rkDmMDA+-xWFCb#w7>!5a7i>^c>OS~s8#+c*%0u3}R2}}Ax zYHP<=Aj$#dk3dtG=6`enW&Z!VfToeaoFs!OwI9qw7#t1&K*{s0?Em;6zIb@D?a$@gyq#jVSn1= zC_!!lGN0tEU%o)#cWZ?UOfJ{9^x%)cFI@xjFG~r3_{$$#P`8f)#oulpLF!1|YV=kv z2B;&#?>m!W`Be(B#!3TJF2Oj^4m4Ce>Je@`c8@Rgb!B1Q#-*>(iqVKl8sUwtTjm0) zOcV{_NKn2X06iDr{I^QPZ!v)OmKUCQ;Q%5p%Nd0NL%NgVD(v_UK-o-bmjx_jI_@8l z%%vO146a+6N=n!EtU&Wc99D>=snhl#<@Uvf)VGzOBN1tHBz{+d%j|vU6{Hpl^4I(( z1cD!9!1B`Iz<%kE_ZB{gwsm-YSfd!U*@v9|#}`VksW0A#A) zTF9xR8g3|{Uw{~d+t&cyCSh*P>6`%twtaYU!z_W@2YTNUbA z_}jaAjXiB&d#ogZ!J_dZLL88bVcKe5_@s@=csdU^OJ0Bnn`^+xMJlUtJLvsjA2On; zz9zSXq~TvAR2OSE+S&J|D5rNiCjjv22Nc1XguQhyD>O{lM~3391l2x;5VC}IZE@gZ z)%ve}4_Wc>Opg9vf~XiL*vFApGX?T#Az81xwQ**ot~eiTC%lqvOjoOA*}mG=iuFk` z2JyxTNMC`J%@;Hii2KcvH7N0sL}&_kzVoUn+ZWeH@E)*e{=uZb(zUd?arjAj4(2Wb zAmay30*H2#0WpS!wXk$Pm$*KesWR1ZC8(O`xc@h;wQ|XylZ`-kkI&gN^6B}mMzt{q znSK4F{r{0aNo;3vkwi_KIx5F3l>_7NLHE%o{5?=!QMs(1u*|(j=X$5>_Jl`+In#jwu2GQweQE@T)_IdlV9OhIYjgu05n|w}l z;{a<2T6qSuZVOeLxfJm;`Hxx#kdMT&rZK3dNQVmJsj)vm_Yg>rUxTFu--7|ZJqL5R zOduji{FG5T%BOH#xOBO*(jH;bZ?lm+6XGb?zGlVjr z(q?rlf$ER2b6pG{gd|Xm5!F$I<$-Oq0F+ zh3NlR*>?ssl|}1f0~Le;lp+EOqlh#q(jj93MGyp)A`k=wM0)RuiVA`d6#=PHX+xI| zf)tV76r@S-CA82(%Uvfrb7$_m@7?=;@Q38&oU`{{Yp=c5_kHUOJ%Eae69+UlcG642 zJlP40rXP^g?0q=R^8J09P1wzEyY@8}Q0swJ$4`m91|6LvP$9PeHylcsq05(pHl$5t z#BWCVcR}wbm8egFs}5Iy7YLgIDXMDjGGO$X`cpV6D?9A3U6+S6SIfPYM``BAwmpsl z>9}IV6%LMP7=ii|zXhr#C0pGhRPvq^X6s#Pr}&r{`F#L6f}r`@Mc(YPV*L%kejeJY zignf(A>rF6fU3In;^K@=+}X4Z(K8eHoiGY(s(;&Dfr_Eu6+!6V)J4#O`uOT;?#7q~ z#pC6thY@(KSg{NstmX{YgeW$nz!=yB#W!C85$4P02bJ{dKt3>u+`#B;cxMobA zxK9vEzCa+}0pv@+VN3Y7)QO+L@=ebOVk*BHN=;MyAQZ}vu|JazJ_$&vfa0?Z59Z#{ zEEF6jn*T7{dc~?*+EdLt7rK7iAPJ+nMjpVIPF;r7A}i1b%!spB_ECbN&`3(8I!A+} zp`&H1KA=S4<_Zr{-9tZYcbKU4V~m2xN;dQm^Jd=__FlZ~nekAq#ylK&;+K{UuP7zv zoQJHgRt|7eoR)4tj&bMX$YG_~vOFTHe$pSorQ{z`7L_cL(-R(mi+ifFnouBRQ1Dty z)r{gWLnDo|m>lZTbKMsOc!WQaG8L@C#PNT$f025U^%C_r*QoT7L=rh-pw?upR-^5z zXwgj;#DIAo2z@vR<%h^b25+@HYHe6Uqm~J_5nk;3$aCQro6kH~FAa!OI-i7n1UE*p zyu=q4AHJb#_Lc(VNXAaMdUg3oA9_H2F4Z#NAJ=6%5C&-57KuR^S!@&za}deO!*u6%wE7`YmY0y>qf3#Py|h%rdVOU2 z9h>&1il6efpfH>}tCea@7S}6sn%s3u)7n*VWlihA*m9-boNSxlc;IV9~&+ zgpS9+JFSzslUysCD%-VN|A`ulS?953jp)&VBVzi@BUJ=63a37L@03ezZ(9N-j>;b? zTlm2zZ+=dm?vQ?^%lV#N$mxTm*CaEvL7UWFJg!(7k)$PKiA2m-4m_49d|{4jJmJwK zPmd+D%)P&`P?*K`HM8Cmp~sr%4YxIRfD0|;bFMU+I9+IXcUHG4<&e{xkivja8l7w* zGY+LWo*5RoYrK)IAbPS&}N!s_5)Lx7W5oAtjO2(?nWs(P$w{oj_j(4hkHF_3o&NNA{wka#sdkEHn`S zJ2%Bt$cl~gCn`NmJ47aCKB+1xEo__p@+_p7wKs@{!7ZYn<65g>`ej=5+m~F%g9`nXWvLzGTD`q zPTBP2pFDf^#oM>XJ(njdDttkF>oi2Af<3+LTj-nF@2RnzOoqSYl49-*uas$UfwC?)wu&_{?Dj*=B5JCJD*mA0d3ny50 zW+be}LRGKJJ3zf~zDz_@bI^X+6~9wU>`q%*%i|P@e4?aokkP6~m@ut0Az7tYPRWkk z`!h$6;8+~7OuR}pH`#hDX?EGl$0w}@)uuh_tm*u;b0teZORoi!-ZoaP>Ab<7;2O1W zbKuFMb;rkE+k>1*Mpij`!L04@Bd%Vj?V~ZgK9W}H+Ix&PjmX{#TnwZq2{|1mq6km(ch_NT;)D_t(o_Ibb(qs9>nJa1>-+_SXl3bVWG<9-VkOf9w2UR``B2M z?~D>N{YqC4sY=bs%@XFwGw((UxG@Bp(oL66%g&v(y!u#-o#>KIG-jsu|3|^8pmaS* zYCKb6_J>SMKW1wc;=QH%-u5KJO<>~|#_Kg26|j=)a>T=9U1y)yczw;YQJ^X{IMQNz z0}I+w2z!noyhCta=kA;}UndN}w^T1?jIK5}QR!xRpny0uooj_B3_S75xPPeJu7{xw z6#d}GzxQ#nBLbNDGpdO-;z_8`orn4&hmC0TQ{pOA2C`3y;0QaDfpJ|2NXv?hvOEZG^BJ8a)0VY z+CBc{wf3b?_imw%K8P5wliz9ROTJlc^W|Y-`h>SuMY8p^{@b1+r_fDSsGP9S&?=B| zvP5K=Kod&^r<1CEh{~^WS9!cj2vT*bsHgz2z_%O=jn(-9?2k@7nC`oG?`p_jzI=%e zp9d+BFTNbl+vbDhSizG9C8qpdvTFVHf0D@>noiA3)X78}0Avs3!WO$saSrPX#yeX} z8rJzCZpUNqx7=1!qq`iUr6J3E(NB73*s<7BbkK%M@)K(LIbJXIIsDHio!)o)>|}R_ zkX_GyPU`K3seHy;=!5aKJ{x7577eypBW$y$^EyMab$WBoe_A~|iSqk{@IBe7zNQRB z+tRcJ0Ch+`h?Mw-h->{`IM0>oESnz5+xgZWtxG;WK2RN1nA)L2ZL-&#-dinP6Wd=&0*QR^Z={BIe@z3W8Gnbi^}dvtC4a{DC#iJJ2r4SeEfE5)rAK}Q<-_X z&rQfua#49t9WWic(OIiywAz*#3P$8GfhEadgHG)*n@er}iPq|}+e1@1?Sk2Q$)Cd9 zrT*^{UFxJQY^>YI8bsnntL6u1mflqh?q^LVaTnG6v^<1}7_?D`;^vHaK)?ycRt?x3z)J`k6fV5>y8`~`;#0aIaK~E!T{#t> zS?KMP<}JICKT-g(OT z2!1BUt=|{~uMB)v+7UrH02Rb6%j0S)KNwf)=H6orWEFu>;q&9=BjN2PL$Az54O#`2 zonY^4u7FK7>*&dKv(7zS1r@o30fA4~VYgW1n}aFW&%3V_C26Bu>Mc`LR1}|(AnG<} z5GiTn+3FH!)ME;LFN(a6Pwrg*R}Zrc?XtyN_kd| z_?Ors8T2b==7*OqJB7$HHgfcYL=K&pQEePt6?N)%`h8nIiCG*u!~4I!;gYH|_TR}e zCs0JDnRI+&iRpz%kSsD3-60(AtL|h0H*%vMu-`?+ zY@RvTUX=Q+B6qQlARHjjpZX83{)e6bl<@_)MOtn_7Ks0j8gd>uuso8`f*AsN=U1UR zwK;3f)h04)=NGkB5f~JdoyF*Uhotf>wjN|qHEtL)WA<$BmCa=8e+dsu4S>+)I-A9dML zIiovk6yckIX+=mLN)>mr*5FB{X2PBg?Wt)zaYCkTM%VFZ{s~3OgX%ci~9C6PlUXPR&v(;ja$Kq_RxK8x%qhk>^D%;fFc}Zcr;Bs>3vQ$ zTXep2{`_d0G?*M^sVP!FqZfvs0@=S2_3$&FNm!X+~ADGG-?)=frPYa8Une7UyN# z(T+F;xVq}>omGt}kM&vZ(~i@>=VVjHkH_NsW`K5y;_y*xZCay@01Ge_FZqs9I>DW=hRQ`g*s8Y782z|Vj; zCfhc3?49$O5^$sqfCwj2Pow`*`yFhKX{ah<5&yq`;Y8iNhEfBQ-M4h@KUfg$0JBW~X!N5RN{4^d%_^;y9X$LR= z{9NyD`|?s`5R0$FcJXga zlMSy$Fe6nO*b@Q;FZeuNC|uuAxnE3Q_*tKM%(fge3Vop5uuuOi<`12;uth^EW2M}a8>AvyMG$$Qq%nFE@FxTLIDBRuuBzoH^!P6$cw==aX%oUwi@Z>FZ6#!Z4 zxcPVyiY&Eu(a*6lLu9ENF&iw8wtbK~`CR0J%#$hdnX8=Yl{BZPVFJB|u{?^!#W$Y&lfAkm zOW|2i#^-mh5#@2ebzh)*EncPkzDWS0JRbZnRq8oJmHKD#k|*(58dGhwgpAcM9ufbQ2NLAg7`}5J;~bS9o^B_Am$$cIO6d!>s(RUX8eh8>Q=^ z_1?$7n!8f*qYiQkd&)2I|Kceb8iDNHJ&sK>h_s3N$T7oOidw>sjmf0e)eDU#7t5Kj zJ?$pe8;os79ft*shWY|m>9&^g3P@YKmFczIm={WU?ZtTu@%dk@`n(MF(Z{^^u~ZJ` zoTTVlJ4g%kzugo^FeFfO?8s4dN|d)3a!q|=*Ex6hYXfbah@hC9Higj$pS#Ug1-X-n zTbnwr5M+UR%PS%_XDB1}jdUJx)AXJLCnx;)%PF8C{K1Z7A?)eiuddGGh#49-7WB|R$W+EjEYe`y$UQbc@b4cKLf(Qm$a_DDlEF_W4Z0wq5 zf-o0BY3wTiqRv`0&cc7s-#6!Slb6D+$l=~_rhfkg7jiunpDljkNP)iGUEuqLXr5vwqQcFh*KmD|N2rn`Ki%ARNts`Z! z%)aVTnv4-RfZKb?%WpJmG;U$yy0fnS?DcVmE~@=AmfEnQ+^T2yS!gU#B8n9nBMpNl zI$W*w4)C~f8_vVXIeZYL_THTJQYsR%{`uh$AU^jLpc~(m#_W2t(?=cqW>s9cpr`lF z#2*yzdM0hBGk0k0oel(8kzkqf%Ox@)USC=AR(?E$)V47&W9+lcrc)TW}D)yF6~r>&Q6O% z_GkY>Ue02R?=l9X7$LLIY_XrRoO!D3^#Xr*%TH@x*yGdvfp8kJ>CxxCOFN~%KL4I* z?1JnUmqMwakxA>%Ml~^=Yd0yrPKGwf^fSqOhVy&Ceq*c&bpbA-5_YAD*=>rYUTW5g znS?$jbM!~Q(~aEoq*thEHft!2Us^=}{P~IFvV#5){ItGD|31|XeQM^MFg=(*zYjpD z@=qcy<#i+Sv&L@d`lImAKL!Oxe&>-Js89$gz0;kzov^|6cNp-}>DHjV*i4?CZngtA zxZqA@gQk^m3B?g7U`ru8&2#X(Z&qs$^}1V{1{l~Xmy$T~LZqCVX#HO#YDl<4Qd9XI zn5dYIX#?t444W}0wBSBi=f+Cxmm;Wcef%{ik*iS`AU`j05V8%g!PAQB3bDj;cLkl0 z%HK0c!f7uoMjKtdS^jf6uDllRcM%r)=AP6ZoQkf?Y#WOMb6DTPT!8HT4T_gdC> z8H&=aFC;a|FRn638_wlmI4N<{%cc01&~$g7^>eyH)JAE)Vp{3q%HCgtsfnX^K$`M+ z&uC+Id>HoZES;1g1)HFZD4uClo`5;;qv*b9zI%HH+KH6+F^`A5ym38kA_Y0T`oDgt z8dCcQb=rc41A0YD&`^VSmvd`Xe6)z5KI`;DFDW||8!gpk|* z(oZ^?^35AIF)=adSfMa0I}3fRTwNupL`6kU z@qy!bS^vA7+~#w$YhE2YI75DyLmys{&-;<{^LaU)Lo zkYHFFUiqzp6*dQi2~ut~%&?6qL#bU7#EK`LsxE>rW%pf*sD8x)%J&f$jRtC<<=kFK-zP>@lF77<0zyrTP)mlRH6l}!ijaT1|d zh{_~@e0sc1S~LQmtb4F)57J^H$D$<>IzH6QW1$ZMj-225(ZwpH6|io0KdS4yTa_Hf z_ClgA(Q9pvj$Q1rTffJ|;~Fh3E&u1wzd)u8?wY2Zs=}{ysh-cqbj)B<9NKFX^n21i zsNu$L#n(Us0;+r8-d7QWY9H;REgTLI*iTCfm?%g-8<_(UqdqF9uUZ|NH2{f?@z^o7 zn>Ph<{d`%C zycxghU4_N)ULrpW7Gyb@TP(ExyxFy2S~|LT^%&VL(gYs)tC<&p0*p}^#(JQXGqCDH zAd8Ti8fbkehB|W)9E;qSzg;d`{b7}SD^**sibVv@HGIhb9E$s#r@ub~Hq7GJiwxg# zEpNcEFDxy^IgC{A-Mg2f>SQ3>X_HnnVqE*;1k!6nFULI8$6hoPxTkz{baPK-Mtc6!kD9 zGbJWAwi#-F-8mKvRFH4xg^`D0C+zva!&Bw_(Pjp@dbv%51gs(=kX1!R8P^GW_i%IL zvxE6hecQW-Ka5Mk6X^p1@4KIY0fixhq`>4r8Civ3(HyN(hS{z^`wmvJ%SW3uW40uN zGUq8RS;zq^Pkn)yQcDmR`O-1!^qjJH|298Rdj}@~{qt1az*_%huK$A{8g_xCveS6u z5Htfhaq1K`3WZA1PQOa%NcR9nyNvt7+iu2|;^r7RQ#NYoqc}nC20_H3O~3dv&h!;a->qXxxtZ+vc|}(YwC0 z7|II@4=f-R9vj3Viw0(nJHD*&kmcQl4%hU=MC9Fi%wByYK8kTJ8vic;d@ zZOq4x&1Bt9j|E<2>}uJ-xlV(TUGjFHRyr&@{rwRv6Es0E!fv0lEr>dEE5&{!NGjGL z-I#58s?87b;z$!7n9`@l(Mw)@Cr^G$(%=TMP0QB!13=3CT}mn(2y~(zi+7QNi*_dZ znlJSssLy~id#PjO6AI;Mr>Y}5_REu+FcMWTa95!o18!%7nCG*(YSxx`&APuN0zUf& z<2{0NnfyBRT!uVbbmGK`WkM&eE`(3qW%?$xSRsX=O!H5m)0h=Y_Nfk~i{M2~C2s?&D2PdcTR} zq}WBOSgXuWtMQ$i7W1rw5wb4R2XI2@k}gxWr#1KUJfZWDy1O-KVZd~nH@<1ZV3U62 zXh%=X^%k|kSNO!lT5nvxZr?hBlV9|wS$KX-W-)hOh^Jo(+2VArsHp5Ze&$SyE`jXT zhiXyKf$g)`eIy9F1V!7I_1Rhse|ZKD!xy;v4`*g(ZYYwG?l}vC6@0y&c~&|ZAE(a% z?-?raLYk#H-#!>$%qSW^`YI$OLdvfH0B&qzLfo{P4xG;V!jM^*%B8Ey5M0C?EV|3r z*cBUOXn8atQ|C@JK|1i*+6vniaI6yqZ$hujxxQjBjwY3s;-RM;>Lkx=krKe$#ted& zNqCi6$mKq`t8{ZtE>SJw0(1|;4Up^j@b+L>&_d|oQ7K!4#E46yy+|rZ2Ye09&c>Fm z1C(mG%QzVsHQ%o_H#H?_;1!`{#%f^zeK1|>H#OYG&97Y9PqlB~zLWKC`N;1?N?3kI zwjNj=MT3uMse+B7Y{BZxA}{}ZkuL&UH%?1hcRgsE+Ui^>+g|0Mf|~31bo~O|d16a! zHhBg555X;req&{=2{*#j4ORN_3kt$27$mwEj=oZTz`QoTEfrW*ESUfYAZSEH1@E)F zJo21XSD^zhI6MRF_KJBm^UIu3Lwz=oD6}mcq6U^8Y)jrN?K&0)1fu&J1usb|1DKs_OQ2&uBSBM|T$< z?eO8lXB~zwDU!FGwzjs|r0oa0X;>IxcLKpLcS3rBe^8Ja$gm)Q5g5tXg~GO}(RLl9 zv4=EVRD*qP0}95+Zh;=nF66~wACkjhH8mMEV8WiPaL%^ zLth3-i-ol{3lNOBYi33)-@~v_&0!b4TxweVd?>%i)^vIDTVsq|xOr3L%joFF`cQ$X zt}Nbj_rKo(b&`ZtAGAyRt-aLLi(}zNt)P|znkxS7_s6mugyXQ}orKlit}b2M5~6bH z)}rbkd@TO2b&#MNjg*MDVDI)`tm8xM7ukzQOB0A!M7G=g`|rT>&>fYSeBFWaooskE=#AABJhme1JXtPMw)L40?|mT?{i!jSmxq!jst zmSeu%fI6(>^{u6rtnOvY;5O3E<~$|3GAxz^2C(po!eh8oZYc9hM_wMDM@oS#M4+)k zCrzX)8>^x7OUSZby?y&AvQBD(IY)};OZN0RdlKQ2L3wIv< E2aK=ys{jB1 literal 29475 zcmag`1yogC*ft6yAV_zE2y8$a1nH2H1_dRg8>G9tkr0%SMi4|Aq`Re2q+7a6y3SnN z=Y7vP-#`9w7-J8?wbop7&bzPsnmgi!vJ4hFIXVIY0+yVtlqv!Oq80dKH;*KHY~9I)N;?GZvSf5u7gL301y12$@3N>g@Yg2?pNbd;3qJ- zF9rG&S4|7L0nLcniWdBcE1D{StFZ8bq6lyqnJeKbxEl9ptxWJ)*}>J#&O%G(j~}v_ z9c6+s;QESFo@M;Uk5ZezzLZZrnfJ@9aP7Xmxnj~NNgLw=@JrHq6Uw^r0_fc zf98Bek~#ccFc3`PhZeKd-O;c7279j?^&VU>?7dgxL&yEyQlUx<;@@V>T?oPd;U!f0 zVK_`_Rz8gg*tcc8_&%}44@OpPEhxI_A3{PvaPt4SX70igq;MF+$XZP>#%A3C7YYRpN6LQ=v zO!Zx+_p0~cgUvydGTp^DqNQv+f5EEp8h!m$N~ZX}?Q+dv#DCW%OxX~YvR(By)I;uG zy`vp8KDr*DV%2r~_228i7Ttf`X=!YqAIbBLAZWt;=ntxpR@qVVSUDu&Of{{3FyKKQ1MveFPr0ygb38$e&IFEvtbLR?F`Um1yeSR>4i7(J#P~38|)qBG+uAodW#bA zf_3+bGFxf=KI%65Yoq@#6^po7pzVj2kb~Ftzh!xYWl`{yXau*VGcP%lvM#)D9od`_ zNMEZIOoTKJiP>suC6xSU)W(}noJr9OHT2vDeZ29?9>p>A;LRRseQ$W{>*ZlNUg|VY z28Px|@;CS_S$aMQ{~KOd(UdLqH4Dkmq+U5;gmc-k0keah&C*B&PoXi;c-eH z_3)lw)4i_yT=ovBXHNKdT-}vgx$58h#hI-Ha$m*4rFwy%O{wsAaWEY}@1!3(B`$o=`&j zZ+>9;B*9_RWb;)|CSJ$3?>;3HbwU*@5ix`-O)t``aYwoE(e6d%gxZs>_Va7b(;Qvz zx ziE(QDpH$b?v?~1#Nu6!pBYV}EDZI?+N& zcl%+^-G|v4?EBH(t8rG>o|CSPiDpDsitB?bG(C4eRNL5ve{Y7p8V_tOcER9YX_K#| zL}{^BH2Lv;H%I1zUGKE((LVmj<(k*h@0*M>t@LkoEHD&vuqg9P-?DhJK#m5i2VX6^cRv4%;`TvGz z{aisD%={6P{&q=Ip2)%BAUL(Qrn+o<#1g)3;rGGpeiKPcg!|Pp6Dfo`3im1iQ?KwC zX8O0S>}pyVM$(_tqIQWCsvJXP1$T{GSBi_~5>5U|MH)7mVez zj@nqa!?DPme>y>#SCJUTzk@P7tDVtc`#99Hy;H#JVxvd$zstE5i9M6nD0fz`L$UAJ z&|1IWM|F3*^;J|uT9lTOI-*Oc68^!7DY&2>`H)Q>>7e&dN8@dmo;O^oao5km+^m3! zH_aq=a4x3m$8zoE=>8|wi-^8A58bZ(B9C@%i0mh^i0>TY@wnaIuN`W`#a02Xi;jF% zHVhTkjKIxrD@`RJ<8h&2DiHm*FkY}Q##=SENRs;3*)PJQPlQxSIXzg=nDqW#CoU*j zrPFvFX)qvJE)_B}Rk6?GvoO{E6S?M}lfrm4e)MVbNeJX(jeaVhQYzE!?H2EdrI^9@ zy-tzY>f%Kmes-srPQou~T}r_vhP`yQ9e(#|xYjw6f#(b2Lv*9OYMB#C9;`~mC;9GM zn=bDW{(Cfqe?{hhFBj}@!cTp^ZosZ!+p8g7hj&rORFtVXkt zRp!*NQ}1E;3JoRWxGf!Ca$E?vcx*le_8Kojsg8SIM7U_#_JE9j6olR*PPp#cp-HHrT<5`8@XFU}0&q{LSSF8V(L4Ep6a< zv38}`nQbB68cX46sZsA9{XOc-f$)iaQ}An%XqjMYJT$nDxX)(HQ>$?VPM=F>*Zp~= zR9+j4*;=jzpED|_^&!*Y43VNYRp=eH1IDh7F_tYV{Re89pH|BRlIzXBv2W4<=}CKh zE}~~(sPH^_`%R-1+rMXdX)V>xY_%`p`k(`c$99%~W}bU&w_{cGjMLz2zwc@F%yN%k z9L|WDnN9epYqdpvlkYXjr$_HURk4R*rLy@H_iVRpm<0Nj=vJ_7dyU<$op@bX4y#NZ zy#dN{Un}FW)o8wonD%dkG-bwgK^G(NChO_%n-zU;-n=2Vw6rvDQC3t$&RYH|<`68E z)+E+xx%_U)WytrY{YpryPJpXpBAu^(Z)#>)biPYvo8XDg)x~kuaAL!R=t4*P7$f+* zt+g;bLiTPuofi^WDu*q`i^!xS3EMa^ zUH4`^eojz}c=G)G`P2OFBZ~(6OiNf}r`_e@rwnT!rPzg>pRd4}T7=(8x^yc{&}wEK zF_2I&4Ss)pxh^95_V;5HY|0-yQ4fY$$&4B9fmA}SFUpO&F!k>w zyvF+ySbDPQdWIV~b;SiRx5$^;mxr6%*S-rl;JBL4Yy(wTVGPhCsDy7hVRT_OaX z#M^tm(PMJg)wbzG9pRz(fjGi=sXq0{c35yQEgX|_ezSj8X2r`im}eCIKHSyyqP+M%kA~ZLzJ6_B6?Vw-_S%P5zF~zerE06?G=-1 zuB@$0e+_w}U3f>L$jzLg(@2(1khKRJa6Eym8~xK^)V|?8$9G|Cr#n-U`O4{!b!s{3 zWMaNE>oxx_)~m6;;jyUkoU2%^f^4E9OBgdHF|j)oi=uWZlwz{lhT>#=p}pxm4E z$e+IL47`u=ST*;7UGoJ4FpSmH89Q^Jcs!QBI=7N9etjHQE2ALGtaOuO@DI|M3t607 zd+*HI@EICNR$OcRRutLuWK2V?R8NGMLr+m&9=#`qYI!+UEYEB(g_v=m#pqqmb+V_R6aWt zgN{(F>)We+N-7P1XB&MmT8aNT}Ey%Hj8x2jzbs>G!x+GCS-YQYs&` zt>oFet6}F819z1fSX~qn8me0SrpiB)+ig#0YphVF!F3m*_IOCBK%?{_Sngm!^2Ib# z6}7=l&URhFjuHY{Vs*=YOPx2;cul6{J}33Ej?d$^d#9gPBNS3w=U43A&v+;E+xCF! zej;)v={mW(k&>2vne!Y=y+r4e)jq{W$R_&dF;sPKm%&%Q(>DZu4=)H}7lKCDa)HM1 zJf85kJ*mIBYdxj&Yx|o>DHj^B=di=Yf;))zy#DfKR~4$DFFKKn91c*CXALqV2~P{Z z7U`zUY_C@hpDps;{I%7lS$=n%F^e_2x3bb}g3_RGQm7SeAMZYYLRm$by4ZZS*tb?k zp$CeOAIQ@pfk&KQkr`VSOqR9?yjvKSJ};MqGvSDk;HfntbJYK-?bB31kHd71HBQK9 z_a3=7?vr9w2caE|7d4ML??dmoc}KB)Q7 zJejTHo!ZeQlQ__d-Pt75f-Ft6gGm@UJi{tlClH%`$$dS$wmyR05?3-+a#WW^cD^Ju zKQa636t&_ylXPCrJwKB<+;rC7Zg?=qIa2Te+)0vK!5}b5# zE-)A=C+-;IUDmU|c|2Ti4993Ginu|cWU z3LE?0_cSgp4_bS0zqOzO?Q3yPf71XvgHzZI$HO$E^TSZ9Bq}*YQV~4NF*jVsNvUo z1jAm9;1^J&eR(wwGq5eqjBq-A0_um^dF#s+v%zsNf!{8-y%rjjc(97zB5A*~eo8S{ zdS>$luXsF)i#dk$0S{!42^}+QksU5Dd?Xe zW7DT>hU|`n?s$oT%@dX~RSJ~6*v_8uW+oOK;@6-qF%Y{NtmyorWS}B1bxHHHsjx_y z39MloOwIk{HzW~aRl#2!weLkg^10f7#P6(QEPGnzd>MxA%32PsLAFFy>%*cdE3qeg zuI3VFcYVg^Z{-nEMjQLSpH4DZ49&DB|3;570flso?n^<=Om-YGruj)P&oxaXV`Ge! zA8wH4Mad#^vXm23c1l;M773g^I#`@CURU;vaC^VHaqzZQNhMo{(t}|ynet9A4DWdi z-*gifd9WPH{0fFP7FHC&Vfx%7EKFDICG{BzZ+`cmLct!*i3duQtUhQw!IEIVxCT)Y z{Oc%r^G*sKPF?pJE%}8H&|;?MB4#)vCFTj64{O$5+v%$g*iW;OW9O?#R4%uXTghD+O%n%egJ zn-sy5byDC-yRxb56RD^Xi~3^sAbZv1Ew5x8pL97cI(L&Xt4URYtliwdjvyt9SNU2b z*D9qbSBd}Bz;mRG&*Y@+@O z$9m1ECVTMZGH8BK0bVAxph#}s`KH7EOndh2T}E3>Tdk~dNXtFR*&KnYb(LgK)LhCc zxUdtUJ74qNyk9>V(kENmQ6bIOw9@Nv+H-(WO=GB~h_{QvMQ9Sym$G8>bT2R_Q?;im zjzm`luSLq2*jg5tNW8(C)D+b8~+qIde}p;Hr%tvU=?U|A%;WiUzas;&Xg6zCIArF zDG}g`v#a&Nf65w#NIvvswu$Be@l*eeCnL*3pXCz`KNfOmP!#ej@dt?*UyL17pVx9< z-v+>!h4{IG;X=)wYvU9vq;K4$)(U}d(zjjdK}QqELC#srK^NUY{|tOxbuh^2d$!k` zLQvi9mhK7bwTwBiv+4 z?KriuWdnDgL(pWdwqU@KC=i=^>FZRyIb}|5|0x**uilwxN6$R=L5Hj+=Zg@qs=!2) zI)&SHd+`Rh@(|IkJ9VW;vq=MC%|nVOA`<9$&bp#_bZqzbJc+Db3rB(Brb(JAp`)Zy z?WOqRkt-#cmf|a;t9joo8|yR156V8&7I~=s7JrsoplKFl9>{1^C<%cboLN)$7Egj* zV{klvabY8gEu3p}4_#5tN9%VKoh~Yu3l{u?E>+7&QFy#j_QLZ+ZdfjbLXCU+V{gr( z4x%2}TsbEHBv;P-4&C}7tAgSFmCeHb;| zZ-w`z5E^JKpq@4LxD36Haz6Qj+grrF&DBb!(!PYm`GpC#16O%MdvZRP&~7E&lwrFH zmjz1%qyAt+oHZttPvt&b18;}bRishsd)~`pu0~TuVQ#9FKR~MY#_BREhP>!SRJW2` zb>$4^w*(d`fQKBZyhQryjp2NgGCAVY+2E=6v15mqN!l|Rotx*jI+qD0l%YmM|P|6#a8UE;Tbvy(V zf?1Ue_;A^uq>v5PA2RkzakbvyTg^Q+9B(Q!jDeIj7vZHA!9~s2Un4i#w54BLA8Y7u zk+(RcNMN2u8HTK*oY!I$c??5#t@`Y1QG|}H`^$~Xr-rLm$Bo+pw%^&hBp=WP~27yi{`?4E#TGA%7tmciz$&~ z(XinGytLj)H`jt6Nq%EU_{?A0p|ctBFq}3bTlj;F(1Wh2;^}>H>OEz89r-joDQo&- zk~GR(<3i!|w+v}V!QA#eoD%s9_tVWJH4O_t04a;UKyZr+i)dI#T{Idnh3I zeV^Se1?kR1$-ZW`gT3AN-jmS2$Kyb81OO}?Nz_aIt1<_d&UNT-Yl5!K9g3Z>IBG9d z!%fChHI9pfGCs&)cL49|SOZBG7OMulmxqt8c>Iawa^DEBf{ux86s|dgI<7U7yF@hNsCy;R@-k zw=fb#OBB@cH}D%DgBy2VtdVaVvYFDUhU081ks0HJF-fO+AqpvzsECExOgO@o^C3{` zcwPD5{uvldWH!b+vee8J+Wg`#FYELTa~kjmEbeO){~MAN8uC>w?Oz?KCE5^=pC_14 zqfTH1y-s`X}0Xja)qbx4}c<*Y-l!r$At>lHujeHLdFdfZ9PVeG~z-e9@u zwG8shp%?$OLGRWX2La2fXR&OCP5EOFaKU7l*)L~r=5RsQ-R*T%-ntM^Xou{>7u$X^ zFLKZ-gNttnDLNXypxkp<&D<=-Udl7>E5r;Z%&vgc%Zs_0B3pE88CeKafcgQu>YwBW|J zEN798^7j>Z`4K>MwTww*9?R*UxmTyNqp9utr;BMrO3n)Ac+Y9tM)>TRbcR>f=WeCd z;6EA?!y$yR4qQVggbC4XX}J$><~WY?g^11OvHaM|ARoB$^yd z2dvN8yQq!)WV=+|HO(_ig`x+e?r>{lhpU3O@AJXw-mh9hhv%UG)O#mEo3(76HkLB7 zz!kVwU3y@=PPAX?y=Q}p5!T+m-uB9Y7_WC2NH*{jH{o1^v*{Oq7_Vu4*tHG1~%CO>duLI>o|VCZ_*dqUOiI~|DKEUU6ya9bPY0_ApA1*RNBE}_LY6O4SM>zDxC?VF>td3T&~IG zpm1A!@fqzyYWq?&+)7wqfF*1*&pw!2Q)AkB46@{piwOU(3eV?Xg_k4;&j~+W*E0p^ z^U;Ih%a~rHf(*bpH|+fV{6}tAhyN+}codrm{ww!%P~bV}y7|UmD$Mj|$>qGjm*w9^ zoM^g?CCDg#g?;O0z>mmoxuPHUDhd8%V|XkKS0d0qh*)9dTFqLQFp5kt`OXqk7_}fE zjT|&c%pFxH2SWbjWPN~##xj}K@FbwDQ;1k zHDu*zARCbNB_u}DZHDFkIswIBcAO2KURvV@RlD~B)ximO*Nwh(CJJ9e-wp5oELQXaN6%E9D7UOa%>%nnP90~yD^ z@(xxeRIJQGOM3^>{CiH5Hp0{22Bv1>!zQimuPh$C%f5-tVKT`*2(7`ZTO)j!0bZ~+vd!Ist51+z{E)O4a4*+0Lh-LZzqF46BJG@mVWTiTHh z+foHsJ-6C8X9|9<1=-2a$Q}SG*Fx{w=Ink=Hiv_{j$h8Wu7w7w>zd3(6q}G#W8gs? z?(Q$H89?{-PwcMT`Sm5TVTStIJqxiQinNv|?NgbY%H`vYq4(f*9ulbY{`f*$`v4$E zXb(#>Z$DK3^!vpttQVcycl@>*RDJeUR!BLz!?<#Yse^C+I<>SPE=O?Ip;6A50olbN zs+cO}J}Uf0D(ELy^?okONkkeired^6QD@p6oBn-s*zQOsq|HntKp^P#M-!4~7q1>W zr@3p`0lWhBaXBnJs1(D`;&RZ2~Qd$j2rl54RQ)OSg83N$6;7LN~0T&_2o3AiT7hb6uEBM zr~u0Sl3t!0;1yH=uRt>|^TKTLyhWmR39O=q(vaL|ASsS>3Ly#FJAVAC8l^*b*s*EX zd^VVK_6kwV(=KF~I#hoiDmr8X0Csf`lmnjMA1eVyK=}-2;j*kUdUWWJ6Iy{cT~L~2 z?bs<5ynUftv6V+$bDp%A_!>OM1*@q=Z$qM9PM-VFOz|9V zPie{OZmw}HnyxEqaeiOle-zDrCj9S9b&wF!eK%Kqm>{$Gz}j_6co3rr+iuY2S; zfAo4#g_pv6T8H^=$D@u#!`zl9I15E;RkYGyNx>GN-D?Gz#TEuzw?o*C!ll4-19)-Q zxJVY`b@e3qC%P&@kuo!Fd?~0YWY=^SFs2&^i({zC{*VU0ERW@b@}JDmjutz{gO{e7h@O?4}6nn3Gq)M*}?RIyNv5s%b|Bp zQKDLZ-d&r)5c%QSbUdr{iYO*sHUQw;lf00suXq5*Ev1%Cy1gYP({g6_N z(~Rt8i&)Xd`+Sy{jNK1s)r$F9(yU`s^oJ*ebjKr(C}Vpu2i0)!3cibKP_^RQ(pw^# zKjpH)afB!sfR?|+%P;`CmxvG z3Z^-!^Es|pafAExA+6h#Xh&za)V`Yc%5L~Yhefg&!Zq_P0GOA{1pUKTj9nRLx$kRR z@Z4S5AmTN{L=RjHQ%Xrd(%{pTN@|H_KVfAsu_i0EBJtgYFfPrsQnLS$l;)?i9&dns z{3qboReW&X8$CamOgWrXBgmd>SbR_}SR5`p^3(7IUatpmwOC;cl65_YTuoHQTnF64 z3y}`<0q%Tk{%8C5-6F^2q@@BOKe3V#s?w3p;m~kHk>P^b6A;#Q%Mf*d$!OEV!Fj{Z z@AC`3`O<(h<~ZT!DKX<_v7$NfV*Qzf>?#CKIL6YLF6eJA7sTU0=>^OJULo)Xd65&Z zXM}b=wUw{PQ}(L$Bc2dcKMpM92$3~w(n`9w=Z+uqP>~wJ&oLIt1_J}TmC~~v)M$w( z%aP~p05stNpow?@O+=+b6^~}{J>8Z-qt{SH6i)~IiBzEem**q9Rz{LIxcgg5T-cR8 zMY2%x%P2580;l-7;Qq;GyPE{I<&lu^7vQiT%E_X{UUtrjJk#=ig3GS2FyG(_K?VDKx^6b!wgFT zX05fONJu!`GtJ{l$p(BV6ICD}Lbe2QM2iIYXgIzxg@@wjO%#c2Qz70?0w z!(~Hvlr4nNv@Hm6O1;w`#Ct4EM3Xg#$HkUIqg7?u zaOp+!NtHoh4TtXzPlb<4niJ1Z66>ldX1PD1#AK4KQ9gT+e=*pY zA->0zyR(3@KaVXJ27#*aHqcX+55=gSm*jW+ILY<+izZzDV%K$K38}=P#1ufGOR&Ry zt+3m@Bz}*-4-_rY8QtJouMN5Pd1q56_XCW#_0?S6Cp=t~=BXa^K6A?gj=!)zq_oBj z!W|Q6ZQ=DcFwbMoHD}9D(sb8dzDSeYdCG#D#2et#o6Y%!Z0BwcQbR3}bRTJkiaD;wmsf0zP(XIx{cl*>lld;Fi+0LS=hZM}pn z4P_9~dwrZaPpvP8pdphWD?SQqC(4F$St8S@ZOgahe(x1wNVA7Ur@sTV&e|@g;IjlU zG+wV5ZK?krM)>2`A#o+XI>y%$%_$MegtenD38Rt+0{1;#> zfg0JgBPT2pEP5R;CLWPb`gXp1_i}#yVrYW0c?V0Z z=k@Ecn$Oo-v_os{IMt||;i4cHMp8lv%Jy>)4}S{TJ36oV(^v%e znKRhFSAzk&4_dP?%5{BfWjHcl*w{VTKBv<0&PpI|K9-~x3^obcb89xBjp2EFi2~Yl z9TOkUyyxU-0>jjmJ7pDuA=qIQ>bF6Szk3SD=a$^gR0x@3`l&CH=Ke_0-UF%}<3O7I z(^->Tg@!Jqrm^W_b|S-sJ8<5wF<68RZ7)5enNJxsJU2MMhOhXA#`*eA+i;9b-;xdU zKR4{?ce@oL-KC1UDy3d*@_NM9yOm2zyABy_;Bp@0Vu^<3+q=Yom~4Lg5+hxWqzi=cCRc5O?iN8$Oveg?y-_~od;P5+ zTZv}IlIXbyu$0sWz8(AaGfNyv&-<{eG8VMLuV$S`m98(=GqrqJz<_F1OwJh!SQFS# z7QxvwX{-Ll4rIQJ=LU{y{EfYE&1HecOJvi2;=J)fIgMXDn*8bc*;7~0;x|(-(rh!& z^hx}Z1sJ3y?a?DP4-?vBAQz5?T{g@r^AEr1_&8&*@D}($*?UP}Do)3>?aB?>5O1#* z?kbFXumN4dZ$1T39aO)_6E)wQ&J;B!Am2+h99jHkL9Rm-tu&$e;rg?)?#3b27rMF5 zu+zM>@^^F}VE{uZF3@QGE@ZH-0<=61kyXLe=JM|*A(Lvbis(h~uP+MbwI$D^$#>?P zgjnq8#amaubCns>qqr6Y_ZJN3$%?98%L5zx^D{fj<%DK@QV}u4WBdl+ufDK-fVa$} z8SG}Rf8Q^=S-|#jm~)wUS!=)auH;=z%-X?Hhn5G}zBD4Who0=PJa;rb=PrkY@&qSs$v1c=?9FMqZYeu%R@QJN2A30{kaSYS)dhH|a^?q17> zty3*38JKx6Q7F4U{+mrPOb6_||0zEE5cM(6FD=hEiQrow|E0q9YPY7+X$e~)=SnAJVu6W|=y8ol0em;@EAT8x6k=XZUq1h(_ z?88qP>MtspqO980nEoF>5~`Q#4OR||_JfZCpwzfuANEwzmw|X@AKco+T{dAeOc0Y~ z@&Bj)zTy^ov5%2s`YWDZ!2-~9dSa=2&L>tW6-NP2Ews*Q{a2QF5bOOx%ZP{wDH)j$ z@83Ur_3Go8L!j!n8JX1VZG`jdi|OF{9b!iO-uu2{tfc;Rf7nD%T}(h0hETjy=`ndL zSUqj?54@p#C3TbnC=rRJEhArF(%oJkt6ZLJ%K&c20}Kp07%X^lQZvK*NDk1$Nd8JI zNx>v}DQ0hJyNib%GnaiHI^|}T@=mznaCluUYoFZ*TnFKNwrD2W3ys9HqE(XVN>|J2 zN{0LMM|=itpeTO2Out`w?qHu|!!#@?v&gJZ{qUSrqUr`Wu61QP<0+^@m%C*^bC!ID zqSCFqYPuQRjN zV%UR8%pgE2|06c`88}$<63_Ik8)sYl5`)@fEeU}x^5ZuE5u)2%v;~|K*;y!m@0F=| zHLmBi`?TI=+jain)bEMXhZ5a}qiza26KKHNG~Q6R;(>#b1P}+%t5b@X0#v?kUw-%r zK}9AXwBGsdB?L`Gf8YMb9x@n~zhyXB|J|xuO zP}vTMH77i#>uhCX02@ja#mMS$lPSyoo2P=W!( z$i&11nf;@&-Q_(RKl`)yVqjxd?7nP0iw*f0^Ouu77YDS;D07fORG&(D!*C;sDwGJH zL>X&B74SxfSNkpcj&svhR!lEHOR3Mx2TG;%sHDhfSd$3IlxqUtVHDCqy6qYHe_~Ce ze2~P1nH5Zn4Ld@wPbTySGDL(ro@V--k^$!6XTb1*`;SFpHEd5-SiKa}^M*fPZHkr% z@c?~hS!4L=!AlvKHd3<2BRHve=)pv#j=6SdDsHHkOvU8?gQ?JK3}n7FQ98WwGe^MZl1D}C zh6ix$vb`^kK62=1&`L)h{2f(s+WO6;=e~5mq+zdqr;n8uzp>pY>sUvEdEtk_I<9RM zTW44h*F4R@aaFM09|JjI3-_pS*>+Er_ z)UVZb4K6@wSYdiO|oJE-?ohkeV4#^x5clfW-(G+p+`nd<#(|wAV&p+>5 z2vwW6&zR;!k(s`+U+~%tQ<0XsrB^ex>5d{p_-;8G`s2rsN`2ICfF<_n4F_#J2Pw+z zFA|BIS|>d*bcaayf8ZID3Jr=iMU2(j+{hupgXn5d0V0!iG)@wp`T;?chPHJ_Q`8;x zu?+iCJ^93Z#w-7sUJpVvpXPp*;5pTVe<J!V@NI@^<)*Z=Q%%QsUO>PqPg{ z1W~`{Y5(itMRmR*k5q?{sFf_p4VP3_0~Rja z+>>zen3BI;lhk_yKu+X;0l5KgO9K963qbQ*TJ(hC8SW2NtwPOm+Oq{eKUY)Gs@Ck& zMV%vgkv)R;N4Kdi(1$V?69PH}iI4y|C&B_HRmAUpdzcE)m@piZ1uqbO#=OnYA)L_0uDbs+@+QDLNdK*qbrs<8O-lKcWQ z>ql{<87?gY)O+LyzCx4dUx2xG(t^WHI3j;>#qO@TSv21AHHFJ2N+kt6T)=x>feAWA zb<>)ImhEIKWE~s;;aDEpOafs5kr8+bKv)#M+{l@Aow11`e;NsV{D;KEMBORa4{&N{ z?1|wkHiA5b>hP7|1EY~$3iO1+F8hhfS%WLIf4GOtzTeV2nZ=|UXrXni3Q2oqGe|AY zL58I6P4oReg_QXUZU9cO&kT$e{4-Y_oFsB{(dI{i;``94u|55??qDHcz@5H^VMRAdaXgTaex<-!WQ8amG@=WNzuA-&nGmt38xi@&amy-i0Kn) z^k7yjM~!;~c)c{(B;UPAv^Ug*>)#45HJgYYiTrrA&;cV5uURGF`h^dYfvp%$O9h^PP3AZ8uPh2eX3{IF z)~>Zyh|eu}bd#Fofz=+~#Hx5xK|Chw6L;%^2+(J@57q>zv!iTY|MdCc^5#V8f`{Z3 zDi(Ps--36?YYp85n*cZll7+=WuCAx|7GvPlJ6FF}lyTRpcq^w?2frA=vYBUNK z`ADVtFox)SmDR*M(Rq+L_A7kCfQrteqU9OT?~P&1;~Ei31jz?TV*sb`n@~;r4fQi? z0`Tr1Er93xM0cFs&A-Mh2!O3woi_kCi;tl)4fi5U9e5M$7zsEJzg>z#T-CD8te{84 zR%9Vh^v4vOe*kQ9ol_^L6bOm)VCpegn@ba|jmFzsD&i{bk|Rf=?5O*B%l+M#YRjbp zc)zqbI#V_=HLZs4;GoJp!5yMOyRpXG*^jcE@=C#4yAJz$gYPohKswkNnq*GN@oVyy ziiaADPxLJiH_gFb_Cj?$8bbq4e#MnNGpN7ub0u;X+lC#wc#X1*0k(O3xNMN-hO2+M z7kVFQG3;fQU;eulG5{abUPN(b0+4%O z(@ODv4NeJT_k(qf2aF+d%{}M8Cjvly-Q(wX-|LOhC8IPIje0&&941s?%lev;j#!iO zkjZQJ^!#;*Y733MxNRWarV2J6bpu}2K3@|+^G`rCn^qN<$D4f5`_tN~hw!%hL)3?f z=M>zt+=0KTSPU<9?Jt9Y`&~f-m=tkp43s+e^ix2f{wIdJPGEO3p)eQ zH(|P}Zf&TMJTipKd_&O69DHb14XiV8sKtJG+PQ?*%Q!_oFp3_GvKLVR=OjSDGU@|K zE^J}c1sum+Y5z8doi4h}yiN?+Knj8N)54#_A{lgOmZ1Glc>!VEjsScPmlc0iKm*$P zlOsW$4RCM>@UxQy1AOFY060VmM>fSxm7dTHF0c1a@Exygr^+2~7^Tp9=zY2zSq4~9 zE-v-2)F<5!vDG4*_YQaXb%k#zt9APU!lk+hA)>&t`aYpj=t;g{yAHQOYkf_p5 z4*{m^E8c4Rz|T$#gLpr%!`0(?<60BQ@Uju4eR5FvS4Yk>zAke62;V?s-|7-Jrt zkL^A3@b(&_MBGmV3kZLz*RQe6%kI)#yl&iK3*XaO>gml*SM6mkT9)J|tR^Nn^kmNKDAE)p0o*&8mBYh>M3SAyC$g;p$BS1`04=34h>a&juSFRaXfl87VxCuu+ADQ5 zQc3`F!o@wlwi11MS^+sRL;SKAN$IgDW7UG8;VZs})Oqk<&a43X!!l|Hx#scP2H!Jqo}|4B=U z^M-IksVD1wGg-%!|KLqR0B<&ECGejC=*N8&V+M|H!h2VsdBr@7Jh%2zV22al!hdu% za0HRG?How~rRqu@vI(eng$J5f_3VE&Wj}?#g3$Q!$u2y3e1OJRkJ1}XrgE9I$~kP2 z=t_g^;8~{bbDkN7u>Z>9vtS`z)j4p+h}R-r<$Kz0P`YsaOzEgJ)epEB8E3?dBn zEbB3!QL+~-->o>Lz^%1l83+VT9ttq=LR(@F&XkuK)}Mq5Wzv6CE8@EQ$IhNj5LMwh z^oKSRYFL4e)&G)E{ufyQh&(vD1CRy89yd^t!@dGQK3sM$(gt0(IoI=t@_%ThVfQaS z8^kbtCD2C2wu3BU1g?p*8n-ALyqWTbG7)Ykc`(#TyF_}>9Q9JAHR!V`vrB;9{XZ=# zT4MhC`*~F>78QW3R}N0k;CIP^(=!Cyv-hdQLgk}@pZ(XO0zImK{1WsqE&v_8j#h%< zOZuHD6rJgyanH1`d4RQ-e}q<~$&yF;_dI69NP}~lsONR}ej06{_+I(-S}_i_D1x6i z#2V>`8f&u;#po6m+J2n5EuLEBWrmyNgyRDO)skt+%6$z#aMpnCAKfJ4jQG5WTA%yGtp(M#m$RQ$LdlK%(yWQll&wvpch96Y#a7FtZ@*Sw4e%XLhLCWedy z=bp%%to?O~TEU*7RJ2w+I5n=W5n(0AUckD46Z8@t7xK_(>@m2tZi1(tXNR@Rrh8Q_ zIISiN#sdegJ=d1P-eaiOq6)^5E5rbvhbVf+ZqEuMpl0UXsuHcN*|&W|(EX&Dih>e` z4$zsmVT2!;keQy5U!r0BJ+go?HSb43*VJKer;E=0M)K`vP=h)~!PnP9@i3ra zA-CKIFNiA0A->zuPcpPt#>sQo6Ml366u+`DBeezGJhofE0I;|_a54rw2l#Fb{@;TnwmV1wV$fRY9;-QTR0?{3)Dd z@}j3I;AcsG1T0|Cj190um(CBRAO@8U^u}tqg4eXngCBUm{|EH4eDb2WR zl}R_)4FeWXXAQUhv;S`r$`4b}H38o!LIWKe=z4v@fFclfpg&V{ZqGR`lx*ki*4Efu zW1?{rySI(O$2WO#A80uIUGcmAc&Kr|yo;ljfPU-tnL zZ`!tD&c$kytiwlpF5ayKG47bx-n%WS0M%)vXbIKYZS&~^`2Y!A|1XjZpXD^$%Luzo zw&Z3SBfB7#JJ5q}#9^!W*t5IA|=D5g~=fiqd4BnV$&n-D>^nO{@y ziN$ol?35;NIkz(lzmoosZ?ZxM?f(D!G}hN{CD6xoI)M-=o%QQz5}lg|bRkt{J}9-z za>9*bJ_z3JdLSaE$v_zadd!xaME=xoS6d^{O8m^-zXhMjzQ zQqV_+A&~&x{78^|ckJl{---wqt@!H-V&F03f8tV4hedX~#;8R#?`ce?sbibX-k)iP z&Zt55O=uup_-t63kcqNOb3*ME_bn{K0;N{pthj-=(T~GA8PEin7XQug9W$0lGhKy= z!1IPn)rs@yQ9`4#b!m0?lAu_jj+8TywcbxQOi3}r_&?GB#>W>o3^Mq$2!ye&hLx6) z0RXiwhyazyte5Y)^sqtV6@^hpKX=Seo@$QZ8U0|2TXPrrUKwzf9U%Tt>r|c?I~yE< zCITH-KZzWWVd<1(k!?^uCz$cR<_|x^USV07?l4co;BuQzN*xz-%L zdc@-4#qMj6xFYG3Kt~HC_~+CcBjOSf+?r5aZ^#qU^6&a#|4wCXRvrsJZ9>fN@&KVf zY7m>P$2hoq}9A4mtg8QIt*cwb8$kDYrbCyXFx z-rQ_MNcgVmvLRkr9uoA51jvU)aAI)xw1h(+(0$Tqa`0ZZQ;OsZtX0Z!X!K<}Z`zbx zyvcCNv=cgJ8UHIOO9)QioVB3#l0f2;s%8!TAT+##CG;S|i^dQKMuq711Yt0J;bpiQ zI74Jq-h!4dVkqop^q3~}s=ajc?DlTgB~v2D_r-Nz+MOPpxdjM@Y;0s^bE(a!17-OO z=9feI>t`b)w{(WxOnL`Vix9izD9Sk531O+b;9X1DVB)RZFRz8c)ARVdO-u&>AWo(k z+OI2YhA}U-OYc&bRNeGp4DqAK4R}_vBMFzjH+ZgpEpjb-e$36^$doFfAP#l(Y44{F zVo$h+&08&{u=^k0c}+gCPq3jfPV)(0L)ISH`g_vY_p)-bYoVv?i~gk~>;rtc28GEhJCZ61`QH^M*j= zQaHX+I;H%-Iy>vAsJpK3gL$chfP|!hA|fS7hXK-{64KHkDUGB-CwVS}tmQw>n%~Tvea_kY?7hFAqi{Gyf8~w}|H%k^ zt6-P(sRARCM6noODZL{UaTiWcd%p0o5Iyc38qpzg8C&|m17#dE>t64(G;znVMF|oi zh40!e?z}f+0DV~2#~1Q@77TZ$3_YC42iDED-*=KxyowQ|;P2Qvg!G7~T-ueO`8A#I zIof;8r(i`%q@3p{TFDm<9uVV2y#BgwlPkH+rBQofS85FZ;9bBgn(FEKTjZvaEix;K zQx|$R=aS1P&LQFR<0LRb%+ZxK1{pXChDJH7qar(Bn{_Dw`DI*D6w_h^flu-99yl5 z%v*MW#P>+nbIbOcZpJV!{8lOt8cou?CRo&t4u9scbbWHWFL8$vK3j)mM{CN&u_c>m zKpr_49V=` zLm)M~c6kWhU&}#iWxw;1gP9kFUhYK8n;$a-KF5$Bg|GD3(hgI!!xzx$2Xj+<4KcP< zf$$jgtpjv-nRV5k2hlaqf~VZEZ?;Wx3vCJvKfD(sF;W+mEpHJQXZW2*qkGSjP*~Gi zKKm+r(`fLhC_!?+gAG~@v?dunrscH7Pt>v;$~q=kgvmU~DKT1?w6%fj>OJh?^C*8f zgr1j0dM@}y3ux%SqNb_6T^QEMSdP>P{<9MloyU0uT3_6@+3}m_@Y_Oq%j&JlpP!v} zyt`9&((A7|HiP_IAGZ7{o+H*`DUllq+qF z8lmqtw*!g;)K{P^<_Q1-1V}MDItn|}_exhA0DjoH%D^c2=d31~DD)kx*1?zM{mlqT zu_>lKb;GBlFaDYh$y+HOu`2ha3}_huq{rK(+MO^+Ko(kJShaF>1B|VB)$Er&cH4B^ zPWkr;)1qhon$6=qN3D^uE5(gg^Rb9QPa4g}XH}-jkw$QQ(*-qX_Wk^f$A4x?JS14{ zk%o&r{T51T{PnS>S49hw>Vs1H_QRsM-8IO5gtHN3Ro7bE`c7sp*#2xWtVP3d%degu62BxXQ6ej@rcu&-!Zk_ zUd-o-ylZ67Ubh;~9lg5k*M6qk)zhX+!k5SG+oH5zj6hN88He+GTh7UGC5O$KP#(RJ zwww=N*SarcN=loz+9)iy(h&PMEJGOmyJphVGgWi+D)+U;IRFRy{-s!eO3n}Ie2&)mZQ8?PkX zS2=knE&@nzi8Z@FUz)aUE*b^eG)rg%h((_#eT$pB3;Hx(bP2{i>x=8pRMO2++!!F! zlE`|cKyky^6Gm!;4Lk%=mAKKq%>L+95KfS4mt2T=-{lTelpk8=<#SEHN$?c{anQ1E zUS28}(phYyalk)!N40C}Rozwnew2cO*fs9M^-1Tmpmo(b&}PY6J2A=q4e5yd(}X-z zVTU*$KDx}aQDs%Lcab8>`GwEYXHWLQ&&$2(9{)Otq=JS?rKw|*I zP{}Gb9|}bnvJj&M#nI3O%|G+K22J*7_$NLG9kXGtcnh(F$7bEm&|vW#l(mXO(ueu>`>!hyk=PASlv zXwx%a-5f%vLLi0W0ZAyUWV}s&O$_i06=SX_>})Jxp#~n9Fa3Dk>O*QOW)HB1`eEK| zu(e+FRX*>v@oBex3}+>%NlH~5yQux&fMCjoeZ^VCTt=h`Ta>`VSzqXn_1W1#*$;{_ zhpoAvF|@+yRya+FxQuUlvL*jK8|ETar%*N3g&XmfDDRQQ=x_xGiSU$Y1>JCE5G=A; z>l3;ebfe3>_*F0?O<=R%Xw8>cw6*hZ*7=Uo-lzfk>2&d@8+_BlLD#u7J~}ouPqilm z4cbpZGt^bquim+3un`h=cYBIAQ>mr9 zPdPCMmXK-?xusCt1+h@Hk@p#0@Wo z^`*j?*N%Hz%v@SIBbmv*zk!{SDIal;-g|Et(>e_iQ^Y_wprx2g=dp6X3q-B%5Q1>pH>wagNLeyH4W&Fi( zsqITA=y}Y3e2_iGYdG+9eJgg*;!dU$yX$2+#BB? zDpTX1I$`?2-1)WJ4}lfa{JSxPcZ<18&~qNuya{zbooWvhPa~kAZg7;!Us2anOCPgj z>9Txo7#MGj-W=CEy1Te$Ig4hGbU!>XygF>2Yd=^?Dm{g2W*vJ*DP`1?qXSjaN6RBO zC|D&tHpFZrT@904Vq3$PCsxmU_}uVpgp+Ve?|ZkSLpD3CXE$E^OFNDfi2j8N;#=QV zcq6l9sgL{`;Z?E0(+Z+ulip7<`y`JxS z?{#{mk7d3U0mGFY5-dMyCs`ZK>ioFC3>Qge8Mx;|;HI@VcFJx6ESPzF4|^bH08pN4 z?Z-zYhSRC3jBj|RDDyziKb4DD58hYW55IEszJaS|y)1brabH^8g@5g!vyQXrv!V`2CR$H|+j+5+O>G zdAl?9Q>Jy|7IH&pbpojQ^YoQ@DlSZKAT-reX1D$8;<=)an+~8gp`v6qj1v4k)c1Ml ze3odUY7SDBIu|Jy%}I9?*pr<1C7z!@#`=3`=v&WjCSU}yL^3NoB^T?0iEaL;FEJG7 z&o(L%+)E36GgUdhsSzW|)$+H09p#le)v8I07LA^?{9e_+Y3KamCyG7c&_ud;PKuJd zemtlpA1ZBA60T{c7W7|hye`9DW!5Yt^mD;-d`En9A)g&YS-v>U6yt@rwyKx07eHE3 z=!R6Eg2#`7C~8y9t!O+v>KB?SK;V2i{CuSd zw~XyXYc)rLd=HUfUmVUAYjV#HvxbQ-FVxy$mjj4VvxGvTvr-tIw`_7h`n{pJnsb`x zC09f1+}he|rWc8ow)hdbix-taW87$t6YAk3s~k3b8O$f%MaMkyY>6_$sjnH$-D*@c zlQ>olbP@=(RyompPHo-*AAm$^U+2swtf&@t~1fM!7+#PD+(fjRr zr7gaeJ8mk&_WaD7UKj>Mu@3cRPWhR2gxJ#9E0Z{%n#mE2NDevD*5LqHdDb~1$#wEe$!n>!gq z%$bg=m2)yqm}!Jxe#1)@Keog*BWQn_cn(ZEBNjhmF;dl!^%05w=qS$Xl6~{%)qtEZ z%`;Xo+#o}_hq9tK^=iCVqRjAuQwm|-RIBbw~82Qzm6%y0w{))GdjF{WX0TCHca*%iXbWAyXH7lWa*h z?xW+vP6aW)hqO1VPRJX2UyAv7(@kjUpDPN=506w3%&z-}5-tV7g?Bx!{P$E>o`&?nVEL<2Ok2=D3tbj?v*}-$M z@;yVwF`B9Qi7_@x9TqONt_wjIjKCyvdeKO~4Vc8Yuc>bze!9#j&bH?moOOcYb>eKQ z-r7BeKx5Zx2{~f2gA*c*dE87SS~;$a&0jo^>sxAWt4Uc_!4pVp0$SrFC=d^+m2w6d z*9+INp5GfY@Ob8Z^Hu?pMgLC{(i_l}q`KwF)DP6;^}0F)c3Zx|e%@m7Ogjx;o$+Y^ zQau~{(*?p&SYm&C(3l};CKdd@^>E7H3@nnw7yWd&m+z`s3wfw)9a zGC+d*H%@97!bv^Mvj4hrggl4okCPFBeQa(tX|A3OtNuHCxuM_>|daAik;G=V&+ zHd8`nmL4Uh6^1BzV9~1oJ3H080w4SnbpoFPAk-s|PzrI$=8G#G1|{bx_LRu51c+E}7fm03L;i*EAY;p&`^KewskvDG!$wzUP5rEni; zze-*;n4;G2R9sOZLgL_45)RoucHRg0f4rGCp?&1NxKdZv3@u4@+47mF+M#626ZdICU`$zNnU7(Jt}RTO`Ho`T5|~@Yc5r*zsNQ>%EqcU8#*L#)_O#( zQ9(c1qO~@D-VP?SRA19%B0vui3^Kj+00Kc3i7tHxlymCYLOmAlGykzH#vN=*FRtK2 zS<*c5-8m-_bS@Q@#h@=2RA*sXYy~|=?S~h4#F^aEVU7sF9LWiDRk#c)=epr>V3||A zlkb965n-EQXS?|E?%6~Xgd5DGMmtZszSPu2qd5k(nkxZZgV-W-?$;|9mMVVCyF|`& z)bqu!+9kpK{EMTX-UL4?T(V*WKDzNzga%kop6G~=CthtNlCsT1f*jc!ZVmM7VM_^b zexi8(@p{^Cex9a3pA@4zjbR6yLGb5`%B5mGp2SIfOtV zX7gpTP2T}#3;g`?;^jL?@bbCj{_V)g6#?5O3SV76fZAIUqXhXU^s|NhKoJ-G!~#(J ztB-qBYj+m_YLBQF;g5tEf#xF-=+oin_brx2*ODoKRt*AAN5I{+GQC7-jh_=6?*K61?$?;A1n;A^b*RcNpP{GcfYVv4qP2TGFf+ZiV7l|{;> zbk_Uks89|xb|m;Ity*PYC4p4j8)SM+weI@pBj)H56pfpoFe{{Acuh;yV%XPoBolZC zssl9>DC|g;X7lMk4ITQ)e29J?)MYb#PLd!mmW5PXuN1{2{_%F`tr4cTD30zCL#Fwf4|DGv);!N(z9|+=lqDkW| zD>zLkl|otm&Y#uM&^cPAQTe0d6d7=6;Rb+q#}Awa@#U81FYiC6A~8i70@3B(H&g6t z-@Y9bTzBMMcLa|E6Dk3G1x|GS$fE@=$7WYqewDY&SXP(;i4(n=;49KS@x`Yr!-Q`2 zTAzaEETJwTAwO8jtaVjaa6|VF__x401*&F+8ugmUQ3JwrK<3xg2oA;rG9S%Gu`)T} zv$-34{}*w(%Q#&}Vo&Y4LWU#W6~8Y*DV`~rcP(H)sAUf-u71zp(|^C-;@Og)G;$My zqva}J+5QkyYohJg84CfaB#5Ms^Yjx50k^_ctn1~L}z4xS9Kk3Qy%)vkhb$VCS@ zhX|)keL|vX=*x%P;^{$wn6GdQ!6lghZl6>V6M?P(QrzhyiY;xR%Vcq;7ABL+VmD%K({*e?fw zj8B@2fVSXJU(B#9j_Aogi7$sUhXj93w`Ssk%RT-lmy8hm2jI332zn1#2#^6ce)jLJ zQ}Omc=fS`!E8KU`u|q(2=I^&4?hk})?vz{4s)F$EiOWa1U%Mq3ZV-usT||%N1|S(a zg|v9~&xil*{U&w>{@+t)BTu&~N|LnJ~BKL=KgH9s+Mh6)Dt5C=9=&JE@N3?xyaRM{lSzXwjv9U4Co=rX^ zr0CKiw(c)}72Vb;`)GnWgpT`zbytSO>eur~Hf>76ZTu^h;+so1w6z&vgaMNsau1rS zRr;E~O?(#xVEYRijsxHGAJna}asf4(1X{MGs;IX99sV6>11<2Y@on~|azJn|=`~a` zGh@G?6q5$|+P)4tfciUy1)QL#W@1uGSB&oPny-Iyu)bpIURqijBJT^NWJ|I+4Nv$4 zPoU>DY@<<=XyC2Gf5vaEA%tjd-QxPWKa;u^sH6^^s3O%Q3B<0wAdNfB_MqJHtm9(E zDN3o$GbA9w#H@HjOEh-E)^rM!?AH;m5Owixg_F6E?XT;Q=XAP~eTW|Dn?=A}CjkYc z^b&trfBP?#DXEX5g3P!RlC?Q|mUNSFE8`yD$D9@&C^Bh)%+qzQ2lCF9MYzoL^dBWQ z_l4{Sf?+DTE%ec407N9Au=3S^PMi+BLZ>kg^d~ z=lAb-K51s(et#443801NFjy4o5maII9H)YERy!z?oTSUO6{m7qL|MJ&`QbOW=sDCh zRxQ;k0k7K=5`Wf%mDfPT*IVKT8|H{pDJsKybviY?&~fx;%oUxRE593^kte{HFlIOc z`T&#fDL1AD2w2NxQn3dhndG`!_3D~RR5PnrXnx&Zd}9c`dY*oTe(U81h#C$Qx-ICA z;IkjHN&6-aR=F41^$U@}AlA1;ad1AUtycA?1#fq|{}=Lh7<+#(S7bo}ALKg!O7p9) zpKzLRQ$__}WRSnETV~%rP~j}6jRd63AkIl-lV5OkU2)>Jm)M46yC`TyHr1P(2p@=E28vxln5im)^62tB#0}xI@vf z$vC6Qg&hgIxV1+52ab)j_Z@MA?p+1Ow}6n}T>fYbS>16Wk3Rgo%iCXI4A&Vv199QR ztg|evRNFgL#~3+O6I0;7Y=>*#!5Zdwo>T_Ku!jf$ML^8Wk?h?G zHOyz-nuVKI2sz7 zTiIHc?PX8srXfB(0n{QHIyu3Um)p@NbRmY>`sC07PgjUkcX~;LS_ZN zRG}^Qs)?y7?B+&P2*N)&B*YZNyP<5-d-Huf29?Nri(m=l zA;p27T(1oj=vMRvr_z&{XlZ3((t0kG^m@$YmNCG*_RL4Y@&GB2nuf-ycjE3H-F_TY zsNkP=cV)f^s;o5}WfLS_t0U|>T%Uv8&D$-%6Y3<&UDbF=8>p8~CW<<@6&DvfFS=I^ zPWqD`RIaZc3ls0~s;R^Il1{>^ckM8RvAjx-=38*9s<6Z)IkPf}xqLkK_Er!@`|?iJ z_oR~RNjtp{{Ne(Q-(FCB!>6vUj`70BStjw5A}0E}TqDa~KHZgaj`~y>v*>~AEs+-v z>Jl)ne$qH6+1s}}KWTF5^Yn`1#NVlcv1H-yu{dczDR2n%-oE{%cF1mnsmOmc)+FdK z#GH(2h6?xVbnm#kB@Z=qi>(?)(Lo?_RqODaU!Uo!-dU`I#bX*S8DkSC!*1gO%Dh$f zE^S@BfK#~rnhSz(X8g;`Mka7d1f5;P4HJ4Y#v-ue8h}7NY zL9wd0diaz3(vbIByKptI7F=e#XXbZ{EZTp6c|ije$xv8D6Av#^Rd_?3OnnMS1xM17 zrRjpvL6pfg2Gt%bS8CkhrUJx6B>U}c$@aoEABM|&p;8s6X=x8%fB5iW%&NH-JntjO zqU-RhCt#xejasx&tTSf);RT z2Ofvl;oj`_gY`C{&Xr|YBZkOqVVOc%oV-hrUnPpkp_)p>-C;-?Yuix5359sL+~R;g z7>&h$qBRyio$<0(j(lqjcWx-hxwupMdJI&Y1&ft)Jhnnipu7X$KJ~#yrORxxEsmtv zesJ4XXL~2HD71sSADr^xB?7E_(oNX^t-vin$Rjm{FX7fJHCs$Lb^xa2MbPLYRx@o5 zd&g}@0JOu?JpGqn8)rDQWS-uPzN~3ATq{We?s{UpCF*pZ&)6$rc%Zang+Ao3nuvW=HRv+^{R!M)VzDhL`$c!#|4HznSD>ga zaGANcSi55n9U!s`eI*ruUC6qZejL1$$=2!w;;TP?yad8txmX^94$r-I;bCP6$6!yS zfDnY6oKf)1l`Em(iK9TUuryQ?$7lT6b4eUv93V_@2HD^ie1|N}Y`P#yHVar~Z)_V380k4>ZJE5-! znKaB4@7g0G;NBBrNxIhC69lR83toT8vb$Sxah&tK4c|itV!)`2DxU>az=Vw;&~$Lk zNpYJ0#lMYP!axMO2^aa0Fo?V5yo{G;1sOCX;J$*MHA^Flnj+{KgaP0>F=igV$-(2~ w`$z2?%E?D)kpn&4lJ-A~@&CVZ2;r#uRJL%|Q{8R2u#!YUR#hhNrqR>?2RK2d1ONa4 diff --git a/_sources/content/01-demand/01-demand.ipynb b/_sources/content/01-demand/01-demand.ipynb index 8747f57..8ecedae 100644 --- a/_sources/content/01-demand/01-demand.ipynb +++ b/_sources/content/01-demand/01-demand.ipynb @@ -3,23 +3,6 @@ { "cell_type": "code", "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "['Solarize_Light2', '_classic_test_patch', '_mpl-gallery', '_mpl-gallery-nogrid', 'bmh', 'classic', 'dark_background', 'fast', 'fivethirtyeight', 'ggplot', 'grayscale', 'seaborn-v0_8', 'seaborn-v0_8-bright', 'seaborn-v0_8-colorblind', 'seaborn-v0_8-dark', 'seaborn-v0_8-dark-palette', 'seaborn-v0_8-darkgrid', 'seaborn-v0_8-deep', 'seaborn-v0_8-muted', 'seaborn-v0_8-notebook', 'seaborn-v0_8-paper', 'seaborn-v0_8-pastel', 'seaborn-v0_8-poster', 'seaborn-v0_8-talk', 'seaborn-v0_8-ticks', 'seaborn-v0_8-white', 'seaborn-v0_8-whitegrid', 'tableau-colorblind10']\n" - ] - } - ], - "source": [ - "print(plt.style.available)" - ] - }, - { - "cell_type": "code", - "execution_count": 1, "metadata": { "cell_id": "211eaf07-febe-480e-9d9d-f7152cca2a4f", "tags": [ @@ -123,8 +106,8 @@ "ardy = 0\n", "\n", "fig = plt.figure(figsize=[7,7])\n", - "plt.plot(xs, ys, label=\"Original Demand Curve\", linestyle='-', linewidth=2)\n", - "plt.plot(xs, ys2, label=\"Shifted Demand Curve\", linestyle='--', linewidth=2)\n", + "plt.plot(xs, ys, label=\"Original Demand Curve\", linewidth=2)\n", + "plt.plot(xs, ys2, label=\"Shifted Demand Curve\", linestyle=\"dashed\", linewidth=2, color=\"#049348\")\n", "plt.arrow(arx, ary, ardx, ardy, head_width=0.8, head_length=0.5, length_includes_head=True)\n", "plt.xticks([])\n", "plt.yticks([])\n", @@ -173,7 +156,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 4, "metadata": { "tags": [ "remove_input" @@ -188,17 +171,17 @@ "q_2, p_2 = 8, -16\n", "\n", "fig = plt.figure(figsize=[7,7])\n", - "plt.plot(xs, ys)\n", + "plt.plot(xs, ys, color=\"#1F578E\")\n", "plt.scatter([q_1, q_2], [p_1, p_2], s=200, color=\"g\", zorder=15)\n", - "plt.arrow(q_1, p_1, q_2 - q_1, p_2 - p_1, color=\"tab:orange\", width=.1, head_length=1.5, head_width=0.5, length_includes_head=True, zorder=-1)\n", + "plt.arrow(q_1, p_1, q_2 - q_1, p_2 - p_1, color=\"#CB7432\", width=.1, head_length=1.5, head_width=0.5, length_includes_head=True, zorder=-1)\n", "\n", "# (q_1, p_1)\n", - "plt.vlines(q_1, -1000, p_1, linestyle=\"dashed\")\n", - "plt.hlines(p_1, -1000, q_1, linestyle=\"dashed\")\n", + "plt.vlines(q_1, -1000, p_1, linestyle=\"dashed\", color=\"#1F578E\")\n", + "plt.hlines(p_1, -1000, q_1, linestyle=\"dashed\", color=\"#1F578E\")\n", "\n", "# (q_2, p_2)\n", - "plt.vlines(q_2, -1000, p_2, linestyle=\"dashed\")\n", - "plt.hlines(p_2, -1000, q_2, linestyle=\"dashed\")\n", + "plt.vlines(q_2, -1000, p_2, linestyle=\"dashed\", color=\"#1F578E\")\n", + "plt.hlines(p_2, -1000, q_2, linestyle=\"dashed\", color=\"#1F578E\")\n", "\n", "plt.xticks([q_1, q_2], [r\"$q_1$\", r\"$q_2$\"], size=14)\n", "plt.yticks([p_1, p_2], [r\"$p_1$\", r\"$p_2$\"], size=14)\n", diff --git a/_sources/content/02-supply/01-supply.ipynb b/_sources/content/02-supply/01-supply.ipynb index ab38e12..3b5c53a 100644 --- a/_sources/content/02-supply/01-supply.ipynb +++ b/_sources/content/02-supply/01-supply.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 2, + "execution_count": 1, "metadata": { "tags": [ "remove_cell" @@ -16,9 +16,9 @@ "import numpy as np\n", "import pandas as pd\n", "from utils import *\n", - "plt.style.use('seaborn-muted')\n", + "plt.style.use('seaborn-v0_8-muted')\n", "from matplotlib import patches\n", - "import csaps\n", + "from csaps import csaps\n", "import warnings\n", "warnings.filterwarnings(\"ignore\")" ] @@ -40,7 +40,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 2, "metadata": {}, "outputs": [ { @@ -72,7 +72,7 @@ "4 | 40 | 50 | 90" ] }, - "execution_count": 3, + "execution_count": 2, "metadata": {}, "output_type": "execute_result" } @@ -89,7 +89,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 3, "metadata": { "tags": [ "remove_input" @@ -98,22 +98,20 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmoAAAHBCAYAAADZ4ZfPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdeVzVdd43/tfnLMCBw74poKDsBxQNojQ1NW10JMwscSnNarzTsat1arpmbmcu/U01S3Ndd9N9Z1MzlbmLS4aW2qhpmbGkcEDPwQ1EkB3OwnLWz+8PDg4iuMHhe5b38/HgEed7vt/veUHgefNZGecchBBCCCHE8YiEDkAIIYQQQvpGhRohhBBCiIOiQo0QQgghxEFRoUYIIYQQ4qCoUCOEEEIIcVASoQMQQgghzqSoqChMIpF8DCAV1OBBBs4KoNRsNj+Xnp5e3/tJKtQIIYSQOyCRSD4eNmxYcmhoaItIJKI1rsiAWK1W1tDQoKitrf0YQHbv5+kvAUIIIeTOpIaGhmqpSCODQSQS8dDQUA26WmhvfH6I8xBCCCHOTkRFGhlMtp+nPmsyKtQIIYQQQhwUFWqEEEKIk7lw4YL0oYceio2Ojk6Niooas3Tp0pEdHR1ssF8nLy/P99ChQz7dj//0pz+Fvv/++8EA8N577wVXVFRIB/s1B2L+/Pkxn3zySSAA5OTkRBcVFXnd7rV5eXm+06ZNi+t9/L333gteunTpyIHk+vzzzwMYY+mnTp267TzdqFAjhBBC7GjfycagJW+Vjpn95un0JW+Vjtl3sjFoIPezWq149NFH47Kzs1srKytLKyoqlJ2dnWzVqlVRg5W52+HDh32PHz8u7378+uuvN6xevboJADZu3Bhy+fJlhyrUetq2bVtlenp6p9A5AGDr1q1B99xzj37Dhg13/P+eCjVCCCHETvadbAz6+77q6Gad2QMAmnVmj7/vq44eSLH25Zdf+np6elpffPHFJgCQSCRYv3591c6dO4M1Go2odwvQtGnT4vLy8nwBYMmSJSNTU1OT4+LiUl5++eWI7nMiIyPHvPzyyxEKhSI5ISFBcerUKS+1Wu2xYcOG0PXr14cnJSUpvv76a/krr7wSsWbNmvBPPvkksLS01Hvp0qWjk5KSFFu3bvWfMWNGbPf9du/e7Tdz5sxY9LJq1arI2NjYlISEBMWKFSuigOtbwQDA29t7PNDVwpWRkZE4derUuJiYmNTFixePtFgs18559tlnR8TFxaVMmDAhoaam5oZVLDIzMxOPHTvmDQC7du3yGzduXJJCoUiePXv2aI1GIwKA3Nxcv1GjRqUoFIrk3NzcgP6+59XV1dLMzMzE6Ojo1FdffXU4ALz00ksRa9euDes+54UXXohct25dWO9rNRqNqKCgQP7JJ59U7N69+47/v9PyHIQQQshd+u/cyyMq6jq9+3v+4tUOH7OFX9claTRz0fq86piDRc2hfV0TE+7V/vLjI6v6u6dSqZSlpaW19zwWFBRkjYyMNJaVlXneLO9f//rX6vDwcIvZbMbEiRMTf/zxR9l9993XAQAhISHmM2fOnH3nnXdC33nnnfBt27ZVLl26tEEul1vWrl1bBwAHDx70A4Dly5e3fPDBB2F/+ctfqqZMmdJutVrx5ptvRtXU1EgiIiLM//znP4OXL1/e2PO1a2trxfv37w+8ePFiqUgkQmNjo/hmWW1fq8+pU6dKExISjFOmTInfsGFD4PLly1s6OjpEGRkZbf/4xz+qXnvtteG//vWvIzZs2HC5r3tcvXpV8tZbbw0/duxYuZ+fn/U3v/nNsHXr1oWvXbu2dvXq1TGHDh1Sp6SkGLKyskb3l6OkpMRHqVSWyeVy6/jx4xVz587VrFy5snHevHmxa9asqbdYLNizZ09gQUHB2d7Xbt68OWDq1KmasWPHGgIDA83Hjx/3njx5cntfr9MXalEjxAEwxmIYY5wx5lJ/PDHGjjLGnhM6ByFC6V2k3eq4vX322WdBCoUiWaFQKM6dO+dVXFx8bczU4sWLWwAgMzOzvaqq6qYFX28ikQgLFixo+uijj4IaGxvFP/30k/yJJ57Q9DwnODjY4unpac3JyYn57LPPAuRyufVW9x0zZkybQqEwSiQSLFiwoLm7G1YkEuG5555rBoBnnnmmKT8/X97fPY4ePepz4cIFr8zMzCRb61/w5cuXPU6fPu0VFRVlGDNmjEEkEmHJkiVN/d1j0qRJ2mHDhlnkcjmfM2dOy9GjR+WJiYnGgIAA8/fffy/bvXu3X0pKSvuwYcMsva/dvn170KJFi1oAYP78+c2ff/75HbWqudSbAiH2xhirABABIIJz3tjj+CkA4wCM4pxXDHGmowA2cs4/vsk5zwL4FYBIAO0AigDkcM51QxKSEBd1s5YvAFjyVumY7m7PnoJ8Jcb/88sE9d28ZmpqaseePXsCex5rbm4WNTY2SsaOHdt5+vRpmdX67xrIYDCIAEClUnm8//774UVFRWdDQ0Mt8+fPj+ns7LzWYOPl5cUBQCKRcLPZfMeF5MqVK5vmzJkT5+XlxR955JEWqfT64WtSqRSnT58+u3fvXr/c3NzADz74IOzkyZPlEomEd3dpWiwWmEyma6/N2PUxej++1XEA4Jxj0qRJ2i+//PJSz+MnTpyQ3e7X1l+O5cuXN3788cch9fX10uXLl99Q6NXV1YlPnjzpq1arZatXr4bFYmGMMW61Wq+IRLfXVkYtaoTcuUsAFnU/YIyNAdBv18et2LsVjTH2IIC3ACzinPsCSAawzZ6vSQjpsnj6sGoPCbuu5chDwqyLpw+rvtt7Zmdn6zo7O0Xdsy/NZjNWrVo14plnnqmXy+U8NjbWWFZW5m2xWHD+/HlpSUmJDwC0tLSIZTKZNSgoyFJVVSU5evSo/61ey9fX16LT6frsopTL5RaNRnPtuZiYGFN4eLjp3XffHb5ixYrG3udrNBpRc3OzOCcnR7N+/foqlUrlDQDR0dHGoqIib6Crm7BnkahUKn1UKpWHxWJBbm5u0OTJk3VA14SK7nFtn376aXBmZma/f3ROnTq1rbCwUF5aWuoJAFqtVlRSUuI5bty4zurqao/u7uKtW7f229L13Xff+dXV1Yn1ej3bv39/wIMPPqgHgKeeeqr1yJEj/sXFxT7z58/X9L7u888/D5w3b15zTU2Nsrq6WllbW1sSFRVlPHDgQL8tgL1RoUbInfscwNIej5cB2NDzBMbYHMbYKcaYljFWxRj7fY/nurs5n2WMXQZwuPcLMMbmM8YqGGOptsf3M8ZOMMZaGWPFjLGptuN/ADAZwPuMMT1j7P0+8t4L4AfO+SkA4Jw3c84/625N6909yRh7mjH2XY/HnDH2H4yxi4yxRsbYnxljoh7nfs8Ye58xpmGMqRhjD/Xx9XgwxpptRW33sTDGWDtjrM9xOoS4gjn3hzSvmBNZGeQrMQJdLWkr5kRWzrk/pPlu7ykSibBnz57zu3btCoyOjk4NDAwcJxKJ8Mc//rEWAGbOnKkfMWKEIS4uLmXlypUjFQpFOwBMmDChIzU1tT02NjZ1wYIFo9PT0/W3eq358+e37tu3L6B7MkHP55YuXdr4wgsvRCclJSn0ej0DgIULFzYNHz7ceM8999ww27K1tVU8a9as+ISEBMWECRMS161bVwUAL7zwQsOJEyd8ExMTFSdOnPCRyWTXCtvU1NS2559/fmRsbGzqyJEjDU899VQrAMhkMmt+fr5PfHx8yrFjx3zffvvtq/19DREREeYPP/ywYuHChaMTEhIUGRkZSUql0svb25v/7W9/q8zKyopTKBTJISEh5v7uMXbs2Lbs7OzYlJSUlEceeaRlypQp7UBXK+TEiRO12dnZzRLJjX9z79ixI+ixxx5r6Xls7ty5LRs3brzt7k/GOS2uTMjtsnV9Pgfg/wJ4FEA5gEoADwCogK3r01ZINQEoQ9e2IIcA/C/O+R7GWAy6WuU+B7ASXRvyhtuOSQE8BeA3AGZxzs8zxiIBlNiOfw3gIQBbASRxzhtu1fXJGJsM4CCAP9n+W8g5N/R4/rrrGWNPA3iOcz7J9pgDOApgPgA5gG8A/Ilz/rHt3I/R1a36PoDHAPzd9n1o7nlvxtj/A6DjnL9hu++LAGZwzh+5zW8/IQ6huLi4Ii0t7YYWI6EcOnTIZ9myZaO3b99+YdKkSbc9SN0eli5dOnL8+PHtL7/88oC/P3l5eb7vvvtu+JEjR873fs7b23t8e3v7qYG+xkBZLBakpKQoduzYcWHMmDGGW1/Rv+Li4pC0tLSY3sepRY2Qu9PdqjYTwFkA13VjcM6Pcs6VnHMr57wEwBYAD/a6x+85522c844ex15CV9EzlXPe/Y/TkwD2c8732+53CEAhgJ/fTlDO+XF0FVD3ANgHoIkx9lfG2C1nXPXwR1tL3GUA/4MeXb8A6gH8D+fcxDnfBkANYE4f9/gMwCL278EeT6Hr+0gIGYCZM2e21dTUKIUu0lJSUpLPnDkje/755/sdlO9KioqKvKKjo8dMnjxZO9Ai7WZoMgEhd+dzAMcAjEKvbk8AYIzdB+AddLWmeQDwBLCj12l9DUL+FYC1nPMrPY5FA3iCMdaz5UkK4MjthuWcfwXgK1uX5TRbFjWAD2/zFj2zVqJrQkW3an5903zv57sz/MgYawcwlTF2FUAcgL23+zUQQhxbWVnZDUtTDERWVpYuKyurz7FnjtCalp6e3nnlyhWlvV+HWtQIuQuc80p0dVX+HMCuPk7ZjK4iZATn3B/AegC9pyX1Ne7gYQC/ZYzN73GsCsDnnPOAHh8+nPN3bnKf/nJbOef/Qte4uFTb4TZcPxliWB+Xjujx+UgANT0eR/ZoJevr+Z4+Q1cL4VMAcjnnDrFqOCGEOCoq1Ai5e88CmM45b+vjOV8AzZzzTsZYJoDFt3nPMgCzAPxfxli27dhGAI8wxn7GGBMzxrwYY1MZY93bxdQB6HehRsbYXMbYQsZYIOuSia5u2JO2U04DeIwx5s0Yi7N9Xb39ynb9CAAv4vpZo2EA/oMxJmWMPYGuWaX7+4mzEcA8dBVrN7REEkIIuR4VaoTcJc75Bc55YT9PrwKwljGmA7AGwPY7uG8xgCwAHzHGZnPOqwDMBfCfABrQ1cL2K/z79/f/AHicMdbCGHuvj1u2APgFgHMAtOgqlv7MOd9ke/6/ARjRVfB9BmBTH/f4Al1rr51G1zi3f/R47kcA8QAaAfwBwOOc8z7HqNi+lp/Q1Qp4/ObfCUIIITTrkxByU7ZZn/E9Jjf0fO5p9Jghepv3+yeAGs75bwcvJSFDx9FmfRLXQLM+CSGCsy1N8hiub5EjhNyhCxcuSB966KHY6Ojo1KioqDFLly4d2dHRMejbUuXl5fkeOnTIp/vxn/70p9DuhXbfe++94IqKCmn/Vw+9nhu85+TkRBcVFXnd6ppueXl5vtOmTYvrfbz3Jvd3SiwWpyclJSkSExMVCoUiuef383ZQoUYIGRKMsXUAStHV7XrpVucT4iqO138b9Gbxr8b8smhF+pvFvxpzvP7bO9rrsTer1YpHH300Ljs7u7WysrK0oqJC2dnZyVatWhV166vvzOHDh32799cEgNdff71h9erVTQCwcePGkMuXLztUodbTtm3bKtPT0wWfsOTp6WlVqVRn1Gr1mXXr1lX/53/+5x39f6JCjRByU5xz1le3p+25T2+325Nz/r8553LO+R8GNyEhjut4/bdBuVe2R2vNGg8A0Jo1HrlXtkcPpFj78ssvfT09Pa0vvvhiEwBIJBKsX7++aufOncEajUbUuwVo2rRpcXl5eb4AsGTJkpGpqanJcXFxKS+//PK1ZXQiIyPHvPzyyxEKhSI5ISFBcerUKS+1Wu2xYcOG0PXr14d370zwyiuvRKxZsyb8k08+CSwtLfVeunTpaNtG5/4zZsyI7b7f7t27/WbOnBmLXlatWhUZGxubkpCQoFixYkUUcH0rGNC1mC3Q1cKVkZGROHXq1LiYmJjUxYsXj+zeE9Tb23v8s88+OyIuLi5lwoQJCTU1NTcsN5aZmZl47NgxbwDYtWuX37hx45IUCkXy7NmzR2s0GhEA5Obm+o0aNSpFoVAk5+bmBvT3Pa+urpZmZmYmRkdHp7766qvDAeCll16KWLt2bVj3OS+88ELkunXrwvq7BwBoNBqxv79/vzsg9IXWUSOEEELu0saKT0fUdNT0u9fvlY4qHwu3XNclaeYm0Y4rW2N+aPq+z+3TImQR7U/GPN3vZu9KpVKWlpZ23eK2QUFB1sjISGP3vpX9+etf/1odHh5uMZvNmDhxYuKPP/4ou++++zoAICQkxHzmzJmz77zzTug777wTvm3btsqlS5c2yOVyy9q1a+sA4ODBg34AsHz58pYPPvgg7C9/+UvVlClT2q1WK958882ompoaSUREhPmf//xn8PLly68bx1dbWyvev39/4MWLF0tFIhEaGxtvuei2Uqn0OXXqVGlCQoJxypQp8Rs2bAhcvnx5S0dHhygjI6PtH//4R9Vrr702/Ne//nXEhg0bLvd1j6tXr0reeuut4ceOHSv38/Oz/uY3vxm2bt268LVr19auXr065tChQ+qUlBRDVlZWv7PnS0pKfJRKZZlcLreOHz9eMXfuXM3KlSsb582bF7tmzZp6i8WCPXv2BBYUFNywlpzBYBAlJSUpDAYDa2xslO7fv7/8Vl93Ty5VqIWEhPCYmBihYxBCCHEQRUVFjZxzwfaT7V2k3eq4vX322WdBn376aYjZbGYNDQ3S4uJir+5CbfHixS0AkJmZ2b53797Am9/peiKRCAsWLGj66KOPgn75y182/fTTT/Jdu3ZdN8QhODjY4unpac3JyYnJyspqzcnJuWET897GjBnTplAojACwYMGC5uPHj8uXL1/eIhKJ8NxzzzUDwDPPPNP02GOP3TC2rNvRo0d9Lly44JWZmZkEACaTiaWnp+tPnz7tFRUVZejeVWDJkiVNH3/8cZ8/K5MmTdIOGzbMAgBz5sxpOXr0qHzNmjX1AQEB5u+//1529epVaUpKSnv3OT11d30CwDfffOOzfPnyUeXl5WUi0e11arpUoRYTE4PCwv5WSyCEEOJuGGOV9rz/zVq+AODN4l+N6e727MlP4m98Pfk/1XfzmqmpqR179uy5rpBqbm4WNTY2SsaOHdt5+vRpmdV6bV9zGAwGEQCoVCqP999/P7yoqOhsaGioZf78+TGdnZ3XqgUvLy8OABKJhJvN5jsuJFeuXNk0Z86cOC8vL/7II4+0SKXXD1+TSqU4ffr02b179/rl5uYGfvDBB2EnT54sl0gkvLtL02KxwGQyXXvt69fSvvHxrY4DAOcckyZN0n755ZfXFY4nTpyQ3e7X1l+O5cuXN3788cch9fX10uXLl99y66wZM2a0tbS0SK5evSqJjIy8rS5QGqNGCCGE2MnPh2dVS5jU2vOYhEmtPx+eVd3fNbeSnZ2t6+zsFHXPvjSbzVi1atWIZ555pl4ul/PY2FhjWVmZt8Viwfnz56UlJSU+ANDS0iKWyWTWoKAgS1VVleTo0aP+t3otX19fi06n67OLUi6XWzQazbXnYmJiTOHh4aZ33313+IoVK25YvkSj0Yiam5vFOTk5mvXr11epVCpvAIiOjjYWFRV5A8DmzZsDehaJSqXSR6VSeVgsFuTm5gZNnjxZB3RNqOge1/bpp58GZ2Zm9rnVFABMnTq1rbCwUF5aWuoJAFqtVlRSUuI5bty4zurqao/u7uKtW7f2O27wu+++86urqxPr9Xq2f//+gAcffFAPAE899VTrkSNH/IuLi33mz59/yxbCU6dOeVmtVoSHh9/2ODUq1AghhBA7mRz2YPPjUQsq/ST+RqCrJe3xqAWVk8MebL7be4pEIuzZs+f8rl27AqOjo1MDAwPHiUQi/PGPf6wFgJkzZ+pHjBhhiIuLS1m5cuVIhULRDgATJkzoSE1NbY+NjU1dsGDB6PT0dP2tXmv+/Pmt+/btC+ieTNDzuaVLlza+8MIL0UlJSQq9Xs8AYOHChU3Dhw833nPPPTfMtmxtbRXPmjUrPiEhQTFhwoTEdevWVQHACy+80HDixAnfxMRExYkTJ3xkMtm1wjY1NbXt+eefHxkbG5s6cuRIw1NPPdUKADKZzJqfn+8THx+fcuzYMd+33377an9fQ0REhPnDDz+sWLhw4eiEhARFRkZGklKp9PL29uZ/+9vfKrOysuIUCkVySEhIv8XT2LFj27Kzs2NTUlJSHnnkkZYpU6a0A12tkBMnTtRmZ2c3SyR9d1J2j1FLSkpSLFy4cPQHH3xQ0d+5fXGpBW8zMjI4dX0SQgjpxhgr4pxnDOY9HW3B20OHDvksW7Zs9Pbt2y9MmjSp/dZX2M/SpUtHjh8/vv3ll18e8PcnLy/P99133w0/cuTIDbPOvb29xzvCxuwWiwUpKSmKHTt2XOge63a3+lvw1qXGqBFCCCHuZubMmW01NTVKoXOkpKQky2Qy64cffnjTcXuuoqioyGvu3Lnxs2fPbhlokXYzVKgRQgghZMDKyspuWJpiILKysnRZWVl9jj1zhNa09PT0zitXrti9QKYxaoQQQgghDooKNUIIIYQQB0WFGiGEEEKIg6JCjRBCCCHEQVGhRgghhDgZxlj63LlzR3U/NplMCAwMTJs2bVq/Wyn1JS8vz/dOrjlx4oRs27ZtfS6Uq9PpRNnZ2aMSEhIU8fHxKenp6Yndm58PFrVa7REfH58ymPd0dDTrkxBCCLGj5sOHg5q++CLSrNF4SPz9jcFz51YHTZ9+1wveAl0LvqrVapler2dyuZzv3r3bLzw83HQn9zCZ7uh0AEBhYaF3YWGhT1/7dL711lthYWFhpr17914CgOLiYk8PDw/XWaxVINSiRgghhNhJ8+HDQfVbtkSbNV37fZo1Go/6LVuimw8f7ne7ots1Y8YMzY4dOwIAYMuWLUHz58+/VvwdOXLEe9y4cUnJycmK8ePHJxUXF3sCwHvvvRc8ffr0uPvvvz9h4sSJiT3v9+2333onJycrysrKPLVareiJJ56IGTNmTHJycrJi48aNAZ2dneztt9+O+PLLLwOTkpIUH3300XX7jV69elUaGRl5rfpLS0szyGQy3rsVbM2aNeGvvPJKBABkZmYmLl++fERSUpIiPj4+5ciRI94A8Morr0Q8+uijo8aNG5cUHR2d+u6774b0/vozMjISe+7XmZ6envjDDz/c9v6dzsLuLWqMMTGAQgDVnPOsXs95AtgAIB1AE4AcznmF7bk3ATwLwALgPzjnB+ydlRBCCLkTNf/4xwjDlSve/T3fefmyDyyW63b05iaTqG7TphjN8eOhfV3jGRXVHvHss7dcNPapp55q/t3vfjc8Jyen9ezZs97PPvts04kTJ+QAkJaW1llQUKCSSqXYs2eP7+uvvx514MCBCwBQVlbmXVJSUhYeHm7Jy8vzBbp2N3jppZdG7t2793x8fLxx9erVkdOmTdPu2LGjorGxUZyRkZGcnZ2tffPNN2sKCwt9NmzYcLl3nhUrVjRmZWUlfPHFF4FTpkzR/uIXv2i6nYVgOzo6RCqV6sxXX30lX7Fixahz586VAcDZs2dlRUVFZ3U6nXj8+PGK3ntpLlu2rPHjjz8OmThxYlVJSYmnwWAQTZgwoeNWr+dshqLr80UAZwH49fHcswBaOOdxjLGFAP4IIIcxpgCwEEAKgAgA3zDGEjjnliHISxzI4VPN+OzgVTS0mhAaIMWyh4dj+vgB/yEqiPymH7G3ZjdajM0I9AhCdsQ8ZAbfJ3QsQhyK5sQJ1O/cCXNTEyTBwQibPx/+EycKHevu9SrSbnn8Dtx3330dV65c8fzoo4+CZsyYcV0RY9v8fFRFRYUXY4ybTKZrrzd58mRteHj4tffT8+fPe61atSrm0KFD5TExMSYAOHr0qN+BAwcC3nvvvWEAYDAY2Pnz5z1ulmfixIkdly5dUu7Zs8fv0KFDfhMnTkz+9ttvVT4+PtabXbd48eJmAJg9e7Zer9eLGhsbxbbHrXK5nMvlcvOECRO0x48f98nMzLy2RdbTTz/d8uc//3m4wWC4sn79+pDFixc7zLZeg8muhRpjLArAHAB/APBKH6fMBfB72+e5AN5njDHb8a2ccwOAS4yx8wAyAfxgz7zEsRw+1Yz3dlfBYOoa4lDfasJ7u7v+yHS2Yi2/6UdsrvwcJm4EALQYm7G58nMAoGKNEBvNiRO4+umn4Mau3xNzUxOufvopADhssXarlq9zL744prvbsyeJv79x1O9+px7o68+aNav1d7/73YiDBw+q6+vrr72nv/HGG5EPPvig7tChQxfUarXH9OnTr3Vzent7X1c4hYWFmQwGg+jkyZPeMTExGgDgnCM3N/d8WlradS1i3333nc/N8vj7+1uXLVvWumzZstalS5fiiy++8F+6dGmz1frvl+zs7Lxu2FXX2/6Nj/s73s3X19c6efJk7ebNmwP27t0bdOrUqTM3y+as7D1G7X8AvA6gv2o6EkAVAHDOzQA0AIJ7Hre5YjtG3MhnB69eK9K6GUwcnx28KlCiu7e3Zve1Iq2biRuxt2a3QIkIcTz1O3deK9K6caMR9Tt3CpRo4ILnzq1mUul174FMKrUGz51bPRj3X7lyZeNrr71Wk5mZeV2Xn1arFUdFRRkB4MMPP7xhfFdPfn5+lq+++urcmjVrIru7QqdNm6Z99913w7sLrO+//17Wfa5er++zdjh48KBPQ0ODGAA6OztZeXm5V0xMjDEqKsrc3Nwsqa2tFXd0dLADBw5cN2t0y5YtgQBw4MABua+vryU4ONgCAF999VVAe3s7q62tFZ88edJ30qRJbb1f8/nnn2984403RqSlpbWFhoa6ZK+b3Qo1xlgWgHrOeZG9XsP2OisYY4WMscKGhgZ7vhQZYg2tfc9I6u+4I2sx9j3Bq7/jhLgjc1PTHR13BkHTpzeHLVpUKfH3NwJdLWlhixZVDnTWZ7fY2FjTb3/72/rex994443a3//+91HJyckKs9l8y/uMGDHCvG/fvvMvvfTSyMOHD/u88847NWazmSUlJSni4uJSfvvb30YCwOzZs3Xl5eWyviYTlJeXez3wwAOJCQkJitTUVPh5BMoAACAASURBVMW4cePaly1b1uLp6clfffXVq/fee2/y5MmTE+Li4jp7Xufl5cWTk5MVq1evjv7www8ruo8nJye3T5w4MfG+++5Lfu211652d8v2NHny5HYfHx/L8uXLXbLbEwAY5/aZOcsYexvAUwDMALzQNUZtF+f8yR7nHADwe875D4wxCYBaAKEAfg0AnPO3e593s9fMyMjghYWF9vhyiACW/bEM9X0UZWEBUnz2hnMto/Nb5a/7LMoCPYLw/415R4BEhDiec6++2mdRJgkORvy7797VPRljRZzzjIFm66m4uLgiLS3NZQuDoZSZmZn4l7/8pWrKlCntPY+/8sorEXK53LJ27dq6m11fUVEhnTp1auKFCxdKxWKxfcPaWXFxcUhaWlpM7+N2a1HjnL/JOY/inMega2LA4Z5Fms1eAMtsnz9uO4fbji9kjHkyxkYBiAeQb6+sxDEtmznshmOeUoZlDw8XIM3ATAt76IZjUuaB7Ih5AqQhxDEFTJ16wzHm4YGw+fOHPgxxeO+//37w/fffn7xmzZpqZy/SbmbIF7xljK0FUMg53wvgHwA+t00WaEZXQQfOeRljbDuAM+hqkfslzfh0PwkjusasymVitHVYnHrWp5h1/SPiL/WHxqShWZ+E9MI5R3tpKZinJ8Te3jC3tLjGrE9yU/n5+X1OqPjrX/9ac6trV69e3bR69Wrn7Re/TUNSqHHOjwI4avt8TY/jnQCe6OeaP6BrtihxU/kqLQDg/RcSER5401nhDq9Uo0SYZzh+l7pO6CiEOCRdfj7a1WoMe/ppBPbRsuZgrFarlYlEIlp1nwwKq9XK0M/ES9qZgDisfLUW0eFeTl+kGSwGnNOpkeo/RugohDgkq8GAum3b4BkdjYApU4SOcztKGxoa/G1vroQMiNVqZQ0NDf4ASvt6nvb6JA6prdOC0kt6zJsUJnSUAVPrzsLMzUihQo2QPjXm5cHc3IzIlSvBRI7ffmA2m5+rra39uLa2NhXU4EEGzgqg1Gw2P9fXk1SoEYd06rwOFiuQmdTXhhbOpVSjhJfIC3HyeKGjEOJwjPX1aP7qK/hNmADveOf4HUlPT68HkC10DuIe6C8B4pDyVVrIvcRQjLzpItgOj3OOMk0pkvySIRHR30WE9Fa3ZQsgFiNswQKhoxDikKhQIw7HauUoVGtxT4IvxGLnHgJS3XEFraYW6vYkpA96pRL6U6cQkp0NaWDgrS8gxA1RoUYczvmaDrTozchMdI1uTwBUqBHSCzebUbdpE6Th4Qh6+GGh4xDisKhQIw6nQKUFY0CGCxRqZRolRnpHw1/qf+uTCXEjzd98A2NtLcIXLYJIKhU6DiEOiwo14nDy1VokjfCGv49zj+nSm/W41HaRluUgpBdzaysa9+yBz9ix8B03Tug4hDg0KtSIQ2nRmVB+pR33usBszzOaMnBwpPqPFToKIQ6lfudOWE0mhC9eLHQUQhweFWrEoRSWd+1G4Arj08o0SvhK/DDCe6TQUQhxGB0XL0Jz/DiCf/YzeA67cT9fQsj1qFAjDuVHlRbBflKMHi4TOsqAWLgFZdpSpPinQsTo14wQAOBWK2o//xySgAAEP/KI0HEIcQr0DkIchslsxU/ndLg30Q+MOfeyHJf0F9FhaafZnoT0oPn+e3ReuoSwBQsgljn3H2OEDBUq1IjDKKtsQ4fB6jK7EYggQrJfstBRCHEIlvZ21O/YAVlcHPwmTBA6DiFOgwo14jAKVFpIxAzjYuVCRxmwMk0J4nzjIRN7Cx2FEIfQ+MUXsOh0CH/ySadvMSdkKFGhRhxGvlqLsaPlkHmKhY4yIM3GJtR01lC3JyE2hpoaNH/zDQKmTIEsJkboOIQ4FSrUiEOoaTLgSoPBJWZ7du9GQOunEdK1323d5s0QeXoidP58oeMQ4nSoUCMOoUDVtSyHK6yfVqZRIsQjBOGetPQAIfqffkJbaSlC582DxM/5f78JGWpUqBGHkK/WIirUExHBnkJHGRCj1Qi1VoUU/7E0Doe4PavRiLotW+AZGYnA6dOFjkOIU6JCjQiuw2BByUW9S3R7luvUMHETdXsSAqD5669hamxE+JIlYGLnHntKiFCoUCOCO31BD7OFu8SyHGUaJTxEnoj3TRA6CiGCMjU1oTEvD74ZGfBRKISOQ4jTokKNCC5fpYW3pwgpMc69LAfnHKUaJZJ8kyAVSYWOQ4ig6rdtAzhH+MKFQkchxKlRoUYExTlHgVqLe+J9IRE795iuq51X0Wxsok3YidtrU6mgzc9H8Jw5kIaECB2HEKdGhRoR1IWrHWjSmlyi27NUUwIASPFPFTgJIcLhFgvqNm6ENDgYwT//udBxCHF6VKgRQXUvy5GR4AqFmhJRshEI8AgUOgohgmk5cgSGK1cQtmgRRB4eQschxOlRoUYEla/SIiHKG4G+zj2mq93chkv6CzTbk7g1s06Hht274a1QwDc9Xeg4hLgEKtSIYFr1ZqivtLvEshxntGWwwkrbRhG31rBrF6wdHRi2ZAmtI0jIIKFCjQimqFwLzl1jN4JSjRJyiRwxPqOEjkKIIDorK9F69CgCH3oInpGRQschxGVQoUYEk6/WIlAuQVyETOgoA2LlVpzRlCLZLwUiRr9SxP1wzlG7aRPEcjlCH31U6DiEuBR6VyGCsFg4firXISPRDyKRc3eRVLRdQpuljcanEbelPXkSHeXlCHv8cYh9fISOQ4hLoUKNCOLM5TboOy0usSxHmUYJEURQ+KUIHYWQIWft7ET9tm3wGjUK/pMnCx2HEJdDhRoRRL5KC4mYYXycr9BRBqxUo8QoeSy8JdSSQNxPY14ezK2tXft5iugthZDBRr9VRBAFai1SY3zg4+XcGzW3GltwpaMKY6jbk7ghY10dmr/+Gv4PPADvuDih4xDikqhQI0OursWIyrpOF+n2LAUApNC2UcQN1W3ZAiaRIPSJJ4SOQojLokKNDLnu3QjudYH100o1JQjyCMZwr+FCRyFkSOlLSqA/fRoh2dmQBgQIHYcQl0WFGhlyP6o0iAj2QFSol9BRBsRkNUGlO4tU/zG0uCdxK9xsRt3mzfAYNgxBDz8sdBxCXJrdCjXGmBdjLJ8xVswYK2OM/Vcf5/w3Y+y07aOcMdba4zlLj+f22isnGVqdRitKLupdojXtnK4cRquRdiMgbqf54EEYa2sRvngxmEQidBxCXJo9f8MMAKZzzvWMMSmA7xhjX3HOT3afwDl/uftzxtgLAMb3uL6Dcz7OjvmIAIov6GA0c2Qm+QsdZcBKNUpImRQJvolCRyFkyJhaW9G4dy/k48ZBPpbGZhJib3ZrUeNd9LaHUtsHv8kliwBssVce4hjy1Vp4eYiQOsq5l7LgnKNMU4JEvyR4iDyEjkPIkGnYsQPcbEb4okVCRyHELdh1jBpjTMwYOw2gHsAhzvmP/ZwXDWAUgMM9DnsxxgoZYycZY/3uScIYW2E7r7ChoWFQ85PBxTlHgUqL8XG+8JA49/DIOkMtGo2N1O1J3Er7+fPQfP89gmbNgkd4uNBxCHELdn235JxbbN2XUQAyGWOp/Zy6EEAu59zS41g05zwDwGIA/8MYi+3nNf7OOc/gnGeEhoYOan4yuCrqOtGgMbnEshylGiUA0LZRxG1wqxV1GzdCEhCAkKwsoeMQ4jaGpFmDc94K4AiAWf2cshC9uj0559W2/14EcBTXj18jTsiVluUo0ygR4RWBII9goaMQMiQ0x4+js6ICYTk5EHk594xtQpyJPWd9hjLGAmyfywDMBKDq47wkAIEAfuhxLJAx5mn7PATAAwDO2CsrGRr5ai1iI2QI9pMKHWVAOiztOK87R4vcErdhaWtDfW4uZAkJ8Lv/fqHjEOJW7NmiNhzAEcZYCYACdI1Ry2OMrWWMZfc4byGArZzznhMNkgEUMsaK0dUS9w7nnAo1J6ZrN+NsZRsyXaA17az2LKywUrcncRsNe/bAotdj2JIltGYgIUPMbstzcM5L0Ed3Jed8Ta/Hv+/jnBMA6F3QhRSV62DlwL0uMD6tTKOEt9gbo+SjhY5CiN0ZqqvR8q9/IWDqVHhFRwsdhxC349xT74jTyFdr4e8jQUKUt9BRBsTKrSjTKKHwS4WYOfeG8oTcCucctZs2QSSTIfSxx4SOQ4hbokKN2J3FylGo1iIjwRdikXN3m1xur4TOrKNlOYhb0BUVof3MGYTOmweJr6/QcQhxS1SoEbtTXW6DrsPiMstyMDAo/FOEjkKIXVmNRtRv2QLPqCgETpsmdBxC3BYVasTuCtRaiETAPfHO/xd5mUaJUT6jIZfIhY5CiF017d8PU1MTwp98EkxM3fyECIUKNWJ3+SotUqJ9IJc59+bNGlMrLrdXUrcncXmmxkY07dsHv8xM+CQlCR2HELdGhRqxq4ZWIy7VdrrEJuxlmlIAtBsBcX11W7cCjCEsJ0foKIS4PSrUiF0VqF1rN4IAaSAiZVFCRyHEbtrOnIGusBAhWVmQBtPOG4QIjQo1Ylf5ai3CAz0wMsxT6CgDYraaodKeRYp/Ki34SVwWt1hQt2kTpKGhCJrV345/hJChRIUasRujyYrT5/XITPRz+uLmvP4cOq2d1O1JXFrL4cMwVFcjfOFCiDw8hI5DCAEVasSOSi7qYTBZXWY3AgmTINE3WegohNiFWatFw+7d8ElNhfyee4SOQwixoUKN2E2+WgtPKcPY0c6/lEWpRol430R4ip27C5eQ/jTs3AmrwYDwxYudvgWcEFdChRqxC845ClRapMX6wlPq3D9m9Z31qDfUUbcncVkdFRVoPXYMQTNmwDMiQug4hJAenPsdlDisqgYDaluMLrEbQZlGCYCW5SCuiXOOuo0bIfb1RcjcuULHIYT0QoUasYt8VdeyHJkusCxHqaYEw7yGI8QzVOgohAw67Q8/oOP8eYQ98QTE3t5CxyGE9EKFGrGLfJUGo4Z5ITTAuWeOdVo6cU5fTrsREJdk6ehA/fbt8Bo1Cv4PPCB0HEJIH6hQI4NO32FGWWWbS3R7qrRnYeEW6vYkLqnpyy9hbm3FsCefBBPR2wEhjoh+M8mg++mcDlar6+xGIBPLECuPFToKIYPKUFuLpgMH4D95MmSx9PNNiKOiQo0MunyVFr4yMZJG+ggdZUA45yjTKpHkp4CYOfeG8oT0Vrd5M0QeHgh7/HGhoxBCboIKNTKorFaOwnId0hP8IBY591pMVR2XoTFpqNuTuBzd6dNoKylByNy5kPj7Cx2HEHITVKiRQVV+pR2aNrNLjE8r0yjBwJDilyp0FEIGjdVkQt2WLfAYPhxBM2YIHYcQcgtUqJFBla/WQsSAjARfoaMMWKlGiZHe0fCVOn/RSUi35oMHYaqrQ/iSJWAS6tInxNFRoUYGVYFKi6SRPvD1du43AJ1Jh8q2CqT6jxU6CiGDxtTSgsa9eyEfPx7yVGopJsQZUKFGBk2z1oTzNR0u0e15RlsKDk7j04hLqd++HbBYEL5okdBRCCG3iQo1MmgK1K60G4ESfhI/RHmPEDoKIYOi/dw5aH/4AUGzZ8MjLEzoOISQ20SFGhk0+WotQvyliBnmJXSUAbFwM85qy5DiPwYiRr8ixPlxqxW1GzdCEhSEkKwsoeMQQu4AvQuRQWE0W/HTOR0yk/zAmHMvy3FBfwEdlg4an0ZcRuuxYzBUViI8JwciT0+h4xBC7gAVamRQlF5qQ6fR6jLdnmImRpJfstBRCBkwS1sbGnJz4Z2YCN/MTKHjEELuEBVqZFDkqzTwkDCkxTr/shxlGiXi5QnwEjt3Fy4hANCwezcsbW1dy3E4eWs3Ie6ICjUyKArUWowdLYeXh3P/SDUaGlHbeRUpNNuTuIDOqiq0HD6MwOnT4TVypNBxCCF3wbnfVYlDuNLQiZomo0ssy1GqKQEAWpaDOD3OOeo2bYJYJkPovHlCxyGE3CUq1MiAXVuWwwUKtTKNEmGeYQjzChc6CiEDoisoQLtKhdD58yGWy4WOQwi5S1SokQHLV2kxMswL4YHOPZvMYDGgXKembk/i9KwGA+q2boXniBEImDpV6DiEkAGgQo0MSLvBgtKKNpdoTSvXqWDmZur2JE6vaf9+mJubMezJJ8FE9M88Ic6MfoPJgJw6p4PZwnGviyzL4SnyRJw8QegohNw1Y0MDmvbtg9/998M7MVHoOISQAbJbocYY82KM5TPGihljZYyx/+rjnKcZYw2MsdO2j+d6PLeMMXbO9rHMXjnJwOSrtfDxEkER7SN0lAHhnKNUo0SSnwISkXNvKE/cW/3WrYBYjLCcHKGjEEIGgT3fkQwApnPO9YwxKYDvGGNfcc5P9jpvG+d8dc8DjLEgAL8DkAGAAyhijO3lnLfYMS+5Q1YrR4Fai/R4P0jEzr0+U01HNVpNLZjj/4jQUQi5a21lZdAVFSH08cchDQwUOg4hZBDYrUWNd9HbHkptH/w2L/8ZgEOc82ZbcXYIwCw7xCQDcOFqB1p0ZtzrAuPTSjVKAECKf6rASQi5O9xsRu2mTZCGhSHo4YeFjkMIGSR2HaPGGBMzxk4DqEdX4fVjH6fNZ4yVMMZyGWMjbMciAVT1OOeK7Vhfr7GCMVbIGCtsaGgY1Pzk5vLPasEYkJHgCoVaCUZ4j4S/NEDoKITclZZ//QvGmhqEL1oEkYeH0HEIIYPEroUa59zCOR8HIApAJmOsd3PFlwBiOOdj0dVq9tldvMbfOecZnPOM0NDQgYcmty1frUVilDcC5M49pktv1uNS20XahJ04LbNWi4Y9e+AzZgzk48YJHYcQMoiGZNYn57wVwBH06r7knDdxzg22hx8DSLd9Xg1gRI9To2zHiINo0ZlQfqXdJZblOKMpAwenZTmI06rPzYXVaET44sW0nychLsaesz5DGWMBts9lAGYCUPU6Z3iPh9kAzto+PwDgYcZYIGMsEMDDtmPEQRSWd+1G4Arj08o0SvhKfDHSO1roKITcsY6LF6E5fhxBM2fCc/jwW19ACHEq9uyzGg7gM8aYGF0F4XbOeR5jbC2AQs75XgD/wRjLBmAG0AzgaQDgnDczxtYBKLDday3nvNmOWckdyldpEewnRexwmdBRBsTCLTijLcWYgDSIGC0rSJwLt1pRu3EjxH5+CJk7V+g4hBA7sFuhxjkvATC+j+Nrenz+JoA3+7n+nwD+aa985O6ZLRw/ndNhytgAp+9mudR2Ee2Wdur2JE5Jc+IEOi9exPBf/AJimXP/0UQI6Rs1IZA7VlahR7vB6hK7EZRplBBBhGQ/hdBRCLkjlo4O1G/fDllsLPwnTBA6DiHETqhQI3csX62FRMwwPs5X6CgDVqpRIlYeB5nYW+gohNyRxi++gEWnQ/iSJbSfJyEujH67yR0rUGkxZpQcMk+x0FEGpNnYhJqOalqWgzgdQ00Nmg8dgv/kyZCNHi10HEKIHVGhRu7I1WYDqhoMLrEsR5mmFABofBpxKpxz1G3eDJGHB8Ief1zoOIQQO6NCjdyRfFXXshyZLjA+rVSjRLBHCMK9hgkdhZDbpj99Gm2lpQidNw8SP+f/PSSE3BwVauSO5Ku0iAzxRESIp9BRBsRoNUKtPYtU/zFOP3OVuA+r0Yi6zZvhERGBwOnThY5DCBkCVKiR29ZhsKDkot4lWtPKdWqYuAkp1O1JnEjzgQMwNTRg2JIlYBLn3rqNEHJ7qFAjt+30BT3MFu4yuxF4iDyQ4JsodBRCboupuRmNX34J3/R0+KSkCB2HEDJEqFAjty1fpYXMU4TUGB+howwI5xylGiUSfZMhFUmFjkPIbanfvh3gHGELFwodhRAyhKhQI7eFc44CtRb3xPtCKnHuH5urnVfRbGyi2Z7EabSr1dCePIngn/8cHqGhQschhAwh537HJUPm4tUONGlNLjE+rUxTAgA0Po04he79PCXBwQj++c+FjkMIGWJUqJHbkq/uWpYjwwUKtVKNEpGyKAR6BAodhZBbaj16FIaqKoQvXAiRp3PPtiaE3Dkq1MhtKVBpER8pQ5Cvc4/paje34aL+AnV7Eqdg1uvRsHMnvJOT4ZuRIXQcQogAqFAjt6RpM0NV1e4SuxGc1Z6BFVbaNoo4hcZdu2Dp6ED44sW03h8hbooKNXJLReVacA7cm+gvdJQBK9Uo4SP2QYzPKKGjEHJTnZcvo+XIEQROnw6vESOEjkMIEQgVauSW8lVaBMoliI+UCR1lQKzcijPaUij8UyFi9KNPHBfnHHWbNkHs44PQefOEjkMIERC9W5Gbslg4isp1yEj0g0jk3F0vlW0V0Jv1ND6NODxdfj7a1WqEPv44xD7OvW4hIWRgqFAjN3Xmchv0nRbc6xKzPUvAwJDsR6u6E8dlNRhQt20bvKKjETBlitBxCCECo0KN3FS+SguxCLgn3lfoKANWqlFitDwWPhJqoSCOqzEvD+bmZoQ/+SSYiP6JJsTd0b8C5KYK1Fqkxsjh4yUWOsqAtBpbcKWjiro9iUMz1tej+auv4DdhArzj44WOQwhxAFSokX7VtRhRWdfpEstylGlKAYCW5SAOrW7LFkAsRtiCBUJHIYQ4CCrUSL8KVF27EbhCoVaqKUGgRxCGe0UIHYWQPumVSuhPnUJIdjakgbRrBiGkCxVqpF/5ai2GB3kgMsS5t60xWU1Q6VRI9R9Di4YSh8TNZtRt2gSP8HAEPfyw0HEIIQ6ECjXSp06jFcUXdMhM8nP64ua8vhxGq4HGpxGH1XzoEIy1tQhfvBgiqXNv00YIGVxUqJE+lVzUwWjmLrIshxJSJkWCb6LQUQi5gbm1FY1ffAF5WhrkaWlCxyGEOBgq1Eif8lVaeHmIMGa0XOgoA8I5R6lGiQTfRHiInLsLl7im+txcWE0mhC9aJHQUQogDokKN3IBzjgK1FuPj5PCQOPePSL2hDo2GBprtSRxSx4UL0Hz3HYJ/9jN4DBsmdBxCiANy7ndhYheVdZ2obzW5zCbsAJBC49OIg+FWK2o3boQkIADBjzwidBxCiIOiQo3cIF/dtSzHvYmusRvBcK8IBHsGCx2FkOtovv8enZcuIWzBAohlMqHjEEIcFBVq5Ab5Ki1GD5chxN9D6CgD0mFpx3ldOc32JA7H0t6O+h07IIuLg9+ECULHIYQ4MCrUyHV07WacrWxziUVuz2rPwgordXsSh9P4xRew6HRd+3k6+fI3hBD7okKNXKeoXAcrBzJdYFmOMo0SMrE3RstjhY5CyDWG6mo0f/MNAh58ELKYGKHjEEIcHBVq5Dr5ai38fMRIGOEtdJQBsXIryjRKKPwUEDPn3lCeuA7OOeo2b4bI0xOhjz0mdBxCiBOgQo1cY7FyFJVrcW+CH8Qi5+6OqWq/DJ1ZR8tyEIei/+kntJWVIXTePEj8nL/VmhBif3Yr1BhjXoyxfMZYMWOsjDH2X32c8wpj7AxjrIQx9i/GWHSP5yyMsdO2j732ykn+TV3VDm27Bfe6wPi0Uk0JGBgU/ilCRyEEAGA1GlG3ZQs8o6IQOH260HEIIU5CYsd7GwBM55zrGWNSAN8xxr7inJ/scc4pABmc83bG2EoAfwKQY3uug3M+zo75SC/5Ki1EIiA93jWW5YjxGQW5xPm/FuIamr/+GqbGRox84w0wMXXHE0Juj91a1HgXve2h1PbBe51zhHPebnt4EkCUvfKQWytQa6CI9oFcZs/63f40Jg0ut1fSshzEYZiamtCYlwffe++FT3Ky0HEIIU7ErmPUGGNixthpAPUADnHOf7zJ6c8C+KrHYy/GWCFj7CRj7NGbvMYK23mFDQ0Ng5Tc/TRojLh4tdMlZnue0ZQCAFJofBpxEHXbtgEAwnNybnEmIYRcz66FGufcYuu+jAKQyRhL7es8xtiTADIA/LnH4WjOeQaAxQD+hzHW5xoLnPO/c84zOOcZoaGhg/wVuI8C224ErrB+WqlGiQBpAKJk1EBLhNd29ix0+fkInjMH0pAQoeMQQpzMkMz65Jy3AjgCYFbv5xhjMwD8BkA259zQ45pq238vAjgKYPxQZHVXBSotwgKkGBnmJXSUATFbzVBpzyDFfwwtJEoExy0W1G3aBGlwMIJnzxY6DiHECdlz1mcoYyzA9rkMwEwAql7njAfwIbqKtPoexwMZY562z0MAPADgjL2yujujyYpT5/XITPJ3+uLmgv48Oq2dtBsBcQgtR47AcOUKwhYtgsjDubdkI4QIw56jxocD+IwxJkZXQbidc57HGFsLoJBzvhddXZ1yADtsBcJlznk2gGQAHzLGrLZr3+GcU6FmJyUX9TCYrLjXBcanlWpKIGESJPomCR2FuDmzToeG3bvhrVDANz1d6DiEECdlt0KNc16CProrOedrenw+o59rTwCgJpEhkq/WwlPKkBYrFzrKgJVqlIj3TYCX2Lm7cInza9i5E9aODgxbssTpW6oJIcKhnQncHOccBSot0kb7wlPq3D8O9Z31qDfUUbcnEVxnZSVav/0WQTNmwDMyUug4hBAn5tzvzGTAqhoMqG0xusRuBGUaJQDQ+mlEUJxz1G7cCLFcjpC5c4WOQwhxclSoubl8lSsty1GCcK9hCPUMEzoKcWPakyfRce4cwh5/HGIfH6HjEEKcHBVqbq5ArUXMMC+EBTj3jLROSyfO689RaxoRlLWzE/XbtsFr1Cj4T54sdBxCiAugQs2NtXVaUFahd4ndCNS6szBzMxVqRFCNeXkwt7Z2TSAQ0T+vhJCBo39J3NhP53SwWOES49NKNUp4ibwQK48TOgpxU8a6OjR//TX8H3gAsjj6OSSEDA4q1NxYvkoDuUyM5BHOPY6Gc44yTSmS/RQQM+feUJ44r7rNm8EkEoQ+8YTQUQghLoQKNTdltXIUluuQkeALsdi513i60lEFjamVNmEngtEXF0NfXIyQuXMhDQgQOg4hxIVQoeamzlW3o1VvdpHdCLqW5UjxTxU4CXFH3GxG3ebN8Bg2DEEzZwodhxDiYqhQc1P5Ki1EDMhIcP5CIbkFrgAAIABJREFUrUyjRLR3DPykzv+1EOfTfPAgjHV1CF+8GExCXe+EkMFFhZqbyldpkTTSB34+zv3GojPpUNF2iXYjIIIwtbaice9eyMeNg3wsdb0TQgYfFWpuqFlrwvmaDpfo9jyjLQUHp2U5iCAaduwAN5sRvnix0FEIIS6KCjU3VKB2pd0IlPCV+GGE90ihoxA3037uHDTff4+gWbPgEUa7YRBC7IMKNTeUr9YixF+KUcO8hI4yIBZuxlltGVL8UyFi9KNMhg63WlG3aRMkgYEIycoSOg4hxIXRu5ubMZqtOHVOh3sT/cCYcy/LcVF/AR2WDur2JEOu9fhxdFZUICwnByIv5/6DhxDi2KhQczNlFW3oMFpdpttTzMRI8lMIHYW4EUtbGxpycyFLSIDfffcJHYcQ4uKoUHMz+SotpBKGcbFyoaMMWKlGiTh5PGRimdBRiBtp2LMHFr2+az9PJ2+VJoQ4PirU3EyBSou00XJ4eYiFjjIgTYZG1HZepW5PMqQM1dVo+de/EDB1Kryio4WOQwhxA1SouZHqRgOqmwwusSzHv3cjoLWryNDgnKN240aIZDKEzp8vdBxCiJugQs2N5Ks0AFxnWY5QzzCEe4ULHYW4CV1hIdrPnkXoY49BInf+oQOEEOdAhZobKVBrMSLME8OCPIWOMiAGiwHlOhV1e5IhYzUYULd1KzxHjEDg1KlCxyGEuBEq1NxEu8EC5aU2ZLpAt2e5TgUzN9O2UWTINH31FcxNTQhfsgRM7NzjOwkhzoUKNTdx6pwOZgt3mW5PD5En4uTxQkchbsDU2Iimffvgl5kJn6QkoeMQQtwMFWpuIl+thY+XCIpo5x5bwzlHqUaJZL9kSEVSoeMQN1C3dSvAGMJycoSOQghxQ1SouQGrlaNArcU98X6QiJ173aeajmq0mlqo25MMibYzZ6ArLERIVhakwcFCxyGEuCEq1NzAhasdaNGZXWtZDj8q1Ih9cbMZdZs2QRoaiqBZs4SOQwhxU1SouYF8lRaMAfcm+godZcBKNSUYIRuBAI8AoaMQF9dy5AgM1dUIX7QIIg8PoeMQQtwUFWpuoEClRUKkNwLkzj2mS2/W41LbRVrkltidWatFw65d8ElNhXz8eKHjEELc2B0Vaowxb3sFIfbRqjehvLrdJWZ7ntWWgYMjNYC6PYl9NezcCavRiPDFi2k/T0KIoG6rUGOMTWSMnQGgsj1OY4z9P7smI4OiQK0D566zG4Fc4oto7xihoxAX1lFRgdZjxxA0Ywb+//buPTrK+87z/Pur+10IIYm7AXOH4Bvg2E7i2G7f4yu+EJu0p7d7crKb2U12M9s7ndntPt1z+o/ZnU7vZDOTnJx2j90BfMXYjmM7dmwn48QJEmCMJJAAYzBXSUhQpbtUVd/9o8oOxlwEUvHUU/q8ztFR1e95Svo8VKnqy/P7Pb9f4dSpQccRkXFupGfU/hG4FegEcPcPgK+kK5SMnYbWKBPL87h0anHQUUYl4Ql2RppZUrGUHFOPvaSHu9O2di255eVMuvfeoOOIiIy869PdD5zSFB/jLDLGYnFny64oKxZUhL775qPevfTGezUth6RV9L336N+zh9oHHyS3ONz/uRGR7JA3wv0OmNm1gJtZPvAdYGf6YslY2LG/h77BBCuypNszhxwWVSwOOopkqXh/P23PPkvRnDlUXndd0HFERICRn1H7FvBtYBpwCLg8dV8y2KaWKHm5xhVzs2NajkvL5lKSp+tZJD06f/5z4pEIk9eswXLUvS4imWFE70bufszdH3X3Onevdfc17t55tseYWZGZ1ZvZB2bWbGZ/e5p9Cs3sGTPbY2abzGzWSdv+KtXeama3nu+BSXJaji/MLqWkMNyLSHcNdXK4/5C6PSVtBo8epfOXv6Tyy1+meM6coOOIiHxqRF2fZvYk8B13P5G6XwX8g7v/D2d52CBwo7v3pLpLf2tmr7n7H07a58+B4+4+18xWA/8ReNjMFgOrgSXAVOBXZjbf3TUubgTefr+Lf379MJ3RGMd7Yrz9fhc3XjEx6FgXpL5zE88deAqAd9p+RWX+BFZWXx1wKskWkffeo33DBmKdnWBG0axZQUcSEfmMkZ7fX/ZJkQbg7seBs84C6Uk9qbv5qS8/Zbd7gCdTt58HbrLkqPd7gKfdfdDdPwL2ACtHmHVce/v9Ln648QCd0RgAPf1xfrjxAG+/3xVwsvNX37mJ9ft/Rl+8D4BILML6/T+jvnNTwMkkG0Tee48jTzyRLNIA3Gl/5hki770XbDARkZOMtFDLSZ1FA8DMJjKCs3Fmlmtm24B24E13P/UTdhpwAMDdY0AEqD65PeVgqk3O4ck3jjA4/Nl6eHDYefKNIwElunAvH97IsA99pm3Yh3j58MaAEkk2ad+wAR/67OvLh4Zo37AhoEQiIp830qs+/wH4vZk9BxjwAPD353pQqqvycjObAGw0s6Xu3nTBaU/DzL4JfBNg5syZY/mjQ6njxPB5tWey40OnPwt4pnaR8/HpmbQRtouIBGGkFxP8C3A/0AYcBe5395+N9Jekuk3fAW47ZdMhYAaAmeUBlSQn1f20PWV6qu10P/un7r7c3ZfX1NSMNFLWqplw+vU8z9SeyaoKTj+u7kztIucjr6rq9O3V1Rc5iYjImZ21UDOzitT3iSQLtPWpr6OptrM9tiZ1Jg0zKwZuJrUE1UleBh5L3X4AeNvdPdW+OnVV6GxgHlB/Pgc2Xj12yxROnVmgMN947JYpwQQahbunfH5m+Hwr4O6p9wWQRrLN6QoyKyigdtWqANKIiJzeubo+1wNfA7bw2QsBLHX/bNexTwGeNLNckgXhs+7+ipn9HbDZ3V8GHgd+ZmZ7gC6SV3ri7s1m9iywA4gB39YVnyNzw+VV/PjnBxmOOUPDTs2EfB67ZUoor/qcUZrsyi7JLaEv3kdVwUTunnqfrvqUUevbvZuBPXsoveIKBj/+mFhnJ3nV1dSuWkXltdcGHU9E5FNnLdTc/WupqzCvd/ePz+cHu/t2TnNlqLv/9Um3B4AHz/D4v2cE4+Dksz46OkBPf4LvrprBrcvD3YXTFGkE4PuL/1rdnTJmPJHg6Nq15E2cyPRvfYucwsKgI4mInNE5x6iluiJ/cRGyyBiob4kCsGJB+JeNao40Mq14uoo0GVMnfvMbBvfvp271ahVpIpLxRjo9x1YzW5HWJDImGlqjzJtWzMTy8F08cLK+WB8f9uzRagQypuI9PXRs2EDJggWUr9BbmohkvpEWalcDfzCzD81su5k1mtn2dAaT8xfpjdHycW9WnE3bGd1BggRLVajJGOrYuJF4by91a9aQHNUhIpLZRjqPmtbaDIEtu6IkHFYuDH+h1hTZTmluKbNLte6ijI2BAwc4/vbbVN14I0UzZpz7ASIiGeCshZqZFQHfAuYCjcDjqRUEJAPVt0SZUJbHvGklQUcZlYQn2BFtYlHlEnJspCd9Rc7M3Wlbt47ckhJq7tP0LiISHuf6FHwSWE6ySLud5AoFkoHicWfLrm6Wzy8nJyfcXTr7e/fRE+tRt6eMme6GBvpaWqhZtYrcsrKg44iIjNi5uj4Xu/sXAMzscTTpbMba+XEvPQNxVi6sDDrKqDVFGjGMxRVLg44iWSAxOEjb009TOHMmE7761aDjiIicl3OdUft0gUh1eWa2+tYouTlw5bzyoKOMWnNkO7NL51CaVxp0FMkCnb/4BbGuLiavWYOdumyHiEiGO9cZtcvMLJq6bUBx6r6RnGIt/KPWs0RDS5Qls8ooLcoNOsqonBg6wYH+A1omSsbEUEcHna++SsUXv0jJ/PlBxxEROW/nWpkg3J/640T7iSH2tQ3w57dPDTrKqDVHk6sRaHyajIX2p5+G3FxqH3446CgiIhdE/QBZ4JPVCK7Ogmk5miONVOVXMbV4WtBRJOR6mpro3rKFSXfdRX5VVdBxREQuiAq1LNDQEmXyxAKm14R7OZzhxDA7oztZUrlMk5HKqHgsRtv69eTX1jLxVk0DKSLhpUIt5AaHE3ywt5uVCypCX9zs6dnNUGJQ3Z4yal1vvcXQ4cPUPfIIOfnhXk5NRMY3FWoh98GHPQwOe1asRtAcaSTf8llQsSDoKBJisUiEYy++SOmyZZRddlnQcURERkWFWsg1tEYpzM/hC7PDPYmnu9MY2c688gUU5IS7C1eC1f788ySGhqj7+tdDf5ZZRESFWoi5O/UtEa6YW0ZBfrifyvbBNo4NdqjbU0alf+9eIu++y8RbbqFwypSg44iIjFq4P93Huf1tA7SfGGZFFnR7NkU0LYeMjicSHF27ltzKSibdfXfQcURExoQKtRCrb01Oy7FiQXYUapOLplBdOCnoKBJSkffeY2DvXmofeojc4uKg44iIjAkVaiHW0BJlzpQiaioLgo4yKv3xfvZ079LZNLlg8b4+2p99luK5c6m85pqg44iIjBkVaiHV3R9jx8e9rFgQ/kXYW6I7SJBQoSYX7NjLLxPv7qbu0Ue1nqeIZBW9o4XUll3dJBJkxbQcTZFGinOLmVN2adBRJIQGDx+m6803mfDlL1M8e3bQcURExpQKtZBqaIlSUZLLghklQUcZlYQnaI40sahiCbl21qVnRT7H3Wlbv56cggJqHngg6DgiImNOhVoIxRPO5l1RrppfQW5OuOeJOtD3Md2xqLo95YL0bNtGb1MTNffdR15F+M8ui4icSoVaCO060Ee0L5413Z6GsbhiadBRJGQSQ0O0rV9PwdSpVN14Y9BxRETSQoVaCNW3RsnJgavmlwcdZdSaI43MKp1NeX74j0Uurq7XX2e4o4PJa9Zgeeo2F5HspEIthOpboiyeWUp5cbg/nKLDUfb37WOJuj3lPA13dnLslVcoX76c0sWLg44jIpI2KtRC5lhkiL1H+rNiNYLmSBOg1Qjk/LU/+yy4U/vww0FHERFJKxVqIdPQ2g3AyixYjaA5sp3K/AlML54RdBQJkb7WVqKbNlF9xx0U1NQEHUdEJK1UqIVMfUuE2gn5XFJXFHSUUYklYuyM7mBJ5VLMwn3lqlw8Ho9zdO1a8qqrqb7jjqDjiIiknQq1EBkaTvD+nh5WLKgIfXHzYc8eBhID6vaU83LiN79h8MAB6lavJqewMOg4IiJpp0ItRBo/6mFwOJE103LkWR4LyhcFHUVCItbTQ8eGDZQsWkT58uVBxxERuShUqIVIfUuUgjxj2ZzwT2XRHNnO3LJ5FOWGuwtXLp6OF14g3t+fXM8z5GeURURGSoVaSLg79a1RLru0nKKCcD9tHYPttA22sbRyWdBRJCQG9u/nxDvvUHXTTRRNnx50HBGRiybcn/jjyMGOQY52DWXF1Z5NkUYAzZ8mI+LuHF23jtyyMmruvTfoOCIiF5UKtZCob40CZMn8aY3UFtZRW1QbdBQJgeimTfTv2kXNqlXklpYGHUdE5KJKW6FmZjPM7B0z22FmzWb2ndPs87+b2bbUV5OZxc1sYmrbPjNrTG3bnK6cYdHQEmVWXRF1VQVBRxmVgfgAu7t3qdtTRiQxOEj7M89QdMklTPjKV4KOIyJy0aXzjFoM+J67Lwa+CHzbzD6z1ou7/z/ufrm7Xw78FfAbd+86aZcbUtvH9SVevQNxmvb1ZMXZtNbuFmIe07QcMiLHfv5zYsePU7dmDZajDgARGX/S9s7n7kfcfWvqdjewE5h2lod8HXgqXXnCbOvubuKJbFmNoJGinCIuLZsbdBTJcEPt7XS9/jqV115Lybx5QccREQnERfkvqpnNAq4ANp1hewlwG7DhpGYH3jCzLWb2zbP87G+a2WYz29zR0TF2oTNIQ2uUsuJcFs0M9/gcd6c50sjCisXk5YR7QXlJv7annsLy8qh58MGgo4iIBCbthZqZlZEswL7r7tEz7HYX8LtTuj2/5O5XAreT7DY97QAVd/+puy939+U1WbjuXyLhNLRGuWpeObm54Z476mD/QU4Mn1C3p5xTz/bt9Lz/PpPuvpv8qqqg44iIBCathZqZ5ZMs0ta5+wtn2XU1p3R7uvuh1Pd2YCOwMl05M9nuQ32c6IllyWoE2wFYXLk04CSSyTwWo239egrq6qi6+eag44iIBCqdV30a8Diw091/cJb9KoHrgZdOais1s/JPbgO3AE3pyprJ6luimMFV88NfqDVHGplZcgmV+ZVBR5EM1vXmmwwdPUrdI4+Qk58fdBwRkUClc6DQdcA3gEYz25Zq+z4wE8Ddf5Jquw94w917T3psHbAxtUxMHrDe3V9PY9aM1dAaZeGMEipLwz2mq3u4m329H3H7lDuDjiIZbPjECY699BJll11G2WWXBR1HRCRwafv0d/ffAuccVOXuTwBPnNK2Fxj379Jd0WF2H+rnT2+ZHHSUUdsRbcJxzZ8mZ9Xx3HN4LEbdI48EHUVEJCNoYqIM1rAree1FtkzLUZ5XwYySmUFHkQzVv2cPkd/9jom33kpBXV3QcUREMoIKtQzW0BKluiKfOVOKg44yKnGPsyO6gyWVS8kxveTk8zyR4Oi6deRNmMCku+4KOo6ISMbQp2aGGo4l2LqnmxULKkiN1QutvT0f0h/v0yLsckaR3/6WgY8+ovahh8gpKgo6johIxlChlqGa9vXSP5jIimk5miON5JDDoopFQUeRDBTv7aX9ueconjuXimuuCTqOiEhGUaGWoRpaouTnGZdfWhZ0lFFrijQyt3w+xbklQUeRDHTspZeI9/Qk1/MM+dljEZGxpkItQ9W3Rlk2u4ziwtygo4xK52AnRwYOazUCOa3BQ4fo+tWvmHD99RTPmhV0HBGRjKNCLQMdPjbIoWODrMiSbk9AhZp8jrtzdN06coqKqFm1Kug4IiIZSYVaBqpvTU3LkQWFWlNkO5MKa6gt1HQL8lndW7fSt2MHNfffT155edBxREQykgq1DFTfEmVGTSFTJhYGHWVUhhKD7OpuZWnlFzT2SD4jMTRE+1NPUTh9OlU33BB0HBGRjKVCLcP0DcZp/KgnK7o9W6OtDPuwuj3lczpfe43hY8eoe/RRLDfc4zBFRNJJhVqGeX9PN7G4Z8VqBE2RRgpyCplbNj/oKJJBhjs76fzFLyhfsYLSRZqyRUTkbFSoZZiGliglhTksmRXuaTncnebIdhaWLyQ/Jz/oOJJB2p5+GoC61asDTiIikvlUqGUQd6ehNcqV88rJyw33mK7DA4c4Pnxci7DLZ/Tu3El3QwPVd95JfnV10HFERDKeCrUM8uHhfrq6Y1lxtecn03IsqVwacBLJFB6P07ZuHfmTJlF9++1BxxERCQUVahmkviU5Lcfy+eEv1JoijUwvnsGEgqqgo0iGOP7OOwwePEjt179OTkFB0HFEREJBhVoGqW+NMn96CVXl4R7T1RvrZW/Ph7raUz4V6+6m44UXKF2yhPIrrww6johIaKhQyxAnemLsOtiXFVd77ow24zhLVKhJSseGDSQGBqh75BHNqScich5UqGWIzbuiuMPKReEv1JoijZTllTGrdHbQUSQD9O/bx4nf/IaJf/InFE6bFnQcEZFQUaGWIRpaolSV53HplOKgo4xKwhPsiDSxuGIpOaaX13jn7rStXUtueTmT7r036DgiIqGjT9IMEIs7W3ZHWbGggpyccHcL7ev9iN54r8anCQDR3/+e/j17qH3gAXJLSoKOIyISOirUMsCO/b30DiSyYnxaU2Q7OeSwqGJJ0FEkYPH+ftqffZai2bOp/NKXgo4jIhJKKtQyQENrlLxc44p55UFHGbWmSCNzyi6lJE9nT8a7zldeIXbiBJMffRTL0VuNiMiF0LtnBtjUEmHprFJKCsO9OPXxoS4O9R9Ut6cwdPQoXb/8JZXXXUfx3LlBxxERCS0VagE72jXIgfbBrFiNoOnT1Qi0bNR41/bUU1heHrUPPhh0FBGRUFOhFrBPViNYkQXj05ojjUwsqGZK0ZSgo0iAurdto+eDD5h0zz3kTZgQdBwRkVBToRawhtYoU6sLmF5TFHSUURlODNPa3cLSyi9oQtNxLDE8TPtTT1EweTITb7456DgiIqGnQi1AA0NxPtjbkxVn03Z1tzKUGNJqBOPc8TffZKitLbkCQV5e0HFEREJPhVqAtn3Yw3DMWbmwMugoo9YcaSTf8plfviDoKBKQ4ePHOfbyy5RdcQVlyzROUURkLKhQC1BDS5SighyWzi4NOsqouDtNkUYWVCykIKcg6DgSkI7nnsNjMeq+/vWgo4iIZA0VagFxd+pbo1w5r5yCvHA/DW0DR+kcOsZSXe05bvXt3k3kvfeYeNttFNTWBh1HRCRrhLtCCLF9Rwc4FhnOktUIPpmWY2nASSQInkjQtnYteVVVTLrrrqDjiIhkFRVqAalvzZ5pOZoi25laPI2JBdVBR5EAnPjv/52B/fupffhhcgoLg44jIpJVVKgFpL4lytypxUysyA86yqj0x/v4sGePViMYp+K9vXRs2EDx/PlUXH110HFERLKOCrUARHtjtHzcy4osWI1gZ3QHCRKalmOc6njxReI9Pcn1PDV/nojImEtboWZmM8zsHTPbYWbNZvad0+zzVTOLmNm21Ndfn7TtNjNrNbM9Zvbv0pUzCJt3RUk42TE+7UQjJbklzC6dE3QUucgGDh7k+FtvMeGGGyi65JKg44iIZKV0zkgZA77n7lvNrBzYYmZvuvuOU/Z7192/dnKDmeUC/wW4GTgINJjZy6d5bCg1tEapLM1j/vSSoKOMSsITNEebWFyxlFwL94Lycn7cnbZ168gtLqbm/vuDjiMikrXSdkbN3Y+4+9bU7W5gJzBthA9fCexx973uPgQ8DdyTnqQXVzzubN7VzfL55eTkhLuraH/fPnpi3er2HIe6N2+mb+dOalatIq+sLOg4IiJZ66KMUTOzWcAVwKbTbL7GzD4ws9fMbEmqbRpw4KR9DnKGIs/Mvmlmm81sc0dHxximTo+dB3rp6Y+zMgvGpzVHGjGMxZVLzr2zZI3E4CBtTz9N4YwZTPjqV4OOIyKS1dJeqJlZGbAB+K67R0/ZvBW4xN0vA/4/4MXz/fnu/lN3X+7uy2tqakYfOM0aWqLk5MCV88qDjjJqTZFGZpfOoSxPZ1TGk85XXyXW2cnkNWuwHF2PJCKSTml9lzWzfJJF2jp3f+HU7e4edfee1O1XgXwzmwQcAmactOv0VFvo1bdGWXJJKWXF4V6wOjJ8ggN9H6vbc5wZ6uig89VXqbj6akoWaF1XEZF0S+dVnwY8Dux09x+cYZ/Jqf0ws5WpPJ1AAzDPzGabWQGwGng5XVkvlvYTQ+w7OpAli7A3AWj+tHGm/ZlnwIzahx4KOoqIyLiQztM61wHfABrNbFuq7fvATAB3/wnwAPA/mlkM6AdWu7sDMTP7N8AvgVzgn929OY1ZL4qGrFqNoJEJ+VVMK54edBS5SHp37KB782Zq7r+f/GqtQiEicjGkrVBz998CZ72s0d1/BPzoDNteBV5NQ7TA1LdEmVxVwMzacC+zM5wYpiW6gxUTr9Ykp+OEx2IcXbuW/JoaJt52W9BxRETGDY0EvkgGhxN88GE3KxZWhL64+bBnN4OJQXV7jiPH336bocOHqXvkEXIKCoKOIyIybqhQu0i27+1hcNizYzWCSCN5lsf88oVBR5GLIBaN0rFxI6VLl1J2+eVBxxERGVdUqF0kDS1RCvNzWDYn/FNZNEcamV++gMLccHfhysh0PP88iaEh6h55JPRng0VEwkaF2kXg7tS3Rrl8bhkF+eH+J28baKN9sF3TcowT/R99xIl332XizTdTOHVq0HFERMadcFcNIfFx+wBtx4eyotuzObIdgKWVywJOIunmiQRta9eSW17OpHuyYgU3EZHQUaF2EdS3ZNe0HJOLpjCpcFLQUSTNIr//Pf0ffkjtgw+SW1wcdBwRkXFJhdpFUN8aZfbkImomhPtquYH4AHt6dqvbcxyI9/fT/uyzFM2ZQ+V11wUdR0Rk3FKhlmbd/TF27O/NikXYW6I7iHtc03KMA8defpl4JKL1PEVEAqZ34DTburubRCJ7uj2Lc4u5tOzSoKNIGg0eOULXG29Q+eUvUzxnTtBxRETGNRVqadbQEqW8OJeFM0uDjjIqCU/QHGlkYcVici3cC8rLmbk7bevXk1NQQO0DDwQdR0Rk3FOhlkbxhNOwK8pV8yvIzQn3/FMH+w4QjUXV7ZnlerZto7exkUn33kteZWXQcURExj0Vamm062Af0d54VoxPa4o0YhhLKpYGHUXSJDE0RNv69RRMncrEm24KOo6IiKBCLa0aWqLkGCyfXx50lFFrimznktJZlOeHv+iU0+t64w2GOzqSKxDkqXtbRCQTqFBLo/rWKIsuKaW8JNwfet3DUT7u269uzyw23NXFsZdfpvyqqyhbqrOmIiKZQoVamnRGh/nwcH92rEYQbcJxzZ+WxdqffRYSCWpXrw46ioiInESFWpo0tKZWI8iS8WmV+ZXMKJ4ZdBRJg75du4j+4Q9U33EHBTU1QccREZGTqFBLk/qWKDWV+cyqKwo6yqjEPcbOSDNLKr6AWbivXJXP80SCo2vXkjdxItV33hl0HBEROYUKtTQYiiV4f083KxZWhL64+bBnDwOJAXV7ZqkTv/41gx9/TN3q1eQUFgYdR0RETqFCLQ0a9/YwMJTIivFpTZFGci2XhRWLgo4iYyze00PHhg2ULFxI+YoVQccREZHTUKGWBg2tUQryjMsuzYZpORqZVzafotxwd+HK53Vs3Ei8r4+6Rx8N/ZlfEZFspUJtjLk79S1Rls0po6gg3P+8xwY7aBs4qm7PLDRw4ADH336bqhtvpGjGjKDjiIjIGYS7kshAh44NcqRrKGtWIwA0f1qWcXfa1q4lt7SUmvvuCzqOiIichQq1MVbfkpyWI1sKtdrCWmqL6oKOImOou76evtZWalatIresLOg4IiJyFirUxlh9a5SZtUXUVYX7CrrB+CC7u1vV7ZllEoODtD0qMkvzAAAV9klEQVTzDIWXXMKE668POo6IiJyDCrUx1DsQp+mjnqw4m9bavZOYx1hauSzoKDKGjr3yCrGuLiavWYPl6M9fRCTT6Z16DL2/p5t4Inu6PYtyiphbNi/oKDJGhtrb6XrtNSquuYaSeXpeRUTCQIXaGKpviVJWlMvimaVBRxkVd6c50sTCikXk5YR7QXn5o7ann4bcXGofeijoKCIiMkIq1MZIIuFsbo1y5fxycnPDPSfVof6DnBg+rvFpWaSnqYmerVuZdNdd5FdVBR1HRERGSIXaGNlzuJ/jPbGsWY0AUKGWJTwWo23dOvJra5l4661BxxERkfOgQm2M1LdEMIOr5mdDobadmSWXUJlfGXQUGQNdv/oVQ0eOUPfII+Tk5wcdR0REzoMKtTFS3xJlwfQSJpSFe0xXT6ybfb0f6WxaloidOMGxF1+kdNkyyi67LOg4IiJynlSojYGu7mF2H+rPiqs9d0SacVyrEWSJ9g0bSAwPU/fII1rPU0QkhFSojYHNrcnVCFZkQaHWFGmkPK+cmSWXBB1FRql/714i775L9a23Ujh5ctBxRETkAqhQGwP1rVGqK/K5dEpx0FFGJe5xdkSbWVy5lBzTSyPMPJHg6Nq15FZWUn3XXUHHERGRC5S2T2Mzm2Fm75jZDjNrNrPvnGafR81su5k1mtl7ZnbZSdv2pdq3mdnmdOUcreFYgq27u1mxoDz0XUsf9eylP96nbs8sEPnd7xjYu5e6hx4itzjc/4EQERnP0jnyPQZ8z923mlk5sMXM3nT3HSft8xFwvbsfN7PbgZ8CV5+0/QZ3P5bGjKPWvL+X/sEEK7JkWo4cclhUsTjoKDIK8b4+2p97juK5c6m45pqg44iIyCik7Yyaux9x962p293ATmDaKfu85+7HU3f/AExPV550aWiJkpdrXDG3POgoo9Yc2c6lZXMpzi0JOoqMwrGXXiLe3U2d1vMUEQm9i/IubmazgCuATWfZ7c+B106678AbZrbFzL55lp/9TTPbbGabOzo6xiLuealvjbJsThnFhbkX/XePpa6hTg4PHGbpBC3CHmaDhw/T9atfMeErX6F41qyg44iIyCilvVAzszJgA/Bdd4+eYZ8bSBZq/8dJzV9y9yuB24Fvm9lXTvdYd/+puy939+U1NTVjnP7sDncOcrBjMKtWI9D4tPByd9rWryenoICaVauCjiMiImMgrYWameWTLNLWufsLZ9hnGfBPwD3u3vlJu7sfSn1vBzYCK9OZ9UI0tGTPtBzNkUYmFUyirlDTOIRVz/vv09vURM3995NXEf7XpIiIpPeqTwMeB3a6+w/OsM9M4AXgG+6+66T20tQFCJhZKXAL0JSurBeqvjXK9JpCplYXBh1lVIYSQ7RGW1hSuSz0V66OV4mhIdqeeorCadOouuGGoOOIiMgYSedVn9cB3wAazWxbqu37wEwAd/8J8NdANfBfUwVCzN2XA3XAxlRbHrDe3V9PY9bz1j8YZ/veHu6+ZlLQUUZtV3crwz6sbs8Q63r9dYY7Opj5l3+J5YV7GTMREfmjtL2ju/tvgbOennH3vwD+4jTte4GMXpjw/T3dxOKeFd2eTZHtFOQUMK98ftBR5AIMd3Zy7JVXKF++nNLFmlpFRCSb6Nr9C9TQGqW4MIcll5QGHWVU3J2mSCMLyheRn5MfdBy5AO3PPAPu1K1eHXQUEREZYyrULoC709DazZXzysnPC/c/4ZGBwxwf6lK3Z0j1trQQra+n+s47yZ8U/m54ERH5rHBXGQH58Eg/ndHhrJqWY4kKtdDxeJy2devIr66m+o47go4jIiJpoELtAnwyLcfyLCnUphVPp6qgKugocp6Ov/MOgwcOULt6NTkFBUHHERGRNFChdgHqW6LMm1bMxPJwj+nqi/XyUc+H6vYMoVh3Nx0bN1KyaBHly5cHHUdERNJEhdp5OtETo/VgHyuz4GrPHdFmEiRYWqllo8Km44UXSPT3M3nNGs19JyKSxVSonactu6K4w4oFlUFHGbWmSCOluaXMKp0ddBQ5DwP793Pi17+m6qabKJw2Leg4IiKSRirUzlN9a5SqsjzmTSsOOsqoJDzBjkgTiyuXkmN6GYSFu3N03Tpyy8qouffeoOOIiEia6RP6PMTjztZd3SxfUEFOTri7m/b1fkRvvFfj00ImumkT/bt2UfPAA+SWhnsOPxEROTcVaudhx8e99AzEs2J8WnOkkRxyWFyxJOgoMkKJgQHan3mGolmzmPDlLwcdR0RELgIVauehviVKXq5xxdzyoKOMWlOkkdlll1KSp7MyYXHslVeIHT9O3aOPYjn60xURGQ/0bn8eGlqjLJlVSmlRbtBRRuXE0HEO9h9Qt2eIDLW10fX661Reey0l8+YFHUdERC4SFWoj1HZ8kP1tA1m1GoEKtfBoe+opLC+PmoceCjqKiIhcRCrURqg+tRpBNoxPa4o0UlUwkSlFU4OOIiPQs307Pdu2Menuu8mfMCHoOCIichGpUBuh+pYoUyYWMG1SYdBRRmU4MUxr906WVn5BE6WGgMditK1fT8HkyUy85Zag44iIyEWmQm0EBoYSbN/bw8qFFaEvbnZ372IoMaRuz5DoevNNho4epe6RR7C8vKDjiIjIRaZCbQQ++LCboZizIkvGp+VbPvPLFwQdRc5h+MQJjr30EmWXXUbZMi3zJSIyHqlQG4H61ihFBTl8YU5Z0FFGxd1pjmxnfvkCCnLC3YU7HnQ89xwei1H3yCNBRxERkYCoUDsHd6ehJcoVc8soyAv3P1fb4FGODR3TIuwh0LdnD5Hf/Y6Jt91GQV1d0HFERCQg4a48LoJ9bQN0RIZZuTA7FmEHWKLxaRnNEwna1q4lb8IEJn3ta0HHERGRAKlQO4eG1LQc2TA+rTnSyNSiqVQXVgcdRc4i8u67DOzbR+3DD5NTVBR0HBERCZAKtXOob41y6dRiqivyg44yKv3xPvZ072aJuj0zWry3l/bnn6d43jwqvvjFoOOIiEjAVKidRXdfjJ37e7NiNYKd0Z0kSGhajgzX8eKLxHt6mLxmTeinghERkdFToXYWW3Z1k3BYkQWrETRHGinJLWF22Zygo8gZDB46xPG33mLC9ddTdMklQccREZEMoELtLDa1RKkozWX+9JKgo4xKwhM0RxpZVLGEXAv3gvLZyt05um4dOcXF1KxaFXQcERHJECrUziCecLbsirJifgW5OeHugvq4bz/dsW51e2aw7i1b6Nuxg5r77iOvvDzoOCIikiFUqJ1By8e9dPfHs6LbsynSiGEsrlwSdBQ5jcTQEO1PPUXh9OlU3XBD0HFERCSDqFA7g4bWKDk5cNW88J/daI40Mqt0NmV54T+WbNT52msMd3ZS9+ijWK66pkVE5I9UqJ1BfUuUxZeUUlYc7oWwI8Mn+Lhvv7o9M9TwsWN0vvIK5StXUrpoUdBxREQkw6hQO42OE0N8dHQgK6blaI40AWj+tAzV9vTTYEbdww8HHUVERDKQCrXTaGhNrkawMgvGpzVHGpmQP4HpxdODjiKn6N2xg+7Nm6m+807yq7VahIiIfJ4KtdOob41SOyGfmbXhXr4nlojREt3JksovaPLUDOPxOG3r1pFfU0P17bcHHUdERDKUCrVTDA0n2Lanh6sXVoa+uNnTs5uBxIDGp2Wg42+/zeChQ9StXk1OQUHQcUREJEOpUDvF9r09DA4nsmJajuZII3mWx4JyDVLPJLFolI6NGyldsoSyK68MOo6IiGSwtBVqZjbDzN4xsx1m1mxm3znNPmZmPzSzPWa23cyuPGnbY2a2O/X1WLpynqq+NUphvrFsTtnF+pVp0xRpZF75AgpzC4OOIifp2LCBxOBgcjqOkJ+1FRGR9Ern3BMx4HvuvtXMyoEtZvamu+84aZ/bgXmpr6uBHwNXm9lE4G+A5YCnHvuyux9PV9i33+/iyTeO0H5imII843dNJ7jxionp+nVpVd+5iRcPPU9kOEJPrJv6zk2srL466FjjXuS992h75hnikQg5RUUM7NtH4dSpQccSEZEMlrYzau5+xN23pm53AzuBaafsdg/wL570B2CCmU0BbgXedPeuVHH2JnBburK+/X4XP9x4gPYTwwAMxZwfbjzA2+93petXpk195ybW7/8ZkeEIAH3xPtbv/xn1nZsCTja+Rd57jyNPPEE8knxeEgMDHHniCSLvvRdwMhERyWQXZYyamc0CrgBOrRamAQdOun8w1Xam9rR48o0jDA77Z9oGh50n3ziSrl+ZNi8f3siwD32mbdiHePnwxoASCUD7hg340GefFx8aon3DhoASiYhIGKS9UDOzMmAD8F13j6bh53/TzDab2eaOjo4L+hkdqTNpI23PZMeHTn8W8EztcnHEOjvPq11ERATSXKiZWT7JIm2du79wml0OATNOuj891Xam9s9x95+6+3J3X15TU3NBOWsm5J9XeyarKjj9uLoztcvFkXeGCW3P1C4iIgLpverTgMeBne7+gzPs9jLwp6mrP78IRNz9CPBL4BYzqzKzKuCWVFtaPHbLFArzP3v1XWG+8dgtU9L1K9Pm7qn3kW+fnZcr3wq4e+p9ASUSgNpVq7BT5kuzggJqV60KKJGIiIRBOq/6vA74BtBoZttSbd8HZgK4+0+AV4E7gD1AH/BnqW1dZvYfgIbU4/7O3dPWd/fJ1Z1PvnGEjhPD1EzI57FbpoTyqs9Pru58+fBGjg91UVUwkbun3qerPgNWee21QHKsWqyzk7zqampXrfq0XURE5HTM3c+9V0gsX77cN2/eHHQMERHJEGa2xd2XB51D5EJpZQIRERGRDKVCTURERCRDqVATERERyVAq1EREREQylAo1ERERkQylQk1EREQkQ6lQExEREclQKtREREREMpQKNREREZEMpUJNREREJEOpUBMRERHJUCrURERERDJUVi3KbmYdwP5R/phJwLExiJMJdCyZKVuOJVuOA3QsmWisjuMSd68Zg58jEoisKtTGgpltdvflQecYCzqWzJQtx5ItxwE6lkyULcchMlrq+hQRERHJUCrURERERDKUCrXP+2nQAcaQjiUzZcuxZMtxgI4lE2XLcYiMisaoiYiIiGQonVETERERyVAq1EREREQy1Lgu1Mxshpm9Y2Y7zKzZzL6Tap9oZm+a2e7U96qgs56LmRWZWb2ZfZA6lr9Ntc82s01mtsfMnjGzgqCzjoSZ5ZrZ+2b2Sup+WI9jn5k1mtk2M9ucagvd6wvAzCaY2fNm1mJmO83smrAdi5ktSD0Xn3xFzey7YTuOT5jZ/5r6e28ys6dS7wNh/Vv5Tuo4ms3su6m2UD4vImNpXBdqQAz4nrsvBr4IfNvMFgP/DnjL3ecBb6XuZ7pB4EZ3vwy4HLjNzL4I/EfgH919LnAc+PMAM56P7wA7T7of1uMAuMHdLz9pTqgwvr4A/jPwursvBC4j+fyE6ljcvTX1XFwOXAX0ARsJ2XEAmNk04H8Blrv7UiAXWE0I/1bMbCnwr4GVJF9bXzOzuYTweREZa+O6UHP3I+6+NXW7m+QHzzTgHuDJ1G5PAvcGk3DkPKkndTc/9eXAjcDzqfZQHIuZTQfuBP4pdd8I4XGcReheX2ZWCXwFeBzA3Yfc/QQhPJaT3AR86O77Ce9x5AHFZpYHlABHCOffyiJgk7v3uXsM+A1wP+F9XkTGzLgu1E5mZrOAK4BNQJ27H0ltOgrUBRTrvKS6C7cB7cCbwIfAidQbH8BBkoVopvt/gb8EEqn71YTzOCBZLL9hZlvM7JuptjC+vmYDHcB/S3VJ/5OZlRLOY/nEauCp1O3QHYe7HwL+E/AxyQItAmwhnH8rTcCXzazazEqAO4AZhPB5ERlrKtQAMysDNgDfdffoyds8OX9JKOYwcfd4qktnOskuhIUBRzpvZvY1oN3dtwSdZYx8yd2vBG4n2bX+lZM3huj1lQdcCfzY3a8AejmlGypEx0Jq3NbdwHOnbgvLcaTGa91DsoieCpQCtwUa6gK5+06SXbZvAK8D24D4KfuE4nkRGWvjvlAzs3ySRdo6d38h1dxmZlNS26eQPEMVGqkuqXeAa4AJqW4RSBZwhwILNjLXAXeb2T7gaZLdOP+Z8B0H8OlZD9y9neRYqJWE8/V1EDjo7ptS958nWbiF8VggWThvdfe21P0wHsefAB+5e4e7DwMvkPz7CevfyuPufpW7f4Xk2LpdhPN5ERlT47pQS419ehzY6e4/OGnTy8BjqduPAS9d7Gzny8xqzGxC6nYxcDPJMXfvAA+kdsv4Y3H3v3L36e4+i2TX1Nvu/ighOw4AMys1s/JPbgO3kOziCd3ry92PAgfMbEGq6SZgByE8lpSv88duTwjncXwMfNHMSlLvZZ88J6H7WwEws9rU95kkx6etJ5zPi8iYGtcrE5jZl4B3gUb+OB7q+yTHqT0LzAT2Aw+5e1cgIUfIzJaRHGybS7IAf9bd/87M5pA8MzUReB9Y4+6DwSUdOTP7KvBv3f1rYTyOVOaNqbt5wHp3/3szqyZkry8AM7uc5AUeBcBe4M9IvdYI0bGkiuaPgTnuHkm1hfU5+VvgYZJXsL8P/AXJMWmh+lsBMLN3SY5HHQb+N3d/K6zPi8hYGteFmoiIiEgmG9ddnyIiIiKZTIWaiIiISIZSoSYiIiKSoVSoiYiIiGQoFWoiIiIiGUqFmkgGMLPpZvaSme02s71m9iMzKxzj3/FVM7v2pPvfMrM/Td3+V2Y2dSx/n4iIjJ4KNZGApSYrfQF40d3nAfOAYuD/HuNf9VXg00LN3X/i7v+SuvuvSC5DJCIiGUTzqIkEzMxuAv4mtXTOJ20VJCf4/L+Ahe7+b1LtrwD/yd1/bWY/BlaQLOqed/e/Se2zj+Tkx3cB+cCDwADwB5LrJ3YA/zPJmex7gH3AEySXGuoH/j3wr9393tTPuxn4n9z9vrT9I4iIyGnpjJpI8JYAn1mE3t2jJAuovNM9IOXfu/tyYBlwfWp1ik8cSy0G/2OSqzvsA34C/KO7X+7u7570u54HNgOPuvvlwKvAQjOrSe3yZ8A/j+L4RETkAqlQEwmvh8xsK8llgpYAi0/a9kLq+xZg1vn8UE+eZv8ZsCa1fuw1wGujTisiIuftbP9bF5GLYwd/XEQb+LTrczLQCcw/aVNRavts4N8CK9z9uJk98cm2lE/WdoxzYX/n/w34Ocku0+fcPXYBP0NEREZJZ9REgvcWUHLSFZi5wD8APwI+Ai43sxwzmwGsTD2mAugFImZWB9w+gt/TDZSPZJu7HwYOA/8nyaJNREQCoEJNJGCprsb7gAfMbDfJs2gJd/974Hcki7UdwA+BranHfECyy7MFWJ/a71x+DtxnZtvM7MunbHsC+ElqW3GqbR1wwN13jub4RETkwumqT5EMk5rr7CngPnffGmCOHwHvu/vjQWUQERnvVKiJyOeY2RaSXas3u/vgufYXEZH0UKEmIiIikqE0Rk1EREQkQ6lQExEREclQKtREREREMpQKNREREZEMpUJNREREJEP9/9UGk2Eg8mHjAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1sAAAJ7CAYAAAAV54uHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAAC2wElEQVR4nOzdd3hUZdrH8e+k99BJCAmhJEgHCSoo4iIlyKqoi6IosFhWxYKKKIoUAanSVkXXF4OoiGWFXVGILCu40iR0ASGUkNBrOqlz3j+GGTIQIIEkJ+X3ua65ODPzzJn7oAlzz3M/92MxDMNARERERERESpSL2QGIiIiIiIhURkq2RERERERESoGSLRERERERkVKgZEtERERERKQUKNkSEREREREpBUq2RERERERESoGSLRERERERkVLgZnYAIiIiImKe/Px8cnNzzQ5DpMJwd3fH1dW1SGOVbImIiIhUQYZhcOzYMZKTk80ORaTCqVatGkFBQVgsliuOU7IlIiIiUgXZE606derg4+Nz1Q+NImL7kiIzM5MTJ04AEBwcfMXxSrZEREREqpj8/HxHolWzZk2zwxGpULy9vQE4ceIEderUuWJJoRpkiIiIiFQx9jVaPj4+JkciUjHZf3autt5RyZaIiIhIFaXSQZFrU9SfHSVbIiIiIiIipUDJloiIiIiISClQsiUiIiIi1yTfarBtfxort5xl2/408q2G2SGVCytXrsRisVTatvqDBg2iT58+jvt33HEHQ4cOva5zzps3j2rVql32+YSEBCwWC1u2bLmu9ylrSrZEREREpNhW/57MoCk7ee3jfUz+6iCvfbyPQVN2svr35FJ936SkJAYPHky9evXw8PCgQYMGvPjii5w+fbpU3/dyCks0OnXqxNGjRwkMDASunkhUdN999x3jxo0zO4zrcujQITw8PGjZsmWJnlfJloiIiIgUy+rfkxn/RQKnUpw7sZ1KyWX8FwmllnDt37+fqKgo4uPj+fLLL9m7dy8ffvghK1asoGPHjpw5c6ZU3re4PDw8irThbWVRo0YN/P39zQ7jusybN48HH3yQ1NRU1q9fX2LnVbIlIiIiIhiGQVZO/lVvGVl5zPn+8BXP9eH3h8nIyivS+Qyj6KWHQ4YMwcPDg59++okuXboQFhZGr169+M9//sPhw4d58803HWMtFguLFy92en21atWYN2+e4/5rr71GZGQkPj4+NGrUiLfeesuplfeYMWNo27Ytn332GeHh4QQGBtKvXz/S0tIAWzndqlWrmDVrFhaLBYvFQkJCglMZ4cqVK/nrX/9KSkqKY8yYMWN4++23C51Fadu2LW+99Vah13/27Fn69+9P7dq18fb2JiIigpiYGKDw0sUtW7Y4YoILM2yLFy8mIiICLy8vevbsSVJS0iXX/NFHHxEaGoqPjw8PPvggKSkpl/3vcvHsXnZ2NsOGDSMkJARfX19uvvlmVq5c6fSaefPmERYWho+PD/fdd1+RZyb/+OMPOnXqhJeXFy1btmTVqlWA7f/fJk2aMG3aNKfx9r+DvXv3XvachmEQExPDY489xiOPPMLcuXOLFEtRaFNjERERESE718p9o7eXyLlOpebyl7G/F2nsorGt8PK4/KawdmfOnCE2NpYJEyY4NpW1CwoKon///nz11Vd88MEHRZ5R8vf3Z968edSrV4/t27fz5JNP4u/vz/Dhwx1j9u3bx+LFi1myZAlnz57lwQcfZNKkSUyYMIFZs2axZ88eWrZsydtvvw1A7dq1HckN2EoKZ86cyahRo9i9ezcAfn5+JCcnM3bsWDZs2ECHDh0A2Lx5M9u2beO7774rNN633nqLnTt3snTpUmrVqsXevXs5d+5cka7VLjMzkwkTJjB//nw8PDx49tln6devH6tXr3aM2bt3L19//TXff/89qampPP744zz77LN88cUXRXqP5557jp07d7Jw4ULq1avHokWLiI6OZvv27URERLB+/Xoef/xxJk6cSJ8+fVi2bBmjR48u0rlfffVVZs6cSfPmzZk+fTp33303Bw4coGbNmgwePJiYmBiGDRvmGB8TE8Ptt99OkyZNLnvOn3/+mczMTLp160ZISAidOnVixowZ+Pr6FimmK9HMlohUevZFtRd/2yXOwsPDGTRokNlhiIgUKj4+HsMwaNasWaHPN2vWjLNnz3Ly5Mkin3PkyJF06tSJ8PBw7r77boYNG8bXX3/tNMZqtTJv3jxatmxJ586deeyxx1ixYgUAgYGBeHh44OPjQ1BQEEFBQbi6OieOHh4eBAYGYrFYHGP8/PyoX78+PXv2dMxMgS0x6NKlC40aNSo03sTERNq1a0dUVBTh4eF069aNu+++u8jXC7ZNeN977z06duxI+/bt+fTTT1mzZg2//fabY0xWVhbz58+nbdu23H777fz9739n4cKFHDt27KrnT0xMJCYmhm+++YbOnTvTuHFjhg0bxm233ea41lmzZhEdHc3w4cOJjIzkhRdeoGfPnkWK/7nnnuOBBx6gWbNmzJkzh8DAQMdM1KBBg9i9e7fjWnJzc1mwYAGDBw++4jnnzp1Lv379cHV1pWXLljRq1IhvvvmmSPFcjWa2RKRMzJs3j7/+9a8A/O9//+O2225zet4wDMLCwjh06BC9e/dmyZIlZoRZJAsWLODEiRNF7ryUk5PDnDlzmDdvHvv27cPFxYWQkBBuvfVWXn75ZW644YbSDVhEpAg83V1YNLbVVcf9fiCdt+YduOq4cYMa0rKhX5HetziuVnbo4eFR5HN99dVXzJ49m3379pGenk5eXh4BAQFOY8LDw53WIwUHB3PixIlixXw5Tz75JIMHD2b69Om4uLiwYMECZsyYcdnxzzzzDA888ACbNm2iR48e9OnTh06dOhXrPd3c3BwzaQA33HAD1apVY9euXdx0000AhIWFERIS4hjTsWNHrFYru3fvJigo6Irn3759O/n5+URGRjo9np2dTc2aNQHYtWsX9913n9PzHTt2ZNmyZVeNv2PHjk7XEhUVxa5duwCoV68evXv35pNPPuGmm27i+++/Jzs7m759+172fMnJyXz33Xf8+uuvjsceffRR5s6dWyJfQCrZEpEy5eXlxYIFCy5JtlatWsWhQ4fw9PQ0KbKiW7BgAb///nuRk60HHniApUuX8vDDD/Pkk0+Sm5vLH3/8wZIlS+jUqZOSLREpFywWS5HK+dpFBFAr0P2S5hgF1Q50p11EAK4uJdcgokmTJlgslkI/qIPtA3zt2rUdXf8sFssliVnB9Vhr166lf//+jB07lp49exIYGMjChQt59913nV7j7u7udN9isWC1Wkvkmu6++248PT1ZtGgRHh4e5Obm8pe//OWy43v16sXBgwf58ccfWb58OXfeeSdDhgxh2rRpuLjYktaC11zwestKeno6rq6ubNy48ZJZPj+/qyff1+uJJ57gscceY8aMGcTExPDQQw/h4+Nz2fELFiwgKyuLm2++2fGYYRhYrVb27NlzSdJYXCojFJEyddddd/HNN9+Ql5fn9PiCBQto3779Vb8xKw6r1UpWVlaJne9abNiwgSVLlvD222/z2Wef8eyzz/Liiy8yZ84cEhISil3+ISJiNlcXC0//OeSKY/7255ASTbQAatasSffu3fnggw8uWad07NgxvvjiC6eZiNq1a3P06FHH/fj4eDIzMx3316xZQ4MGDXjzzTeJiooiIiKCgwcPFjsuDw8P8vPzr2mMm5sbAwcOJCYmhpiYGPr163fJerSL1a5dm4EDB/L5558zc+ZM/vGPfzgeB5yuubA9qfLy8oiLi3Pc3717N8nJyU7lmYmJiRw5csRxf926dbi4uNC0adMrxgbQrl078vPzOXHiBE2aNHG62f+Nb9as2SUd/9atW3fVc188Li8vj40bNzrFftddd+Hr68ucOXNYtmxZkUoIX3nlFbZs2eK4bd26lc6dO/PJJ58UKaYrUbIlImXq4Ycf5vTp0yxfvtzxWE5ODt9++y2PPPJIoa+ZNm0anTp1ombNmnh7e9O+fXu+/fbbS8ZZLBaee+45vvjiC1q0aIGnp+dlSxIMw+Cpp57Cw8PDaSHy559/Tvv27fH29qZGjRr069fPqUvTHXfcwQ8//MDBgwcdXaXCw8Mve7379u0D4NZbb73kOVdXV0dJBdhqzQs715gxYy5Z7F3wWps2bYqXlxft27fnl19+KfS1f/zxBw8++CABAQHUrFmTF1988YqJ6P79+7FYLIWWs6xZswaLxcKXX3552deLSOV2a8tqjOwfTq1A51mf2oHujOwfzq0tq5XK+7733ntkZ2fTs2dPfvnlF5KSkli2bBndu3cnMjKSUaNGOcZ27dqV9957j82bNxMXF8fTTz/tNEsVERFBYmIiCxcuZN++fcyePZtFixYVO6bw8HDWr19PQkICp06dKnTWKzw8nPT0dFasWMGpU6eckr4nnniC//73v0VKDEaNGsW//vUv9u7dy44dO1iyZIkj0WjSpAmhoaGMGTOG+Ph4fvjhh0tm6cA2U/f888+zfv16Nm7cyKBBg7jlllscJYRgq0IZOHAgW7du5X//+x8vvPACDz74YJG+EI2MjKR///4MGDCA7777jgMHDvDbb78xceJEfvjhBwBeeOEFli1bxrRp04iPj+e9994rUgkhwPvvv8+iRYv4448/GDJkCGfPnnX6e3N1dWXQoEGMGDGCiIgIp7LDi23ZsoVNmzbxxBNP0LJlS6fbww8/zKeffnrJl8PFZoiIlIGYmBgDMDZs2GB06tTJeOyxxxzPLV682HBxcTEOHz5sNGjQwOjdu7fTa+vXr288++yzxnvvvWdMnz7duOmmmwzAWLJkidM4wGjWrJlRu3ZtY+zYscb7779vbN682Thw4IABGFOnTjUMwzDy8vKMAQMGGJ6enk7nGD9+vGGxWIyHHnrI+OCDD4yxY8catWrVMsLDw42zZ88ahmEYP/30k9G2bVujVq1axmeffWZ89tlnxqJFiy573WvWrDEA48knnzRyc3Ov+Hc0cOBAo0GDBpc8Pnr0aOPiX9eA0bJlS6NWrVrG22+/bUyePNlo0KCB4e3tbWzfvv2S17Zq1cq4++67jffee8949NFHDcDpv4FhGEaDBg2MgQMHOu7feuutRvv27S+J59lnnzX8/f2NjIyMK16PiJRf586dM3bu3GmcO3fuus6Tl281tu5LNX7efMbYui/VyMu3llCEl3fgwAFj4MCBRt26dQ2LxWIAxv3333/J76TDhw8bPXr0MHx9fY2IiAjjxx9/NAIDA42YmBjHmFdffdWoWbOm4efnZzz00EPGjBkzjMDAQMfzo0ePNtq0aeN03hkzZjj9rt69e7dxyy23GN7e3gZgHDhwwPj5558NwPFvh2EYxtNPP23UrFnTAIzRo0c7nbNz585GixYtrnrt48aNM5o1a2Z4e3sbNWrUMO69915j//79jud//fVXo1WrVoaXl5fRuXNn45tvvnHEZBi2f4sDAwONf/7zn0ajRo0MT09Po1u3bsbBgwcvueYPPvjAqFevnuHl5WX85S9/Mc6cOeMYM3DgQOPee+913O/SpYvx4osvOu7n5OQYo0aNMsLDww13d3cjODjYuO+++4xt27Y5xsydO9eoX7++4e3tbdx9993GtGnTnP7uL2b/t3zBggXGTTfdZHh4eBjNmzc3/vvf/14ydt++fQZgTJky5Yp/n88995zRvHnzQp87evSo4eLiYvzrX/8q9Pmi/gwp2RKRMlEw2XrvvfcMf39/IzMz0zAMw+jbt6/xpz/9yTAMo9Bkyz7OLicnx2jZsqXRtWtXp8cBw8XFxdixY4fT4wWTrdzcXOOhhx4yvL29jdjYWMeYhIQEw9XV1ZgwYYLTa7dv3264ubk5Pd67d+9Ck6LCWK1Wo0uXLgZg1K1b13j44YeN999/3+kfNrviJluAERcX53js4MGDhpeXl3Hfffdd8tp77rnH6fXPPvusARhbt251PHZxsvXRRx8ZgLFr1y7HYzk5OUatWrWcxolIxVNSyVZ5MGrUKMPPz89Yu3at2aFcE6vVajRu3Nh49913S/297MnWlRSWYFY0v/zyi+Hu7m4cO3as1N6jqD9DKiMUkTL34IMPcu7cOZYsWUJaWhpLliy5bAkh4FS/fvbsWVJSUujcuTObNm26ZGyXLl1o3rx5oefJycmhb9++LFmyhB9//JEePXo4nvvuu++wWq08+OCDnDp1ynELCgoiIiKCn3/++Zqu1WKxEBsby/jx46levTpffvklQ4YMoUGDBjz00ENOm08Wl71tr11YWBj33nsvsbGxl6wNGDJkiNP9559/HoAff/zxsud/8MEH8fLyctpXJTY2llOnTvHoo49ec9wiIiVp7NixzJ49m3Xr1pVY44qycvLkSd577z2OHTvm6Ngr1y47O5tDhw4xZswY+vbtS926dc0OSd0IRaTs1a5dm27durFgwQIyMzPJz8+/YvelJUuWMH78eLZs2UJ2drbj8cI2rWzYsOFlzzNx4kTS09NZunQpd9xxh9Nz9v1bIiIiCn3txd2oisPT05M333yTN998k6NHj7Jq1SpmzZrF119/jbu7O59//vk1nbewWCMjI8nMzOTkyZNOtfUXj23cuDEuLi5OG29erFq1atx9990sWLCAcePGAfDFF18QEhJC165drylmEZHSUFETlTp16lCrVi3+8Y9/UL16dbPDqfC+/PJLHn/8cdq2bcv8+fPNDgdQsiUiJnnkkUd48sknOXbsGL169XK06r3Y//73P+655x5uv/12PvjgA4KDg3F3dycmJoYFCxZcMv5KXZx69uzJsmXLmDJlCnfccQdeXl6O56xWKxaLhaVLl17SqhZKrl1tcHAw/fr144EHHqBFixZ8/fXXzJs3Dzc3t0KTR+CqXa6uxeXe62IDBgzgm2++Yc2aNbRq1Yp///vfPPvss44WwyIicu2Mq+wZVtIGDRp01b2jxowZw5gxY8oknpJWlOsra0q2RMQU9913H3/7299Yt24dX3311WXH/fOf/8TLy4vY2FinPbjsu9AXxy233MLTTz/Nn//8Z/r27cuiRYtwc7P9GmzcuDGGYdCwYcOr7qlR1ETlStzd3WndujXx8fGOcsXq1asXWlZ4uVbE8fHxlzy2Z88efHx8HC2AC44tOOu3d+9erFbrFTspAkRHR1O7dm2++OILbr75ZjIzM3nssceufoEiIiKi1u8iYg4/Pz/mzJnDmDFjrrjXlKurKxaLxWl2JyEhgcWLF1/T+3br1o2FCxeybNkyHnvsMUd9//3334+rqytjx4695JtGwzA4ffq0476vry8pKSlFer/4+HgSExMveTw5OZm1a9dSvXp1R2LUuHFjUlJS2LZtm2Pc0aNHL9uKeO3atU7r1pKSkvjXv/5Fjx49Lpmde//9953u//3vfwdsG2ReiZubGw8//LBjBq5Vq1a0bt36iq8RERERG81siYhpBg4ceNUxvXv3Zvr06URHR/PII49w4sQJ3n//fZo0aeKUlBRHnz59iImJYcCAAQQEBPDRRx/RuHFjxo8fz4gRI0hISKBPnz74+/tz4MABFi1axFNPPcWwYcMAaN++PV999RUvv/wyHTp0wM/P77IJ49atW3nkkUfo1asXnTt3pkaNGhw+fJhPP/2UI0eOMHPmTEdi1K9fP1577TXuu+8+XnjhBTIzM5kzZw6RkZGFNgNp2bIlPXv25IUXXsDT05MPPvgAsC0Wv9iBAwe45557iI6OZu3atXz++ec88sgjtGnT5qp/XwMGDGD27Nn8/PPPTJ48uch/zyIiIlWdki0RKde6du3K3LlzmTRpEkOHDqVhw4ZMnjyZhISEa062AB599FHS0tJ49tlnCQgIYOrUqbz++utERkYyY8YMR8ISGhpKjx49uOeeexyvffbZZ9myZQsxMTHMmDGDBg0aXDbZuv322xk3bhxLly5l+vTpnDx5En9/f9q1a8fkyZN54IEHHGNr1qzJokWLePnllxk+fDgNGzZk4sSJxMfHX7bzYseOHRk7diyJiYk0b96cefPmFTrz9NVXXzFq1Chef/113NzceO6555g6dWqR/q7at29PixYt2LVrF/379y/Sa0RERAQsRlmvzBMRketmsVgYMmQI77333hXHjRkzhrFjx3Ly5Elq1ap1ze/Xrl07atSowYoVK675HCJSfmRlZXHgwAEaNmzo1CxIRIqmqD9DWrMlIiJXFBcXx5YtWxgwYIDZoYiIVAgrV67EYrFc116K5dmgQYPo06eP4/4dd9zB0KFDr+uc8+bNu2xnYrCt17ZYLGzZsuW63qesKdkSEZFC/f7773z66acMHjyY4OBgHnroIbNDEhEhKSmJwYMHU69ePTw8PGjQoAEvvviiUyOjslRYotGpUyeOHj1KYGAgcPVEoqL77rvvHPsxVjRjxozBYrE4boGBgXTu3JlVq1aVyPmVbImISKG+/fZb/vrXv5Kbm8uXX36pUiMRKdSKpM20+uIpViRtLvX32r9/P1FRUcTHx/Pll1+yd+9ePvzwQ1asWEHHjh05c+ZMqcdQFB4eHgQFBZXIViEVQY0aNfD39zc7jGvWokULjh49ytGjR1m7di0RERH8+c9/LnLn4StRsiUiUgEZhnHV9Vpg+8bOMIxrWq81ZswYrFYru3btokuXLtcSpohUcoZhMHJtDH+cTWLk2phS36R3yJAheHh48NNPP9GlSxfCwsLo1asX//nPfzh8+DBvvvmmY6zFYrlkm5Bq1aoxb948x/3XXnuNyMhIfHx8aNSoEW+99Ra5ubmO58eMGUPbtm357LPPCA8PJzAwkH79+pGWlgbYyulWrVrFrFmzHDMjCQkJTmWEK1eu5K9//SspKSmOMWPGjOHtt9+mZcuWl1xj27Zteeuttwq9/rNnz9K/f39q166Nt7c3ERERjn0nCytd3LJliyMmuDDDtnjxYiIiIvDy8qJnz54kJSVdcs0fffQRoaGh+Pj48OCDD14x8bh4di87O5thw4YREhKCr68vN998MytXrnR6zbx58wgLC8PHx4f77ruvyDOTf/zxB506dcLLy4uWLVs6ZqAMw6BJkyZMmzbNabz972Dv3r2XPaebmxtBQUEEBQXRvHlz3n77bdLT09mzZ0+RYroSJVsiIiIigmEYZORmFev2/YF1xJ2wbbAedyKe7w+sK/Y5ipqgnTlzhtjYWJ599lm8vb2dngsKCqJ///589dVXxUr4/P39mTdvHjt37mTWrFl8/PHHzJgxw2nMvn37WLx4MUuWLGHJkiWsWrWKSZMmATBr1iw6duzIk08+6ZgZCQ0NdXp9p06dmDlzJgEBAY4xw4YNY/DgwezatYsNGzY4xm7evJlt27bx17/+tdB433rrLXbu3MnSpUvZtWsXc+bMKfaXaZmZmUyYMIH58+ezevVqkpOT6devn9OYvXv38vXXX/P999+zbNkyNm/ezLPPPlvk93juuedYu3YtCxcuZNu2bfTt25fo6Gji423/r6xfv57HH3+c5557ji1btvCnP/2J8ePHF+ncr776Kq+88gqbN2+mY8eO3H333Zw+fRqLxcLgwYMdyaddTEwMt99+O02aNCnS+bOzs4mJiaFatWo0bdq0yNd8OWr9LiIiIiJk5mVT7aP7ruscD/z4drFfk/y3Rfi6X71MOT4+HsMwaNasWaHPN2vWjLNnz3Ly5Enq1KlTpPceOXKk4zg8PJxhw4axcOFChg8f7njcarUyb948R5ncY489xooVK5gwYQKBgYF4eHjg4+NDUFBQoe/h4eFBYGAgFovFaYyfnx89e/YkJiaGDh06ALbEoEuXLjRq1KjQcyUmJtKuXTuioqIcMRdXbm4u7733HjfffDMAn376Kc2aNeO3337jpptuAmyd9ubPn09ISAgAf//73+nduzfvvvvuZa+zYIwxMTEkJiZSr149AIYNG8ayZcuIiYnhnXfeYdasWURHRzv+niMjI1mzZg3Lli27avzPPfecY9uUOXPmsGzZMubOncvw4cMZNGgQo0aNclxLbm4uCxYsuGS262Lbt2/Hz88PsCWj/v7+fPXVVwQEBFw1nqtRslUIq9XKkSNH8Pf3rzK1tiIiImIOwzBIS0ujXr16uLio6OhqrjZz5eHhUeRzffXVV8yePZt9+/aRnp5OXl7eJR+ww8PDndYjBQcHc+LEieIFfRlPPvkkgwcPZvr06bi4uLBgwYJLZtYKeuaZZ3jggQfYtGkTPXr0oE+fPnTq1KlY7+nm5uZI7gBuuOEGqlWrxq5duxzJVlhYmCPRAujYsSNWq5Xdu3dfNdnavn07+fn5REZGOj2enZ1NzZo1Adi1axf33eec2Hfs2LFIyVbHjh2driUqKopdu3YBUK9ePXr37s0nn3zCTTfdxPfff092djZ9+/a94jmbNm3Kv//9bwDS0tL46quv6Nu3Lz///LMjsb1WSrYKceTIkUumgEVERERKU1JSEvXr1zft/X3cPEn+26IijTUMg66LhrPt1H7yDavjcVeLC61rNeK/900p8hfWPm6eRRrXpEkTLBZLoR/UwfYBvnbt2o6ufxaL5ZLErOB6rLVr19K/f3/Gjh1Lz549CQwMZOHChbz77rtOr3F3d3e6b7FYsFqtlIS7774bT09PFi1ahIeHB7m5ufzlL3+57PhevXpx8OBBfvzxR5YvX86dd97JkCFDmDZtmiNRL3jNBa+3rKSnp+Pq6srGjRtxdXV1es4+e1SannjiCR577DFmzJhBTEwMDz30ED4+Pld8jYeHh1OZYbt27Vi8eDEzZ87k888/v654lGwVwv7tRVJSUolMH4qIiIhcTmpqKqGhoaZ3c7NYLEUq5wP46eBGNp+8tOFAvmFl88m9rDm6kx4N2pdofDVr1qR79+588MEHvPTSS07rto4dO8YXX3zBkCFDHI/Vrl2bo0ePOu7Hx8eTmZnpuL9mzRoaNGjg1FTj4MGDxY7Lw8OD/Pz8axrj5ubGwIEDiYmJwcPDg379+l2yHu1itWvXZuDAgQwcOJDOnTvz6quvMm3aNGrXrg3A0aNHqV69OkChe1Ll5eURFxfnmMXavXs3ycnJTuWZiYmJHDlyxFEGuG7dOlxcXIq0hqldu3bk5+dz4sQJOnfuXOiYZs2asX79eqfH1q1bd9Vz28fdfvvtjmvZuHEjzz33nOP5u+66C19fX0eJ4S+//FKk817M1dWVc+fOXdNrC1KyVQj7NzEBAQFKtkRERKRMVJSlC4ZhMHr9p7hgwcqlJX0uWBi9/lO6h91Y4tf03nvv0alTJ3r27Mn48eNp2LAhO3bs4NVXXyUyMpJRo0Y5xnbt2pX33nuPjh07kp+fz2uvveY0SxUREUFiYiILFy6kQ4cO/PDDDyxaVLSZvYLCw8NZv349CQkJ+Pn5UaNGjULHpKens2LFCtq0aYOPj49jtuWJJ55wJDqrV6++4nuNGjWK9u3b06JFC7Kzs1myZInjtU2aNCE0NJQxY8YwYcIE9uzZc8ksHdhm6p5//nlmz56Nm5sbzz33HLfccosj+QLw8vJi4MCBTJs2jdTUVF544QUefPDBq5YQgm39Vf/+/RkwYADvvvsu7dq14+TJk6xYsYLWrVvTu3dvXnjhBW699VamTZvGvffeS2xsbJFKCAHef/99IiIiaNasGTNmzODs2bMMHjzY8byrqyuDBg1ixIgRREREOJUdXk5eXh7Hjh0DLpQR7ty5k9dee61IMV2JCoNFREREpMhyrLkkpp0sNNECsGKQlH6KHGvJl7BFRESwYcMGGjVqxIMPPkiDBg3o1asXkZGRrF692qlM7d133yU0NJTOnTvzyCOPMGzYMKdysnvuuYeXXnqJ5557jrZt27JmzZrLtly/kmHDhuHq6krz5s2pXbs2iYmJl4zp1KkTTz/9NA899BC1a9dmypQpTtfUqVMnbrjhBkfTisvx8PBgxIgRtG7dmttvvx1XV1cWLlwI2JKoL7/8kj/++IPWrVszefLkQjv8+fj48Nprr/HII49w66234ufnx1dffeU0pkmTJtx///3cdddd9OjRg9atW/PBBx8U+e8kJiaGAQMG8Morr9C0aVP69OnDhg0bCAsLA+CWW27h448/ZtasWbRp04affvrJqVnJlUyaNIlJkybRpk0bfv31V/79739f0pHx8ccfJycn57JdHS+2Y8cOgoODCQ4Opm3btnz99dfMmTOHAQMGFPmaL8dilPaGCBVQamoqgYGBpKSkaGZLRERESpUZnzuysrI4cOAADRs2vKYNy5PSTnLy3OX3XarjE0h9v9rXE2KRjR49munTp7N8+XJuueWWMnnPkmQYBhERETz77LO8/PLLpfpe8+bNY+jQoU57cV1szJgxLF68uNASxIrif//7H3feeSdJSUnUrVu3VN6jqD9DKiMUERERkWIJ9a9NqH/ZJFNXM3bsWMLDw1m3bh033XRTheroePLkSRYuXMixY8eKPAsjl5ednc3JkycZM2YMffv2LbVEqziUbImIiIhIhVZRE5U6depQq1Yt/vGPfziaWsi1+/LLL3n88cdp27Yt8+fPNzscQGWEhVIZoYiIiJSVilhGKFLVFfVnqOLMs4qIiIiIiFQgSrZERERERERKgZItERERERGRUqBkS0REREREpBQo2RIRERERESkFSrZERERERERKgZItEREREZEC5s2bR7Vq1cwOo0wlJCRgsVjYsmWL2aFUKkq2RERERKRCGDRoEBaLhaeffvqS54YMGYLFYmHQoEFlH9hFVq5cicViITk5+apjP/74Y9q0aYOfnx/VqlWjXbt2TJw4sfSDlDKhZEtERERErl1cHHTtavuzDISGhrJw4ULOnTvneCwrK4sFCxYQFhZ23efPzc297nMU1SeffMLQoUN54YUX2LJlC6tXr2b48OGkp6eXWQxSupRsiYiIiMi1mz8ffv4ZPvusTN7uxhtvJDQ0lO+++87x2HfffUdYWBjt2rVzGrts2TJuu+02qlWrRs2aNfnzn//Mvn37HM/bS+e++uorunTpgpeXF1988cUl73ny5EmioqK47777yM7Oxmq1MnHiRBo2bIi3tzdt2rTh22+/dZzzT3/6EwDVq1e/4mzbv//9bx588EEef/xxmjRpQosWLXj44YeZMGGCY8wdd9zB0KFDnV7Xp08fp3OGh4czbtw4Hn74YXx9fQkJCeH99993eo3FYmHOnDn06tULb29vGjVq5Ij5YoZh0KRJE6ZNm+b0+JYtW7BYLOzdu7fQ18mllGyJiIiICBgGZGQU7bZrF/z6K6xeDQsX2l7/5Ze2+7/+anu+qOcyjGKHOnjwYGJiYhz3P/nkE/76179eMi4jI4OXX36ZuLg4VqxYgYuLC/fddx9Wq9Vp3Ouvv86LL77Irl276Nmzp9NzSUlJdO7cmZYtW/Ltt9/i6enJxIkTmT9/Ph9++CE7duzgpZde4tFHH2XVqlWEhobyz3/+E4Ddu3dz9OhRZs2aVeh1BAUFsW7dOg4ePFjsv4OLTZ06lTZt2rB582bH9SxfvtxpzFtvvcUDDzzA1q1b6d+/P/369WPXrl2XnMtisVzydwwQExPD7bffTpMmTa473qrCzewAROTK8q0GOxLSOZOaR40AN1qE++HqYjE7LBERqWwyM8HP79pff/Ik3HZb8V+Xng6+vsV6yaOPPsqIESMcScrq1atZuHAhK1eudBr3wAMPON3/5JNPqF27Njt37qRly5aOx4cOHcr9999/yfvs3r2b7t27c9999zFz5kwsFgvZ2dm88847/Oc//6Fjx44ANGrUiF9//ZWPPvqILl26UKNGDQDq1KlzxUYbo0eP5v777yc8PJzIyEg6duzIXXfdxV/+8hdcXIo3J3Lrrbfy+uuvAxAZGcnq1auZMWMG3bt3d4zp27cvTzzxBADjxo1j+fLl/P3vf+eDDz645HyDBg1i1KhR/Pbbb9x0003k5uayYMGCS2a75Mo0syVSjq3+PZlBU3by2sf7mPzVQV77eB+Dpuxk9e/JZodWbqxI2kyrL55iRdJms0MRkcqqjNckydXVrl2b3r17M2/ePGJiYujduze1atW6ZFx8fDwPP/wwjRo1IiAggPDwcAASExOdxkVFRV3y2nPnztG5c2fuv/9+Zs2ahcVi+6Jz7969ZGZm0r17d/z8/By3+fPnO5UoFkVwcDBr165l+/btvPjii+Tl5TFw4ECio6MvmX27GnviV/D+xbNWRRljV69ePXr37s0nn3wCwPfff092djZ9+/YtVlxVXblJtiZNmoTFYrmkJvVi33zzDTfccANeXl60atWKH3/80el5wzAYNWoUwcHBeHt7061bN+Lj40sxcpHSsfr3ZMZ/kcCpFOeFuqdSchn/RYISLmw/7yPXxvDH2SRGro3BuIZSFBGRqyrjNUmm8fGxzTIV9fbrr4Wf59dfi3ceH59rCnfw4MHMmzePTz/9lMGDBxc65u677+bMmTN8/PHHrF+/nvXr1wOQk5PjNM63kJk1T09PunXrxpIlSzh8+LDjcXvzih9++IEtW7Y4bjt37rzsGqiradmyJc8++yyff/45y5cvZ/ny5axatQoAFxeXS/59K6smHk888YSjGUlMTAwPPfQQPtf436uqKhfJ1oYNG/joo49o3br1FcetWbOGhx9+mMcff5zNmzfTp08f+vTpw++//+4YM2XKFGbPns2HH37I+vXr8fX1pWfPnmRlZZX2ZYiUmHyrwYdLDl9xzEdLDpNvrdrJxfLETcSdsH2ZEncinuWJm0yOSEQqjYMHYeNG2LTpwpqkhQtt9zdutD1f2VgstnK+ot68vW2vs5e72f/09i7eeSzXVhofHR1NTk4Oubm5l6yzAjh9+jS7d+9m5MiR3HnnnTRr1oyzZ88W+fwuLi589tlntG/fnj/96U8cOXIEgObNm+Pp6UliYiJNmjRxuoWGhgLg4eEBQH5+frGvq3nz5oBtvRnYZvGOHj3qeD4/P9/ps6/dunXrLrnfrFmzYo8p6K677sLX15c5c+awbNmyyya1cnmmr9lKT0+nf//+fPzxx4wfP/6KY2fNmkV0dDSvvvoqcKHW9L333uPDDz/EMAxmzpzJyJEjuffeewGYP38+devWZfHixfTr16/Q82ZnZ5Odne24n5qaWkJXJ3JtdiSkXzKjdbGTKbnsSEindSP/MoqqfDEMg1HrPnXcd7W4MHr9p3QPu9FR6iEics3Ol5s5OXkS2re/cL+qz6bXqQNBQRAaCo8/DnPnQlKS7fEy4Orq6iiBc3V1veT56tWrU7NmTf7xj38QHBxMYmKiY01Tcd7jiy++4OGHH6Zr166sXLmSoKAghg0bxksvvYTVauW2224jJSWF1atXExAQwMCBA2nQoAEWi4UlS5Zw11134e3tjV8h6+GeeeYZ6tWrR9euXalfvz5Hjx5l/Pjx1K5d21Hy17VrV15++WV++OEHGjduzPTp0wvdv2v16tVMmTKFPn36sHz5cr755ht++OEHpzHffPMNUVFR3HbbbXzxxRf89ttvzJ0794rXP2jQIEaMGEFERMQlZYhydabPbA0ZMoTevXvTrVu3q45du3btJeN69uzJ2rVrAThw4ADHjh1zGhMYGMjNN9/sGFOYiRMnEhgY6LjZv5UQMcuZ1LwSHVcZLU/cxMaTF0qE8w2rZrdEpOR8/jm4XfSdtD25cnOzPV/V1a8PCQmwfj387W+2PxMSbI+XkYCAAAICAgp9zsXFhYULF7Jx40ZatmzJSy+9xNSpU4v9Hm5ubnz55Ze0aNGCrl27cuLECcaNG8dbb73FxIkTadasGdHR0fzwww80bNgQgJCQEMaOHcvrr79O3bp1ee655wo9d7du3Vi3bh19+/YlMjKSBx54AC8vL1asWEHNmjUBW7nkwIEDGTBgAF26dKFRo0aO1vIFvfLKK8TFxdGuXTvGjx/P9OnTL5nxGzt2LAsXLqR169bMnz+fL7/80jGTdjmPP/44OTk5hXZ7lKuzGCYucli4cCETJkxgw4YNeHl5cccdd9C2bVtmzpxZ6HgPDw8+/fRTHn74YcdjH3zwAWPHjuX48eOsWbOGW2+9lSNHjhAcHOwY8+CDDzr2UChMYTNboaGhpKSkXPYHWKQ0bdufxmsfX32R7eQnG1fJmS3DMOj0zYtsPLEXgwu/wlwtLrSr3Zg1fWdpdktErt9nn8GAAZc+vnEj3Hhjib1NamoqgYGBZfq5IysriwMHDtCwYUO8vLzK5D2l9ISHhzN06NAr9j6wWCwsWrSIPn36FOvc//vf/7jzzjtJSkqibt261xdoJVLUnyHTygiTkpIc/f/N/iH39PTE09PT1BhECmoR7ketQPcrlhLWDnSnRfh1tOitwAqu1Sqo4OxWjwbtC3mliEgRGQZc3OLaxQWK2SFOpKLKzs7m5MmTjBkzhr59+yrRukamlRFu3LiREydOcOONN+Lm5oabmxurVq1i9uzZuLm5FbqgMCgoiOPHjzs9dvz4cYKCghzP2x+73BiRisDVxcLTfw654pi//TmkSu63ZRgGo9d/ioXCr90FC6PXf6rOhCJyfRYuhG3bbMdt2sCHH9rWawUFldmaJBEzffnllzRo0IDk5GSmTJlidjgVlmnJ1p133sn27dudWmZGRUXRv39/tmzZUuhCx44dO7JixQqnx5YvX+5YrNewYUOCgoKcxqSmprJ+/Xot6JMK59aW1RjZPxzXi35Kawe6M7J/OLe2rGZKXGbLseaSmHbSqXywICsGSemnyLGWTVtcEamEMjNh+HDb8ejRsHmzaWuSRIoiISHhqtsnGYZRrBLCQYMGkZ+fz8aNGwkJufIXwHJ5ppUR+vv7O+3cDbY9DmrWrOl4fMCAAYSEhDBx4kQAXnzxRbp06cK7775L7969WbhwIXFxcfzjH/8AcOzTNX78eCIiImjYsCFvvfUW9erVK3Z9qkh50DDYm3wruFjghftCCa7pQYtwvyo5o2Xn6erBugdnM/g/01h5eBtPtejF4y3uchpTxycQT1cPkyIUkQpv6lQ4dAgaNIDXXrvQmtxiAS07EJFiML31+5UkJibi4nLha/1OnTqxYMECRo4cyRtvvEFERASLFy92StqGDx9ORkYGTz31FMnJydx2220sW7bM9HVhItcibrdtG4IW4b707FDT5GjKj7o+1Rxrtv7aPJob6zQxOSIRqTSSkmDyZNvx1KkX9pKqpFRyLXJtivqzU66SrZUrV17xPkDfvn3p27fvZc9hsVh4++23efvtt0s4OpGyF7cnDYAOTdUVs6A1R3eSnnuOOt7VlGiJSMl67TU4dw46d4a//MXsaEqNu7s7AJmZmXhX8oRSpDRkZmYCF36WLqdcJVsickF2rpWt+2zJVpSSLSdLD24AoEdYe1wspm8XKCKVxZo18OWXtnLBWbMulA9WQq6urlSrVo0TJ04A4OPjoy0zRIrAMAwyMzM5ceIE1apVK7TPREFKtkTKqW3708nJM6gV6E54XZXBFrTsfLLVK7yDyZGISKVhtcKLL9qOBw+Gdu3MjacM2Ds12xMuESm6atWqFanbuZItkXLKvl6rQ9MAfdtYwMHU4+w8k4iLxYXuoSW3qaiIVHGffQZxceDvDxMmmB1NmbBYLAQHB1OnTh1yc9XBVaSo3N3drzqjZadkS6Sc2nA+2YqK9Dc5kvJlWWIcALcE3UB1L/3diEgJSEuD11+3Hb/1FlSxzVtdXV2L/MFRRIpHix1EyqHDp7I5eiYHN1cLbZsooSgo9qAt2erVQCWEIlJCJk6EY8egcWN44QWzoxGRSkTJlkg5tKFAy3cfT33baJedn8OKpM0A9GwQZXI0IlIpHDgA06fbjt99V/toiUiJUrIlUg5tKLBeSy743+HfyczLJtinBm1rNTY7HBGpDF59FbKzoVs3uOces6MRkUpGyZZIOZOVk8/2A+mAkq2LLTtfQtizQZSahojI9Vu5Ev75T3BxgRkzKnWrdxExh5ItkXJm6750cvMM6lRzJ7S2ylkKsrd8j1YJoYhcr/x8GDrUdvz009CypanhiEjlpGRLpJzZoJbvhdqfcpTdyYdwtbjQTS3fReR6zZ0LW7dCtWowdqzZ0YhIJaVkS6QcMQyDuD1pgEoIL2YvIewU3JxAT1+ToxGRCi05GUaOtB2PHQu1apkajohUXkq2RMqRpJPZHD9ra/neprGf2eGUK/YSQrV8F5HrNm4cnDwJzZrBM8+YHY2IVGJKtkTKkbjzJYStG/nh5aGW73bn8rJZeXgbANFKtkTkeuzZA7Nn246nTwd3d3PjEZFKTcmWSDliX68VFamNjAv65fB2zuVlE+Jbk5Y1w80OR0Qqsldegbw8uOsuiI42OxoRqeSUbImUE5nZ+fyekAFovdbFljq6EHZQ0xARuXaxsbBkCbi5XdjIWESkFCnZEikntu5LJy/fILiGByG11PK9oNjzzTF6hauEUESuUW4uvPSS7fj556FpU3PjEZEqQcmWSDnhKCFUy3cn8cmH2ZtyBHcXN7rWb2t2OCJSUX34IezaZes8OGqU2dGISBWhZEukHDAMw9EcQyWEzuwt32+r1wJ/Dx+ToxGRCun0aRg92nY8bpxtby0RkTKgZEukHDh4PIuTKbl4uFlo3Ugt3wuyt3yPDosyORIRqbDGjIGzZ6FVK3jiCbOjEZEqRMmWSDmwoUDLd093/VjaZeZmscre8l3rtUTkWuzYAXPm2I5nzrQ1xxARKSP6VCdSDsTtSQNUQnixlYe3kZ2fSwP/OjSrHmZ2OCJS0RiGrSlGfj7cdx907Wp2RCJSxSjZEjFZRlY+OxLSAVtzDLnA3vK9Z4MoNQ0RkeJbsgSWLwcPD5g2zexoRKQKUrIlYrLNe9PIt0JILU/q1VTLdzvDMFiWYEu2ejVQCaGIFFNOjm0DY7DNbjVqZG48IlIlKdkSMZm6EBZud/IhEtKO4+Hixp/U8l1Eiuvvf4f4eAgKgjffNDsaEamilGyJmMgwDMd6rahIf5OjKV+Wnp/Vuj2kFb7uXiZHIyIVyokT8PbbtuN33gF//X4VEXMo2RIx0YFjWZxOzcXT3YVWDdXyvaDYRNv+WtEqIRSR4ho5ElJToX17GDjQ7GhEpApTsiViInvL9zaN/fBQy3eH9Jxz/HJ4O6BkS0SKacsW+L//sx3PnAku+t0qIubRbyARE23Qeq1C/ffQFnKteTQKCCKyWojZ4YhIRWEYMHSo7c+HHoLbbjM7IhGp4pRsiZgk7VweuxIzAOjQVOsJClp28EIJoVq+i0iR/fOfsGoVeHnBlClmRyMiomRLxCyb49OwWiG0jid1q6vlu51hGCw7v79WdIMok6MRkQojKwtefdV2PHw4hGkjdBExn5ItEZPYuxCqhNDZzjOJJKWfxMvVgy4hrc0OR0QqiunTISEBQkJsyZaISDmgZEvEBFarof21LsM+q9UlpDU+avkuIkVx5IitxTvA5Mng62tuPCIi5ynZEjHBvqPnOJueh7eHCy0a6ENBQUtVQigixTViBGRkQMeO8MgjZkcjIuKgZEvEBPZZrbZN/HF304+hXWpOBquP7gDU8l1Eiui332D+fNvxrFmgpjoiUo7oU56ICewt36PUhdDJiqQt5FnziQgMoUm1emaHIyLlnb3VO8CAAdBBX9KISPmiZEukjKVm5PFHUiYAHSK1XqsgRwlhuEoIRaQIvvwS1q61rdGaONHsaERELqFkS6SMbYpPwzAgPMiL2tU8zA6n3DAMg1j7/lph+nZaRK4iI+NC18E33oB6mg0XkfJHyZZIGXOUEGpWy8m20wc4knEabzdPbg9pZXY4IlLeTZkChw9DeDi8/LLZ0YiIFErJlkgZsloN4uLV8r0w9lmtrvXb4OWmGT8RuYLERFuyBTB1KnhpmwgRKZ+UbImUofjDmaRm5OPj6UJztXx3Yl+v1VNdCEXkal57DbKy4Pbb4YEHzI5GROSylGyJlCF7CWG7CH/cXNWe2C45O521R3cC2l9LRK7i119h4UJbi3e1eheRck7JlkgZitudBqiE8GL/SdpMvmGlWfVQGgYEmR2OiJRXVuuFVu9PPAFt25oZjYjIVSnZEikjyem57Dlsa/mu5hjOliaohFBEiuDTT2HjRggIgPHjzY5GROSqlGyJlJGNe2wt3xsFe1MzwN3scMoNq2ElNtHWHKOXSghF5HLS0mwt3gHeegvq1DE3HhGRIlCyJVJG4vaoC2Fhtpzcz/HMs/i6e3FrvRZmhyMi5dU778CxY9CkCbzwgtnRiIgUiZItkTKQbzXYuMe2Xiuqqb/J0ZQvy853Ibyzfjs8XdXyXUQKsW8fTJ9uO54+HTz0u0JEKgYlWyJlYE9SJmnn8vHzcqVZqFq+F7Ts/P5a6kIoIpf16quQkwPdu8Of/2x2NCIiRaZkS6QM2Fu+3xjhj6tavjucPpfK+uN/ABCt5hgiUpiff4ZFi8DVFWbMUKt3EalQlGyJlAF7shWl9VpOlidtwmpYaVEjnFD/2maHIyLlTV7ehVbvTz8NLbSuU0QqFiVbIqXsTFoue4+cAyAqUuu1CrKXEPYKVwmhiBTi//4Ptm2D6tVh7FizoxERKTZTk605c+bQunVrAgICCAgIoGPHjixduvSy4++44w4sFsslt969ezvGDBo06JLno6Ojy+JyRAq18XwXwogQb6r7q+W7ndWw8tP5lu/RYSohFJGLJCfbWryDLdGqWdPUcEREroWbmW9ev359Jk2aREREBIZh8Omnn3LvvfeyefNmWhRSKvDdd9+Rk5PjuH/69GnatGlD3759ncZFR0cTExPjuO/p6Vl6FyFyFXG77V0IVUJY0MYT8Zw8l4K/uzedgpubHY6IlDdvvw2nTkGzZrYSQhGRCsjUZOvuu+92uj9hwgTmzJnDunXrCk22atSo4XR/4cKF+Pj4XJJseXp6EhQUVOQ4srOzyc7OdtxPTU0t8mtFriQ/32BjvPbXKoy9hLBb6I24u5r6q0hEypvdu+Hvf7cdz5gB7qoKEJGKqdys2crPz2fhwoVkZGTQsWPHIr1m7ty59OvXD19f51baK1eupE6dOjRt2pRnnnmG06dPX/E8EydOJDAw0HELDQ295usQKWhXYgYZWVYCfFyJrO9jdjjlytLz+2tFh6uEUEQu8vLLtuYYf/4z9OxpdjQiItfM9GRr+/bt+Pn54enpydNPP82iRYto3vzqJUW//fYbv//+O0888YTT49HR0cyfP58VK1YwefJkVq1aRa9evcjPz7/suUaMGEFKSorjlpSUdN3XJQIQt8fe8j0AVxe1K7Y7eS6ZuON7AIgOU3MMESlg2TL48UfbbNa775odjYjIdTG9dqdp06Zs2bKFlJQUvv32WwYOHMiqVauumnDNnTuXVq1acdNNNzk93q9fP8dxq1ataN26NY0bN2blypXceeedhZ7L09NT67qkVNhbvndoqi6EBf2UuAkDg9a1GlHPT4veReS83Fx46SXb8fPPQ2SkufGIiFwn02e2PDw8aNKkCe3bt2fixIm0adOGWbNmXfE1GRkZLFy4kMcff/yq52/UqBG1atVi7969JRWySJGcSslh/9EsLBbbzJZcsCzBVkLYSxsZi0hBc+bAH39ArVoXOhGKiFRgpidbF7NarU7NKgrzzTffkJ2dzaOPPnrV8x06dIjTp08THBxcUiGKFMnGPbYuhJH1fajmZ/okcrmRb83np8SNAEQ3UAmhiJx36hSMHm07Hj8eqlUzNRwRkZJg6ifAESNG0KtXL8LCwkhLS2PBggWsXLmS2NhYAAYMGEBISAgTJ050et3cuXPp06cPNS/acyM9PZ2xY8fywAMPEBQUxL59+xg+fDhNmjShpxbYShlzlBBGalaroN+O7+FMdhqBHr7cEtTM7HBEpLwYPdq2t1br1nDRemwRkYrK1GTrxIkTDBgwgKNHjxIYGEjr1q2JjY2le/fuACQmJuLi4jz5tnv3bn799Vd++umnS87n6urKtm3b+PTTT0lOTqZevXr06NGDcePGaU2WlKm8fINNe7W/VmFiE20lhD3C2uPm4mpyNCJSLvz+O3z4oe141ixw1e8GEakcTE225s6de8XnV65cecljTZs2xTCMQsd7e3s7ZsVEzLTzYDrnsq0E+roREeJtdjjlytIE2/5aPVVCKCIAhmFrimG1wv33wx13mB2RiEiJKXdrtkQqgw27z89qRfrjopbvDscyzrDpZDwAPcPamxyNiJQL338P//kPeHjA1KlmRyMiUqKUbImUgrjz67VUQujM3hjjxtoRBPnWMDkaETFddrZtA2OAV16BRo3MjUdEpIQp2RIpYSeTc0g4noWLBdpHaH+tgpYdtJUQqguhiAAwezbs2wdBQTBihNnRiIiUOCVbIiVswx7brNYNYb74+6jlu12eNZ/lSZsAiNb+WiJy/DiMG2c7njgR/PXllIhUPkq2RErYhRJCfXAoaN2xXSRnp1PD05+b6kaaHY6ImG3kSEhLg6goGDDA7GhEREqFki2REpSTZ2Xz3nRA+2tdzF5C2COsPa5q+S5StW3eDPaOxLNmgYs+johI5aTfbiIlaEdCBlk5Vqr7u9EoWC3fC1p20La/VnS4SghFqjTDgBdftP358MPQqZPZEYmIlBolWyIlyFFCGBmglu8FHE4/xdZT+7FgoUfYjWaHIyJm+vZb+N//wNsbJk82OxoRkVKlZEukBG04n2x1UMt3J7HnW75H1Y2ktnc1c4MREfOcOwevvmo7Hj4cQkPNjUdEpJQp2RIpIcfOZJN0MhsXF2jXxM/scMqVWHsJYZhavotUae++CwcPQv36tmRLRKSSU7IlUkLidqcB0DzMFz9vtXy3y83P4z9JmwGt1xKp0g4ftrV4B5gyBXx8zI1HRKQMKNkSKSH2/bVUQuhs7bGdpOZkUts7kKg6EWaHIyJmGTECMjNtDTH69TM7GhGRMqFkS6QE5ORa2brPNrOlZMvZ0vMlhN3D2uNi0a8ckSpp/Xr47DPb8cyZYFEDIRGpGvTJR6QEbD+QTnauQc0Ad8KDvMwOp1xZmmDbX6tXA5UQilRJVqut1TvAwIHQQb8LRKTqULIlUgIudCH0x6JvbB2S0k6y40wCLhYXuoeq5btIlbRggW1my8/vwpotEZEqQsmWSAmwN8eIUgmhE/tGxjfVbUpNb/3diFQ5GRnw+uu24zfegOBgc+MRESljSrZErtORU9kcPp2Nqwu0bexvdjjlyrKDKiEUqdImT7Z1IWzYEF56yexoRETKnJItketk70LYMtwPXy9Xk6MpP7Lzc/jvoS0A9Gyg/bVEqpyDB2HqVNvx1KngpfWsIlL1KNkSuU5x59drqYTQ2eojO0jPPUddn+q0q93Y7HBEpKwNHw5ZWXDHHXD//WZHIyJiCiVbItchK8fKtv3pgK05hlxgLyHsGRallu8iVc3//gdffw0uLmr1LiJVmj4BiVyHbfvTyckzqFPNnbA6KpEpyN4cI1olhCJVi9UKQ4fajp94Atq0MTUcEREzKdkSuQ6OEsLIALV8LyAh9Ti7zibhanGhW2g7s8MRkbI0bx5s2gQBATBunNnRiIiYSsmWyDUyDMPRHKOD1ms5sc9q3RLUjOpeKq8UqTJSU2HECNvx6NFQp4658YiImEzJlsg1Onwqm2NncnBztdCmsZ/Z4ZQr9mRLLd9FqpgJE+DECYiMhOeeMzsaERHTKdkSuUYbzpcQtmroi7enWr7bZeXl8POhrQBEhyvZEqky9u2zNcMAePdd8PAwNRwRkfJAyZbINdqwOw1QCeHF/ndkO5l52dTzrUnrmg3NDkdEysqwYZCTAz16QO/eZkcjIlIuKNkSuQbnsvPZfsDW8j0qUslWQUvPlxD2bBClpiEiVcWKFbB4Mbi6wowZavUuInKeki2Ra7B1fzp5+QZB1T2oX9vT7HDKldjz+2tpvZZIFZGXd6HV+7PPQvPmpoYjIlKeKNkSuQb29Vodmqrle0F7k4+wJ/kwbi6u3Bna1uxwRKQsfPwx/P471KgBY8aYHY2ISLmiZEukmAzDuLC/VlO1NS/I3oXw1uAWBHj4mhyNiJS6s2fhrbdsx2PH2hIuERFxULIlUkyJJ7I5kZyLu5uF1o2UbBUUm2grIYxuEGVyJCJSJsaOhdOnbaWDTz9tdjQiIuWOki2RYrKXELZu6IeXh36E7M7lZbPy0DYAorVeS6Ty++MPeP992/HMmeDmZmo4IiLlkT4pihRT3J4L67XkglWHt5GVn0OoX21a1GhgdjgiUtpeftnWHOPuu6F7d7OjEREpl5RsiRRDRlY+OxIyACVbF1uaoJbvIlXGjz/C0qXg7m7bwFhERAqlZEukGLbsSyMv36BeTQ/q1VLLdzvDMBzNMdTyXaSSy821zWoBvPACRESYG4+ISDmmZEukGOJ2pwGa1bpYfPJh9qcew93FjT/Vb2N2OCJSmt5/H3bvhtq1L3QiFBGRQinZEikiwzCc9teSC5aen9XqXK8l/h4+JkcjIqXm1ClbB0KACRMgMNDceEREyjklWyJFlHAsi9OpuXi6W2jV0M/scMoVewmhuhCKVHKjRkFyMrRpA4MHmx2NiEi5p2RLpIg2nO9C2KaRPx7u+tGxy8jN4pfD2wHtryVSqW3fDh99ZDueNQtcXc2NR0SkAtAnRpEispcQRjXVRsYF/XxoCznWPML963JD9VCzwxGR0mAYMHQoWK3wl79Aly5mRyQiUiEo2RIpgoysfHYetLV8j9J6LSfLDsYBEB3eQS3fRSqrf/0L/vtf8PSEqVPNjkZEpMJQsiVSBJvi07BaIbS2J8E11PLdrmDL9+gwlRCKVErZ2TBsmO34lVcgPNzUcEREKhIlWyJF4CghjNSsVkG7ziZyMO0Enq7u3KGW7yKV06xZsG8fBAfDiBFmRyMiUqEo2RK5CsMwiDvfHKPDDUq2Coo9X0J4e71W+Lp7mRyNiJS4Y8dg3Djb8cSJ4KdOrCIixaFkS+Qq9h09x9m0PLw8XGgR7mt2OOWKfX+t6HC1fBeplN58E9LToUMHeOwxs6MREalwlGyJXEXc7jQA2jb2w8NNPzJ2aTmZ/HpkBwC9tL+WSOWzaRPExNiOZ80CF/3+ExEpLv3mFLkK+3qtDupC6OS/h7aQa82jcWAwEdVCzA5HREqSYcCLL9r+fOQR6NjR7IhERCokJVsiV5CWmccfiWr5XpilCedLCDWrJVL5fP01/PoreHvDpElmRyMiUmEp2RK5gk1707Aa0KCuF3WqeZgdTrlhGAaxibbmGCohFKlkzp2D4cNtx6+/DqHarFxE5Fop2RK5gg1/qISwML+fTuBQ+im8XD24PaSV2eGISEmaNg0SE21Jln1/LRERuSamJltz5syhdevWBAQEEBAQQMeOHVm6dOllx8+bNw+LxeJ08/JybjdtGAajRo0iODgYb29vunXrRnx8fGlfilRCVqtB3B5bc4yoSH+Toylf7BsZ/6l+G7zdtMmzSKVx6NCFssEpU8DHx9x4REQqOFOTrfr16zNp0iQ2btxIXFwcXbt25d5772XHjh2XfU1AQABHjx513A4ePOj0/JQpU5g9ezYffvgh69evx9fXl549e5KVlVXalyOVzN4j50jJyMPb04XmDdTyvaBl5/fX6tkgyuRIRKREvf46ZGbCrbfCQw+ZHY2ISIXnZuab33333U73J0yYwJw5c1i3bh0tWrQo9DUWi4WgoKBCnzMMg5kzZzJy5EjuvfdeAObPn0/dunVZvHgx/fr1K9kLkErN3oWwXRN/3NXy3SElO4PVR9XyXaTSWbcOvvgCLBZbq3eLxeyIREQqvHLzCTI/P5+FCxeSkZFBxyu0mE1PT6dBgwaEhoZeMgt24MABjh07Rrdu3RyPBQYGcvPNN7N27drLnjM7O5vU1FSnm0icWr4XakXSZvINK02r1adRYLDZ4YhISbBaba3eAQYNgvbtTQ1HRKSyMD3Z2r59O35+fnh6evL000+zaNEimjdvXujYpk2b8sknn/Cvf/2Lzz//HKvVSqdOnTh06BAAx44dA6Bu3bpOr6tbt67jucJMnDiRwMBAxy1UnZeqvJSMPHYfygS0XutiS8+v11IJoUgl8sUX8Ntv4OcH77xjdjQiIpWG6clW06ZN2bJlC+vXr+eZZ55h4MCB7Ny5s9CxHTt2ZMCAAbRt25YuXbrw3XffUbt2bT766KPrimHEiBGkpKQ4bklJSdd1Pqn4Nu5JxTCgYZAXtQLV8t3OMAxiD6rlu0ilkp5uW6sF8OabcJlSfRERKT5T12wBeHh40KRJEwDat2/Phg0bmDVrVpESKHd3d9q1a8fevXsBHGu5jh8/TnDwhfKm48eP07Zt28uex9PTE09PdVSTC+xdCFVC6Gzrqf0czTyDj5snnUNamh2OiJSESZPgyBFo2BCGDjU7GhGRSsX0ma2LWa1WsrOzizQ2Pz+f7du3OxKrhg0bEhQUxIoVKxxjUlNTWb9+/RXXgYkUlG812LhH67UKY2/53rV+WzxdNeMnUuElJNj21QJ49124aDsVERG5PqbObI0YMYJevXoRFhZGWloaCxYsYOXKlcTGxgIwYMAAQkJCmDhxIgBvv/02t9xyC02aNCE5OZmpU6dy8OBBnnjiCcDWqXDo0KGMHz+eiIgIGjZsyFtvvUW9evXo06ePWZcpFUz8oUxSM/Px9XKhWZhavhdkb/keHa4SQpFKYfhwyM6GP/0J9O+kiEiJMzXZOnHiBAMGDODo0aMEBgbSunVrYmNj6d69OwCJiYm4uFyYfDt79ixPPvkkx44do3r16rRv3541a9Y4NdQYPnw4GRkZPPXUUyQnJ3PbbbexbNmySzY/Frkce8v3GyMCcHVV62O7s1lprD22C4DoMDXHEKnwfvkFvvkGXFxg5ky1ehcRKQUWwzAMs4Mob1JTUwkMDCQlJYWAAJWRVTUvvLeb+MPneOmBUHpE1TQ7nHLj6/hV9I+dRPMaYWx95Pqa0oiIyfLzISoKtmyBv/0NPvzQ7IiqNH3uEKm8yt2aLREznU3LJf7wOQCiIvUPXkGOEkJ1IRSp+GJibIlWYCCMG2d2NCIilZaSLZECNsbbuhA2qedNjQB3k6MpP6yG1dHyPVr7a4lUbKmpthbvAKNHQ+3a5sYjIlKJKdkSKcC+XitKXQidbDqxlxPnkvFz9+bW4BZmhyMi12P8eDhxAiIjYcgQs6MREanUlGyJnJefb7ApXvtrFSY20TardWdoWzxcNeMnUmHFx9uaYQBMnw4e2sJBRKQ0KdkSOe+PpAzSz+Xj7+1K01Afs8MpV5Ym2PbX0notkQpu2DDIzYXoaLjrLrOjERGp9JRsiZwXt8c2q3VjhD+uLmqBbHfqXAq/Hd8NaL2WSIX2n//Av/8Nrq62WS21ehcRKXVKtkTOs6/XUgmhs+WJmzAwaFkznPp+WkgvUiHl5cHQobbjIUOgWTNTwxERqSqUbIkAZ1Jz2XfE1vK9faS/ydGUL0sP2koIe6mEUKTi+ugj2LEDatSwdSAUEZEyoWRLBIjbY5vViqzvQzU/NYCwy7fmszxxI6ASQpEK68wZGDXKdjxunC3hEhGRMqFkS4SCJYSa1Soo7kQ8p7JSCfDwoWNQc7PDEZFrMXasLeFq2RKeesrsaEREqhQlW1Ll5RVo+R4VqfVaBS07X0LYPfRG3F3dTI5GRIpt5054/33b8YwZ4KafYxGRsqRkS6q8XYkZZGZbCfB1JaK+Wr4XtOygbX+tniohFKl4DANefhny8+Gee6BbN7MjEhGpcpRsSZVnLyGMighQy/cCTmQmE3diDwA9w5RsiVQ4P/4IsbHg7g7TppkdjYhIlaRkS6q8OHuypZbvTn463xijbe3G1POraXI0IlIsOTm2WS2wtXyPiDA1HBGRqkrJllRpJ1NyOHAsC4sF2keoOUZB9vVa0ZrVEql43n8f9uyBOnVg5EizoxERqbKUbEmVFrfb1hijaX0fAny1cNwuz5rvmNmKDtf+WiIVysmTtg6EABMmQIBm7UVEzKJkS6o0+/5aHVRC6OS347s5m51ONU8/bq57g9nhiEhxvPUWpKRA27bw17+aHY2ISJWmZEuqrNw8K5vPt3zvcIOSrYLsJYQ9wm7EzcXV5GhEpMi2bYOPP7Ydz5oFrvr5FRExk5ItqbJ2HszgXI6Van5uNA72NjuccsXe8j26gUoIRSoMw7A1w7BaoW9fuP12syMSEanylGxJleVo+R7pj4tavjsczTjD5pN7AegR1t7kaESkyBYvhp9/Bk9PmDLF7GhERAQlW1KFbTjfHEMt353Fnp/Val8ngro+1U2ORkSKJCsLXnnFdjxsGISHmxqOiIjYKNmSKun42RwST2ThYoEb1fLdSWyivYRQLd9FKoyZM+HAAahXD15/3exoRETkPCVbUiXZuxA2a+CLv7davtvl5uexPHEToPVaIhXG0aO2Fu8AkyaBn5+58YiIiIOSLamSLqzXUglhQeuO7SIlJ4OaXgF0qBNpdjgiUhRvvgnp6XDTTdC/v9nRiIhIAUq2pMrJybOyZW86AB2aqoSwIHsXwu5hN+Kqlu8i5V9cHMTE2I5nzQIX/bMuIlKe6LeyVDm/H8ggO9dKDX83Gqnlu5Ol5/fX6qUSQpHyz97qHWwzWrfcYmo4IiJyKSVbUuXE2UsImwZgsajlu93h9FNsP30ACxa1fBepCL76ClavBh8f21otEREpd5RsSZWz4XxzjA5q+e7EXkLYoW4ktbwDTY5GRK4oMxOGD7cdv/461K9vbjwiIlIoJVtSpRw9k82hk9m4ukC7JlqvVdAylRCKVBxTp0JSEoSF2fbVEhGRcknJllQp9hLC5g188fVSAwi7nPxcViRtBqCn9tcSKd+SkmDyZNvxlCngrbWnIiLllZItqVI27E4DVEJ4sTVHd5KWe47a3oG0rxNhdjgiciWvvw7nzsFtt8GDD5odjYiIXIGSLakysnOtbNtvS7ailGw5sa/X6hkWhYtFvxZEyq01a2DBArBYbK3e1eRHRKRc06cqqTK2708nO9egVqA74XW9zA6nXLGv14pWCaFI+WW1wosv2o7/+le48UZz4xERkatSsiVVxobdF7oQquX7BYlpJ9hx5iAuFhe6q+W7SPn12We2TYz9/WHCBLOjERGRIlCyJVVG3PmW71GR6kJYkL2E8Oa6N1DDS383IuVSejqMGGE7HjkSgoLMjUdERIpEyZZUCYdPZXPkdA5urhbaquW7E0fL93CVEIqUWxMnwtGj0LjxhVJCEREp95RsSZVgLyFsEe6Lj6davttl5+fw30NbAIjW/loi5dOBA/Duu7bjadPA09PceEREpMiUbEmVEFdgvZZc8OuRHWTkZhHkU522tRqbHY6IFObVVyE7G7p2hXvvNTsaEREpBiVbUull5VjZdiAdULJ1saUJthLCng2i1DREpDxatQr++U9wcYGZM9XqXUSkglGyJZXetv1p5OYZ1KnmTmhtld8UFJtoa47RSyWEIuVPfv6F9Vl/+xu0amVuPCIiUmxKtqTS27DbtpGxWr47259ylD/OJuFqceHO0HZmhyMiF/vkE9i6FapVg7ffNjsaERG5Bkq2pFIzDMNpfy25wN7yvVNwc6p5+pkcjYg4SUmBN9+0HY8eDbVqmRuPiIhcEyVbUqkdOpnN8bO2lu9tGiuhKCj2fLKlLoQi5dC4cXDyJDRtCkOGmB2NiIhcIyVbUqnZZ7VaN/LDy0Mt3+3O5WXz8+GtgJItkXInPh5mz7Ydz5gB7u7mxiMiItdMyZZUavZkKypSGxkX9Mvh7ZzLyybEtyataoabHY6IFPTKK5CbC7162W4iIlJhKdmSSutcdj6/J2QAWq91Mft6rZ4NOqhpiEh58tNP8P334OYG06ebHY2IiFwnJVtSaW3Zl05evkFwDQ9Caqnle0HLDtr21+rVIMrkSETEIS8PXnrJdjxkCNxwg7nxiIjIdVOyJZVWnL2EUC3fncQnH2ZvyhHcXdzoGtrW7HBExO7DD2HnTqhZ09aBUEREKjwlW1IpqeX75dlLCG8NbkGAh6/J0YgIAKdPw6hRtuNx46B6dXPjERGREqFkSyqlg8ezOJmSi4ebhdaN1PK9IJUQipRDY8bA2bPQsiU8+aTZ0YiISAkxNdmaM2cOrVu3JiAggICAADp27MjSpUsvO/7jjz+mc+fOVK9enerVq9OtWzd+++03pzGDBg3CYrE43aKjo0v7UqSciduTBthavnu66zsFu8zcLFYd3gbYmmOISDmwYwfMmWM7njnT1hxDREQqBVM/hdavX59JkyaxceNG4uLi6Nq1K/feey87duwodPzKlSt5+OGH+fnnn1m7di2hoaH06NGDw4cPO42Ljo7m6NGjjtuXX35ZFpcj5YhKCAu38vA2svNzCfOvQ/MaYWaHIyKGAS+/DPn50KcP3Hmn2RGJiEgJMvXrs7vvvtvp/oQJE5gzZw7r1q2jRYsWl4z/4osvnO7/3//9H//85z9ZsWIFAwYMcDzu6elJUFBQ6QQt5V5GVj47EtIBW3MMucC+Xiu6QZSahoiUBz/8YGv37uEB06aZHY2IiJSwclNflZ+fz8KFC8nIyKBjx45Fek1mZia5ubnUqFHD6fGVK1dSp04dmjZtyjPPPMPp06eveJ7s7GxSU1OdblJxbdmbRr4VQmp5Uq+mWr7bGYbB0gRb2W20SghFzJeTY5vVAhg6FBo3NjUcEREpeaYXhm/fvp2OHTuSlZWFn58fixYtonnz5kV67WuvvUa9evXo1q2b47Ho6Gjuv/9+GjZsyL59+3jjjTfo1asXa9euxdXVtdDzTJw4kbFjx5bI9Yj5VEJYuN3Jh0hIO46Hixt/Cmljdjgi8ve/Q3w81K0Lb75pdjQiIlIKTE+2mjZtypYtW0hJSeHbb79l4MCBrFq16qoJ16RJk1i4cCErV67Ey8vL8Xi/fv0cx61ataJ169Y0btyYlStXcudlauFHjBjBy/ZvF4HU1FRCQ0Ov88rEDIZhOJpjREX6mxxN+WIvIewc0go/D2+ToxGp4k6cgLffth1PmAAB+nJIRKQyMr2M0MPDgyZNmtC+fXsmTpxImzZtmDVr1hVfM23aNCZNmsRPP/1E69atrzi2UaNG1KpVi7179152jKenp6Mjov0mFdOBY1mcTs3F092FVg3V8r0ge8t3lRCKlANvvQWpqXDjjTBokNnRiIhIKTF9ZutiVquV7Ozsyz4/ZcoUJkyYQGxsLFFRV98n6NChQ5w+fZrg4OCSDFPKKXsJYZvGfnio5btDes45/nd4OwC9lGyJmGvLFvj4Y9vxzJlwmRJ3ERGp+ExNtkaMGEGvXr0ICwsjLS2NBQsWsHLlSmJjYwEYMGAAISEhTJw4EYDJkyczatQoFixYQHh4OMeOHQPAz88PPz8/0tPTGTt2LA888ABBQUHs27eP4cOH06RJE3r27GnadUrZidN6rUL9fHgrOdY8GgYEEVktxOxwRKouw7A1wzAMePBB6NzZ7IhERKQUmZpsnThxggEDBnD06FECAwNp3bo1sbGxdO/eHYDExERcXC7MTsyZM4ecnBz+8pe/OJ1n9OjRjBkzBldXV7Zt28ann35KcnIy9erVo0ePHowbNw5PT3Wlq+zSz+WxMzEDgA5NtV6roKUJF0oI1fJdxETffQerVoGXF0yZYnY0IiJSykxNtubOnXvF51euXOl0PyEh4Yrjvb29HbNiUvVs3puO1QqhdTypW13JtZ1hGMQm2ppj9Gpw9dJbESklWVkwbJjt+NVXoUEDc+MREZFSp0UtUmmo5Xvhdp5JJDHtBJ6u7nQJuXJDGREpRTNmQEIChITAa6+ZHY2IiJQBJVtSKVithtZrXYa9C+EdIW3wcfe6ymgRKRVHjthavANMmgS+vubGIyIiZULJllQK+4+e42x6Ht4eLrRooA8xBdn31+qpEkIR87zxBmRkwM03wyOPmB2NiIiUESVbUinYSwjbNvHH3U3/W9ul5mTw69HfAbV8FzHNhg3w6ae241mzwEW/o0REqgr9xpdKIW5PGgBR6kLo5L9JW8iz5hMRGEKTavXMDkek6jEMePFF2/Fjj9lmtkREpMpQsiUVXmpGHn/YW75Har1WQUtVQihiri+/hLVrwccHzu8ZKSIiVYeSLanwNsWnYTUgPMiL2tU8zA6n3DAMg9jzzTFUQihigoyMC10HR4ywdSEUEZEqRcmWVHhxe2zrtaI0q+Vk++kEDmecxtvNk9tDWpkdjkjVM3UqHDpk20/rlVfMjkZEREygZEsqNKvVYMMetXwvjL3l+59C2uDlphk/kTKVmAhTptiOp04Fb29z4xEREVMo2ZIKLf5wJqkZ+fh4utBcLd+dLD2fbEWHq4RQpMy99hqcOwedO8Nf/mJ2NCIiYhIlW1Khxe22dSFsF+GPm6vF5GjKj+TsdNYe3QlAtJpjiJSt1ath4UKwWGyt3i363SQiUlUp2ZIKzb6/lkoInf0naTP5hpUbqofSMCDI7HBEqg6r9UKr98GDoV07c+MRERFTKdmSCis5PY89hzMBNce4mH29VrS6EIqUrfnzYeNG8PeHCRPMjkZEREymZEsqrE3xqRgGNAr2pmaAu9nhlBtWw0rs+f21VEIoUobS0mwt3gHeegvq1jU3HhERMZ2SLamwVEJYuC0n93Ms8yy+7l7cVq+F2eGIVB3vvAPHjkHjxvDCC2ZHIyIi5YCSLamQ8q0GG/fYmmNENfU3OZryJTbRVkLYtX5bPF3V8l2kTOzfD9On247ffRc8Pc2NR0REygUlW1Ih7UnKJO1cPn5erjQLVcv3gpYm2EsItV5LpMy8+irk5EC3bnDPPWZHIyIi5YSSLamQ7CWEN0b446qW7w5nstJYf/wPQOu1RMrMzz/Dd9+BiwvMmKFW7yIi4qBkSyqkuD22ZCtK67WcLE/ciNWw0qJGA8L865gdjkjll58PQ4fajp9+Glq2NDUcEREpX5RsSYVzJi2X+MPnAIiK1HqtgpYeVAmhSJn6v/+DbdugWjUYO9bsaEREpJxRsiUVjr0xRkSIN9X91fLdzmpY+SlRLd9FykxyMowcaTseOxZq1TI1HBERKX+UbEmFE7dbJYSF2XginpPnUvB396ZTcHOzwxGp/MaNg1OnoFkzeOYZs6MREZFySMmWVCj5+Qab4m0zW9pfy9my8yWE3UJvxMNVM34ipWr3bpg923Y8fTq462dOREQupWRLKpRdSRmkZ+UT4ONKZH0fs8MpV5YdtO2v1VMlhCKl75VXIC8P7roLoqPNjkZERMopJVtSocQ5Wr4H4Oqi9sp2J88ls+H4HkDrtURKXWws/PADuLld2MhYRESkEEq2pELZsNteQqguhAUtT9yEgUHrWo0I8dMifZFSk5sLL71kO37+eWja1Nx4RESkXFOyJRXGqZQc9h89h8Vim9mSC5aeLyGMDtOslkipmjMHdu2ydR4cNcrsaEREpJxTsiUVhr3le2R9H6r5uZkcTfmRb83np4MbAegVrv21RErN6dMwZozteNw4295aIiIiV6BkSyqMDXts67U6RGpWq6ANJ/ZwJjuNQA9fbglqZnY4IpXX6NFw9iy0agVPPGF2NCIiUgEo2ZIKIa9Ay3ftr+XM3oWwe9iNuLm4mhyNSCX1++/w4Ye245kzbc0xRERErkLJllQIOw+mcy7bSqCvGxEh3maHU64sTbDtrxXdQCWEIqXCMGxNMfLz4b77oGtXsyMSEZEKQsmWVAj2LoRRkf64qOW7w/HMs2w6GQ9Az7D2JkcjUkl9/z385z/g4QHTppkdjYiIVCBKtqRCsO+vpRJCZ7EHbbNa7Wo3Ici3hsnRiFRC2dm2DYzBNrvVqJG58YiISIWiZEvKvZPJOSQcz8LFAu0jtL9WQbGJ9hJCtXwXKRV//zvs3QtBQfDmm2ZHIyIiFYySLSn37F0Ibwjzxd9Hi9Lt8qz5/JS4CdB6LZFScfy4rcU7wDvvgL++7BERkeJRsiXl3oUSQn3QKWjdsV0kZ6dTw9Ofm+s2NTsckcpn5EhITYX27WHgQLOjERGRCkjJlpRrOXlWtuxNB7S/1sXs67W6h92Iq1q+i5SszZth7lzb8cyZ4KJ/LkVEpPj0r4eUazsSMjiXY6W6vxuNgtXyvaCl5/fXUgmhSAkzDBg61PbnQw/BbbeZHZGIiFRQSrakXHOUEEYGqOV7AUfST7P11H4sWOihlu8iJeuf/4RffgEvL5gyxexoRESkAlOyJeWavTlGB7V8d2LvQti+TgR1fKqZG4xIZXLuHAwbZjsePhzCwsyNR0REKjQlW1JuHT+bTdKJbFxcoF0TP7PDKVeWnS8h7KUSQpGSNX06HDwIISG2ZEtEROQ6XFeylZOTw+7du8nLyyupeEQcNuxOA6B5mC9+3mr5bpebn8d/kjYD0FP7a4mUnCNHYOJE2/HkyeDra248IiJS4V1TspWZmcnjjz+Oj48PLVq0IDExEYDnn3+eSZMmlWiAUnVt2K0SwsKsPbaT1JxMankFEFUnwuxwRCqPESMgIwM6doRHHjE7GhERqQSuKdkaMWIEW7duZeXKlXh5eTke79atG1999VWJBSdVV06ula37bDNbSrac2bsQ9mgQpZbvIiVl/XqYP992PGsWWNSQR0RErt811WYtXryYr776iltuuQVLgX+QWrRowb59+0osOKm6th9IJzvXoGaAO+FBXld/QRWy7Pz+WtFhKiEUKRH2Vu8AAwZAB62FFBGRknFNM1snT56kTp06lzyekZHhlHyJXKsLJYT++n+qgKS0k/x+OkEt30VK0oIFsG6dbY2Wfc2WiIhICbimZCsqKooffvjBcd/+Yfj//u//6NixY8lEJlVa3B5bCWFUpEoIC7K3fL856AZqeuvvRuS6ZWTAa6/Zjt94A+rVMzceERGpVK6pjPCdd96hV69e7Ny5k7y8PGbNmsXOnTtZs2YNq1atKukYpYo5ciqbw6eycXWBtk38zQ6nXLG3fI9WF0KRkjF5Mhw+DOHh8PLLZkcjIiKVzDXNbN12221s2bKFvLw8WrVqxU8//USdOnVYu3Yt7durtEmuj30j45bhfvh6qQGEXU5+LiuStgAQrf21RK7fwYMwdarteOpU8NL6UBERKVnXvHlR48aN+fjjj0syFqni8q0GOxLSid1wGoAbIzWrVdDqoztIzz1HHe9qtKvd2OxwRCq+116DrCy4/XZ44AGzoxERkUromma2fvzxR2JjYy95PDY2lqVLlxb5PHPmzKF169YEBAQQEBBAx44dr/r6b775hhtuuAEvLy9atWrFjz/+6PS8YRiMGjWK4OBgvL296datG/Hx8UWOScyx+vdkBk3ZyWsf7+PAsSwAFv16ktW/J5sbWDmxImkz/Za+A9g2MnaxXNd+5CJVW1wc3HgjfPWVrcW7Wr2LiEgpuaZPbK+//jr5+fmXPG4YBq+//nqRz1O/fn0mTZrExo0biYuLo2vXrtx7773s2LGj0PFr1qzh4Ycf5vHHH2fz5s306dOHPn368PvvvzvGTJkyhdmzZ/Phhx+yfv16fH196dmzJ1lZWcW/UCkTq39PZvwXCZxKyXV6PDk9j/FfJFT5hMswDEaujeFMtq1piFq+i1ynTz+FzZttx088AW3bmhqOiIhUXhbDMIzivsjb25tdu3YRHh7u9HhCQgItWrQgIyPjmgOqUaMGU6dO5fHHH7/kuYceeoiMjAyWLFnieOyWW26hbdu2fPjhhxiGQb169XjllVcYNmwYACkpKdStW5d58+bRr1+/IsWQmppKYGAgKSkpBASo41tpyrcaDJqy85JEq6Dage7EDG+Oq0vV/Ob5p4Mb6f39SMf9hdFv8ECTziZGJFIBHTwIp07ZZrDuuAPS0mzHP/0E1atDrVrQoIHZUUoVpc8dIpXXNc1sBQYGsn///kse37t3L76+vtcUSH5+PgsXLiQjI+Oy7ePXrl1Lt27dnB7r2bMna9euBeDAgQMcO3bMaUxgYCA333yzY0xhsrOzSU1NdbpJ2diRkH7FRAvgZEouOxLSyyii8sUwDEav/xQLFxLNaZu+4Rq+IxGp2sLDISoK2re3JVpg28y4e3fb4xd9eSgiIlISrinZuvfeexk6dCj79u1zPLZ3715eeeUV7rnnnmKda/v27fj5+eHp6cnTTz/NokWLaN68eaFjjx07Rt26dZ0eq1u3LseOHXM8b3/scmMKM3HiRAIDAx230NDQYl2DXLszqXklOq6yWZ64ibgT8RhcSK7iTsSzPHGTiVGJVECffw5ul+kJ5eZme15ERKSEXVOyNWXKFHx9fbnhhhto2LAhDRs2pFmzZtSsWZNp06YV61xNmzZly5YtrF+/nmeeeYaBAweyc+fOawnrmo0YMYKUlBTHLSkpqUzfvyqrEVC0hphFHVeZ2Ge1XC9qhuFqcWH0+k81uyVSHP37w7ffFv7c+vW250VERErYNX2CDQwMZM2aNSxfvpytW7fi7e1N69atuf3224t9Lg8PD5o0aQJA+/bt2bBhA7NmzeKjjz66ZGxQUBDHjx93euz48eMEBQU5nrc/Fhwc7DSm7RUWQHt6euLp6Vns2OX6tQj3o1ag+1XXbLUI9yvDqMoH+6zWxfINq2N2q0cD7WsnUmQzZzrfd3EBq9WUUEREpGq45v7RFouFHj168Oqrr/Lcc89dU6JVGKvVSnZ2dqHPdezYkRUrVjg9tnz5cscar4YNGxIUFOQ0JjU1lfXr1192HZiYy9XFwtN/DrnimL/9OaTKNcewz2q5UPh1u2DR7JZIcfz3v7Bype24RQv48EPb+q2gIKhTx9TQRESk8iryzNbs2bN56qmn8PLyYvbs2Vcc+8ILLxTpnCNGjKBXr16EhYWRlpbGggULWLlypWMPrwEDBhASEsLEiRMBePHFF+nSpQvvvvsuvXv3ZuHChcTFxfGPf/wDsCWAQ4cOZfz48URERNCwYUPeeust6tWrR58+fYp6qVLGbm1ZjQe71OHrVSecHq8d6M7f/hzCrS2rmROYiXKsuSSmncRK4cmUFYOk9FPkWHPxdPUo4+hEKpi8PBg61Hb89NPwwQe2ToRPPQU5OaDKBhERKSVFTrZmzJhB//798fLyYsaMGZcdZ7FYipxsnThxggEDBnD06FECAwNp3bo1sbGxdO/eHYDExERcXC5MvnXq1IkFCxYwcuRI3njjDSIiIli8eDEtW7Z0jBk+fDgZGRk89dRTJCcnc9ttt7Fs2TK8vLyKeqligows275tHZsFcHvr6tQIcKNFuF+Vm9Gy83T1YN2Ds9l8ci8P/Pg2rhYXfuozCT93b8eYOj6BSrREiuL//g+2b7e1eB8//sIGxhaLEi0RESlV17TPVmWn/S7KlmHY9to6kZzL2IENuemGQLNDKjfe3/Zvhv4yh9vrtWLF/VPMDkek4jl7FiIi4PRpmD0bnn/e7IhELqHPHSKVV7HXbOXm5tK4cWN27dpVGvFIFZR4IpsTybm4u1lo3cjf7HDKlWUHNwDQK7yDyZGIVFBvv21LtJo1s5UQioiIlKFiJ1vu7u5kZWWVRixSRcXtsW0i3bqhH14e19yzpdI5l5fNykPbAOgZFmVyNCIV0B9/wHvv2Y5nzAB3d3PjERGRKueaPtkOGTKEyZMnk5dXNTealZK1Ybct2erQVKUTBa06vI2s/Bzq+9WiZc1ws8MRqXheecXWHOPPf4aePc2ORkREqqBr2mdrw4YNrFixgp9++olWrVrh6+vr9Px3331XIsFJ5ZeZnc+OhAxAydbFlibYSgijG3TAYqmajUJErtnSpfDjj7bZrHffNTsaERGpoq4p2apWrRoPPPBAScciVdCWvWnk5RvUq+lBvVrqCmZnGIZjvVZ0A5UQihRLbi68/LLt+PnnITLS3HhERKTKKlayZbVamTp1Knv27CEnJ4euXbsyZswYvL29r/5ikUJs2J0GaFbrYvHJh9mfegx3Fze61m9rdjgiFcsHH9jWa9WqBW+9ZXY0IiJShRVrzdaECRN444038PPzIyQkhNmzZzNkyJDSik0qOcMwHM0xoiKVbBW0LDEOgNvqtcDfw8fkaEQqkFOnYMwY2/GECVCtmpnRiIhIFVesZGv+/Pl88MEHxMbGsnjxYr7//nu++OILrFZracUnlVjC8SxOpeTi6W6hVSM/s8MpV5adX6/Vq4FavosUy+jRkJwMbdrA44+bHY2IiFRxxUq2EhMTueuuuxz3u3XrhsVi4ciRIyUemFR+9i6EbRr54+mulu92GblZrDpsa/kerWRLpOi2b4cPP7Qdz5wJrq6mhiMiIlKsT7h5eXl4eXk5Pebu7k5ubm6JBiVVQ9z5ZCuqqTYyLmjloa3kWPNo4F+HG6qHmh2OSMVgGPDSS2C1wv33wx13mB2RiIhI8RpkGIbBoEGD8PS80DUuKyuLp59+2qn9u1q/y9VkZOWz46Ct5XuUmmM4WXpQLd9Fiu3f/4YVK8DDA6ZONTsaERERoJjJ1sCBAy957NFHHy2xYKTq2BSfhtUKobU9Ca6hlu92BVu+a72WSBFlZ9s2MAbbn40amRuPiIjIecVKtmJiYkorDqli1IWwcH+cTeJg2gk8XNy4o34bs8MRqRhmzYJ9+yAoCEaMMDsaERERB3UlkDJnGIZjvVaHG5RsFWSf1eoS0hpfd6+rjBYRjh+H8eNtxxMngr/WgIqISPmhZEvK3P6j5ziTloeXhwstwn2v/oIqZNlB2/5aPRtEmRyJSAXx5puQlgZRUTBggNnRiIiIOFGyJWVuw+40ANo29sPDTf8L2qXlZPK/I78DWq8lUiSbNsEnn9iOZ80CF/0+ERGR8kX/MkmZs++v1UFdCJ3899AWcq15NA4MJqJaiNnhiJRvhgEvvmj78+GHoVMnsyMSERG5hJItKVNp5/L4I1Et3wvjKCEMi1LLd5Gr+eYb+PVX8PaGyZPNjkZERKRQSrakTG2KT8NqQIO6XtSp5mF2OOWGU8v3cJUQilzRuXPw6qu24+HDIVSbf4uISPmkZEvKVJxKCAu148xBDqWfwsvVgy4hrc0OR6R8e/ddSEyE+vVtyZaIiEg5pWRLyozVahC3x9YcIypS7ZkLss9q3VG/Nd5u2uRZ5LIOH7a1eAeYMgV8fMyNR0RE5AqUbEmZ2XvkHMnpeXh7utC8gVq+F7Q0wZZsRasLociVvf46ZGbaGmL062d2NCIiIlekZEvKjL2EsF0Tf9zV8t0hJTuDNcd2AhCt/bVELm/dOvj8c9vxzJmgRjIiIlLO6ROvlBm1fC/ciqTN5FnziawWQuPAemaHI1I+Wa0wdKjteNAg6KBZYBERKf+UbEmZSMnIY/ehTEDrtS629KBKCEWuasECWL8e/PzgnXfMjkZERKRIlGxJmdgUn4ZhQMMgL2oFquW7nWEYxJ7fX0slhCKXkZ4Or71mO37jDQgONjceERGRIlKyJWVCJYSF23pqP0czz+Dj5knneq3MDkekfJo8GY4cgYYN4aWXzI5GRESkyJRsSanLtxpsjLclW1FKtpzYZ7X+VL8NXm6a8RO5xMGDMG2a7XjaNPDyMjceERGRYlCyJaUu/lAmqRn5+Hq50CxMLd8L0notkasYPhyysuCOO+C++8yORkREpFiUbEmps5cQ3hgRgJurWjXbnc1KY+2xXYCSLZFC/fILfP01uLio1buIiFRISrak1MXtSQPUhfBi/0najNWw0qx6KOEBdc0OR6R8yc+/0Or9iSegTRtTwxEREbkWSrakVCWn57LH0fJd67UKUgmhyBXMmwebN0NAAIwbZ3Y0IiIi10TJlpSqjedntZrU86ZGgLvJ0ZQfVsPKT4kbAegVrmRLxElqqq3FO8Do0VCnjrnxiIiIXCMlW1Kq7Ou11IXQ2eaT+zieeRY/d29uDW5hdjgi5cv48XDiBERGwnPPmR2NiIjINVOyJaUmP99gY7xtZkv7azlbdr6E8M7Qtni4asZPxGHvXlszDIB33wUPbYkgIiIVl5ItKTW7D2WSfi4fP29Xmob6mB1OubLs/P5aPcOiTI5EpJwZNgxyc6FHD+jd2+xoRERErouSLSk19hLC9hH+uLqoZbPdqXMprD/2B6DmGCJOVqyAf/0LXF1hxgy1ehcRkQpPyZaUGnuypRJCZ8sTN2Fg0LJmOKH+tc0OR6R8yMu70Or92WeheXNTwxERESkJSrakVJxJzWXfkXMAtNf+Wk6WJdpKCKMbqIRQxOEf/4Dff4caNWDMGLOjERERKRFKtqRUxO2xzWpF1vehmp8aQNhZDSs/nV+v1UslhCI2Z8/CqFG247FjbQmXiIhIJaBkS0pF3Pn9taI0q+Uk7kQ8p7JSCfDwoWOQyqREAFuCdfo0tGgBTz9tdjQiIiIlRsmWlLi8fINN8VqvVZhlCbaW791C2+Hu6mZyNCLlwK5d8P77tuMZM8BNPxciIlJ5KNmSErcrMYOMLCsBvq5E1FfL94KWnt9fS10IRc57+WVbc4y774bu3c2ORkREpEQp2ZISF+do+R6glu8FnMhMZuOJeED7a4kA8OOPsGwZuLvbNjAWERGpZJRsSYlTy/fC/ZS4EQODNrUaUc+vptnhiJgrN9c2qwXw4osQEWFuPCIiIqVAyZaUqJMpORw4loXFYtvMWC5Ydr6EUF0IRbCt09q9G2rXhpEjzY5GRESkVCjZkhK18XwXwqb1fQjw1UJ3u3xrPj8lbgSgp/bXkqru5MkLe2lNmACBgaaGIyIiUlqUbEmJUglh4dYf383Z7HSqefpxS1Azs8MRMdeoUZCSAm3awODBZkcjIiJSapRsSYnJzbOyee/5/bWUbDmJPb+RcffQG3FzcTU5GhETbdsG//iH7XjWLHDVz4OIiFReSrakxOw8mMG5bCvV/NxoUs/b7HDKlQst31VCKFWYYcDQoWC1wl/+Al26mB2RiIhIqVKyJSXGXkIYFemPi1q+OxzLOMPmk3sBrdeSKm7xYvj5Z/D0hKlTzY5GRESk1JmabE2cOJEOHTrg7+9PnTp16NOnD7t3777ia+644w4sFsslt969ezvGDBo06JLno6OjS/tyqry4PSohLEzs+cYYN9aOoK5PdZOjETFJdjYMG2Y7fuUVCA83NRwREZGyYGq7uFWrVjFkyBA6dOhAXl4eb7zxBj169GDnzp34+voW+prvvvuOnJwcx/3Tp0/Tpk0b+vbt6zQuOjqamJgYx31PT8/SuQgB4ERyDgePZ+FigRvV8t2Jo+V7uGa1pAqbORP274fgYBgxwuxoREREyoSpydayZcuc7s+bN486deqwceNGbr/99kJfU6NGDaf7CxcuxMfH55Jky9PTk6CgoCLFkZ2dTXZ2tuN+ampqkV4nF8SdLyFs1sAXf2+1fLfLs+azPHETANHaX0uqqmPHYPx42/GkSeDnZ248IiIiZaRcrdlKSUkBLk2ormTu3Ln069fvkpmwlStXUqdOHZo2bcozzzzD6dOnL3uOiRMnEhgY6LiFhoZe2wVUYRfWa6mEsKB1x3aRkpNBTa8AOtSJNDscEXO8+Sakp8NNN8Gjj5odjYiISJkpN8mW1Wpl6NCh3HrrrbRs2bJIr/ntt9/4/fffeeKJJ5wej46OZv78+axYsYLJkyezatUqevXqRX5+fqHnGTFiBCkpKY5bUlLSdV9PVZKTZ2XLvnQAOjRVCWFBSxNsJYTdw27EVS3fpSrauBHsJd0zZ4JLuflnR0REpNSVm3qvIUOG8Pvvv/Prr78W+TVz586lVatW3HTTTU6P9+vXz3HcqlUrWrduTePGjVm5ciV33nnnJefx9PTUmq7rsCMhg6wcKzX83WgUrJbvBS1LtO2vpRJCqZIMA1580fbnI49Ax45mRyQiIlKmysVXjM899xxLlizh559/pn79+kV6TUZGBgsXLuTxxx+/6thGjRpRq1Yt9u7de72hSiE2/HG+hLBpABaLWr7bHU4/xbZT+7FgoUfYjWaHI1L2vv4aVq8GHx+YPNnsaERERMqcqTNbhmHw/PPPs2jRIlauXEnDhg2L/NpvvvmG7OxsHi1C/f+hQ4c4ffo0wcHB1xOuXMaGPbZkq4NavjtZdtA2q9WhbiS1vauZG4xIWcvMhOHDbcevvQZF/CJNRESkMjF1ZmvIkCF8/vnnLFiwAH9/f44dO8axY8c4d+6cY8yAAQMYUUib4Llz59KnTx9q1qzp9Hh6ejqvvvoq69atIyEhgRUrVnDvvffSpEkTevbsWerXVNUcPZPNoZPZuLpAuyZar1VQ7EGVEEoVNm0aJCZCaOiF/bVERESqGFNntubMmQPYNiouKCYmhkGDBgGQmJiIy0ULqnfv3s2vv/7KTz/9dMk5XV1d2bZtG59++inJycnUq1ePHj16MG7cOK3LKgX2lu/NG/ji66UGEHY5+bn8J8ne8l37a0kVc+jQhbLBKVNsZYQiIiJVkOllhFezcuXKSx5r2rTpZV/r7e1NbGzs9YYmRRS3Ow2wrdeSC9Ye3UVa7jlqewfSvk6E2eGIlK3XX7eVEd56Kzz0kNnRiIiImKZcNMiQiik718rW/bZkS+u1nC09aGv53iMsCheLfsykClm7Fr74AiwWmDXL9qeIiEgVpU+Bcs22708nO9egVqA74XW9zA6nXFl2PtnqpRJCqUqsVlurd4BBg6B9e1PDERERMZuSLblmcee7EEZFquV7QYlpJ9hx5iAuFhe6h+nDplQhn38OGzaAnx+8847Z0YiIiJhOyZZcsw277S3f1YWwIHvL95vr3kANL/3dSBWRnm5bqwUwciQEBZkbj4iISDmgZEuuyeFT2Rw5nYObq4W2avnuxN7yvVe4SgilCpk0CY4ehUaNYOhQs6MREREpF5RsyTWxt3xvEe6Lj6davttl5+ew4tBmAHqGaX8tqSISEmz7aoHtT22zISIiAijZkmt0oYRQXQgL+vXIDjJyswjyqU7b2o3MDkekbLz6KmRnw5/+BH36mB2NiIhIuaFkS4otK8fKtgPpgK05hlxgX6+llu9SZaxaBd9+Cy4uMHOmWr2LiIgUoE+DUmzb9qeRm2dQp5o7YXVULlSQo+V7uEoIpQrIz7+wPuupp6B1a1PDERERKW+UbEmxbdh9YSNjtXy/4EDqMf44m4SrxYVuoe3MDkek9MXEwJYtEBgIb79tdjQiIiLljpItKRbDMBzrtaK0XsuJvYSwY3Bzqnn6mRyNSClLSYE33rAdjx4NtWubG4+IiEg5pGRLiuXQyWyOnz3f8r2xEoqCliWcLyFsoBJCqQLGj4eTJyEyEoYMMTsaERGRcknJlhRL3B7brFarhn54eajlu11WXg4/H94KQM8G2l9LKrn4eJg1y3Y8YwZ4eJgbj4iISDmlZEuK5ULLd21kXNAvh7dzLi+ber41aV2zodnhiJSuYcMgNxeio+Guu8yORkREpNxSsiVFdi47n+0HMgDtr3Wxpee7EEY36KCmIVK5LV8O//43uLrC9OlmRyMiIlKuKdmSItu6L528fIOgGh6E1FLL94JizzfHiFYJoVRmeXnw0ku24yFDoFkzc+MREREp55RsSZFdKCFUy/eC4pMPE59yGDcXV+4MbWt2OCKl56OPYMcOqFkTxowxOxoREZFyT8mWFEnBlu8qIXRmb/l+W3BLAjx8TY5GpJScOQOjRtmO334bqlc3Nx4REZEKQMmWFEniiSxOpuTi4WahdSO1fC9IJYRSJYwZY0u4WraEp54yOxoREZEKQcmWFMmG3WkAtG7kh6e7/rexy8zNYuX5lu/R2l9LKqudO+GDD2zHM2aAm5u58YiIiFQQ+tQsRRJ3voQwSiWETlYd3kZ2fi6hfrVpXiPM7HBESp5hwMsvQ34+3HsvdOtmdkQiIiIVhpItuaqMrHx+T0gHoEOkkq2CljpKCNXyXSqpH3+E2Fhwd4dp08yORkREpEJRsiVXtWVvGvlWCKnlST21fHcwDINl5/fX6hWuEkKphHJybLNaAEOHQpMmpoYjIiJS0SjZkquK23O+hDDS3+RIypc9yYc5kHoMDxc3/hTSxuxwREree+/Bnj1Qpw6MHGl2NCIiIhWOki25IlvLd1tzDLV8d7b0/KxW55BW+Hl4mxyNSAk7edLW4h3gnXcgQD//IiIixaVkS64o4VgWp1Nz8XR3oVVDtXwvKPZ8sqUuhFIpvfUWpKRAu3YwaJDZ0YiIiFRISrbkiuwbGbdp7IeHWr47pOec45fD2wHtryWV0Nat8PHHtuNZs8DV1dx4REREKih9epYrsidbKiF09vPhreRY82gYEETTavXNDkek5BiGrRmG1Qp9+0LnzmZHJCIiUmEp2ZLLSj+Xx87EDAA6NFVzjILsXQh7NohSy3epXBYtgpUrwdMTpkwxOxoREZEKTcmWXNbmvelYrRBax5O61dXy3c7W8t22v1YvrdeSyiQrC4YNsx2/+iqEh5sajoiISEWnZEsuSyWEhdt5JpHEtBN4urpzR0hrs8MRKTkzZ8KBA1CvHrz2mtnRiIiIVHhKtqRQVqtRYH8tJVsF2bsQdglpjY+7l8nRiJSQo0dh/Hjb8aRJ4KfuoyIiItdLyZYUav/Rc5xNy8Pbw4UW4b5mh1OuLD1fQqiW71KpvPEGZGTATTdB//5mRyMiIlIpKNmSQm04P6vVtokfHm7638QuNSeD1Ud3AGr5LpVIXBzMm2c7njULXPQzLyIiUhL0L6oUKm53GgBRWq/l5L9JW8i15tEksB4R1ULMDkfk+tlbvQM8+ijccoup4YiIiFQmSrbkEmmZefxhb/mu9VpOVEIolc5XX8Hq1eDjY1urJSIiIiVGyZZcYmN8GlYDwut6Ubuah9nhlBuGYTiaY6iEUCqFzExbi3eA11+HEM3WioiIlCQlW3KJuPMt31VC6Gz76QQOZ5zG282T20NamR2OyPWbOhUOHYKwsAv7a4mIiEiJUbIlTmwt323rtbS/lrNl52e1/hTSBm83bfIsFVxSEkyebDueOhW8vc2NR0REpBJSsiVO4g+fIyUjDx9PF5o3UMv3guzJVk+VEEpl8PrrcO4cdO4MffuaHY2IiEilpGRLnNhLCNtF+OPmajE5mvIjOTudNUd3AlqvJZXAmjWwYAFYLDBzpu1PERERKXFKtsSJfX8tdSF0tiJpM/mGlabV6tMoMNjscESundUKL75oOx48GG680dx4REREKjElW+KQnJ7HnkOZgJpjXGypowuhWr5LBffZZ7ZNjP39YcIEs6MRERGp1JRsicOm+FQMAxoFe1MzwN3scMoNq2El9vz+Wr3ClWxJBZaWBiNG2I5HjoS6dc2NR0REpJJTsiUOG3bbuxD6mxxJ+bL11H6OZZ7F192L2+q1MDsckWs3cSIcPQqNG18oJRQREZFSo2RLAMi3Gmzco/21CmPvQti1fls8XbXJs1RQBw7A9Om243ffBU9tXyAiIlLalGwJAHsOZZJ2Lh8/L1eaharle0HLzpcQar2WVGivvgrZ2XDnnXDPPWZHIyIiUiUo2RIANpxv+X5jhD+uavnucCYrjXXH/gDU8l0qsFWr4J//BBcXmDFDrd5FRETKiJItAS7sr6USQmfLEzdiNay0qNGAMP86ZocjUnz5+RfWZ/3tb9CqlbnxiIiIVCFKtoSzabnEHz4HQFSkmmMUZC8h7KlZLamo5s6FrVuhWjV4+22zoxEREalSTE22Jk6cSIcOHfD396dOnTr06dOH3bt3X/E18+bNw2KxON28vLycxhiGwahRowgODsbb25tu3boRHx9fmpdSocXtsXUhjAjxprq/Wr7bWQ0rsYnnW75rvZZURCkpthbvAGPGQK1apoYjIiJS1ZiabK1atYohQ4awbt06li9fTm5uLj169CAjI+OKrwsICODo0aOO28GDB52enzJlCrNnz+bDDz9k/fr1+Pr60rNnT7KyskrzcioslRAWbuOJeE6eS8Hf3ZtOwc3NDkek+MaNg5Mn4YYb4NlnzY5GRESkynEz882XLVvmdH/evHnUqVOHjRs3cvvtt1/2dRaLhaCgoEKfMwyDmTNnMnLkSO69914A5s+fT926dVm8eDH9+vUruQuoBPLzDTbFn99fK1LJVkH2jYzvDG2Hh6tm/P6/vTuPj7K69zj+nawEEhKWrJAVCDsihGJAi1UkUNtKbXtduCpFbdXQEhRFRFBxCeAG6qtQtYXrgqi3ojW3BmKQWBSQsAgohbAmQhLWrJB1nvvHZIaMBEVk8kxmPu/Xa1558jxnJr85PMD8cs75HbQxu3dLL7xgO37uOcmfexgAgNbmVmu2ysvLJUmdO3f+znZVVVWKj49XbGysrrvuOn311VeOa/v371dJSYlGjx7tOBcaGqrhw4dr3bp1Lb5ebW2tKioqnB7eYmdRtapqGhUS5Kvk2PZmh+NWPmraX4uS72iT7rtPqq+Xxo2zPQAAQKtzm2TLarUqIyNDI0eO1IABA87Zrnfv3vr73/+uDz74QG+88YasVqtGjBihb775RpJUUlIiSYqMjHR6XmRkpOPat2VmZio0NNTxiI2NvUjvyv3l77KNag1NDpGvD+Wg7Y6dLtfG0t2SpLT4oSZHA/xAq1ZJWVmSn9+ZjYwBAECrc5tkKz09XTt27NDy5cu/s11qaqpuvfVWDR48WKNGjdJ7772n8PBw/fWvf73gnz1jxgyVl5c7HkVFRRf8Wm2NfX+tYazXcrKqcJMMGRrYJVHdg8PNDgc4fw0N0tSptuPJk23rtQAAgClMXbNlN3nyZGVlZenTTz9V9+7df9Bz/f39demll2rPnj2S5FjLVVpaqujoaEe70tJSDR48uMXXCAwMVGBg4IUF34Ydr6jXvuLTslikIb1ItpqzTyGkCiHanMWLpa+/lrp0kWbPNjsaAAC8mqkjW4ZhaPLkyVqxYoVWr16txMTEH/wajY2N2r59uyOxSkxMVFRUlHJzcx1tKioqtGHDBqWmpl602D1B/m7bqFZyt/YKC3aLvNstNFoblVO4WZI0lv210JYcP34mwXr8calTJ3PjAQDAy5n6CTs9PV3Lli3TBx98oJCQEMeaqtDQUAUFBUmSbr31VnXr1k2ZmZmSpDlz5uiyyy5Tz549VVZWpqeffloHDx7UHXfcIclWqTAjI0NPPPGEevXqpcTERM2aNUsxMTEaP368Ke/TXTGFsGUbj+zW8ZoKhQZ00GVRfc0OBzh/jz4qnTwpDRwo3Xmn2dEAAOD1TE22Fi1aJEm68sornc4vWbJEEydOlCQVFhbKx+fMANzJkyd15513qqSkRJ06ddLQoUP1+eefq1+/M/sgPfDAA6qurtYf/vAHlZWV6fLLL1d2dvZZmx97s4ZGQ1uaSr6zv5Yze8n3a+KGyN+XET+0EV99JTX9m6oFC2zFMQAAgKkshmEYZgfhbioqKhQaGqry8nJ17OiZici2fVWa/soehXbw07KH+suHSoQOl73zZ206UqBXrpqqif3GmB0O8P0MQ0pLk3JypPHjpRUrzI4IwA/gDZ87AG/lNtUI0brsUwhTkkNItJopPXVSm44USJLSWK+FtiIry5ZoBQRIzzxjdjQAAKAJyZaXshfHSEnmN2jNrSrcJEkaHN5D0R2+e3NtwC3U1dk2MJZsJd979DA3HgAA4ECy5YWOltXpQEmNfCzSkF4hZofjVrIp+Y625sUXpYICKTJSmjnT7GgAAEAzJFteaGPTqFafuA7q2IFF9HYN1katcpR8J9lCG3DkiDRnju34qaekEH55AgCAOyHZ8kL5u5qqECbzway5DaX/UVltlToFBmt4ZG+zwwG+36xZUkWFNGSI1FTBFQAAuA+SLS9T32DV1j22ZIv9tZxlH7BNIRwTN1S+Pr4mRwN8j61bpVdesR0vWCD58M85AADuhv+dvcxXB6t1us6qTsF+SooOMjsct5JdaNtfiyqEcHuGIWVk2L7ecIN0xRVmRwQAAFpAsuVlHCXfe3ek5Hszh6uOa+vRvZKktDiSLbi5996T8vKkdu2k+fPNjgYAAJwDyZaXsSdbTCF0trJpVCslIlkR7cPMDQb4LjU10rRptuP775fi4syNBwAAnBPJlhcpPVmroiO18vGRLu0ZbHY4bmXlQVuyNZYphHB3zz0nHTggdesmTZ9udjQAAOA7kGx5kY1NVQj7xXVQcBAl3+3qGxuUU0TJd7QBhw/bSrxL0rx5UocO5sYDAAC+E8mWF2EKYcvWlXytirpT6tquo1IiepkdDnBuDz0kVVdLl10m3Xyz2dEAAIDvQbLlJerqrfpyb5UkW3EMnJHdNIXwGkq+w51t3Cj9z//YjhculCwUuAEAwN2RbHmJ7furVFtvVZeO/kqMamd2OG7lo4O2/bXGMYUQ7sowpClTbMe33CL95CfmxgMAAM4LyZaXyN9tW6+VkhwiC78Rd/im6qh2HD8giyy6Jm6I2eEALXvrLWndOtsarcxMs6MBAADniWTLS7Beq2X2KYQ/ieytrkGhJkcDtKC6+kzVwRkzbFUIAQBAm0Cy5QUOH6/VoWO18vWRBvcMMTsct5Jtn0KYwBRCuKmnn5a++UaKj5fuvdfsaAAAwA9AsuUF8ptGtfonBKtDOwpA2NU11iu3aKskKS2O/bXghgoLpfnzbcdPPy0FBZkbDwAA+EFItrwAUwhb9lnxV6qqP62IoDANiehpdjjA2aZPl06fln76U+m3vzU7GgAA8AORbHm42nqrtu2zlXwf1psphM3Z12ulxafIx8JfBbiZzz6Tli+3lXhfsIBS7wAAtEF8wvRw2/ZVqa7BUHiov+IiKPnenH291th4phDCzVitZ0q93367dOml5sYDAAAuCMmWh2s+hZCS72ccrCjV1ycK5WPx0TWxlHyHm3ntNWnTJikkRHriCbOjAQAAF4hky4MZhuFItlJYr+Uku9A2hfCyqD7q1I7plXAjlZW2Eu+SNHu2FBlpbjwAAOCCkWx5sEPHalVyok5+vhYN7hFsdjhuJftAU8n3eEq+w8089ZRUUiL17Cn9+c9mRwMAAH4Eki0PZh/VGpjYQUGBlHy3q2mo0+pvtkqSxpJswZ3s2yc995zt+NlnpYAAc+MBAAA/CsmWB8vfXSlJSklmCmFzaw/v0KmGWkW376xLuiaZHQ5wxv33S3V10ujR0i9/aXY0AADgRyLZ8lA1dY3NSr6TbDX3UVMVwrT4FIqGwH188on03nuSj4/0/POUegcAwAOQbHmoL/dWqaHRUGSnAHUPDzQ7HLeysml/LUq+w200NkoZGbbju++WBgwwNRwAAHBxkGx5KEq+t2xv+WHtKvtGvhYfjabkO9zFq69K27ZJnTpJjz1mdjQAAOAiIdnyQM1Lvg/rTVnz5rKbRrVGRvdXaGAHk6MBJJWVSQ8/bDt+9FGpSxczowEAABcRyZYHKjpaqyNl9fL3s2hQEslWc0whhNuZM0c6dkzq29c2hRAAAHgMki0PZB/VGpQYrHYB/BHbnW6o1SfffCmJku9wE7t2SS++aDt+/nnJ39/ceAAAwEXFJ3EPlN9svRbO+PTQdtU01ql7cFcN6JJgdjiAdN99UkODdO21Ulqa2dEAAICLjGTLw5yqbdSOA9WSpBSSLSeOku9xlHyHG1i5Uvq//5P8/GwbGAMAAI9DsuVhtu6pVEOjoZguAerWlZLvzWU3JVvjEphCCJPV10tTp9qO//QnqXdvc+MBAAAuQbLlYfJ3V0qSUpIZ1WquoOyQ9pYXy9/HT1d1H2x2OPB2ixZJO3dKXbtKs2ebHQ0AAHARki0P4lzynWSrOfsUwstj+iskoL3J0cCrHT9uK/EuSU88IYWFmRkNAABwIZItD3KgtEbHyusV6G/RwKRgs8NxK9kHmqYQUoUQZnvkEenkSWnQIOmOO8yOBgAAuBDJlgexVyEclBSiQH/+aO2q62v06eHtkqQ09teCmXbskBYvth0vWCD5+poaDgAAcC0+kXuQM1MI2ci4uTXffKnaxnrFh0Sob6c4s8OBtzIMW1GMxkbp+uuln/3M7IgAAICLkWx5iOqaRn19kJLvLckuzJdkG9Wi5DtM8+GH0scfSwEB0tNPmx0NAABoBSRbHmLLnko1WqXu4YGK7kzJdzvDMFivBfPV1to2MJake++VkpLMjQcAALQKki0P4ZhCSMl3J/85WaQDlaUK8PHTzyj5DrO8+KK0Z48UFSU99JDZ0QAAgFZCsuUBDMNwFMdgCqGz7IO2KYQ/7TZQHfzbmRwNvFJpqTRnju04M1MKYU0lAADegmTLA+wrPq0TlQ0K9PfRgMQOZofjVrKb9tcayxRCmOXhh6XKSiklRbr1VrOjAQAArYhkywNs3FUpSbq0Z7AC/PgjtausO6V/H94hifVaMMmWLdLf/mY7XrBA8uHvJwAA3oT/+T1A/m6mELbkk2++VL21QUkdo9QrrJvZ4cDbGIaUkWH7euON0siRZkcEAABaGclWG1d5ukE77SXfKY7h5KNmUwgp+Y5W949/SJ9+KgUFSfPmmR0NAAAwAclWG7eloFJWQ4qLaKfITgFmh+M2DMPQyqbiGGPjU0yOBl7n9Glp2jTb8QMPSHFspg0AgDci2WrjHCXfe1PhrLmvThxUUdVRtfMN0Khug8wOB97mueekgwel7t1tyRYAAPBKpiZbmZmZGjZsmEJCQhQREaHx48dr165d3/mcV155RVdccYU6deqkTp06afTo0friiy+c2kycOFEWi8XpMXbsWFe+FVNYrYbyd9uKYwxjvZYTexXCK7sPUntKvqM1HT5sK/Eu2aYPtm9vbjwAAMA0piZbeXl5Sk9P1/r165WTk6P6+nqNGTNG1dXV53zOmjVrdNNNN+mTTz7RunXrFBsbqzFjxujQoUNO7caOHavi4mLH46233nL122l1e4tPq6yqQUEBPuoXT8n35uz7a6XFMYUQrWzGDKm6WkpNlW66yexoAACAifzM/OHZ2dlO3y9dulQRERHatGmTfvrTn7b4nDfffNPp+1dffVX/+Mc/lJubq1ub7WETGBioqKioix+0G9n4H9sUwkt7hcifku8OFXXV+qz4K0nsr4VWtmGD9NprtuOFCyUKswAA4NXc6hN6eXm5JKlz587n/ZxTp06pvr7+rOesWbNGERER6t27t+6++24dP378nK9RW1uriooKp0dbYC/5zhRCZ7lFW9VgbVRyWDf1DIsxOxx4C3upd0m67TZpGIk+AADezm2SLavVqoyMDI0cOVIDBgw47+dNnz5dMTExGj16tOPc2LFj9dprryk3N1fz5s1TXl6exo0bp8bGxhZfIzMzU6GhoY5HbGzsj34/rlZe3aD/FJ2SJA1NpjhGc/aS72lUIURrWrZMWr9e6tBBeuops6MBAABuwNRphM2lp6drx44dWrt27Xk/Z+7cuVq+fLnWrFmjdu3OFEG48cYbHccDBw7UoEGD1KNHD61Zs0ZXX331Wa8zY8YM3XvvvY7vKyoq3D7h2lxQKcOQEqPaKTyUku92zUu+j2MKIVpLdbU0fbrt+KGHpBhGVAEAgJuMbE2ePFlZWVn65JNP1L179/N6zjPPPKO5c+dq1apVGjTou0t7JyUlqWvXrtqzZ0+L1wMDA9WxY0enh7vLbyr5nsIUQifbju/X4erjau8XqCtiBpodDrzFvHnSoUNSQoLU7Bc3AADAu5k6smUYhv70pz9pxYoVWrNmjRITE8/refPnz9eTTz6plStXKiXl+6eKffPNNzp+/Liio6N/bMhuodFqKL+A9VotyT5gm0L4s+6XqJ0fI35oBQcPSk8/bTt+5hmpHVsNAAAAG1NHttLT0/XGG29o2bJlCgkJUUlJiUpKSnT69GlHm1tvvVUzZsxwfD9v3jzNmjVLf//735WQkOB4TlVVlSSpqqpK999/v9avX68DBw4oNzdX1113nXr27Km0tLRWf4+uUPDNKVVUN6pDOx/1jaPke3P29VpUIUSrmT5dqqmRRo2Srr/e7GgAAIAbMTXZWrRokcrLy3XllVcqOjra8Xj77bcdbQoLC1VcXOz0nLq6Ov32t791es4zzzwjSfL19dW2bdv0q1/9SsnJybr99ts1dOhQ/fvf/1ZgYGCrv0dXsFchvLRniPx8KS1td7KmUutLdkoi2UIr+fe/pbfftpV4X7CAUu8AAMCJ6dMIv8+aNWucvj9w4MB3tg8KCtLKlSt/RFTub+OuSklMIfy2j4u2qNGwqm+nWCV0jDQ7HHg6q/VMqfc775QGDzYzGgAA4IbcokAGzl9ZVb0KDtlKvqckk2w1l91UhTCNUS20hqVLpc2bpY4dpccfNzsaAADghki22phNu20l33vEBKlzR3+zw3EbVsOqlYX2ku/srwUXq6iwlXiXpNmzpYgIc+MBAABuiWSrjdm4iyqELdlydK9KT51UsH+QRsb0NzsceLqnnpJKS6VevaQ//cnsaAAAgJsi2WpDGq2GNhXY1mulJIeYHI17sW9kfFX3wQr0peQ7XGjvXun5523Hzz4rBXC/AQCAlpFstSG7ik6p6nSjgoN81SeWku/NnSn5zhRCuNi0aVJdnTRmjPSLX5gdDQAAcGMkW21IftMUwqG9QuRLyXeH46cr9EXpLkmUfIeLrV4tvf++5OtrG92i1DsAAPgOJFttiH29VgrrtZzkFG2W1bCqf+cExYaEmx0OPFVDw5lS73ffLfXrZ2o4AADA/ZFstREnKuu15/BpSazX+jb7FMJxCUwhhAu9+qq0fbvUqZP06KNmRwMAANoAkq02YtNu26hWr25BCgum5Lud1bBqVVNxjLFxTCGEi5w8KT38sO14zhypSxdz4wEAAG0CyVYbsXGXrQohJd+d5R8p0LGaCoX4B2lENNO64CJz5kjHj9umDt51l9nRAACANoJkqw1obDS0uYD9tVqSfcA2hfCauCHy9/UzORp4pP/8R3rpJdvx889LftxnAADg/JBstQE7C6tVXWNVx/a+6tW9vdnhuJXsQtsUwjSqEMJV7rvPVhzjF7+wlXsHAAA4TyRbbYC9CuHQ5I7y9aHUtN3R02XKL90tSRobR3EMuMBHH0n/+pfk72/bwBgAAOAHINlqA/KbimNQhdDZqsLNMmRoUNckxQRTsAAXWX29dO+9tuM//1lKTjY3HgAA0OaQbLm5Y+V12ldcI4vFNrKFM+zrtcYxhRCu8Je/2NZrhYdLs2aZHQ0AAGiDSLbcXP5uWxXC3t3bK7QDC/PtGq2NWlW4SZI0Np4phLjIjh07s5fWE09IoaGmhgMAANomki03l9+0XiuFKoROvijdrRO1lQoLDNZlUX3NDgee5pFHpLIy6ZJLpNtvNzsaAADQRpFsubH6Bqs272F/rZZkH2wq+R47RH4+viZHA4+yfbu0eLHteOFCyZf7CwAAXBiSLTf29cFqna61KizYTz1jgswOx6181JRsMYUQF5VhSFOnSlar9JvfSKNGmR0RAABow0i23Jh9vdbQXiHyoeS7Q0n1CW05ukeSlEayhYvpn/+UcnOlwEDp6afNjgYAALRxJFtuzL6/1rA+TCFsbmVTYYwh4b0U2b6TydHAY9TW2jYwlmxfExPNjQcAALR5JFtu6khZnQ6W1sjHIg3pyf5aza08mC+JKYS4yBYulPbulaKjpRkzzI4GAAB4AJItN2WvQtgnroNC2lPy3a7BqeQ7+2vhIikttZV4l6TMTCk42Nx4AACARyDZclOOKYRUIXSyvmSnyuuq1TkwRD+JTDY7HHiKmTOlykpp2DDpllvMjgYAAHgIki03VNdg1da9VZKklN5MIWwuu2kK4Zi4ofKl5Dsuhs2bpb//3Xa8YIHkwz+LAADg4uBThRv66kC1auqs6hzipx7RlHxvzlHyPYEphLgIDEOaMsX29eabpREjzI4IAAB4EJItN2Rfr5XSu6MsFkq+2x2qOqZtx/bJIovGxA0xOxx4gnffldaulYKCpLlzzY4GAAB4GJItN2Rfr5WSzHqt5uwl31MikxUeFGZuMGj7Tp+W7r/fdjx9uhQba248AADA45BsuZmSE7UqOlorHx9pSC/WazWXfcA2hXAcVQhxMTz7rFRYaEuy7EkXAADARUSy5Wbyd1VKkvrFd1CHdhSAsKtvbNDHRZslSWnsr4Uf69AhW4l3SZo/X2rf3tx4AACARyLZcjOUfG/Z58Vfq7L+tMKDQpUS0cvscNDWPfigdOqUNHKkdMMNZkcDAAA8FMmWG6mrt+rLfbaRLZItZ/YqhGPiUuRj4bbFj7B+vfTGG7bjBQskitAAAAAX4VOrG9m+v0q19Ya6dPRXQmQ7s8NxK/b9tcYyhRA/htUqZWTYjidOlFK4nwAAgOuQbLmR5lMIKfl+RlHlUX114oB8LD66JpaS7/gRli2TNmyQgoOlp54yOxoAAODhSLbciL04RkpvqhA2l900hfAnkb3VJYjplbhAVVW2Eu+SNHOmFB1tbjwAAMDjkWy5iUPHanXoeK38fC0a3INkqzn7FEJKvuNHmTdPOnxYSkw8M5UQAADAhUi23ER+0xTC/gmUfG+utrFOud9skSSNJdnChTp4UHrmGdvxM89I7VgTCQAAXI9ky03k77YlWynJTJNr7rPDX6m6vkaR7TtpcHiS2eGgrXrgAammRvrZz6Rf/9rsaAAAgJcg2XIDNXVWfbmvShIl37/to6YphGmUfMeF+vRT6Z13JB8fSr0DAIBWxadXN7BtX6XqGwxFhPkrLiLQ7HDcir04xrgEphDiAjQ2nlmfdeed0qBBpoYDAAC8C8mWGzhThZCS783tryjRf04Wydfio9Gxl5odDtqipUulLVuk0FDp8cfNjgYAAHgZki2TGYbhtL8WzrBXIUyN7qewwGCTo0GbU1EhPfSQ7fiRR6TwcHPjAQAAXodky2SHjtWq5GRdU8l3EormVjZNIRwbl2JyJGiTnnhCOnJESk6W0tPNjgYAAHghki2T2Ue1BiYGq10AJd/tahrqtPqbLyVJY1mvhR9qzx5bMQxJeu45KSDA1HAAAIB3Itky2ZkphGxk3Nynh7brdEOtYjp00aAuiWaHg7Zm2jSpvl5KS5N+/nOzowEAAF6KZMtEp2sbtX1/tSTWa31bdqFtCmFafApFQ/DD5OZKH3wg+fraRrW4fwAAgElItkz05d4qNTQaiuocoG5dKfneXPYBW3GMcfFMIcQP0NBwptR7errUr5+p4QAAAO9GsmWijbvPVCFk9OaMPWWHVVB+SH4+vro6drDZ4aAtefllaccOqXNnWwVCAAAAE5FsmcQwDOU3rddKSWYKYXP2jYxHRvdXx4AOJkeDNuPkSWn2bNvxnDm2hAsAAMBEfmYH4I0arYZyN5/QkbJ6+flI/RNIKJqz76/FFEL8II89Jh0/LvXvL/3xj2ZHAwAAQLLV2j7bUabFWYd0rLxektRgle5a8B/d9YtuGjkgzNzg3MD/7d+gVYW2ZCstnv21cB7y823rszZtsn2/YIHkxz9tAADAfKZOI8zMzNSwYcMUEhKiiIgIjR8/Xrt27fre57377rvq06eP2rVrp4EDB+pf//qX03XDMDR79mxFR0crKChIo0ePVkFBgavexnn7bEeZnnjzgCPRsjtWXq8n3jygz3aUmROYmzAMQ9PWvixDkr+Pn/p1ijM7JLQFr70mffGF1Ngo/epX0ujRZkcEAAAgyeRkKy8vT+np6Vq/fr1ycnJUX1+vMWPGqLq6+pzP+fzzz3XTTTfp9ttv15YtWzR+/HiNHz9eO3bscLSZP3++XnjhBS1evFgbNmxQhw4dlJaWppqamtZ4Wy1qtBpanHXoO9v8NeuQGq1GK0XkfnIKN2tP+WFJUr21QR8XbTE5IritgwdtI1mbN9uSLbvf/952/uBB82IDAABoYjEMw20+3R89elQRERHKy8vTT3/60xbb3HDDDaqurlZWVpbj3GWXXabBgwdr8eLFMgxDMTExuu+++zRt2jRJUnl5uSIjI7V06VLdeOONZ71mbW2tamtrHd9XVFQoNjZW5eXl6tjx4hSv2LavUtNf2fu97ebd2UODkrxvg2PDMJT67hRtOmIbgfSRRUMieurz3y2kUiPOdj73hPv80wYA36miokKhoaEX9XMHAPfgVtUIy8vLJUmdv6OK2Lp16zT6W9OE0tLStG7dOknS/v37VVJS4tQmNDRUw4cPd7T5tszMTIWGhjoesbGxP/atnOVERcNFbedpcgo3OxItSbLKUP6RAuUUbjYxKritN94497osPz/bdQAAAJO5TbJltVqVkZGhkSNHasCAAedsV1JSosjISKdzkZGRKikpcVy3nztXm2+bMWOGysvLHY+ioqIf81Za1Lnj+S3YP992nsQwDD2y4X/ka3G+HX0tPnpkw//IjQZf4S4mTJA2bGj52oYNtusAAAAmc5tP9unp6dqxY4fWrl3b6j87MDBQgYGBLv0Z/ROC1TXU/6ziGM2Fh/qrf0KwS+NwRzmFm5V/5OwCJo2G1TG6NSZ+qAmRoU3w8ZGs1jNfAQAA3IRbjGxNnjxZWVlZ+uSTT9S9e/fvbBsVFaXS0lKnc6WlpYqKinJct587Vxsz+PpYdNcvun1nmz/+opt8fbxrfZJ9VMtHLb9vH1kY3ULLIiKkqChp6FBp8WLb16go23kAAAA3YGqyZRiGJk+erBUrVmj16tVKTEz83uekpqYqNzfX6VxOTo5SU1MlSYmJiYqKinJqU1FRoQ0bNjjamGXkgDA9PCFBXUP9nc6Hh/rr4QkJXrnPVp21XoWVR2VVy8mUVYaKqo6pznruEUF4qe7dpQMHbNMG//hH29cDB2znAQAA3ICp0wjT09O1bNkyffDBBwoJCXGsqQoNDVVQUJAk6dZbb1W3bt2UmZkpSZoyZYpGjRqlZ599Vtdee62WL1+u/Px8vfzyy5Iki8WijIwMPfHEE+rVq5cSExM1a9YsxcTEaPz48aa8z+ZGDgjTZf1C9dWBKp2oaFDnjn7qnxDsdSNadoG+AVr/Xy/o6Onyc7aJaB+qQN+AVowKbUbz6b8Wi/P3AAAAJjM12Vq0aJEk6corr3Q6v2TJEk2cOFGSVFhYKB+fMwNwI0aM0LJly/Twww/roYceUq9evfT+++87FdV44IEHVF1drT/84Q8qKyvT5ZdfruzsbLVr187l7+l8+PpYvLK8+7nEhoQrNiTc7DAAAACAi8qt9tlyF+x3AQAAWgufOwDP5RYFMgAAAADA05BsAQAAAIALkGwBAAAAgAuQbAEAAACAC5BsAQAAAIALkGwBAAAAgAuQbAEAAACAC5BsAQAAAIALkGwBAAAAgAuQbAEAAACAC5BsAQAAAIALkGwBAAAAgAuQbAEAAACAC5BsAQAAAIALkGwBAAAAgAuQbAEAAACAC/iZHYA7MgxDklRRUWFyJAAAwNPZP2/YP38A8BwkWy2orKyUJMXGxpocCQAA8BaVlZUKDQ01OwwAF5HF4NcoZ7FarTp8+LBCQkJksVhc8jMqKioUGxuroqIidezY0SU/oy2iX1pGv5wbfdMy+uXc6JuW0S/n5uq+MQxDlZWViomJkY8PKzwAT8LIVgt8fHzUvXv3VvlZHTt25D+1FtAvLaNfzo2+aRn9cm70Tcvol3NzZd8wogV4Jn59AgAAAAAuQLIFAAAAAC5AsmWSwMBAPfLIIwoMDDQ7FLdCv7SMfjk3+qZl9Mu50Tcto1/Ojb4BcKEokAEAAAAALsDIFgAAAAC4AMkWAAAAALgAyRYAAAAAuADJFgAAAAC4AMmWC2VmZmrYsGEKCQlRRESExo8fr127djm1qampUXp6urp06aLg4GD95je/UWlpqUkRt45FixZp0KBBjs0hU1NT9dFHHzmue2OftGTu3LmyWCzKyMhwnPPWvnn00UdlsVicHn369HFc99Z+sTt06JD++7//W126dFFQUJAGDhyo/Px8x3XDMDR79mxFR0crKChIo0ePVkFBgYkRu15CQsJZ94zFYlF6erok771nGhsbNWvWLCUmJiooKEg9evTQ448/rua1srzxfrGrrKxURkaG4uPjFRQUpBEjRmjjxo2O697cNwAuDMmWC+Xl5Sk9PV3r169XTk6O6uvrNWbMGFVXVzvaTJ06VR9++KHeffdd5eXl6fDhw7r++utNjNr1unfvrrlz52rTpk3Kz8/XVVddpeuuu05fffWVJO/sk2/buHGj/vrXv2rQoEFO5725b/r376/i4mLHY+3atY5r3twvJ0+e1MiRI+Xv76+PPvpIX3/9tZ599ll16tTJ0Wb+/Pl64YUXtHjxYm3YsEEdOnRQWlqaampqTIzctTZu3Oh0v+Tk5EiSfve730ny3ntm3rx5WrRokV566SXt3LlT8+bN0/z58/Xiiy862njj/WJ3xx13KCcnR6+//rq2b9+uMWPGaPTo0Tp06JAk7+4bABfIQKs5cuSIIcnIy8szDMMwysrKDH9/f+Pdd991tNm5c6chyVi3bp1ZYZqiU6dOxquvvkqfGIZRWVlp9OrVy8jJyTFGjRplTJkyxTAM775fHnnkEeOSSy5p8Zo394thGMb06dONyy+//JzXrVarERUVZTz99NOOc2VlZUZgYKDx1ltvtUaIbmHKlClGjx49DKvV6tX3zLXXXmtMmjTJ6dz1119vTJgwwTAM775fTp06Zfj6+hpZWVlO54cMGWLMnDnTq/sGwIVjZKsVlZeXS5I6d+4sSdq0aZPq6+s1evRoR5s+ffooLi5O69atMyXG1tbY2Kjly5erurpaqamp9Imk9PR0XXvttU59IHG/FBQUKCYmRklJSZowYYIKCwsl0S///Oc/lZKSot/97neKiIjQpZdeqldeecVxff/+/SopKXHqn9DQUA0fPtwr+keS6urq9MYbb2jSpEmyWCxefc+MGDFCubm52r17tyTpyy+/1Nq1azVu3DhJ3n2/NDQ0qLGxUe3atXM6HxQUpLVr13p13wC4cH5mB+AtrFarMjIyNHLkSA0YMECSVFJSooCAAIWFhTm1jYyMVElJiQlRtp7t27crNTVVNTU1Cg4O1ooVK9SvXz9t3brVa/tEkpYvX67Nmzc7rRGw8+b7Zfjw4Vq6dKl69+6t4uJiPfbYY7riiiu0Y8cOr+4XSdq3b58WLVqke++9Vw899JA2btyoP//5zwoICNBtt93m6IPIyEin53lL/0jS+++/r7KyMk2cOFGSd/9devDBB1VRUaE+ffrI19dXjY2NevLJJzVhwgRJ8ur7JSQkRKmpqXr88cfVt29fRUZG6q233tK6devUs2dPr+4bABeOZKuVpKena8eOHU7rTLxZ7969tXXrVpWXl+t///d/ddtttykvL8/ssExVVFSkKVOmKCcn56zfrHo7+2/dJWnQoEEaPny44uPj9c477ygoKMjEyMxntVqVkpKip556SpJ06aWXaseOHVq8eLFuu+02k6NzD3/72980btw4xcTEmB2K6d555x29+eabWrZsmfr376+tW7cqIyNDMTEx3C+SXn/9dU2aNEndunWTr6+vhgwZoptuukmbNm0yOzQAbRTTCFvB5MmTlZWVpU8++UTdu3d3nI+KilJdXZ3Kysqc2peWlioqKqqVo2xdAQEB6tmzp4YOHarMzExdcsklWrhwoVf3yaZNm3TkyBENGTJEfn5+8vPzU15enl544QX5+fkpMjLSa/vm28LCwpScnKw9e/Z49T0jSdHR0erXr5/Tub59+zqmWdr74NuV9rylfw4ePKiPP/5Yd9xxh+OcN98z999/vx588EHdeOONGjhwoG655RZNnTpVmZmZkrhfevTooby8PFVVVamoqEhffPGF6uvrlZSU5PV9A+DCkGy5kGEYmjx5slasWKHVq1crMTHR6frQoUPl7++v3Nxcx7ldu3apsLBQqamprR2uqaxWq2pra726T66++mpt375dW7dudTxSUlI0YcIEx7G39s23VVVVae/evYqOjvbqe0aSRo4cedaWErt371Z8fLwkKTExUVFRUU79U1FRoQ0bNnhF/yxZskQRERG69tprHee8+Z45deqUfHyc/+v39fWV1WqVxP1i16FDB0VHR+vkyZNauXKlrrvuOvoGwIUxu0KHJ7v77ruN0NBQY82aNUZxcbHjcerUKUebu+66y4iLizNWr15t5OfnG6mpqUZqaqqJUbvegw8+aOTl5Rn79+83tm3bZjz44IOGxWIxVq1aZRiGd/bJuTSvRmgY3ts39913n7FmzRpj//79xmeffWaMHj3a6Nq1q3HkyBHDMLy3XwzDML744gvDz8/PePLJJ42CggLjzTffNNq3b2+88cYbjjZz5841wsLCjA8++MDYtm2bcd111xmJiYnG6dOnTYzc9RobG424uDhj+vTpZ13z1nvmtttuM7p162ZkZWUZ+/fvN9577z2ja9euxgMPPOBo4633i2EYRnZ2tvHRRx8Z+/btM1atWmVccsklxvDhw426ujrDMLy7bwBcGJItF5LU4mPJkiWONqdPnzbuueceo1OnTkb79u2NX//610ZxcbF5QbeCSZMmGfHx8UZAQIARHh5uXH311Y5EyzC8s0/O5dvJlrf2zQ033GBER0cbAQEBRrdu3YwbbrjB2LNnj+O6t/aL3YcffmgMGDDACAwMNPr06WO8/PLLTtetVqsxa9YsIzIy0ggMDDSuvvpqY9euXSZF23pWrlxpSGrxvXrrPVNRUWFMmTLFiIuLM9q1a2ckJSUZM2fONGprax1tvPV+MQzDePvtt42kpCQjICDAiIqKMtLT042ysjLHdW/uGwAXxmIYzbaNBwAAAABcFKzZAgAAAAAXINkCAAAAABcg2QIAAAAAFyDZAgAAAAAXINkCAAAAABcg2QIAAAAAFyDZAgAAAAAXINkCAAAAABcg2QIAk61Zs0YWi0VlZWVmhwIAAC4iki0AHq+oqEiTJk1STEyMAgICFB8frylTpuj48eOtHsuVV16pjIwMp3MjRoxQcXGxQkNDJUlLly5VWFhYq8cGAAAuLpItAB5t3759SklJUUFBgd566y3t2bNHixcvVm5urlJTU3XixAmzQ1RAQICioqJksVjMDgUAAFxEJFsAPFp6eroCAgK0atUqjRo1SnFxcRo3bpw+/vhjHTp0SDNnzpQkWSwWvf/++07PDQsL09KlSx3fT58+XcnJyWrfvr2SkpI0a9Ys1dfXO64/+uijGjx4sF5//XUlJCQoNDRUN954oyorKyVJEydOVF5enhYuXCiLxSKLxaIDBw44TSNcs2aNfv/736u8vNzR5tFHH9WcOXM0YMCAs97f4MGDNWvWrIvfcQAA4Ecj2QLgsU6cOKGVK1fqnnvuUVBQkNO1qKgoTZgwQW+//bYMwziv1wsJCdHSpUv19ddfa+HChXrllVf0/PPPO7XZu3ev3n//fWVlZSkrK0t5eXmaO3euJGnhwoVKTU3VnXfeqeLiYhUXFys2Ntbp+SNGjNCCBQvUsWNHR5tp06Zp0qRJ2rlzpzZu3Ohou2XLFm3btk2///3vL6R7AACAi/mZHQAAuEpBQYEMw1Dfvn1bvN63b1+dPHlSR48ePa/Xe/jhhx3HCQkJmjZtmpYvX64HHnjAcd5qtWrp0qUKCQmRJN1yyy3Kzc3Vk08+qdDQUAUEBKh9+/aKiopq8WcEBAQoNDRUFovFqU1wcLDS0tK0ZMkSDRs2TJK0ZMkSjRo1SklJSecVPwAAaF2MbAHweN83chUQEHBer/P2229r5MiRioqKUnBwsB5++GEVFhY6tUlISHAkWpIUHR2tI0eO/PCgW3DnnXfqrbfeUk1Njerq6rRs2TJNmjTporw2AAC4+Ei2AHisnj17ymKxaOfOnS1e37lzp8LDwxUWFiaLxXJWUtZ8Pda6des0YcIE/fznP1dWVpa2bNmimTNnqq6uzuk5/v7+Tt9bLBZZrdaL8n5++ctfKjAwUCtWrNCHH36o+vp6/fa3v70orw0AAC4+phEC8FhdunTRNddco7/85S+aOnWq07qtkpISvfnmm0pPT5ckhYeHq7i42HG9oKBAp06dcnz/+eefKz4+3lFQQ5IOHjz4g2MKCAhQY2PjBbXx8/PTbbfdpiVLliggIEA33njjWWvRAACA+2BkC4BHe+mll1RbW6u0tDR9+umnKioqUnZ2tq655holJydr9uzZkqSrrrpKL730krZs2aL8/HzdddddTqNUvXr1UmFhoZYvX669e/fqhRde0IoVK35wPAkJCdqwYYMOHDigY8eOtTjqlZCQoKqqKuXm5urYsWNOSd8dd9yh1atXKzs7mymEAAC4OZItAB6tV69e2rhxo5KSkvRf//Vfio+P17hx45ScnKzPPvtMwcHBkqRnn31WsbGxuuKKK3TzzTdr2rRpat++veN1fvWrX2nq1KmaPHmyBg8erM8///yCSq5PmzZNvr6+6tevn8LDw89a8yXZKhLedddduuGGGxQeHq758+c7vZ8RI0aoT58+Gj58+AX0CAAAaC0W43xrHgOAh3jkkUf03HPPKScnR5dddpnZ4fwghmGoV69euueee3TvvfeaHQ4AAPgOrNkC4HUee+wxJSQkaP369frJT34iH5+2Mch/9OhRLV++XCUlJeytBQBAG8DIFgC0ERaLRV27dtXChQt18803mx0OAAD4HoxsAUAbwe/GAABoW9rG3BkAAAAAaGNItgAAAADABUi2AAAAAMAFSLYAAAAAwAVItgAAAADABUi2AAAAAMAFSLYAAAAAwAVItgAAAADABf4f2XMARb2UHgkAAAAASUVORK5CYII=", "text/plain": [ - "

" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.figure(figsize=[7,7])\n", "plt.plot(market_supply.column(1), market_supply.column(0), marker='o')\n", - "plt.plot(market_supply.column(2), market_supply.column(0), marker='o')\n", - "plt.plot(market_supply.column(3), market_supply.column(0), marker='o')\n", + "plt.plot(market_supply.column(2), market_supply.column(0), marker='^', color=\"#049348\")\n", + "plt.plot(market_supply.column(3), market_supply.column(0), marker='*', color=\"red\")\n", "plt.xlabel('Quantity')\n", "plt.ylabel('Price')\n", "plt.title('Market Supply')\n", @@ -183,7 +181,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 4, "metadata": {}, "outputs": [ { @@ -259,7 +257,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 5, "metadata": { "tags": [ "remove_input" @@ -268,22 +266,20 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAG5CAYAAAD1fYFsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdeXxUVZ7//9dJUpWE7KnsJBAQQdkRCMiisotsAu6CG2rbY7svTfdvZrqdnvHn2N3qaDtjKyiKILYgimGPoKhpwq6yiIIQCNkr+1pVqfP9o5IYIAlZqlJJ6vN8PPIwuXXrnE8i5M2599xzlNYaIYQQorvzcncBQgghREeQwBNCCOERJPCEEEJ4BAk8IYQQHkECTwghhEeQwBNCCOERJPCEEK2mlPqjUup9d9chRGtI4AmPppQqa/BhV0pVNvj6ztpf7NYLznu2wftnKKV2KaVKlVJ5SqkvlVJzW9DvkQbt1Silqhp8/XulVLlSKrCR9x1USv2m9nNjbX0/1Z5/Win1tlIq0Zk/o9ao/ZnVfR+VtT/T+p9dg/PuUErtqz2epZTarJSa4K66hWeQwBMeTWsdWPcBnAHmNDi2qva0Dxuep7V+EUApdRPwEfAeEA9EA/8OzGlBv4Ma9PsV8JsG7T8PZAA3NXyPUmowMBD4oPbQWmAucAcQAgwD9gNT2v4TaR+t9aoG39dMIPOCnzFKqSeBV4DncfzMegH/C8xzV93CM0jgCdEGSikFvAT8SWu9TGtdrLW2a62/1Fo/4IQu3gXuuuDYXcAmrbVZKTUVmAbM01rv1Vrbamt4XWu9vImalyqlTtaORo8qpeY3eO0epdTXSqm/KKUKlVKnlFIzG7zep3b0WqqU2g5EtOWbUkqFAP8BPKy1/lhrXa61tmqtP9NaP9OWNoVoKQk8IdpmAJCAY5TlCiuBa5RSCQBKKS8cI7l3a1+fCuzRWp9tRZsngYk4RoPPAe8rpWIbvD4GOI4jzF4EltcGO8BqHKPHCOBPwN1t+aaAqwE/YH0b3y9Em0ngCXFptyilihp8xAGm2teyXNFhbZB9ASyuPTQF8AU21n5tam3fWuuPtNaZtSPRD4GfgKQGp6Rrrd/SWtfgCNZYIFop1QsYDfyb1rpaa70L+KyN35oJyNda29r4fiHaTAJPiEv7h9Y6tMFHJmCufS22uTe207v8EniLgTVaa2vt1+bW9q2UukspdaguuIHBnH9pMrvuE611Re2ngUAcUKi1Lm9wbnpr+m7ADEQopXza+H4h2kwCT4i2OQ6cBRa6sI+PgXil1CRgAb9czgRIAZKUUvEtaUgp1Rt4C/gNYNJahwKHAdXsGx2ygDClVECDY71a0m8j/glUAze28f1CtJkEnhBtoB37aj0J/JtS6l6lVLBSykspNUEp9SaAUipRKaXb+phA7YhqLfAOjsuN+xq8lgJsB9YrpUYqpXyUUkFKqYeUUvc10lwAoIG82truxTHCa0kd6cA+4LnaRyEm0IKZqE20VYxjJuvrSqkblVI9lFIGpdRMpdSLbWlTiJaSwBOijbTWa4FbgfuATCAH+E/g09pTEnBc+jvXjm7eBXrjePThQjcBm4APgWIcI7ZROEZ/F9Z6FPgrjhFWDjAE+KYVddyBY1JLAfCHJuppEa31X3H8Y+FfcQTwWRwjz0/a2qYQLaFkA1ghXEMp9a9Antb67+6uRQghgSeEEMJDyCVNIYQQHkECTwghhEeQwBNCCOERuvTDnxEREToxMdHdZQghhOhE9u/fn6+1jrzweJcOvMTERPbt23fpE4UQQngMpVSjKwHJJU0hhBAeQQJPCCGER5DAE0II4RG69D28xlitVjIyMqiqqnJ3KcKN/Pz8iI+Px2AwuLsUIUQn0e0CLyMjg6CgIBITE/ll70rhSbTWmM1mMjIy6NOnj7vLEUJ0Et3ukmZVVRUmk0nCzoMppTCZTDLKF0Kcp9sFHiBhJ+TPgBDiIt0y8IQQQogLSeA5mdlsZvjw4QwfPpyYmBh69uxZ/7XFYrno/IKCAt54441Ltmuz2QgNDW30uLe3d30fw4cP5+zZs6SlpfHEE0845XuKj4+nqKjoouMlJSU88MADXHbZZYwcOZJJkyaxd+/eVrf/0ksvyeVHIYTLdbtJK62142AB727LIq/ISmSogbunxzJ5RHib2zOZTBw6dAiAP/7xjwQGBvL00083eX5d4D300ENt7jMoKKi+zzoJCQmMGTOmzW22xH333ceVV17JiRMnUEpx8uRJfvzxx1a389JLL3Hffffh5+fngiqFEMLBo0d4Ow4W8Or6s+QWWdFAbpGVV9efZcfBApf09+KLLzJ48GAGDx7Ma6+9BsDSpUs5fvw4w4cPZ+nSpZSUlDB58mSuuuoqhg4dSnJycpv6SklJ4cYbbwTg4Ycf5vnnnwdg48aNTJo0Ca01OTk5LFiwgFGjRpGUlMTu3bsByMvLY9q0aQwaNIhf/epXNLZn4vHjxzl06BDPPfdc/f2yyy67jJkzZzb5vZaWljJz5kyGDRvG4MGDWbt2LS+//DK5ublMnDiRqVOntul7FUKIlujWI7w3Psvg56zKJl//4UwF1przf5lXWzWvrDvLlr3mRt/TN9afh+bEt7qWtLQ0Vq1axd69e7HZbCQlJXHdddfxwgsvcOLEifoRmtVq5ZNPPiE4OJjc3FzGjx/P7Nmzm227tLSU4cOHA9CvXz/Wrl173usvvvgio0ePZty4cTzxxBNs3boVpRSPPvoozz77LGPHjuX06dPMnj2bw4cP84c//IFJkybx+9//nk8//ZQ333zzoj6PHDnCiBEj8PK6+N9MTX2vR48eJTExkc2bNwNQXFxMSEgIf/3rX/nqq68avWQrhBDO0q0D71IuDLtLHW+Pr7/+moULF+Lv7w/AjTfeyFdffcX06dPPO09rzdKlS/n666/x8vLi7Nmz5OfnNxsGjV3SbCggIIA33niDyZMn89prr9U/m5aSksLx48frzyssLKSyspJdu3axadMmAObNm0dQUJBTvtdJkyaxdOlSli5dypw5cxg/fnyr2hVCiPbo1oF3qZHY3f99hNwi60XHo0INvPjg5a4qq1nvvfcexcXFHDhwAB8fH+Lj450yoeP777/HZDKRmZlZf0xrzZ49ezAaja1ub9CgQRw6dAi73d7oKK8xV155Jfv27WPTpk0sXbqUmTNn8vvf/77VfQshupfi1FRy163DZjbjYzIRtXAhIePGOb0fj76Hd/f0WHwN5z+v5WtQ3D091ul9TZw4kfXr11NZWUlZWRmffvopEydOJCgoiNLS0vrziouLiYqKwsfHh+3bt3Pu3Ll29/3zzz/z6quvcujQIT799NP6LZWmTp3K66+/Xn9e3SjxmmuuYfXq1QB89tln59VXZ8CAAQwZMoT/+I//qL/Hd+rUKTZv3tzk93ru3DkCAwNZvHgxTz31FAcOHAC46GcghPAcxampZK1Ygc3suI1kM5vJWrGC4tRUp/fl0YE3eUQ4j85PICrUgMIxsnt0fkK7Zmk2JSkpidtvv53Ro0czduxYfv3rXzNkyBCio6MZOXIkQ4YMYenSpSxevJjU1FSGDBnCmjVruPzy9o00tdbcd999vPzyy8TGxrJs2TKWLFlCdXU1r7/+Ot988w1Dhw5l4MCBvPXWWwA899xzpKSkMHjwYJKTk4mLi2u07XfeeYezZ8/Sr18/Bg8ezH333UdUVFST3+u3337L6NGjGT58OM8//3z96O7BBx9k6tSpMmlFCA+Uu24d+oJHtrTFQu66dU7vSzU2A6+rGDVqlL5wA9hjx45x5ZVXuqki0ZnInwUhOr9j99zT5GtXrljRpjaVUvu11qMuPO7RIzwhhBDu5WMytep4e0jgCSGEcJugURcNxFBGI1ELFzq9r249S1MIIUTnpbWm8qef8AoKwstodPksTQk8IYQQblFx9ChVP/9MzD33EHbddS7vTy5pCiGEcIv85GR8QkMJ6aBFKCTwhBBCdLiKEyeoOHaM8Ouvx8tg6JA+JfCcrKO3B5o4cSKff/75ecf+8pe/8Mgjj7Sq7hkzZjT78HdT/QMsWrSITz75pFX9rVixgsGDBzNkyBCuuuoqXn755Va9H2DHjh31C14LIboWc3Iy3gEBHXIps47H38PbY05jQ+Z6Ci0FhBnDmRs3nyRT27fV6ejtgW6//XbWrFnDlClT6o+tWbOGV199tUXv11qjtWbr1q1t6r8tkpOT+dvf/kZKSgoxMTFUVVXx/vvvt7qdHTt2EBERwdixY11QpRDCVarOnqXs0CEi5s/HqwO3BfPoEd4ecxqr01dSaHFsB1RoKWB1+kr2mNNc0p8rtge6+eab2bBhA1arY03QEydOkJ+fz9VXX91kWydOnGDgwIHceeedDBo0iKysrPM2eZ0zZw4jR45k0KBBLFu27Lz+Hn30UQYNGsS0adMwmy/eUWLv3r1ce+21jBw5kpkzZ5KTk3PROc8//zwvvfQSMTExAPj5+XH//fcDcODAAcaMGcPQoUNZuHAhxcXFALz88ssMHDiQoUOHsmjRIk6ePMmyZcv485//zPDhw0l1wTJEQgjXMCcn4+XnR3gHr67UrUd4a89+SEbF2SZfP1X+MzZtO++YVVtYlf4uqflfNfqe+B4J3JRwa6trcdX2QJGRkYwYMYJt27Yxa9Ys1qxZw2233YZSCn9//ybb+uGHH3jvvfcY1cgzMO+++y7h4eFUVFQwatQoFi5cSFBQEMXFxYwfP55XX32Vf//3f+dPf/oTr7zySv37qqureeyxx9iwYQMRERGsWrWKf/u3f7toe6EjR44wcuTIRr+fRYsW8dZbbzF+/Hh+//vf86c//Ym//OUvvPjii6Snp2M0GikqKiI0NJT777+fiIgIHn/88Vb//xBCuIclO5uSPXswzZyJd0BAh/bt0SO8C8PuUsfbo+GWOUFBQfVb5lyobnugoUOHMn369PrtgZpTd1kTHJczb7/99ku2ddlllzUaduAYTQ0bNoyrr76ajIwMTp48CYCPjw8333wz4Aimr7/++rz3HTt2jCNHjjB16lSGDx/OCy+8wNmzTf+D40Jms5mqqqr6bYPuvvtudu3aBTh2Z1i0aBGrVq3C0EE3uIUQzmfetAnl7U34BVujdYRuPcK71EjsX79fWn85s6EwYziPD2j6vpsrtWV7oPnz5/PMM8+wb98+7HY7w4YNu2RbAU38yyolJYVdu3axe/du/P39mTBhQpP91+10XkdrzdChQxsN8oYGDhzI/v37ueaaa5o9r6GtW7fy5ZdfsmHDBp5//nm+++67Fr9XCNE5WM1mir75hrDrrsPHDRs+e/QIb27cfAzq/L3gDMrI3Lj5Tu/LldsDBQcHM3HiRO6///760V1b2youLiY8PBx/f3+OHDnC3r1761+z2Wx8/PHHAKxevZoJEyac996BAwdy7tw59uzZA4DFYuHIkSMX9fG73/2Op59+uv7+XnV1NcuXL8dkMuHv719/P27lypVce+211NTUkJGRweTJk3nxxRfJz8+noqJCthUSoosxb9kCgGnmTLf0361HeJdSNxvTmbM0m+yrwZY5QP2WOUD99kCzZs3iySefZM6cOQwZMoSkpKQWbw90++23c/PNN7N27dr6Y4sXL251W7NmzeLNN99k4MCBDBgwgDFjfvlZhISE8NVXX/GHP/yB2NhYPvzww/Pe6+vry9q1a3n00UcpKSmhpqaGp556ikGDBp133ty5c8nLy2Py5MmAY6T4wAMPAI6Q+/Wvf01lZSX9+vXjnXfewWazcccdd1BaWordbufpp58mKCiIefPmcfPNN/Pxxx/z+uuvM84FSxEJIZzDVlJC0ZdfEjJ2LIaICLfUINsDiW5L/iwI0Xnkrl2LeeNG+v7Xf+HbxB6bziLbAwkhhHCLmooKCj//nKCRI10eds2RwBNCCOFShTt2YK+sxNTMI1YdQQJPCCGEy9irqynYupWAIUPwT0x0ay0SeEIIIVymaNcuakpLiXDz6A4k8IQQQriIttkwb96Mf//+9BgwwN3lSOAJIYRwjeLUVGwFBZ1idAcSeE7X0dsDAWRmZnLLLbfQr18/Ro4cyaxZszhx4kSr6rbb7bzwwguteo8QQjRF2+2YN27Et3dvAmqfOXY3jw+84tRUfnrqKY7dcw8/PfUUxe1cdb9ue6BDhw7x0EMP8cQTT9R/bTQaLzq/pYHXFK01N954I9OnT+fEiRPs37+f//zP/2x0l4LmSOAJIZypdO9eLDk5RMyefdEyhO7i8sBTSnkrpQ4qpZJrv+6jlEpTSp1QSn2olGNtL6WUb+3XJ2pfT3R1bcWpqWStWIGtdpsbm9lM1ooV7Q69prhie6Dt27cTGBhYv70OwIgRIxg/fjx2u50nn3yyfqPVulVYzp07x4QJExg+fDiDBw8mNTWVpUuXUlpayvDhw7nrrrtc8v0LITyD1pr85GSMsbEENbEzijt0xNJijwHHgODar/8beFlrvUYp9QawBPi/2v8Waq37KaVuqz2v9fvwNJC9ahXVZ840+XrlyZNo2/k7I2iLhay336boyy8bfY9vr17E3Hlnq2tx1fZAhw8fbnKrnY8++ohjx47x7bffkpeXx+jRo7nmmmt4//33mTNnDr/97W+pqamhsrKSpKQkli1bVl+HEEK0Vdm331J99iyx99+P8uo8FxJdWolSKh6YBSyr/VoBk4G6BR/fBW6s/Xxe7dfUvj5FuXgcfGHYXep4e7hye6Dm+rz99tvx9vYmJiaGCRMmsG/fPkaPHs2yZct47rnnOHz4MIGBge399oQQAnD8DjMnJ2MwmQgZO9bd5ZzH1SO8V4BngaDar01Akdb1G85lAD1rP+8JnAXQWtuUUsW155/3214p9SDwIECvXr2a7fxSI7Gfnnqq/nJmQz4mE71/97tm3+sqrd0eaNCgQZe87HmhyZMn88UXX7Bx40buuusunn32WW69tV2DaSGEAKDihx+oPHGC6MWLUT6da38Cl43wlFKzgVyt9X5ntqu1flNrPUprPSoyMrJdbUUtXIi6YCKJMhqJWriwXe02xlXbA02fPp2SkhLefvvt+mPffvst33zzDRMnTmTNmjXY7XZycnL45ptvGDVqFOnp6cTExPDggw9y7733cvDgQXxq/2DaXDC6FUJ4DnNyMt7BwYROnOjuUi7iyvgdD8xVSt0A+OG4h/c/QKhSyqd2lBcP1P1GPwckABlKKR8gBLh4+OVEIbXbyeSuW4fNbMbHZCJq4cL6487kqu2BlFJ8+umnPPbYY/zXf/0Xfn5+9O3bl1deeYWrr76a3bt3M3ToUJRSvPTSS0RFRfH222/z0ksvYTAYCAoKYuXKlQAsWbKEoUOHMmrUKN577z2n/wyEEN1b5c8/U37kCFG33IJXI7PS3a1DtgdSSl0HPK21nq2U+ghY12DSynda6/9VSj0MDNFaP1Q7aWWB1vqW5tqV7YFEc+TPghAdK+O11yg/dox+f/0r3v7+bqujM20P9FvgSaXUCRz36JbXHl8OmGqPPwksdUNtQggh2qD63DlK9+8nfNo0t4ZdczrkjqLW+gvgi9rPfwaSGjmnCri5I+oRQgjhXPnJyShfX8KmTXN3KU3qPA9IOFFX3sVdOIf8GRCi41hycylJSyPsuuvw6cSPOXW7wPPz88NsNssvPA+mtcZsNuPn5+fuUoTwCObNm1FeXoRff727S2lW53pIwgni4+PJyMggLy/P3aUIN/Lz8yM+Pt7dZQjR7VkLCyn+6itCJkzAEBbm7nKa1e0Cz2Aw0KdPH3eXIYQQHqFg61Z0TQ2mG25ocxt7zGlsyFxPoaWAMGM4c+Pmk2Qa48QqHbpd4AkhhOgYtrIyCnfuJHjsWIxRUW1qY485jdXpK7Fqx/ZphZYCVqc7ng12duh1u3t4QgghOkbh9u3o6mpMs2a1uY0Nmevrw66OVVvYkLm+veVdRAJPCCFEq9VUVlKwfTuBV12FXzvulxdaClp1vD0k8IQQQrRa0c6d2CsqiGhm+7KWCDOGt+p4e0jgCSGEaBW7xYJ5yxYCBg3Cv2/fdrV1Q+zFgWlQRubGzW9Xu42RwBNCCNEqRV99RU1JCaZ2ju4ALHbH/bsgH8ce4WHGcO7ovVhmaQohhHAvbbNRsGkT/v360eOKK9rVls1uIyV7K30DLuPJAc/i4j2/ZYQnhBCi5YrT0rCazZhmz253QO0tSKPQWsj1sTe4POxAAk8IIUQLabsdc3IyvgkJBA4b1q627NrOtuwtxPsnMDB4sJMqbJ4EnhBCiBYp3b8fS1YWplmz2j0iO1R0gNzqHGbEzuyQ0R1I4AkhhGgBrTXm5GQM0dEEJ120w1ur29qStYlo32iGh17lpAovTQJPCCHEJZUfPkxVejoRN9yA8mpfdBwpOcy5ygymxczES3VcDEngCSGEuCRzcjI+4eGEjB/frna01mzN2kSYMZwkU/tGiq0lgSeEEKJZFT/+SMXx45iuvx7l076n2U6U/cTP5SeZGj0db9WxT8ZJ4AkhhGhWfnIy3kFBhF57bbvb2pq9iSCfIMZFTHBCZa0jgSeEEKJJVenplH/3HeHTp+Pl69uuttLLT3Os5CiTo6dh9DI6qcKWk8ATQgjRpPzkZLz8/QmbPLndbW3L3oy/tz8TI9s/UmwLCTwhhBCNqs7MpHTfPsKmTME7IKBdbWVVZnKo6CDXRk7G39vfSRW2jgSeEEKIRpk3bUIZDIRPn97utrZlb8HoZWRSdPtHim0lgSeEEOIi1vx8iv/5T0KvvRaf4OB2tZVfnc++gj1MiLiGQJ8gJ1XYehJ4QgghLmLevBkA0/XXt7utlJytKKWYEj2t3W21hwSeEEKI89iKiynatYuQ8eMxmEztaqvYWsQ/879hrGkcocYwJ1XYNhJ4QgghzlOwdSvaZiPihhva3dbnOSnU6BqmxcxwQmXtI4EnhBCiXk15OYU7dhA8ejTGmJh2tVVuK+ervC8ZGT6aSN8oJ1XYdhJ4Qggh6hWkpGCvqsI0e3a72/oidwcWezXTY9p/H9AZJPCEEEIAYK+qonDbNgKHDcOvV692tVVVU8UXuZ8zJGQYPf3jnVRh+0jgCSGEAKDwyy+pKS/HNGdOu9v6Om8XFTUVzIid6YTKnKNjl6oWQgjR6RSnppK7di22ggKUjw/W3Fzo16/N7VntVj7P2caAoCvoE9DXiZW2j4zwhBDCgxWnppK1YgW2ggIAtM1G1ooVFKemtrnN3eZUSmwlzIhp/yxPZ5LAE0IID5a7bh3aYjnvmLZYyF23rk3t1Wgb27O3kBjQh/5BA5xRotNI4AkhhAezmc2tOn4p+wr2YraYuT7mBpRS7SnN6STwhBDCg3k3sU6mTxtWWLFrO9uytxDn35NBIUPaW5rTSeAJIYSHqqmsRGt90XFlNBK1cGGr2/uu6Fuyq7KYETMTL9X54qXzVSSEEKJD5HzwAfayMkxz59aP6HxMJmLvuYeQceNa1ZbWmq3Zm4jwjWRE2EhXlNtu8liCEEJ4oNL9+ynetQvT7NlELVhA1IIF7Wrvh9KjnKlI547ei/FW3k6q0rlkhCeEEB7GVlRE1ooV+PXuTeSNNzqlza1Zmwk1hJIUPtYp7bmCBJ4QQngQrTWZb7+NvaqKuF/9CuXT/gt9J8tO8FPZj0yJno7By+CEKl1DAk8IITxI0c6dlH/3HVG33IJvXJxT2tyatYlAn0DGR0x0SnuuIoEnhBAeojori5w1awgYPJiwKVOc0ubZirMcKTnMpKgp+Hr7OqVNV5HAE0IID6BtNjLffBMvg4HYJUtQXs759b8tezN+Xn5cEznJKe25kgSeEEJ4gPwNG6g6dYqYe+7BEBbmlDZzqnI4WLifa6Kuo4dPD6e06UoSeEII0c1VnDhB/mefETJ+PMGjRzut3W3Zm/FRPkyKmuq0Nl1JAk8IIbqxmspKMv/+dwwmE9GLFjmt3QKLmT3m3YyLmEiwofHlyTobCTwhhOjGcj74AGt+PnEPPIC3v7/T2k3J3g7A1JhpTmvT1STwhBCim6pfTeWGG+gxwHlb9ZRaS0jN/4ok01jCja1fZNpdJPCEEKIbqltNxbd3byLnz3dq2ztyU7BpG9NjZjq1XVeTwBNCiG6m4WoqPR980CmrqdSpsFWwK/cLRoSNJNov2mntdgQJPCGE6GbOW02lZ0+ntr0rbydV9qouN7oDCTwhhOhWXLGaSn3bNdXszP2cQcGDSeiR4NS2O4IEnhBCdBOuWk2lzjf5X1FmK+P62FlObbejSOAJIUQ34YrVVOpY7VY+z9nG5YH96Rt4mVPb7igSeEII0Q24ajWVOnsKdlNkLWJGbNe7d1dHAk8IIbo4e1UVmW++6fTVVOrU6Bq2ZW+hV4/eXBE00OntdxQJPCGE6OJyVq/Gmpfn9NVU6hws3E9+dR4zYm5AKeX09juKBJ4QQnRhpfv3U+SC1VTq2LWdrVmbiPGLZWjoMKe335Ek8IQQooty5WoqdY4Uf09mVSbTY67HS3XtyOja1QshhIdy5WoqDfvYkr0Jk9HEqHDnT4TpaBJ4QgjRBblyNZU6P5Ye53T5KabFXI+3cn6gdjQJPCGE6GKqs7NdtppKQ1uzNxHsE8xY0ziX9dGRJPCEEKIL0TYbmX//u8tWU6lzqvxnjpf+wJTo6Ri8DC7po6NJ4AkhRBfiytVUGtqatZke3j2YEHmNy/roaBJ4QgjRRbh6NZU65yoz+L74W66LmoKft5/L+uloEnhCCNEF1K+mEh5O9J13urSvbdlbMHr5cl3UZJf209Ek8IQQoguoX03lwQfx7tHDZf3kVeeyv2AvEyOvJcAnwGX9uIMEnhBCdHKlBw+6dDWVhrZnb8VbeTMleqpL+3EHCTwhhOjEbEVFZL39tktXU6lTZClktzmVqyPGE2IIdWlf7iCBJ4QQnVRHrKbS0Oc529FaMzV6hkv7cReX/fSUUn7ALsC3tp+1Wus/KKX6AGsAE7AfWKy1tiilfIH3gJGAGbhVa33aVfUJIURnV7eaSvSdd7psNRWAPeY0Pj33MUXWQoxeRn4uO0mEb4TL+nMXV47wqoHJWuthwHDgeqXUWOC/gZe11v2AQmBJ7flLgMLa444QPt4AACAASURBVC/XnieEEB6pfjWVQYNcuprKHnMaq9NXUmQtBMBit7A6fSV7zGku69NdXBZ42qGs9ktD7YcGJgNra4+/C9xY+/m82q+pfX2K6sobLwkhRBvVraaiDAZi77/fZaupAGzIXI9VW847ZtUWNmSud1mf7uLSe3hKKW+l1CEgF9gOnASKtNa22lMygLpxek/gLEDt68U4Lnte2OaDSql9Sql9eXl5rixfCCHcIv+zz6g6dYrYu+926WoqAIWWglYd78pcGnha6xqt9XAgHkgCrnBCm29qrUdprUdFRka2u0YhhOhMzltNJSnJ5f0FeDf+rF2YMdzlfXe0DpmlqbUuAnYCVwOhStXvMxEPnKv9/ByQAFD7egiOyStCCOER6ldTCQtz+WoqAPnVeVTVVKE4/+6RQRmZG+faRyDcwZWzNCMBq9a6SCnlD0zDMRFlJ3ATjpmadwOf1r5lQ+3X/6x9fYfWWruqPiGE6AyKU1PJXbcOm9mM8vVFV1fT+3e/c+lqKgB2befdU29j8DIwK24uO3JTKLQUEGYMZ27cfJJMY1zavzu48qGOWOBdpZQ3jpHkP7TWyUqpo8AapdR/AgeB5bXnLwdWKqVOAAXAbS6sTQgh3K44NZWsFSvQFsekEV1dDV5eWM2uv7i1LXsLP5ef5O7E+0gyjWVyN1xZ5UIuCzyt9XfAiEaO/4zjft6Fx6uAm11VjxBCdDa569bVh109u53cdesIGee6TVfPlKezMXMDV4WNYnR49xvJNUVWWhFCCDexNTGSa+q4M1js1aw4vZxgQzC39boTT3r6SwJPCCHcxCe08fUqfUwXPZHlNJ9kfExOVTaLE+/tdrshXIoEnhBCuEFVejo1lZUXHVdGI1ELF7qkzyPFh/kybyeToqZwRfCVLumjM5PAE0KIDlbx00+kv/AC3gEBRN5yS/2IzsdkIvaee1xy/67MVsr7p1cQ6xfHvJ4LnN5+V+DapbeFEEKcp+z778l47TUM4eH0euYZDCYTETfc4NI+tdZ8kP4+5TXlPHz5Yxi8DC7tr7OSwBNCiA5Ssncv5954A9+ePen19NP4BAd3SL+7zf/kUNFBbuy5gPgeCR3SZ2ckgSeEEB2gaNcust55B/9+/Uh4/HG8Azpmwkh+dT5rz67h8sD+TIme3iF9dlYSeEII4WLmLVvIXbOGgMGDiX/kEbx8fTukX8dqKo61PRYn3ouX8uxpGxJ4QgjhIlpr8tevJ3/DBoJGjaLnQw+5fNfyhhqupmLydd2jDl2FBJ4QQriAttvJWb2awpQUQiZOJPbee126r92FPHU1leZI4AkhhJPpmhqyli+nODWV8BkziLrttg5d0cSTV1NpjgSeEEI4kd1i4dwbb1B24ACRCxZgmjOnwwOnbjWVRy5/3ONWU2mOBJ4QQjiJvaqKs6++SsXRo0TfeSfh06Z1eA1Hi480WE1lYIf335lJ4AkhhBPUlJVx5qWXqDp9mtgHHiB0/PgOr6HMVsrK0+949GoqzZHAE0KIdrIWFXH2L3/Bkp1N/MMPEzRyZIfXIKupXJoEnhBCtIMlL48zf/4ztuJiEp58koCB7rmMKKupXJoEnhBCtFH1uXOc+fOfsVut9H7mGfz79XNLHXWrqfQLvNzjV1NpjgSeEEK0QeWpU5z961/B25veS5fil+CeUVXD1VTuSrzP41dTaY4EnhBCtFL5Dz+Q8coreAcG0uuZZzBGR7utlu3ZW2U1lRaSwBNCiFYoPXSIc6+/jiEy0rG9T1iY22o5U5FOcuansppKC0ngCSFECxXv3k3mW2/hl5BAwlNP4RMU5LZaLPZqVpyS1VRaQwJPCCFaoHDHDrJXrqRH//7EP/443v7+bq1HVlNpPQk8IYS4hPyNG8n76CMChw2j58MP42U0urUeWU2lbSTwhBCiCVpr8tauxbxxI8FjxxJ3//0dur1PY8psZbyfvoIYv1jm9pzv1lq6Ggk8IYRohLbbyV65kqKdOwmdNImYxYs7dHufRmuqXU2lzFbGr/s9itHLvSPNrkYCTwghLqBtNjKXLaNk925Ms2YRedNNnWJSSFrBPzlUdIAbey4gQVZTaTUJPCGEaMBusXDu9dcp+/ZbIm++mYhZs9xdEuBYTeWjM7KaSntI4AkhRK2aykoyXnmFih9/JObuuwmbNMndJQGymoqzSOAJITxacWoquevWYTObwdsb7HbifvUrQsaOdXdp9epWU7kr8V5ZTaUdJPCEEB6rODWVrBUr0BaL40BNjWMWpt3u3sIaqFtNZUTYSJLCO08Id0UyLhZCeKzcdet+Cbta2mYjd906N1V0Povdwrun3ibIEMztvRZ1iokzXZkEnhDCI9ktFsdlzEY0dbyjfZLxMdlVWdyVeI+spuIEcklTCOFxqjIyyHzjjSZf9zG5/z6ZYzWVHbKaihPJCE8I4TG01hRs387pP/4RW0kJ4TNnoi5YJkwZjUQtXOimCh1kNRXXkBGeEMIj2IqLyVy+nPLvviNw2DBilyzBJzgYv4SE+lmaPiYTUQsXEjJunNvqlNVUXEcCTwjR7ZV9+y2Zy5djr6wketEiwqZMqZ8AEjJunFsD7kJ1q6nMk9VUnE4CTwjRbdktFnL/8Q8KU1LwjY+n529/i2/Pnu4uq0kNV1OZKqupOJ0EnhCiW6qbmFKdkUHYtGlE3Xyz27f1acwecxobMtdTaCnAR/mAltVUXEUCTwjRrWitKUxJIffDD/Hq0YOEJ58kcOhQd5fVqD3mNFanr8SqHc8C2rQNb+XNybITsqKKC0jgCSG6jaYmpnRWGzLX14ddnRpdw4bM9SSZxripqu5LAk8I0S00NzGlsyq0FLTquGgfCTwhRJfW1SamNBToE0iZreyi42HGcDdU0/1J4AkhuqyuMjGlMbvNqZTZylAoNLr+uEEZmRsnD5u7ggSeEKLL6UoTUxqzM/dz1p79kAFBVzAybDSbszdSaCkgzBjO3Lj5cv/ORSTwhBBdSlebmNKQ1pot2RtJztzAsNDh3NvnAQxeBsZHTnR3aR5BAk8I0WV0xYkpdbTWfJzxETtyUxgTfjV3Jt6Ft/J2d1keRQJPCNHpdeWJKQB2bWd1+kr+af6GayMnc1PCLfJguRtI4AkhOrWuPDEFwGq3suLUcg4VHWBm7Gxmxc7pMqPS7kYCTwjRKXX1iSkA1TXVvPXz/3Gs5CgL429mcvQ0d5fk0STwhBCdTleemFKnwlbB/514jVPlP3Nn77sYFzHB3SV5PAk8IUSn0pUnptQpsZbwt59eIbsqiyV9H2RE2Eh3lyRoYeAppVZqrRdf6pgQQrRWcWpq/QasXn5+2KuquuTElDoFFjOv/fgyRdYiHrrsNwwMGeTukkStlo7wzvs/ppTyBuSfLEKIdilOTSVrxQq0xbGAsr2qCry8CJsxo0uGXU5VNq/9+DJV9ioeufwJ+gZe5u6SRAPNzotVSv1OKVUKDFVKldR+lAK5wKcdUqEQotvKXbu2Puzq2e3kf/KJewpqh7MVZ3jp+J+xaRuP9X9awq4TajbwtNb/v9Y6CPiz1jq49iNIa23SWv+ug2oUQnRDZd99h62g8V0BbGZzB1fTPifKfuKV43/BoHx4YsCzJPRIcHdJohEtvaSZrJQK0FqXK6UWAVcB/6O1TndhbUKIbshaWEjO6tWU7t0LXl5gt190jo+p62x+eqT4MG+d/D/CjOE80v9xwo1dp3ZP09LA+z9gmFJqGPAUsAx4D7jWVYUJIboXXVND4Y4d5K1bh66pIXLBArzDwshZufK8y5rKaCRq4UI3VtpyBwr3seLUcmL94vjN5Y8RZOhaj054mpYGnk1rrZVS84C/aa2XK6WWuLIwIUT3Ufnzz2S9+y7V6ekEDBlCzOLFGKOiAPDy9q6fpeljMhG1cCEh48a5ueJLS83/mtXpK+kT0Jdf93uEHj493F2SuISWBl6pUup3wGJgolLKCzC4riwhRHdQU15O3rp1FO7ciU9ICD3/5V8IGj36vOfqQsaN6xIB11BKzjbWZ6xlYPAgHrjsIYxevu4uSbRASwPvVuAO4D6tdbZSqhfwZ9eVJYToyrTWlOzeTc4HH1BTWkrY1KmOS5j+/u4urV201iRnbmBL9kZGhI3knsQl+HjJ+h1dRYv+T9WG3CpgtFJqNrBHa/2ea0sTQnRF1dnZZL/3HhVHj+LXpw+9nnoKv9693V1Wu9m1nbVnP+TLvJ2MM03g9t6LZMeDLqalK63cgmNE9wWggNeUUs9orde6sDYhRBdit1gwb9yIeeNGlMFAzF13EXrddSivrh8KNbqGladXsLcgjSnR05jf86Yut9yZaPklzf8PGK21zgVQSkUCKYAEnhCCssOHyV65EmtODsFXX030rbfiExrq7rKcwmq38vbPb/Jd8bfMiZvHjJgbJOy6qJYGnldd2NUyc4mH1oUQ3Z+1sJDcDz6gZM8ejDEx9Hr2WQIGDnR3WU5TVVPF30/+Lz+W/sAtCbdzbdQkd5ck2qGlgbdFKbUV+KD261uBTa4pSQjR2Wm7/Zdn6qxWIubPx3TDDXgZus/k7XJbOa//9D+crTjDXYn3MsZ0tbtLEu3UbOAppfoB0VrrZ5RSC4C6DZ3+CaxydXFCiM6n8tQpst99l6rTpwkYPNjxTF10tLvLcqpiaxF/+/EVcqtzuf+yhxgWOtzdJQknuNQI7xXgdwBa64+BjwGUUkNqX5vj0uqEEJ1GTUWF45m6HTscz9T9+tcEJSV1u/tZ+dX5vPbjS5TYSvmXfo8yIPgKd5cknORSgRettf7+woNa6++VUokuqUgI0alorSlJS3M8U1dSQtiUKY5n6np0j5VF9pjT2JC5nkJLASE+IVjsFpRSPNr/CfoE9HV3ecKJLhV4zU2z6tpPkAohLsmSnU32ypWUHzmCX58+JDzxBP6Jie4uy2n2mNNYnb4Sq3as5VlsKwZgXtwCCbtu6FKBt08p9YDW+q2GB5VS9wP7XVeWEMKd7BYL5k2bMCcnowwGohctImzy5G7xTF1DGzLX14ddQ7vyv2B67PVuqEi40qUC73FgvVLqTn4JuFGAEZjf3BuVUgk4dlSIBjTwptb6f5RS4cCHQCJwGrhFa12oHDcC/ge4AagA7tFaH2jLNyWEaLni1NTzFm8OHjuWsn37sOTkEDx2LFG33YahmzxTd6FCS+P78TV1XHRtzQae1joHGKeUmgQMrj28UWu9owVt24CntNYHlFJBwH6l1HbgHuBzrfULSqmlwFLgt8BM4PLajzE4tiQa04bvSQjRQsWpqWStWFG/PY/NbKZg40a8g4Pp9cwzBAwa5OYKXSe3Khdv5U2NrrnotTBjuBsqEq7W0rU0dwI7W9Ow1joLyKr9vFQpdQzoCcwDrqs97V0cy5X9tvb4e1prDexWSoUqpWJr2xFCuEDuunXn7UVXR/n4dNuw01qz25zKP86uwQsvUIoabat/3aCMzI1r9gKW6KI6ZJnv2hmdI4A0HDM/60IsG8clT3CE4dkGb8uoPXZe4CmlHgQeBOjVq5fLahaiu9M2GzazudHXbAXd85Jeha2c1Wfe52DhfvoHDeCuxPv4qfTH+lmaYcZw5sbNJ8kkF5e6I5cHnlIqEFgHPK61Lmn4zE7tprK6Ne1prd8E3gQYNWpUq94rhAC71Urx119jTk5u8hwfk6kDK+oYP5UeZ8WptymxFjOv5wKmRk/HS3mRZBojAechXBp4SikDjrBbVfvgOkBO3aVKpVQsULdG5zkgocHb42uPCSGcwG6xULRrF+ZNm7AVFOB/2WUEJSVR+Pnn513WVEYjUQsXurFS56rRNpIzP2N79hYifSN5+oql9A5IdHdZwg1cFni1sy6XA8e01i81eGkDcDfwQu1/P21w/DdKqTU4JqsUy/07IdrPbrFQ9MUXjqArKsK/f3/iliyhx8CBKKXwS0g4b5Zm1MKFXW4H8qbkVuWy4tQy0itOM840gYUJt+Dn7efusoSbKMccERc0rNQE4Cvge8Bee/j3OO7j/QPoBaTjeCyhoDYg/wZcj+OxhHu11vua62PUqFF6375mTxHCY9mrqyncuRPzpk3UlJTQ44oriJg3jx5XXNHtlgO7UMOJKT7Kmzt6L2ZE2Eh3lyU6iFJqv9Z61IXHXTbC01p/jWOz2MZMaeR8DTzsqnqE8BT2qioKd+zAvHkzNaWlBAwaRMTcufQYMMDdpXWIxiamhBnD3F2W6AQ6ZJamEML1aiorKUxJoWDrVmrKyggYMsQRdJdf7u7SOsxPpcd599TbFF8wMUUIkMATosurKS+nICWFgm3bsJeXEzhsGBHz5uHf13PWgqzRNjZmfsY2mZgimiGBJ0QXVVNWRsH27Y6gq6wkcMQIR9B1o8WdW0ImpoiWksAToouxlZZSsHUrhSkp2KuqCBo1iog5c/Dr3dvdpXWoCyem3N/3VzIxRTRLAk+ILsJWUkLBli0U1D43Fzx6NKa5c/GLj3d3aR2u4cSUywP7c3ef+2T9S3FJEnhCdHK2oiLMW7ZQuGMH2moleOxYIubMwTcuzt2luYVMTBFtJYEnRCdlLSzEvGkTRV98ga6pIeTqqzHNmYNvTIy7S3MLmZgi2ksCTwg3unAvuqiFC+kxYIAj6L78Eq01IePGETF7Nsbo6Es32E3JxBThDBJ4QrhJY3vRZS5bBlqDlxehEydimjULY2Skmyt1H5mYIpxJAk8IN2l0Lzq7HS9fX/o+/zyGbrhjQWvIxBThbBJ4QriB1rrJvejs1dUeH3YyMUW4ggSeEB1I22yUpKVh3ratyXO64150zdljTvtlA1ZDOPH+8Rwu+V4mpgink8ATogPUlJVR+MUXFKakYCsqwhgXR/A111C6e3e33ovuUvaY01idvhKrdvwMCq0FFFoLuDygPw9d/huZmCKcSgJPCBeqzsqiYNs2ir/5Bm2xEDB4MLFLlhAweDBKKYqvuKLb7kXXEhsy19eHXUP51nwJO+F0EnhCOJnWmopjxyjYupWyb79F+fgQMm4c4TNm4Nuz53nnhowb51EBd6FCS0GrjgvRHhJ4QjiJ3WqlJC2Ngq1bqT57Fu/gYCJuvJGwyZPxCQ52d3mdisVuYWvWpiZfl9mYwhUk8IRoJ1tpKUU7d1Lw+efUFBfjGx9P7H33ETx2LF5Go7vL63QOF3/PP858gNmSz2UB/ThTkY5VW+tfNygjc+Pmu7FC0V1J4AnRRtWZmb/cn7NaCRgyhPAZMwgYNAillLvL63SKLIWsPfshB4sOEO0Xw2P9n6J/0IDzZ2kaw5kbN58k0xh3lyu6IQk8IVpBa035kSMUbNtG+XffoQwGQsaPJ3zatIvuzwmHGl3Dl7k7Sc78FLu2MyfuRqZGT8fHy/HrJ8k0RgJOdAgJPCFawG6x/HJ/LiMD7+BgIhcsIPS66+T+XDNOlf/MmvRVZFSeZWDwYG7tdTsRvp67VJpwLwk8IZphKymhcMcOCnfsoKakBN+EBGKXLHHcnzMY3F1ep1VhK+fTc5/wTf4uQgwh3N/3VwwPvUou9Qq3ksATohHV585h3rqVktRUtM1G4LBhhM+YQY8rr5Rf2s3QWrO3II2PMz6izFbGpKgpzIqbK8/UiU5BAk94tAu35wkeM4bqM2coP3wYZTQSMnGi4/6ch2622ho5VdmsObOKH0uPkxjQh4cvf4yEHr3cXZYQ9STwhMdqbHuegk2bUP7+RC5cSOikSfgEBrq5ys7P8UzdZlJytmLwMnJbrzsZHzFRFnsWnY4EnvBIuqaGnDVrLt6eB/D29ydizhw3VNX1HCk+zD/OrCbfkk9S+Fjmx99EsEEm8YjOSQJPeAxtt1P5008Up6VRuncvNaWljZ5nK5BlrS6lyFLE2owPOVi4n2jfaB69/EkGBF/h7rKEaJYEnujWtNZUnT5Nye7dlOzZg62wEGU0EjR8OOXHjjUaep62PU9r1OgaduV9QfK5T6nRNcyOm8fU6OkYvGTGquj8JPBEt1R97hzFu3dTkpaGNTcXvL0JHDqU4FtvJWj4cLz8/C66hweetz1Pa5wuP8Wa9Pc5W3mWgcGDuKXX7UT6Rrm7LCFaTAJPdBuW3Nz6kVx1RgYoRcDAgUTMnk3QyJF4BwScd37dLgWevD1PS1TYKvgs8xO+yvuSYEMIS/o+yIjQkfJ4huhyJPBEl2YtKKBkzx5K0tKoOnUKAP/+/YletIjg0aPxCQlp9v2evj1Pc7TW7Cvcw7qzH1FmK+W6qMnMipuLv7e/u0sTok0k8ESXYyspoXTfPop376byxx8B8EtMJOrWWwlOSsIg9+DaLacqhw/PrOJ46Q/07pHIv1z+CL169HZ3WUK0iwSe6BJqysspPXCAkrQ0yo8eBbsdY1wcEfPnEzJmDMaYGHeX2GWdt1uBIYyEHr05WnIYg5eBW3vdwYSIa+SZOtEtSOCJTsteXU3ZoUMU795N+fffo202DJGRmG64geAxY/CNj5f7SO20x5zG6vSVWLVj4k6htZDC4kL6BFzGA5c9RIih+UvCQnQlEnjCrS5c2ivixhvxCQykZPduSg8eRFss+ISGEjZlCsFjxuDXp4+EnBNtyFxfH3YNFVkLJexEtyOBJ9ymsaW9spcvB8A7MJCQ8eMJHjOGHv37o7zkkpqz5VTlUGhp/CH7po4L0ZVJ4Am3yV27tvGlvYKCuPzll1E+8sfTFbIrs9iSvYl9BXuaPCfMGN6BFQnRMeQ3iuhwNZWVFH7+eZNLeNWUlkrYuUBm5Tm2ZG3kQOF+DF5GpkZPJ9wYzscZ6867rGlQRubGzXdjpUK4hvxWER2mpqKCwpQUCrZupaa8HGUwoK3Wi86Tpb2cK6PiLFuyNnKw6AC+Xr5Mi7meKdFTCfQJAsDPu8cvszSN4cyNm0+SaYybqxbC+STwhMvVlJdTsH07Bdu2Ya+oIHDYMCLmzcOSnS1Le7nQmYp0tmRt5NuiQ/h5+TEzdhaToqYS4HP+ijNJpjEScMIjSOAJl7GVlVGwdSuFKSnYKysJvOoqIubOxT8xEQD/vn0BWdrL2U6Xn2Jz1kYOF3+Hv3cPZsXO5bqoyfTw6eHu0oRwKwk84XS2khJH0H3+OfaqKoJGjSJi7lz8el28+7Us7eU8P5edZHNWMkdLjhDgHcCcuBu5NmqSLAUmRC0JPOE0tuJizFu2ULhjB9piIXj0aExz5+IXH+/u0rq1E2U/sTkzmR9KjxHoE8i8ngu4JvI6/Lz93F2aEJ2KBJ5oN2tREQWbN1O4cyfaaiV47Fgi5szBNy7O3aV1W1prfir7kc1ZyfxYepwgn2Dmx9/ExIhr8fX2dXd5QnRKEniizawFBZg3baLoiy/QdjshV1+Nac4cfGVdS5fRWnO89BibsjZysuwnQgwh3BR/K+MjJ2D0kqATojkSeKLVrGYz+Rs3UrxrF1prQsaNI2L2bIzR0e4urdvSWnOs5Cibs5L5ufwkoYYwbkm4nXERE2S3cSFaSAJPtJglLw9zcjJFX38NQOjEiZhmzcIYGenmyrovrTVHSr5nU2Yy6RWnCTOGc1uvOxlrGidBJ0QrSeCJS7Lk5JCfnEzxN9+gvLwIu/ZaTLNmyb5zLqS15rvib9mclczZijOYjBHc0XsxY8KvxsdL/toK0RbyN0c0qTo7G/Nnn1H8z386gm7yZEfQhYW5u7Ru47y96IzhzImdh9HbyOasjZyrzCDSN4pFve8hyZSEt5K/rkK0h/wNEhepPneO/M8+oyQtDWUwED5tGuEzZ2IIDXV3ad3KRXvRWQpYmb4CjSbaN5q7E+9jZPhovJW3mysVonuQwPNgF+5FFzppEtVnzlC6d68j6K6/HtP11+MTIvuiuUJje9FpNAHegfzroOdkl3EhnEwCz0M1thdd/tq14OODadYswqdPxyc42M1Vdl9lttIm95wrrymTsBPCBSTwPFTuunWN7kXnExRE1E03uaEiz5BVmcnO3M/ZY97d5DmyF50QriGB56FsZnPjxwsLO7iS7k9rzQ+lx9iRs52jJUcwKANjTFcTYYxgY1ay7EUnRAeRwPMw2mYj75NPmnxd9qJzHqvdyt6CNHbmpJBZlUmwTzBz4uYxIfKa+r3oQoxhshedEB1EAs+DVJ87x7k336Q6PR3//v2pOn1a9qJzgVJrCbvyvuSrvC8otZXS0z+exYn3MDJs9EUPi8tedEJ0HAk8D6Dtdgq2biVv3Tq8/P2Jf+QRgkaOvGiWpuxF1z6ZlZnszElhT8FubNrG4JChTI6aSv+gASil3F2eEB5PAq+bs+TlkbVsGRXHjxM4YgSx995bP/tS9qJrP601R0uOsDM3hWMlRzEoA1dHjGdS1BSi/WQRbSE6Ewm8bkprTfHXX5OzahUAsUuWEDJhgow0nMRit7DXnMaO3BSyq7IIMYQwN24+4yMnEugT6O7yhBCNkMDrhmwlJWS98w5lBw/SY8AAYu+/XxZ4dpJiazFf5X3BV3lfUmYrI8E/gbsT7+OqsFGyxqUQnZz8De1mSg8cIOudd7BXVhJ1222ET5+O8pKHmNvrXEUGO3JT2Fewhxpd47g/Fz2VywP7y6hZiC5CAq+bqKmsJGfVKoq//hrfXr2I++1v8YuPd3dZXZpd2x3353JS+KH0GEYvI+MiJjApagpRfrL3nxBdjQReN1B+7BhZy5ZhLSjANGcOkfPmoXzkf21LXLhbwdy4+QwPG06aeTc7cz8npyqbUEMo83ouYHzERAJ8AtxdshCijZTW2t01tNmoUaP0vn373F2G29gtFvLWraNg2zYMUVH0fOAB/Pv1c3dZXcaFuxUAeOGFj/LBoi306tGbydFTuSpspGzNI0QXopTar7UedeFx+VvcRVWlp3Pu73/HkplJ6OTJRN96K16+vu4uq0tpbLcCO3Y0mif6P8Nlgf3k/pwQ3YgEXheja2owb9xI3qef4hMURMJTTxE4ZIi7y+pyMiszm9ytwKqt9Au6vIMrEkK4mgRep+/uGwAAF0pJREFUF2LJzibzrbeoPHmS4KQkYu66C+9AeearpfKqc9lfsI/9BXvIrMps8jzZrUCI7kkCrwvQWlO4Ywe5H36IMhiIe+ghQsaOdXdZXUKRpZADhfvYV7CX9IrTAPQNuIybE25DoVifsU52KxDCQ0jgdXLWwkKyli+n/PBhAgYPJnbJEgxhYe4uq1MrtZZysGg/+wv2crLsBBpNQo9ezO95E1eFjyTc+MuOEP7ePWS3AiE8hAReJ1a8ezfZK1eirVZi7rqL0EmTZBJFEyprKjhUeIj9hXs5XnIMO3Zi/GKZFTeHq8JGE93Ec3OyW4EQnkMCrxOqKSsje+VKStLS8Ovbl54PPogxRhYivpDFXs33Rd+xv3AvR4oPY9M2TMYIpsbMYFTYaOL8e8o/EIQQ9STwOpmy778na/lybKWlRC5YgGnWLJS3t7vL6jSsdivHSo6wv2Af3xV/i8VeTYghhImR1zIyfDSJPfpIyAkhGuWywFNKvQ3MBnK11oNrj4UDHwKJwGngFq11oXL8hvof4AagArhHa33AVbV1FuftRxcejjEmhoqjRzHGxZH4+OP4Jya6u8ROoUbX8GPpcfYX7OVQ0UEqayoI8A4gKXwMI8NH0y/wcv5fe/ceHXWZ53n8/c2VkEACSQRCuAq0LXiPaGPTeryN2q2IQ2M7oshIi5cWd3tnpt3u3dN/7Tm9c3p3R8VGHFsBbXEURRGhbQfbtmeVq/cbcichCcQkkJCEJJX67h9VsOEi11T9Kvl9Xud4knqqqOeTsqgPVfn9nifNtF6oiBxbIt/hzQfmAAs7jT0MrHT335jZw/HLvwCuB0bH/7sEmBv/2mPtfe89qubPP7jjeKSujkhdHbnnnEPpgw+SlpUVcMJgRT3KlqbNrK9by4f162mMNNIrrRfnFVzARf0v5qy+Z2n1ExE5KQl7xXD3d81s+GHDk4Ar4t8vAN4hVniTgIUeW+dslZkVmNkgd69KVL6g7X755YNl11lrZWWoyu6QtSwz+3NZ0URaoi18ULeW+vZ6Mi2TcQXnUtZvPGPzx5GZlhl0ZBHpppL9T+QBnUqsGjhw6NxgoLzT7SriY0cUnpndA9wDMHTo0MQlTbBIbe1JjfdEh69lWd9ex7Kq1zCMsfnnMKn/LZyTfx690nsFnFREeoLAPhNydzezk1652t2fBJ6E2OLRXR4sSTIKCojs2XPkeGHhUW7dMy2peOmItSwB8jMLuG/UzwJIJCI9WbILb9eBjyrNbBCwOz6+ExjS6Xal8bEeqaOpCY9Gjxi3rCzO+Nu/DSBRcm1t2sKKymU0RBqOev2e9vokJxKRMEj2oW1Lgenx76cDr3Uav9NiLgX29tTf33k0ys558+hoaqLwppsOvqPLKCxk0F13kT9hQsAJE2fLvs3M2fgv/Par37CtaSs56TlHvZ3WshSRREjkaQmLiB2gUmRmFcCvgd8AL5rZ3cB2YGr85suJnZKwidhpCTMSlStoNS+/TNMnnzDwzjvpd+WVnHHLLUFHSriNjV+zomoZGxq/Ii+jDzcPvoWJxVfwyZ6Pj9iPTmtZikiiJPIozdu+5aqrjnJbBx5IVJZUsXfVKmrfeIOCK66g35VXBh0nodydrxs3sKJqGRv3fU2fjL7cUvpjvl/0A7LTY/v2HVjSS2tZikgy6ESmJGnZto2qp58mZ8wYBk6bFnSchHF3vmr8guWVy9jStJn8zHymlN7KZcUTyUo78nQLrWUpIsmiwkuCSEMDFY8+SnpeHqUPPIBl9LyH3d35ouEzVlS9wdamLRRk9mPqkNuYUPR9nTsnIimh573yphiPRKiYM4eOxkaG/epXZOTnBx2pS7k7n+39hOVVy9jRvJ1+Wf35ydDbubRwgopORFKKCi/Bqp9/npavv6bk3nt71NqYUY/yyZ6PWVG1jIqWcgqzirh92J2M738pGWl6WolI6tErUwLV//nP7Hn7bQpvuKHH7FAe9Sgf7fmAFVVvUNmyk+LsM5g27C7GF47X2pYiktL0CpUgzRs2UP3cc+Seey7FU6YEHee0RT3KB/XrWFH1BtX7qxiQPYDpw/+ei/pfTLpp+yIRSX0qvARor62lYs4csoqKGDxrFpbWfbeu6fAO1tet5Y9Vb7CrdRcDew1ixoiZXNivTFvyiEi3osLrYtHWVioefRSPRCh96CHSc3ODjnRKOjzCmto1vFm9nJrW3ZTkDObukbM4v+ACFZ2IdEsqvC7k7lQ98wz7d+yg9KGHyC4pCTrSMR2yNU/8pO8L+13E6rr3ebNqBbVt31CaM4SfjryPcwvOU9GJSLemwutCdStW0LBqFcVTptDn/PODjnNMR2zN01bHc9vn81L5CzR3NDG09zB+PORWxuWfS2xDehGR7k2F10X2ffIJu196ib7jx1P4wx8GHee4llYuOWJrng7voDW6n/tHPcjZfcep6ESkR1HhdYHW6mp2zp1Ldmkpg+6+u1sURX1b3VHHO7yDsfnnJDmNiEji6Zcyp6mjuZmKRx7BMjIonT2btOzsoCMdV9Sj5KT3Pup12ppHRHoqvcM7DR6NUjlvHm27dzP0H/+RrOLioCMdV21rLc9ue4aWjmYMw/n/m8Zrax4R6clUeKeh5pVX2Pfxxwy44w5yzzor6DjH5O6sqn2fxeUvADBt2HTSSWdp1avamkdEQkGFd4oa1qyhdtkyCi6/POX3tmtsb2DRjuf4eM9HjMobzZ3DZ1CYXQTA+KKeseSZiMjxqPBOwf7t26l86ilyRo9m4B13pPRBKh/v+YhF25+lpaOFyaVTuPKMq3U+nYiEkgrvJB3c2y43N6X3tmvpaGFx+b+xqvY9SnOGMHvMzynJGRx0LBGRwKTmq3WK8kiEnY8/TqShgWG//CUZBQVBRzqqjY0bWLhtPvVtdfzNwOu5YdCN2rJHREJPr4InYdeiRTRv2EDJPfeQM2JE0HGO0B5t5/XKV3l7179TlF3Mz7/zT4zMOzPoWCIiKUGFd4Lq//IX6leupP9115E/YULQcY5Q3ryDBVufpmp/JROLL2fy4Clkp6f+OYEiIsmiwjsBzRs3Ur1wIbnjxnHG1KlBxzlEh3fwVvWbLK96nbyMPO4fNZux+eOCjiUiknJUeMfRXldHxWOPkVlUxOD77kupve1279/Fwm3PsLVpCxf2K+PWoX9HXkZe0LFERFKSCu8Yom1tVDz2GN7WxpBf/CJl9rZzd/76zV9YUrGYdMtgxoiZlPUfH3QsEZGUpsL7Fgf3ttu6Nba33eDUOKR/T9sentu+gC8bPue7fc9m2rDpFGT1CzqWiEjKU+F9i7o//pGG99+n+JZb6HPBBUHHAWB93Vpe2PEH2qPt3Drk75hYfHlKn/QuIpJKVHhHse/TT9n94ov0KSuj8MYbg45DU6SJF3csYl39GobnjuDO4X/PgF4Dgo4lItKtqPAO07Zr18G97Upmzgz8HdSXDZ/z7LYFNLY38KOSSVw78DrSLT3QTCIi3ZEKr5OOlhbKH3kES0uL7W3Xq1dgWVo7Wnl158u8W/MOA3sN4t4zH2Bo7rDA8oiIdHcqvDiPRql88knaqqsD39tu674tLNz2NDWtNVx5xjXcOHgSWWlZgeUREekJVHhx37z6Kvs+/JABt99O7ne/G0iGSDTCiqo3eLN6OQVZ/Zg95ueM6fOdQLKIiPQ0oS689xa9RdrK1+kbacCA1pKR9Lv66qTNP3/9Sla3LMd6NeKtueT2yqSFPVxaOIEpQ6aSk947ofO//WEdC/5URc2edooLMpl+7SCuvKB/QudMtQxhnz8VMmh+PQeSNX9oC++9RW+R+6d/I8sjB8esagfvv/DvTLjtmoTPP3/9SlZHXiYtJza/9Wqi2WGUXcYdw6cnfP63P6zj0SXltLY7ALv3tPPoknKApD3Rg84Q9vlTIYPm13MgmfObu3fpHSZTWVmZr1u37pT+7KqZs8mPNBwxXp/eh1cvmX260Y5r73fnktF73xHjkeY88r+8L+Hzf7WjmfaOI//fZ6YbZw1N7DvLVMkQ9vlTIYPm13Pg2+Y/oyCTBb8Ye0r3aWbr3b3s8PHUWRgyyfoepewACjoakzJ/es6RZXes8a52tCfYscZ7Yoawz58KGTS/ngPfNk/NnvYunyu0H2k2ZPQ96ju8hoy+/PM9oxM+/33v52BZLUeM+/4+SZl/+v/8nN1HeUKdUZCZlPlTIUPY50+FDJpfz4Fvm7+4ILPL5wrtO7zoVTfSZof2fZtlEL0q8SurVLdUkZ7VxuGfJkcjGVySc0PC5weYfu0gsjMPPak+O9OYfu2gpMyfChnCPn8qZND8eg4kc/7QvsObcNs1vAe0xI/SbMjoS/SqGxN+wEpzpJl5mx8nL6M3IyJX8FHLO7GjNPf34ZKcG7jroqsSOv8BB34ZHOSRWUFnCPv8qZBB8+s5kMz5Q3vQShCiHmXupsfY0PgVs8f8nFF5yfnIQkQkTHTQSgpYunMJXzR8ztQht6nsRESSTIWXJOvq1vDWrjeZWHw53y/+QdBxRERCR4WXBDuatvPctgWMyhvNlNJbg44jIhJKKrwEa2hvYN7m35GXkcfMkbPISAvtcUIiIoFS4SVQJBrhqS1P0BTZxz2j7qdPZt+gI4mIhJYKL4FeKn+Bzfs2MW34dIb21l52IiJBUuElyF9r/sJ/fPMu1w68jrL+44OOIyISeiq8BNjUuJEXdyxibN9x3Fhyc9BxREQEFV6Xq2ur5V+3PEFxdjEzRs4kzfQQi4ikAr0ad6G2aCtPbvodkWg7s0Y9kPANXEVE5MSp8LqIu/PctoVUtFQwY+RMBvQaGHQkERHpRIXXRd7a9Sbr69dy0+CbGZd/btBxRETkMCq8LvDZ3k9ZunMJF/Ur45oB1wUdR0REjkKFd5p27a9m/tanKM0pZdrw6ZjZ8f+QiIgknQrvNLR0NDNv0+OkWwb3jLqfrLTsoCOJiMi3UOGdoqhHmb/199S01jBz5Cz6ZxUGHUlERI5BhXeKXq98jc/2fsqPh/6E0X3GBB1HRESOQ4V3CtbXreVP1Su4rGgiE4suDzqOiIicABXeSSpv3sGz2+YzMvdMpg65TQepiIh0Eyq8k9DY3si8zb8jNyOPn555n/a2ExHpRlR4J6jDY3vb7WtvZNaZ99NXe9uJiHQrKrwTtLj8RTbt28jtw+9kaK72thMR6W5UeCfgP2re5d2ad7h6wLVc3P+SoOOIiMgpUOEdx6Z9G3mxfBFn9x3LpMG3BB1HREROkQrvGOrb6nhq8xMUZhUyY4T2thMR6c70Cv4t2qJtPLl5Lu3Rdmad+QC9M3KDjiQiIqdBhXcU7s7z25+lvHkHd424m4E5g4KOJCIip0mFdxQrd73F2rrV/KhkEucUnBd0HBER6QIqvMN8vvczXt35Mhf0u4i/GXh90HFERKSLqPA62bV/F89s/VdKcgZzx7C7tGyYiEgPosKLa+loYd7mx0kjjVln3k92uva2ExHpSVKq8MzsOjPbYGabzOzhZM0b9SgLtv6emv27mXnmvRRmFyVrahERSZKUWf3YzNKBx4FrgApgrZktdfcvEjXnmtrVLK1cQn1bHQCX9P8eY/p8J1HTiYhIgFLpHd54YJO7b3H3NuAFYFKiJltTu5rntz97sOwAPqhfz5ra1YmaUkREApRKhTcYKO90uSI+lhBLK5fQ7m2HjLV7G0srlyRqShERCVAqFd4JMbN7zGydma2rqak55fvp/M7uRMZFRKR7S6XC2wkM6XS5ND52CHd/0t3L3L2suLj4lCfrl9X/pMZFRKR7S6XCWwuMNrMRZpYF/ARYmqjJbiqZTKZlHTKWaVncVDI5UVOKiEiAUuYoTXePmNnPgDeBdOBpd/88UfONL4zta3fgKM1+Wf25qWTywXEREelZUqbwANx9ObA8WfONL7xEBSciEhKp9JGmiIhIwqjwREQkFFR4IiISCio8EREJBRWeiIiEggpPRERCQYUnIiKhoMITEZFQUOGJiEgoqPBERCQUVHgiIhIKKjwREQkFc/egM5wyM6sBtnfBXRUB33TB/XRXYf/5QY8B6DEI+88PPecxGObuR2yY2q0Lr6uY2Tp3Lws6R1DC/vODHgPQYxD2nx96/mOgjzRFRCQUVHgiIhIKKryYJ4MOELCw//ygxwD0GIT954ce/hjod3giIhIKeocnIiKhoMITEZFQCHXhmdl1ZrbBzDaZ2cNB50k2MxtiZn82sy/M7HMzeyjoTEEws3Qz+9DMlgWdJQhmVmBmi83sKzP70sy+F3SmZDOz/xz/O/CZmS0ys15BZ0okM3vazHab2Wedxvqb2VtmtjH+tV+QGRMhtIVnZunA48D1wNnAbWZ2drCpki4C/Bd3Pxu4FHgghI8BwEPAl0GHCNAjwB/d/SzgPEL2WJjZYGA2UObu44B04CfBpkq4+cB1h409DKx099HAyvjlHiW0hQeMBza5+xZ3bwNeACYFnCmp3L3K3T+If99I7IVucLCpksvMSoEfAk8FnSUIZpYP/AD4PYC7t7n7nmBTBSIDyDGzDKA3UBlwnoRy93eBusOGJwEL4t8vAG5OaqgkCHPhDQbKO12uIGQv9p2Z2XDgAmB1sEmS7l+AfwKiQQcJyAigBngm/rHuU2aWG3SoZHL3ncBvgR1AFbDX3f8UbKpADHD3qvj31cCAIMMkQpgLT+LMLA94GfhP7t4QdJ5kMbMfAbvdfX3QWQKUAVwIzHX3C4AmeuBHWccS/13VJGLlXwLkmtm0YFMFy2Pnq/W4c9bCXHg7gSGdLpfGx0LFzDKJld0f3P2VoPMk2WXATWa2jdhH2lea2XPBRkq6CqDC3Q+8s19MrADD5Gpgq7vXuHs78AowIeBMQdhlZoMA4l93B5yny4W58NYCo81shJllEfsl9dKAMyWVmRmx39186e7/O+g8yebu/9XdS919OLH//2+7e6j+Ze/u1UC5mX0nPnQV8EWAkYKwA7jUzHrH/05cRcgO3IlbCkyPfz8deC3ALAmREXSAoLh7xMx+BrxJ7Kisp93984BjJdtlwB3Ap2b2UXzsl+6+PMBMknwPAn+I/8NvCzAj4DxJ5e6rzWwx8AGxI5c/pKcvsWW2CLgCKDKzCuDXwG+AF83sbmLbrk0NLmFiaGkxEREJhTB/pCkiIiGiwhMRkVBQ4YmISCio8EREJBRUeCIiEgoqPJEAmFmpmb0WX5l+i5nNMbPsLp7jCjOb0OnyvWZ2Z/z7u8yspCvnE0l1KjyRJIuf3PwK8Gp8ZfrRQA7wz1081RV0WjHE3Z9w94Xxi3cRW0ZLJDR0Hp5IkpnZVcCv3f0Hncb6EjvZ978DZ7n7z+Ljy4Dfuvs7ZjYXuJhYOS5291/Hb7ON2Or2NwKZwI+B/cAqoIPY4tAPEltBZB+wjdj2MDuBFuBXwE/d/eb4/V0D3O/ukxP2IIgEQO/wRJJvLHDIgtXxRbu3cezVj37l7mXAucDlZnZup+u+cfcLgbnAP7j7NuAJ4P+4+/nu/tdOcy0G1gG3u/v5wHLgLDMrjt9kBvD0afx8IilJhSfSfUw1sw+ILX01ltjGxQccWPh7PTD8ZO40vjL+s8A0MysAvgesOO20IikmtGtpigToC2BK54H4R5oDgVpgTKeresWvHwH8A3Cxu9eb2fwD18W1xr92cGp/r58BXif2UehL7h45hfsQSWl6hyeSfCuB3p2OmEwH/hcwB9gKnG9maWY2BBgf/zN9ie1Vt9fMBgDXn8A8jUCfE7nO3SuJ7fL934iVn0iPo8ITSbL4R4iTgSlmtpHYu7qou/8P4P8SK70vgEeJreCPu39M7KPMr4Dn47c7nteByWb2kZlNPOy6+cAT8ety4mN/AMrdPYxb40gI6ChNkYDFz5VbBEx29w8CzDEH+NDdfx9UBpFEUuGJCGa2nthHpte4e+vxbi/SHanwREQkFPQ7PBERCQUVnoiIhIIKT0REQkGFJyIioaDCExGRUPh/OYwPuRUjI/YAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmoAAAJwCAYAAAA5n02CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAACawklEQVR4nOzdd3QUVR/G8e+mEggJLSGU0ENHOoogTYoiCIJSRJoISm9SFAT0tdCrNAtNQBAFERQQkCJVWpBepPeeEEjfef8YCUaKBLKZTfJ8ztmT2ZnZub+EgI935t5rMwzDQEREREScjovVBYiIiIjI/SmoiYiIiDgpBTURERERJ6WgJiIiIuKkFNREREREnJSCmoiIiIiTUlATERERcVIKaiIiIiJOSkFNRERExEkpqImIpFBt2rQhT548VpchIk9AQU1EHpnNZnuk19q1azlx4sQDjz/zzDP3XHvt2rU0atSIgIAAPDw88Pf3p379+ixcuDBBNT6s3X+/Xn75ZWw2G0ePHn3g9QYMGIDNZuPPP/+M2xcbG8v06dOpVq0amTJlwtPTkzx58tC2bVu2b9+eoHqtNGPGjEf6Of0z7AUHB/PGG28QGBiIp6cnmTJlombNmkyfPp3Y2FjrvhmRFMrN6gJEJPn45ptv4r2fNWsWK1euvGd/kSJFCA8PB6B58+bUrVs33nE/P7947wcPHsxHH31EUFAQb7/9Nrlz5+bq1av88ssvNG7cmDlz5vD6668/Uo1+fn731DNq1CjOnDnDmDFj4u0PDAxkyZIlzJ07l0GDBt33et9++y0lSpTgqaeeAiA8PJxGjRqxfPlyqlSpwvvvv0+mTJk4ceIE3333HTNnzuTUqVPkzJnzkeq1UpUqVe75Wb311ltUqFCBDh06xO3z9vYG4KuvvuKdd94ha9astGzZkqCgIG7evMnq1atp164d58+f5/3330/S70EkxTNERB5T586djQf9M3L8+HEDMEaMGPHQayxYsMAAjFdffdWIioq65/jy5cuNJUuWPFGdL730kpE7d+77HitQoIBRuHDh+x7btGmTARhDhw6N23fnex4zZsw958fExBgjRowwTp8+/UT1JpbWrVs/8Pt+kHTp0hmtW7e+Z//mzZsNV1dXo3LlykZoaOg9x7dt22ZMnz798QoVkQfSrU8RsdQHH3xApkyZmDZtGu7u7vccr1OnDvXq1XNY+y1atODgwYPs3LnznmNz587FZrPRvHlzAM6cOcPUqVOpVasWPXr0uOd8V1dX3n333Yf2pkVFRTFo0CDKli2Lr68v6dKl47nnnmPNmjXxzrtzC3fkyJF88cUX5M+fH09PT8qXL8+2bdvuue6PP/5I8eLFSZMmDcWLF2fRokUJ/Ek83IcffojNZmPOnDmkT5/+nuPlypWjTZs2idqmiOgZNRFxsNu3b3PlypV4r+joaACOHDnCwYMHadiw4X3/458UWrRoAZih7J9iY2P57rvveO6558iVKxcAy5YtIyYmhpYtWz52e6GhoXz11VdUq1aNYcOGMWTIEC5fvkydOnUIDg6+5/y5c+cyYsQI3n77bT7++GNOnDhBo0aN4n6GAL/++iuNGzfGZrPx2Wef0bBhw0R9Xu727dusXr2aKlWqxP0sRCRp6Bk1EXGowYMHM3jw4Hj71qxZQ7Vq1Thw4AAAJUqUsKI0AIKCgihfvjzz589n+PDhuLiY//+6atUqLl26xP/+97+4cxOj3owZM3LixAk8PDzi9rVv357ChQszYcIEvv7663jnnzp1iiNHjpAxY0YAChUqRIMGDVixYkVcT2O/fv3ImjUrGzZswNfXF4CqVatSu3ZtcufO/di13nH06FGio6Mt/XMSSa0U1ETEoTp06MBrr70Wb1/JkiUBs3cJsKw37Y433niD7t27s379eqpVqwaYPVkeHh7xak+Mel1dXXF1dQXAbrdz48YN7HY75cqVu+/t16ZNm8aFNIDnnnsOgGPHjgFw/vx5goOD6d+/f1xIA6hVqxZFixbl1q1bj13rHc7y5ySSGunWp4g4VFBQEDVr1oz3uhM8fHx8ALh586aVJdKsWTNcXV3jbn9GRESwaNEiXnzxxXghKbHqnTlzJk899RRp0qQhc+bM+Pn58fPPPxMSEnLPuf++1XinnuvXrwNw8uRJwPw5/1uhQoWeqM47nOXPSSQ1UlATEcsULlwYgD179lhah7+/P7Vq1eKHH34gOjqaJUuWcPPmzbjn1+5IjHpnz55NmzZtyJ8/P19//TXLly9n5cqV1KhRA7vdfs/5d3rf/s0wjMeuIaEKFCiAm5ub5X9OIqmRgpqIWKZgwYIUKlSIxYsXExYWZmktLVq04Nq1ayxbtoy5c+fi4+ND/fr1453z4osv4urqyuzZsx+7ne+//558+fKxcOFCWrZsSZ06dahZsyYRERGPdb07z6AdOXLknmOHDh167Dr/KW3atNSoUYP169dz+vTpRLmmiDwaBTURsdSHH37I1atXeeutt4iJibnn+K+//srSpUsdXkfDhg1JmzYtkyZNYtmyZTRq1Ig0adLEOycwMJD27dvz66+/MmHChHuuYbfb4ybXfZA7PWT/7BHbunUrmzdvfqy6s2XLRqlSpZg5c2a8W6crV65k//79j3XN+xk8eDCGYdCyZcv7huodO3Ywc+bMRGtPREwaTCAilmratCl79uzhk08+YdeuXTRv3jxuZYLly5ezevXqeFNnVKtWjXXr1iX6rT9vb28aNmwY19a/b3veMWrUKP766y+6devGwoULqVevHhkzZuTUqVMsWLCAgwcP0qxZswe2U69ePRYuXMgrr7zCSy+9xPHjx5kyZQpFixZ97F7Fzz77jJdeeonKlSvz5ptvcu3aNSZMmECxYsUSrafy2WefZeLEiXTq1InChQvHW5lg7dq1/PTTT3z88ceJ0paI3KWgJiKW+/jjj6lRowbjx49n8uTJXLt2jYwZM/LMM8+wePFiXn755bhzw8LCCAgIcEgdLVq0YO7cuWTLlo0aNWrc95y0adOybNkyZsyYwcyZM/nf//7H7du3yZ49OzVq1GDOnDnkyJHjgW20adOGCxcuMHXqVFasWEHRokWZPXs2CxYsYO3atY9V9wsvvMCCBQsYOHAg7733Hvnz52f69OksXrz4sa95P2+//Tbly5dn1KhRzJo1i8uXL+Pt7U2ZMmWYPn06b7zxRqK1JSImm5GUT6SKiDyBmzdvkilTJsaOHUvnzp2tLkdExOH0jJqIJBvr168nR44ctG/f3upSRESShHrURERERJyUetREREREnJSCmoiIiIiTUlATERERcVIKaiIiIiJOSvOoYc4mfu7cOdKnT4/NZrO6HBEREUnBDMPg5s2bZM+eHReXh/eZKagB586dIzAw0OoyREREJBU5ffo0OXPmfOg5CmpA+vTpAfMH5uPjY3E1IiIikpKFhoYSGBgYlz8eRkEN4m53+vj4KKiJiIhIkniUx600mEBERETESSmoiYiIiDgpBTURERERJ6Vn1B5RbGws0dHRVpch8ljc3d1xdXW1ugwREUkgBbVHEBYWxpkzZ9D69ZJc2Ww2cubMibe3t9WliIhIAiio/YfY2FjOnDlD2rRp8fPz04S4kuwYhsHly5c5c+YMQUFB6lkTEUlGFNT+Q3R0NIZh4Ofnh5eXl9XliDwWPz8/Tpw4QXR0tIKaiEgyosEEj0g9aZKc6fdXRCR5UlATERERcVIKaiIiIiJOSkEticTaDf48dpO1wdf589hNYu0pbwSpzWbjxx9/fKzPVqtWjR49eiRqPf82ZMgQSpUq5dA2REREEpOCWhLYuPcGbYbvp9+XfzFs/kn6ffkXbYbvZ+PeGw5pz2azPfQ1ZMiQB372xIkT2Gw2goODE72uNm3a3Leeo0ePsnDhQv73v/8lepuP44cffqBatWr4+vri7e3NU089xUcffcS1a9cS5fp58uRh7NixiXItERFJ2RTUHGzj3ht8POcEV0LiT5Z7JSSaj+eccEhYO3/+fNxr7Nix+Pj4xNv37rvvJnqbj+qFF16IV8v58+fJmzcvmTJlIn369JbVdceAAQNo2rQp5cuXZ9myZezdu5dRo0axe/duvvnmG6vLExGRVEZBLYEMwyAiKvaRXrciYpi85OxDrzdlyVluRcQ80vUedcLdgICAuJevry82my3uvb+/P6NHjyZnzpx4enpSqlQpli9fHvfZvHnzAlC6dGlsNhvVqlUDYNu2bdSqVYssWbLg6+tL1apV2blzZ4J/fp6envHqCwgIwNXVNd6tz4MHD5I2bVrmzp0b97nvvvsOLy8v9u/fD8CNGzd466238PPzw8fHhxo1arB79+54bQ0dOpSsWbOSPn162rVrR0RExENr++OPP/j0008ZNWoUI0aM4NlnnyVPnjzUqlWLH374gdatW8edO3nyZPLnz4+HhweFChWKF+IMw2DIkCHkypULT09PsmfPTrdu3QDzFu/Jkyfp2bNnXI+iiIjIg2getQSKjLbzyuA9iXa9K6HRvPrh3kc6d9GHJUjj8WRzYI0bN45Ro0YxdepUSpcuzbRp03j55ZfZt28fQUFB/PHHH1SoUIFVq1ZRrFgxPDw8ALh58yatW7dmwoQJGIbBqFGjqFu3LkeOHEn0nrDChQszcuRIOnXqROXKlXFxceGdd95h2LBhFC1aFIDXXnsNLy8vli1bhq+vL1OnTuX555/n8OHDZMqUie+++44hQ4YwceJEKleuzDfffMP48ePJly/fA9udM2cO3t7edOrU6b7HM2TIAMCiRYvo3r07Y8eOpWbNmixdupS2bduSM2dOqlevzg8//MCYMWOYN28exYoV48KFC3EhcuHChZQsWZIOHTrQvn37RP25iYhIyqOglsqMHDmSfv360axZMwCGDRvGmjVrGDt2LBMnTsTPzw+AzJkzExAQEPe5GjVqxLvOF198QYYMGVi3bh316tV75PaXLl0abxmjF198kQULFtxzXqdOnfjll19444038PDwoHz58nTt2hWADRs28Mcff3Dp0iU8PT3jvq8ff/yR77//ng4dOjB27FjatWtHu3btAPj4449ZtWrVQ3vVjhw5Qr58+XB3d3/o9zBy5EjatGkTF+h69erFli1bGDlyJNWrV+fUqVMEBARQs2ZN3N3dyZUrFxUqVAAgU6ZMuLq6kj59+ng/XxERkftRUEsgT3cXFn1Y4pHO3Xs8jA9mHP/P8/7XJi/F8/73Goye7k92pzo0NJRz585RqVKlePsrVap0z23Df7t48SIDBw5k7dq1XLp0idjYWG7fvs2pU6cSVEP16tWZPHly3Pt06dI98Nxp06ZRsGBBXFxc2LdvX9xtwt27dxMWFkbmzJnjnR8eHs5ff/0FwIEDB3jnnXfiHa9YsSJr1qx5YHuPemv5wIEDdOjQId6+SpUqMW7cOMDs7Rs7diz58uXjhRdeoG7dutSvXx83N/11ExGRhNF/ORLIZrM98u3H0kE+ZPF1v2cgwT/5+bpTOsgHVxfnflapdevWXL16lXHjxpE7d248PT2pWLEiUVFRCbpOunTpKFCgwCOdu3v3bm7duoWLiwvnz58nW7ZsAISFhZEtWzbWrl17z2fu3J58HAULFmTDhg1ER0f/Z6/awwQGBnLo0CFWrVrFypUr6dSpEyNGjGDdunVPdF0REUkC27dD374wfDiUK2d1NRpM4EiuLjbeqZfjoee8XS9HkoU0Hx8fsmfPzsaNG+Pt37hxY9yzX3eeSYuNjb3nnG7dulG3bl2KFSuGp6cnV65ccVit165do02bNgwYMIA2bdrQokULwsPDAShTpgwXLlzAzc2NAgUKxHtlyZIFgCJFirB169Z419yyZctD23z99dcJCwtj0qRJ9z1+48aNuGs/7GcI4OXlRf369Rk/fjxr165l8+bN7NljPtvo4eFxz89XREScxKxZsGYNOMlIf/WoOVil4hkY2CIPU5aejdez5ufrztv1clCpeIYkradPnz4MHjyY/PnzU6pUKaZPn05wcDBz5swBwN/fHy8vL5YvX07OnDlJkyYNvr6+BAUF8c0331CuXDlCQ0Pp06ePQxepf+eddwgMDGTgwIFERkZSunRp3n33XSZOnEjNmjWpWLEiDRs2ZPjw4RQsWJBz587x888/88orr1CuXDm6d+9OmzZtKFeuHJUqVWLOnDns27fvoYMJnn76afr27Uvv3r05e/Ysr7zyCtmzZ+fo0aNMmTKFypUr0717d/r06UOTJk0oXbo0NWvWZMmSJSxcuJBVq1YBMGPGDGJjY3n66adJmzYts2fPxsvLi9y5cwPmPGrr16+nWbNmeHp6xoVLERGxyMmTcOUK2Gwwf765b948aN0aDAOyZIG//w1PcoYYISEhBmCEhITccyw8PNzYv3+/ER4e/kRtxMTajd1/hRprdl0zdv8VasTE2p/oeo9q+vTphq+vb9z72NhYY8iQIUaOHDkMd3d3o2TJksayZcvifebLL780AgMDDRcXF6Nq1aqGYRjGzp07jXLlyhlp0qQxgoKCjAULFhi5c+c2xowZE/c5wFi0aNEDa2ndurXRoEGD+x6rWrWq0b17d8MwDGPmzJlGunTpjMOHD8cd37p1q+Hu7m788ssvhmEYRmhoqNG1a1cje/bshru7uxEYGGi0aNHCOHXqVNxnPvnkEyNLliyGt7e30bp1a6Nv375GyZIl//NnNn/+fKNKlSpG+vTpjXTp0hlPPfWU8dFHHxnXr1+PO2fSpElGvnz5DHd3d6NgwYLGrFmz4o4tWrTIePrppw0fHx8jXbp0xjPPPGOsWrUq7vjmzZuNp556yvD09DSS6q9gYv0ei4ikSGYce/grET0sd/ybzawvdQsNDcXX15eQkBB8fHziHYuIiOD48ePkzZuXNGnSWFShyJPR77GIyEPMmQNt2kBMzL3H3Nxgxgxo0SLRmntY7rin+URrVURERCQ5atECihSBsmXvPbZ1K5Qpk/Q1/U2DCURERET+zcU5IpJzVCEiIiJipQsX7m5/8onZuxYQAP7+1tWEgpqIiIiI+RwamLdB33/fvOV54gTkzGllVQpqIiIiksodOQI//GBu9+tnfrXZ4O9lCq2koCYiIiKp28iRYLfDSy9BiUdbJjKpKKiJiIhI6nX+/N3bnv37W1rK/SioiYiISOo1dixERUGlSlC5stXV3ENBTURERFKnGzdg8mRz2wl700BBTRKRzWbjxx9/TBZtDxkyhFKlSj30nDZt2tCwYcMnqktERJzY5Mlw8yYULw5161pdzX0pqCWh1ad3UWJOB1af3uXQdmw220NfQ4YMeeBnT5w4gc1mIzg4OFFrql+/Pi+88MJ9j/3+++/YbDb+/PPPx77++fPnefHFFx/784509OhR2rZtS86cOfH09CRv3rw0b96c7du3J8r1HyV0iojIv4SHm7c9wRzp6SQT3P6bc1aVAhmGwcDN0zl4/TQDN0/HkUusnj9/Pu41duxYfHx84u179913Hdb2g7Rr146VK1dy5syZe45Nnz6dcuXK8dRTTyX4ulFRUQAEBATg6QTDqP9t+/btlC1blsOHDzN16lT279/PokWLKFy4ML1797a6PBGR1GvGDLh0CXLnhqZNra7mgRTUEsgwDG5FRyT4teT4FrZfOgLA9ktHWHJ8S4Kv8ajhLiAgIO7l6+uLzWaLe+/v78/o0aPjendKlSrF8uXL4z6bN29eAEqXLo3NZqNatWoAbNu2jVq1apElSxZ8fX2pWrUqO3fufOSfW7169fDz82PGnZE1fwsLC2PBggW0a9eOq1ev0rx5c3LkyEHatGkpUaIE3377bbzzq1WrRpcuXejRowdZsmShTp06wL23Pvv160fBggVJmzYt+fLl44MPPiA6OvqeuqZOnUpgYCBp06alSZMmhISEPPB7sNvtfPbZZ+TNmxcvLy9KlizJ999//8DzDcOgTZs2BAUF8fvvv/PSSy+RP39+SpUqxeDBg1m8eHHcuXv27KFGjRp4eXmROXNmOnToQFhYWNzxtWvXUqFCBdKlS0eGDBmoVKkSJ0+eZMaMGXz44Yfs3r07rsf03z9jERH5l5gYc0oOgN69wd3d2noeQouyJ9DtmEgyTH3lia/T+JePEvyZG28vIp17midqd9y4cYwaNYqpU6dSunRppk2bxssvv8y+ffsICgrijz/+oEKFCqxatYpixYrh4eEBwM2bN2ndujUTJkzAMAxGjRpF3bp1OXLkCOnTp//Pdt3c3GjVqhUzZsxgwIAB2Gw2ABYsWEBsbCzNmzcnLCyMsmXL0q9fP3x8fPj5559p2bIl+fPnp0KFCnHXmjlzJh07dmTjxo0PbC99+vTMmDGD7Nmzs2fPHtq3b0/69Onp27dv3DlHjx7lu+++Y8mSJYSGhtKuXTs6derEnDlz7nvNzz77jNmzZzNlyhSCgoJYv349b7zxBn5+flStWvWe84ODg9m3bx9z587F5T5d6hkyZADg1q1b1KlTh4oVK7Jt2zYuXbrEW2+9RZcuXZgxYwYxMTE0bNiQ9u3b8+233xIVFcUff/yBzWajadOm7N27l+XLl7Nq1SoAfH19//PPQ0QkVfv+ezh2DLJkgXbtrK7moRTUUpmRI0fSr18/mjVrBsCwYcNYs2YNY8eOZeLEifj5+QGQOXNmAgIC4j5Xo0aNeNf54osvyJAhA+vWraNevXqP1Pabb77JiBEjWLduXVxP3fTp02ncuDG+vr74+vrGuy3btWtXVqxYwXfffRcvqAUFBTF8+PCHtjVw4MC47Tx58vDuu+8yb968eEEtIiKCWbNmkSNHDgAmTJjASy+9xKhRo+J97wCRkZF8+umnrFq1iooVKwKQL18+NmzYwNSpU+8b1I4cMXtQCxcu/NBa586dG1dLunTpAPj888+pX78+w4YNw93dnZCQEOrVq0f+/PkBKFKkSNznvb29cXNzu6dmERG5D8OAoUPN7W7dIG1aa+v5DwpqCZTWzZMbby965PMNw6DGor78eeUYsYY9br+rzYWnsuTjt1eGx/UuPUrbTyI0NJRz585RqVKlePsrVarE7t27H/rZixcvMnDgQNauXculS5eIjY3l9u3bnDp16pHbL1y4MM8++yzTpk2jWrVqHD16lN9//52PPjJ7F2NjY/n000/57rvvOHv2LFFRUURGRpL2X3+JypYt+59tzZ8/n/Hjx/PXX38RFhZGTEwMPj4+8c7JlStXXEgDqFixIna7nUOHDt0Teo4ePcrt27epVatWvP1RUVGULl36vjU86q3qAwcOULJkybiQBuafyZ1aqlSpQps2bahTpw61atWiZs2aNGnShGzZsj3S9UVE5B9WrIDduyFdOujc2epq/pOeUUsgm81GOvc0j/zadH4/uy4fjRfSAGINO7suH2XT+f2PfK1HDXSO0Lp1a4KDgxk3bhybNm0iODiYzJkzxz3M/6jatWvHDz/8wM2bN5k+fTr58+eP640aMWIE48aNo1+/fqxZs4bg4GDq1KlzTxv/DDT3s3nzZlq0aEHdunVZunQpu3btYsCAAQmu9Z/uPC/2888/ExwcHPfav3//A59TK1iwIAAHDx587HbvmD59Ops3b+bZZ59l/vz5FCxYkC1btjzxdUVEUp07vWlvvw2ZMllbyyNQUHMgwzAYvHUmLtw/YLlgY/DWmQ4dAfpPPj4+ZM+e/Z5nuzZu3EjRokUB4p5Ji42Nveecbt26UbduXYoVK4anpydXrlxJcA1NmjTBxcWFuXPnMmvWLN588824ALpx40YaNGjAG2+8QcmSJcmXLx+HDx9OcBubNm0id+7cDBgwgHLlyhEUFMTJkyfvOe/UqVOcO3cu7v2WLVtwcXGhUKFC95xbtGhRPD09OXXqFAUKFIj3CgwMvG8dpUqVomjRoowaNQq73X7P8Rs3bgDmbczdu3dz69atuGMbN268p5bSpUvz3nvvsWnTJooXL87cuXMB88/s339eIiJyH5s3w7p15uCBnj2truaRKKg5UJQ9mlM3L2Pn/kHMjsHpsCtE2e8djegoffr0YdiwYcyfP59Dhw7Rv39/goOD6d69OwD+/v54eXmxfPlyLl68GDcKMigoiG+++YYDBw6wdetWWrRogZeXV4Lb9/b2pmnTprz33nucP3+eNm3axB0LCgpi5cqVbNq0iQMHDvD2229z8eLFBLcRFBTEqVOnmDdvHn/99Rfjx49n0aJ7b1enSZOG1q1bs3v3bn7//Xe6detGkyZN7vusV/r06Xn33Xfp2bMnM2fO5K+//mLnzp1MmDCBmTNn3rcOm83G9OnTOXz4MM899xy//PILx44d488//+STTz6hQYMGALRo0SKulr1797JmzRq6du1Ky5YtyZo1K8ePH+e9995j8+bNnDx5kl9//ZUjR47EPaeWJ08ejh8/TnBwMFeuXCEyMjLBPzMRkVRh2DDza8uWkDOntbU8KkOMkJAQAzBCQkLuORYeHm7s37/fCA8Pf6xrnwq9ZOy4eOSBr9M3Lz1p+Q81ffp0w9fXN+59bGysMWTIECNHjhyGu7u7UbJkSWPZsmXxPvPll18agYGBhouLi1G1alXDMAxj586dRrly5Yw0adIYQUFBxoIFC4zcuXMbY8aMifscYCxatOg/a9q0aZMBGHXr1o23/+rVq0aDBg0Mb29vw9/f3xg4cKDRqlUro0GDBnHnVK1a1ejevfs91/x323369DEyZ85seHt7G02bNjXGjBkT7+cwePBgo2TJksakSZOM7NmzG2nSpDFeffVV49q1a3HntG7dOl7bdrvdGDt2rFGoUCHD3d3d8PPzM+rUqWOsW7fuod/voUOHjFatWhnZs2c3PDw8jNy5cxvNmzc3du7cGXfOn3/+aVSvXt1IkyaNkSlTJqN9+/bGzZs3DcMwjAsXLhgNGzY0smXLFvf5QYMGGbGxsYZhGEZERITRuHFjI0OGDAZgTJ8+/Z4anvT3WEQk2du3zzDAMGw2wzhwwNJSHpY7/s1mGEl0382JhYaG4uvrS0hIyD0PnEdERHD8+HHy5s1LmjRPNjWGiFX0eywiqV6bNjBzJrzyCixcaGkpD8sd/6ZbnyIiIpKynT4Nd+bI7NfP2loSSEFNREREUrbRo83VCKpXh6eftrqaBFFQExERkZTr6lX44gtzu39/a2t5DApqIiIiknJ9/jncvg2lS8O/Ji1PDhTUREREJGW6dQvGjze3+/cHCyeOf1wKaiIiIpIyffUVXLsG+fND48ZWV/NYFNREREQk5YmKglGjzO2+fcHV1dp6HpOCmoiIiKQ8335rTssREACtWlldzWNTUBMREZGUxW6H4cPN7R49IBlP9K2gJonGZrPx448/Wl2GiIikdkuXwv794OMD77xjdTVPREEtKW3fDjVqmF8dyGazPfQ1ZMiQB372xIkT2Gw2goODHVLbhQsX6Nq1K/ny5cPT05PAwEDq16/P6tWrE+X6M2bMIEOGDIlyLRERSYYMAz77zNzu1Al8fa2t5wm5WV1AqjJrFqxZA998A+XKOayZ8+fPx23Pnz+fQYMGcejQobh93t7eDmv7YU6cOEGlSpXIkCEDI0aMoESJEkRHR7NixQo6d+7MwYMHLalLRERSkN9/hy1bwNMTune3uponph61hDIMc16WR30dOAAbNsDGjTBvnnmNb78132/YYB5/1GsZxiOVGBAQEPfy9fXFZrPFvff392f06NHkzJkTT09PSpUqxfLly+M+mzdvXgBKly6NzWajWrVqAGzbto1atWqRJUsWfH19qVq1Kjt37kzQj65Tp07YbDb++OMPGjduTMGCBSlWrBi9evViy5YtceedOnWKBg0a4O3tjY+PD02aNOHixYtxx3fv3k316tVJnz49Pj4+lC1blu3bt7N27Vratm1LSEjII/UeiohICjR0qPm1bVtzIEEypx61hLp9G560R+ryZahcOeGfCwuDdOmeqOlx48YxatQopk6dSunSpZk2bRovv/wy+/btIygoiD/++IMKFSqwatUqihUrhoeHBwA3b96kdevWTJgwAcMwGDVqFHXr1uXIkSOkT5/+P9u9du0ay5cv55NPPiHdfb6HO7cr7XZ7XEhbt24dMTExdO7cmaZNm7J27VoAWrRoQenSpZk8eTKurq4EBwfj7u7Os88+y9ixY+P1IFrVeygiIhbYvRuWLQMXF3j3XaurSRRO06M2dOhQbDYbPXr0iNsXERFB586dyZw5M97e3jRu3DhezwqYvS8vvfQSadOmxd/fnz59+hATE5PE1ScfI0eOpF+/fjRr1oxChQoxbNgwSpUqxdixYwHw8/MDIHPmzAQEBJApUyYAatSowRtvvEHhwoUpUqQIX3zxBbdv32bdunWP1O7Ro0cxDIPChQs/9LzVq1ezZ88e5s6dS9myZXn66aeZNWsW69atY9u2bYD5Z16zZk0KFy5MUFAQr732GiVLlsTDw+OeHkQFNRGRVGTYMPNrkybmJLcpgFMEtW3btjF16lSeeuqpePt79uzJkiVLWLBgAevWrePcuXM0atQo7nhsbCwvvfQSUVFRbNq0iZkzZzJjxgwGDRrkuGLTpjV7thLy2rDh/tfasCFh10mb9olKDw0N5dy5c1SqVCne/kqVKnHgwIGHfvbixYu0b9+eoKAgfH198fHxISwsjFOnTj1S28Yj3rY9cOAAgYGBBAYGxu0rWrQoGTJkiKuxV69evPXWW9SsWZOhQ4fy119/PdK1RUQkBTt2DObPN7f79bO2lkRkeVALCwujRYsWfPnll2TMmDFuf0hICF9//TWjR4+mRo0alC1blunTp7Np06a455l+/fVX9u/fz+zZsylVqhQvvvgi//vf/5g4cSJRUVGOKdhmM28/JuTl5WV+1sUl/lcvr4Rdx8I1ylq3bk1wcDDjxo1j06ZNBAcHkzlz5kf+OQcFBWGz2RJlwMCQIUPYt28fL730Er/99htFixZl0aJFT3xdERFJxkaNMudPq1MHSpWyuppEY3lQ69y5My+99BI1a9aMt3/Hjh1ER0fH21+4cGFy5crF5s2bAdi8eTMlSpQga9ascefUqVOH0NBQ9u3b98A2IyMjCQ0NjfdyKH9/84HGsmVhyhTza0CAuT8J+fj4kD17djZu3Bhv/8aNGylatChA3DNpsbGx95zTrVs36tatS7FixfD09OTKlSuP3HamTJmoU6cOEydO5NatW/ccv3HjBgBFihTh9OnTnD59Ou7Y/v37uXHjRlyNAAULFqRnz578+uuvNGrUiOnTp8fV/+/aRUQkhbt4EaZNM7f797e2lkRmaVCbN28eO3fu5LM78538w4ULF/Dw8LhnTqysWbNy4cKFuHP+GdLuHL9z7EE+++wzfH19417/vM3mEDlzwokTsHUrvP22+fXECXN/EuvTpw/Dhg1j/vz5HDp0iP79+xMcHEz3v4cw+/v74+XlxfLly7l48SIhISGA2SP2zTffcODAAbZu3UqLFi3wutNT+IgmTpxIbGwsFSpU4IcffuDIkSMcOHCA8ePHU7FiRQBq1qxJiRIlaNGiBTt37uSPP/6gVatWVK1alXLlyhEeHk6XLl1Yu3YtJ0+eZOPGjWzbto0iRYoAkCdPHsLCwli9ejVXrlzh9u3bifjTExERpzR+PEREwNNPQ9WqVleTqCwLaqdPn6Z79+7MmTOHNEm8tMN7771HSEhI3OufvTcO4+l599alzWa+t0C3bt3o1asXvXv3pkSJEixfvpyffvqJoKAgANzc3Bg/fjxTp04le/bsNGjQAICvv/6a69evU6ZMGVq2bEm3bt3wT2CPYL58+di5cyfVq1end+/eFC9enFq1arF69WomT54MmJP1Ll68mIwZM1KlShVq1qxJvnz5mP/3cweurq5cvXqVVq1aUbBgQZo0acKLL77Ihx9+CMCzzz7LO++8Q9OmTfHz82P4nSVEREQkZQoNhYkTze3+/S19TMgRbMajPuWdyH788UdeeeUVXP+xmn1sbCw2mw0XFxdWrFhBzZo1uX79erxetdy5c9OjRw969uzJoEGD+Omnn+LNon/8+PG4QFC6dOlHqiU0NBRfX19CQkLw8fGJdywiIoLjx4+TN2/eJA+UIolFv8cikmKNGAF9+0LhwrBv393nwJ3Yw3LHv1n23Tz//PPs2bOH4ODguFe5cuVo0aJF3La7u3u8pYUOHTrEqVOn4m6TVaxYkT179nDp0qW4c1auXImPj0+855lEREQkBYqIgNGjze1+/ZJFSEsoyya8TZ8+PcWLF4+3L126dGTOnDluf7t27ejVqxeZMmXCx8eHrl27UrFiRZ555hkAateuTdGiRWnZsiXDhw/nwoULDBw4kM6dO+Np0a1FERERSSLffAMXLpjPfL/+utXVOIRTr0wwZswYXFxcaNy4MZGRkdSpU4dJkybFHXd1dWXp0qV07NiRihUrki5dOlq3bs1HH31kYdUiIiLicLGxcOc55N694e9ZC1Iay55RcyZ6Rk1SOv0ei0iKs2CBuQJBxoxw6tSTL++YhJLFM2rJjfKsJGf6/RWRFMUw7i4X1bVrsgppCaWg9h/ujEp12EoHIkngzu/vP0dZi4gkW6tXw44d5go/XbtaXY1DOfUzas7Azc2NtGnTcvnyZdzd3XFJgSNKJGWz2+1cvnyZtGnT4uamv/IikgIMHWp+bd8esmSxthYH07/a/8Fms5EtWzaOHz/OyZMnrS5H5LG4uLiQK1cubClsIkgRSYW2bTN71NzcoFcvq6txOAW1R+Dh4UFQUJBuf0qy5eHhod5gEUkZ7jyb9vrrkDu3tbUkAQW1R+Ti4qLRciIiIlY6dAgWLjS3+/a1tpYkov/FFhERkeRhxAhzxOfLL0OxYg5pYvXpXZSY04HVp3c55PoJpaAmIiIizu/sWZg1y9zu188hTRiGwcDN0zl4/TQDN093iqmNFNRERETE+Y0dC9HR8Nxz8OyzDmli5amdbL90BIDtl46w8tROh7STEApqIiIi4tyuX4cpU8zt/v0d0oRhGAzeOpM7Y+NtwOCtMy3vVVNQExEREec2aRKEhUGJEvDiiw5p4k5v2p1YZuAcvWoKaiIiIuK8bt+GcePM7f79wQHzQf67N+0OV5uL5b1qCmoiIiLivKZPh8uXIU8ecxF2B/h3b9odsYbd8l41BTURERFxTtHR5pQcAH36mKsRJLI7vWkP4oLN0l41BTURERFxTt99BydPgp8ftG3rkCai7NGcvHnpgcftGJwOu0KUPdoh7f8XrUwgIiIizscw7i4X1b07eHk5pBlPVw/aF6vLp9u/JZe3H/NfHICLzTXeOf5pffF09XBI+/9FQU1EREScz7JlsGcPeHtDp04OayYyNooZB34FYECFFpTLWshhbT0O3foUERER5zN0qPn1nXcgY0aHNTP30BrO3bpK9nSZaVGousPaeVwKaiIiIuJcNm6E338HDw/o2dNhzcTaYxm183sAepR6xbLbmw+joCYiIiLO5c6zaa1aQfbsDmvmp+NbOHTjDBk8vXmrmGMm0n1SCmoiIiLiPPbuhSVLzIlt+/RxWDOGYTB8x3cAdCpRn/QeaR3W1pNQUBMRERHnMXy4+bVxYyhY0GHNrD27m+2XDuPl5kmXki87rJ0npaAmIiIizuHkSZg719zu18+hTd3pTWtbpDZ+Xhkc2taTUFATERER5zBqFMTGwvPPQ7lyDmtmx6UjrDq9C1ebCz1LN3ZYO4lBQU1ERESsd/kyfPWVud2/v0ObujPSs0lQVfL4ZHVoW09KQU1ERESs9/nnEB4OZcuaPWoOcuTGWX74awMAfcq85rB2EouCmoiIiFgrLAwmTDC3+/c3R3w6yOhdP2A37NTNXYESWfI6rJ3EoqAmIiIi1vryS7h+HYKC4JVXHNbM+VvXmHVgJQB9yjp/bxooqImIiIiVoqLMQQQAffuCq+vDz38C43cvIsoew7PZilI5e3GHtZOYFNRERETEOnPmwNmzkC0btGzpsGZuRIYxdc/PAPQt08Rh7SQ2BTURERGxht1+d7moXr3A09NhTU3d8zM3o8MplikPL+Yp77B2EpuCmoiIiFhj8WI4dAh8faFDB4c1Ex4TyfjdPwLms2kutuQTf5JPpSIiIpJyGAYMHWpud+4MPj4Oa2rWwVVcCr9BrvT+NClQxWHtOIKCmoiIiCS9devgjz8gTRro1s1hzcTYYxn99wS3PUs1wt3VzWFtOYKCmoiIiCS9O71pb74JWR23OsAPR3/nWOgFsqTx4c2idRzWjqMoqImIiEjS2rULVqwwp+J4912HNWMYBsN3LgCgS8kGpHVP47C2HEVBTURERJLWnZGeTZtCXsetDvDrqR38eeUY6dzT0LFEfYe140gKaiIiIpJ0jh6FBWYvF/36ObSp4Tu+A6B9sbpkSpPeoW05ioKaiIiIJJ2RI8350+rWhaeeclgzm88fYP25Pbi7uNG9VEOHteNoCmoiIiKSNM6fh+nTzW0H96aN/PvZtBaFapDT28+hbTmSgpqIiIgkjXHjzLU9K1aE555zWDMHrp3ip+ObsWGjd5lXHdZOUlBQExEREccLCYHJk83t/v3BZnNYUyP/njetQb6KFM4Y6LB2koKCmoiIiDjelCkQGgpFi0K9eg5r5vTNy8w9/BsA75Z5zWHtJBUFNREREXGsiAgYM8bc7tcPXBwXP8YGLyTGHku1HCV5OqCww9pJKgpqIiIi4lgzZ8LFixAYCM2bO6yZq+GhfLVvGQB9yyb/3jRQUBMRERFH2rIFevQwt999F9zdHdbUpD1LuB0TSSm//NQMLOOwdpKSgpqIiIg4zocfmrc+06SBdu0c1syt6Ag+370YgL5lmmBz4GCFpJS8lpAXERER53fyJFy5Ym6vWmV+dXWFQ4fAMCBLFsidO1Gb/Hr/cq5F3iS/bzYa5a+UqNe2koKaiIiIJK48ee7dd/s2lC17971hJFpz0bExjN21EIBepV/F1cU10a5tNd36FBERkcQ1eza4/asv6E4wc3MzjyeieUfWcjrsMlnTZqRV4ZqJem2rKaiJiIhI4nr9dahW7f7Htm6FFi0SrSm7YY9bLqp7yYakcfNItGs7AwU1ERERSVzz5t19Nu3OQ/0Omjvt5xN/sP/aKXw80tKh+EsOacNKCmoiIiKSeM6ehc6dzW1vbyhXzlyVoGxZCAgAf/9Ea8owDIZtnw/AO8Xr4euZLtGu7Sw0mEBEREQSh2GYU3Bcv24Gs7VrIV06s1etQwdzQXZPz0RrbsO5vWy9eBBPV3e6lmyQaNd1JgpqIiIikjimToUVK8wwNmuW2aN2h82WqCENYPjO7wBoXaQWAekyJeq1nYVufYqIiMiTO3oUevc2tz/7zFx83YF2XznG8pPbcbG50Kt0Y4e2ZSUFNREREXkysbHQurU5V1rVqtC9u8ObHLnDHOn5aoHK5PfN7vD2rKKgJiIiIk9m5EjYtAnSp4cZMxw2wvOOYyHn+e7oegDeLZMyFl9/EAU1EREReXx//gmDBpnbY8fef1WCRDYmeCF2w07tXGUp7VfA4e1ZSUFNREREHk9kJLRsaY7mrF8f2rZ1eJMXb19nxv5fAXPx9ZROQU1EREQez4cfmj1qWbLAl1/endzWgT7fvZiI2CgqZC1ElRwlHN6e1RTUREREJOE2b4Zhw8ztKVMga1aHNxkadYvJe5YC0LdsE2xJEAytpqAmIiIiCXPrFrRqBXY7vPEGNE6a6TG+3LuMkKhbFM4YSP28zyRJm1ZTUBMREZGE6dvXnDctRw6YMCFJmoyIiWJs8ELAHOnpYksdESZ1fJciIiKSOH79FSZNMrenT4cMGZKk2dmHVnPh9nVyemehecFqSdKmM1BQExERkUdz/Tq8+aa53bkz1KqVJM3G2mMZvfMHALqXaoSHq3uStOsMFNRERETk0XTtCmfPQlDQ3YEESeDHY5s4EnKWjJ7evFX0hSRr1xkoqImIiMh/+/57mDPHXHVg1ixIly5JmjUMg+F/LxfV+amX8fbwSpJ2nYWCmoiIiDzchQvwzjvmdv/+8EzSjbj87UwwOy8fwcvNk85PvZxk7ToLBTURERF5MMOA9u3h6lUoWRIGD07S5ofv+A6AdkVfIIuXb5K27QwU1EREROTBpk+HpUvBwwO++cb8mkS2XTzEb2eCcXNxpUepV5KsXWeioCYiIiL3d/w4dO9ubv/vf1AiaZdsGrnTfDatWVA1cvs4fuUDZ6SgJiIiIvey281F1sPCoFIl6N07SZs/dP0Mi/7aBJgT3KZWCmoiIiJyr3HjYN06c3TnzJng6pqkzY/a9T0GBvXyPE2xzLmTtG1noqAmIiIi8e3fD++9Z26PGgX58ydp82fDrjD74GoA+pRtkqRtOxsFNREREbkrOhpatoTISHjhBejQIclLGL/7R6LtMVTOXpxnsxVN8vadiYKaiIiI3PXJJ7BzJ2TMCF9/DTZbkjZ/PeImX+z9BYC+qfjZtDsU1ERERMS0bRt8/LG5PWkSZM+e5CVM2buUsOhwimfOwwu5yyd5+85GQU1EREQgPBxatYLYWGjaFJo1S/ISbkdHMGH3YgD6lmmCLYl785yRgpqIiIjA++/DwYOQLRtMnGhJCTMOrORyeAh50mfltaAqltTgbBTUREREUrs1a2DsWHP7q68gc+YkLyE6NobRu74HoGfpxri5JO10IM5KQU1ERCQ1Cw2FNm3M7Q4doG5dS8pYcHQ9J29ews/LlzZFallSgzNSUBMREUnNevSAU6cgXz5zzjQLGIbBiL+Xi+pasgFp3dNYUoczUlATERFJrX76yVx03WaDGTPA29uSMpaf3MbeqyfwdvfineL1LKnBWSmoiYiIpEaXL0P79ub2u+/Cc89ZVsrwv3vTOhSvS8Y06S2rwxkpqImIiKQ2hgFvvw2XLkHx4vDRR5aVsvH8Pjac24uHixvdS75iWR3OSkFNREQktZk9GxYtAjc3mDUL0lj3TNjIHWZv2huFa5LdO+lHmzo7BTUREZHU5PRp6NrV3B4yBEqXtqyUvVdPsPTEVmzY6F26sWV1ODMFNRERkdTCboe2bSEkBJ5+Gvr1s7SckTvNedNeyf8sBTPmtLQWZ6WgJiIiklpMmgSrV4OXl3nL083NslJOhl5k3uE1ALyrxdcfSEFNREQkNTh8GPr2NbeHD4eCBS0tZ2zwImINOzVylqJ81kKW1uLMFNRERERSupgYc8H18HCoWRM6dbK0nCvhIXy9fzkAfcs2sbQWZ6egJiIiktINGwZbt4KvL0ybBi7W/ud/4p8/ER4TSRm/IGrkLGVpLc5OQU1ERCQl27XLHN0JMGECBAZaWk5YVDgT//wJgL5lX8Nms1laj7NTUBMREUmpIiLMW54xMdCoEbzxhtUV8dX+5VyPDCPINwcN8z1rdTlOT0FNREQkpRo0CPbuBX9/mDLFXNPTQlGx0Yzd9QMAvcu8iquLq6X1JAcKaiIiIinRhg0wcqS5/eWX4OdnbT3A3ENrOHvrKtnSZuKNwjWsLidZUFATERFJaW7eNG95GoY5we3LL1tdEXbDzsi/F1/vXuoVPF09LK4oeVBQExERSWnefReOH4fcuWHsWKurAeCnY5s5dOMMvh7paF/8RavLSTYU1ERERFKSZcvgiy/M7enTwcfH2noAwzAY/ndvWscS9fDxSGdxRcmHgpqIiEhKcfUqtGtnbvfoAdWrW1rOHevP7mHbxUOkcfWgS8kGVpeTrFga1CZPnsxTTz2Fj48PPj4+VKxYkWXLlsUdj4iIoHPnzmTOnBlvb28aN27MxYsX413j1KlTvPTSS6RNmxZ/f3/69OlDTExMUn8rIiIi1uvcGc6fh8KF4dNPra4GgNWnd9Fg6WAA2hStTda0GS2uKHmxNKjlzJmToUOHsmPHDrZv306NGjVo0KAB+/btA6Bnz54sWbKEBQsWsG7dOs6dO0ejRo3iPh8bG8tLL71EVFQUmzZtYubMmcyYMYNBgwZZ9S2JiIhYY948mD8fXF3hm2/MhdctZhgGPddP4VZMBAA9SzX6j0/Iv9kMwzCsLuKfMmXKxIgRI3j11Vfx8/Nj7ty5vPrqqwAcPHiQIkWKsHnzZp555hmWLVtGvXr1OHfuHFmzZgVgypQp9OvXj8uXL+Ph8WgjSkJDQ/H19SUkJAQfJ7iXLyIikiDnzkHx4nD9OgwefHclAov9enIHLy0ZGPf+5/ofUzt3WQsrcg4JyR1O84xabGws8+bN49atW1SsWJEdO3YQHR1NzZo1484pXLgwuXLlYvPmzQBs3ryZEiVKxIU0gDp16hAaGhrXK3c/kZGRhIaGxnuJiIgkS4ZhPpd2/TqULQsDBlhdEWD2pvXb9FXcexebjcFbZ+Jk/UNOz/KgtmfPHry9vfH09OSdd95h0aJFFC1alAsXLuDh4UGGDBninZ81a1YuXLgAwIULF+KFtDvH7xx7kM8++wxfX9+4V6DF656JiIg8ti+/hOXLwdPTvOXp7m51RQCsOLWdvVdPxL23GwbbLx1h5amd1hWVDFke1AoVKkRwcDBbt26lY8eOtG7dmv379zu0zffee4+QkJC41+nTpx3anoiIiEP89Rf06mVuf/YZFClibT1/MwyDTmsm3LPf1eaiXrUEcrO6AA8PDwoUKABA2bJl2bZtG+PGjaNp06ZERUVx48aNeL1qFy9eJCAgAICAgAD++OOPeNe7Myr0zjn34+npiaenZyJ/JyIiIkkoNhZat4Zbt6BqVeje3eqK4ny9bzmnwy7fsz/WsMf1qulZtUdjeY/av9ntdiIjIylbtizu7u6sXr067tihQ4c4deoUFStWBKBixYrs2bOHS5cuxZ2zcuVKfHx8KFq0aJLXLiIikmRGj4aNGyF9epgxA1yc4z/pUTHR9N4w9YHHXdCzaglhaY/ae++9x4svvkiuXLm4efMmc+fOZe3ataxYsQJfX1/atWtHr169yJQpEz4+PnTt2pWKFSvyzDPPAFC7dm2KFi1Ky5YtGT58OBcuXGDgwIF07txZPWYiIpJy7dkDA/8eTTl2LOTJY2U18Xyy/Vtux0Q+8Lgdg9NhV4iyR2u9z0dgaVC7dOkSrVq14vz58/j6+vLUU0+xYsUKatWqBcCYMWNwcXGhcePGREZGUqdOHSZNmhT3eVdXV5YuXUrHjh2pWLEi6dKlo3Xr1nz00UdWfUsiIiKOs327uY7nuXMQFQX165uLrjuJ7RcPM2zHfAD+90xraucqd9/z/NP6KqQ9IqebR80KmkdNRESShW7dYMLfD+lnyQJ798K/Zj+wSnhMJE/P78qB66d5rUAV5tTpj81ms7osp5SQ3GH5YAIRERF5iJMn4coVsNlg9uy7+/v2hTNnICICcue2rr6/fbB5JgeunyYgbUYmVO2skJZIFNRERESc2YOeP+vb9+62xTfH1p35k3G7FwHwRY0eZPbS3anE4hxDREREROT+Zs8Gtwf0q7i5xe9ls0Bo1C3arR4FQLuiL/BingqW1pPSqEdNRETEmVWrBjlzwokT9x7buhXKlEnqiuLp/fsXnLx5ibw+AYyo3N7SWlIi9aiJiIg4qxMnoEqVuyHtznNfTjJn2tLjW5hx4Fds2JhWszfpPdJaXVKK4xx/0iIiIhLfoUPw3HNw7Jg5WMDPD8qVgylTzMXXAwLA39+y8i6H3+Dt38YB0LN0IypnL25ZLSmZbn2KiIg4mz//hFq14NIlc/3OVasgc2bw8DB71Tp0MOdRs2hyd8Mw6Lzmcy6F36BYptx8+HQrS+pIDRTUREREnMm2bVCnDly/DqVLw4oVZm/aP9lsloU0gLmH17Do2EbcXFyZXutd0rhp8lpH0a1PERERZ7FhAzz/vBnSKlaE3367N6RZ7EzYZbqvM1cJ+qB8C0r7FbC4opRNQU1ERMQZrFwJtWvDzZtQvTr8+itkyGB1VfHYDTtvrR5DSNQtymctRN+yTawuKcVTUBMREbHaTz9BvXoQHg5168LPP4O3t9VV3WPKnp9ZfXoXXm6eTK/5Lm4urlaXlOIpqImIiFhp3jxo1MgcHNC4MSxaBF5eVld1jyM3ztJ/09cAfFqxLYUy5rS4otRBQU1ERMQq06bB669DbCy88YYZ2jyc78H8GHssbVeOJDwmkho5S9HpqfpWl5RqKKiJiIhY4fPPoV07c53Ot9+GmTMfvFSUxUbuXMDWiwfx8UjLV8/3wsWm+JBU9JMWERFJasOGQdeu5navXjB5stOsNvBvwZf/4qM/5gAwtkpHAtM71yjUlM45fytERERSIsOADz6A/v3N94MGwciRd5eGcjKRsVG0WTmSaHsMDfM9yxuFnre6pFTHOftYRUREUhrDgN69YcwY8/2wYdC3r7U1/YchW79h37UT+Hn5Mql6V2xOGihTMgU1ERERR4uNhU6d4IsvzPeffw6dO1tb03/YcG4vo3b+AMCU6t3x88pgbUGplIKaiIiII8XEQJs2MGeO+Rza11+b751YWFQ47VaNwsCgVeFavJyvotUlpVoKaiIiIo4SGQnNm5tzo7m5wezZ0LSp1VX9p74bv+JY6AVypfdn9HNvW11OqqagJiIi4gjh4eZEtsuXmwuoL1gA9Z1//rHlJ7fx5b5fAPjq+Z74eqazuKLUTUFNREQksd28CS+/DGvXQtq0sHgx1KxpdVX/6VrETTqsHgtA15INqJ6zlKX1iIKaiIhI4rp+3Vyvc8sW8PEx1+2sXNnqqh5Jt3UTOX/7GoUy5OSTim2tLkdQUBMREUk8ly9D7doQHAyZMsGKFVCunNVVPZLvjqxj/pF1uNpcmFbrXbzcPK0uSVBQExERSRxnz5q3Nw8ehKxZYeVKKFHC6qoeybmwq3RdOxGA98o1o0LWQhZXJHcoqImIiDypEyfg+efh2DHImRNWr4aCBa2u6pEYhsHba8ZyLfImpf0K8H655laXJP+gJaRERESexOHD8NxzZkjLlw9+/z3ZhDSAr/YtY/nJ7Xi6ujO95ru4u6oPx5koqImIiDyuPXugShU4cwaKFDFDWp48Vlf1yI6FnKfPxi8B+N8zbSiWObfFFcm/KaiJiIg8ju3boVo1uHgRSpWCdesge3arq3pksfZY3lw1ilvRETyXvTjdSzW0uiS5DwU1ERGRhNqwAWrUgGvX4JlnYM0a8POzuqoEGRu8iI3n9+Ht7sXXNXvjYlMkcEb6UxEREUmIlSvNKThu3jR71H79FTJksLqqBNl79QSDtswEYNRzb5PXJ8DiiuRBFNREREQe1ZIlUK+euTzUiy/CL79A+vRWV5UgUbHRtFk5gih7DHVzV6BtkdpWlyQPoaAmIiLyKObPN9fujIoyvy5aBF5eVleVYB9vm8vuK8fInMaHqTW6Y7PZrC5JHkJBTURE5L9Mnw6vvw4xMfDGG2Zo80x+M/dvuXCAYTu+A2BitS4EpMtkcUXyXxTUREREHmbiRHjzTbDboUMHmDkT3JLfXGO3oyN4c+Uo7Iad5gWr07jAc1aXJI9AQU1ERORBhg2DLl3M7Z49YcoUcEme/+l8b9M0joScJUe6zIyr0tHqcuQRJc/fNhEREUcyDPjgA+jf33z/wQcwahQk0+e5Vp/exaQ9SwD48vmeZEyTvAZApGbJr+9WRETEkQwDeveGMWPM90OHQr9+1tb0BG5EhvHW6tEAvFOiHrVylbW4IkkIBTUREZE77Hbo2BG++MJ8P2HC3VufyVSP9VM4E3aFAr7ZGfpsO6vLkQRSUBMREQFzRGfbtjB7tvkc2ldfme+TsUV/bWTOodW42Fz4umZv0rmnsbokSSAFNRERkagoaN4cFi40R3TOng1Nm1pd1RO5ePs6ndaMB6BPmdd4NltRiyuSx6HBBCIikjpt326u17lhAzRsaIY0Dw/44YdkH9IMw6DjmvFciQilROa8fFDhdatLksekHjUREUmdZs0yF1Nv1gzOnoW0aWHxYqhZ0+rKntisg6tYcnwL7i5uzKjVB09XD6tLksekoCYiIqnHyZNw5Yo5zca335r77oS08eMhKMja+hLBydCL9Fw/GYAPn27JU1nyWlyRPAkFNRERST3y5Ln//tu34a23zG3DSLJyEpvdsNNu9WhuRodTMaAovUo3trokeUJ6Rk1ERFKPb7558MoCdwYRJGOf//kT687+SVo3T6bV7I2ri6vVJckTUo+aiIikDqGhsGyZOVfa/WzdCmXKJG1NiejAtVMM2DQdgOGV21MgQ3aLK5LEoKAmIiIp3x9/mNNvHDtm9qjZ7fd+TcaiY2Nou2okEbFR1M5Vlg7F6lpdkiQS3foUEZGUy26H4cOhUiUzpOXObU6/ERAAZcuai6yXLWu+9/e3utrHNmzHfHZcOkIGT2++qNEDWzJdk1TupR41ERFJmS5cgFatYOVK8/1rr5lLQ2XIAC++aM6ZZrNBhw7mhLeenpaW+7i2XzzMJ9vNEawTqnYmh3cWiyuSxKQeNRERSXlWrICSJc2Q5uVlBrT5882QBmYou9PrZLMl25AWHhPJm6tGEmOP5dUCz9E0qKrVJUkiU1ATEZGUIyoK+vSBF16AS5egRAlzBYL27e8GsxRk0JZZHLh+moC0GZlQtbNueaZAuvUpIiIpw9Gj5oCB7dvN9507w4gRZo9aCrTuzJ+MC14EwNQaPcji5WtxReIICmoiIpL8zZ4NHTtCWBhkzAjTppnrd6ZQoVG3aLd6FAYGbxZ9gbp5KlhdkjiIgpqIiCRfN29Cly7mup0AVaqYoS0w0Nq6HOzdDV9y8uYl8qTPysjK7a0uRxxIQU1ERJKnHTvMW51HjphzoQ0eDAMGgGvKnY1/9eldvLV6NGfCrmDDxrSavUnvkdbqssSBFNRERCR5sdth7Fjo3x+io83eszlz4LnnrK7MoQzDoN/GrzgTdgWA7iUb8lyOEhZXJY6moCYiIsnHpUvQpo25FBTAK6/AV19BpkyWlpUUfj21g91XjsW9r5rzKQurkaSi6TlERCR5WLXKnBtt2TJIkwYmTzZXGUgFIc1ut9Nu1ai49y42G59sm4thGBZWJUlBQU1ERJxbdLR5m7N2bXO1gaJFYds2eOedFDk32r/ZDTsNfh7MxfAb/9hnsP3SEVae2mldYZIkFNRERMR5HT9uPns2bBgYBrz9thnSihe3urIkEWOPpc3KkSw/uf2eY642FwZvnaletRROQU1ERJzTvHlQqhRs3Wou/fT99+Yi6mlTxyjHyNgomi//lG8Pr7nv8VjDrl61VEBBTUREnMutW/Dmm+bUG6GhUKkSBAdD48ZWV5ZkwmMiafzz//jx2CZswINu8LpgU69aCqegJiIiziM4GMqWhenTzefPPvgA1q6F3LmtrizJ3Iy6Tf0lg1hxajterh74enrzoBhmx+B02BWi7NFJWqMkHU3PISIi1jMMmDDBXFA9Kgpy5DBXGKhWzerKktT1iJvUXzKIrRcPkt7di5/qf0Tu9Fm5HB7ywM/4p/XF09UjCauUpKSgJiIi1rpyBdq2haVLzff165trdWbJYm1dSexy+A1eXDyA3VeOkckzPT+//DHlshYEIDC9n8XViVV061NERKyzZo05N9rSpeDpafaqLV6c6kLaubCrPL+wL7uvHMPfKwOrXhkWF9IkdVOPmoiIJL2YGBgyBD791LztWbiwOcqzZEmrK0tyJ0IvUufH/hwLvUBO7yysaPAZBTPmtLoscRIKaiIikrROnIDXX4fNm833b71lrt2ZLp2VVVni8PUz1Fn8HmfCrpDPJ4AVDYeSxyer1WWJE1FQExGRpLNgAbRvDyEh4OMDX3wBTZtaXZUl9lw5zos/DeDi7esUzhjI8gafksM7dd3ylf+moCYiIo53+zb06AFffmm+f+YZmDsX8ua1tCyrbL94mJd+Gsi1yJuUzJKPZQ0+wc8rg9VliRPSYAIREXGsPXugXDkzpNls8P77sH59qg1pG87tpfaP/bkWeZMKWQuxsuFQhTR5IPWoiYiIYxgGTJ4MvXpBZCRkywbffAPPP291ZZZZfXoXjX7+kNsxkVTJXoIf6w0hvUfqWBJLHs9j9ah99NFH3L59+5794eHhfPTRR09clIiIJHPXrkGjRtC5sxnS6taF3btTdUhbenwLDZYO5nZMJHVylWNJ/Y8U0uQ/2YzHWCDM1dWV8+fP4+/vH2//1atX8ff3JzY2NtEKTAqhoaH4+voSEhKCj4+P1eWIiCQ/27dD374wfLj5PFqLFnDmDLi7m/u6dzdve6ZSC46sp9XK4cTYY2mY71lm1+mn1QRSsYTkjse69WkYBrb7/IXbvXs3mTJlepxLiohIcjZrljl5befOZmiz2yEoyJwbrUwZq6uz1Iz9v/L2mnHYDTvNC1ZnWs3euLm4Wl2WJBMJCmoZM2bEZrNhs9koWLBgvLAWGxtLWFgY77zzTqIXKSIiTujkSXP5J5vNHMEJ8Mcf5td69WDYMCha1Lr6nMCkP5fQff0kANoVfYGJ1brgqpAmCZCgW58zZ87EMAzefPNNxo4di6+vb9wxDw8P8uTJQ8WKFR1SqCPp1qeIyGN4lFuZCX+6JsUYuXMB722aBkC3kg0ZWbnDfe9GSerjsFufrVu3BiBv3rxUqlQJNzcNGhURSbU++QQGDLj/MTc3mDEjSctxFoZh8OEf3/DJtm8BeL9cc4Y83VIhTR7LY436TJ8+PQcOHIh7v3jxYho2bMj7779PVFRUohUnIiJO6NYtc+DAoEEPPmfrVnNAQSpjGAZ9N34VF9I+qdiWD59ppZAmj+2xgtrbb7/N4cOHATh27BhNmzYlbdq0LFiwgL59+yZqgSIi4kSWL4fixWHECIiNvTvdhotL/K+pkN2w03nt54wNXgjAmOfeoW/ZJhZXJcndY/2NOnz4MKVKlQJgwYIFVK1alblz5zJjxgx++OGHxKxPREScwYUL0Lw5vPiiuah6YCAsWWLe3gwIgLJlYcoU82tAAPxr+qaULsYey5urRvPlvl+wYeOLGj3oUrKB1WVJCvDY03PY7XYAVq1aRb169QAIDAzkypUriVediIhYy26Hr76Cfv3gxg2zx6x7d/joI/D2Ns85cQI8PMzBBR06QFQUeHpaWXWSioqNpuWvw1j410ZcbS7MrNWHpgWrWV2WpBCPFdTKlSvHxx9/TM2aNVm3bh2TJ08G4Pjx42TNmjVRCxQREYvs3w9vvw0bNpjvy5SBL74we83+6Z+hzGZLVSEtPCaSJss+ZvnJ7Xi4uPHtC+/zcr7kN/uBOK/HuvU5duxYdu7cSZcuXRgwYAAFChQA4Pvvv+fZZ59N1AJFRCSJRUTABx9AqVJmSEuXDsaMMQcI/DukpWI3o25Tf8kglp/cjpebJ4vrfaiQJonusZaQepCIiAhcXV1xd3dPrEsmCc2jJiLyt99+g3fegSNHzPf168Pnn0OuXNbW5WRuRIZR76cP2HrxIOndvfip/kdUzl7c6rIkmXD4ElJ37NixI26ajqJFi1ImlS8TIiKSbF25Ar17m0tBAWTPDhMmwCuvpOo1Ou/ncvgNXlw8gN1XjpHR05ufX/6Y8lkLWV2WpFCPFdQuXbpE06ZNWbduHRkyZADgxo0bVK9enXnz5uHn55eYNYqIiKMYhhnOeveGq1fNUNapkzmZ7T9WnxHTubCrvPjT++y/dgp/rwwsa/ApT2XJa3VZkoI91jNqXbt2JSwsjH379nHt2jWuXbvG3r17CQ0NpVu3boldo4iIOMLhw+Y8aG3amCGtRAnYtMm81amQdo+ToRepsagP+6+dIke6zPzWaIRCmjjcYz2j5uvry6pVqyhfvny8/X/88Qe1a9fmxo0biVVfktAzaiKSqkRFmQumf/IJREaClxcMGQI9e0Iye8Y4qRy+foYXFr/P6bDL5PUJYEXDz8jrE2B1WZJMOfwZNbvdft8BA+7u7nHzq4mIiBPasMGc6+zOMoB16sCkSZAvn7V1ObG9V0/wwuL3uXj7OoUzBrK8wafk8M5idVmSSjzWrc8aNWrQvXt3zp07F7fv7Nmz9OzZk+fvLCciIiLO4/p1M6A995wZ0vz9Ye5cWLZMIe0hdlw6wvML+3Lx9nWeypKP1a8MV0iTJPVYQe3zzz8nNDSUPHnykD9/fvLnz0/evHkJDQ1lwoQJiV2jiIg8LsOAb7+FwoXhyy/NfW+9ZYa15s01ovMhNp7fR+0f+3Mt8iYVshZiVcOh+KfNYHVZkso81q3PwMBAdu7cyapVqzh48CAARYoUoWbNmolanIiIPIHjx6FjR1ixwnxfpAhMnWr2qslD/XZ6F6/8/CG3YyJ5LntxFtf7kPQeaa0uS1KhBPWo/fbbbxQtWpTQ0FBsNhu1atWia9eudO3alfLly1OsWDF+//13R9UqIiKPIjoahg+HYsXMkObpaa7NuWuXQtoj+Pn4Vl5eOpjbMZHUzlWWpfX/p5AmlklQUBs7dizt27e/7wgFX19f3n77bUaPHp1oxYmISAJt3QrlypmLqIeHQ/Xq8Oef5pJQqWgNzsf1/dHfeXXZ/4iMjaZBvoosfGkQad3TWF2WpGIJCmq7d+/mhRdeeODx2rVrs2PHjicuSkREEig0FLp0gYoVzWCWOTPMmAGrV0PBglZXlyzMOrCSFiuGEmOPpVnBanxb5308XT2sLktSuQQ9o3bx4sWHruPp5ubG5cuXn7goERF5RIYBixZB165wZyR+q1YwahRk0ejEh1l9ehc91k9mbJWOHL5xlm7rJgLQrugLTKzWBVcXV4srFElgUMuRIwd79+6lQIEC9z3+559/ki1btkQpTERE/sPp09C5MyxZYr4vUACmTDFXG5CHMgyDgZunc/D6ad5aNZozt64A0LVkA0ZVfhubRsOKk0jQrc+6devywQcfEBERcc+x8PBwBg8eTL169RKtOBERuY/YWBg71hzFuWSJuZrAwIGwZ49C2iNaeWon2y8dAYgLae+Va6aQJk4nQUtIXbx4kTJlyuDq6kqXLl0oVKgQAAcPHmTixInExsayc+dOsmbN6rCCHUFLSIlIsrFzpzlx7Z3ngStVMqfcKFbM2rqSEcMwqPhdd3ZePsKd/wDmSJeZ422+UUiTJOGwJaSyZs3Kpk2b6NixI++99x53Mp7NZqNOnTpMnDgx2YU0EZFkISwMBg82e9LsdsiQwZyCo107cHmsuctTrTmHfmPH5SPx9p29dZWVp3ZSO3dZi6oSub8E/+3OnTs3v/zyC1euXGHr1q1s2bKFK1eu8Msvv5A3b94EXeuzzz6jfPnypE+fHn9/fxo2bMihQ4finRMREUHnzp3JnDkz3t7eNG7cmIsXL8Y759SpU7z00kukTZsWf39/+vTpQ0xMTEK/NRER57B9O9SoYX4FWLrU7DEbPdoMac2amSsLtG+vkJZAPxz5nbdW3zuNlKvNhcFbZ5KAm0wiSeKx/4ZnzJiR8uXLU6FCBTJmzPhY11i3bh2dO3dmy5YtrFy5kujoaGrXrs2tW7fizunZsydLlixhwYIFrFu3jnPnztGoUaO447Gxsbz00ktERUWxadMmZs6cyYwZMxg0aNDjfmsiItaaNQvWrDEHBrz2GtSvD6dOQZ488Msv5pJQAQFWV5mshMdE0mnNBJqt+JRYw37P8VjDzvZLR1h5aqcF1Yk8WIKeUXO0y5cv4+/vz7p166hSpQohISH4+fkxd+5cXn31VcB8Hq5IkSJs3ryZZ555hmXLllGvXj3OnTsXd9t1ypQp9OvXj8uXL+Ph8d9z4OgZNRGx3MmTcOWKufbmiy/CpUvmtmGYvWZvvWX2qKVLZ3Wlyc7eqyd4Y8VQ9l07+dDzXLBRxr8Am14bp2fVxKESkjucqs88JCQEgEyZMgGwY8cOoqOj460hWrhwYXLlysXmzZsB2Lx5MyVKlIj3bFydOnUIDQ1l3759920nMjKS0NDQeC8REUvlyWOuKFC2rBnSwAxpYN7u/OILhbQEMgyDqXt/puJ33dl37SRZvTKQwdP7gefbMTgddoUoe3QSVinycI+1KLsj2O12evToQaVKlShevDgAFy5cwMPDgwwZMsQ7N2vWrFy4cCHunH8PYLjz/s45//bZZ5/x4YcfJvJ3ICLymAwDuneHcePuf9zNzVxlQB7ZtYibvPPbOBYd2wjAC7nL8fXzvYmMjeZyeMgDP+ef1lerEYhTcZqg1rlzZ/bu3cuGDRsc3tZ7771Hr1694t6HhoYSGBjo8HZFROIxDPjpJxgyBIKDH3ze1q1QpkxSVZXsbTi3l1a/Dud02GXcXdz49Nk36VayAS428yZSYHo/iysUeXROEdS6dOnC0qVLWb9+PTlz5ozbHxAQQFRUFDdu3IjXq3bx4kUC/n6QNiAggD/++CPe9e6MCg14wMO2np6eeGpxYhGximGYE9UOGQK7dpn7vL2hSROYNs18Js1uv/tVHkmsPZbPts/jf9vmYjfsFPDNzuw6/SnrH2R1aSKPzdJn1AzDoEuXLixatIjffvvtnuk9ypYti7u7O6tXr47bd+jQIU6dOkXFihUBqFixInv27OHSnWc6gJUrV+Lj40PRokWT5hsREXkUdwJauXLQoIEZ0ry94b334MQJ+PBDczRn2bLmiM+yZc33/v5WV+70zoRdptaP/fnwj9nYDTstC9fkj6YTFNIk2bN01GenTp2YO3cuixcvjlvlAMDX1xcvLy8AOnbsyC+//MKMGTPw8fGha9euAGzatAkwp+coVaoU2bNnZ/jw4Vy4cIGWLVvy1ltv8emnnz5SHRr1KSIOZRjw889mD9qdFQXSpTMXUu/dO/7i6ZGR4OFxd8RnVBToDsBD/XRsM+1Xj+Fa5E283b2YWK0LrxeqYXVZIg+UkNxhaVB70PDn6dOn06ZNG8Cc8LZ37958++23REZGUqdOHSZNmhTvtubJkyfp2LEja9euJV26dLRu3ZqhQ4fi5vZod3YV1ETEIQwDli0zA9q2bea+dOmgSxczoPnpWaknERETRb+NXzFpj7kofVn/IGbX7k+BDNktrkzk4ZJNUHMWCmoikqgMA5YvNwPanWdo06Y1A9q77yqgJYID107x+orP2Hv1BAC9Sjfmf8+0xsPV3drCRB6Bw9b6FBGRhzAMWLHCDGhbt5r7vLygc2fo00fPmiUCwzCYtn8FPX+fQnhMJP5eGZhe812t0SkploKaiMiTMgz49VczoG3ZYu7z8oJOncyA9q+5HuXx3IgMo9OaCSw4uh6AmoGlmV7zXQLSZbK4MhHHUVATEXlchgGrVsHgwfD3aimkSWMGtL59FdAS0ebzB2j561BO3ryEm4srHz/Thp6lG8XNjSaSUimoiYgklGHA6tVmD9pGc+Z70qSBjh3NgKYF0xNNrD2WETsXMGTrN8QadvL5BDC7Tn/KZy303x8WSQEU1EREHpVhwG+/mQHtzioqnp7wzjvQrx9ky2ZpeSnNubCrtF45grVndwPQrGA1Jlbrgo+H1jyV1ENBTUTkvxgGrFljBrTffzf3eXrC22+bAS27poNIbD8f30q71aO5GhFKOvc0jK/SiZaFaz5wWieRlEpBTUTkYdauNZ9BW28+wI6nJ3ToAP37K6A5QGRsFO9tmsaE3YsBKOWXnzm1+1MwY87/+KRIyqSgJiJyP+vWmT1oa9ea7z087ga0HDmsrCzFOnT9DC1WfMbuK8cA6F7yFT55tg2erh4WVyZiHQU1EZF/Wr/eDGhr1pjvPTygfXszoOVUr44jGIbBrIOr6L5+EreiI8iSxodpNXvzYp4KVpcmYjkFNRERMAcHDB5sDhYAcHeHt94yF0wPDLS2thQsNOoWndd8zrwjawGonrMkM2r2Ibt3ZmsLE3ESCmoikrpt3GgGtNWrzffu7tCunRnQcuWytrYU7o+Lh3hjxVCOh17A1ebCR8+0pnfpxri6uFpdmojT0EyBIpKybd8ONWqYX/9p0yaoXRsqVzZDmru7OYrzyBGYPFkhzYHshp2ROxdQ9YfeHA+9QJ70WVnbeCR9yzZRSBP5F/WoiUjKNmuW+bzZN99AuXLmCgJDhphLPgG4ucGbb8L770Pu3JaWmhpcuHWNtqtGsur0LgBeK1CFSdW7ksHT2+LKRJyTgpqIpDwnT8KVK2Czwfz55r5vvoFt2+4u9eTmBm3awIABkCePVZWmKitObqftqpFcDg8hrZsnY6p0pG2R2pobTeQhFNREJOW5X/C6fv1uSAM4fBjy5k2yklKzqNhoBm6ewZjghQCUyJyXOXX6UySTbi+L/Bc9oyYiKc/MmeD6gGed3Nxg9myFtCRy5MZZnvu+d1xI6/zUy2x6baxCmsgjUo+aiKQcYWEwbRqMHQuxsfc/Z+tWKFMmSctKrWYfXE3XdRMJiw4nk2d6vqrZi/p5n7G6LJFkRUFNRJK/8+dhwgRztOaNG+a+DBnMbZvNXKvTxQXsdguLTNlWn95Fj/WTGVulIxWyFqLruknMOWROeVIlewlm1e5LDu8sFlcpkvwoqIlI8rV3L4webd7KjI429wUFQa9e8PzzUKWKOVltu3bw9ddw+jT4+1tbcwpkGAYDN0/n4PXT9Fw/hajYaP4KPY+rzYVBFd6gn6bdEHlsCmoikrwYhrl6wMiRsHz53f2VK8O770L9+mbvGcCJE+YSUDabuU5nVJS5qLokqpWndrL90hEADlw/BUCu9P7Mqt2XStmKWVmaSLKnoCYiyUN0tDnVxqhREBxs7nNxgUaNoHdveOY+zz79M5TZbAppDmAYBv02fRVvXwZPb7Y1mUAmLx+LqhJJORTURMS5hYTAl1/CuHFw5oy5L21a83Zmjx6QL5+l5aVm0bExdFo7gb1XT8TbfyMyjO2XjlA7d1lrChNJQRTURMQ5nT5thrMvvoCbN819WbNCt27wzjuQKZO19aVym88f4J3fxrH/+sl7jrnaXBi8dSa1cpXRZLYiT0hBTUScy86d5u3N+fPvTrFRtKj5/Nnrr+v2pcVCIm8xYPN0vtj7CwbGfc+JNexsv3SElad2qldN5AkpqImI9QzDHBgwcqQ5UOCOGjXMgPbCC+YzZmIZwzBY+NcGeq6fwvnb1wDInMaHaxE37xvYXLCpV00kESioiYh1IiNhzhyzB23/fnOfqys0a2YOEChd2tr6BICToRfptm4Sv5z8A4CCGXIw9rlOtFk14oG9anYMToddIcoejaerR1KWK5KiKKiJSNK7ehWmTDEnqb140dyXPr05hUa3bpBLyws5gxh7LBN2L2bI1lncjonEw8WNfmWb0rdsE9K4ebClyXguh4c88PP+aX0V0kSekIKaiCSdv/4yl3eaNg1u3zb35cxpjt586y3w9bWyOvmHHZeO0HHNeHZdPgrAc9mLM6l6NwpnDIw7JzC9H4Hp/awqUSRVUFATEcfbssV8/mzRorvLOJUqZT5/1qQJuLtbWp7cdTPqNoO3zmLin0uwG3YyenoztNJbtClSCxebi9XliaQ6Cmoi4hixsbBkiRnQNm68u//FF83nz2rU0AABJ7Pk+Ba6r5vE6bDLADQrWI1Rld/GP20GawsTScUU1EQkcd2+DTNnwpgxcMRcVgh3d3jjDXMNzuLFra1P7nE27Ao9109h0TEzUOfzCeDzal2olUtTa4hYTUFNRBLHpUswcaL5unrV3JcxI3TsCF26QLZs1tYn94i1xzJl7898sHkGN6PDcXNxpVepxgwo35y07mmsLk9EUFATkYTavh369oXhw6FcOTh0CEaPNnvRIiPNc/LmhZ49oW1b8Pa2tl65r91XjtFpzXj+uHgIgKezFmZy9W6UyJLX4spE5J8U1EQkYWbNgjVrYOhQiIoyn0O7o0IFc4DAK6+Am/55cUa3oyP437Y5jNm1kFjDjo9HWj6u2Ja3i9fVYAERJ6R/SUXkv508CVeuQHS02XMG8MMPd4/XqgWDBkGlShog4MRWnNxOl7Wfc+KmOXdd4/yVGf3cO2T3zmxxZSLyIApqIvJwsbGQJ8/Dz1m5En79NUnKkYS7cOsa7274gvlH1gEQ6O3HhKqdeSnv0xZXJiL/RUFNRO5lGLBjB8ydC/PmPfxcNzeYMSNJypKEsRt2vt63nPc3T+dGZBguNhe6PtWAIU+3xNvDy+ryROQRKKiJyF2HD5vhbO7cu1NrgDl6s3p1WLjw3s9s3QplyiRdjfJI9l87Sac1E9h4fh8Apf0KMLl6N8r6B1lcmYgkhIKaSGp39izMn2+Gsx077u738oIGDeD116FOHdi71wxqLi7m6gJ3vopTiYiJ4rPt8xixcwHR9hjSuafhw6db0fmpl3FzcbW6PBFJIAU1kdTo+nVzMMDcubB2rXmrE8DV1Qxlr79uhrR/Tq3h7w8BARAYCO3awddfw+nT5n5xCmvOBNN5zeccCTkLQL08TzOuaidypdefkUhypaAmklrcvg1Ll5rh7JdfzBGcd1SubIazV18Fvwcssp0zJ5w4AR4e5sjODh3M6Tk8PZOkfHmwK+Eh9NnwJbMPrQYgW9pMjK3SkVfyV8KmUbgiyZqCmkhKFhMDq1aZ4WzRIggLu3vsqafMcNasGeTO/WjX+2cos9kU0ixmGAbfHFxF341fcTUiFBs23ilRj/890xpfz3RWlyciiUBBTSSlMQzYssUMZ/Pnw+XLd4/lyWOGs+bNteZmMnf4+hk6r/2ctWd3A1A8cx4mV+/GMwFFLK5MRBKTgppISrFv390RmydO3N3v5wdNmpgBrWJFTUibzEXFRjNi5wI+2z6PyNhovNw8+aD86/Qo1Qh3V/2TLpLS6G+1SHJ28qQ5z9ncufDnn3f3e3ubyzi9/jo8/zy4u1tXoySaDef20mnNeA5cPw1ArcAyfF6tC/l8teC9SEqloCaS3Fy5AgsWmOFsw4a7+93doW5dM5zVqwdp01pXozyR1ad30WP9ZMZW6cjzgaW5HnGT/pumMW3/cgD8vTIw6rm3aRpUVYMFRFI4BTWR5CAsDBYvNsPZr7+agwTAvI1ZrZoZzho3NiemlWTNMAwGbp7OweunGbB5Opdu3+DdDV9wKfwGAG8WfYHPnn2TTGnSW1uoiCQJBTURZxUVBStWmOFs8WIID797rGxZM5w1bQo5clhXoyS6lad2sv2SuSrEjktHaLVyOACFMwYyuXo3KmfXIBCR1ERBTcRK27dD374wfDiUK2fO9P/772Y4W7DAnJj2jqCguyM2CxWyrmZxGMMwGLB5OjZsGJiTENuAQRXeoE/Z1/B09bC2QBFJcgpqIlaaNQvWrIHRo82esXnz4MyZu8ezZTPnOXv9dbMXTc8jpVghkbfotm4SwVf+irffACpkLayQJpJKKaiJJLWTJ80BAWFhMG2aue/bb+8eT5/+7nQaVauayzpJihUSeYsJu39kbPAiQqJu3XPc1ebC4K0zqZWrjAYOiKRCCmoiSS1Pnocfv3kTvvoqSUoR64RG3WLC7sWMDV7EjciwB54Xa9jZfukIK0/tpHbusklYoYg4AwU1kaQSEgLjxpnTZty+ff9z3NxgxowkLUuSVmjULSb++RNjdi3k+t8BrXCGnETZYzgRehH738+m/ZMLNvWqiaRSCmoijhYaaga00aPhxg1zX758cOzYvedu3QplyiRpeZI0bkbdjgto1yJvAuZIzgHlX+flvM8QNKvtfUMagB2D02FXiLJH61k1kVRGQU3EUUJDYfx4M6DdGb1ZtCgMHmwGtfLlwcXFHOl556ukODejbjPpzyWM3vVDXEArlCEnA8q/TpOgKri6mM8gbmkynsvhIQ+8jn9aX4U0kVRIQU0ksd28CRMmwKhRcO2aua9wYTOgvfaaOTjgzBkICIDAQGjXDr7+Gk6fBn9/a2uXRBMWFc6kPWZAuxoRCkDBDDkYUP51mgZVjQtodwSm9yMwvZ8VpYqIE1NQE0ksN2/C55/DyJHxA9qgQeYozn+O3syZ01w43cPDnHKjQwdzgltPT0tKl8QTFhXOlL1LGbXze678HdCCfHMwoIIZ0NxcNIpXRB6dgprIkwoLuxvQrl419xUqZAa0pk0fPL3GP0OZzaaQlszdio5gyp6ljNy5IC6gFfDNzvvlm9O8YHUFNBF5LApqIo8rLAwmTYIRI8x50cBcPWDQIHP1AM1/lircio5g6p6ljNz1fdwzZvl9s/F+uea8XqiGApqIPBEFNZGEunXLDGjDh98NaAUK3A1obvprlRrcjo5g6t6fGbnz+7gF0/P5BPB++ddpoYAmIolE/0UReVS3bsHkyWZAu3zZ3Jc/vxnQXn9dAS2VuB0dwRf7ljFy5wIu3jZH8+b1CeD9cs1pUagG7q76PRCRxKN/UUT+y+3bdwPapUvmvnz54IMP4I03FNBSifCYSL7Y+wsjdy7gwt8BLU/6rLxXvjktCz2vgCYiDqF/WUQe5PZtmDoVhg2DixfNfXnz3g1o7u7W1idJIjwmki/3LWPEju/iAlru9P68V645rQrXVEATEYfSvzAi/xYefjegXbhg7subFwYOhJYtFdBSiYiYqLiAdv62Od1KrvT+vFeuGa0K18TDVb8HIuJ4Cmoid4SHwxdfwNChdwNanjxmQGvVSgEtlYiIieKrfcsYsXMB526Z063kSu9P/7JNaV2klgKaiCQpBTWRiAj48kv47DM4f97clzs3DBgArVubk9JKihcRE8W0/SsYvmM+Z/8OaIHefvQr15Q2RWpp+SYRsYSCmqReERHw1VdmQDt3ztyXK5cZ0Nq0UUBLJSJjo5i2/1eGbZ8XF9ByemehX9mmtC1aWwFNRCyloCapT2Tk3YB29qy5LzDQDGht2yqgpRKRsVFM3/8rw3bM50yYOR9ejnSZ6Vu2Ke2K1VFAExGnoKAmqUdkJEybBp9+ai6KDuaam++/D2++qSWcUqjVp3fRY/1kxlbpyPOBpYmKjWbGgZUM3T6P02HmfHjZ02Wmb9kmtCv6AmncFNBExHkoqEnKFxkJ06ebAe30aXNfjhxmQGvXTgEtBTMMg4Gbp3Pw+mne3zSNdkVfYNjO7zh105wPL1vaTPQt24S3ir2ogCYiTklBTVKO7duhb19zYtpy5SAqygxon3xyN6Blz343oKVJY2294nArT+1k+6UjAOy8fJSd6z4HICBtRvqWbcpbxV7Ay01BXUScl4KapByzZsGaNTBjBuzaZQa0kyfNY9mywXvvQfv2CmipxPWIm3T4bUy8fW42Vz579k3eLvGSApqIJAsKapK8nTxpLoxus8G8eea+yZPBbje3/fzMedA6dFBASyVOhF5k/O5FfLl3GRGxUfGOxRixFM2UWyFNRJINm2EYhtVFWC00NBRfX19CQkLw8fGxuhxJCJvtv8/Rr3iqsP3iYcYE/8D3RzdgN+z3PcfV5kJpv/xsem0ctkf53RERcYCE5A6XJKpJxDFmzgSXB/wau7nB7NlJW48kKbthZ+nxLTy/sC8VF3TnuyPrsRt2SmXJf9/zYw072y8dYeWpnUlcqYjI49GtT0m+/vor/m3Of9u6FcqUSdqaJElExEQx+9Bqxu5ayKEb5lQrbi6uNA2qRo9Sr9BxzThcsGHn3t5UF2wM3jqTWrnKqFdNRJyegpokP4Zhjubs3h3CwsDb2/zq4mKGtjtfJcW5Eh7C1L0/M+nPJVwKvwGAj0da2herS5eSL5PT24/I2ChO3bx835AGYMfgdNgVouzRmtRWRJyegpokL1euwNtvw8KF5vsqVWDYMHjlFXN1gXbt4Ouvzek4/P2trVUSzZEbZxkXvIhZB1cRHhMJmAuldy3ZkDeL1sbHI13cuZ6uHmxpMp7L4SEPvJ5/Wl+FNBFJFjSYAA0mSDZWrDCXeDp/Htzd4eOPoXdvcHU1J7X18DAHFxiGOYeaJrJN9jad38+YXT+w+NhmjL97yEr7FaBX6cY0zl8Zd1f9v6aIJD8JyR36V06cX3g49O8P48eb74sUgTlzoHTpu+f8M5TZbAppyVisPZbFxzYzetcPbL14MG5/3dwV6FW6MVVylNCzZSKSaiioiXMLDoYWLWD/fvN9ly7mygNeXpaWJYnvVnQEMw+sZFzwQo6FXgDAw8WNFoWfp0epVyiaKbfFFYqIJD0FNXFOsbEwejQMGADR0RAQYC6o/uKLVlcmiezCrWtM2rOEqXt+5lrkTQAyeabnnRL16FiiHgHpMllcoYiIdRTUxPmcOgWtW8Pateb7hg3hiy/MVQYkxdh/7SRjgxcx5+BqouwxAOT3zUb3Uo1oVbgm6dy1koSIiIKaOJdvv4WOHSEkBNKlg3Hj4M03H20FAnF6hmGw7uyfjN71A8tObovb/0xAEXqVbszLeZ/B1cXVwgpFRJyLgpo4hxs3zOfP5swx3z/9tLmqQIEClpYliSM6NoYf/trA6F0/sOvyUQBs2GiY71l6lG7Es9mKWlyhiIhzUlAT661bB61ambc8XV3hgw/MZ9Pc9OuZ3IVG3eLrfSv4/M/FnLp5CQAvN09aF6lF95KvUCBDdosrFBFxbvovoVgnKgoGDTJHcRoG5M9v9qI984zVlckTOhN2mc93/8SX+34hNOo2AP5eGej81Mt0KF6XLF6+FlcoIpI8KKiJNfbvN6fdCA4237/1FowZYy4HJclW8OW/GBO8kO+OrCPGHgtA4YyB9CjViBaFapDGTasBiIgkhIKaJC3DgIkToU8fiIiAzJnhq6/MkZ2SLKw+vYse6ycztkpHng8sjWEYrDy1k9HBP7D69K6486rmeIqepRrxYp7yuNhcLKxYRCT5UlCTpHP+vDmCc/ly8/0LL5hzo2XLZm1d8sgMw2Dg5ukcvH6a9zdNo2OJ+owNXsS+aycAcLW58GqB5+hRqhHlsha0tlgRkRRAQU2SxqJF0L49XL0KadLAiBHQubOm3UhmVp7ayfZLRwDYefko7X8bA4C3uxftir5A15INyO2T1coSRURSFAU1caywMOjRA77+2nxfqpQ5BUdRTceQnETHxrDy1A7arhoVb7+7iysfPt2K9sXrksFTzxeKiCQ2BTVxnC1b4I034K+/zJ6zvn3ho4/AQw+UJwd2w86m8/uZd3gt3x/9nasRofecE22PpWSW/AppIiIOoqAmiS8mBj7+2HzFxkKuXDBrFlStanVl8h8Mw2DP1RPMO7yG+UfWxc19BuBmcyXWiMX4x/muNhcGb51JrVxlsOk2tohIolNQk8R19KjZi7Z1q/m+RQv4/HPIkMHSsuThjodeYP7htcw7vJZ9107G7U/v7sUr+StTMEMOBm6Zcc/nYg072y8dYeWpndTOXTYJKxYRSR0U1CRxGIb5HFqPHnDrFvj6wuTJ0Ly51ZXJA1y6fYMFR9cz7/Batlw4ELffw8WNl/I8TbOC1XgxT3nSuHrw7ILuuGDDHq8/zeSCTb1qIiIOoqAmT+7yZXNE5+LF5vtq1WDmTPOWpziV0KhbLD62mXmH17L69C5iDTtgrrtZPWdJmhesTsP8z8Z75iwyNopTNy/fN6QB2DE4HXaFKHs0nq56/lBEJDEpqMmTWbYM2raFixfB3R0+/RR69QIXTXDqLCJjo1hxcgffHl7D0uNbiYiNijtWzr8gzQpWo0lQVbKly3Tfz3u6erClyXguh4c8sA3/tL4KaSIiDqCgJo8nPNwcxfn55+b7okXNaTdKlbK0LDHF2mP5/dxevj28loV/beBGZFjcsUIZctKsYDWaFqxGUIYcj3S9wPR+BKb3c1S5IiLyAApqknC7dpmDBA78/VxT9+7w2Wfg5WVtXamcYRjsvHyUeYfX8t2RdZy7dTXuWPZ0mWkaVJVmBatT2i+/niUTEUkmFNTk0cXGwsiR8MEHEB1tLv00YwbUrm11Zana4etnmH9kHfMOr+HwjbNx+zN4etM4f2WaF6xO5ezFcHVxtbBKERF5HApq8mhOnoRWrWD9evN9o0bwxRfmouqS5M6FXeW7o+uZd3gNO/5e0gnAy82T+nmfplnB6tTOVUbPjYmIJHOWPvG9fv166tevT/bs2bHZbPz444/xjhuGwaBBg8iWLRteXl7UrFmTI0eOxDvn2rVrtGjRAh8fHzJkyEC7du0ICwtDntD27VCjhvl1zhx46ikzpHl7mwupf/+9QloSux5xk2n7V1D7x/7kmdGSPhu+YMelI7jaXHghdzlm1OrD2TfnMqfOe9TP+4xCmohICmBpj9qtW7coWbIkb775Jo0aNbrn+PDhwxk/fjwzZ84kb968fPDBB9SpU4f9+/eTJk0aAFq0aMH58+dZuXIl0dHRtG3blg4dOjB37tyk/nZSllmzYM0a81m0w4fNfRUrwjffQP781taWioTHRPLziT+Yd3gNy05sI8oeE3fs2WxFaVawOq8WqIyfVwbrihQREYexGYZx/8mRkpjNZmPRokU0bNgQMHvTsmfPTu/evXn33XcBCAkJIWvWrMyYMYNmzZpx4MABihYtyrZt2yhXrhwAy5cvp27dupw5c4bs2bM/UtuhoaH4+voSEhKCj4+PQ76/ZOHkSbhyxVyX8/nn4cYNc7+LC3ToAO++q5CWyFaf3kWP9ZMZW6UjzweWBiDGHstvp4P59vAaFh/bxM3o8Ljzi2XKTfOC1WlSsCp5fQKsKltERJ5AQnKH0z6jdvz4cS5cuEDNmjXj9vn6+vL000+zefNmmjVrxubNm8mQIUNcSAOoWbMmLi4ubN26lVdeeeW+146MjCQyMjLufWjovYtNp0p58tx/v90OU6aYL+fI9SmCYRgM3Dydg9dPM2DzdLxcPZl/xFwA/VL4jbjzcqX3p1lQNZoVrEaJLHmtK1hERJKc0wa1CxcuAJA1a9Z4+7NmzRp37MKFC/j7+8c77ubmRqZMmeLOuZ/PPvuMDz/8MJErTgFmz4Y2bcxF1f/Nzc0c4SmJZuWpnWz/eyDAjktHqLqwd9yxLGl8eDWoCs0KVqNiQBFcbJpAWEQkNXLaoOZI7733Hr169Yp7HxoaSmBgoIUVOYlmzWDSJNi06d5jW7dCmTJJX1MKtfvyMVqsGBpvnws2mhasxuuFqvN8ztK4u6bKv54iIvIPTvtfgoAA8/mbixcvki1btrj9Fy9epNTfs98HBARw6dKleJ+LiYnh2rVrcZ+/H09PTzw9PRO/6ORuyJC7Ic1mM29zuriYtz4lUey5cpyPt81h4V8b7zlmx+CNQs9TO3dZCyoTERFn5LT3U/LmzUtAQACrV6+O2xcaGsrWrVupWLEiABUrVuTGjRvs2LEj7pzffvsNu93O008/neQ1J2uLFsHHH5vbvr5Qrpz5TFrZshAQAP+6xSwJs/fqCZov/5Qy8zrFhbR/rw3ganNh8NaZOMn4HhERcQKW9qiFhYVx9OjRuPfHjx8nODiYTJkykStXLnr06MHHH39MUFBQ3PQc2bNnjxsZWqRIEV544QXat2/PlClTiI6OpkuXLjRr1uyRR3wK5lJQrVqZ2z16wNCh4OFh9qp16ABRUaAeyMey7+pJPtk2l++P/o6BGcCey1ac38/v5d9xLNaws/3SEVae2qleNRERASwOatu3b6d69epx7+88N9a6dWtmzJhB3759uXXrFh06dODGjRtUrlyZ5cuXx82hBjBnzhy6dOnC888/j4uLC40bN2b8+PFJ/r0kWyEh0LAhhIVBtWowfDi4u989brMppD2G/dfMgLbgyN2A1jh/ZQaUf50Ov43BBRv2e6Ka+Zza4K0zqZWrjNbjFBER55lHzUqpdh41ux1eeQV++gkCA81VCHSL84kcuHaKT7bN5bsj6+MCWqP8lRhYvgUlsuQlMjaKfDNax5t+49+yps3IX61naGUBEZEUKkXMoyZJ4OOPzZDm6QkLFyqkPYGD10/zyba5zD+8Li6gvZKvEgMqvE7JLPnizvN09WBLk/FcDg954LX80/oqpImICKCglnotXQqDB5vbU6aYgwckwQ5dP2MGtCPrsBvm6NgG+SoysHwLSvndfxWHwPR+BKb3S8oyRUQkmVJQS40OHzbX8ATo3Nmc5FYS5PD1M3yy/VvmHV4bF9BezluRgRVep7RfAYurExGRlEJBLbW5edMcPBAaCpUrw+jRVleUrBy5cZZPtn3Lt4fXxAW0+nmfYWD5FpTxV0ATEZHEpaCWmhiG2Xt24ABkzw4LFpjTcMh/OnrjHJ9u/5a5h34j9u+AVi/P0wys0IKy/kEWVyciIimVglpqMnSoOWjAwwN++MGcyFYe6q+Qc3y6bR5zDq2OC2h1c1fggwotKJe1oMXViYhISqegllosXw4DBpjbEyfCM89YW4+TOxZynk+3f8vsg3cD2ou5y/NBhRaUz1rI4upERCS1UFBLDf76C5o3N299dugAb71ldUVO63joBT7d9i3fHFwVF9BeyF2OgeVb8HRAYYurExGR1EZBLaW7dcuc1PbGDbMXTas23NeJ0It8tn0esw6uJMYeC0DtXGX5oEILngkoYnF1IiKSWimopWSGAe3awZ495vNoP/yg5aD+5UToRYZun8fMfwS0WoFl+KDCG1TMpoAmIiLWUlBLyUaNgvnzwc0Nvv/eHOkpAJwMvcjQHfOZeWAl0fYYAGoGluaDCm/wbLaiFlcnIiJiUlBLqVatgn79zO1x46BSJWvrcRKnbl5i6Pb5zDjwa1xAez6wNAPLv07l7MUtrk5ERCQ+BbWU6MQJaNrUXHS9bVvo2NHqiix3+uZlhu6Yx/T9dwNa9ZwlGVThDQU0ERFxWgpqKc3t2+bggWvXzPU7J00Cm83qqpLE6tO76LF+MmOrdOT5wNIAnAm7zLAd3zFt33Ki/g5o1XKUZFCFFjyXo4SV5YqIiPwnBbWU5M70G8HB4OdnTm6bJo3VVSUJwzAYuHk6B6+fZuDm6RTKkJPhOxfw9b5lcQGtSvYSDKrwBlVzPmVxtSIiIo9GQS0lGT8e5swBV1dzeajAQKsrSjIrT+1k+6UjAGy/dISgWW2I+XsetOeyF2dwhZYKaCIikuwoqKUUa9dC797m9qhRULWqpeUkJcMwGLhlBjZsGBgAxBh2ng0oypBnWlItR0lsqeT2r4iIpCwKainB6dPQpAnExsIbb0C3blZXlKQm71nKrstH79n/fvnmVM9ZKukLEhERSSQuVhcgTygiAho1gsuXoXRpmDo11QweiLXHMmz7fLqvn3TPMVebC0O2zsIwDAsqExERSRwKasmZYZhTb2zfDpkzm4MH0qa1uqokcTL0IrV+7M/ALTPuezzWsLP90hFWntqZtIWJiIgkIgW15GzyZJgxA1xczBUI8uSxuiKHMwyDuYd+o8y8Tvx+bi8u2HhQ/6ELNgZvnaleNRERSbb0jFpytWEDdO9ubg8bBs8/b209SeB6xE26rpvI/CPrAKiQtRB/hZznakTofc+3Y3A67ApR9mg8XT2SslQREZFEoaCWHJ09C6++CjEx5goEd0Z7pmBrz+ym7aqRnAm7gqvNhQ8qtKBf2aacv3WNy+EhD/ycf1pfhTQREUm2FNSSm8hIM6RdvAglSsDXX6fowQORsVEM2jKLMbsWYmBQwDc7M2r14emAwgAEpvcjML2fxVWKiIg4hoJactOtG2zZAhkzwqJFkC6d1RU5zN6rJ2j163D2XD0OQLuiLzCycge8PbwsrkxERCRpKKglJ198Yb5sNvj2W8if3+qKHMJu2Pn8z594f9M0ImOjyZLGh6k1evByvopWlyYiIpKkFNSSi82boUsXc/uTT6BOHWvrcZBzYVdpt3oUq07vAuCF3OX4skZPAtJlsrgyERGRpKeglhxcuGA+lxYdDY0bQ//+VlfkEAuPbqDjmvFci7xJGlcPhlduzzvFX9LyTyIikmopqDm7qCh47TU4dw6KFoXp01Pc4IHQqFv0XD+VWQdXAlDarwAza/WhSKZcFlcmIiJiLQU1Z9erlzlnmq8v/PgjpE9vdUWJauP5fbRdOZLjoRewYaNv2SYMqtACD1d3q0sTERGxnIKaM5s+HSZONLdnz4agIGvrSUTRsTF8vG0uQ3fMx27YyZ3enxm1+lA5e3GrSxMREXEaCmrOats2cx1PgA8/hHr1rK0nER2+fobWK0ew/dJhAFoUep5xVTri65lypxoRERF5HApqzujSJWjUyJzc9uWXYeBAqytKFIZh8NW+Zby74Qtux0SSwdObidW60CSoqtWliYiIOCUFNWcTHQ1NmsCZM1CoEMyaZS66nsxdun2Dt38by9ITWwGonrMk02r2Jqe3VhUQERF5EAU1Z9O3L6xbZw4a+PFHcxBBMvfLiT9ov3oMl8Jv4OHixscV29C91Cu42JJ/ABUREXEkBTVnMns2jB1rbs+aBYULW1rOk7odHUHfjV8xde/PABTLlJuZtftSMks+iysTERFJHhTUnMWuXdC+vbk9cCA0bGhpOU9qx6UjtP51OIdunAGgW8mGfFKxLWncPCyuTEREJPlQUHMGV67AK69ARATUrQtDhlhd0WOLtccycuf3DPnjG2LssWRPl5mvn+9FzVxlrC5NREQk2VFQs1pMDDRrBidPQoECMGcOuLpaXdVjORF6kTYrR7Dx/D4AGuWvxKRq3cjs5WNxZSIiIsmTgprV3n8fVq+GdOlg0SLIkMHqihLMMAzmHPqNbusmcjM6HG93L8ZV6UjLwjW1TqeIiMgTUFCz0vz5MGKEuT19OhRPfrPyX4u4SZe1n7Pg6HoAKgYUZUatd8nnm83iykRERJI/BTWr/PknvPmmud2vn7nwejLz2+ldvLlqFGdvXcXNxZVBFVrQp0wT3FyS561bERERZ6OgZoVr18zBA7dvQ+3a8MknVleUIBExUXywZSZjgxcCUDBDDmbU6kP5rIUsrkxERCRlUVBLarGx0KIFHDsGefPCt98mq8EDe64cp9XK4ey9egKADsXrMrxSe9K5p7G2MBERkRRIQc3BYu0G+06EcS00hkw+bhT/6v/t3XtcVHXCBvDnzMAMIDDIRZDkqph3MREDcq3UWDTb3t5SVzSCzXLFTWStLEXLVNRezWuatcJWKra9q6WbFyLFvKNI5XrDW5ByTWEQFXDmvH/4QrKioTHzO3N8vp/PfHDOOXPm4Scf5/F3LqRCs2UL4Oh44+IBd3fREW/xn5m7BjpDkmQs/u4LTNmzCrXm6/ByNGDl40l4Muhh0XEBNJ1Zq1H2hQzMbHm2lhdgZmthZuuwtcxKzMuiZkG7j1RgxabzaH08DwnbFyEnKAI9shffWPm3vwE9e4oN2IT6zCeuHcNJw0Z0rBwKP8e2+OmBDcitOAIAGBwQjpUDkuDt1Fpw2hvqM5dX1jUs8zTYY+yTDyCqm5u4YHfAzJZna3kBZrYWZrYOW8us1LySLMuysHdXCKPRCIPBgMrKSri6tsw9v3YfqcDM1ecAAGMz5+IPhzJQp7GDvfk6/rfPKPisWqK4H9T6zDJkHPBahirdeThed0et5gpMmmvQa3SY/7uX8FLXwYq57cbN49yUqbGBih3n22Hm387W8gLMbC3MbB22ltnaee+md3BGzQJMZhn/+CQHHUrLIENC/6NbAAD25us44dMVOzs/AenjHITOeEz4lGo9k1nG8o3nAQAX9fmo0t3481W7iwAAl9oH0K82FqM69ENNnVlYzpvdnPl2Vmw8j9AO4qeu6zGz5dlaXoCZrYWZrcPWMjcn7webzuPhLgYheTmjhpafUfv+TBV6tP9lPzIA6aav9WImH/7N79XSbsymLUWV/YWG0DqTC6JKXoUW9qLjERERCTF3THv0CHZpkX3dTe/QtMg7UiMXjdcxb+gsXP//+4nVl7P6r9c1WswbqsxbcvysP4kq3YVGoWvtqlChPys0FxERkUgXjdeFvC8PfVqAu6sdtncdjAKPICxNH3nL+qTnP8Fpn85454UgdAtyFpDwVkfOXsbU9DM45vbPW1fKEk65boN7WQhmvhCsqMwp6b9eIJU2zsxsWbaWF2Bma2Fm67C1zM3N6+4qpjKxqFlA10BneBrsgeIbz82QoIHc8BUAvAz26BXiqojj8wDQK8QVpZ47UWNnvHWlJKNKdx4m97PoFRKqqMyeBvtGV+j8JyWOMzNblq3lBZjZWpjZOmwtc3Pzdg0UUyp56NMCtBoJY598AJVO7rjYygP5Pl2wOHoK8n264GIrD1Q6uePlJx9QxA9ovXPGIvxbv+32G8gSitpkQUGRG8b5TpQ2zsxsebaWF2Bma2Fm67C1zErPy4sJYJnbcwA3Lvf9aMNZFF8GIEmALKOtM/Cnp4MUdVnylbpriPo8GUd+vvPUr7dTa5yOS4deq7NSsuZp6t43XgZ7vKzQe/UAzGwNtpYXYGZrYWbrsLXM1sx7N72DRQ2WK2qAMu9yfDNZlvF85jxknNwBD70r0gZNgpejG05fuAJjtQmurbRo7+sEjSShjZMB7Zy9REduktLHuSnMbHm2lhdgZmthZuuwtczWysuidpcsWdSUbmHeery6ayXsNFps+0Mq+j3QXXQkIiIiVePtOahZtv+Uh8m7PwIAvBs1hiWNiIhIYVjU7lMFVaUYuSUVJtmM2AcHILHHU6IjERER0X9gUbsPXb1eg+e+monya0aEerXH8sf+opjf3UlERES/YFG7z8iyjHHblyC3LB8eDq74PCYFjnZ60bGIiIioCSxq95n3f9iIT09kQSNpsPb3byDA1Vt0JCIiIroNFrX7yLfnf8CkXSsBAHMi/4TH2oWKDURERER3xKJ2n/jpchlGbJmN62YThof0R1Lof4mORERERL+CRe0+UGOqxbDNs1B6tQLdPYLwweNJvHiAiIjIBrCoqZwsy/hL9vvIKTmB1npnfD44Ba3sHUTHIiIiomZgUVO5D/+9GWlHt0IjabA6ejKCDW1FRyIiIqJmYlFTsT1FR5G0czkAYObDcRjk31twIiIiIrobLGoqVVR9EcM3z0Sd+Tr+u/0jmPTQc6IjERER0V1iUVOhWlMdhm+eheIrl9DVPQAfDUjmxQNEREQ2iEVNhZK//QB7i4/CoGuFfwxOgbPOUXQkIiIiugcsaiqz6uhWfHDkX5Ag4eMnXkOI2wOiIxEREdE9YlFTkQMlJ/CXHUsBAG/1HY3BgeGCExEREdFvwaKmEiVXLmHYV++g1nwdTwVFYHLYcNGRiIiI6DdiUVOBOtN1/HHLbJyv/hkPurVD2qC/QiPxr5aIiMjW8dNcBV7b/RG+vXAELvaO+HzINLjqWomORERERC2ARc3GfXL8ayz9/gsAQPqgV9GptZ/gRERERNRSWNRs2KHSfIzbvgQAMKXPH/FUcITgRERERNSSWNRsVNnVCgzbPBPXTLWICeiDaeGjREciIiKiFsaiZoOum02I3ToHBVWl6GDwxcdPvMaLB4iIiFSIn+426M09q7D9p+/Qyt4Bnw+eBje9s+hIREREZAEsajYm4+QOvJf3TwDAqgF/RVePAMGJiIiIyFJY1GzId+Vn8NI3CwEArz00DM90eERsICIiIrIoFjUbcfFaFZ776h1cvV6DQX4PYcbDz4uORERERBbGomYDTGYTRm2dg7PGYgS5+uDT6MnQarSiYxEREZGFsajZgGn7PkZmYS6c7PT4fPA0uDu4iI5EREREVsCipnCfn/oW83I/AwCsfDwJPTyDBCciIiIia2FRU7AjP5/Di1kLAAATQ5/B8I6Pig1EREREVsWiplAVNZfx3FfvoLruGh5r1xOzIxNERyIiIiIrY1FTILNsxvPb5uFU5QUEuLTBmug3YMeLB4iIiO47LGoKNOPAp9j8Yw4ctDp8FpMCT0eD6EhEREQkAIuawnxxZg9m5awFACx/7BU81KaD4EREREQkCouaghy/VIj4zP8BAIzv8QeM6jRAcCIiIiISiUVNIYy11Xj2XzNQVXcV/Xy7YV7Ui6IjERERkWAsagpgls2Iz5yPExU/oZ2zJ9b+/k3Ya+1ExyIiIiLBWNQUIPVgBr48uxd6rT0+i5kKb6fWoiMRERGRArCoCfavs/vx9v5PAQBL+ieij/eDghMRERGRUrCoCZRfcR5xme9ChoyXuw1BfJdo0ZGIiIhIQVjUBKmqvYJnv5qBytpqRPh0wYJ+L4uORERERArDoiaALMt4MWsBjl4sQFsnd6yLmQKd1l50LCIiIlIYFjUB3s39B/55ejfsNXZYFzMVbVu5i45ERERECsSiZmVbfzyIqXvTAQALf/dnRLTtLDYQERERKZZqitqyZcsQGBgIBwcH9O3bFwcOHBAdqUFW4WF0X/0SPj3+NUZvmwsZMhK6/B5jusaIjkZEREQKpoqitm7dOiQnJ2P69OnIzc1Fz549ER0djdLSUtHRIMsypu5Nw/FLhRi3fQku1VxGuPeDWNz/z5AkSXQ8IiIiUjBVFLUFCxZgzJgxiI+PR5cuXbBixQo4OTlh1apVoqMhsyAXB0vzAQBXTbVw0zvjs5ip0Gt1gpMRERGR0tl8UautrcWhQ4cwcODAhmUajQYDBw7E3r17m3xNTU0NjEZjo4clyLKM6fv/Dgm/zJx5O7rBt5WHRd6PiIiI1MXmi1p5eTlMJhO8vb0bLff29kZxcXGTr0lNTYXBYGh4+Pn5WSRb/WyaDLlh2YmKn5BZkGuR9yMiIiJ1sfmidi/eeOMNVFZWNjwKCwtb/D3qZ9O0UuMh1koaTN//d8iyfJtXEhEREd1gJzrAb+Xp6QmtVouSkpJGy0tKSuDj49Pka/R6PfR6vUVz3Xxu2s1MshkHS/ORWZCLJwJ6WzQDERER2Tabn1HT6XTo3bs3srKyGpaZzWZkZWUhIiJCSKb62TQNmr6qUwOJs2pERET0q2x+Rg0AkpOTERcXh7CwMISHh2PhwoWorq5GfHy8kDy15joUVJXBjKaLmBkyCi+Xo9Zcx6s/iYiI6LZUUdSGDx+OsrIyTJs2DcXFxQgNDcWWLVtuucDAWvRaHfYNW4yyq5W33aaNk4EljYiIiO5Iknn8DUajEQaDAZWVlXB1dRUdh4iIiFTsbnqHzZ+jRkRERKRWLGpERERECsWiRkRERKRQLGpERERECsWiRkRERKRQLGpERERECsWiRkRERKRQLGpERERECsWiRkRERKRQLGpERERECsWiRkRERKRQLGpERERECsWiRkRERKRQLGpERERECsWiRkRERKRQLGpERERECsWiRkRERKRQdqIDKIEsywAAo9EoOAkRERGpXX3fqO8fd8KiBqCqqgoA4OfnJzgJERER3S+qqqpgMBjuuI0kN6fOqZzZbMaFCxfg4uICSZJafP9GoxF+fn4oLCyEq6tri++fbuA4WwfH2fI4xtbBcbYOjvOtZFlGVVUVfH19odHc+Sw0zqgB0Gg0aNeuncXfx9XVlT+kVsBxtg6Os+VxjK2D42wdHOfGfm0mrR4vJiAiIiJSKBY1IiIiIoViUbMCvV6P6dOnQ6/Xi46iahxn6+A4Wx7H2Do4ztbBcf5teDEBERERkUJxRo2IiIhIoVjUiIiIiBSKRY2IiIhIoVjUiIiIiBSKRc0Kli1bhsDAQDg4OKBv3744cOCA6Eiqkpqaij59+sDFxQVt2rTB008/jRMnToiOpWpz5syBJElISkoSHUV1zp8/j1GjRsHDwwOOjo7o3r07Dh48KDqWqphMJqSkpCAoKAiOjo5o37493nnnnWb93kVq2s6dOzF06FD4+vpCkiRs2LCh0XpZljFt2jS0bdsWjo6OGDhwIPLz88WEtTEsaha2bt06JCcnY/r06cjNzUXPnj0RHR2N0tJS0dFUIzs7G4mJidi3bx8yMzNRV1eHJ554AtXV1aKjqVJOTg4++OAD9OjRQ3QU1bl06RKioqJgb2+PzZs34+jRo5g/fz5at24tOpqqzJ07F8uXL8fSpUtx7NgxzJ07F/PmzcOSJUtER7NZ1dXV6NmzJ5YtW9bk+nnz5mHx4sVYsWIF9u/fj1atWiE6OhrXrl2zclIbJJNFhYeHy4mJiQ3PTSaT7OvrK6empgpMpW6lpaUyADk7O1t0FNWpqqqSQ0JC5MzMTLl///7yhAkTREdSlddff11+5JFHRMdQvSFDhsgJCQmNlj3zzDNybGysoETqAkBev359w3Oz2Sz7+PjI7777bsOyiooKWa/Xy2vXrhWQ0LZwRs2CamtrcejQIQwcOLBhmUajwcCBA7F3716BydStsrISAODu7i44ifokJiZiyJAhjX6mqeV8+eWXCAsLw3PPPYc2bdqgV69e+PDDD0XHUp3IyEhkZWXh5MmTAIDvvvsOu3btQkxMjOBk6nT27FkUFxc3+nfDYDCgb9++/CxsBv5SdgsqLy+HyWSCt7d3o+Xe3t44fvy4oFTqZjabkZSUhKioKHTr1k10HFXJyMhAbm4ucnJyREdRrTNnzmD58uVITk7Gm2++iZycHLzyyivQ6XSIi4sTHU81Jk+eDKPRiE6dOkGr1cJkMmHWrFmIjY0VHU2ViouLAaDJz8L6dXR7LGqkKomJiThy5Ah27dolOoqqFBYWYsKECcjMzISDg4PoOKplNpsRFhaG2bNnAwB69eqFI0eOYMWKFSxqLeizzz7D6tWrsWbNGnTt2hV5eXlISkqCr68vx5kUh4c+LcjT0xNarRYlJSWNlpeUlMDHx0dQKvUaP348Nm3ahO3bt6Ndu3ai46jKoUOHUFpaioceegh2dnaws7NDdnY2Fi9eDDs7O5hMJtERVaFt27bo0qVLo2WdO3dGQUGBoETq9Oqrr2Ly5MkYMWIEunfvjtGjR2PixIlITU0VHU2V6j/v+Fl4b1jULEin06F3797IyspqWGY2m5GVlYWIiAiBydRFlmWMHz8e69evxzfffIOgoCDRkVRnwIAB+OGHH5CXl9fwCAsLQ2xsLPLy8qDVakVHVIWoqKhbbi1z8uRJBAQECEqkTleuXIFG0/jjT6vVwmw2C0qkbkFBQfDx8Wn0WWg0GrF//35+FjYDD31aWHJyMuLi4hAWFobw8HAsXLgQ1dXViI+PFx1NNRITE7FmzRp88cUXcHFxaTjnwWAwwNHRUXA6dXBxcbnlnL9WrVrBw8OD5wK2oIkTJyIyMhKzZ8/GsGHDcODAAaxcuRIrV64UHU1Vhg4dilmzZsHf3x9du3bF4cOHsWDBAiQkJIiOZrMuX76MU6dONTw/e/Ys8vLy4O7uDn9/fyQlJWHmzJkICQlBUFAQUlJS4Ovri6efflpcaFsh+rLT+8GSJUtkf39/WafTyeHh4fK+fftER1IVAE0+0tLSREdTNd6ewzI2btwod+vWTdbr9XKnTp3klStXio6kOkajUZ4wYYLs7+8vOzg4yMHBwfKUKVPkmpoa0dFs1vbt25v8dzguLk6W5Ru36EhJSZG9vb1lvV4vDxgwQD5x4oTY0DZCkmXeipmIiIhIiXiOGhEREZFCsagRERERKRSLGhEREZFCsagRERERKRSLGhEREZFCsagRERERKRSLGhEREZFCsagRERERKRSLGhGRle3YsQOSJKGiokJ0FCJSOBY1IlKdwsJCJCQkwNfXFzqdDgEBAZgwYQJ+/vlnq2d59NFHkZSU1GhZZGQkioqKYDAYAADp6elwc3OzejYiUj4WNSJSlTNnziAsLAz5+flYu3YtTp06hRUrViArKwsRERG4ePGi6IjQ6XTw8fGBJEmioxCRwrGoEZGqJCYmQqfTYdu2bejfvz/8/f0RExODr7/+GufPn8eUKVMAAJIkYcOGDY1e6+bmhvT09Ibnr7/+Ojp27AgnJycEBwcjJSUFdXV1DevfeusthIaG4pNPPkFgYCAMBgNGjBiBqqoqAMALL7yA7OxsLFq0CJIkQZIknDt3rtGhzx07diA+Ph6VlZUN27z11luYMWMGunXrdsv3FxoaipSUlJYfOCJSJBY1IlKNixcvYuvWrRg3bhwcHR0brfPx8UFsbCzWrVsHWZabtT8XFxekp6fj6NGjWLRoET788EO89957jbY5ffo0NmzYgE2bNmHTpk3Izs7GnDlzAACLFi1CREQExowZg6KiIhQVFcHPz6/R6yMjI7Fw4UK4uro2bDNp0iQkJCTg2LFjyMnJadj28OHD+P777xEfH38vw0NENshOdAAiopaSn58PWZbRuXPnJtd37twZly5dQllZWbP2N3Xq1IY/BwYGYtKkScjIyMBrr73WsNxsNiM9PR0uLi4AgNGjRyMrKwuzZs2CwWCATqeDk5MTfHx8mnwPnU4Hg8EASZIabePs7Izo6GikpaWhT58+AIC0tDT0798fwcHBzcpPRLaPM2pEpDq/NmOm0+matZ9169YhKioKPj4+cHZ2xtSpU1FQUNBom8DAwIaSBgBt27ZFaWnp3YduwpgxY7B27Vpcu3YNtbW1WLNmDRISElpk30RkG1jUiEg1OnToAEmScOzYsSbXHzt2DF5eXnBzc4MkSbcUupvPP9u7dy9iY2MxePBgbNq0CYcPH8aUKVNQW1vb6DX29vaNnkuSBLPZ3CLfz9ChQ6HX67F+/Xps3LgRdXV1ePbZZ1tk30RkG3jok4hUw8PDA4MGDcL777+PiRMnNjpPrbi4GKtXr0ZiYiIAwMvLC0VFRQ3r8/PzceXKlYbne/bsQUBAQMPFBwDw448/3nUmnU4Hk8l0T9vY2dkhLi4OaWlp0Ol0GDFixC3n3hGRunFGjYhUZenSpaipqUF0dDR27tyJwsJCbNmyBYMGDULHjh0xbdo0AMDjjz+OpUuX4vDhwzh48CDGjh3baHYsJCQEBQUFyMjIwOnTp7F48WKsX7/+rvMEBgZi//79OHfuHMrLy5ucbQsMDMTly5eRlZWF8vLyRoXxxRdfxDfffIMtW7bwsCfRfYhFjYhUJSQkBDk5OQgODsawYcMQEBCAmJgYdOzYEbt374azszMAYP78+fDz80O/fv0wcuRITJo0CU5OTg37eeqppzBx4kSMHz8eoaGh2LNnzz3dFmPSpEnQarXo0qULvLy8bjnHDbhx5efYsWMxfPhweHl5Yd68eY2+n8jISHTq1Al9+/a9hxEhIlsmyc29Tp2IyEZNnz4dCxYsQGZmJh5++GHRce6KLMsICQnBuHHjkJycLDoOEVkZz1EjItV7++23ERgYiH379iE8PBwajW0cTCgrK0NGRgaKi4t57zSi+xRn1IiIFEqSJHh6emLRokUYOXKk6DhEJABn1IiIFIr/jyYi25j/JyIiIroPsagRERERKRSLGhEREZFCsagRERERKRSLGhEREZFCsagRERERKRSLGhEREZFCsagRERERKdT/AYLqIQS6w7sQAAAAAElFTkSuQmCC", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.figure(figsize=[7,7])\n", "plt.plot(individual_firm_costs.column(\"Output\"), individual_firm_costs.column(\"Total Fixed Cost\"), marker='o')\n", - "plt.plot(individual_firm_costs.column(\"Output\"), individual_firm_costs.column(\"Total Variable Cost\"), marker='o')\n", - "plt.plot(individual_firm_costs.column(\"Output\"), individual_firm_costs.column(\"Total Cost\"), marker='o')\n", + "plt.plot(individual_firm_costs.column(\"Output\"), individual_firm_costs.column(\"Total Variable Cost\"), marker='^', color=\"#049348\")\n", + "plt.plot(individual_firm_costs.column(\"Output\"), individual_firm_costs.column(\"Total Cost\"), marker='*', color=\"red\")\n", "plt.xlabel('Quantity')\n", "plt.ylabel('Cost')\n", "plt.title('TFC, TVC and TC')\n", @@ -303,7 +299,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 6, "metadata": { "tags": [ "remove_input" @@ -312,22 +308,20 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAG5CAYAAAD1fYFsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdeXxTdb7/8dc3bdMlLV0CZV9lbQqUXYsgilBERJy6ISqMetWrInOv158y6txZnNE7Opu4jSOKOogoKC4IKCCbLLIqLSBFZW2he+nepPn+/khaW2jpQpOTtJ/n49EHzcnJOZ/Gmne/3/M936/SWiOEEEK0diajCxBCCCG8QQJPCCFEmyCBJ4QQok2QwBNCCNEmSOAJIYRoEyTwhBBCtAkSeEKIRlFKbVBK3WN0HUI0lwSeaJPcH955Sqngc7YvUkpVKKWKanzdUuP525RSu9zbM5RSq5RSl1/suZVSjyulNtWxb3t3PfHux52VUgvd5y5USh1SSv1OKWVp+rvQ8pRSc5RS+pz3bFaN97JUKeWs+f7W2O+i31shLkQCT7Q5SqlewDhAA9Pr2OXPWuvwGl9L3a/7b+DvwJ+AjkAP4GXg+hY497+BRKVU73NeciuwX2udopSKAbYBocBlWusIYBIQBVzS2Bo8bDaQC9xZtUFrvbjqvQSuAdJrvr/QMu+tEA2RwBNt0Z3AdmARrg/oBimlIoHfAw9qrT/UWhdrre1a60+11o9e7Lm11ieB9cAddez/tvv7/wYKgdu11kfdrzuhtZ6ntf6unro/UEqdVkoVKKU2KaVsNZ5bpJR6SSm10t1a3KGUuqTG85PcLcgCpdSLgLrQD6aU6glcAdwLJCmlOjX8drToeyvEBUngibboTmCx+ytJKdWxEa+5DAgBPvLgud+iRuAppQYACcC77k1XAx9qrZ1NON8qoB8QC+xxn7emW4HfAdHAEeCP7nO3Bz4EngTaAz8AYxvxs+3SWi8HDgKzGlljS723QlyQBJ5oU9zXhHoC72utd+P6IL/tnN3+RymV7/7Kdm+zAtlaa4cHz/0R0FEpleh+fCewSmudVaOGjKacU2v9hta6UGtdDvwWGOpuUVWfU2v9jfvnWowrYAGmAqla62Vaazuu7sbTDZzuTn4O53ep0a3ZgIt+b4VoDAk80dbMBr7QWlcF2buc3635vNY6yv3V3r0tB2ivlAr01Lm11iXAB8CdSimFq4X0do3X5wCdG3sypVSAUupZpdQPSqmzwFH3U+1r7FYzxEqAcPf3XYATNWrTNR/Xca6xQG/gvRo/22ClVEJ9r6mhJd5bIRokv2CizVBKhQI3AwFKqaoP+mAgSik1VGv97QVevg0oB2YAyzx47reAFbi6EyOAT2scZi1wg1Lqd43s1rwN16CPq3GFXSSQRwPX4twygO416lc1H9dhtvu4+1y71tq+r4FzXdR7K0RjSQtPtCUzgEogDlfXXQIwCNhMA91vWusC4DfAS0qpGUqpMKVUkFLqGqXUnwGUUhOUUvWtt9XYc28G8oHXgPe01hU1nvsr0A54yz1ABKVUV6XUX5VSQ+o4ZwSuIMkBwnCNgGyslYBNKfULd8vrYaDOQShKqRBcYX5vjZ8tAZgL3NZQy60x760QLUECT7Qls4E3tdbHtdanq76AF4FZjfhg/guukZJPAlm4uvgewtUiA1cLaOvFnNvddfg2rmt9Nbsz0VrnAomAHdihlCoE1gEFuAacnOtt4BhwCjiAa3Roo7i7XW8CnsUVmP2Ar+vZfQZQCrx9zs/2Bq5epCmNOF9D760QF03JArBCtAyl1OvAB1rrNUbXIoQ4nwSeEEKINkG6NIUQQrQJEnhCCCHaBAk8IYQQbYJf34fXvn173atXL6PLEEII4UN2796drbXucO52vw68Xr16sWvXLqPLEEII4UOUUsfq2i5dmkIIIdoECTwhhBBtggSeEEKINsGvr+EJIfyP3W7n5MmTlJWVGV2K8HMhISF069aNoKCgRu0vgSeE8KqTJ08SERFBr169OGdlBSEaTWtNTk4OJ0+epHfv3o16jXRpCiG8qqysDKvVKmEnLopSCqvV2qSeAgk8IYTXSdiJltDU3yMJPCGEEG2CBJ4Qok1asWIFSikOHTpkdCkN2rBhA5GRkSQkJJCQkMDVV18NwKuvvsrbb7/dwKsbdvToUeLj4+t87vDhw0ydOpV+/foxfPhwbr75Zs6cOdOk4+fn5/Pyyy9fdJ0XSwatCCF82vq9ubz1RQZZ+XY6RAUxe3JnrhoWc9HHXbJkCZdffjlLlizhd7/73UUfz+FwEBjouY/UcePG8dlnn9Xadv/993vsfOC63nrttdfy17/+leuuuw5whW9WVhYdO3Zs9HGqAu+BBx7wVKmNIi08IYTPWr83lxc+OkFmvh0NZObbeeGjE6zfm3tRxy0qKmLLli0sXLiQ9957r3r7rbfeysqVK6sfz5kzh2XLllFZWcmjjz7KqFGjGDJkCP/85z8B14f/uHHjmD59OnFxcQDMmDGDESNGYLPZeO2116qPtXDhQvr378/o0aP5j//4Dx566CEAsrKySE5OZtSoUYwaNYqvv65vYfnz/fa3v+X555/H4XAwatQoNmzYAMD8+fN54oknANi9ezdXXHEFI0aMICkpiYyMjOrtQ4cOZejQobz00kt1Hv/dd9/lsssuqw47gAkTJhAfH09ZWRm//OUvGTx4MMOGDeOrr74CIDU1ldGjR5OQkMCQIUNIS0vj8ccf54cffiAhIYFHH3200T9fS5MWnhDCMK9+epIfM0rrff7Q8RLslbUXqS63a/6+/ASrd+bU+Zo+nUO5/7puFzzvxx9/zJQpU+jfvz9Wq5Xdu3czYsQIbrnlFt5//32uvfZaKioqWLduHa+88goLFy4kMjKSnTt3Ul5eztixY5k8eTIAe/bsISUlpXpo/BtvvEFMTAylpaWMGjWK5ORkysvL+cMf/sCePXuIiIjgqquuYujQoQDMmzeP//qv/+Lyyy/n+PHjJCUlcfDgwfNq3rx5MwkJCQDcdNNN1YEGEBgYyKJFi7jxxhtZsGABq1evZseOHdjtdubOncvHH39Mhw4dWLp0KU888QRvvPEGv/zlL3nxxRcZP358vSGUkpLCiBEj6nzupZdeQinF/v37OXToEJMnT+bw4cO8+uqrzJs3j1mzZlFRUUFlZSXPPvssKSkp7Nu374L/XTzNY4GnlHoDmAZkaq3j3dtigKVAL+AocLPWOk+5htr8A5gKlABztNZ7PFWbEMI/nBt2DW1vrCVLljBv3jzA1apbsmQJI0aM4JprrmHevHmUl5ezevVqxo8fT2hoKF988QXfffcdy5YtA6CgoIC0tDTMZjOjR4+udR/YCy+8wEcffQTAiRMnSEtL4/Tp01xxxRXExLi6Ym+66SYOHz4MwNq1azlw4ED168+ePUtRURHh4eG1aq6rS7Mmm83GHXfcwbRp09i2bRtms5mUlBRSUlKYNGkSAJWVlXTu3Jn8/Hzy8/MZP348AHfccQerVq1q0nu4ZcsW5s6dC8DAgQPp2bMnhw8f5rLLLuOPf/wjJ0+e5Be/+AX9+vVr0nE9yZMtvEXAi0DNK6qPA+u01s8qpR53P34MuAbo5/4aA7zi/tejCrZuJXP5chw5OQRarcQmJxOZmOjp0woh3Bpqic3+v1Qy8+3nbY+NCuLP9zbvgzQ3N5f169ezf/9+lFJUVlailOK5554jJCSECRMmsGbNGpYuXcqtt94KuG5yXrBgAUlJSbWOtWHDBiwWS63Ha9euZdu2bYSFhTFhwoQG7xNzOp1s376dkJCQZv08Ne3fv5+oqCgyMzOr67bZbGzbtq3Wfvn5+Y06ns1mY+PGjU2q4bbbbmPMmDGsXLmSqVOn8s9//pM+ffo06Rie4rFreFrrTcC5He3XA2+5v38LmFFj+9vaZTsQpZTq7KnawBV2GYsW4chxdYs4cnLIWLSIgq1bPXlaIUQTzJ7cmeCg2vdaBQcpZk9u/sfDsmXLuOOOOzh27BhHjx7lxIkT9O7dm82bNwNwyy238Oabb7J582amTJkCQFJSEq+88gp2uyt8Dx8+THFx8XnHLigoIDo6mrCwMA4dOsT27dsBGDVqFBs3biQvLw+Hw8Hy5curXzN58mQWLFhQ/bi53X4ffvghubm5bNq0iblz55Kfn8+AAQPIysqqDjy73U5qaipRUVFERUWxZcsWABYvXlznMW+77Ta2bt1a67rmpk2bSElJYdy4cdWvO3z4MMePH2fAgAH8+OOP9OnTh4cffpjrr7+e7777joiICAoLC5v1c7Ukbw9a6ai1znB/fxqoGubTFThRY7+T7m0ek7l8ObqiotY2XVFBZo1fRCGEsa4aFsPDN3QnNioIhatl9/AN3S9qlOaSJUu44YYbam1LTk5myZIlgCuANm7cyNVXX43ZbAbgnnvuIS4ujuHDhxMfH899992Hw+E479hTpkzB4XAwaNAgHn/8cS699FIAunbtyq9//WtGjx7N2LFj6dWrF5GRkYCrC3TXrl0MGTKEuLg4Xn311Sb/TNnZ2Tz++OO8/vrr9O/fn4ceeoh58+ZhNptZtmwZjz32GEOHDiUhIYGt7j/q33zzTR588EESEhLQuu4u4tDQUD777DMWLFhAv379iIuL4+WXX6ZDhw488MADOJ1OBg8ezC233MKiRYsIDg7m/fffJz4+noSEBFJSUrjzzjuxWq2MHTuW+Ph4QwetqPp+0BY5uFK9gM9qXMPL11pH1Xg+T2sdrZT6DHhWa73FvX0d8JjW+rzVXZVS9wL3AvTo0WPEsWN1rvPXoINz5tT73KBFi5p1TCFEww4ePMigQYOMLsPrqq7LORwObrjhBu66667zglc0XV2/T0qp3Vrrkefu6+0W3pmqrkr3v5nu7aeA7jX26+bedh6t9Wta65Fa65EdOpy3gnujBVqtTdouhBAX47e//S0JCQnEx8fTu3dvZsyY0fCLRIvy9m0JnwCzgWfd/35cY/tDSqn3cA1WKajR9ekRscnJZCxaVKtbU5nNxCYne/K0Qog26vnnnze6hDbPk7clLAEmAO2VUieB/8UVdO8rpe4GjgE3u3f/HNctCUdw3ZbwS0/VVaVqNGbVKE1lNtN5zhwZpSmEEK2UxwJPaz2znqcm1rGvBh70VC31iUxMJDIxkfQ33qBw1y7ajfH4nRBCCCEMIlOLAeHx8ThLSij76SejSxFCCOEhEnhAWFwcKEVRaqrRpQghhPAQCTwgMDyckF69KJbAE6LN8JflgUpKSrBarZw9e7bW9hkzZrB06dJGHyc9PZ0bb7zxgvts2LCBadOm1flcr169yM7ObvT57HY7jz/+ePWyQpdddlmTpy8DWLRoEenp6U1+XV0k8NwsNhulR45QWVr/RLZCCO/7JmcHT+5/nAd338uT+x/nm5wdLXLcmssDtYS6bkRvCWFhYSQlJVXPzwmuGV22bNlSaxWDhmrr0qVL9Vyg3vDUU0+RkZFBSkoKe/bsYcWKFc2abUUCzwMsNhs4nZT4+F97QrQl3+Ts4N1j75BX4ZqlMK8il3ePvXPRoedvywPNnDmzVp0fffQRSUlJhIWF8c0333DZZZcxbNgwEhMT+f777wFXUEyfPp2rrrqKiRMn1lrk9ejRo4wbN47hw4czfPjw6tlXwDV59bXXXsuAAQO4//77cTqd59Xz73//u3oJoPvuu4/Kyspaz5eUlPCvf/2LBQsWEBwcDEDHjh25+WbXwPwlS5YwePBg4uPjeeyxxwDXxNZz5swhPj6ewYMH87e//Y1ly5axa9cuZs2aRUJCAqUX2SCR5YHcQvv2RQUHU5ySQsSwYUaXI0SbsOzEUk6WnKj3+Z+Kf8Sha7ec7LqCxcfeYmv25jpf0y2sOzd2v+WC5/W35YGSkpK45557yMnJwWq18t5771UH5sCBA9m8eTOBgYGsXbuWX//619Vzde7Zs4fvvvuOmJgYjh49Wn282NhYvvzyS0JCQkhLS2PmzJns2uWa2Oqbb77hwIED9OzZkylTpvDhhx/W6go9ePAgS5cu5euvvyYoKIgHHniAxYsXc+edd1bvc+TIEXr06EG7du3Oe+/T09N57LHH2L17N9HR0UyePJkVK1bQvXt3Tp06RUpKCuCa4DoqKooXX3yR559/npEjz5s4pckk8NxMQUFYBg6k2P1mCyGMd27YNbS9sfxteSCz2cz06dNZtmwZycnJ7N27t3rlhoKCAmbPnk1aWhpKqeoJrgEmTZpUfc6a7HY7Dz30EPv27SMgIKC6FoDRo0dXr24wc+ZMtmzZUivw1q1bx+7duxk1ahQApaWlxMbGNvq937lzJxMmTKBqpqxZs2axadMmnnrqKX788Ufmzp3LtddeW/0HRUuSwKvBYrNR9O23VGRlYb6IacuEEI3TUEvsyf2PV3dn1hRtjuFXA/6nWef01+WBZs6cyR/+8Ae01lx//fUEBQUBrmtlV155JR999BFHjx5lwoQJ1a+pWVtNf/vb3+jYsSPffvstTqez1rldy5NS72OtNbNnz+aZZ56pt9a+ffty/Phxzp49W2crry7R0dF8++23rFmzhldffZX333+fN954o1GvbSy5hleDxd2/LaM1hfAN07vcQJAy19oWpMxM79L8SZf9dXmgCRMmkJaWxksvvcTMmT/P61FQUEDXrq7FZRY1cuL7goICOnfujMlk4p133ql1De6bb77hp59+wul0snTpUi6//PJar504cSLLli2rXnMvNzeXcyfxDwsL4+6772bevHlUuKdvzMrK4oMPPmD06NFs3LiR7OxsKisrWbJkCVdccQXZ2dk4nU6Sk5N5+umn2bPHtQZ4Sy4tJIFXg7lzZwJjYqRbUwgfMdo6htt63kG02dUtF22O4baedzDa2vxZkfx1eSCTycSNN95ITk4OV1xxRfX2//f//h/z589n2LBhjR4p+sADD/DWW28xdOhQDh06VKslOGrUKB566CEGDRpE7969z3uv4uLiePrpp5k8eTJDhgxh0qRJZGScP/Xx008/TYcOHYiLiyM+Pp5p06bRrl07OnfuzLPPPsuVV17J0KFDGTFiBNdffz2nTp1iwoQJJCQkcPvtt1e3IOfMmcP999/fIoNWPLo8kKeNHDlSV11obSnpCxdSuGcP/RcsQJnk7wEhWposDyTLA7UkX14eyOdZbDacxcWU1RjRJIQQF0uWBzKeDFo5h8VmA6UoTkkh1D1SSQghLpYsD2Q8aeGdIzAigpAePWTgihBCtDISeHWwxMdTItOMCSFEqyKBVwdLfDxUVso0Y0II0YpI4NUhtG9flNks3ZpCCNGKSODVwRQURJhMMyZEq+YvywOtWbOGhIQEEhISCA8PZ8CAASQkJNSau/Jce/bsYfXq1Q0ee+3atfWOFt2+fTuXX345AwcOZNiwYdx7771Nvg/uxx9/rDXptdEk8OoRbrNRcfo09pwco0sRok0r2LqVtEce4eCcOaQ98ggFNWb2vxj+sjxQUlIS+/btY9++fYwcOZLFixezb98+3n777Xpf09jAq09GRga33HILf/3rXzl06BB79uxh4sSJFBUVNek4Enh+onqaMWnlCWGYgq1byVi0CIf7D09HTg4ZixZddOj52/JA9SktLWX27NkMHjyY4cOHs2nTJkpLS/n973/P4sWLSUhIYNmyZWzfvr16CaGxY8eSlpZ2weMuWLCAu+++m9GjRwOu+TRvueUWOnToQHZ2NtOnT2fIkCEkJiZWr26wfv16hg4dSkJCAsOHD6e4uJjHH3+cr776ioSEBF544YVG/1yeIvfh1cPcpQuBUVEUpaYSVWMaHyFEyzm9eDHlx4/X+3zpDz+gz2k56YoKMt54g/yNG+t8TXCPHnSaNeuC5/W35YHq88ILLxAcHMz+/ftJTU1l6tSppKWl8Zvf/IaUlBT+/ve/A665M6uWEFq9ejVPPvnkBVdLT0lJ4b777qvzuaeeeooxY8bwySef8MUXXzBnzhx27drFc889x2uvvcaYMWMoKioiJCSEZ599lhdffJEVK1Y06ufxNAm8eiilsMTHU7R3L9rplGnGhDDAuWHX0PbG8rflgeqzZcsWHn30UQBsNhtdunThyJEj5+2Xn5/PnXfeyQ8//NCct+u8c1a1gidPnsycOXMoLi5m7NixzJs3j1mzZpGcnNyo+r1NAu8CLDYbBVu2UHbsGKE1fqGFEC2joZZY2iOPVHdn1hRotdJz/vxmndNflwe6GE888QRJSUk88MADHDlypHoViPrYbDZ2797Ntdde2+hzPPnkk0yfPp2VK1dy6aWXsm7duostu8VJs+UCLDYbINfxhDBKbHIyylx7eSBlNhObnNzsY/rr8kB1GTduHIsXLwZckyhnZGTQt2/f85bUaeoSQnPnzmXhwoXVq6Brrfnggw/Iysqqdc61a9fStWtXLBYLP/zwA0OGDGH+/PkMHz6c77//vkWX9mkJEngXENiuHcE9e0rgCWGQyMREOs+ZQ6DVCrhadp3nzCEyMbHZx/TX5YHqMnfuXEpLSxk8eDCzZs3i7bffxmw2c9VVV/Htt98ybNgwli1bxmOPPcajjz7K8OHDacwKOV26dOHdd99l3rx5DBw4kLi4ONavX094eDi///3v2bZtG0OGDOE3v/kNb775JuCaKzQ+Pp4hQ4YQHh7O5MmTGTZsGJWVlQwdOtQnBq3I8kANyHz/fXLWrGHASy9h8mCXgxBthSwPJMsDtSRZHqgFVU0zVuzjN6cKIXybLA9kPBm00oCa04xFJCQYXY4Qwk/J8kDGkxZeA0xmM2H9+8t1PCFakD9fShG+o6m/RxJ4jWCJj6ciI0OmGROiBYSEhJCTkyOhJy6K1pqcnJwm3c4hXZqNUD3NWGoqUePHG1yNEP6tW7dunDx5kqysLKNLEX4uJCSEbt26NXp/CbxGCO7alcCoKIpTUiTwhLhIQUFBtWYmEcJbpEuzEZRSWGw2ig8cQDudRpcjhBCiGSTwGslis1FZVETZBSa6FUII4bsk8BpJphkTQgj/JoHXSIGRkQR3705xaqrRpQghhGgGCbwmsMTHU3L4MM7ycqNLEUII0UQSeE1gsdmgspISmWZMCCH8jgReE4T1748KCpJuTSGE8EMSeE1gMpsJGzCAIhm4IoQQfkcCr4ksNhsV6enYc3ONLkUIIUQTSOA1Uc1pxoQQQvgPCbwmCu7WjYB27STwhBDCz0jgNZFSivD4eIpTU2WaMSGE8CMSeM1gsdmoLCyk/MQJo0sRQgjRSBJ4zRDmnmZMRmsKIYT/kMBrhqCoKNc0YxJ4QgjhNyTwmslis1GalibTjAkhhJ+QwGsmS3w82uGg5PvvjS5FCCFEI0jgNVNY//6owEC5PUEIIfyEBF4zVU0zJtfxhBDCP0jgXQSLzUb5qVPY8/KMLkUIIUQDJPAugkwzJoQQ/kMC7yJUTzMm3ZpCCOHzJPAugjKZsNhsFB84INOMCSGEj5PAu0iW+Hgqz56VacaEEMLHSeBdJEtcHCDX8YQQwtdJ4F2koOhogrt1k8ATQggfJ4HXAiw2GyXffy/TjAkhhA+TwGsBFpvNNc3Y4cNGlyKEEKIeEngtIGzAAJlmTAghfJwEXgswBQcT2r+/3I8nhBA+TAKvhVhsNspPnsSen290KUIIIeoggddCwt3TjJVIt6YQQvgkQwJPKfVfSqlUpVSKUmqJUipEKdVbKbVDKXVEKbVUKWU2orbmCu7enYCICIqkW1MIIXyS1wNPKdUVeBgYqbWOBwKAW4H/A/6mte4L5AF3e7u2i1E9zVhqKlpro8sRQghxDqO6NAOBUKVUIBAGZABXAcvcz78FzDCotmaz2GyuacZOnjS6FCGEEOfweuBprU8BzwPHcQVdAbAbyNdaO9y7nQS61vV6pdS9SqldSqldWVlZ3ii50aqXC5JuTSGE8DlGdGlGA9cDvYEugAWY0tjXa61f01qP1FqP7NChg4eqbJ6g6GjMXbpI4AkhhA8yokvzauAnrXWW1toOfAiMBaLcXZwA3YBTBtR20cLj4yk5fBhnRYXRpQghhKjBiMA7DlyqlApTSilgInAA+Aq40b3PbOBjA2q7aJb4eLTdLtOMCSGEjzHiGt4OXINT9gD73TW8BjwG/LdS6ghgBRZ6u7aWUD3NmHRrCiGETwlseJeWp7X+X+B/z9n8IzDagHJalCk4mNB+/WReTSGE8DEy04oHWGw2yk+cwCHTjAkhhM+QwPOA6tsTDhwwuBIhhBBVJPA8IKRHDwLCw+U6nhBC+BAJPA+ommasSKYZE0IInyGB5yEWm43KggKZZkwIIXyEBJ6HWGw2QKYZE0IIXyGB5yFBVqtrmjG5PUEIIXyCBJ4HWWw2Sr7/XqYZE0IIHyCB50EWmw1tt1OalmZ0KUII0eZJ4HmQZeBACAiQbk0hhPABEngeZAoJIaxvX4pk4IoQQhhOAs/DLPHxlB8/jqOgwOhShBCiTZPA8zCZZkwIIXyDBJ6HhfTsSYDFIvfjCSGEwSTwPEyZTITZbBTLNGNCCGEoCTwvCLfZcOTnU5GebnQpQgjRZkngeUHVdTwZrSmEEMaRwPOCIKsVc6dOch1PCCEMJIHnJZb4eNc0Y3a70aUIIUSbJIHnJRabDV1RIdOMCSGEQSTwvCSsapox6dYUQghDSOB5SUBoKGF9+8q8mkIIYRAJPC+y2GyUHTuG4+xZo0sRQog2RwLPi2SaMSGEMI4EnheF9OqFSaYZE0IIQ0jgeZEymbAMGiTTjAkhhAEk8LzMEh+PIy9PphkTQggvk8DzMovNBiDdmkII4WUSeF5m7tABc8eOFMntCUII4VUSeAawxMdTcuiQTDMmhBBeJIFnAEt8vGuasSNHjC5FCCHaDAk8A4QNHAgmk8y6IoQQXiSBZ4CA0FBC+/aVgStCCOFFEngGqZ5mrLDQ6FKEEKJNkMAzSLjNBlpTItOMCSGEV0jgGSSkd29MYWEUSbemEEJ4hQSeQVRAAJa4OJlmTAghvEQCz0CW+HgcublUZGQYXYoQQrR6EngGqp5mTG5PEEIIj5PAM5C5QweCOnaU2xOEEMILJPAMFm6zUXzoENrhMLoUIYRo1STwDNZDY5QAACAASURBVGax2dDl5ZTINGNCCOFREngGCxs0yDXNmHRrCiGER0ngGSwgLIzQSy6RgStCCOFhEng+wGKzUXb0KI6iIqNLEUKIVksCzwdY4uNlmjEhhPAwCTwfENq7N6bQULmOJ4QQHiSB5wOqphkrkmnGhBDCYyTwfITFZsORk0PF6dNGlyKEEK1SoNEFCBdnRQUAP86fT6DVSmxyMpGJiQZXJYQQrYe08HxAwdatZH34YfVjR04OGYsWUbB1q4FVCSFE6yKB5wMyly9Hu1t4VXRFBZnLlxtUkRBCtD4SeD7AkZPTpO1CCCGaTgLPBwRarU3aLoQQoukk8HxAbHIyymw+b3v7GTMMqEYIIVonCTwfEJmYSOc5c6pbdAHt2gFQcfKkkWUJIUSrIrcl+IjIxMRatyFkvPUWuV98QcTIkYT162dgZUII0TpIC89Hxd58M0ExMWS8/jrO8nKjyxFCCL8ngeejAkJD6Xz33VScOVPrHj0hhBDNI4HnwyxxcURddRW5X3xByeHDRpcjhBB+TQLPx3W8+WaCrFbSFy6Urk0hhLgIEng+zhQSQue778Z+5gxZMvOKEEI0mwSeH7AMGkT0xInkfvklJd9/b3Q5QgjhlwwJPKVUlFJqmVLqkFLqoFLqMqVUjFLqS6VUmvvfaCNq81WxN91EUPv2pL/xhnRtCiFEMxjVwvsHsFprPRAYChwEHgfWaa37Aevcj4WbKSSEznfdhf3MGTKXLTO6HCGE8DteDzylVCQwHlgIoLWu0FrnA9cDb7l3ewuQebXOUdW1mbd2rXRtCiFEExnRwusNZAFvKqX2KqVeV0pZgI5a6wz3PqeBjgbU5vNib77Z1bUpozaFEKJJjAi8QGA48IrWehhQzDndl1prDei6XqyUulcptUsptSsrK8vjxfoaU3Cwa9RmZqZ0bQohRBMYEXgngZNa6x3ux8twBeAZpVRnAPe/mXW9WGv9mtZ6pNZ6ZIcOHbxSsK+xDBxI9NVXkyejNoUQotG8Hnha69PACaXUAPemicAB4BNgtnvbbOBjb9fmT2Jvuomg2FjSZa5NIYRoFKNGac4FFiulvgMSgD8BzwKTlFJpwNXux6IepuBgutx9N/asLDI/+MDocoQQwucZsjyQ1nofMLKOpyZ6uxZ/FjZgANGTJpH35ZdEjBiBZdAgo0sSQgifJTOt+LnYG28kKDaWjDfewFlWZnQ5QgjhsyTw/Fx112Z2tnRtCiHEBUjgtQJhAwa4Rm2uW0fxwYNGlyOEED5JAq+ViL3xRoI6diRj4ULp2hRCiDpI4LUS1V2bOTlkvv++0eUIIYTPkcBrRcL69ydm0iTy1q+n+MABo8sRQgifIoHXynRITsbcsaOM2hRCiHNI4LUypuBgOt9zD/acHM5I16YQQlSTwGuFwvr1I2byZPKla1MIIapJ4LVSHX7xC1fX5sKFVJaWGl2OEEIYTgKvlaru2szNlVGbQgiBBF6rVt21+dVX0rUphGjzJPBauQ7JyZg7dZKuTSFEmyeB18qZzGbXCum5uWQuXWp0OUIIYZhGBZ5S6p3GbBO+KaxfP2KSksjfsIHi1FSjyxFCCEM0toVnq/lAKRUAjGj5coSndPjFLzB36kT6G29I16YQok26YOAppeYrpQqBIUqps+6vQiAT+NgrFYoWYTKb6XzPPTika1MI0UZdMPC01s9orSOA57TW7dxfEVprq9Z6vpdqFC0krG/f6q7NopQUo8sRQgivamyX5mdKKQuAUup2pdRflVI9PViX8JCqrs0M6doUQrQxjQ28V4ASpdRQ4BHgB+Btj1UlPMZkNtPlnntw5OWR+d57RpcjhBBe09jAc2itNXA98KLW+iUgwnNlCU8K7duXmClTyN+4Ubo2hRBtRmMDr1ApNR+4A1iplDIBQZ4rS3hahxtuwNy5s6trs6TE6HKEEMLjGht4twDlwF1a69NAN+A5j1UlPE66NoUQbU2jAs8dcouBSKXUNKBMay3X8Pxc6CWXYL3mGvI3baJo/36jyxFCCI9q7EwrNwPfADcBNwM7lFI3erIw4R3tZ8zA3KULGW++KV2bQohWrbFdmk8Ao7TWs7XWdwKjgac8V5bwlppdm2eka1MI0Yo1NvBMWuvMGo9zmvBa4eNC+/TBes01FGzaRNF33xldjhBCeERjQ2u1UmqNUmqOUmoOsBL43HNlCW+r7tpctEi6NoUQrVLghZ5USvUFOmqtH1VK/QK43P3UNlyDWPzaot3r2FH6OSqkEF0WwZjQqcwZMdHosgxR1bV59A9/4MySJXS5+26jSxJCiBbVUAvv78BZAK31h1rr/9Za/zfwkfs5v7Vo9zp2OJZjCi1EKTCFFrLDsZxFu9cZXZphQvv0wTp1KgWbN0vXphCi1blgCw9X6+688epa6/1KqV4eqchLdpR+jinUUWubKdDBjtLPmUPbbOWBq2uzcO9eTr76KgHBwTjy8gi0WolNTiYyMdHo8oQQotkaauFFXeC50JYsxNtUSGGTtrcVpqAg2o0Zgy4pwZGXB4AjJ4eMRYso2LrV4OqEEKL5Ggq8XUqp/zh3o1LqHmC3Z0ryDl1W91Sg9W1vS/I3bTpvm66oIHP5cgOqEUKIltFQl+avgI+UUrP4OeBGAmbgBk8W5mljQqe6ruEF/tytqTUMCB1mYFW+wZGT06TtQgjhDxpaAPaM1joR+B1w1P31O631Ze7pxvzWnBETGROYjLM0Aq3BXhJOiI7kmGkHx4uPGV2eoQKt1iZtF0IIf9DYuTS/0lovcH+t93RR3jJnxEReufwvPNVnASc+v5OhRfcSHhjOy0deILs8y+jyDBObnIwym8/bHty9O65VooQQwv/IbClA55hgEi4J56uddv7zkodxaicvpf2DQnvbHMASmZhI5zlzqlt0gVYroYMGUbxvHxkLF6IdjgaOIIQQvqeha3htxpTRVp5dcozTp8K5v+9DvHD4r7xyZAHz+j9CcECw0eV5XWRiYq3bELTWZK9YQfbHH+M4e5ZuDz6IKbjtvS9CCP8lLTy3y+IiiQgNYM3OHPqEX8Iv+9zD8ZJjvPHTv6jUlUaXZzilFB1uuIFOd95J8f79HPu//8NR2DZbwEII/ySB52YONDFxeAxbDxRQUOxgaNQwbulxGykF37H0+Lty7cot+qqr6PrQQ5QfP86xP/4Re3a20SUJIUSjSODVMGVUDI5Kzbo9uQCM63AFUzpN5evszazKWGlwdb6j3YgR9Hj0URxnz3L06acpO3HC6JKEEKJBEng19OwYyqAeYazelVPdopvW5XrGWC9jZcYnbM3eYnCFviNswAB6/vrXoBTH/vQnig8dMrokIYS4IAm8cySNsnIis5wDx4oB17WrWT3vYFA7G0uO/ZuUAplUuUpIt270evJJAqOiOPH885zdudPokoQQol4SeOcYPziK0GATa3blVm8LUIHc0+c+uoV1Z+GPr3G0+CcDK/QtQVYrPZ94gpBevTj18svkrW81t2kKIVoZCbxzhAYHMGFoNJu+y6e47OfRmSEBIfxn37lEBLbjlSMLyCzLvMBR2pbA8HB6PPoo4UOGcPrtt8lcvlwG+QghfI4EXh2SRloptzvZ8G1ere3tgtrxUL95ALyU9nfO2s8aUZ5PMgUH0+3hh4kcN46cTz/l9Jtvoivldg4hhO+QwKtD/26h9Okcwpqd50+WHBvSkfv7PkSBvYBXjiygrLLMgAp9kwoIoPNdd2G97jryN23i5Isv4iwvN7osIYQAJPDqpJQiaaSVtFOlHEkvOe/53pY+3N3nPk6UHGfhj69RqWWqrSpKKWKTk+l4++0U7dvH8eeeo7KoyOiyhBBCAq8+Vw6LxhyoWLMzt87nB0cNYWaP2zlwNoV3j/1brlmdI+bqq+n6wAOUHT3K0T/9CbssLSSEMJgEXj0iQgO5PD6Kr/blUlbhrHOfsR3GMbXzNLbnbGVlxidertD3tRs1iu6PPIIjL4+jTz9N+alTRpckhGjDJPAuIGmUleIyJ1+n5Ne7z9TO15FovZxVGSvZnLXRi9X5B8ugQfScPx+05ugf/0jJ4cNGlySEaKMk8C5gcG8LXa3BrK5j8EoVpRS39pyFrV08S4+/y7f5+7xYoX8I6dGDnk88QWC7dhx/7jkKd+82uiQhRBskgXcBSimSRsWQcrSYk1n1j8YMUAHc3ec+eoT15M0f/8WPRT94sUr/YO7QgZ5PPEFw9+6cfPFF8jZsMLokIUQbI4HXgInDYwgwUWvmlboEBwTzn30fIsoczatHXuRM2WkvVeg/AiMi6PnYY1gGD+b0okVkrVghg32EEF4jgdeAmIggxgyK5MvdudgddQ9eqRIR1I4H+z2MUiZeSvsHBfb6r/21VabgYLo//DCRY8eSvWIFp996C+288PsqhBAtQQKvEaaMslJQ7GDHoYZnVukQHMsDfedS6Cji5bQFlFaWeqFC/6ICA+l8zz1Yr72W/A0bXDeoV1QYXZYQopWTwGuE4f0iaB8ZVOfMK3XpaenFPX3uJb30FK//8CoOp9yYfi6lFLE33UTHWbMo2ruX488/T2VxsdFlCSFaMQm8RggwKSaPiGF3WiFn8hrXErFFDua2nndwqPAg/z72llyrqkfMpEl0vf9+Sn/4gWPPPIM998LXSoUQorkk8Bpp8kgrAF/ubvyMIZe1H8u0LtezM3cHn6R/5KnS/F67MWPo8cgj2LOzXTeop6cbXZIQohWSwGukjtFmhveN4ItduVQ6G99am9JpKpe3H88Xp1ezIVPWiquPJS6OnvPnox0O1w3qaWlGlySEaGUk8JogaZSVrAI7e9IKG/0apRQ395jJ4MihLDuxlH15ezxYoX8L6dmTXk8+SUB4uOsG9b17jS5JCNGKSOA1waWD2hFpCWz04JUqASqAu/rcQy9Lb9786XWOFEnrpT7m2Fh6PfEEwV27cnLBAvI3ynRtQoiWIYHXBEGBJq4eHs32gwXkFdqb9FqzKZj7+z5IjNnKP4+8REapXKeqT2C7dq4b1OPiyHjzTU6++CJpjzzCwTlzSHvkEQq2bjW6RCGEH5LAa6KkkVYqnbB2T9NHE4YHRvBgv3kEqEBeSvsH+RV5Db+ojTKFhND9V78ipG9fCnftwuFeXsiRk0PGokUSekKIJjMs8JRSAUqpvUqpz9yPeyuldiiljiilliqlzEbVdiHdY0OI72Vhzc7cZt1q0D64PQ/0m0tJZQkvH1lAaeX5C8wKFxUYiCPv/D8KdEUFmcuXG1CREMKfGdnCmwccrPH4/4C/aa37AnnA3YZU1QhJo6ycyikn5WjzbpTuEdaT/7jkfjJK03nth1ewO5vWPdqWOOpZOLa+7UIIUR9DAk8p1Q24Fnjd/VgBVwHL3Lu8BcwworbGuDw+CkuIidXfNP9Dd1A7G7f3ms3hwu/599G3cGqZT7IugVZrvc8df/55ig8ckJv6hfBzBVu3euU6vVEtvL8D/w+o+pS3Avla66o5uE4CXet6oVLqXqXULqXUrqysLM9XWocQs4krE2LYkpJPYWnzpw0bY72M67vewK68b1hx6sMWrLD1iE1ORplr926roCAiRo+m7Phxjv/5zxz97W8p2L4dXVlpUJVCiOYq2LqVjEWLvHKdPrDFj9gApdQ0IFNrvVspNaGpr9davwa8BjBy5EjD/rRPGhXDZ9uz2bAvj+su69Ds40zqOIW8ijzWnfmCrdlbKK0sIdocw/QuNzDaOqYFK/ZPkYmJAGQuX44jJ4dAq5XY5GQiExNxVlRQsG0buatWkf7qq2QtW0ZMUhJR48djCg42uHIhRGNkfvAB+pzJ46uu01f9/99SvB54wFhgulJqKhACtAP+AUQppQLdrbxuwCkDamu0vl3C6NsllNU7c5h2aXtcvbJNp5SiV1hvNrOxegBLXkUu7x57B0BCD1fo1fWLbzKbib7iCqLGjaNo715yVq3izOLFZK9YQfTVVxM9cSKB7doZULEQoiEVmZnkrl5d58A08Mx1eq8HntZ6PjAfwN3C+x+t9Syl1AfAjcB7wGzgY2/X1lRTRlt5ccVJ0k6V0r9bWLOP82nGx2hqN1btuoJP0j+SwGsEZTIRMWIEESNGUJKWRs7nn5P98cfkfP45kePGYU1Kwtyxo9FlCiGAsmPHyPn8c85+8w2YTKjgYHR5+Xn7Xej6fXMZ0cKrz2PAe0qpp4G9wEKD62nQhKHR/GvlKdbszLmowMurqPuevvq2i/qF9etH2Lx5lKenk7t6NQWbNpH/1VdEjBiBdepUQvv0MbpEIdocrTUlBw+Ss3IlxampmEJCiJkyhZjJkyk5eJCMRYtqdWsqs5nY5OQWr0P58wi3kSNH6l27dhlaw18+OMbXqQUsnm8jNDigWcd4cv/j9YbblbETmdblekICQi6mzDbLnp9P3pdfkrd+Pc7SUsIGDMA6dSqWIUOa3Q0thGgc7XRSuGsXOZ9/TtnRowS0a0fM5MlEX3klARZL9X4FW7fWeZ2+uZRSu7XWI8/bLoF3cVKPFvE//zzCfyV3r15CqKm+ydnBu8fewa5//gsnSAXRJ7wv3xceJMZs5baetzOona2lym5zKktLyd+4kdwvvsCRm0tw167EXHMNkZdeigr0pY4OIfyfs6KCgi1byFm9GntmJuaOHV3/vyUmYjJ7fk4RCTwP0Vpz398OEREWyF/u79fs43yT41ozL68it9YozSNFabx79G3OlJ9hjPUykrvdjCXQ0vABRZ20w8HZHTvIWbWK8pMnCYyOJmbyZKImTCAgNNTo8oTwa5XFxeStX0/ul19SefYsIb17Y506lYgRI1Am790FJ4HnQcs3Z/L65+m8+qsB9OzY8h+adqed1Rkr+eL0aiyBFm7uMZNhUSOkS+4iaK0p3r+fnFWrKDl4EFNoKNFXXkn0pEkERUcbXZ4QfsWem0vumjXkb9yIs6wMy+DBWKdOJWzgQEM+pyTwPCi/yMEdz6Zy3aXtuXdanffLt4iTJSdYfOxtjpccY0jkUG7pMYsoc5THztdWlP70EzmrVlG4cyeYTEQmJmKdMoXgrp77bylEa1B+6hQ5q1ZRsG0baE270aOxTp1KSI8ehtYlgedhf3r3KN/+UMg7822YAz3XdK/Ulaw/s5aV6Z8QaArkhq43ktj+cmnttYCKzEzXX6mbN6MrKggfOtQ1srN/f3l/haihJC2NnJUrKdq3D2U2EzV+PDFJSZg7NH8SjpYkgedhuw+f5ck3f+TxmT25Yojnu8QyyzJ599jbpBUdpn/EAGb2uIPYkFiPn7ctcBQWkrduHXlr11JZVEToJZcQc801RAwf7tXrEEL4Eu10UvTtt+SsXEnpkSMEhIf/PMFDRITR5dUigedhTqfml88doGv7YP50d1/vnFM72Zb9NR+e/IBKXcm0LtdzZceJBKjm3R4hanOWl5O/ZQu5q1djz8pyjTSbMgUCA8lesaLFhlAL4cu0w0HBtm3krFpFRXo6QVYrMVOm+PQUfhJ4XvDuutO8s/Y0bz46iE4x3vtFyK/I473j77K/4Ft6hPVkVs876RbW3Wvnb+2q7yVatYqyn34673llNtN5zhwJPdGqVJaWkr9hg+tWnrw8grt3xzp1Ku1GjfL5W3kk8LwgK7+COX8+wM0TOjJ7cmevnltrzZ683XxwYgnFjmImd5rClM7XEmQK8modrZnWmrR586g8e/a85wIiIuj7/PM++xevEI3lKCggt2qyhpISwgYOdE3WMHiw31zLri/wfDum/UyHKDMj+rfjy9253D6xEwEB3vvlUEoxImYkA9oN5MMTH7D69Ofszd/DrJ53ckm4d7pYWzulVJ1hB1BZWMjhBx8ktH9/wuPjsdhsBHfvLtf8hE+qa2aT0EsucY243LIFXVnp1en46rsPuaVJC6+FbU3N5w//Pspv7+zNmEGRhtVxoCCVJcf/TV5FLuM7TGB61xtkerIWkPbII3XO4h4QEUHk2LEUp6RQfvJk9TaLzYbFHYByf5/wBVXrz9VaksdkAqcTFRhI5NixxFxzDcGdOnmlnrpnmjJzW887mh160sLzktEDI4kOD2T1zhxDAy8u0sYTcf/Lp+kr2Jj5Fd/l72Nmz9uxRQ42rKbWIDY5uc6JbjvOnFl9Dc+el0fxgQMUp6RQnJrK2e3bAQju2rU6/MIGDJDuT2GIzOXLz1t/DqcTU2gofZ55hqAo797b+0n6R7XCDjy3WowEXgsLDFBcPSKG5ZszyTlrx9rOuGtoIQEh3NT9VkZEj2Lxsbd5+cgCRsWM4cbuNxMe6FvDiP3FhRakrRIUHU3U2LFEjR2L1prykydd4ZeS4pp2ac0aVGAgof36VbcAQ3r0kO5P4TH2vDxKDhyg+MCBeteZc5aWej3syirLvLpajHRpesCp7HLu+ctB5iR15pYJvrEOm91pZ83pVazJ+JywQAs3db+FEdGj/OYidGvhrKig5PDh6tZf+YkTgLv7My7u5+7PmBiDKxX+rLKoiOJDh1whd/AgFRkZAARYLDjt9vNbeLjWn+v3l794pb4KZzmbMjfy5ZnVFDmK6twn2hzD04OfbdbxpUvTi7q2D2ZIn3BW78zhpvGxmEzGh0qQKYhpXaYzLHo4i4++zZs/vc7O3G+4tccsos1ybclbTGYz4fHxhMfHA+DIz3d1f6amUpSSwtkdOwAwd+mCxWYjPD6esIEDpftTXJCzvJySw4cpOXiQ4gMHKDt2DLRGmc2EDRhA1PjxWOLiCO7enbPbt3tt/blz2Z12tmRtYs3pVRQ6zjKoXRy9wy7hyzNrzruGN73LDS1+fmnhecj6vbk89/5xnrnnEhIu8a3uQ6d28lXmOj49tYIAFcCMbsmMbT8Ok5IuNSNVd3+mplKckkLJ99+j7XYICCCsX7/q1l9Iz57V3Z8tvY6Y8A/a4aD0p58oPnCAkgMHKDlyBCorISCA0EsucfUWxMUR2qdPnffMefv3xu60sy37a1af/pwCez79wvszrcv19I1wrTDT0qM05T48L6uwO5n1TCoj+0fw2K29jC6nTtnlWSw+9g6HCw/RN7wft/W8k44hvtEFK1zdn6VHjlCckkJRSgrlx48DEBAeTlhcHKaQEM5u2+YKRTe5Cb510k4n5SdOuHoDDh50/TFUXg5KEdKjB2FxcVgGDfK5wVCV2sH27G2sOr2SvIpc+lgu4bqu19M/YqBHzyuBZ4BXPjnJ59/ksHi+jXYW3+w91lqzLcc1PZndaefaLtOZ2HGSTE/mgxxnz1a3/opTU3Hk59e5X0BkJH3+8AcCIiLkGq2f0lpjP3PGFXAHDlBy6BCVRa5rXeZOnbDExRE2aBBhgwYRGB5ucLXnq9SV7Mzdwar0z8iuyKZnWC+u63o9AyPivPI7KYFngJ8ySnnghe+5b1pXZoz1jVnE61Ngz+f940vYl7+X7qHdSYgewZbsTR6/EVQ0j9aaQ7/85QX3UWYzQVar66t9+5//dX8fGBUlI0O9qKFuxOqRlO7rcI5c1yjFwJgYV+vN3Yrz5QFNTu1kd95OPk//jMzyM3QP7c61Xa4nPtK7s7RI4BnkVy8dptzu5OV5A/zir+29ebt556e3KNdltbZf7I2gouVd6Cb49tddhz0nB3t2tuvfnBwqCwvP2TGAoJiY+kMxJqbJcybKNcW61XWztwoKInLCBJTTSfGBA7VGUoYNGuRqxcXFYe7Y0ec/O5zayb78PaxM/5TTZRl0Ce3KtZ2nMzQqwacWgPXNfrZWJGmUlRc+OsGhEyUM6mExupwGDYsewbIT71Nurx14nroRVDRfY26Cr8lZXv5zANYIQnt2tqtFkZ8PNf8AVorAyMifg/DcULRaMYX8PHvPuR/qjpwcMhYtAmiToae1RldUUFlUxJmlS8+7FUDb7eR/+WWdIyn9peWttea7gn2sTP+UU6Un6RjSibt638uw6OE+OQhOAs/DrhgaxWsrT7FmZ45fBB5Avj2vzu15FbkUOYoID/S9awZtUWNugq/JFBxMcNeu9a7krh0O7Lm5PwdijVAs/fFHzu7a5RoJWENAeHh1ABanpp7/oV5RQeYHH2AZPBiT2Ywym732F39LtTa11jjLynAWF1NZ9VVU5Po6d1uNf53FxWiHo8HjD3j5ZZ9ffeBcWmtSz6awMv0Tjpcco0NwLLN73cXImNE+GXRV/Otd9kNhwQFcMSSKjd/lc++0roQF+/5gkGhzTL2zHDy1fz7jOoznqthJRJm9OyuDOF9kYmKLtZ5UYCDm2FjMsXUvJKydThwFBbVbie7vyzMycJaV1fk6R14eaXPn/nwesxlTcLArAKv+rbmt6vvgYNf37sdV3yv3c9X7Vj1ftS0oiLPbttXZ2nRWVGCx2c4LLee5oXXO9+cGfa33zWwmIDycAIuFgPBwgrt0cX3vfhxgsZC5bNn5Xcq4bvb2p7DTWnOo8CAr0z/hp+IfsZqt3N5zNqOtl/rFQDf/eaf9WNIoK2t25bLx23yuGW01upwGTe9yQ52TuU7tPI30slOsP7OWjZlfcak1kUmdkmgf7NsDckTLUCYTQdHRrkmw+/U77/n6rimaLBY6zJiBs6ICXVGBs7zc9b37X2d5uavrr7gYR16e63n3Nmd5ee1u1kYVqup8ja6o4LS7i7UuppAQTDWCKrhbt1qhVev78HDXvmFhmMzmhksKCjLsZu+Wcrjwez5L/4QfitKIDopmZo/budSaSKDJf2LEfyr1YwO7h9GzYwhrdub4ReBVXaer70bQaV2m8+XpL9ie8zVfZ29mZMxoJneaQpfQurvKRNtQ3zXFTrNmNbsVqrVGOxyu8KsKx6rAvEB4Zn/ySb3H7Hz33bWCqyrMPNnSamr3sy/5oegIn6V/wuHCQ0QGRXJz95kktr/cL9falFGaXrLi6yz++dkpXn54AL07hxpdTovIr8hnfeZaNmdtpMJZzpDIoUzufA29LZ5fP0v4Jl8ZpVlfa9Ob80X6u6PFb0WVkQAAHtNJREFUP/FZ+iccPJtKRGAEkztN4fIOV2A2NdyiNZrclmCws8UOZj2TytTRVv5zejejy2lRxY5iNmSuZ0PmOkoqS+gfMZCkTtcwIGKgzw+nFq1TnbcByCw0jXKi5DifpX9CSsF3WAIsTOqUxPgOVxIc4DszuDREAs8HPLvkKLsPF/LvX9sIDvLdkUzNVVZZxpbsTaw/8yUF9gJ6hvUiqfNUBkcO8emRW6J18pXWpi+qa+7KrmFdWZn+Kd/m7yU0IIyrO05iQuxEv1w4WgLPB+z7oZD5r//Aozf34KphvjtbwsWyO+3syNnGl6dXk12RTeeQLkzudA0jYkb6xUguIVqzulYYV5jQOAkxhXBlx6u5KvZqwgLDDKzy4siN5z5gSO9wOsWYWbMrt1UHXpApiMs7jOey9mPZk7eLNRmreOvoQj5L/5hJnZK41Jrolxe8hWgN6lphvCrsfj/4GSyB/nG/cHNI4HmRyaRIGmnlrS8yOJVdTtf2/tMn3hwBKoBRMWMYET2KlILvWJ3xOe8dX8yqjM+4quMkLm8/3i+7S4TwR3anne8LD9Z7j22Zs6xVhx1I4HndpBExvLM2gzW7crhrShejy/EKkzIxJCqBwZFDOVz4PWtOf85HJ5exJuNzJsROZELsVa3+fzQhjFBaWUpqwX6+zd9HasF+yp3l9e4bbW69vU5VJPC8zNouiNED2rF2dy53TupMYEDbGcWolGJAu4EMaDeQn4p/5IuMVXye8Slrz3whs7cI0UIK7Wf5ruBbvs3by/eFh3BoB+GBEYyMGc3QqATO2s+y9PgSr6ww7msk8AyQNMrK9oNn+eZQAYm2tvkB39vSh/v6Pkh66Sm+OL1aZm8R4iLklOfw/9u78/i463rf46/v7NknSZM0TdukhbbQQhcoHBZ3FsWFxe16rkv1eMVz1KMgPlyuXj0PjtfD8aAiVxE5blWxLghCQaUKbkABW0KBtkBL27RN0yxNJvvs3/vH/BqSJkNb2uT3S+b9fDzymJnfbyb5dJrkne/39122xJrZEmvmhYGdWCzVoWpeVfMaVkRXsbD0lDEjpf0mcFJ3GJ8uNErTBZmMZc1Xt7Gwvojr369J2pDbff3w6i1Zm+XsqnO0eotIHtZaDsbbeNIJuX1DewGYE5nDispVrIiexdyiuQU7D1ajND3E7zdccnYVv/xzO52xJDVR769cMNlmhWv4x8Z3c1n9m0ZWb/l792Msr1jBvOJGHjn0UMH9NSoyWtZmaRnaw5aeJ9kSa6Yj0Q7kekuubHgrK6KrqI3UuVylt6mF55K27gT/9F/bee/Fs/mfF812uxzPObx6yx8O/p6UTY05p81opVBkbJod/TvYEmvmqdiTxFIxfPhYXLaEFdFVLI+uIBqqdLtMz1ELz2Pqq8KsOrWU+zcd4l2vrcPnK8yuh3xKAiW8ac5b2Nj1ED1H7M+XsknW7f0pw5khGkuaaCiaq3l9MmMks0m2921jS6yZp2NbGMoMETRBllYs4/LoKs6sWE6xRjW/LAo8F73+nGpuWNdC885+zl5c7nY5nnRk2B2WzCb45b51APjw0VDUwPySJhqLm5hf0sicojn4jb69ZXoYSg/xTO/TbIk1s63vGZLZJEX+Ys6sWM6K6CqWViwl5JvZ83angn4juOj8pRWUF/u5f1O3Ai+PfJvRVgaruO60T9My2ELL0B72Du6huWczD3f9DYCACTC3eB7zixuZX9xEY0kjsyP1WtNTXHPk+pUX170ev/GxJfYkz/c/S8ZmKA+U8w/V57MiuorFZYv1R9tJpnfTRaGAj4tWVbH+0S5iA2mipfrvOFK+zWgvb7iKylAVlaEqVlauAnIj17qSnewdbKFlqIW9g3t4/NCj/LXzzwCEfCHmFc8fFYJN1IRrFIIy6XLrV/545Hp0T7KbXzk9FDXhWl5bexEroqtoKlmg78dJpN+wLnv9OVXc9XAnDzR387ZX1rpdjuccbTPa0Ywx1IRrqQnXcnbVOUBuZFtHop29gy3sHWqhZXAPD3X+lZR9AICIL8L8kkbmFzfSWNLE/OImqkPVBTucW05MIpOgK9FJR6KdzkQnnYkOOuMd7BzYgWX8AMHyQAVfWvbv+n6bIgo8lzXWFXH6/GLu//sh3vqKGn3jT+Dc6n942SMyfcbH7Eg9syP1nFt9HgAZm+FgvM1pCe5h72ALf+54kLRNA1DiLxkXgtFgdOT/ZqKtVTRitHDEM3EnzNrpjDuh5nz0pnrHPLcsUEZNuHbCsAPoS/fqZ34KKfA84A3nVPONX+9ja8sgZzSVul3OjOc3fhqK5tJQNJfzuRCAdDbNgXgrLYN72DvUwt7BFv5w8H6yZAEoC5TTWNKEHz9b+54eCceeZDc/a/kJgEJvBhnODI+0znJhlgu2jngH/em+Mc8tD5RTE6nl9PJlIz0MNZEaasI1FPlzW+x84enPTnwtugDWr/QSBZ4HvPLMKLfe28r9fz+kwHNJwBdwru01jhxLZpO0Du3PtQKd7tCD8bZxr81Nk/gJB4ZbiYaiVAQrqAhGqQhGKQ+Wa8qES47WEh9KD41pnR1urXUkOhhI94/5XBXBKDXhGs6oONMJNCfYwjXHtONH3mvRBbB+pZdo4rlHfOa/d/DUrkEMUBMNsubS+hm9Z9509dHNV+c95zd+MjYz7nhpoNQJwFwQ5kJxbDCWBcte1ua4Xute9UI91lo2dj3ML/etG7NogQ8/jSVNgKUj3s5gZnDM66LB6Jgwq3Vaa7PCNYT9Jz4lwAvvTaHQxHMPe7C5m+17hwCwQEcsxc137QNQ6HlM3mkSoSquP+MrDKYH6U3FnI9eelMxYsnekWOtw/vpS/WNu6ZjMJQHy48ajCWBkpFRfEfuXO129+qJ1JPOpoln4yQycec2QXzkfu42npnofmLUa5zj2cSE18yyZGgZ3M2pZYtZWXlWLtQih0Nt1qTPczuRa9FycijwPGDthjZS6bE/oImUZe2GNgWex7xU15TP+CgLllEWLGMu8/J+jozN0J/qHxeMvcleYqkY3cludg/uYiA9MO61fuOnPFhBNBhl/9C+ccuupWySO/b9fMKW5mS7a/+vxu2knbJJfr73dp7r3/6SAXX4mujRBEyAsC9MxB8h7I8Q8UUoDpRQ5a8m4ovkjvsi/P7gfRO+PkuWTyz+5An/W2V6UuB5QGcsdVzHxT3HM00iH7/xEw1Fj7r3Xyqboi/VN2Ew9qZi48LusMHMID9t+dEx1zPZEtk4z/ZtGwmosD/CrEBp7rE/QsRXRMQfHnN+JLz84THHAr5j+5X1WPdGDRKRcRR4HlATDdIxQbhVV2iwgxdNVddU0BekOlxNdbh6wvP5Rv5VBKNct+TTk13eOF977qv0pmLjjleGqvjymTdMaS0aJCITUeB5wJpL67n5rn0kUmO7NdPpLK1dCRpmaQ09GS/fL/UrG95GdXjWlNdzZcPbPBMyJ6MlLjOPRml6xIPN3azd0EZnLEVNNMhFZ1Vy32OHsFn4wnsWsHyhpivIeF4b+ee1eqQw5RulqcDzsAOHEvzb2l20dSf5+FVzueTsibu2RETkRfkCT6uUetic6jBf+5dFLGsq4et37ONH97eRzU7fP1BERNykwPO4sqIAX/7AKbzhnCp+8ed2/mPdHhKprNtliYhMOwq8aSDgN3z8qnl88LI5PLy1l8/ctpPufk1ZEBE5Hgq8acIYw9tfVcvn393EnvZhrr3leXYfHHa7LBGRaUOBN81cuCzKf314EemM5bpbd7Dpub6jv0hERBR409GihmJu+uhi6qtCfGntLtZv7HS7JBERz1PgTVM1FSFu/PAiVi8p55Z7Wrl1/X4yGsEpIpKXAm8aKwr7+eJ7F3DlhTXc/UgX1/94N0OJqV80WERkOlDgTXN+n+HDb27go1fMZdOOPj516w46Ysmjv1BEpMAo8GaIN583i+vXLKS9J8k1tzzPc/uG3C5JRMRTpjzwjDHzjDF/MsZsM8ZsNcZ8wjleZYz5gzFmh3NbOdW1TXdnLy7n6/+yiKDf8Jn/3sHDz4xfuV5EpFC50cJLA9dZa5cC5wEfNcYsBT4LPGCtXQQ84DyW49RYV8RNH1nMgtlFfPn2PfzyL+1M5/VSRUROlikPPGttm7X2Ced+P7AdaACuANY6T1sLXDnVtc0UlWVBbvjQqbxqeZQf/r6Nm+7cRyqt5chEpLC5uh+eMaYJWAU8BtRZa9ucUweBujyvuRq4GmD+/PmTX+Q0FQ76+Mz/aKShOsy6P7XT3p3k8+9poqxIWyCKSGFybdCKMaYU+DVwjbV2zHIhNtcHN2E/nLX2Nmvtamvt6pqamimodPry+Qzvu7Se694xn60tg1x7yw4OdCXcLktExBWuBJ4xJkgu7G631t7pHG43xtQ75+uBDjdqm4kuPquKr3zwFPoG01xzy/M8s3vA7ZJERKacG6M0DfB9YLu19uujTt0DrHHurwHunuraZrIzF5Ry00cWU14S4HPff4EHnuh2uyQRkSnlRgvvQuC9wOuMMU86H28EbgAuMcbsAC52HstJNGdWmG98ZBHLGku48Vd7+fEGbSgrIoVjykcwWGsfAkye0xdNZS2FqKwowL9/YCHfvns/6/7UTuuhBJ98+3zCQa1BICIzm4bsFaBgwMcn3jqPhllhfvD7Njp6knzxvQuoLAu6XZqIyKTRn/UFyhjDO15dxxfe3cTug8Ncc8vztLRrQ1kRmbkUeAXuwjOifPXqRaQylk9+Zwebn9eGsiIyMynwhMVzi/nmRxZTVxnii2t3ce+jXW6XJCJy0ukangBQEw1x4z8v4j/XtfDtu/fz6LZe9nbG6YqlqIkGWXNpPa9bVeV2mSIiL5taeDKiOOzni+9bwFmLStm8o5/OWAoLdMRS3HzXPh5s1tw9EZm+FHgyht9n2N85fvmxRMqydkPbBK8QEZkeFHgyTmcsNeHxjliK5p392m5IRKYlXcOTcWqiQTomCD1j4H9//wXm1Ya5/LwaLjqrkqKw34UKRUSOn1p4Ms6aS+sJB8cuhhMOGq596zw++fb5RII+vn3Pft7zH1u5df1+WrUDg4hMA2rhyTiHR2Ou3dBG5wSjNC8+q5Jn9w1xzyNd3PfYIe5+pIvVi8u4/IIazl5Uhs+Xb+U4ERH3mOl8PWb16tV206ZNbpdR0Lr7Uvzu8UPc93gXPf1pGqrDvPn8WVxydhUlEXV3isjUM8ZsttauHndcgScnQyqd5eFnerlnYyfb9w4RCfm4aFUlbzm/hsa6iNvliUgByRd46tKUkyIY8PGalZW8ZmUlO1qHWL+xiw2bu7nvsUOsPKWUyy+o4dzTyvGru1NEXKIWnkya2ECa+zcd4t5Hu+jqTVFXGeLN583i9aurKCvW31oiMjnUpSmuyWQsG7f3cs8jnTy9e5BQwPDalZVcfkENC+uL3C5PRGYYdWmKa/x+wyvOiPKKM6Lsbhtm/aNdPNjczf2bujmjqYTLL6jh/KUVBPzq7hSRyaMWnriifzjNhk3d3Luxi4M9SarLg7zpvGouO6eaaKk2ohWRl09dmuJJmazl78/1cc8jXTTv7CfgN7x6eZS3nF/DknnFbpcnItOQujTFk/w+w3mnV3De6RXs64iz/tEu/ri5mweae1gyr5jLz59FJmv56R8PTjgJXkTkWKmFJ54zGM/wxye6Wb+xa8Jly8JBw8evmqfQE5EJ5WvhaS1N8ZySiJ8rLqjhtmtPo6JkfCdEImW57b5WBuMZF6oTkelKXZriWT6foW8wPeG53sEM77z+aRY1FLP8lFJWLCxlWVMJkZCWMxORiSnwxNPybVUULQ1w2bnVPLVrgLse6uRXf+kg4DcsnlvMioWlLD+llNPnlxAOqhNDRHIUeOJpay6t5+a79pFIvXitORw0fOiNc0au4cWTGbbuGeSpXQNs2TXAL/7Szro/tRMMGE6fX8LyhaWsOKWUJXOLCQYUgCKFSoNWxPMebO7Ou1XRRAbjGbbuyYXfUy8M8ELbMNZCOOhjaWMJK08pZfnCUhY1FOPXZHeRGUfz8KRg9Q+leXr3QK4F+MIAe9rjABSFfZzZVDpyDXBBfZEWtxaZATQPTwpWWXGAC5ZFuWBZFIDYQIqndw/y5Av9PLVrgMef6wOgtMjPmQty4bfilFIa6yIYowAUmSkUeFJwoqVBXnlmlFeemQvAQ30pp/XXz5ZdA2zc1gtARUlg5PrfioWlNMwKY4w57i5WEfEGBZ4UvOryIK9dWclrV1YC0N6T5Kld/Wx5IdcN+renYwBUlQWoi4bYcWCYdCZ3KaAjluLmu/YBKPREPE6BJ3KEusoQl5xdzSVnV2Otpe1QMjcAZlc/f30qRvaIy96JlOXW9a3URkM01kW015+IR2nQishxeOPnnuRoPzFVZQEa64porIvQVBehsS7C/LoIxWFNiheZChq0InIS5JsIX10e4Jq3zmdPe5yW9mFa2uP87vGuMfMHa6PBkSA8HIbzaiOaHC8yRRR4Isch30T4f3rDHFYvKWf1kvKR49mspT2WpOVgnJaOOHsO5sKweWf/yDVAY6C+KuSE4IthOHdWWJPkRU4yBZ7IcTg8MOVYRmn6fIb6qjD1VWHOW1oxcjyTsRw4lKClI/5iGLYP89izfWSzuef4fTBnVpimuiIaayM0zo7QWBthTnV4zGR5jRgVOXa6hifiEcl0ltauxEgIHu4abetOcvjHNOA3zKsJ01hXRCaT5dHtfaQyY1ub2jpJCp2u4Yl4XCjgY8HsIhbMLhpzPJ7Msr8z7lwfzH1saxmY8FpiImX5f7/ZT3ssSV00RG00RG1liOryoFaRkYKnwBPxuEjIx6kNxZzaUDzmeL4Ro/Fklh9vODjmmM8Hs8qD1FaGckE46rY2GqImGiSka4YywynwRKapfCNGa6NBvnvt6XTGknTEkrTHknT0pOhwHj+1a4BDfalx8wkrywLURkcHYTD3uDL3+FimVeiaoniZAk9kmso3YnTNpfVEQj7m1eamPUwknbF09TqBOCoMO3qS7DwwxCPbekdGkh5WWuR3AjAXhLWjWoi10RBPPN/Lzb/ZP1KPVqERr1HgiUxTxzNi9EgBv2F2VZjZVeEJz2ezlthAOtc6dIKwvSdJRyzFgUNJntw5wHAye9Svk0hZvntvK7MqQlSWBqgsC1AS8WtRbnGFRmmKyHGz1jIwnHG6S3NB+N17W4/ptQG/ccIvSLQ0MOH9ytIA0dITC0d1rxYujdIUkZPGGENZcYCy4gCnzskNprnroY4JrylWlQX41Dsb6elPERtI0zOQHrnf1ZtiR+sQvYPpkTmIowUDxgm/IJVlgRfvTxCSxWHfSDg+2Nw9prtX3asCCjwROUnyXVP84GVzWHVq2Uu+Npu19A1l6BlwQrE/Rc9Aesz9zliS5/cP0TuQHjfgBl4Mx8rSILsPDpNMj31SImX53m8PcNr8EsqK/ZSE/fg0VaOgKPBE5KQ4kWuKPp8h6nRjHk0ma+kfOtxSTBMbSI1pNfYMpMeF3WE9A2k+eON2ILesW2nET1mxP9daLRp966esKDDhuZIi/8ua06guVvfpGp6IzDhr/nPrhN2rFSV+/tcbG+gfStM/nKF/KDPqfu52YCjDQDzzkp+/NOKntNhP+REBWVrsHwnH8lGh+eQLA3zvt63jWr9aFWdy6BqeiBSMfN2rV7+p4ZgCJpO1DA5n6BsVjAPD6VxAjtw6ITmUoa07kXtOPMOxtiESKcs379zH48/2URLxUxzxUxzxURz25x6HfSPHS8LOuYj/pCwQUKitTQWeiMw4J9K9CuD3GcpLApSXHN+vyGzWMpgY1XJ0gvGrv2iZ8PnJtGVn6zCDiQxD8UzertjRAn4zPhCdoCyO+J3A9I0LyhLn/OYdfdx2b2tBDuhRl6aIyCTL18VaGw2y9jPLRh6n0lmGElkG4xmGnBAciuce545NcM65f/j8UDwz4aCeown6DStPLSMS8hEJ+SgK+SgK+4iE/BSFfETCuWORkD93fuSxj6Kwn0jQN2Ynj+Nxsluc6tIUEXHJS62KM1ow4KMi4KPiOFuWo1lrSaSyDMazY4JwMJ4Lxpvu3Dfh61IZS2wgxXAySzyZJZ7IMpTMTDhdJJ9QwDjB6D/m4NzdNsQfNveM7PoxmS1OBZ6IyCQ70S7W42GMccLET3V5cNz5nz14MG9r8+aPLRlzzFpLKmOJJ7JOEGYYdu4nkrnb4WRm1Pksw4lMLjCTLx7rHUyOOp8lkXrpFE2kLGs3tCnwRESmo9etqvLENbJjbW1CLjxDAUMo4KO85OTVkMnmWqHxZJZ3f2XrhM/pnCCUT5QCT0SkgExlazMfv8/kBtmE/dTm2fWjJjq+dXqiFHgiIgXGK61NOL4W54lS4ImIiGumssWpwBMREVdNVYvzxKfsi4iITAMKPBERKQgKPBERKQgKPBERKQgKPBERKQgKPBERKQgKPBERKQgKPBERKQieCjxjzBuMMc8ZY3YaYz7rdj0iIjJzeCbwjDF+4NvAZcBS4B+NMUvdrUpERGYKzwQecC6w01q7y1qbBH4OXOFyTSIiMkN4KfAagNFb8e53jo1hjLnaGLPJGLOps7NzyooTEZHpbdotHm2tvQ24DcAY02mMaXG5pJNtFtDldhEepfcmP703+em9yW+mvjeNEx30UuC1AvNGPZ7rHMvLWlszqRW5wBizyVq72u06vEjvTX56b/LTe5Nfob03XurS/DuwyBizwBgTAt4F3ONyTSIiMkN4poVnrU0bYz4G3A/4gR9Ya7e6XJaIiMwQngk8AGvtb4Hful2Hy25zuwAP03uTn96b/PTe5FdQ742x1rpdg4iIyKTz0jU8ERGRSaPAExGRgqDA8whjzDxjzJ+MMduMMVuNMZ9wuyavMcb4jTHNxph73a7FS4wxUWPMHcaYZ40x240x57tdk1cYY651fp6eMcasM8ZE3K7JLcaYHxhjOowxz4w6VmWM+YMxZodzW+lmjZNNgecdaeA6a+1S4Dzgo1pLdJxPANvdLsKDvgn83lp7GrACvUcAGGMagI8Dq621Z5Ab/f0ud6ty1Y+ANxxx7LPAA9baRcADzuMZS4HnEdbaNmvtE879fnK/tMYtrVaojDFzgTcB33O7Fi8xxlQArwK+D2CtTVprY+5W5SkBoMgYEwCKgQMu1+Maa+1fge4jDl8BrHXurwWunNKippgCz4OMMU3AKuAxdyvxlJuATwNZtwvxmAVAJ/BDp7v3e8aYEreL8gJrbStwI7AXaAN6rbUb3K3Kc+qstW3O/YNAnZvFTDYFnscYY0qBXwPXWGv73K7HC4wxbwY6rLWb3a7FgwLAWcB3rLWrgEFmeLfUsXKuR11B7o+COUCJMeY97lblXTY3R21Gz1NT4HmIMSZILuxut9be6XY9HnIhcLkxZg+5baNeZ4z5qbslecZ+YL+19nBvwB3kAlDgYmC3tbbTWpsC7gQucLkmr2k3xtQDOLcdLtczqRR4HmGMMeSuw2y31n7d7Xq8xFr7OWvtXGttE7lBBw9aa/WXOmCtPQjsM8YscQ5dBGxzsSQv2QucZ4wpdn6+LkIDeo50D7DGub8GuNvFWiadAs87LgTeS6718qTz8Ua3i5Jp4V+B240xTwErga+4XI8nOK3eO4AngKfJ/b4rqKW0RjPGrAM2AkuMMfuNMR8EbgAuMcbsINcivsHNGieblhYTEZGCoBaeiIgUBAWeiIgUBAWeiIgUBAWeiIgUBAWeiIgUBAWeiAuMMXONMXc7q9TvMsZ8yxgTPslf4zXGmAtGPf5nY8z7nPvvN8bMOZlfT8TrFHgiU8yZBH0n8BtnlfpFQBHw1ZP8pV7DqJVFrLW3Wmt/7Dx8P7nltkQKhubhiUwxY8xFwJesta8adawcaAH+D3CatfZjzvF7gRuttX82xnwHOIdcON5hrf2S85w95Fa6fwsQBN4BxIFHgQy5xaX/ldxKIwPAHnJbxbQCw8DngQ9Za690Pt8lwEestVdN2psg4gK18ESm3jJgzELYzkLhe8gtBp3P5621q4HlwKuNMctHneuy1p4FfAf4lLV2D3Ar8A1r7Upr7d9Gfa07gE3Au621K4HfAqcZY2qcp3wA+MEJ/PtEPEmBJzJ9vNMY8wTQTC40R28QfHix8c1A0/F8UmeV/J8A7zHGRIHzgd+dcLUiHvNSf02KyOTYBrx99AGnS3M2cAhYPOpUxDm/APgUcI61tscY86PD5xwJ5zbDy/u5/iGwnlxX6K+stemX8TlEPE0tPJGp9wBQPGrEpB/4GvAtYDew0hjjM8bMA851XlNObq+7XmNMHXDZMXydfqDsWM5Zaw+Q2w38C+TCT2TGUeCJTDGnC/Eq4O3OKvWHgKy19v8CD5MLvW3AzeRW+sdau4VcV+azwM+c5x3NeuAqZ+eNVx5x7kfArc65IufY7cA+a6220JEZSaM0RVzmzJVbB1xlrX3CxTq+BTRba7/vVg0ik0mBJyIYYzaT6zK9xFqbONrzRaYjBZ6IiBQEXcMTEZGCoMATEZGCoMATEZGCoMATEZGCoMATEZGC8P8BrcohbD25O54AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmoAAAJwCAYAAAA5n02CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAAClzElEQVR4nOzdeVhU1R8G8HeAAYZ9B1EEBNz3pVLMFcVcUjMzRcsyLVNTs/xpi5ZZlmma5VaZS2KaW2pairviCiruCAqCouDCvsOc3x9XRkcWQQfuAO/neeZh5t47935HBV/OuecchRBCgIiIiIj0joHcBRARERFR0RjUiIiIiPQUgxoRERGRnmJQIyIiItJTDGpEREREeopBjYiIiEhPMagRERER6SkGNSIiIiI9xaBGREREpKcY1IiIqogVK1ZAoVAgOjpa7lKISEcY1IioVBYtWgSFQoHnn3++2GMUCkWRDxcXl0LHnjlzBkOHDoWbmxtMTExgZ2cHPz8/LF++HPn5+eVS66ZNm6BQKPDbb78V+96goCAoFAosWLBAa/v+/fvxyiuvwMXFBcbGxnByckKfPn2wadOmZ6pVbpMnT4ZCocCgQYO0thf3d/n4Y//+/QCAlJQUfPnll2jWrBksLCygUqnQuHFj/O9//0NcXJwMn4yoalBwrU8iKg1fX1/ExcUhOjoaERER8Pb2LnSMQqFAt27d8MYbb2htV6lUGDBggOb1b7/9hvfeew/Ozs4YNmwYfHx8kJqaij179mD79u2YOXMmPvnkE53Xmp2dDWdnZ7Rs2RJ79+4t8r1vvfUW/vjjD8TFxcHJyQkAMH36dMyYMQM+Pj4YPHgw3N3dce/ePezYsQP79+9HYGAghgwZ8tT16sqKFSvw1ltvISoqCh4eHk88XgiB2rVrw8jICPHx8YiPj4elpSUAYPXq1VrHrlq1CkFBQfjjjz+0tnfr1g3p6enw8/NDTEwMBg4ciPbt28PY2Bhnz57Fn3/+CTs7O1y5ckVnn5OoWhFERE9w7do1AUBs2rRJODo6ii+++KLI4wCIMWPGlHiuo0ePCkNDQ9G+fXuRkpJSaP/JkyfF8uXLy63WESNGCAMDA3Hz5s1C783MzBTW1taiR48emm3r168XAMSrr74qcnJyCr3nv//+E9u2bXvqenVp+fLlAoCIiooq1fF79+4VAMTevXuFUqkUK1asKPbYMWPGiKL+y8jNzRXNmjUTZmZm4tChQ4X2Jycni08++aTUn4GItLHrk4ieKDAwELa2tujVqxdeffVVBAYGPvW5vvzySygUCgQGBmpabx7VunVrDB8+vNxqHTp0KNRqNdauXVvovdu3b0dycjICAgI02z7//HPY2dnh999/h1KpLPQef39/9O7du8Sali9fji5dusDJyQkmJiZo2LAhFi9eXOg4Dw8P9O7dG4cPH8Zzzz0HU1NT1KlTB6tWrSp07IULF9ClSxeoVCrUqlULM2fOhFqtLrGOxwUGBqJhw4bo3Lkz/Pz8nurvdePGjQgLC8Onn36K9u3bF9pvZWWFr7/+usznJSIJgxoRPVFgYCBeeeUVGBsbY/DgwYiIiMDJkyeLPDYrKwt3797VemRnZwMAMjIysGfPHnTo0AG1a9eWpdYOHTqgVq1aWLNmTaH3rlmzBmZmZujXrx8AICIiApcvX0a/fv2KDJWltXjxYri7u+OTTz7B3Llz4ebmhvfffx8LFy4sdGxkZCReffVVdOvWDXPnzoWtrS2GDx+OCxcuaI65ffs2OnfujDNnzmDKlCmYMGECVq1ahR9//LHUNWVnZ2Pjxo0YPHgwAGDw4MHYu3cvbt++XabPtnXrVgDAsGHDyvQ+IioluZv0iEi/hYSECAAiKChICCGEWq0WtWrVEuPHjy90LIAiHwVdmWFhYQJAke+tyFo//vhjAUCEh4drtiUnJwtTU1MxePBgzbYtW7YIAGLevHnPVFdGRkahbf7+/qJOnTpa29zd3QUAcfDgQc22hIQEYWJiIiZNmqTZNmHCBAFAHD9+XOs4a2vrUnd9btiwQQAQERERQgghUlJShKmpabGftbiuzxYtWghra+snXo+Ing5b1IioRIGBgXB2dkbnzp0BQDNCcO3atUWOzuzbty+CgoK0Hv7+/gCkkYEAnql1She1Dh06FAC0WtU2btyIrKwsrW5PXdWrUqk0z5OTk3H37l107NgR165dQ3JystaxDRs2xIsvvqh57ejoiHr16uHatWuabTt27MALL7yA5557Tuu4R2t/ksDAQLRu3Voz0MLS0hK9evUqc/dnSkpKuf19EhG7PomoBPn5+Vi7di06d+6MqKgoREZGIjIyEs8//zzi4+OxZ8+eQu+pVasW/Pz8tB41atQAIN2vBACpqamy1tq0aVM0btwYf/75p2bbmjVr4ODgoAmVuqw3ODgYfn5+MDc3h42NDRwdHTWjWh8PakV1Cdva2iIxMVHz+vr16/Dx8Sl0XL169UpVT1JSEnbs2IGOHTtq/pwiIyPh6+uLkJCQMo3QtLKyKpe/TyKSMKgRUbH27t2LW7duYe3atfDx8dE8XnvtNQAoc+uLt7c3jIyMcO7cOdlrHTp0KK5cuYKQkBDcvn0b+/btw2uvvQYjIyPNMfXr1weAZ6r36tWr6Nq1K+7evYsffvgB27dvR1BQECZOnAgAhQYAGBoaFnkeocOZlNavX4/s7GzMnTtX68/qww8/BFC2v9f69esjOTkZsbGxOquPiB4yevIhRFRdBQYGwsnJqcib3jdt2oTNmzdjyZIlWl17JTEzM0OXLl2wd+9exMbGws3NTbZaBw8ejKlTp2LNmjVwd3dHfn5+oa7DunXrol69etiyZQt+/PFHWFhYlLmubdu2ITs7G1u3btVqLdu3b1+Zz1XA3d0dERERhbaHh4eX6v2BgYFo3Lgxpk+fXmjf0qVLsWbNGnz55ZelOlefPn3w559/YvXq1Zg6dWqp3kNEZSD3TXJEpJ8yMjKEpaWlePvtt4vcHxwcLACItWvXarahFPOoBQcHC0NDQ9GxY0eRmppaaH9ISEiJ83npqlYhhOjQoYNwdXUVrVu3Fp6enkW+d+3atQKAGDRokMjNzS20f+fOnSXOo7ZgwQIBQERHR2u2JSUliRo1ahS68d/d3V306tWr0Dk6duwoOnbsqHn9LIMJYmJihEKhEDNmzChyf2BgoAAgjh07prW9uMEEOTk5okmTJsLc3FwcOXKk0P6UlBTOo0b0DNj1SURF2rp1K1JTU/Hyyy8Xuf+FF16Ao6Njmbs/27Vrh4ULF+LQoUOoX78+pk6dit9//x0//vgj+vfvj+eee05ryaHhw4c/cf3Kp6116NChiIuLQ0hISLErCwwaNAiffvop1q1bh0aNGuGLL77A8uXLMWfOHPj5+cHf37/Ee7S6d+8OY2Nj9OnTBwsXLsR3332HVq1aaVY9eBqTJ0+Gvb09evTogS+//BJz5syBr68v3N3dn/jeNWvWQAhR7J9Vz549YWRkVOq/V6VSiU2bNsHBwQEdOnRAQEAAFi1ahF9//RUTJkyAl5cXNmzYUKbPR0SPkDspEpF+6tOnjzA1NRXp6enFHjN8+HChVCrF3bt3hRCla1ErEBoaKoYMGSJcXV2FUqkUtra2omvXrmLlypUiPz9fc9yAAQOESqUSiYmJOq1VCCHu378vTExMBABx8eLFEuvds2eP6Nu3r3BychJGRkbC0dFR9OnTR2zZsuWJn3Xr1q2iadOmwtTUVHh4eIjvvvtO/P7770/doiaEEGfPnhUdO3YUpqamombNmuKrr74Sy5Yte2KLWpMmTUTt2rVLrLdTp07CyclJqwWxuBa1AomJiWLatGmiSZMmwszMTJiamorGjRuLqVOnilu3bpV4PSIqHtf6JCK95uzsjDfeeAPff/+93KUQEVU4BjUi0lsXLlxA27Ztce3aNTg4OMhdDhFRhWNQIyIiItJTHExAREREpKcY1IiIiIj0FIMaERERkZ5iUCMiIiLSU1xCCtJae3FxcbC0tIRCoZC7HCIiIqrChBBITU2Fq6srDAxKbjNjUAMQFxen0zUHiYiIiJ4kNjYWtWrVKvEYBjUAlpaWAKQ/MCsrK5mrISIioqosJSUFbm5umvxREgY1QNPdaWVlxaBGREREFaI0t1txMAERERGRnmJQIyIiItJTDGpEREREeor3qBERUZkJIZCXl4f8/Hy5SyHSO4aGhjAyMtLJlF8MakREVCY5OTm4desWMjIy5C6FSG+ZmZmhRo0aMDY2fqbzMKgREVGpqdVqREVFwdDQEK6urjA2NuZE4USPEEIgJycHd+7cQVRUFHx8fJ44qW1JGNSIiKjUcnJyoFar4ebmBjMzM7nLIdJLKpUKSqUS169fR05ODkxNTZ/6XBxMQEREZfYsLQRE1YGuvkf4nUZERESkpxjUiIiIiPQUgxoREVW4fLXA2Wup2H8mEWevpSJfLeQuqVqJjo6GQqHAmTNnyvU6Hh4emD9/frleo6pjUCMiogoVfD4Jw2dfxP9+vYrv1l3H/369iuGzLyL4fFK5X/vo0aMwNDREr169yv1a+kChUBR6tG/fHm5ubrh16xYaN24sd4lISUnBp59+ivr168PU1BQuLi7w8/PDpk2bIMSzB/j9+/dDoVAgKSnp2YuVAUd9EhFRhQk+n4SZgdGFtt9NzsXMwGh8FuAB38Y25Xb9ZcuWYdy4cVi2bBni4uLg6upabtcSQiA/Px9GRvL+V7t8+XL06NFD89rY2BiGhoZwcXGRsSpJUlIS2rdvj+TkZMycORNt2rSBkZERDhw4gMmTJ6NLly6wsbGRu0xZsUWNiIiemhACWTn5pXqkZ+Vh8babJZ5vybabSM/KK9X5ytrakpaWhnXr1mH06NHo1asXVqxYodk3ZMgQDBo0SOv43NxcODg4YNWqVQCkOeRmzZoFT09PqFQqNGvWDBs2bNAcX9By8++//6JVq1YwMTHB4cOHcfXqVfTt2xfOzs6wsLBAmzZtsHv3bq1r3bp1C7169YJKpYKnpyfWrFlTqNswKSkJ77zzDhwdHWFlZYUuXbogLCzsiZ/bxsYGLi4umoednV2hrs8ZM2bA1dUV9+7d07yvV69e6Ny5M9RqNQDg8OHDePHFF6FSqeDm5oYPPvgA6enpmuMTEhLQp08fzWcIDAx8Ym2ffPIJoqOjcfz4cbz55pto2LAh6tati5EjR+LMmTOwsLAAACQmJuKNN96Ara0tzMzM8NJLLyEiIkJznuvXr6NPnz6wtbWFubk5GjVqhB07diA6OhqdO3cGANja2kKhUGD48OFPrEufsEWNiIieWnauGv2nn9PZ+e6m5OLVL8+X6tjNXzaBqbFhqc/9119/oX79+qhXrx6GDh2KCRMmYOrUqVAoFAgICMDAgQORlpamCQc7d+5ERkYG+vfvDwCYNWsWVq9ejSVLlsDHxwcHDx7E0KFD4ejoiI4dO2quM2XKFMyZMwd16tSBra0tYmNj0bNnT3z99dcwMTHBqlWr0KdPH4SHh6N27doAgDfeeAN3797F/v37oVQq8eGHHyIhIUGr/oEDB0KlUuHff/+FtbU1li5diq5du+LKlSuws7Mr9Z9DUT799FP8999/eOedd7B582YsXLgQR44cQVhYGAwMDHD16lX06NEDM2fOxO+//447d+5g7NixGDt2LJYvXw4AGD58OOLi4rBv3z4olUp88MEHhT7Do9RqNdauXYuAgIAiWzYL/h4Kzh0REYGtW7fCysoK//vf/9CzZ09cvHgRSqUSY8aMQU5ODg4ePAhzc3NcvHgRFhYWcHNzw8aNGzFgwACEh4fDysoKKpXqmf6sKhqDGhERVQvLli3D0KFDAQA9evRAcnIyDhw4gE6dOsHf3x/m5ubYvHkzhg0bBgBYs2YNXn75ZVhaWiI7OxvffPMNdu/ejbZt2wIA6tSpg8OHD2Pp0qVaQW3GjBno1q2b5rWdnR2aNWumef3VV19h8+bN2Lp1K8aOHYvLly9j9+7dOHnyJFq3bg0A+O233+Dj46N5z+HDh3HixAkkJCTAxMQEADBnzhz8/fff2LBhA0aNGlXs5x48eDAMDR8G2tWrV6N58+ZaxxgaGmq2T5kyBQsWLMBvv/2mCZKzZs1CQEAAJkyYAADw8fHBggUL0LFjRyxevBgxMTH4999/ceLECbRp00bz592gQYNi67p79y4SExNRv379Yo8BoAlowcHBaNeuHQAgMDAQbm5u+PvvvzFw4EDExMRgwIABaNKkCQDp76ZAQYh1cnKqlN2oDGpERPTUTJQG2Pxlk1Idez4qDZ+viHricV8N90RjT4snHmeiLP3dO+Hh4Thx4gQ2b94MADAyMsKgQYOwbNkydOrUCUZGRnjttdcQGBiIYcOGIT09HVu2bMHatWsBAJGRkcjIyNAKYIC0UkOLFi20thWErQJpaWn44osvsH37dty6dQt5eXnIzMxETEyMpjYjIyO0bNlS8x5vb2/Y2tpqXoeFhSEtLQ329vZa587MzMTVq1dL/Ozz5s2Dn5+f5nWNGjVw586dQsfVqVMHc+bMwbvvvotBgwZhyJAhWtc/e/asVnemEEKzpNiVK1dgZGSEVq1aafbXr1+/xGBU2q7rS5cuwcjICM8//7xmm729PerVq4dLly4BAD744AOMHj0au3btgp+fHwYMGICmTZuW6vz6TtagdvDgQXz//fcIDQ3FrVu3sHnzZvTr10+zXwiB6dOn49dff0VSUhJ8fX2xePFird8y7t+/j3HjxmHbtm0wMDDAgAED8OOPP2o1mcouJASYPBmYPRt47BuYiKgyUygUpe5+bOFjBQdrJe4m5xZ7jKO1Ei18rGBooNv1Q5ctW4a8vDytLjYhBExMTPDzzz/D2toaAQEB6NixIxISEhAUFASVSqW5CT8tLQ0AsH37dtSsWVPr3AUtXAXMzc21Xn/00UcICgrCnDlz4O3tDZVKhVdffRU5OTmlrj8tLQ01atTA/v37C+17UiuRi4sLvL29tbYVFdQA6f9lQ0NDREdHIy8vTzMQIi0tDe+++y4++OCDQu+pXbs2rly5UroP8ghHR0fY2Njg8uXLZX7v49555x34+/tj+/bt2LVrF2bNmoW5c+di3Lhxz3xuuck6mCA9PR3NmjXDwoULi9w/e/ZsLFiwAEuWLMHx48dhbm4Of39/ZGVlaY4JCAjAhQsXEBQUhH/++QcHDx4ssQlYFqtWAfv2AX/8IXclRESyMTRQ4L3eNUs85t3eNXUe0vLy8rBq1SrMnTsXZ86c0TzCwsLg6uqKP//8EwDQrl07uLm5Yd26dQgMDMTAgQOhVCoBAA0bNoSJiQliYmLg7e2t9XBzcyvx+sHBwRg+fDj69++PJk2awMXFBdHR0Zr99erVQ15eHk6fPq3ZFhkZicTERM3rli1b4vbt2zAyMip0fQcHB538Oa1btw6bNm3C/v37ERMTg6+++krr+hcvXix0bW9vbxgbG6N+/frIy8tDaGio5j3h4eElTolhYGCA119/HYGBgYiLiyu0Py0tDXl5eWjQoAHy8vJw/Phxzb579+4hPDwcDRs21Gxzc3PDe++9h02bNmHSpEn49ddfAUijXAEgPz//qf9sZCX0BACxefNmzWu1Wi1cXFzE999/r9mWlJQkTExMxJ9//imEEOLixYsCgDh58qTmmH///VcoFApx8+bNUl87OTlZABDJycnP/kEKREcLERIiRGioEE5OQgDS19BQaXt0tO6uRURUQTIzM8XFixdFZmbmU5/j8LlEMXTWedFjymnNY9is8+LwuUTdFfqIzZs3C2NjY5GUlFRo3+TJk0Xr1q01rz/99FPRsGFDYWRkJA4dOqR17Keffirs7e3FihUrRGRkpAgNDRULFiwQK1asEEIIsW/fPgFAJCZqf47+/fuL5s2bi9OnT4szZ86IPn36CEtLSzF+/HjNMX5+fqJly5bi+PHj4tSpU6Jz585CpVKJ+fPnCyGk/xPbt28vmjVrJnbu3CmioqJEcHCw+OSTT7T+D3zc4/+3FoiKihIAxOnTp4UQQsTGxgpbW1uxYMECIYQQ//33nzAyMhJHjx4VQggRFhYmVCqVGDNmjDh9+rS4cuWK+Pvvv8WYMWM05+zRo4do0aKFOHbsmAgJCRHt27cXKpVKzJs3r9j67t27J+rXry9q1aolVq5cKS5cuCCuXLkili1bJry9vTV/ln379hUNGzYUhw4dEmfOnBE9evQQ3t7eIicnRwghxPjx48V///0nrl27JkJDQ8Xzzz8vXnvtNSGEEDdu3BAKhUKsWLFCJCQkiNTU1GLr0aWSvlfKkjv0NqhdvXpV6x9RgQ4dOogPPvhACCHEsmXLhI2Njdb+3NxcYWhoKDZt2lTstbKyskRycrLmERsbq/ugBjz5QURUyegiqAkhRF6+WoRdTRH7Tt8XYVdTRF6+WkcVFta7d2/Rs2fPIvcdP35cABBhYWFCiIcNAO7u7kKt1q5JrVaL+fPni3r16gmlUikcHR2Fv7+/OHDggBCi+KAWFRWlCV5ubm7i559/Fh07dtQKanFxceKll14SJiYmwt3dXaxZs0Y4OTmJJUuWaI5JSUkR48aNE66urkKpVAo3NzcREBAgYmJiiv3spQlqarVadO3aVfj7+2t95nHjxgkvLy9NsDlx4oTo1q2bsLCwEObm5qJp06bi66+/1hx/69Yt0atXL2FiYiJq164tVq1aJdzd3UsMakJIjTBTpkwRPj4+wtjYWDg7Ows/Pz+xefNmTT33798Xw4YNE9bW1kKlUgl/f39x5coVzTnGjh0rvLy8hImJiXB0dBTDhg0Td+/e1eyfMWOGcHFxEQqFQrz55psl1qMrVT6oBQcHCwAiLi5O67iBAwdqUvLXX38t6tatW+hcjo6OYtGiRcVea/r06QJAoYdOg9rq1UIYGRUd0IyMpP1ERJWMroIalaygAWH37t1yl0JPSVdBrVpOeDt16lQkJydrHrGxsbq/SEAA8Eh/upbjx6X9REREAPbu3YutW7ciKioKR44cweuvvw4PDw906NBB7tJIZno7PUfB0hbx8fGoUaOGZnt8fLxm/hcXF5dCk+nl5eXh/v37JS6NYWJiUmiUTrlSKKS2NCIioiLk5ubik08+wbVr12BpaYl27dohMDBQM5iBqi+9bVHz9PSEi4sL9uzZo9mWkpKC48ePayYbbNu2LZKSkrRGmezduxdqtVprvhXZODkBLi5Aq1aAtbW0zdZW2k5ERPSAv78/zp8/j4yMDMTHx2Pz5s1wd3eXuyzSA7K2qKWlpSEyMlLzOioqCmfOnIGdnR1q166NCRMmYObMmfDx8YGnpyc+//xzuLq6auZaa9CgAXr06IGRI0diyZIlyM3NxdixY/H666+X60K7pVarFhAdDRgbA8OHS9N0vP22tJ2IiIjoCWQNaiEhIZrFUgHgww8/BAC8+eabWLFiBSZPnoz09HSMGjUKSUlJaN++Pf777z+Ymppq3hMYGIixY8eia9eumglvFyxYUOGfpVgFXax+flJQK2KyQiIiIqKiKITgzVMpKSmwtrZGcnIyrKysyucit24Brq7S/Wp37gCPLQNCRFQZZGVlISoqCp6enlq/NBORtpK+V8qSO/T2HrUqp0YNoFEjaVDB3r1yV0NERESVAINaRSpYFHf3bnnrICIiokqBQa0idesmfQ0KkrcOIiIiqhQY1CpShw6AkREQFQVcuyZ3NURERE9lxYoVsLGxKdN7PDw8MH/+/BKPUSgU+Pvvv5+6rqqIQa0iWVoCL7wgPWf3JxFVc3tiT6NJ4CjsiT1dYdc8evQoDA0N0atXrwq7phzi4+OhVCqxdu3aIvePGDECLVu2fOrzDxo0CFeuXHnq95e3jRs3olOnTrC2toaFhQWaNm2KGTNm4P79+zo5f2lCp64wqFU0dn8SEUEIgc+OLsflxFh8dnQ5KmoCgmXLlmHcuHE4ePAg4uLiyvVaQgjk5eWV6zWK4+zsjF69euH3338vtC89PR1//fUXRowY8VTnzs3NhUqlgpOeTt7+6aefYtCgQWjTpg3+/fdfnD9/HnPnzkVYWBj++OMPucsrMwa1ilYwoGDvXiA/X95aiIiekRAC6blZZX5sizqGkIQIAEBIQgS2RR0r8znKGu7S0tKwbt06jB49Gr169cKKFSs0+4YMGYJBgwZpHZ+bmwsHBwesWrUKAKBWqzFr1ix4enpCpVKhWbNm2LBhg+b4/fv3Q6FQ4N9//0WrVq1gYmKCw4cP4+rVq+jbty+cnZ1hYWGBNm3aYPdjvSq3bt1Cr169oFKp4OnpiTVr1hRqtUlKSsI777wDR0dHWFlZoUuXLggLCyv2844YMQJ79uxBTEyM1vb169cjLy8PAQEB+O+//9C+fXvY2NjA3t4evXv3xtWrVzXHRkdHQ6FQYN26dejYsSNMTU0RGBhYqOuzNJ8RAFJTUzF48GCYm5ujZs2aWLhwYbH1A0BsbCxee+012NjYwM7ODn379kV0dHSxx584cQLffPMN5s6di++//x7t2rWDh4cHunXrho0bN+LNN9/UHLt48WJ4eXnB2NgY9erV0wpxQgh88cUXqF27NkxMTODq6ooPPvgAANCpUydcv34dEydOhEKhgEKhKPEzPCu9XeuzymrTRuoCvX8fOHNGWl6KiKiSysjLhs3S/s98ngE7ZpT5PUnvboa5svRzuf3111+oX78+6tWrh6FDh2LChAmYOnUqFAoFAgICMHDgQKSlpcHCwgIAsHPnTmRkZKB/f+nzzZo1C6tXr8aSJUvg4+ODgwcPYujQoXB0dETHjh0115kyZQrmzJmDOnXqwNbWFrGxsejZsye+/vprmJiYYNWqVejTpw/Cw8NRu3ZtAMAbb7yBu3fvYv/+/VAqlfjwww8LrWU9cOBAqFQq/Pvvv7C2tsbSpUvRtWtXXLlyBXZ2doU+b8+ePeHs7IwVK1Zg2rRpmu3Lly/HK6+8AhsbG6Snp+PDDz9E06ZNkZaWhmnTpqF///44c+YMDAwetuVMmTIFc+fORYsWLWBqaoqdO3dqXSstLe2JnxEAvv/+e3zyySf48ssvsXPnTowfPx5169ZFt4Lepkfk5ubC398fbdu2xaFDh2BkZISZM2eiR48eOHv2LIyNjQu9JzAwEBYWFnj//feL/DdQEC43b96M8ePHY/78+fDz88M///yDt956C7Vq1ULnzp2xceNGzJs3D2vXrkWjRo1w+/ZtTSjetGkTmjVrhlGjRmHkyJFFXkeXGNQqmlIJdO4MbN0qdX8yqBERVYhly5Zh6NChAIAePXogOTkZBw4cQKdOneDv7w9zc3Ns3rwZw4YNAwCsWbMGL7/8MiwtLZGdnY1vvvkGu3fv1qw3XadOHRw+fBhLly7VCmozZszQCh52dnZo1qyZ5vVXX32FzZs3Y+vWrRg7diwuX76M3bt34+TJk2jdujUA4LfffoOPj4/mPYcPH8aJEyeQkJAAkwcr3syZMwd///03NmzYgFGjRhX6vIaGhpqVfj7//HMoFApcvXoVhw4dQtCD228GDBig9Z7ff/8djo6OuHjxIho3bqzZPmHCBLzyyivF/tk2a9asxM9YwNfXF1OmTAEA1K1bF8HBwZg3b16RQW3dunVQq9X47bffNK1Wy5cvh42NDfbv34/u3bsXek9ERATq1KnzxMXs58yZg+HDh2sC3Ycffohjx45hzpw56Ny5M2JiYuDi4gI/Pz8olUrUrl0bzz33HADp79PQ0BCWlpZwcXEp8Tq6wKAmBz8/Kajt3g08+AdLRFQZmRmZIOndzaU+XgiBLpsn4+zda8gXas12Q4UBmjrUwd7+s0vdlWRmZFLq64aHh+PEiRPYvFmq1cjICIMGDcKyZcvQqVMnGBkZ4bXXXkNgYCCGDRuG9PR0bNmyRXMzfmRkJDIyMgoFipycHLRo0UJrW0HYKpCWloYvvvgC27dvx61bt5CXl4fMzExNl2R4eDiMjIy0bu739vaGra2t5nVYWBjS0tJg/9iqNpmZmVpdlY97++238e2332Lfvn3o0qULli9fDg8PD3Tp0gWAFGymTZuG48eP4+7du1Crpb+TmJgYraD2+Gd63JM+Y4GCkPvo6+Juyg8LC0NkZCQsLS21tmdlZRX7mUvbHX7p0qVC4dbX1xc//vgjAKn1cv78+ahTpw569OiBnj17ok+fPjAyqvjYxKAmh4L71A4fBjIzAZVK3nqIiJ6SQqEoU/fjruuhOH0nstD2fKHG6TuROHLrIrq7676nYdmyZcjLy4Orq6tmmxACJiYm+Pnnn2FtbY2AgAB07NgRCQkJCAoKgkqlQo8ePQBIQQQAtm/fjpo1a2qdu6CFq4C5ubnW648++ghBQUGYM2cOvL29oVKp8OqrryInJ6fU9aelpaFGjRrYX8R60SVNk+Hj44MXX3wRy5cvR6dOnbBq1SqMHDlSE4b79OkDd3d3/Prrr3B1dYVarUbjxo0L1fb4Z3qcLj7j49LS0tCqVSsEBgYW2ufo6Fjke+rWrYvDhw8jNzf3ia1qJXFzc0N4eDh2796NoKAgvP/++/j+++9x4MCBZzrv0+BgAjnUrw/UrAlkZ0thjYioGhBCYPrxlTBA0S1mBlBg+vGVOh8BmpeXh1WrVmHu3Lk4c+aM5hEWFgZXV1f8+eefAIB27drBzc0N69atQ2BgIAYOHKj5T7lhw4YwMTFBTEwMvL29tR5ubm4lXj84OBjDhw9H//790aRJE7i4uGjdEF+vXj3k5eXh9OmH05RERkYiMTFR87ply5a4ffs2jIyMCl3fwcGhxOuPGDECGzduxMaNG3Hz5k0MHz4cAHDv3j2Eh4fjs88+Q9euXdGgQQOta5bFkz5jgWPHjhV63aBBgyLP2bJlS0RERMDJyanQZ7a2ti7yPUOGDEFaWhoWLVpU5P6kpCQAQIMGDRAcHFzoMzRs2FDzWqVSoU+fPliwYAH279+Po0eP4ty5cwAAY2Nj5FfQgEAGNTkoFFxOioiqnRx1LmJS70CNooOYGgKxaXeRo87V6XX/+ecfJCYmYsSIEWjcuLHWY8CAAVi2bJnm2CFDhmDJkiUICgpCQECAZrulpSU++ugjTJw4EStXrsTVq1dx6tQp/PTTT1i5cmWJ1/fx8cGmTZs04XDIkCGaLkYAqF+/Pvz8/DBq1CicOHECp0+fxqhRo6BSqTQtX35+fmjbti369euHXbt2ITo6GkeOHMGnn36KkJCQEq9fEDjfffdddO/eXRMsbW1tYW9vj19++QWRkZHYu3cvPvzwwzL/+ZbmMxYIDg7G7NmzceXKFSxcuBDr16/H+PHjizxnQEAAHBwc0LdvXxw6dAhRUVHYv38/PvjgA9y4caPI9zz//POYPHkyJk2ahMmTJ+Po0aO4fv069uzZg4EDB2r+rj7++GOsWLECixcvRkREBH744Qds2rQJH330EQBpQt9ly5bh/PnzuHbtGlavXg2VSgV3d3cA0jxqBw8exM2bN3H37t2n+jMrNUEiOTlZABDJyckVd9E//hACEKJly4q7JhHRM8rMzBQXL14UmZmZT/X+mJQEERofUewjNjVBxxUL0bt3b9GzZ88i9x0/flwAEGFhYUIIIS5evCgACHd3d6FWq7WOVavVYv78+aJevXpCqVQKR0dH4e/vLw4cOCCEEGLfvn0CgEhMTNR6X1RUlOjcubNQqVTCzc1N/Pzzz6Jjx45i/PjxmmPi4uLESy+9JExMTIS7u7tYs2aNcHJyEkuWLNEck5KSIsaNGydcXV2FUqkUbm5uIiAgQMTExDzxz2DUqFECgPjrr7+0tgcFBYkGDRoIExMT0bRpU7F//34BQGzevFlTOwBx+vRprfctX75cWFtbl+kzuru7iy+//FIMHDhQmJmZCRcXF/Hjjz9qnffRawshxK1bt8Qbb7whHBwchImJiahTp44YOXLkE/+/XrdunejQoYOwtLQU5ubmomnTpmLGjBlafzeLFi0SderUEUqlUtStW1esWrVKs2/z5s3i+eefF1ZWVsLc3Fy88MILYvfu3Zr9R48eFU2bNhUmJiaiuChV0vdKWXKH4sEfTLWWkpICa2trJCcnw8rKqmIuevs2UKOG1LqWkAA8oemaiEgfZGVlISoqCp6enjA1Lf29aVQ2N27cgJubG3bv3o2uXbvKXQ49hZK+V8qSO9j1KRcXF6BxY0AIafJbIiKqtvbu3YutW7ciKioKR44cweuvvw4PDw906NBB7tJIZgxqcuJ9akREBGly108++QSNGjVC//794ejoqJn8lqo3Ts8hp27dgPnzpYlvhZC6QYmIqNrx9/eHv7+/3GWQHmKLmpw6dACMjIDoaODaNbmrISIiIj3DoCYnCwugYJZmdn8SERHRYxjU5Mb71IiIiKgYDGpyK1g3bs8eoIJmOSYiIqLKgUFNbm3aAJaWQGIi8MjyIUREREQManIzMgI6d5aes/uTiIiIHsGgpg8Kuj+DguStg4iI6BmsWLECNjY2cpdRpTCo6YOCAQWHDwMZGfLWQkRUUUJCgC5dpK8V5OjRozA0NESvXr0q7JpyWLFiBRQKRYmP6OjoYt//xRdfoHnz5uVW3759+9CzZ0/Y29vDzMwMDRs2xKRJk3Dz5k2dnL9Tp06YMGGCTs4lNwY1fVCvHlCzJpCTAwQHy10NEVHFWLUK2LcP+OOPCrvksmXLMG7cOBw8eBBxcXHlei0hBPLy8sr1GsUZNGgQbt26pXm0bdsWI0eO1Nrm5uYmS21Lly6Fn58fXFxcsHHjRly8eBFLlixBcnIy5s6dK0tNeu2Jy7ZXA2VZxb7cDB8uBCDExx/LVwMR0RNkZmaKixcviszMTGmDWi1EWlrpHxcvCnHokBCHDwvh6Cj93HN0lF4fOiTtL+251Ooy1Z6amiosLCzE5cuXxaBBg8TXX3+t2Td48GDx2muvaR2fk5Mj7O3txcqVK4UQQuTn54tvvvlGeHh4CFNTU9G0aVOxfv16zfH79u0TAMSOHTtEy5YthVKpFPv27RORkZHi5ZdfFk5OTsLc3Fy0bt1aBAUFaV0rLi5O9OzZU5iamgoPDw8RGBgo3N3dxbx58zTHJCYmihEjRggHBwdhaWkpOnfuLM6cOVOqz96xY0cxfvx4zevr16+Ll19+WZibmwtLS0sxcOBAcfv2bSGEEMuXLxcAtB7Lly8XQggxd+5c0bhxY2FmZiZq1aolRo8eLVJTUzXnXb58ubC2ti62jtjYWGFsbCwmTJhQ5P7ExETN8w0bNoiGDRsKY2Nj4e7uLubMmaN17MKFC4W3t7cwMTERTk5OYsCAAUIIId58881C9UdFRZXqz0mXCn2vPKIsuYNBTehJUFu9WvqB1aKFfDUQET1Bof980tKkn11yPNLSylT7smXLROvWrYUQQmzbtk14eXkJ9YOw988//wiVSqUVOrZt2yZUKpVISUkRQggxc+ZMUb9+ffHff/+Jq1eviuXLlwsTExOxf/9+IcTDoNa0aVOxa9cuERkZKe7duyfOnDkjlixZIs6dOyeuXLkiPvvsM2FqaiquX7+uuZafn59o3ry5OHbsmAgNDRUdO3YUKpVKK6j5+fmJPn36iJMnT4orV66ISZMmCXt7e3Hv3r0nfvZHg1p+fr5o3ry5aN++vQgJCRHHjh0TrVq1Eh07dhRCCJGRkSEmTZokGjVqJG7duiVu3bolMjIyhBBCzJs3T+zdu1dERUWJPXv2iHr16onRo0drrvOkoPbDDz8IACIuLq7EekNCQoSBgYGYMWOGCA8PF8uXLxcqlUoTGE+ePCkMDQ3FmjVrRHR0tDh16pT48ccfhRBCJCUlibZt24qRI0dq6s/Ly3vin5GuMajpkF4EtVu3Hv7wuXNHvjqIiEpQmYNau3btxPz584UQQuTm5goHBwexb98+rderVq3SHD948GAxaNAgIYQQWVlZwszMTBw5ckTrnCNGjBCDBw8WQjwMan///fcTa2nUqJH46aefhBBCXLp0SQAQJ0+e1OyPiIgQADRB7dChQ8LKykpkZWVpncfLy0ssXbr0idd7NKjt2rVLGBoaipiYGM3+CxcuCADixIkTQgghpk+fLpo1a/bE865fv17Y29trXj8pqI0ePVpYWVk98bxDhgwR3bp109r28ccfi4YNGwohhNi4caOwsrLShOjHPd6CKAddBTXeo6YvXFyAJk2k53v2yFsLEVFpmZkBaWllexw+XPS5Dh8u23nMzEpdZnh4OE6cOIHBgwcDAIyMjDBo0CAsW7ZM8/q1115DYGAgACA9PR1btmxBQEAAACAyMhIZGRno1q0bLCwsNI9Vq1bh6tWrWtdq3bq11uu0tDR89NFHaNCgAWxsbGBhYYFLly4hJiZGU5uRkRFatmypeY+3tzdsbW01r8PCwpCWlgZ7e3ut60dFRRW6/pNcunQJbm5uWveoNWzYEDY2Nrh06VKJ7929eze6du2KmjVrwtLSEsOGDcO9e/eQUcqBcEIIKBSKUtXo6+urtc3X1xcRERHIz89Ht27d4O7ujjp16mDYsGEIDAwsdQ2VjZHcBdAj/PyAc+ek+dQGDZK7GiKiJ1MoAHPzsr1HpZK+GhgAavXDrypV2c9VSsuWLUNeXh5cXV0124QQMDExwc8//wxra2sEBASgY8eOSEhIQFBQEFQqFXr06AFAClsAsH37dtSsWVPr3CYmJlqvzR/7DB999BGCgoIwZ84ceHt7Q6VS4dVXX0VOTk6p609LS0ONGjWwf//+QvsqajqM6Oho9O7dG6NHj8bXX38NOzs7HD58GCNGjEBOTg7MShGc69ati+TkZNy6dQs1atR46losLS1x6tQp7N+/H7t27cK0adPwxRdf4OTJk1VuehC2qOmTgmk6goKkhn0ioqrIyUnqRWjVCliyRPrq4iJtLwd5eXlYtWoV5s6dizNnzmgeYWFhcHV1xZ9//gkAaNeuHdzc3LBu3ToEBgZi4MCBUCqVAKQWJxMTE8TExMDb21vr8aTRk8HBwRg+fDj69++PJk2awMXFRWtqjHr16iEvLw+nH1mdJjIyEomJiZrXLVu2xO3bt2FkZFTo+g4ODmX682jQoAFiY2MRGxur2Xbx4kUkJSWhYcOGAABjY2PkP7asYWhoKNRqNebOnYsXXngBdevWLfPI2VdffRXGxsaYPXt2kfuTkpI0NQY/NgtCcHAw6tatC0NDQwBSK6ifnx9mz56Ns2fPIjo6Gnv37i22/sqKLWr6pEMHQKkErl8Hrl4FvL3lroiISPdq1QKiowFjY6lFbtQoaXqix1qmdOWff/5BYmIiRowYAWtra619AwYMwLJly/Dee+8BAIYMGYIlS5bgypUr2Ldvn+Y4S0tLfPTRR5g4cSLUajXat2+P5ORkBAcHw8rKCm+++Wax1/fx8cGmTZvQp08fKBQKfP7551Cr1Zr99evXh5+fH0aNGoXFixdDqVRi0qRJUKlUmm5CPz8/tG3bFv369cPs2bM1IWn79u3o379/oe7Wkvj5+aFJkyYICAjA/PnzkZeXh/fffx8dO3bUnMfDwwNRUVE4c+YMatWqBUtLS3h7eyM3Nxc//fQT+vTpg+DgYCxZsqTU1wUANzc3zJs3D2PHjkVKSgreeOMNeHh44MaNG1i1ahUsLCwwd+5cTJo0CW3atMFXX32FQYMG4ejRo/j555+xaNEiANLf6bVr19ChQwfY2tpix44dUKvVqFevnqb+48ePIzo6GhYWFrCzs4OBQSVtm9L97XOVj14MJijQoYN0k+zixXJXQkRUSEk3SOur3r17i549exa57/jx4wKACAsLE0IIcfHiRQFAuLu7a0aEFlCr1WL+/PmiXr16QqlUCkdHR+Hv7y8OHDgghHg4mODRKSaEECIqKkp07txZqFQq4ebmJn7++edCN7vHxcWJl156SZiYmAh3d3exZs0a4eTkJJYsWaI5JiUlRYwbN064uroKpVIp3NzcREBAgNaggOKUZXoOIaTBEwMGDBA2NjZa03P88MMPokaNGkKlUgl/f3+xatUqrc/8pMEEBYKCgoS/v7+wtbUVpqamon79+uKjjz7SGg1aMD2HUqkUtWvXFt9//71m36FDh0THjh2Fra2tUKlUomnTpmLdunWa/eHh4eKFF14QKpWq0k/PoRCCfWwpKSmwtrZGcnIyrKys5C3mq6+AadOAAQOADRvkrYWI6DFZWVmIioqCp6cnTE1N5S6nyrpx4wbc3Nw0N+9T5VPS90pZckclbQeswgrW/dy7F6gi/etERFSyvXv3YuvWrYiKisKRI0fw+uuvw8PDAx06dJC7NJIZg5q+ad0asLICEhOBU6fkroaIiCpAbm4uPvnkEzRq1Aj9+/eHo6Mj9u/frxnMQNUXBxPoGyMjoHNnYMsWaZqONm3kroiIiMqZv78//P395S6D9BBb1PRRQfdnUJC8dRAREZGsGNT0UcF8asHBQBWdaZmIKjeOQyMqma6+RxjU9FHdutI8Qzk5xS+1QkQkg4J7pqrqcj1EulLwPfKs9xnyHjV9pFBI3Z/Ll0v3qXXvLndFREQAAENDQ9jY2CAhIQEAYGZmVqq1G4mqCyEEMjIykJCQABsbG81KCk+LQU1f+flJQY33qRGRnnFxcQEATVgjosJsbGw03yvPgkFNXxVMcHjmDHDnDuDoKGs5REQFFAoFatSoAScnJ+Tm5spdDpHeUSqVz9ySVoBBTV85OwNNmwJnz0qT3w4aJHdFRERaDA0NdfafEREVjYMJ9FnB6E92fxIREVVLDGr67NGgxqHwRERE1Q6Dmj7r0AFQKoGYGODqVbmrISIiogrGoKbPzM2Bdu2k5+z+JCIiqnYY1PRdQffn7t3y1kFEREQVjkFN3xWs+7l3L5CfL28tREREVKEY1PRdq1aAtTWQlASEhspdDREREVUgBjV9Z2QEdO4sPWf3JxERUbXCoFYZFHR/MqgRERFVKwxqlUHBgILgYCAjQ95aiIiIqMIwqFUGPj6AmxuQkwMcOiR3NURERFRBGNQqA4WC03QQERFVQwxqlUXBfWqc+JaIiKjaYFCrLLp0kb6GhQEJCfLWQkRERBWCQa2ycHYGmjaVnu/dK28tREREVCEY1CoTdn8SERFVKwxqlUnBgIKgIEAIeWshIiKicsegVpm8+CJgbAzExgKRkXJXQ0REROWMQa0yMTcH2rWTnrP7k4iIqMpjUKtsOJ8aERFRtcGgVtkUBLW9e4H8fHlrISIionLFoFbZtG4NWFsDyclAaKjc1RAREVE5YlCrbAwNH05+y/vUiIiIqjQGtcqI96kRERFVCwxqlVHBxLdHjgDp6fLWQkREROWGQa0y8vYGatcGcnKAQ4fkroaIiIjKCYNaZaRQsPuTiIioGmBQq6wKuj8Z1IiIiKosBrXKqmDkZ1gYEB8vby1ERERULhjUKisnJ6BZM+n53r3y1kJERETlgkGtMmP3JxERUZXGoFaZFQwoCAoChJC3FiIiItI5BrXK7MUXAWNjIDYWiIiQuxoiIiLSMQa1yszMDPD1lZ6z+5OIiKjKYVCr7B7t/iQiIqIqhUGtsisIavv2AXl58tZCREREOsWgVtm1agXY2ADJyUBoqNzVEBERkQ4xqFV2hoYPJ79l9ycREVGVwqBWFXDdTyIioiqJQa0qKJj49sgRID1d3lqIiIhIZxjUqgIvL8DdHcjNBQ4elLsaIiIi0hEGtapAoWD3JxERURXEoFZVcN1PIiKiKodBraooGPl59iwQHy9vLURERKQTDGpVhaMj0Ly59HzPHllLISIiIt1gUKtK2P1JRERUpeh1UMvPz8fnn38OT09PqFQqeHl54auvvoIQQnOMEALTpk1DjRo1oFKp4Ofnh4iICBmrltGjAwoe+TMiIiKiykmvg9p3332HxYsX4+eff8alS5fw3XffYfbs2fjpp580x8yePRsLFizAkiVLcPz4cZibm8Pf3x9ZWVkyVi6T9u0BY2MgNha4ckXuaoiIiOgZ6XVQO3LkCPr27YtevXrBw8MDr776Krp3744TJ04AkFrT5s+fj88++wx9+/ZF06ZNsWrVKsTFxeHvv/+Wt3g5mJkBvr7Sc3Z/EhERVXp6HdTatWuHPXv24MqD1qGwsDAcPnwYL730EgAgKioKt2/fhl9Blx8Aa2trPP/88zh69Gix583OzkZKSorWo8rgfWpERERVhl4HtSlTpuD1119H/fr1oVQq0aJFC0yYMAEBAQEAgNu3bwMAnJ2dtd7n7Oys2VeUWbNmwdraWvNwc3Mrvw9R0QpC6969QF6evLUQERHRM9HroPbXX38hMDAQa9aswalTp7By5UrMmTMHK1eufKbzTp06FcnJyZpHbGysjirWAy1bAra2QEoKEBIidzVERET0DPQ6qH388ceaVrUmTZpg2LBhmDhxImbNmgUAcHFxAQDEPzbBa3x8vGZfUUxMTGBlZaX1qDIMDR9OfsvuTyIiokpNr4NaRkYGDAy0SzQ0NIRarQYAeHp6wsXFBXsemeA1JSUFx48fR9u2bSu0Vr1S0P0ZFCRvHURERPRMjOQuoCR9+vTB119/jdq1a6NRo0Y4ffo0fvjhB7z99tsAAIVCgQkTJmDmzJnw8fGBp6cnPv/8c7i6uqJfv37yFi+ngqB29CiQlgZYWMhbDxERET0VvQ5qP/30Ez7//HO8//77SEhIgKurK959911MmzZNc8zkyZORnp6OUaNGISkpCe3bt8d///0HU1NTGSuXmZcX4OEBREcDhw4BD0bJEhERUeWiEIJT2KekpMDa2hrJyclV5361kSOB334DJk4EfvhB7mqIiIjogbLkDr2+R42ewaPLSREREVGlxKBWVXXtKn09dw4oYU45IiIi0l8MalWVgwPQooX0/JFRsURERFR5MKhVZez+JCIiqtQY1KqyR9f95JgRIiKiSodBrSpr3x4wMQFu3ADCw+WuhoiIiMqIQa0qU6kAX1/pObs/iYiIKh0Gtaru0e5PIiIiqlQY1Kq6ggEF+/YBeXny1kJERERlwqBW1bVoAdjaAikpwMmTcldDREREZcCgVtUZGj6c/Jbdn0RERJUKg1p1wPnUiIiIKiUGteqgIKgdPQqkpclbCxEREZUag1p14OUFeHoCubnAwYNyV0NERESlxKBWXbD7k4iIqNJhUKsuCoJaUJC8dRAREVGpMahVF126AAoFcP48cPu23NUQERFRKTCoVRcODtKcagCwZ4+8tRAREVGpMKhVJ+z+JCIiqlQY1KqTR9f9FELeWoiIiOiJGNSqE19fwMQEuHkTCA+XuxoiIiJ6Aga16kSlAtq3l56z+5OIiEjvMahVN492fxIREZFeY1CrbgoGFOzbB+TlyVsLERERlYhBrbpp3hywswNSU4ETJ+SuhoiIiErAoFbdGBoCXbtKz9n9SUREpNcY1KojrvtJRERUKTCoVUcFQe3oUakLlIiIiPQSg1p1VKeO9MjLAw4elLsaIiIiKgaDWnXF7k8iIiK9x6BWXTGoERER6T0GteqqSxdAoQDOnwdu3ZK7GiIiIioCg1p1ZW8PtGwpPd+zR95aiIiIqEgMatUZuz+JiIj0GoNadVYQ1IKCACHkrYWIiIgKYVCrztq3B0xNgbg44PJluashIiKixzCoVWemplJYA9j9SUREpIcY1Kq7R7s/iYiISK8wqFV33bpJX/fvB3JzZS2FiIiItDGoVXfNmwN2dtKanydPyl0NERERPYJBrbozMAC6dpWes/uTiIhIrzCo0cPuTw4oICIi0isMavRwQMGxY1IXKBEREekFBjUCPD2BOnWAvDzgwAG5qyEiIqIHGNRIwu5PIiIivcOgRhKu+0lERKR3GNRI0rkzoFAAFy5IS0oRERGR7BjUSGJvD7RqJT3fs0feWoiIiAgAgxo9it2fREREeoVBjR56dN1PIeSthYiIiBjU6BG+voCpKXDrFnDpktzVEBERVXsMavSQqSnw4ovSc3Z/EhERyY5BjbQ92v1JREREsmJQI20FE9/u3w/k5spaChERUXXHoEbamjWTpupISwNOnJC7GiIiomqNQY20GRgAXbtKz3mfGhERkawY1Kiwgu5P3qdGREQkKwY1KqxgQMGxY0BKiry1EBERVWMMalSYhwfg5QXk5wMHD8pdDRERUbXFoEZFY/cnERGR7BjUqGhc95OIiEh2DGpUtM6dAYUCuHgRiIuTuxoiIqJqiUGNimZnB7RuLT1nqxoREZEsGNSoeOz+JCIikhWDGhXv0aAmhLy1EBERVUMMalS8du0AlQq4dUu6V42IiIgqFIMaFc/UFHjxRek5uz+JiIgqHIMalYz3qREREcmGQY1KVhDU9u8HcnNlLYWIiKi6YVCjkjVrBjg4AGlpwPHjcldDRERUrTCoUckMDICuXaXn7P4kIiKqUAxq9GQF3Z+bNwNdugAhIfLWQ0REVE0YyV0AVQIFC7SfOyfNp/bHHw9XLSAiIqJywxY1Ktn168Ddu0CtWg8nvV27Fjh1CggNlfYTERFRuWCLGpXMw6Pwtjt3gFatHr7mqgVERETlgi1qVLLVqwGjx/J8QTAzMpL2ExERUblgixqVLCAAaNBAuwWtwPHjQMuWFV8TERFRNcEWNSo9hULuCoiIiKoVBjV6MicnwMVFGun5zjsPt9+7J19NRERE1QC7PunJatUCoqMBY2PpdUICsHUrMHUq0Llz4XvYiIiISCfYokalY2IidX0qFMDixYCNjTQ9x9y5cldGRERUZTGoUdm5ugLz5knPp08HwsPlrYeIiKiKYlCjp/Pmm4C/P5CdDbz9NpCfL3dFREREVQ6DGj0dhQL45RfAwgI4cgRYuFDuioiIiKocBjV6erVrA7NnS8+nTgWiouSth4iIqIphUKNn8+67QMeOQEaGNHUHl5MiIiLSGQY1ejYGBsBvvwEqFbB3r/SciIiIdIJBjZ6dtzcwc6b0fNIk4MYNeeshIiKqIhjUSDfGjweefx5ITZW6Q9kFSkRE9MwY1Eg3DA2B33+XVi/YsQMIDJS7IiIiokqPQY10p2FDYNo06fn48UB8vLz1EBERVXIMaqRbkycDzZsD9+8DY8fKXQ0REVGlpvdB7ebNmxg6dCjs7e2hUqnQpEkThISEaPYLITBt2jTUqFEDKpUKfn5+iIiIkLHiak6pBJYvlxZq37BBehAREdFT0euglpiYCF9fXyiVSvz777+4ePEi5s6dC1tbW80xs2fPxoIFC7BkyRIcP34c5ubm8Pf3R1ZWloyVV3PNmwP/+5/0fMwY4N49WcshIiKqrBRC6O/wvClTpiA4OBiHDh0qcr8QAq6urpg0aRI++ugjAEBycjKcnZ2xYsUKvP7666W6TkpKCqytrZGcnAwrKyud1V+tZWcDLVoAly4Bw4YBq1bJXREREZFeKEvu0OsWta1bt6J169YYOHAgnJyc0KJFC/z666+a/VFRUbh9+zb8/Pw026ytrfH888/j6NGjxZ43OzsbKSkpWg/SMRMTqQvUwAD44w9g+3a5KyIiIqp09DqoXbt2DYsXL4aPjw927tyJ0aNH44MPPsDKlSsBALdv3wYAODs7a73P2dlZs68os2bNgrW1tebh5uZWfh+iOnv+eWDCBOn5u+8CycmylkNERFTZ6HVQU6vVaNmyJb755hu0aNECo0aNwsiRI7FkyZJnOu/UqVORnJysecTGxuqoYirkq68ALy/g5k1pRCgRERGVml4HtRo1aqBhw4Za2xo0aICYmBgAgIuLCwAg/rH5uuLj4zX7imJiYgIrKyutB5UTMzNg2TLp+S+/AHv2yFsPERFRJaLXQc3X1xfh4eFa265cuQJ3d3cAgKenJ1xcXLDnkf/8U1JScPz4cbRt27ZCa6USdOwIjB4tPR85EkhLk7ceIiKiSkKvg9rEiRNx7NgxfPPNN4iMjMSaNWvwyy+/YMyYMQAAhUKBCRMmYObMmdi6dSvOnTuHN954A66urujXr5+8xZO2774DatcGoqKATz+VuxoiIqJKQa+n5wCAf/75B1OnTkVERAQ8PT3x4YcfYuTIkZr9QghMnz4dv/zyC5KSktC+fXssWrQIdevWLfU1OD1HBdm5E+jRA1AogEOHAF9fuSsiIiKqcGXJHXof1CoCg1oFevttadqOunWBM2cAlUruioiIiCpUlZlHjaqguXMBFxfgyhXgyy/lroaIiEivMahRxbK1BQqmV5kzB3hk3VYiIiLSxqBGFa9vX+D114H8fKkrNCdH7oqIiIj0EoMayWPBAsDBATh3Dpg1S+5qiIiI9BKDGsnD0RH46Sfp+ddfS4GNiIiItDCokXwGDZK6QXNzpS7QvDy5KyIiItIrDGokH4UCWLQIsLaWBhX88IPcFREREekVBjWSl6srMG+e9HzaNOCxJcOIiIiqMwY1kt/w4UD37kB2NjBiBKBWy10RERGRXmBQI/kpFMAvvwAWFkBwMLBwodwVERER6QUGNdIP7u7Swu0AMGWKtHg7ERFRNcegRvrjvfeADh2AjAxg5EiAy9ASEVE1x6BG+sPAAFi2TFqofc8e6TkREVE1xqBG+sXbG/jqK+n5pEnAjRvy1kNERCQjBjXSPxMmAM89B6SkAKNHswuUiIiqLQY10j+GhsDvvwPGxsA//wBr1shdERERkSwY1Eg/NWoEfP659PyDD4D4eHnrISIikgGDGumv//0PaN4cuH8fGDdO7mqIiIgqHIMa6S+lUuoCNTQE1q8HNm6UuyIiIqIK9VRBbcaMGcjIyCi0PTMzEzNmzHjmoog0WrSQJsAFgDFjpNY1IiKiakIhRNmH1BkaGuLWrVtwcnLS2n7v3j04OTkhPz9fZwVWhJSUFFhbWyM5ORlWVlZyl0OPy86WAtulS8AbbwArV8pdERER0VMrS+54qhY1IQQUCkWh7WFhYbCzs3uaUxIVz8RE6gJVKIBVq4AdO+SuiIiIqEIYleVgW1tbKBQKKBQK1K1bVyus5efnIy0tDe+9957OiyTCCy8AEycCP/wAvPsucOECwNZPIiKq4srU9bly5UoIIfD2229j/vz5sLa21uwzNjaGh4cH2rZtWy6Flid2fVYSGRlA06bA1atSWFuyRO6KiIiIyqwsueOp7lE7cOAAfH19YWRUpgY5vcWgVons3w907iw937MH6NJF1nKIiIjKqtzvUbO0tMSlS5c0r7ds2YJ+/frhk08+QU5OztOckqh0OnWSlpUCgHfeAdLTZS2HiIioPD1VUHv33Xdx5coVAMC1a9cwaNAgmJmZYf369Zg8ebJOCyQq5NtvATc3ICoK+PRTuashIiIqN08V1K5cuYLmzZsDANavX4+OHTtizZo1WLFiBTZyUlIqb1ZWwC+/SM8XLACOHJG3HiIionLy1NNzqNVqAMDu3bvRs2dPAICbmxvu3r2ru+qIitOjBzB8OCAE8PbbQFaW3BURERHp3FMFtdatW2PmzJn4448/cODAAfTq1QsAEBUVBWdnZ50WSFSsH34AXFyA8HDgyy/lroaIiEjnniqozZ8/H6dOncLYsWPx6aefwtvbGwCwYcMGtGvXTqcFEhXL1hZYvFh6/v33QGiovPUQERHp2FNNz1GcrKwsGBoaQqlU6uqUFYLTc1Ryr78OrFsnzbF28iRgbCx3RURERMUq9+k5CoSGhmL16tVYvXo1Tp06BVNT00oX0qgK+OknwMEBOHtWGhFKRERURTxVi1pCQgIGDRqEAwcOwMbGBgCQlJSEzp07Y+3atXB0dNR1neWKLWpVwJ9/AkOGAEolcOoU0Lix3BUREREVqdxb1MaNG4e0tDRcuHAB9+/fx/3793H+/HmkpKTggw8+eKqiiZ7J668DL78M5OZKo0Dz8uSuiIiI6Jk9VYuatbU1du/ejTZt2mhtP3HiBLp3746kpCRd1Vch2KJWRcTFAQ0bAsnJwOzZwMcfy10RERFRIeXeoqZWq4u8F02pVGrmVyOqcK6u0pQdADBtGvBg9QwiIqLK6qmCWpcuXTB+/HjExcVptt28eRMTJ05E165ddVYcUZm99RbQrZs0Ae6IEQB/cSAiokrsqYLazz//jJSUFHh4eMDLywteXl7w9PRESkoKfvrpJ13XSFR6CgXw66+AhQVw+DCwaJHcFRERET21p55HTQiB3bt34/LlywCABg0awM/PT6fFVZTyvEctXy1wIToN91PyYGdlhEYeFjA0UOj0GlSERYuAMWMAc3Pg/HnAw0PuioiIiACULXeUKajt3bsXY8eOxbFjxwqdODk5Ge3atcOSJUvw4osvPl3lMimvoBZ8PglL/rmJ8KxLuGK9DXWT+6CeaQO817smfBvb6Ow6VAS1GujcGTh4EPDzA3btklrbiIiIZFZugwnmz5+PkSNHFnlSa2trvPvuu/ih4Gbuai74fBJmBkbjTnIOIq3+Q7oyAZFW/+FOcg5mBkYj+HyS3CVWbQYGwG+/AaamwO7dwO+/y10RERFRmZUpqIWFhaFHjx7F7u/evTtCud4i8tUCS/65CQC4bxKBVGPpearxTdw3iQAALP3nJvLVOlu9i4ri4wPMnCk9//BD4OZNeeshIiIqozIFtfj4+BKXiDIyMsKdO3eeuajK7kJ0Gu4m50JAINJqF1CQx4QCkVa7ICBwJzkXF6LTZK2zWpgwAXjuOSAlBXjvPWkt0C5dgJAQuSsjIiJ6ojIFtZo1a+L8+fPF7j979ixq1KjxzEVVdvdTpFnxNa1pBbdGKYRWq1rBcVSODA2lbk+lEvjnH+Czz4B9+4A//pC7MiIioicqU1Dr2bMnPv/8c2RlZRXal5mZienTp6N37946K66ysrMyeqQ17bEb2AVwxXoHBATsrIzkKbC6sbCQ5lQDgKAg6evatdKaoKGhwPXr8tVGRERUgjKN+oyPj0fLli1haGiIsWPHol69egCAy5cvY+HChcjPz8epU6fg7OxcbgWXB12P+sxXC/jP3YwDql+LPaZt1hDs+3Aop+qoCEWN9lQogEf/6T/dLDVERERlVpbcUaYmHWdnZxw5cgSjR4/G1KlTUZDxFAoF/P39sXDhwkoX0sqDgQK47bQHSFEAiqIDwCmzDcjIHQBLE7MKrq4aWr0aGD5ce6H2gmBmZASsWCFHVURERE/01BPeJiYmIjIyEkII+Pj4wNbWVte1VRhdt6hl5+egzoo3kZCZVOJx3Wu3wpbeX8LIwPCZr0lPcOoU0KpV4e0HDwKVbN4/IiKq3MptwtuqqjwmvI1NvYM7mclQC4GrcRlISc/HkQtJuHIzE971MrApZTWy8nPwTqOXsKjTOCg4GWv5KghqBgba6382aCCFNQcH+WojIqJqpdwmvKXSc7N0REsnb7R29sGgFs0wsn1LfNC1DaxyayIjsj5W+E2GAgr8duFffH9qvdzlVn1OToCLixTWliyRAppCAVy6BLRvD8TEyF0hERFRIQxqFahZHQs42SiRlpUPu/SG+OHFdwEAnx5djrVX9stbXFVXqxYQHQ0cPw68+y5w4QJw5gzg5gaEhwO+vlJoIyIi0iMMahXIwECBbq3sAAC7Qu5hbLO+mND8FQDAiN1zcfDmWTnLq/pMTB6OAFUogKZNgeBgoH594MYN6V61EyfkrZGIiOgRDGoVrFsreygUwJmrabh9Pxvf+Y7AK16+yFHnYcCOr3DpPrvgKpSbG3DoENCmDXDvnrRqQcFca0RERDJjUKtgzrbGaO5lAQAICr0PA4UBVnT7GC+4NEBSdhpe3jYNt9Pvy1xlNePgAOzZA/j5AenpQK9ewHreN0hERPJjUJNB99b2AKSglq8WUBmZYHOv6fC2dkV0ajz6/vMF0nMLr/5A5cjSUlpiauBAIDcXGDRIGnRAREQkIwY1GbRraA0LU0PcSc7FmchUAICDyhrb+nwFB1MrnLoTgYCds5Cnzpe50mrGxAT4809p8XYhgNGjgZkzuWoBERHJhkFNBsZKA3RuLk0QvCv0YTent40rNvX6AqaGxtgefQITDi4Gp7mrYIaGwKJFwOefS68//xyYOFF77jUiIqIKwqAmk+5tpNGfRy4kIyX94dJGbWs0wKru0hxrS89vxw+nN8pVYvWlUAAzZgA//ii9/vFH4M03pS5RIiKiCsSgJhNvVzPUqaFCXr7AvrBErX39vXzxffuRAIApR5ZhfcRBOUqkDz6Q1gk1MpK+9usHZGTIXRUREVUjDGoy6t66YE61wqM8xzfvj3HN+gIAhgd9j8Nx5yu0NnogIADYsgVQqYAdO4Bu3YDExCe/j4iISAcY1GTUpbktjAwVuHYrE5E3C7fUfO87Ev3qtJPmWNs+A+GJN2SoktCzpzS3mo0NcOQI0KEDEBcnd1VERFQNMKjJyNLMCO0aWQMoulXN0MAQK7t9jOec6+F+dir6bPscCRlJFVwlAZCWmDp4EKhRAzh/XlofNDJS7qqIiKiKY1CTmf+DOdX2nUlETm7hkYVmSlNs7vUF6li5ICrlNvpt/wIZnGNNHk2aSEtOeXkBUVFSWDtzRu6qiIioCmNQk1kzr4cLtR+5kFzkMU5mNtjW5yvYmVjiZHw4hu2ajXzOsSYPT08prDVrBsTHAx07Si1tRERE5YBBTWaGBgr4tXwwqCD0XrHH1bWthU29p8PEUImtUUcx6fAvnGNNLs7OwIED0r1qKSmAvz+wdavcVRERURXEoKYHCkZ/no5MQ3xidrHH+dZohBXdPgYALDy7FT+G/V0R5VFRrK2B//4DXn4ZyMoCXnkFWLFC7qqIiKiKYVDTA862JloLtZfkVe8XMdv3HQDA5MO/YlPk4XKvj4qhUgEbNwLDhwP5+cBbbwFz58pdFRERVSEManri0YXa1eqSuzQnNH8Fo5v0gYDAm0Hf48itixVRIhXFyAj4/Xfgo4+k1x99BEyZwvVBiYhIJxjU9ES7RtJC7QlJuThzNa3EYxUKBea9+C56ezyPrPwcvLL9S0Qk3aygSqkQhQL4/nvgu++k1999B4wcCeTllfw+IiKiJ2BQ0xMmSgN0KlioPaT4QQUFDA0Msdp/Clo5+eBeVgr6bPscdzKTyrlKKtHkycBvvwEGBsCyZcBrr0n3rxERET0lBjU94v9gUMGRi8lIzXhya4y50hRben8JD0tnXE2+hf7/fInMvOIHI1AFGDEC2LABMDEBNm+WVjVISZG7KiIiqqQY1PSIl6sKdWqYIjdPYN+Z0q0n6Wxmi20vfwVbEwscj7+MN3d9zznW5Na/P/Dvv4ClJbBvH9C5M5CQIHdVRERUCTGo6RGFQoHuraRBBbueMPrzUfVt3bCp13QYGxhh87Vg/C94WXmVSKXVuTOwfz/g6AicOiWtYnD9utxVERFRJcOgpmc6P1io/WpcJiLjCi/UXpz2ro3xu98kAMCPYZuxgHOsya9lS+DwYcDdHYiIkNYLvXBB7qqIiKgSYVDTM1bmRmjXsPiF2ksyqG4nfNP2LQDAR4d+wd9Xg3VeH5VR3brSklMNGwI3bwIvvggcOyZ3VUREVEkwqOmhgpUKiluovSQftRyIUY17QkBg2K7ZOHb7UnmUSGVRsyZw6BDwwgtAYiLQtSuwc6fcVRERUSXAoKaHmntbwtFaibTMfBy5WPRC7cVRKBT4scP76On+HLLyc9D/ny9wNTmunCqlUrOzA3bvBnr0ADIygD59gLVr5a6KiIj0HIOaHjI0UMCv1YOF2svY/QkARgaGCPSfghaO3riblYI+W6fhbmbZAh+VA3NzYMsWYPBgIDcXGDIEWLhQ7qqIiEiPMajpqe4PgtqZq6mIT8wp8/stjFXY2vtLuFs6ISL5Jl7ZPoNzrOkDY2Ng9Wpg7FhpmamxY4Evv+SSU0REVCQGNT3lYmeCZl4WEALYXYapOrTOYW6HrX1mwNrYHEdvX8Tbu+dCLcp2zxuVAwMDYMEC4IsvpNdffAF88AGg5t8NERFpY1DTYwWtartC7z1xofbiNLRzx8ae06A0MMKGyEOYeuR3XZZIT0uhAKZPl7o+FQrg55+BoUOBnLK3nhIRUdXFoKbHfBvbwNzUAAlJuQi7VvJC7SXpWKspfus6EQDww+mNWHR2m65KpGf1/vvAmjWAUgn8+Sfw8stAerrcVRERkZ5gUNNjJkoDdGpW+oXaSzKkXhd89cKbAICJh5ZgWxTn8tIbr78ObNsGmJlJ03b4+QH3n667m4iIqhYGNT3n30ZaUir4QjJSM5+8UHtJ/tdqEN5u2ANqoUbAzm9xMj5cFyWSLvj7A3v2ALa20oS4HTpIE+QSEVG1xqCm57xdVfB0kRZq31/KhdqLo1Ao8HPHMfCv3RqZedno988XiEq5raNK6Zm98II0MW7NmtJSU76+wJUrcldFREQyYlDTcwqFAt1bP1io/SnmVHuc0tAIf/aYimYOdZCQmYQ+Wz/H/azUZz4v6UijRtKSU3XrSou4t28vLepORETVEoNaJdDlwULtkXGZuFqGhdqLY2lshq29Z8DNwhHhSTcwYMcMZOVxtKHecHeXWtZatgTu3AE6dQL27ZO7KiIikgGDWiVgZW6Etk+5UHtxXC3ssbXPDFgZm+Fw3Hm8s+cHzrGmT5ycpHDWuTOQmiotPbV5s9xVERFRBWNQqyQK5lTb+xQLtRensb0H1r/0GYwMDLEu4gA+O7pCJ+clHbGyAnbsAF55RZpf7dVXgWXLgJAQoEsX6SsREVVpDGqVRAsfSzg8WKj96CXdrdvZxa0FfukyAQDw/an1WHp+u87OTTpgagr89RfwzjvSygXvvAOMHy+1tv3xh9zVERFROatUQe3bb7+FQqHAhAkTNNuysrIwZswY2Nvbw8LCAgMGDEB8fLx8RZYTQwMFurV8+oXaSzKsvh++eH4YAOCDA4uwPeq4Ts9Pz8jQEPj0U2D4cOn1kSPS1z//lAYahIZKAw+IiKjKqTRB7eTJk1i6dCmaNm2qtX3ixInYtm0b1q9fjwMHDiAuLg6vvPKKTFWWr26tpaB2OjIVCUm6vfn/k9aDMbxBd6iFGkN2zkJoQoROz0/PyNMTWLFCe9udO0CrVkDr1oCHhxxVERFROasUQS0tLQ0BAQH49ddfYWtrq9menJyMZcuW4YcffkCXLl3QqlUrLF++HEeOHMGxY1Vv5v0adiZoVkdaqD3oKRdqL45CocCiTuPg59YCGXnZ6PfPdESnVL2WyUpr9WrAyKj4/X37SsGNiIiqlEoR1MaMGYNevXrBz89Pa3toaChyc3O1ttevXx+1a9fG0aNHiz1fdnY2UlJStB6VRfcHrWpBofefeqH24igNjbDupU/RxN4TtzMS8fK2z5HIOdb0Q0AAcLyELuktW6RpPcaNA6KjK6wsIqIqR88GbOl9UFu7di1OnTqFWbNmFdp3+/ZtGBsbw8bGRmu7s7Mzbt8ufsb9WbNmwdraWvNwc3PTddnlpmCh9vjEnGdaqL04Vsbm2NrnS9Q0t8elxFgM/HcmsvM5x5peMTDQ/vr990CbNkBmJvDzz4C3NzBsGHDunHw1EhFVVqtW6dWALb0OarGxsRg/fjwCAwNhamqqs/NOnToVycnJmkdsbKzOzl3eTJQG6KhZqL18Fu6uZeGIrX2+gqVShQM3z+KdPfMghMCe2NNoEjgKe2JPl8t16QmcnAAXF+m+tCVLpK8uLtKi7sePS2uFdu8O5OdLXaVNmwK9ewOHD8tdORGRfrt+XRqYdeoUsGaNtG31ar0YsKUQQui2/0yH/v77b/Tv3x+Ghoaabfn5+VAoFDAwMMDOnTvh5+eHxMRErVY1d3d3TJgwARMnTizVdVJSUmBtbY3k5GRYWVnp+mPoXHhsBiYsugKlkQKBnzSCpaqEe5eeQVBMKF7+Zzry1Pn4X8vXsOfGaYQkRKC1kw+ODPwRCoWiXK5LJcjOBoyNAYUCEEKaX83ERPuYU6eA774DNmyQpvQApHVDp0wBevZ82BJHRESS0vx/psO4VJbcodc/sbt27Ypz587hzJkzmkfr1q0REBCgea5UKrFnzx7Ne8LDwxETE4O2bdvKWHn5qltLBY8HC7UfOJNUbtfpVrsVFnf6AADw3am/EPJgJGhIQgSCYrj+pCxMTB7+QFEoCoc0QFp6at064PJlYNQoKdgFBwN9+gDNmkm/JebmVmzdRET66tAhqQeiOEZG0s9Nmeh1ULO0tETjxo21Hubm5rC3t0fjxo1hbW2NESNG4MMPP8S+ffsQGhqKt956C23btsULL7wgd/nlRqFQaFYq2BV6r1yvNbxhd3zaerDWNkOFAaYfXwk9bowlAPDxAZYulQYXTJ4MWFoC589L96/5+Ej3s2U8+9qxRESVjhDA9u1A+/ZAhw7A2bPFt6odPy4N6JKJXge10pg3bx569+6NAQMGoEOHDnBxccGmTZvkLqvcdWlhByNDBSJuZuLarcxyvVbbGg21XucLNVvVKpMaNaSu0JgYYNYs6V6369elEaLu7sBXXwH3y+d+RyIivZKXJ00W3ry5dA9vcLDU6/Duuw/XU358wJbM9PoetYpS2e5RK/B1YBQOn09G33YOeK9PrXK5hhAC7daPx+k7V5H/2KLtnlYuuDx0GQz05B8zlVJmJrBypTRa9No1aZu5ufSDauJEoFb5/FsiIpJNVpb0c2/27Ic/9ywsgPfek37uuboCN25II+jd3IARI6S1lWNjgZMndf5zsSy5g0ENlTeonQxPwbQV12CpMsTqTxrB2Ej3gWnX9VD02vZZsfvbujTAXy99BhdzO51fm8pZXp404ODbb4GwMGmbUil1jX78MVC/vrz1ERE9q9RU6RaQH34Abt2SttnbS2smjx0LPDKJPoDSDdjSgSozmIBK1tLHEvZWSqRm5uPYRd0t1F5ACIHpx1fCAMWPhjl6+xKaBI7CH5d38561ysbISJra4/Rp4N9/gY4dpUEGv/8ONGwIDBgAnDghd5VERGV39y4wbZp0e8fHH0shrVYtYP586daPzz8vHNKA0g3YqmAMapWYoYEC3VqVz0LtAJCjzkVM6h2oUXwAM1IYIiknHW/vnou+/0zHjTQuY1TpKBRAjx7A/v3Sgu99+0q/SW7aBDz/vDRD965dOh2aTkRULmJjgQkTHt5/m5gI1K0r/QJ69arUkmZuLneVZcKuT1Terk8AiLuXjRFzLkGhAFZObghHG2Odnj829Q7uZBbfWmdnaol1V/ZjxonVyFHnwcrYDN+3H4W3GnTnPGuV2cWL0r0cgYFSFykAtGghzcU2YADwyNyGRESyCw+XBk09Ov1Qy5bA1KlA//569zOL96iVUWUOagDwv18jcfZaGob5uWBIVxdZarh4/zpG7pmHE/HhAAA/txZY0nk83K2cZamHdCQmBpg3D/jll4dTeXh7S10Jb7wB6HDFECKiMjt1ShrNvnHjw1b/Tp2kgNatW+kmspUB71GrZgrmVCuPhdpLq6GdOw4OmIvv2o2AqaExdseeRvM/R2PJuX+gfmy0KFUitWtLQS0mBvjiC8DODoiMlEaIenpKv8Em6/7+SCKiYgkh3arh7y8tpbdhg7Tt5ZeBo0eldTq7d9fbkFZWDGpVgG9jG5iZGOB2Yg7ORel+ofbSMjQwxIctX0Xo6wvhW6MR0nIzMe7AQnT/eyquJd+SrS7SAXt7YPp0KbDNny8NX799W+oKrV1b+u319m25qySiqkytBrZuBdq1Azp3lu6dNTSUJqM9dw7YsgWogpPdM6hVAabGBuj0YKH2neW0UHtZ1LWthb2vzMYPL74HMyMTHLh5Fi3+HI0FYX+zda2yMzeXbsaNjARWrAAaNABSUqQpPjw8gNGjpRt2iYh0JS9PuvesWTNpsNOxY9JozNGjgYgIaV/jxnJXWW4Y1KqI7q2l7s/g80lIy8yTuRrAQGGAcc364tTgRehYsyky8rIx6dBSdN70Ma4k3pC7PHpWxsbAm29KS1L9/bf0W2x2NrBkiTTCavBg4MwZuaskososMxNYtEha8m7YMOnnjaUl8L//SUvjLVok3YJRxTGoVRF1a5nBw9kUOXkC+8OS5C5Hw8vaFbv6zcLPncbCQqnCkVsX0WrtGPxwagPy1flyl0fPysBA+g33yBHgwAHgpZek7om1a6VRoi+9JG3nmCUiKq2UFOn+V09PYMwYKZQ5OABffy3dfvHtt4CLPAPn5MCgVkUoFApNq9qukPJdqL2sDBQGeLdxL5wZvBh+bi2QlZ+D/x1Zhhc3TsLF+9flLo90QaGQFjbesUOaQHfwYCnE/fefNAKrXTup5U39SNd3SIg0R1tIiFxVE5E+SUgAPv1Uuu91yhQgPl56vmCBNEntJ58ANjZyV1nhGNSqkM7NHy7UHlXOC7U/DXcrZ+x4+Wv80mUCrI3NcTI+HG3WjsW3IWuRmy9/dy3pSPPmwJo10r0jo0dL95IcOybNZdSokXRvW04OsGqVNDrrjz/krpiI5HT9OjBunHSf6zffSCPJ69eXflZERkr7zMzkrlI2nEcNlX8etUfNDIxCcDkv1K4LN9Pu4v19P2HHdWmJohaO3vit64do6lD17zeoduLjgR9/BBYulLo0AMDJSZqXLS1Nev7vv1L3qIODNKM4EVV9ly5JXZyPTqzdpo00irxvX6lVvorihLdlVJWC2onLKZi+8hqszAzxx9TyWahdV4QQCAzfiw8PLUFidhqMDAwxtdXrmNJ6EIwNlXKXR7qWnFy6bgv+SCKq2k6elCap/fvvh9/vXbpIAa1r1yoz/1lJOOFtNdaqrrRQe0pGPo5fSpG7nBIpFAoMrd8VYUOWom+dtshT5+Ork4F44a/xCE2IkLs80jVra2kYvZFR8ceYmgL9+gGLFwPXrlVYaURUzoQA9uwB/PyA554DNm+WtvXrBxw//nBfNQhpZcWgVsUYGijg11I/BxUUp4a5Hda/9DkC/afAwdQK5+5FwXf9BHx2dAWy83PkLo90KSBA+qFcFBsbICtLmrTy/fcBLy9pWP7YscC2bVI3KRHpt8cHCanVD6fw8fOTApmhobQE3YULUmB77jlZS37cntjTaBI4CntiT8tdCgAGtSqpYEmp0IhU3EmqHEFHoVDgNZ+OOBuwFAO9OyBfqPFd6Dq0WTsWx29flrs8Kg8F958UfA0Kkn64f/21NILUyEi6kXjhQmlpGDs7aTbyb7+V5mhTc/JkIr1TMEho5UrpeZMm0kCiEyekFvMxY6Tv65UrgYYN5a62ECEEPju6HJcTY/HZ0eXQh7vDeI8aqtY9agUm/xKBc1HpeKObCwZ3qXzzzWy+GoxxBxYiPiMRBgoDTGjeH188PwwqIxO5S6NndeOGdMOwmxswYgSwbBkQGyvdt1LrkQEwKSnA3r3Azp3SIypK+zzOztJ6fv7+0uLLTk4V+zmISHL9OnD3rtRt2aMHcOeO9AtYwS9TFhbSyM3x46XvWz2263ooem37TPN6e5+Z6O7eSufX4WCCMqqKQW33qfuYuz4GLnbGWDapAQwMKl+//73MFHx4eCnWhO8FAPhY18QvXSegvWvVXSqk2sjOllY3UCik+1RycqRpPIojhPRbeEFo27cPSE/XPqZlSym0+fsDbdtK5yei8pWXByhLMfirEkQNIQSaBI5CeJK0eo4CCrRy8saRgT9CoeN75xjUyqgqBrWsnHwM+eYCMrPV+G6kF5rWsZS7pKe2Peo43t//E+LS70EBBcY0fRkz2w6HudJU7tJILtnZ0moIBcHt8eWqLCyk+2QKgpuXlyxlElU5QkhzJO7eLd2usG+fNKK7OEZG0nxoAQEVVuLTOBEfjjH7fsKZu4XXKi6PVjUGtTKqikENABZsjsW/J+6hS3NbfDyocs9NlZSdho8P/4oVl3YBAOpYuWBplwnoVKuZzJWRXrh9W/pPY+dOYNcuqevlUd7eD0Nb585SkCOi0omPlwYB7N4tPWJjtffb2EhLxu3bV/i9oaFSa7eeOns3Cl8cX4VtUceK3G+oMEALRy+dt6oxqJVRVQ1ql2PSMXFxBIyNFFjzaWOYmxrKXdIz23U9FO/t+xGxadJ/xKMa98S37UbA0rj6zlpNj1GrpRa2//6TgtuRIw8n0wSkbhpf34fBrVmzKj2xJlGZpaUBBw8+DGbnzmnvNzYG2reXRnH6+UlBLCwMaNXq4b1pBV/1NKhFJN3EjOOrsS7iAAQEFFBAoPg4pOtWNQa1MqqqQU0IgdE/huN6fBbG9quFXs87yF2STqTkpGNK8O/49cIOAEBtSycs6fwButXW/Q2fVAWkpEi/6Rd0kz4+P5uT08NBCd27c1ACVT95edJgnoJgdvQokJurfUyLFtKgHT8/6Redx5d0Ku0gIZnFpCZg5sk1WHUpCPlCGuzwqteLuJQYg0v3Y6AuIqwZQIGWOr5XjUGtjKpqUAOATYcS8OuOONStZYYfx9SVuxyd2nfjDN7d+yOiUm4DAN5q6I/Zvu/AxoTdWlSCRwcl7N1beFBCixYPW9vatSt5UEJICDB5MjB7NtC6dfnWTaQrQgCXLz8MZvv3P1zerYCHx8Ng1qWLtLzbk5R1kFAFup1+H9+GrsOv53cgRy21sPfyeA5fPP8GGti5oc6KN5GQmVTs+53NbHH1zRUwMdTNICUGtTKqykEtKS0XQ2ddQL4aWDS+HjxdVHKXpFNpOZn47NgKLDy7FQBQ09weizp/gJ4e+jWBIumpnBztQQmnH5vg0sJCuqetR4+iByV88AHw00/S1x9/rLi6icoqLk77PrO4OO39dnbS8k0F3Zl16shTp47dz0rF3FMb8PPZLcjIywYAdKzZFF+9MBxtazTQHBebegd3MosfFOFkZo1aFo46q4tBrYyqclADgJmroxB8IRn9fB3xbu+acpdTLg7HncfIPfMQmSz98Amo1xU/vPgu7Ewr72hXkkF8vDQo4b//ih6U4OUltbI1by5187z6KpCQwIXlSf+kpgIHDjwMZhcuaO83MQFefPFhMGveXFoxoIpIzcnAgrC/8cPpjUjJyQAAtHGuh69eeBNdajXX+XQbZcWgVkZVPaiduJyM6SujYGVmiNVTG0Gpxwu1P4uM3Cx8cfwP/Bj2N9RCDRczW/zcaSz61mknd2lUGRUMSihobQsO1h6UUBL+WKWKlpsrLc9WEMyOH9f+96pQSDf7FwSzdu0AVdXqYQGAzLxsLDm3HbND1+FultSd29jeAzNeeBO9PZ6XPaAVYFAro6oe1PLzBd747gLup+bh0wAPtG9sI3dJ5erY7UsYuWceLidKQ8hf8+mA+R1Gw1Flgz2xpzHh4GLM7zAaXd1ayFwpVSqpqdKghJ9+kv4jLImTk9Sq5uEhPR5/zulB6FkJAVy8KLUA794ttZ49vh6ul9fDYNali9S9WUXl5udh+aVd+ObkGtxMl9a59rGuienPD8VAnw4wUOhXAwWDWhlV9aAGACt2xmHd/gS0rmuJr96q+pN/ZuXl4KsTgZh7egPyhRqOKmvMf3E0fjizEaEJEWjt5FMus01TNXHqlNQ68Thz88KDE4pib198iPPwAKrozyF6gicNTrlxQ/s+s9u3tfc7ODy8z6xrV8DTs2LqllG+Oh9/XtmPr06sxrUHA8vcLBzx2XMBeKO+H4wM9LM7tyy5w6iCaiKZdWtlj3X7E3AqIhV3knPgaF21l9cxNTLG1+3eQn8vX7yzZx4u3I9GwK5vNftDEiIQFHOqXNZwo2rk8TmjDh6UbsK+fh2Ijn74ePR1YiJw7570CA0t+ry2tsWHOA8PaYJRqnoKFjT/4w8pqCUnSyMyC4LZ5cvax6tU0n1mBaMzmzatNnMCCiGw+WowvjzxBy7ejwEgjcyc0moQRjZ+SWejM/UBW9RQPVrUAODjXyJwPiodb3R3weDOlW+h9qeVk5+Lb07+ia9D/tRsU0CBpg6eODnoZ7aqUdk9y5xRKSnawe3xUHfv3pOvb2X1MLQVFejs7KR7kkqDU4zIq6gFzc3MpG7LCxceLmwOSCGsdeuH3Zlt2wKm1WspPSEEdsWEYtqxVTh1JwIAYGtigY9aDsSYpi9XmqUF2fVZRtUlqAWF3scPGyr3Qu1Pa9f1UPTa9lmh7X0822JBx9E6HXZN1UR5zRmVlvYwvBXVMpeQ8ORzWFiU3LXq4PAwyHGKEd3LzweSkqTQff++9Ch4/vjXXbuefL7335eCWadOUmtrNXXo5jl8fmwlgm9JI1gtlCqMb94PE5q/Uunmz2RQK6PqEtS0F2r3RtM6lesf9tMSQqDd+vE4feeqZibqRykVhhje0B8ftxoIT6vq09JIlVRGhhTYiuteffy+paKYmgIuLoCrqzR3XGamFO7Gj5f2OTpK9zeZmUn33T361cxMCqT61hJdHi2DarXUAlpcyCrua1KSbkb+VpIFzctbSPwVTDu2EkGxpwAAJoZKvN+kDz5uNRCOKht5i3tKDGplVF2CGgD8uCkW/528h64tbPHRa9VjrqfiWtMeZ6gwwJB6XTCl1SDUtdWfJU+IyiQzE4iJKb579fGJTp+GgUHRIa64r2U51txcuveqrHN6ldQyKITUUlnWwJWYKLWOPS1LS2ngiJ1dyV/v3AHeeqvw+/V0ncyKcuHedXxxfBX+vnYEAGBkYIi3G/rjk9aDUdOici+JyKBWRtUpqF2KSceHiyNgolQg8JOqsVB7SQpa004lRBa7hpuPTU24WThi9w1pVnoDhQEGer+I/7UahCYOVX/UFFUz2dnAzz8D//tf0SFEoQC8vaXQlJEhjWIt+Pr4+o/lycTkyaGu4P4tlQpYt06q0dQUeO45qSUsLU2aVuX+/Wer3dxcO1w9KXgVHKNUlu78BaOIK8mC5uUtMikOM06sxtor+zULpg+p1wXTngtAHesacpenExz1ScWq72aG2k6miEnIwoGziej5XOX+reRJctS5iEm9U2RIAwA1BJJy0hHaZyHC7kbh25C12BZ1DOsiDmBdxAH0rdMWU1sPRisnnwqunKicmJgAkyZJS2MVNcVISEjx4SA3Vwptjwe4kr6W9dgC2dnS4/79sn2+rCxp9G1xn93evnStXAVfbW3L/4Z9JyepK/rxwSlOTuV7XT1zI+0Ovj75J5Zf3Km5TeUVL19Mf34YGtpVjx6gorBFDdWrRQ0ANh5KwG874lCvlhnmV7GF2otS1jXczty5iu9C12Fj5GGIBwGvh3trTG09GO1qNCz3eokqhD624qjVUtAqbeg7ehTYvFl7ZGQBQ0Op1fC11x4GLzOziv9MpaXHC5qXt4SMJHwXug5Lz29Hdr7U8ulfuzW+fOGNKvtLMrs+y6i6BbVHF2pfPL4ePKrYQu26cvH+dXwX+hfWXtkP9YPf7jrXaoZPWg9Gx5pNOa0HVW7PMsWIPilu8uFq2m1YmSRmpeKH0xvx09ktSM/NAgC86NoYM154E+1dG8tcXfliUCuj6hbUAOCr1VE4ciEZ/X0dMaqKLtSuK5FJcZh96i/8cXk38tTSPT3tajTEJ60Ho3vtVgxsVHlVhVYcfWwZpBKl5WTi57NbMPf0RiRlS8tetXLywVcvvAk/t5bV4mcqg1oZVcegdvxSMr5YFQUrc0OsnlJ1F2rXpZjUBMw5tQG/X/xP0zzfyskHn7QejN6ez+vdWnJE1UJVaRmsBrLycrD0/HbMDv0LCZlJAIBGdu744vlh6FunXbUIaAUY1MqoOga1Rxdq/yzAA75VfKF2XYpLu4d5Zzbhl/PbkZGXDQBobO+Bqa1fxwCv9jDU07XliKqsqtAyWIXl5udh5eUgfH1yDW6k3QUAeFnXwLTnhmKQT8dq+TOzLLmDTQDVlKGhAn4t7QAAO0PKOKqqmnO1sMf37Uci8s0VmNJqECyVKpy/F42And+i2Zr3tLpIiagCPDoBr0LBkCajPbGn0SRwFPbEnoZaqPFn+D40XfMuRu9bgBtpd1HLwgGLO3+Ac0N+wZB6XaplSCsrtqiheraoAcCNO1kY+cNlGCiAlf9rCIcqvlB7eUnMSsXCs1uxIOxvJD6438LTygWTW72GYfW7VqnFgYmIilMwb2VIQgS8rGvAxMAYFxOvAwAcVdb4X6tBeLdxL5ga8Wciuz7LqLoGNQD4eGkEzkenY7h/DQzq5Cx3OZVaak4Glpz7B/PObNJMB1LLwgGTWryKEY16QGXE3/KJqOraeu0oBuyYobXN2tgck1oOwLim/WBhzBkGCjColVF1DmpBoffww4ZYuNob47dJDarVzZzlJSM3C79d/A9zT21AXPo9AICzmS0+bP4KRjXuxR9WRFRlJGenY3v0cWyKPIytUcc0c08CgIuZLcIGL4Gdqnr9v1oaDGplVJ2DWmZ2PgK+uYDMHDVmj/JGE8/qsVB7RcjKy8HKy0H4PvQvXE9NAADYm1phfPN+eL/Jy7A2MZe5QiKisruXmYKtUUex+Wow9sSeRo46r9hjt/eZie7uRcxzV80xqJVRdQ5qAPDjphj8d/J+tVqovSLl5uchMHwvvgtdh8hkaUFsa2NzjG32MsY17Qd7/rZJRHrudvp9/H3tCDZfDcaBm2c1SzwBQD2bWkjJyUB8ZiLUj0QKQ4UBWjh64cjAH9lb8xgGtTKq7kHt0vV0fLik+izULpc8dT7WRxzEt6FrcfF+DADAXGmK9xr3xoTm/eFibidzhURED11Picfma0fw99VgHLl1Uatbs6lDHbzi5Yv+Xr64kXoXvbZ9Vux52KpWGINaGVX3oCaEwLvzLiP2TjY+6O+Gl56zl7ukKk0t1Nhy7Si+CfkTZ+5cBQCYGhrjnUYvYVLLAVrrjhIRVaSIpJvYfDUYm64eRmhChNa+55zr4RWv9ujn1Q5e1q4AHo70PJUQCTUKxwkDKNDSyZutao8pS+4wqqCaSI8pFAp0b22PZf/GYWfIPQa1cmagMEB/L1/0q9MO/14/ia9PrsGJ+HD8fHYLlp7fjjcbdMPkVq/B08pF7lKJqIoTQuDC/euacHb+XrRmnwIKtHdthP5e7dGvTju4WRb+JTJHnYuY1DtFhjQAUEMgNu0uctS5nKroKbFFDWxRA4DE1FwM+1ZaqH3JhHpwd+bIxIoihMC+G2fw9ck/cTDuHADp3o4h9brgf60GoZ4tl8EhIt0RQiA0IeLBPWeHcSXppmafkYEhOtVsiv5e7dG3Tls4m9k+8XyxqXc0UxIVxcnMmj0Fj2HXZxkxqElm/BGFoxeT8cqLjhjZkwu1y+Fw3HnMClmLXTGhAKTfaF/z6YD/tRqEJg6eAKSZvyccXIz5HUajq1sLOcslokpCLdQ4evsSNkcG4+9rwZqR6ABgbGCEbrVbor9Xe/TxfAF2ppYyVlo9MKiVEYOa5NilZHy5KgrW5kb4Y0pDLtQuoxPx4fg2ZC22RR3TbOtbpy2mtHod4w78jJCECLR28uF9H0RUrDx1Pg7FncOmq8HYcvUIbmU8XC7QzMgEL7m3QX8vX7zk0QZWxpwuqCIxqJURg5okP19g2HcXkJiah8+GesC3kY3cJVV7YXev4duQtdgYeVhrxFUBjqYiokfl5Odi740z2HQ1GNuuHcXdrBTNPitjM/TyeB6vePmie+1WMFOaylhp9cagVkYMag/9/l8c1h9IwHP1rPDl8Dpyl0MPXLofg29D1mHNlb1a282NTPBG/W54zqU+WjvXRV2bmjBQsCWUqDrJzMvGzush2HQ1GNujjyMlJ0Ozz97UCi/XaYv+ddqhi1tz3tCvJxjUyohB7aFHF2pfNaUR7K2UcpdED+y6HlriXEWA9BtzKycftHaqi9ZOddHGuR5qWTiwe5SoiknNycCO6BPYfDUY/14/iYy8bM2+GmZ26OvVDq94+eJF1yYwMuDcmPqG03PQU6vlaIqG7ua4eD0de07dx2tcqF0vCCEw/fhKGCoMtGYEN4ACDipr1LGqgTN3ryIlJwP7boRh340wzTHOZrZo/SC8tXGuh9ZOdbkaAlEllJiVim1Rx7D5ajCCYk8hOz9Xs6+2pRP61/FFf29ftHVpwJb1KoRBjQrxb22Hi9fTsSvkPgZ2dGJrjB4IijmFkMcmnwSkOYoSMpOw3O8jdK7VDBfuX0dIwhWExF9BSMIVnL8XjfiMRGyPPoHt0Sc07/O0ckEb57qalrcWjt5cLJ5IZkWN6I7PSMSWa0fx99Vg7LsZhjx1vuZ4H+ua6P9gdYBWTj78WV1FsesT7Pp83KMLtX8/yhuNuVC7rJ5l5u+M3CycuXvtYXiLv4KI5JuFz6EwQAPb2mjt/LDlrYm9B4wN2fVNVBEKvs9DEiLQ1N4Tbzbojr+vBSP41kWoH2lFb2zvgVe82qO/ly8a2bkznFVS7PqkZ6IyMUSHpjbYGXIfO0PuMajJ7Flm/jZTmqJdjYZoV6OhZltiVipO3YnEyfhwTYC7mX4PF+5H48L9aKy8FAQAMDFUoqlDHbRxqovWD1rf6tnWYpcKkQ6l5WQiIvkmNkYe1rSan70XhUmHl2qOaeXkowlnPjac47K6YYsa2KJWlIvX0zFpSQRMlAYI/KQRF2qXWXnP/B2Xdk8KbY90myZmpxU6zlKpQiunulotb24WjvytnqgEGblZiEy+hcikm4hMjkPEg6+RSTdxOyOxyPdYKE0x7blheMXLF+5WvFe4qmGLGj2zBrXNUMvRBDfuZOPQuST0aMP1P+XkZulY5Dp7uuJqYY+XLdri5TptAUjdMFeTb2mC28mEcJy+cxWpuZnYfzMM+28+HKzgpLJ5ENoetrw5qKyfeE2usEBVSVZeDq6l3EJkkhTAIgoCWdJN3Ey/V+J7LZVmSM3N0NqWlpuFRnbuDGnEFjWALWrF2XAwAcv+jUN9NzPMe7+u3OWQzPLU+bh4P+Zhl2nCFZy7G6U1CrWAh6XzgxGmPmjtXBctHX20Bis8ej8OV1igyiInPxdRKfGaIBb5SMtYTOqdIielLmBjYgFva1d427jCx7omvG1c4W1TE95WNdBr22c4feeq1veSocIALRy9+L1RRbFFjXSiSwtbLN8Zh8uxGbgenwV3Z85iXZ0ZGRiiqYMnmjp4YkSjHgCkiTbP3Ln2SLdpOK4k3UR0ajyiU+OxPvIggILBCm5o9aDlLU+dr7kfJyQhAkExp7jCAumFPHU+olPiEZl8ExFJ2mEsOjVB68b+x1kqVfC2qQkfG1d4F4Qxa+m1valVkYFr1/XQIkd05ws1vzcIAFvUALBFrSRfrrqGY5dSMOBFR7zDhdqpFJKy03AqIQInH9zrFpJwBTfS7pb4HlsTCwyr54dalg5wNbeXHhbSV5WRSQVVTpVZWbrS89X5iEm7I7WMJcUhMvnmgy7LOESl3taaAuNx5kpTeFm7wsf6QYtYQSuZTU04qWzK1Pr1LCO6qXJjixrpjH9rexy7lILdp+6jlY8VktPzYGdlhEYeFjA04A8OKszGxAJd3FqgyyP/Wd5Kv6+53+2/6ydx6k6k1nsSs9Ow4OzfRZ7P1sQCruYOcDW3g6uFPWqaO6CGuR1qWjwMdU4qaxhy9vVqSwiBz44ux+XEWHx2dDm61GoOAYEbaXcf6aZ82Dp2LfkWctR5xZ7P1NBYCmM2rlqtYt7WNVHD3E5noelZRnRT9cEWNbBFrSR5+QKvzzyH9Czt5n4HayXe610Tvo1t5CmMKqWCFoTH78dRQAEnlQ061WyKWxn3EZd+DzfT7yHzkWVxSmKoMEANczvUMLdHTXN7zdeCVjlXc3vUtLCHpdJMpy0TVWFARGX6DDn5uUjJyUBqbiZSczKRkpOOtNxMHI67gO9C12mOc7dwQnxmErLyc4o9l7GBEbysazzSKvYwjNW0sK+waWjKe0Q36Se2qJHOHL+UXCikAcDd5FzMDIzGZwEeDGtUasWtsCAgEJ+ZiDcadNPcjyOEQHJOOm6m3UNc+l3Epd9/+DXtHm6m38Wt9Pu4nZGIfKHGjbS7uJF2FydLuL650lQKcJpWuUdC3YNWuxrmdqWa6LeoVpzK1j1V3p9BCIGs/BwpXOVkIjU3A6ma55lIyclA2oPgVRDA0nIKnkvHpRXsy8kosRXsUdfTEgBI91XWsXJ5eL+YTU1Nl6WbhYNetMKW94huqvwY1KhY+WqBJf8UnsX+UUv/uYkXGlqzG5SeqGC9UgMoir0fZ/rxlehWuyUUCgUUCgVsTCxgY2KBRvbuxZ43T52P+IxExKXfk1ri0u7h1oMWubj0B8/T7iE5Jx3puVm4knQTV5JK/nftpLKRgpy5Q6FWuYJgF5oQUekHRDwanAs+Q7faLZGem/VIy9XD0KR5rdWqlYG0B/ul5w9DWGpORpGjgp+VysgEVsZmsFSqoIbAteRbhY75tetEDK3XlQuSU6XHoEbFuhCdhrvJuSUecyc5Fxei09C0jmUFVUWVVXndj2NkYIiaFg6oaeFQ4nHpuVlSmEu79zDUPWiVe7TVLledh4TMJCRkJiHs7rViz/f4ryav7piBOtY1Kk2rmhCFA06fbZ8X+/fzrCyUKlgqVbAyNoOFsQqWSrNHnkvbLY1VsHiw3VKpgqWxCpbGZrBUSvusjM1goVRpwldBV/p1hUGhqS2WnvsHb9bvVi6fhagiMahRse6nlK6bobTHUfVmYmiMY68teOL9OOV107S50hQ+NjVLXIJHLdS4l5Wi3Sr3SLAreNzJTC4UZzLzc3Dh/vVyqb2iPBrSFFBowpMUmswehCaV1teC8FQQpCyVKlgYa4ctC6WqXO75Kq4rnVNbUFXCoEbFsrMq3T+P0h5HpO/34xgoDOCosoGjygbNHb2KPEYIgRf++gBn7l6F+pGxWAZQwNvGFT92eF/vW9WEEBh/cBEik+K0wpmBQoEmdp7YP2AOzJWmev05ytqVTlRZ8X9YKlYjDws4WCtL7P60t1KikQcXbafqIyjmVKHpRQCpNepK0k2ohUD32i1lqKz0dl0PLfI+PbUQCLt3DUduXdT7lihObUHVBYMaFcvQQIH3etfEzMDoYo9RqwVu389BTQdOSkpVX1VoxakKnwGQvyudqKIwqFGJfBvb4LMADyz556ZWy5qthRHUAkhMy8OHi69g2jBPtqxRlVcVWnGqwmcooO9d6US6wAlvwQlvSyNfLXAhOg33Ux6uTJCSnocvV0Uh/EYGlEYKTBpYGx2b2spdKlG5qgoTlFaFz0BUmZUldzCogUHtWWTlqDF73XUcvSj90H+rRw0M7OCk110mREREcipL7qiYNTKoyjI1NsCnAR7o5yv99r38v1v4+e8byM+v9vmfiIjomTGo0TMzNFDg3d418V7vmlAogB0n7uGLVdeQkZ0vd2lERESVGoMa6UxfX0d8PtQTJkoFQq6k4uOlEbibXPyiyERERFQyBjXSqbYNrfHdSB/YWhjh2q0sTFgUgahbmXKXRUREVCkxqJHO1XMzw7z3feDmZIJ7KbmYtDQCoVdS5C6LiIio0mFQo3LhbGuCH97zQbM6FsjMVmPaymv498Q9ucsiIiKqVBjUqNxYqIzw1Vt10LWFLdRqYMHmWKzYGQe1miNCiYiISoNBjcqV0sgAkwbWxtCuLgCAdfsTMHvddeTkqmWujIiISP8xqFG5UygUCPBzwYev1oahAXDgbBI++f0qUtLz5C6NiIhIrzGoUYXp1soOM9/2grmpAS5Ep+PDxRGIu5ctd1lERER6i0GNKlRzL0vMfc8HTjZK3LyXjYmLr+DS9XS5yyIiItJLDGpU4dydVZj3fl341FQhJT0fU36LxOHzSXKXRUREpHcY1EgWdpZKzB7ljRcaWCEnT+CbNdHYeCgBQnBEKBERUQEGNZKNqbEhPhvqiZfbOkAI4LcdcVi4hQu6ExERFWBQI1kZGigw+uVaGNXLFQoFsP34PXz5RxQyuaA7ERGRfge1WbNmoU2bNrC0tISTkxP69euH8PBwrWOysrIwZswY2Nvbw8LCAgMGDEB8fLxMFdPT6t/eCZ8GeMBEqcDJ8BR8/Esk7qXkyl0WERGRrPQ6qB04cABjxozBsWPHEBQUhNzcXHTv3h3p6Q9HCU6cOBHbtm3D+vXrceDAAcTFxeGVV16RsWp6Wr6NbPDtO96wNjfC1bhMTFx0BVG3uaA7ERFVXwpRie7evnPnDpycnHDgwAF06NABycnJcHR0xJo1a/Dqq68CAC5fvowGDRrg6NGjeOGFF0p13pSUFFhbWyM5ORlWVlbl+RGoFG7dz8a0Fddw4042zEwM8NlQT7TwtpS7LCIiIp0oS+7Q6xa1xyUnJwMA7OzsAAChoaHIzc2Fn5+f5pj69eujdu3aOHr0aLHnyc7ORkpKitaD9EcNO2lB9yae5sjIVuPz5VexM4QLuhMRUfVTaYKaWq3GhAkT4Ovri8aNGwMAbt++DWNjY9jY2Ggd6+zsjNu3bxd7rlmzZsHa2lrzcHNzK8/S6SlYmhlh5tte6NLcFvlqYP7GWKzadYvTdxARUbVSaYLamDFjcP78eaxdu/aZzzV16lQkJydrHrGxsTqokHTN2MgAH71WG4O7OAMA/twXj+//ikFOHhd0JyKi6sFI7gJKY+zYsfjnn39w8OBB1KpVS7PdxcUFOTk5SEpK0mpVi4+Ph4uLS7HnMzExgYmJSXmWTDqiUCjwRrcacLE1xoLNsdh3JhF3knMwbagnLM0qxT9fIiKip6bXLWpCCIwdOxabN2/G3r174enpqbW/VatWUCqV2LNnj2ZbeHg4YmJi0LZt24oul8pR99b2+OotL5iZGOB8VDo+XBKBW/e5oDsREVVtej3q8/3338eaNWuwZcsW1KtXT7Pd2toaKpUKADB69Gjs2LEDK1asgJWVFcaNGwcAOHLkSKmvw1GflUf07UxMW3ENd5JzYW1uhC/e8ET92uZyl0VERFRqZckdeh3UFApFkduXL1+O4cOHA5AmvJ00aRL+/PNPZGdnw9/fH4sWLSqx6/Nx/2/v3oOjrO9/gb+fvW+ym01CNgmBJJsg/CAEiYoCyc/qr2IZFJT5tVVGylCYMuUYTrlIqa2A2qoo85MK9YI4Fc5pRez8zgEkZ9RiEFRughAQSRECgRjJjdx2k+z1ec4fmywsCcluIHme3X2/Zpjkuezms+xkefO9MqhFliutHjz3v87j3A8d0GkErJiVjaKxiXKXRUREFJKoCWqDhUEt8nS4fHj5/Yv46kwrBAFY8FAGZhZZbxjuiYiIlCJq11Ej6mLUq7F6Tg6mT/Jv6L7p//2Ajbuq4RNj/v8dREQURRjUKGKp1QKefGQYFjzk39D9w4MN+NPfL8Dp5obuREQUHRjUKKIJgoD/vDcVf3jCBp1GwOHyVqzYdA6Ndm7oTkREkY9BjaLCv+cn4uUFtyEhXo2z1f4N3S/WckN3IiKKbAxqFDXGZMXjz/9jFIal6FHX7MFTG8+irMIud1lERET9xqBGUSVjiH9D97G2eLQ5Rax8twK7v24EAPhECSfP27G3rAknz9s58YCIiBSPy3OAy3NEI7dHxLr/voR9J5sBAPeOs6D8YjsaWq+OXUuxaLFw+jAU5SfKUyQREcUkLs9BMU+nVWHF49l4/H7/hu5ffNMSFNIAoKHFgxfeq8T+U80yVEhERNQ3BjWKWiqVgDkPpsNkVPd639slXH+NiIiUiUGNotq3lQ44OnpfV62+xYNvKx2DVBEREVHoGNQoqjW2em/pfURERIOJQY2iWnKCJqT7/s8XtThc3gKRXaBERKQgof0rRhShxtpMSLFo0dDS+04F535w4rn/fQEZQ3R4pNCKB+9KRpy+97FtREREA40tahTV1CoBC6cP6/WeRTOH4af3WmEyqPHDFTc27qrGnDXf4u2SalxudA1SpURERN1xHTVwHbVYsP9UMzaWVAe1rFktWvz6mnXUOlw+lB5vwocH6lFV7w9oggBMHJ2AR4usGJ9rgiAIcpRPRERRJJzcwaAGBrVY4RMlfFvpQGOrF8kJGoy1maBWdQ9eoijh2Fk7dh6ox9Hvrm5BZUsz4NEiK/6jIAl6LRujiYiofxjUwsSgRjdSVefEhwcb8OmxRjjdIgAgIU6NafcMwcOTUmC16GSukIiIIg2DWpgY1Kgvjg4vPjnaiF0HG1Db5AYAqFTAv+cnYmahFaOz4tgtSkREIWFQCxODGoXKJ0o4VN6Cnfvr8c2FtsD5UcPj8GhhCu4dlwitht2iRER0YwxqYWJQo/6o+KEdOw80YO+JJni8/l+jZLMGD09MwUMThyDRpJW5QiIiUiIGtTAxqNHNaHZ48dFXDSg51IBGu3+HA61GwP3jk/BoYQpGZMTJXCERESkJg1qYGNToVvB4RXx5yt8teub79sD5/Jx4zCy0YlKepcdZpkREFFsY1MLEoEa3WvmlNuzcX48vTzXD558sitRELWZMtmLq3ckwG7kpCBFRrGJQCxODGg2UhhY3Sg5dwUdfNaC13QcA0GtVmHJnEh4ttCIz1SBzhURENNgY1MLEoEYDzeURsbesCTsO1KOyxhk4f9dIMx4tsuKukWao2C1KRBQTGNTCxKBGg0WSJJw878DOA/U4VN6Krt++4VY9Hpmcgil3JsPIzeCJiKIag1qYGNRIDpcbXdh1oAGfHL2Cdpd/IFu8QYWpE4ZgxuQUpCfruz0m1G2wiIhIuRjUwsSgRnJqd/nw6deN+PBAA6qv+DeDVwnAxDEWzCyyYlxOPARB6HFj+RSLFguv2VieiIiUj0EtTAxqpASiKOHod/7N4I+dvboZfO5QA/Ky41Fy6MoNH7tyto1hjYgoQjCohYlBjZTmUp0TOw/Uo/RYE1wesc/7rRYtNq/IYzcoEVEECCd3cFNCIgXKSjXgf87MxN9+n4eH7hnS5/31LR58W+kYhMqIiGgwMagRKZjZqMG4HFNI9x74tgWtbd4BroiIiAYTl0cnUrjkhNB+TXceaMCHBxuQO9SI8SNMKBhhRr4tnst9EBFFMAY1IoUbazMhxaINmu15PaNOBWuiFpfqXKj4oQMVP3Tg/35RD7UK+LfMeBSMMGH8CDNGZ8VBp2FDOhFRpOBkAnAyASnf/lPNeOG9yhte75r12Wj34GSFA2UVdpRVOFDb5A66T68VkJdtQsFt/ha3ERlGTkAgIhpknPUZJgY1igQ9raNmtWjx617WUatpdKGswoETFXacqHCgyRE8hs1kUGNcrinQVZqVqocgMLgREQ0kBrUwMahRpLiZnQkkScLFWidOdLa4nTzvCOyI0CXJrMH4XHOgxS0tSTcQL4OIKKYxqIWJQY1ikc8n4dwP7YEWt28r2+D2Bn8cpCfrUDDC3NniZkKiSStTtURE0YNBLUwMakSA2yOi/FJboMXtzPftEK9ba9eWbsD4XBMKbjNjXI4J8QbOKCUiCheDWpgY1Ii6a3f5cOqCA2XnHDhx3o7zl51B11UqYOSwuECLW152PPTa0GaUcnN5IoplDGphYlAj6luzw4tvLjhQds6Osgo7frgSPKNUqxGQlxWP8Z3j20YNi4Na3T18cXN5Iop1DGphYlAjCl9dszswm7SswoErrcHrvBn1KozL8Y9tKxhhRnaaAQdPt4S0zAgRUTRjUAsTgxrRzZEkCd/XuwLj206cd8DR4Qu6JyFODadHhNtz448cbi5PRLEgnNzBnQmI6KYJgoDMVAMyUw2YPjkFPlHChcsdgRml31xoQ2u7r8/n6dpc/vZc8yBUTUSkfGxRA1vUiAaaxyti22e12Lqnts97UxO1yLeZkJ1ugC3NCFu6AVaLlgvxElHUYIsaESmKVqPC+BGmkIJaXbMHe8qags7F6VWwpRuRnWaALc0AW7oB2WlGWOL5EUZE0Y2fckQ0KELZXD7ZrEHxI8Nxsd6JizVOXKx1oqreiXaXiNMX23D6YlvQ/UlmjT+4pRk7W+AMyE4zwKDj+m5EFB0Y1IhoUKhVAhZOH9brrM8nHxmOwvxEFF5zzuMVUd3gQmWNE5W1Tlys7UBljRM1TW402b1osjtw/JwjcL8gAGlJOuR0trplpxmQk27AsBQDND0sF0JEpGQcowaOUSMaTP3ZXL4nHS4fLtb6W90qa52orOnAxVpnt43nu2jUAoZb9Z2tbv6xb7Y0A1ITdVD1Y5YpF+0lov7i8hxhYlAjGlwDGXKaHd5Aq1ugBa7WiY7rNqDvYtSpkBUY+3a1Ba63fU25aC8R3QwGtTAxqBFFN0mSUNfsCbS6dbXAVdW74PX1/BFoidcETVzwfzXg+Fk7F+0lopvCoBYmBjWi2OT1SahucAVa3Spr/C1wlxvduNEno0oAxF4+NbloLxH1hUEtTAxqRHQtp9uHS3WuoC7UypoONNp7Hv92vUljEjDWZkJakg6piVqkJelgiddwLTgiAsCgFjYGNSIKxUeHG7Bhx/f9eqxeKyA1UecPb0mdXzuP05J0SDIxyBHFCi54S0Q0AIZZ9SHd9x/jkyDBv3F9bZMbjXYPXB4JVfUuVNW7enyMTiPAek1wSw36Xotks7Zfs1N7w5mrRMrHoEZEFKJQFu21WrR46rGsoMDj9opoaPagttmNuiZ/eKttcgeC3JVWD9xe/3i56oaeg5xGLQS6UYNCXJIOaYk6JCdowwpZnLlKFBnY9Ql2fRJR6Pafar7lsz49XhENrZ4eQ1xtkxsNrR6IPa8uEqBWwd8il3i1a/XaUJeSoIW6c8HfgXgNRBQ6jlELE4MaEYXjVi3aGyqfT0JDq+dqiGtyB7XO1be44esjyKlUQEqCFqmJWpyt7oDLc+OPfs5cJRpYDGphYlAjonApaXyXT5TQeG2Qu6Y1zh/kPDdcL+5G8m3xyEk3IsmsQZJZiySTBokmLZLNGiSaNNBqVAP0asKnpPeCKBQMamFiUCOiaCaKEhrt/iC390QzSg413PRzmo3qQIBLMmuQZNIGhbqurwnxmgENTRxrR5GIsz6JiChApRKQYtEhxaKDT5RCCmozJqcgTq9Gk8ODZrsXTQ4PGu1eNDs88ImAvcMHe4cPl+r6+NkCYDFp/OHt+jB37bFZA5NBHdYSJTcaa9fQ4sEL71VyrB1FBQY1IqIYEurM1V9PH9ZjS5goSnB0+ALBrcnuQZPDi2aH//vGzlDXZPeitd0LUQKa7F402b0AnL3WplELV1vjrm2lM3VvqdNpVdhYUt3r871dUo1JeRZ2g1JEY1AjIoohapWAhdOH9Trr80YhDfC3ziXE+7s0s9N6/1k+n4SWNi8aO4Nbk92DZocXjZ3hLhDy7F44nD54fRLqWzyo7yVEdtFqBHi8vY/cqW/xYO+JJtw9KgHxRrWiAxvH2dGNcIwaOEaNiGLPYM9c7YvbIwbCW7MjONx1tdg12j1o6lw8OFyCAMQb1EiIU8Ns1MAcp4Y5TtPjscmoQUK8GmajGvFhdsf2B8fZxR5OJggTgxoRxaJIbMWRJAkdbhEHT7fgv/5xqc/7dRoB7j5a3nqjUgEmoxoJcRqYjf4wZ+467gx35rjrrsepYdSpQgp4XNMuNnEyARER9UmtEnB7rlnuMsIiCALi9GrcPz4JWz653OdYu80r8iCKkn/yQ7sP9nYv7B0+tLZ7ux072jvPd/jPuzwSRBFobfOhtc0XVp0atRAU3AItddeEu3i9Gm/t6n3v2EgaZxeJwT8SMKgREVHECWesnVolINmsQrJZG9bPcHnEQJCzdwa71nYf7B1XQ15Px16fBK9P8nflOrw39TrrWzxYsekchibrEG/wd8XGBb6qEK+/9pwK8QY1DCG25t1K7L4dOOz6BLs+iYgildLG2kmSBJdH9Ae4zuDmuEEL3vf1N97b9WaoBCBO3xnkukKdPjjMXT139bgr/MV1Xgu1NSyaum8Hq1WQY9TCxKBGRBS5IrXL7eR5O373TkWf980sSkGSWYt2pw9tThFtTh/aXT7/1+vO9bUnbDiMus7Qdk3LXVfrXdc5o16FrXtq4ei4cddwpGxJNpitggxqYWJQIyKiweYTJfxy7emQxtmFEnK6WvO6gltXkGt3XT3u6Vy704d2p4i2zvDX17In/WEyqGCO08DYGe6MOhUMOhWMen9XrVGngkGvglF37fWe7zXoVLc89A12qyAnExARESncza5pdz1BEGDQqWHQqTEkIbzxeNdye8Vu4S0o0Dl9aHP5jy/UOHGmqr3P53Q4RTic7n7XdD29VgWjXhUIeUGBT6dCnF7dGfy6B0L/49SI63y8TqvCxl3KXTyZQY2IiEgmRfmJWDnbpqhxdjqNCjqTCommvu8Ntft28X9mItOqh9MtosMtosMlwun2Bb7vcPkC15wuER1uX9C9XdfFzsY+l0eEy3ML+3n7UN/iwbeVDllmSTOoERERyagoPxGT8iwROc4u1C3JHrwr+aZfjyRJcHuloJDnD3X+YNfhuhryrr127b3t1wXCdnfo4/oaW29uBm9/MagRERHJLBLXtANuffdtbwRBgF4rQK9V4VbFF0mScOycHSvfPd/nvckJ8kQmlSw/lYiIiKJCV/dtiiV4XJzVolX80hyCIKBghLlb7dezWrQYawuhL3gAsEWNiIiIbkokd98OZqtgfzCoERER0U2L1O5bQJmTOrowqBEREVHMU2qrIIMaEREREZTZKsjJBEREREQKxaBGREREpFAMakREREQKxaBGREREpFAMakREREQKxaBGREREpFAMakREREQKxaBGREREpFAMakREREQKxaBGREREpFAMakREREQKxaBGREREpFAMakREREQKFTVB7Y033oDNZoPBYMDEiRPx1VdfyV0SERER0U2JiqD2wQcfYNmyZXj22Wdx7NgxjB8/HlOnTkVdXZ3cpRERERH1W1QEtXXr1mHBggWYN28e8vLysHHjRsTFxeHdd9+VuzQiIiKifov4oOZ2u/H1119jypQpgXMqlQpTpkzBwYMHe3yMy+VCa2tr0B8iIiIipdHIXcDNamhogM/nQ1paWtD5tLQ0/Otf/+rxMWvWrMHzzz/f7TwDGxEREQ20rrwhSVKf90Z8UOuP3//+91i2bFnguLq6Gnl5ecjMzJSxKiIiIooldrsdFoul13siPqilpKRArVajtrY26HxtbS3S09N7fIxer4derw8cm0wmVFVVwWw2QxCEAa03krW2tiIzMxNVVVVISEiQu5yYxfdBOfheKAffC2Xg+xAaSZJgt9uRkZHR570RH9R0Oh3uuusulJaWYubMmQAAURRRWlqKRYsWhfQcKpUKw4cPH8Aqo0tCQgJ/ARWA74Ny8L1QDr4XysD3oW99taR1ifigBgDLli3D3LlzMWHCBNxzzz147bXX0NbWhnnz5sldGhEREVG/RUVQe/zxx1FfX4/Vq1ejpqYGBQUF+Pjjj7tNMCAiIiKKJFER1ABg0aJFIXd1Uv/o9Xo8++yzQeP7aPDxfVAOvhfKwfdCGfg+3HqCFMrcUCIiIiIadBG/4C0RERFRtGJQIyIiIlIoBjUiIiIihWJQIyIiIlIoBjXq1Zo1a3D33XfDbDYjNTUVM2fOxJkzZ+QuiwC8/PLLEAQBS5YskbuUmFNdXY1f/OIXGDJkCIxGI8aNG4ejR4/KXVbM8fl8WLVqFXJycmA0GjFixAj86U9/Cmn/RLo5n3/+OWbMmIGMjAwIgoAdO3YEXZckCatXr8bQoUNhNBoxZcoUnD17Vp5iIxyDGvVq3759KC4uxqFDh7B79254PB785Cc/QVtbm9ylxbQjR47g7bffxu233y53KTGnqakJRUVF0Gq1+Oijj3D69Gm8+uqrSEpKkru0mPPKK6/grbfewuuvv47y8nK88sorWLt2Lf7yl7/IXVrUa2trw/jx4/HGG2/0eH3t2rXYsGEDNm7ciMOHDyM+Ph5Tp06F0+kc5EojH5fnoLDU19cjNTUV+/btw49+9CO5y4lJDocDd955J95880288MILKCgowGuvvSZ3WTHj6aefxv79+/HFF1/IXUrMmz59OtLS0vDXv/41cO6nP/0pjEYj/v73v8tYWWwRBAHbt28PbOMoSRIyMjLw1FNPYfny5QCAlpYWpKWlYcuWLZg1a5aM1UYetqhRWFpaWgAAycnJMlcSu4qLi/Hwww9jypQpcpcSkz788ENMmDABP//5z5Gamoo77rgD77zzjtxlxaTCwkKUlpbiu+++AwCcOHECX375JaZNmyZzZbHtwoULqKmpCfqMslgsmDhxIg4ePChjZZEpanYmoIEniiKWLFmCoqIi5Ofny11OTNq2bRuOHTuGI0eOyF1KzDp//jzeeustLFu2DH/4wx9w5MgR/OY3v4FOp8PcuXPlLi+mPP3002htbcXo0aOhVqvh8/nw4osvYvbs2XKXFtNqamoAoNs2jmlpaYFrFDoGNQpZcXExTp06hS+//FLuUmJSVVUVFi9ejN27d8NgMMhdTswSRRETJkzASy+9BAC44447cOrUKWzcuJFBbZD94x//wHvvvYetW7di7NixKCsrw5IlS5CRkcH3gqIGuz4pJIsWLUJJSQk+++wzDB8+XO5yYtLXX3+Nuro63HnnndBoNNBoNNi3bx82bNgAjUYDn88nd4kxYejQocjLyws6N2bMGFy6dEmmimLXb3/7Wzz99NOYNWsWxo0bhzlz5mDp0qVYs2aN3KXFtPT0dABAbW1t0Pna2trANQodgxr1SpIkLFq0CNu3b8eePXuQk5Mjd0kx64EHHsA333yDsrKywJ8JEyZg9uzZKCsrg1qtlrvEmFBUVNRtiZrvvvsO2dnZMlUUu9rb26FSBf8zplarIYqiTBURAOTk5CA9PR2lpaWBc62trTh8+DAmT54sY2WRiV2f1Kvi4mJs3boVO3fuhNlsDowvsFgsMBqNMlcXW8xmc7exgfHx8RgyZAjHDA6ipUuXorCwEC+99BIee+wxfPXVV9i0aRM2bdokd2kxZ8aMGXjxxReRlZWFsWPH4vjx41i3bh3mz58vd2lRz+Fw4Ny5c4HjCxcuoKysDMnJycjKysKSJUvwwgsvYOTIkcjJycGqVauQkZERmBlKYZCIegGgxz+bN2+WuzSSJOm+++6TFi9eLHcZMWfXrl1Sfn6+pNfrpdGjR0ubNm2Su6SY1NraKi1evFjKysqSDAaDlJubKz3zzDOSy+WSu7So99lnn/X4b8PcuXMlSZIkURSlVatWSWlpaZJer5ceeOAB6cyZM/IWHaG4jhoRERGRQnGMGhEREZFCMagRERERKRSDGhEREZFCMagRERERKRSDGhEREZFCMagRERERKRSDGhEREZFCMagRERERKRSDGhHRINu7dy8EQUBzc7PcpRCRwjGoEVHUqaqqwvz585GRkQGdTofs7GwsXrwYV65cGfRa7r//fixZsiToXGFhIS5fvgyLxQIA2LJlCxITEwe9NiJSPgY1Iooq58+fx4QJE3D27Fm8//77OHfuHDZu3IjS0lJMnjwZjY2NcpcInU6H9PR0CIIgdylEpHAMakQUVYqLi6HT6fDPf/4T9913H7KysjBt2jR8+umnqK6uxjPPPAMAEAQBO3bsCHpsYmIitmzZEjj+3e9+h1GjRiEuLg65ublYtWoVPB5P4Ppzzz2HgoIC/O1vf4PNZoPFYsGsWbNgt9sBAL/85S+xb98+rF+/HoIgQBAEVFZWBnV97t27F/PmzUNLS0vgnueeew5//OMfkZ+f3+31FRQUYNWqVbf+L46IFIlBjYiiRmNjIz755BM8+eSTMBqNQdfS09Mxe/ZsfPDBB5AkKaTnM5vN2LJlC06fPo3169fjnXfewZ///OegeyoqKrBjxw6UlJSgpKQE+/btw8svvwwAWL9+PSZPnowFCxbg8uXLuHz5MjIzM4MeX1hYiNdeew0JCQmBe5YvX4758+ejvLwcR44cCdx7/PhxnDx5EvPmzevPXw8RRSCN3AUQEd0qZ8+ehSRJGDNmTI/Xx4wZg6amJtTX14f0fCtXrgx8b7PZsHz5cmzbtg0rVqwInBdFEVu2bIHZbAYAzJkzB6WlpXjxxRdhsVig0+kQFxeH9PT0Hn+GTqeDxWKBIAhB95hMJkydOhWbN2/G3XffDQDYvHkz7rvvPuTm5oZUPxFFPraoEVHU6avFTKfThfQ8H3zwAYqKipCeng6TyYSVK1fi0qVLQffYbLZASAOAoUOHoq6uLvyie7BgwQK8//77cDqdcLvd2Lp1K+bPn39LnpuIIgODGhFFjdtuuw2CIKC8vLzH6+Xl5bBarUhMTIQgCN0C3bXjzw4ePIjZs2fjoYceQklJCY4fP45nnnkGbrc76DFarTboWBAEiKJ4S17PjBkzoNfrsX37duzatQsejwc/+9nPbslzE1FkYNcnEUWNIUOG4MEHH8Sbb76JpUuXBo1Tq6mpwXvvvYfi4mIAgNVqxeXLlwPXz549i/b29sDxgQMHkJ2dHZh8AAAXL14MuyadTgefz9evezQaDebOnYvNmzdDp9Nh1qxZ3cbeEVF0Y4saEUWV119/HS6XC1OnTsXnn3+OqqoqfPzxx3jwwQcxatQorF69GgDw4x//GK+//jqOHz+Oo0ePYuHChUGtYyNHjsSlS5ewbds2VFRUYMOGDdi+fXvY9dhsNhw+fBiVlZVoaGjosbXNZrPB4XCgtLQUDQ0NQYHxV7/6Ffbs2YOPP/6Y3Z5EMYhBjYiiysiRI3HkyBHk5ubiscceQ3Z2NqZNm4ZRo0Zh//79MJlMAIBXX30VmZmZuPfee/HEE09g+fLliIuLCzzPI488gqVLl2LRokUoKCjAgQMH+rUsxvLly6FWq5GXlwer1dptjBvgn/m5cOFCPP7447BarVi7dm3Q6yksLMTo0aMxceLEfvyNEFEkE6RQ56kTEUWoZ599FuvWrcPu3bsxadIkucsJiyRJGDlyJJ588kksW7ZM7nKIaJBxjBoRRb3nn38eNpsNhw4dwj333AOVKjI6E+rr67Ft2zbU1NRw7TSiGMUWNSIihRIEASkpKVi/fj2eeOIJucshIhmwRY2ISKH4/2giioz2fyIiIqIYxKBGREREpFAMakREREQKxaBGREREpFAMakREREQKxaBGREREpFAMakREREQKxaBGREREpFD/H3d3Nn7CxVNLAAAAAElFTkSuQmCC", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.figure(figsize=[7,7])\n", "plt.plot(individual_firm_costs.column(\"Output\")[1:], individual_firm_costs.column(\"Average Fixed Cost\")[1:], marker='o')\n", - "plt.plot(individual_firm_costs.column(\"Output\")[1:], individual_firm_costs.column(\"Average Variable Cost\")[1:], marker='o')\n", - "plt.plot(individual_firm_costs.column(\"Output\")[1:], individual_firm_costs.column(\"Average Total Cost\")[1:], marker='o')\n", + "plt.plot(individual_firm_costs.column(\"Output\")[1:], individual_firm_costs.column(\"Average Variable Cost\")[1:], marker='^', color=\"#049348\")\n", + "plt.plot(individual_firm_costs.column(\"Output\")[1:], individual_firm_costs.column(\"Average Total Cost\")[1:], marker='*', color=\"red\")\n", "plt.xlabel('Quantity')\n", "plt.ylabel('Cost')\n", "plt.title('AFC, AVC and ATC')\n", @@ -352,7 +346,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 19, "metadata": { "tags": [ "remove_input" @@ -361,14 +355,12 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAG5CAYAAAD1fYFsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdd3yV5f3/8dd1Tk72nmQAQVEChCSssLcCLrRSB3VA1Wr15/jWFkddSJetWndtte5SHFRRi4CMooIgsomsMAJJSEISyCA751y/P+6TGCCBBJLc5+R8no9HHifnOvc594dTytv7uq+htNYIIYQQXZ3F7AKEEEKIziCBJ4QQwiNI4AkhhPAIEnhCCCE8ggSeEEIIjyCBJ4QQwiNI4AkhTkspNUcp9S+z6xDiXEngCY+llMpSStUqpSJPat+slNJKqcQmbelKqS+UUiVKqaNKqfVKqZ+38XxznJ87rEnbcKVUhVIqsJnjNyul7nb+7u18f6bz+Cyl1JtNazSTUqqXUsqhlHq1SVsPpdTxJj/aWXvD8zHO4875uxWiNSTwhKc7AMxoeKKUGgD4Nz1AKTUCWAl8BfQGIoA7gUtaexKllAJuBo46HwHQWq8DcoCfnnR8MtAPmO9sWgBMA34GhACpwEZgUmtr6GA3A8eA65RSPgBa60Na68CGH+dxqU3avmmP71aI1pLAE57uPZoEEDATePekY54G3tFa/1lrXaQNG7XW17bhPGOAWOBe4HqllHeT1945qQacz7/QWhcrpS4CLgau1Fp/r7Wu11qXaq1f0Vq/0dzJlFIPKaX2KaXKlVI7lFI/afLaLKXUaqXUM0qpY0qpA0qpS5q83ksp9ZXzvcuAyObO0eT4hjB/FKgDrmjtl0L7fLdCtIoEnvB064BgpVRfpZQVuB5ovF+llPIHRmBcYZ2LmcDnwIfO501D4T1grFKqu/OcFowruXecr18ErNdaZ7fhfPswQjYEeBL4l1Iqtsnrw4DdGGH2F+ANZ3AB/Bvj6jES+J2z9tMZDSQA7zv/fGc6HmjX71aIVpHAE+LHq7yLgZ1AbpPXwjD+f5J3th/u/If9GuDfWus6jH/gm3ZrZgOrgJucTZMAH2CR83lEW8+vtf5Ia31Ya+3QWn8AZALpTQ45qLV+XWttxwjWWCBGKdUDGAo8prWu0Vp/jRHUpzMTWKy1PoYRllOVUtGtKPOcv1sh2kICTwgj8H4GzOLU7sxjgAMjEM7WT4B64Avn83nAJUqpqCbHvMOPgXcT8L4zHAGK23p+pdTNSqktzoEgJUAyJ3ZN5jf8orWudP4aCMQBx7TWFU2OPXia8/hhhPk852etBQ5hfJ9n0h7frRCtJoEnPJ7W+iDG4JVLgY9Peq0SWAtMP4dTzMQIk0NKqXzgI8DGiaHwMZCglJoAXM2P3ZkAy4F0pVRCa06mlOoJvA7cDURorUOBDECd9o2GPCBMKRXQpK3HaY7/CRAM/E0ple/888XTim7NdvpuhWg1CTwhDLcCE0+6smnwADBLKTVbKRUBoJRKVUq933CAc8j9+JPfqJSKx+iivBxIc/6kAn/mxG7NCoyuzrcwuhs3NHltObAM+EQpNVgp5aWUClJK/VIpdUsz9QYAGih01vBzjCu8M3KG/wbgSedUiNGcfhDKTOBNYECTP98oINU54vVMzvjdCtFeJPCEALTW+5qGzEmvfQtMdP7sV0odBV7D2UXpHGxSDmxv5u03AVu01l9qrfMbfoAXgRTn9IMG7wA9ObVbFYxpC18AHwClGFdsQzCu/k6udwfwLMbVUwFGGK05/Tdwgp9hDGo5CjzRQj1Nw/z5pn82rfVGYAmtu8o77XcrRHtSsgGsEOdGKXUj0F9r/bDZtQghWiaBJ4QQwiNIl6YQQgiPIIEnhBDCI0jgCSGE8AheZhdwLiIjI3ViYqLZZQghhHAhGzduLNJaR53c7taBl5iYyIYNzY4kF0II4aGUUs2uDiRdmkIIITyCBJ4QQgiPIIEnhBDCI7j1PTwhhPupq6sjJyeH6upqs0sRbs7X15eEhARsNlurjpfAE0J0qpycHIKCgkhMTOTHPWeFaButNcXFxeTk5NCrV69WvUe6NIUQnaq6upqIiAgJO3FOlFJERES0qadAAk8I0ekk7ER7aOvfIwk8IYQQHkECTwjhcZRS3HjjjY3P6+vriYqK4vLLL2+3c9x2223s2LHjrN779ttvc/fddzf72uLFixkyZAj9+vVj4MCB/PrXv27z52/ZsoUvvvC8LQdl0IoQwqUt3JzL00t3c7ikirhQP2ZP6cNVA+PP6TMDAgLIyMigqqoKPz8/li1bRnx82z6zvr4eL6+W/wn95z//eU41NicjI4O7776bRYsWkZSUhN1u57XXXmvz52zZsoUNGzZw6aWXtnuNrkyu8IQQLmvh5lwe/ng7uSVVaCC3pIqHP97Ows255/zZl156KYsWLQJg/vz5zJgxo/G19evXM2LECAYOHMjIkSPZvXs3YFx5TZs2jYkTJzJp0iQcDgd33XUXSUlJXHzxxVx66aUsWLAAgPHjxzcufRgYGMgjjzxCamoqw4cPp6CgAIDPP/+cYcOGMXDgQC666KLG9pb85S9/4ZFHHiEpKQkAq9XKnXfeCUBWVhYTJ04kJSWFSZMmcejQIQA++ugjkpOTSU1NZezYsdTW1vL444/zwQcfkJaWxgcffHDO36W7kCs8IYRpnvz8B3YcLmvx9c2HSqi1O05oq6qz88CCbcxff6jZ9/SLC+aJK/qf8dzXX389c+fO5fLLL2fbtm3ccsstfPPNNwAkJSXxzTff4OXlxfLly/ntb3/Lf/7zHwA2bdrEtm3bCA8PZ8GCBWRlZbFjxw6OHDlC3759ueWWW045V0VFBcOHD+cPf/gDDzzwAK+//jqPPvooo0ePZt26dSil+Oc//8lf/vIXnn322RZrzsjIaLEL85577mHmzJnMnDmTN998k3vvvZeFCxcyd+5cli5dSnx8PCUlJXh7ezN37lw2bNjAyy+/fMbvqSvpsMBTSr0JXA4c0VonO9vCgQ+ARCALuFZrfUwZQ21eAC4FKoFZWutNHVWbEMI9nBx2Z2pvi5SUFLKyspg/f/4pXXulpaXMnDmTzMxMlFLU1dU1vnbxxRcTHh4OwOrVq7nmmmuwWCx069aNCRMmNHsub2/vxvuDgwcPZtmyZYAxJ/G6664jLy+P2traVs8na87atWv5+OOPAbjpppt44IEHABg1ahSzZs3i2muv5eqrrz7rz+8KOvIK723gZeDdJm0PASu01k8ppR5yPn8QuAS4wPkzDHjV+dixtn0IK+ZCaQ6EJMCkxyHl2g4/rRDCcKYrsVFPrSS3pOqU9vhQPz64Y8Q5n3/atGn85je/YdWqVRQXFze2P/bYY0yYMIFPPvmErKwsxo8f3/haQEBAm89js9kah9BbrVbq6+sB46rs/vvvZ9q0aaxatYo5c+ac9nP69+/Pxo0bSU1NbfW5//73v/Pdd9+xaNEiBg8ezMaNG9tcf1fRYffwtNZfA0dPar4SeMf5+zvAVU3a39WGdUCoUiq2o2oDjLD7/F4ozQa08fj5vUa7EMIlzJ7SBz+b9YQ2P5uV2VP6tMvn33LLLTzxxBMMGDDghPbS0tLGQSxvv/12i+8fNWoU//nPf3A4HBQUFLBq1ao2nb/ped55550zHA2zZ8/mj3/8I3v27AHA4XDw97//HYCRI0fy/vvvAzBv3jzGjBkDwL59+xg2bBhz584lKiqK7OxsgoKCKC8vb1OtXUFnD1qJ0VrnOX/PB2Kcv8cD2U2Oy3G2dZwVc6HupP9yrKsy2oUQLuGqgfH86eoBxIf6oTCu7P509YBzHqXZICEhgXvvvfeU9gceeICHH36YgQMHNl6NNWf69OkkJCTQr18/brzxRgYNGkRISEirzz9nzhyuueYaBg8eTGRk5BmPT0lJ4fnnn2fGjBn07duX5ORk9u/fD8BLL73EW2+9RUpKCu+99x4vvPACYITkgAEDSE5OZuTIkaSmpjJhwgR27NjhcYNWlNa64z5cqUTgv03u4ZVorUObvH5Max2mlPov8JTWerWzfQXwoNb6lN1dlVK3A7cD9OjRY/DBg83u83dmc0KB5v7sCuaUnN1nCiHOaOfOnfTt29fsMtrN8ePHCQwMpLi4mPT0dNasWUO3bt3MLstjNPf3SSm1UWs95ORjO3uUZoFSKlZrnefssjzibM8Fujc5LsHZdgqt9WvAawBDhgw5+7QOSXB2ZzbTLoQQrXT55ZdTUlJCbW0tjz32mISdC+vswPsMmAk85Xz8tEn73Uqp9zEGq5Q26frsGJMeN+7ZNe3WtPkZ7UII0UptvW8nzNOR0xLmA+OBSKVUDvAERtB9qJS6FTgINAyJ/AJjSsJejGkJP++ouho1jMZc8aQxStM7EC5/TkZpCiFEF9Vhgae1ntHCS5OaOVYD/6+jamlRyrXGzztXQNUxCTshhOjCZGkxgJ6jID/DCD0hhBBdkgQeGIGHhkPrzK5ECCFEB5HAA0gYAlZvOLjG7EqEEJ1k4cKFKKXYtWuX2aWcVmVlJREREZSVnbjm6FVXXdWmOXSHDx/mpz/96WmPWbVqVYtbJCUmJlJUVNTq89XV1fHQQw9xwQUXMGjQIEaMGMHixYtb/f4Gb7/9NocPH27z+5ojgdcwDzF+CGRJ4AnhahbtX8TkBZNJeSeFyQsms2j/onb53Pnz5zN69Gjmz5/fLp93ugnq58Lf358pU6bwySefNLaVlpayevVqrrjiilbXFhcX17iTQ2d47LHHyMvLIyMjg02bNrFw4cKzWt1FAq+9FO6Bz+6GNS9A4ijI2wo1nrfcjhCuatH+Rcz5dg55FXloNHkVecz5ds45h97x48dZvXo1b7zxRuNyXGDsoNCwZRDArFmzWLBgAXa7ndmzZzN06FBSUlL4xz/+ARhXRGPGjGHatGn069cPMK68Bg8eTP/+/U/Yq+6NN97gwgsvJD09nV/84heNG7wWFhYyffp0hg4dytChQ1mz5tT/8J4xY8YJdX7yySdMmTIFf3//Vm9llJWVRXJyMmBsJTRmzBgGDRrEoEGD+Pbbbxs/u6ysjMsuu4w+ffrwy1/+Eofj1IW6//Wvf5Genk5aWhp33HEHdrv9hNcrKyt5/fXXeemll/Dx8QEgJiaGa681BgbOnz+/cfWXBx98EAC73c6sWbNITk5mwIABPPfccyxYsIANGzZwww03kJaWRlXVqeuqtoVnbw8UEAkVRVBdBoNuAm2HQ9/BBReZXZkQHuHP6//MrqMtdyluK9xGraP2hLZqezWPr3mcBXuav1pJCk/iwfQHT3veTz/9lKlTp3LhhRcSERHBxo0bGTx4MNdddx0ffvghl112GbW1taxYsYJXX32VN954g5CQEL7//ntqamoYNWoUkydPBoztgjIyMhp3OnjzzTcJDw+nqqqKoUOHMn36dGpqavjd737Hpk2bCAoKYuLEiY0LQN9333386le/YvTo0Rw6dIgpU6awc+fOE+qdMmUKt912G8XFxURERPD+++83BmZrtzLKyspq/Lzo6GiWLVuGr68vmZmZzJgxo3HvvvXr17Njxw569uzJ1KlT+fjjj0/oCt25cycffPABa9aswWazcddddzFv3jxuvvnmxmP27t1Ljx49CA4OPuW7P3z4MA8++CAbN24kLCyMyZMns3DhQrp3705ubi4ZGRkAlJSUEBoayssvv8wzzzzDkCGnLJzSZp4deP7hENoDSg6BbyhYvIz7eBJ4QriEk8PuTO2tNX/+fO677z7AuKqbP38+gwcP5pJLLuG+++6jpqaGJUuWMHbsWPz8/Pjyyy/Ztm1bY5dgaWkpmZmZeHt7k56efsK2Pi+++GJj92N2djaZmZnk5+czbty4xm2FrrnmmsYFoJcvX86OHTsa319WVta4XFkDb29vpk2bxoIFC5g+fTqbN29mypQpjbW0Ziujpurq6rj77rvZsmULVqu1sRaA9PR0zjvvPMC4sly9evUJgbdixQo2btzI0KFDAaiqqiI6OrrV3/3333/P+PHjiYqKAuCGG27g66+/5rHHHmP//v3cc889XHbZZY3/QdGePDvwALqlGIFXlAlxA2XgihCd6ExXYpMXTCav4tRFl2IDYnlr6ltndc6jR4+ycuVKtm/fjlIKu92OUoqnn34aX19fxo8fz9KlS/nggw+4/vrrAdBa89JLLzWGTINVq1adsF3QqlWrWL58OWvXrsXf35/x48dTXV192nocDgfr1q3D19f3tMfNmDGD3/3ud2itufLKK7HZbMDZbWX03HPPERMTw9atW3E4HCecu2Ebo5aea62ZOXMmf/rTn1qstXfv3hw6dIiysrJmr/KaExYWxtatW1m6dCl///vf+fDDD3nzzTdb9d7W8ux7eACxzn2l8rYa0xNyN0Ftpbk1CSEAuG/QffhaTwwCX6sv9w2676w/c8GCBdx0000cPHiQrKwssrOz6dWrV+Nu59dddx1vvfUW33zzDVOnTgWMLsVXX3218eppz549VFRUnPLZpaWlhIWF4e/vz65du1i3zpjqNHToUL766iuOHTtGfX19Y5cjwOTJk3nppZcan2/ZsqXZusePH09mZiavvPIKM2b8uK5Ha7cyOrnO2NhYLBYL77333gn34NavX8+BAwdwOBx88MEHjB49+oT3Tpo0iQULFnDkiLEU8tGjRzl5EX9/f39uvfVW7rvvPmprjavxwsJCPvroI9LT0/nqq68oKirCbrczf/58xo0bR1FREQ6Hg+nTp/P73/+eTZuMPcDbcysjCbyoJLDaoOSgEX6OOshZb3ZVQgjgsvMuY87IOcQGxKJQxAbEMmfkHC4777Kz/sz58+fzk5/85IS26dOnN47WnDx5Ml999RUXXXQR3t7eANx2223069ePQYMGkZyczB133NHsqMypU6dSX19P3759eeihhxg+fDgA8fHx/Pa3vyU9PZ1Ro0aRmJjYuI3Qiy++yIYNG0hJSaFfv36N+9udzGKx8NOf/pTi4mLGjRvX2N7arYyauuuuu3jnnXdITU1l165dJ1wJDh06lLvvvpu+ffvSq1evU76rfv368fvf/57JkyeTkpLCxRdfTF7eqVfhv//974mKiqJfv34kJydz+eWXExwcTGxsLE899RQTJkwgNTWVwYMHc+WVV5Kbm8v48eNJS0vjxhtvbLyCnDVrFr/85S/bZdBKh24P1NGGDBmiG260npP//QnytsDgn8P7M2DMb2DiI+f+uUKIU3S17YFaq+G+XH19PT/5yU+45ZZbTgkT0XZt2R5IrvAAYlOMx+JM457ewW9Pf7wQQrTRnDlzSEtLIzk5mV69enHVVVeZXZLHkUEr0OQ+3jbjPt73/4S6arCd/iayEEK01jPPPGN2CR5PrvAAguPBPwJqyiDyArDXQO5Gs6sSQgjRjiTwAJQyujLBGMCCkukJQgjRxUjgNWjo1izeBzH9JfCEEKKLkcBr0C0ZUFC0B7oPg+z1YK8749uEEEK4Bwm8Bj5BEHE+OOohtDvUVcLhzWZXJYToIO6yPdDSpUtJS0sjLS2NwMBA+vTpQ1pa2glrV55s06ZNLFmy5IyfvXz58hZHi65bt47Ro0eTlJTEwIEDuf3229s8D27//v0nLHptNgm8phq6NZXVeMxabV4tQgjDtg/huWSYE2o8bvuwXT7WXbYHmjJlClu2bGHLli0MGTKEefPmsWXLFt59990W39PawGtJXl4e1113HX/961/ZtWsXmzZtYtKkSRw/frxNnyOB58oaAu/ofojsI/PxhDDbtg/h83uhNBvQxuPn955z6Lnb9kAtqaqqYubMmQwYMIBBgwbx9ddfU1VVxdy5c5k3bx5paWksWLCAdevWNW4hNGrUKDIzM0/7uS+99BK33nor6enpgLGe5nXXXUdUVBRFRUVMmzaNlJQURo4c2bi7wcqVK0lNTSUtLY1BgwZRUVHBQw89xP/+9z/S0tJ48cUXW/3n6igyD6+piN5g84fyPIgfBDv/C/Z6sMrXJESHWPwQ5G9v+fWc741pQk3VVcGnd8PGd5p/T7cBcMlTpz2tu20P1JIXX3wRHx8ftm/fzg8//MCll15KZmYmjz/+OBkZGTz//POAsXZmwxZCS5Ys4dFHHz3tbukZGRnccccdzb722GOPMWzYMD777DO+/PJLZs2axYYNG3j66ad57bXXGDZsGMePH8fX15ennnqKl19+mYULF7bqz9PR5F/ypixWY/BK9noIjIHacsjfZoSfEKLznRx2Z2pvJXfbHqglq1evZvbs2QD079+fuLg49u7de8pxJSUl3Hzzzezbt+9svq5TztlwFTx58mRmzZpFRUUFo0aN4r777uOGG25g+vTpraq/s0ngnaxbqhF4DVtiHFwjgSdERznDlRjPJTu7M08S0h1+fna7nrvr9kDn4pFHHmHKlCncdddd7N27t3EXiJb079+fjRs3ctllrV+k+9FHH2XatGksWrSI4cOHs2LFinMtu93JPbyTNdzHO3YQwnpBlszHE8I0kx4Hm9+JbTY/o/0suev2QM0ZM2YM8+bNA4xFlPPy8ujdu/cpW+q0dQuhe+65hzfeeKNxF3StNR999BGFhYUnnHP58uXEx8cTEBDAvn37SElJ4eGHH2bQoEHs3r27Xbf2aQ8SeCcLjIKgWGNaQrcBcOhbcDjMrkoIz5RyLVzxonFFhzIer3jRaD9L7ro9UHPuueceqqqqGDBgADfccAPvvvsu3t7eTJw4ka1btzJw4EAWLFjAgw8+yOzZsxk0aBCt2SEnLi6Of//739x3330kJSXRr18/Vq5cSWBgIHPnzmXt2rWkpKTw+OOP89Zbxka8zzzzDMnJyaSkpBAYGMjkyZMZOHAgdrud1NRUlxi0ItsDNWfDm7BnKQTHGb//crURfkKIcybbA8n2QO1Jtgc6Vw3dmg7nLsDSrSmEOEeyPZD5ZNBKc6L7g8ULjh+B4AQ4uBqG/9LsqoQQbky2BzKfXOE1x+YLkRcCGqKSjAnobtz1K4SrcedbKcJ1tPXvkQReSxq6Nf1CobIYCnebW48QXYSvry/FxcUSeuKcaK0pLi5u03QO6dJsSWwqbJ0P9lrj+cHVEJ1kbk1CdAEJCQnk5ORQWFhodinCzfn6+pKQkNDq4yXwWhKWCD7BUFMKAdHGwJWht5ldlRBuz2aznbAyiRCdRbo0W6IUxKYAylhj8+AauY8nhBBuTALvdBru4/kEwfECYxcFIYQQbkkC73QaJps33MeT/fGEEMJtSeCdjl8YhPYEL2/wDTO6NYUQQrglCbwziU0FFIT1NAauyH08IYRwSxJ4ZxKbYjx6B0BZDpQcMrceIYQQZ0UC70yiksDq/eNz6dYUQgi3JIF3JlYbxPQH70DjRxaSFkIItySB1xrdUox5eSHOhaSFEEK4HQm81miYj+flA8eyoDTX1HKEEEK0nQReawTHgX8k2PyN5we/NbceIYQQbSaB1xoNy4z5BIOXv3RrCiGEG5LAa63YVCP4gmJk4IoQQrghCbzWikkGlHEfrzgTygvMrkgIIUQbSOC1lk8gRPYG31Dj+SG5jyeEEO5EAq8tuqWCbzBYvKVbUwgh3IwEXlvEpoKyQECkrLgihBBuRgKvLSJ6O1dcCYAjO6Ci2OyKhBBCtJIEXltYLMb0BP9w4/mhtebWI4QQotUk8NoqbiD4hoCySremEEK4ES+zC3A7Dffx/ELhwNdmVyOEEG5v4eZcnl66m8MlVcSF+jF7Sh+uGhjf7ueRK7y28g2B8PON3dALMqCqxOyKhBDCbS3cnMvDH28nt6QKDeSWVPHwx9tZuLn91yyWwDsbcWlG4AEcWmduLUII4caeXrqbqjr7CW1VdXaeXrq73c8lgXc24gYaE9CVBbJkXU0hhDhbh0uq2tR+LiTwzkb4+UbXpk8IHFhldjVCCOG24kL92tR+LiTwzobFYgxe8Q+D/B+gptzsioQQwi3NntIHizqxzc9mZfaUPu1+Lgm8sxWXBn7hgAOyvzO7GiGEcEsT+kSjNfh6GXEUF+LLn64e0CGjNGVawtmKTf1x4MqBr6H3RebWI4QQbmjZzgI0MCAhhDB/b164fiB+3tYOOZdc4Z0t3xCI6mM8Zq4wuxohhHBLi7fnEe5vI8jXxoD4kA4LO5DAOzexzm7Nwh1QW2l2NUII4VbKq+v4JrOI+DB/FDC0V3iHnk8C71w0zMfTDsheb3Y1QgjhVlbuOkKt3YGPlwUvqyKte2iHnk8C71yEnw+hPYzfM5eYW4sQQriZL7bnEernRbCfjZSEUHxtHdedCRJ458ZigYQh4BMM+1aZXY0QQriNipp6Vu0ubOzOHNIzrMPPKYF3rhru4xXtgfoas6sRQgi3sGp3ITX1RnemzWohtYO7M0EC79zFphr742k7HJT98YQQojW+yMgjyNeLUH9vBiSEdHh3JkjgnTvfYIgfZPz+w0JzaxFCCDdQXWfnf7uOkBDmZ4zOTOzY0ZkNJPDaQ48R4B0oG8IKIUQrfLWnkMpaO75eVmxWCykJIZ1yXgm89hA30OjWPLof6mvNrkYIIVza4u15BHhbCfW3kdK9c7ozQQKvfYSfB8HxoOshc5nZ1QghhMuqqbezYucR4sP8sCjVad2ZIIHXPpSC88Ybv+/81MxKhBDCpa3ZW0R5TT1+3kZ35oD4zunOBJMCTyn1K6XUD0qpDKXUfKWUr1Kql1LqO6XUXqXUB0opbzNqO2uJY8AWICuuCCHEaXyxPR9fm4Vwf29Su3f8ZPOmOj3wlFLxwL3AEK11MmAFrgf+DDynte4NHANu7ezazklsinEfryRb9scTQohm1NkdLNtRQEKov7M7s+MnmzdlVpemF+CnlPIC/IE8YCKwwPn6O8BVJtV2dnyCIKa/cR/vh0/MrkYIIVzO2n3FlFbV4e9jxdvLwoBOGp3ZoNMDT2udCzwDHMIIulJgI1Cita53HpYDNLv7n1LqdqXUBqXUhsLCws4oufUunGo87l5sbh1CCOGCFmfk4eNlITzA6M708eq87kwwp0szDLgS6AXEAQHA1Na+X2v9mtZ6iNZ6SFRUVAdVeZZ6XwQ2Pzi8BT0sOQwAACAASURBVBwOs6sRQgiXUW93sPSHAuJD/bCa0J0J5nRpXgQc0FoXaq3rgI+BUUCos4sTIAHINaG2cxOSAMFxUHHEWFtTCCEEAOsPHOVoRS0BPlZ8bBYGxHf82pknMyPwDgHDlVL+SikFTAJ2AP8Dfuo8ZibgfuP7lYLuw8FRDzs/N7saIYRwGYsz8vG2WogI8CE1IRRvr86PHzPu4X2HMThlE7DdWcNrwIPA/UqpvUAE8EZn19Yu+jnH2uxfaW4dQgjhIuwOzZIf8okL9cVqUQzpxMnmTXmd+ZD2p7V+AnjipOb9QLoJ5bSv8yeAlx8U74PjhRDoYvcZhRCik208eIzC8hqi44Kd3ZmdOzqzgay00t6sNoi8ACqPQu5Gs6sRQgjTLc7Iw8uiiAz0Ia27Od2ZIIHXMXqNBUedrKsphPB4DodmSUY+saG+eFk6d+3Mk0ngdYQB1xiP2eugrtrcWoQQwkRbckrIK60myMeGn7eVZJO6M0ECr2PEphrralYWQf42s6sRQgjTLMnIx6ogMsibgT3CsFnNix0JvI6gFHRLhspjch9PCOGxtNZ8sT2PmBBfbBYL6SZ2Z4IEXsfpfTHYa+DA16C12dUIIUSny8gtI+dYFSG+NgJ8vOgbG2RqPRJ4HaXvFcZjySFjioIQQniYxRl5KAVRQT4M6hGKl4ndmSCB13Gi+jjv48n0BCGE59Fas2jbYWKCfLFZLQztZW53JkjgdRylIH4wVB2F3A1mVyOEEJ1qV345B49WEeJvI8jXi6RuwWaXJIHXofpcAvXVULgbygvMrkYIITrN4u15KCAq0IfBieFYLcrskiTwOlSvscZjpVzlCSE8yxfb84gM8sbHy/zRmQ0k8DpSdD/wDjS6NXO+N7saIYToFJkF5ewtrCDM35sQfxsXRAeaXRIggdexLBboORqqjsGRXVBdanZFQgjR4RZn5AMQHeTLkJ7hWFygOxMk8DperzFQVwn1VTJaUwjhEb7YnkdEgLM7s1fn72zeEgm8jpY4ynisPAY5ch9PCNG1HSiqYFd+OeEB3oQFeHN+lGt0Z4IEXsfrlgLeQcZ9vLytspi0EKJLW5yRB0B0kA/pieEo5RrdmSCB1/EsVug5AmqPg6PeCD0hhOiiFm/PI8zfhq/N6hKTzZuSwOsMPUcaA1fqa2S0phCiy8o+Wsn23DIiAryJCvIhMcLf7JJOIIHXGXqONh6rjsHhTWCvN7ceIYToAEsaRmcG+zLExbozQQKvc8SlGetq2muhtgIKd5ldkRBCtLtF2w8T4mfDz2Z1mcnmTUngdQarDbqnQ5VzHp50awohupi80iq2ZJcSGehNTIgv3cP9zC7pFBJ4nSVxFJTnGld5Od/LHnlCiC6loTszygVHZzaQwOssPZ3z8ex1UFkMR/ebW48QQrSjL7blEeTjRYC3F+kuNjqzgQReZ4kfDF6+NH7l0q0phOgijpRX8/3BY0QG+RAf5kdcqOt1Z4IEXufx8oGEoXDcmJTJobXSrSmE6BKW/mBsfxYd5MNQFxys0kACrzP1HAVFmWDzg/J8KDlodkVCCHHOFm07TICPlQAf1+3OBAm8ztVzJKDBz7mY6qF1ppYjhBDnqvh4DesPHCUq0Ice4f7EBPuaXVKLJPA6U8JQsNiMXdDBCDzp1hRCuLFlOwpwaOfamS58dQcSeJ3L298YvHJkN/gEQXkelBwyuyohhDhr/92Wh7+3lUBfm0vfvwMJvM6XOArytkBsmvFcujWFEG6qtLKOtfuKiAz0oXd0IFFBPmaXdFoSeJ2t50jQducUBWS0phDCbS3bWYBdQ0ywj0suJXYyCbzO1n0YKCuU5Uq3phDCrX2+JRdfm4VgP5vLbQXUHAm8zuYTZCwmfWgtJKQbbdnfmVuTEEK0UXl1HWv2FRMV6EO/2GBC/Gxml3RGEnhm6DkKcjcawQfSrSmEcDsrdx2h3qGJDvZlWK8Is8tpFQk8MySO/nGrIO9AKDsMpdlmVyWEEK22cHMu3l4WIgK8GdQz1OxyWkUCzwzdhwHKGKGZMNRok9GaQgg3UVFTzzeZRUQH+ZDaPRR/by+zS2oVCTwz+IVCtwFwcA30GG60SeAJIdzEqt2FRndmkA/D3GCwSgMJPLMkjjZ2TIi8wNmtmSujNYUQbuHjzTnYrIpuwb6kJLhHdyZI4Jmn5yhjibG8bc4uTiBrjbk1CSHEGVTV2vlmTyHRQT4M6hmGt5f7xIj7VNrV9BhhPB5cbVztAWStltGaQgiXtmr3EWrtmugg9xmd2UACzywBERDdDw5+C9F9wT8CKougcJfZlQkhRIs+3pSDzaJICPejb2yQ2eW0iQSemXqOgkPfgaP+xKs8IYRwQTX1dr7OLCIqyIf0XhF4Wd0rQtyr2q4mcRTUVUDeViP8wJiEbq83ty4hhGjGN3sKqal3EBXsw3A3Gp3ZQALPTA0hl7UawnpCaA9jMnreFnPrEkKIZny4IQerRdE7KpDe0YFml9NmEnhmCoyGiAuM+XjQpFvzG/NqEkKIZtTWO/h6TyFRgT4MPy8CpZTZJbWZBJ7ZEkcZk84ddug5GlDGOpu1FWZXJoQQjVbvLaK63kF0sI/bjc5sIIFntp6joaYM8rc7R24mgb0OstebXZkQQjT64PtDWBX0jwume7if2eWcFQk8s/UcaTye0q0pozWFEK6h3u7g68wiIoN8GHF+pFt2Z4IEnvlC4iEs8cdVVroPB4sXFPwAlUdNLU0IIQDW7C2iqtZOdJB7js5sIIHnCnqOhkPfgsMBPoEQNxDQxqR0IYQw2b++O4hFwZCe4UQH+5pdzlmTwHMFiaOg6hgU7nQ+H2M8ymhNIYTJ7A7Nmr3FRAb6MObCSLPLOScSeK6gcT6es1szbiDY/OFYlvEjhBAm+XpPIZW1dmKCfRma6L7dmSCB5xrCekJId2MhaQAv7x8Hr+z7n3l1CSE83nvrDqIUjLswiiBfm9nlnBMJPFfRc6Rxz65ht4TzJxqPWauNaQpCCNHJHA7Nd/uLiQjwZlyfKLPLOWcSeK6i5yioKISiTON5eC9j9GbtcWOjWCGE6GTLdxZQUWune5g/qW600WtLJPBcRU2Z8fjKUHguGbZ9+ONV3r6V5tUlhPBY8747iAIm9+/mVhu9tsT9/wRdwbYP4X9/+PF5aTZ8fi8cLzDm5OVnwPFC8+oTQngch8PB91nHCA/wZmJStNnltAsJPFewYi7UVZ3YVlcFX/0Fug8DNOxfZUZlQggP9cX2fCpr7fSKCuDCGPfbGaE5EniuoDSn5faGbs39q4yJ6UII0Qnmf38IBVyVFue2S4mdTALPFYQktNwe0x8CoqCyCAq2d25dQgiPVFNnZ/OhEsICbExMijG7nHYjgecKJj0OtpNWH7fYjHal4PwJRpsMXhFCdILPth6mstZO327BxIW6584IzZHAcwUp18IVLxqTz1Hg5WfMx+s+zHi913ijPWcD1JSbWKgQwhMs2GjcZrl6cAu9T25KAs9VpFwLv8qAOSVwz0bw8oElDxuvBURAbCo46uGArK8phOg4ZdV1ZOSWEuZv46K+Xac7EyTwXFNIPIx7AHYvgj1LjbaGwSt7l/+4GosQQrSzTzfnUlFrJ7V7KCF+7r2U2Mkk8FzV8Lsgsg98MduYohA/GPzCoCzX2CtPCCE6wMLNhwG4fmh3kytpfxJ4rsrLGy59GkoOwpoXwOoFvS8yXstcam5tQoguKb+0ml0FZYT525jQRSabNyWB58rOGwfJ0+Gbv8LRA0a3prIag1cqis2uTgjRxXy29TAVNXaGJobj42U1u5x2J4Hn6ib/Hqw2WPIQ+IdD93TQDti7zOzKhBBdiNaaz7cZ3Zk/G9bD5Go6hgSeqwuOg/EPwZ4lsHsxXDjVaN+7QrYNEkK0mz0Fx8kqqiDM38bYC9x/K6DmSOC5g2G/hKgkWPwAhPaA0J7G7gqH1pldmRCii/jvtsOUV9czqnckFkvXWErsZBJ47sBqg0ufgZJDsOZ5uHCy0b5nibl1CSG6hOo6O8t2FADw85G9TK6m45gSeEqpUKXUAqXULqXUTqXUCKVUuFJqmVIq0/kYZkZtLqvXGBhwDax+HoLiwOYPxXuheJ/ZlQkh3NzGg8c4XFJFZKA3gxO77j+9Zl3hvQAs0VonAanATuAhYIXW+gJghfO5aOri34HVG5Y9DueNN9oyvzSzIiFEF7Dkh3zKqusZ36frTUVoqtMDTykVAowF3gDQWtdqrUuAK4F3nIe9A1zV2bW5vOBYmPCwMULT4hwyfHCNrK8phDhrR8qr+W6/Mc3pllGJ5hbTwcy4wusFFAJvKaU2K6X+qZQKAGK01nnOY/KBZhdxU0rdrpTaoJTaUFjogbuAp98O0f1g1Z8hur8xUnPvCrOrEkK4qW/3FnOkrIboIB/6xYWYXU6HMiPwvIBBwKta64FABSd1X2qtNdDsgpFa69e01kO01kOiorrm0NnTstrgsmeh9BBUHDHa9iyRKQpCiDbTWrNiVwElVXVM7tfN7HI6nBmBlwPkaK2/cz5fgBGABUqpWADn4xETanMPPUdCyvWw9X3wDYGqY5C12uyqhBBuZld+OXvyjwNw04iuOdm8qU4PPK11PpCtlOrjbJoE7AA+A2Y622YCn3Z2bW7l4rnGprGFuwENOz+XXRSEEG2yZm8RR8qriQ7y4cKYILPL6XCtCjyl1HutaWuDe4B5SqltQBrwR+Ap4GKlVCZwkfO5aElQDEx4BPK2QG2FsYvC4U1mVyWEcBNVtXa+3VfEsco6Lk+JRamuOdm8Ka9WHte/6ROllBUYfLYn1VpvAYY089Kks/1MjzT0Ntj8HhTshPiBxlVe/Fn/zyKE8CDfZx3lcEk1ANO72M7mLTntFZ5S6mGlVDmQopQqc/6UY9xfky5Hs1m9jBVYqoqNVViO7ISivWZXJYRwcQs353LXvE3syi/HomBPvmdMbTpt4Gmt/6S1DgKe1loHO3+CtNYRWuuHO6lGcTo9R0Dqz4wVV2orYOdnZlckhHBhCzfn8uB/tnG8ph4Ah4bffpLBws25JlfW8Vo7aOW/zrlyKKVuVEr9VSnVswPrEm1x8ZPGUmNHdkL2d1Ceb3ZFQggX9fTS3dTUO05oq6qz8/TS3SZV1HlaG3ivApVKqVTg18A+4N0Oq0q0TWA0THocKouMsNv1X7MrEkK4qNySqmbbD7fQ3pW0NvDqnZPBrwRe1lq/AnT9MazuZMgtENUHCncZK69Ul5pdkRDCBUUGejfbHhfq18mVdL7WBl65Uuph4CZgkVLKAtg6rizRZlYvmPYy1FcbXZu7FpldkRDCBQ3qcepuCH42K7On9Gnm6K6ltYF3HVAD3OKcOJ4APN1hVYmz0z0d+k6DY1mw/SOoLjO7IiGECyksr6G0yliGMMjHigLiQ/3409UDuGpgvLnFdYJWzcPTWucrpeYBQ5VSlwPrtdZyD88VXf4cZC6Fw1uMeXkDbzC7IiGEi1i9t5Dso5V4WRTfPDiRUP/muze7qtautHItsB64BrgW+E4p9dOOLEycpYBIGPUrqDoKG96UqzwhBAB2h2bFziPklVUzuX+Mx4UdtL5L8xFgqNZ6ptb6ZiAdeKzjyhLnZNwDEBgD+dth+wKzqxFCuICM3FJ+OFyG1nD/xReaXY4pWht4Fq11090LitvwXtHZLFa45M9gr4F1r8hVnhCClbuOkHOsiv5xwfSO9sxB9q0NrSVKqaVKqVlKqVnAIuCLjitLnLP+P4HYVGMFlvWvmV2NEMJEJZW1LNtRQJ3dwb0TLzC7HNOcaS3N3kqpUVrr2cA/gBTnz1pA/hV1dZc+a1ztrXtV5uUJ4cFW7y3i4NEKIgO9mdw/xuxyTHOmK7zngTIArfXHWuv7tdb3A584XxOurPtQ6D3JWIFl+RyzqxFCmEBrzYINOVTU2JmR3sMjtgFqyZkCL0Zrvf3kRmdbYodUJNrXxb8Dn2DYPA9Kss2uRgjRyTJyy8jILcXHy8Kd4843uxxTnSnwQk/zWtdfh6YriOoDydONASyf/j+zqxFCdLKPN+VQVFHLpKRo/H1auwVq13SmwNuglPrFyY1KqduAjR1Tkmh3Y38DId3hwFewb5XZ1QghOknx8RqW7SxAAbOnJJldjunOFHj/B/xcKbVKKfWs8+cr4Fbgvo4vT7SLkARjd3SLDT6/B7Q2uyIhRCdYkpHP4ZIqBsSH0CsqwOxyTHemDWALtNYjgSeBLOfPk1rrEc41NYW7GDwTYvobO6OvecHsaoQQHaze7uDf6w/h0HDXBM++d9egVfPwtNb/01q/5PxZ2dFFiQ7gFwbD7wLfEPjqz1BVYnZFQogO9H3WUfYeOU63EB+m9O9mdjkuQVZL8ST9pkFCOtRVwn//z+xqhBAd6M01WdTUO7h2SHePnorQlASeJ7H5wbA7jAEsPyw0dlQQQnQ5h0sq+W5/MQHeVm4fc57Z5bgMCTxPc94ESBwDFi/4+HYZwCJEF/Tu2oOUVdczvk80gb6yV3cDCTxPY/WCIbcY8/OKdsOGt82uSAjRjmrq7Xy65TBeFsU9k3qbXY5LkcDzRAlD4IIpxgCWZY/KABYhupBF2/LIK62mf1wwSd2CzS7HpUjgeSKlYOgtEDMAao/D4gfNrkgI0Q601vzzmwMo4Da5d3cKCTxPFZIAaT+DkB6w7X0ZwCJEF7Alu4TdBeXEh/kxNVmmIpxMAs+TJU+H7unGCiwf3w4Oh9kVCSHOwUsr92J3aK4dkoDNKv+8n0y+EU9m8zWWHItKcg5gedPsioQQZ+lIWTXf7isi1M/GzSMSzS7HJUngeboew+GCyeAbCsseh6pjZlckhDgLr/xvL9V1DiYmRRPq7212OS5JAs/TNQxg6TYA6irgi9lmVySEaKPaegefbzuMr83CneNl3cyWSOAJYwBL6gwI7QnbP4KcDWZXJIRog/nrD3G0oo7UhFB6RweaXY7L8ujAe3Lle6S8MZbktweQ8sZYnlz5ntklmSd5OvQYAVZv+PgXMoBFCDehtebtb7OwWhS3jz1P1s08DY8NvCdXvsdHB59Dex1DKdBex/jo4HOeG3o2Xxh1r7ECy9H9sOZ5sysSQrTCt/uKySqqIDHCn7EXRpldjkvz2MD7z4HXUZa6E9qUpY7/HHjdpIpcQEx/GDQLfMPgf3+AZ/vCnFB4Lhm2fWh2dUKIZry4IhMN3DCsp0xFOAOP/XYc1uZHI7bU7jEG3ghhPcFRD+WHAQ2l2fD5vRJ6QriY7KMVbDx4jOggH64eFG92OS7PYwPPYg9rU7vHsPlCed6p7XVVsGJu59cjhGjRM1/uod6hmZrcTaYitILHBt70Xr9AO7xOaNMapna/xqSKXMjxI823l+Z0bh1CiBaVV9WxfEcBQb5e/GJML7PLcQseG3hPTLyJa3reD/XBaA3aYcWqrByo+Zqq+iqzyzNXSELb2oUQne5vX+2lotbOyPMj6B4eYHY5bsFjAw+M0Nt+6xpeGPcPHJUXEmJNZNfRXTzx7RNoT94YddLjxu7oJxt2R+fXIoQ4RZ3dwYKNOfh4WbhrvOx511oeHXhHyqp5Y/UBjh3twYCQiRwr96ZX8HksPrCYd3e8a3Z55km5Fq54EUK6G8+t3qC8YO0rULzP3NqEEHy0IZvC8lr6xwWTkhBidjluw6MDr6rOzrd7i1i5q4A7Bv+E6rLe2ByRdAvoxrMbnmXt4bVml2ielGvhVxnwWDEM/QX0GGZsFPv25RJ6QphIa80bqw9gUXDnuPNlonkbeHTg9YwIICk2iJo6BzX1DhKskyg+FknvkN4EeQfxm69+Q065hw/UsHoZE9IDoiB+ENSUwztXSOgJYZJvMovYX1hBYkQAE5KizS7HrXh04AFM7R8LwPKdR7h+SCJZ+4YT6BVDUngS1fXV3LvyXirrKk2u0mRB3YxthHyCnKF33Ai9o/vNrkwIj/PSSmOi+cyRiXjJRPM28fhvKzk+mNhQX0oqa0mMCsDb4otX6RS6BXSjT3gfMksyeWzNY549iAWg1xjoNdYYzHLBRVBbaXRvSugJ0Wn2FJSzJbuE6CAfrhkio6bbyuMDTynFlP7dAFi7r5ipyTH8d0sZs/r+gm4B3egV3IsvD37JWz+8ZXKlLmDILcbVXm0FDLxBQk+ITvb8sj3U2TVXpsXh7+115jeIE3h84AEMPy+CYD8b2UcrGXl+JOXV9WzN8uKW5FvoEdyDSL9Intv4HGty15hdqrlsfjDm1+DlA8V7YdwDxgosEnpCdLiC0iq+ziwk0MeLO8aeZ3Y5bkkCD7BZLUzqa9z8zSut4vyoAP793UGSI5O5ts+1JIUlEWAL4P5V95Ndlm1ytSYL7QHD7zJ+z/oGLv+rhJ4QneCVVfs4XmNnYlI0kUG+ZpfjliTwnMb3icbby0JGbhmXJMey6VAJu/LLGJswlsmJk+kf0Z9aRy13rrhTBrH0GA79rgTtgF2L4Np3JPSE6EBHK2r5Ynse3lbFrydfaHY5bksCzynQx4vRF0QC4Guz4O1l4d/fHQLgqt5XMSJuBH3D+3Kw7CAPfv2gDGJJuR5i04xpCrsWwY0LJPSE6CDvrs2i6Hgt6b3C6Rkhy4idLQm8Ji7uG4NSsC2nlIuSovlkUy5VtXaUUszsN5NB0YM4L+Q8VuWs4h/b/mF2ueayWGDkPRAYA8eyIGs13PyphJ4Q7ay0qo7/bMxBKXhgapLZ5bg1CbwmooN9GdgjDLtD0ysqkPKaej7fdhgAm9XGHal3kBaVRpRfFK9seYVV2avMLdhsPoEw9jfGIJaD30JBBsz8TEJPiHa0cHMuuSVV9I8NJiUh1Oxy3JoE3kmmJhtTFA4WV3BeVEBjtyZAkHcQd6XdxcDogQTYAvjNqt+QVZplUqUuIrQHjP4VKAvs+BTK8pqEnkxOF+JcHK+pZ953B3Fo+L+LLzC7HLcngXeS86MC6R0dSFWtnaGJ4WzJLmHH4bLG12MCYrgz9U5So1KxY+e2L2+joq7CxIpdQNxASL/d+H3Dm1Bf4wy9Cgk9Ic7Blxn5ZBVX0j3Mj4v6djO7HLcngdeMKc6rvJo6OzarYv76Qye83jusN3ek3EG/8H4UVBZw5/I7cWiHGaW6jvMnwIBrAA1rngcvX5j5uYSeEGepus7Oe98dpLbewe0y765dSOA1Iy0hlOhgH8qr6xlxXgQLN+dSWVt/wjGDYgZx24DbOD/kfDYf2cwf1v3BpGpdSPJ0OH8i2Otg1VPgHyGhJ8RZWrmrgL1HjhPiZ+Nn6T3MLqdLkMBrhsWimNzPuMoL9rMZg1e2Hj7luAk9JjCz/0yi/aP5cM+HfLT7o84u1bUoZSwyHTcQao/Dyt8bozgl9IRok+o6O/O+O0R5dT0/G9YDqywS3S7kW2zByN4RBPh4UVlrp0e4H/9e3/wKK1f1vooZSTMItAXyx+/+yMaCjZ1cqYuxWGHU/0HkhVBZDCuehKBYCT0h2mDZjgL25Jfj42Xhngmyo3l7kcBrgY+XlYlJ0SiMgSxbs0v44XDpKccppZjVfxbTzp+GUop7VtxD/vH8zi/Yldh8YfzDENEbKoqcoRd3UugdMLtKIVxSRU09n2zOpfB4rbFItI8sEt1eJPBOY2LfaLysCocGb6s6YYpCU14WL341+FeMSxhHeV05P1/6c6rqqzq5Whfj7Q8Tfgvh58PxI7ByLgTHNwm9yyX0hGjG0h/yySwoRwH3X9zH7HK6FAm80wj2tTHy/Ei8LIp+cSF8uuUwFTX1zR7r6+XLk6OeJDUqlZzjOdy5/E7qHc0f6zG8A2DCwxCWCOX5sPJ3EJIAN38moSdEM8qq61ickc/hkiomJkXRLUQWiW5PEnhnMLl/DAA+XhaOtzB4pUGwdzDPjnuW+MB4NhZs5Ilvn5DpCj5BMOERY4J62WFY9rgxkEVCT4hTLNmeT1ZRBXYN/3eRXN21Nwm8M4gN8SO1eygBPl7EBvvy7/XNd2s2iAmI4aWJLxHsHcyi/Yt4ZfMrstC0bzBMfPTH7s1lj4NviISeEE2UVNayYlcB2UcrSYkPYUBCiNkldTkSeK0wpX83FBAZ5MO2nFIyck8dvNLUBWEX8My4Z7AoC+/tfI8Pd3/YOYW6Mt8QmPQYxPSH6hJYPsdYg1NCTwgA/rstj9xjVVTXO7hLRmZ2CAm8VrgwJpDEyADCAmzYrOqMV3kAI+JG8HD6w1TXV/O3rX/jy6wvO6FSF2fzg3EPQcIQqKs07ulpu4Se8HhFx2v4ek8h2ccqiQvx5eJ+MWaX1CVJ4LWCUoop/bths1joHubPwk05HG9h8EpT1/S5hhv63sDR6qO8sOkFVueu7oRqXZyXN4y+H86bYKzI8tXTRjenhJ7wYAs353K0opbSqnpuG3MeVosyu6QuSQKvlQb3DCMi0JvwAG8q6xx8tqXlwStNPTD0AUbEjuBQ+SFe3vwyG/I3dHClbsBihWF3OHdNt8P3r8PhTXDjJ0bovSPz9ITnyCqqYO2+YrKPVRLgbeXaod3NLqnLksBrJatFcVHfGIL9bIQH2Pj3+oOtep9SipcmvUT3oO7sPLqTV7e+yg9FP3RwtW5AKUj7GQy/EyxesHsx7FkCM943liWT0BMeQGvNBxuyqa6zc6S8hhnpPQiUieYdRgKvDcZeGEWAjxeRgT5k5JaxPef0g1ca+Fh9eHPym/hZ/dhWuI1Xt75K5rHMDq7WTZw3HiY+ZkxfyNsC2z6E6W9I6AmPsCW7hD355RSUVYOGmSMTzS6pS5PAawNfm5VJSdF0C/HFy6JafZUH0C2wG3+76G/UOmrZVrSNv235G3uP7e3Aat1IdBJM+aMxKb0sFzb/C6b8SUJPdGn1dgcfbcyh3qHJLanikgHd6B7ub3ZZXZoEXhtN7BuNv82LqCAfPtmcS3l1XavfOyhmEL9N/y3Hqo+x+9hu/rb1b+wr2deB1bqRwGi4+HcQ7xzBuWOhsalsweeubgAAIABJREFUTTm8PhGeTYI5ofBcsnEVKISb+2pPIQWl1VTU1FNV5+DW0b3MLqnLk8Bro2BfG2MvjCI+zI/qOgefnWblleZcl3QdV/e+muzybHLKc3hlyyvsL5HdAwBj/c2xv4GBN4KyQN5WiO4LVUehPA/+f3v3Hd52dTVw/Hsly7a8996OY2c409kDSAKBJEBYYZYNb0tHCi0UCoXQUqBAy2hpyiizCStsAgQIJEAmmXaWs7z3lKf2ff/4KduBDNuSrft5Hj+2Jdk6ViId3XvPPRcJpjL4+Dcq6Sl9WofVzodbKpFARVMHw5PDGJUS7u6w+j23JTwhhF4IsVkI8Ynr+3QhxDohxF4hxFtCCF93xfZTzhkSS3iAL0F+Pry2uvikO6ncO/5ehkUNY0/zHhrNjTy75VmKTGraDtCKWQadDzMWgDECKjcfextbJyz/c29Hpijd5pP8Ktotdvx8dFS1WLhpcjpCqK0IPc2dI7z5wM7Dvv8b8KSUcgDQBNzklqhOQFSQH+PSI0gMM1JY00b+CRavHOCr9+Wps54izDeMvU17abO18eyWZyk2FfdMwH1RdDac9zewm7u+3lQGTi/vU6r0SbWtZr7aUQNApamT+FB/zhsa5+aovINbEp4QIgmYDbzo+l4A04Alrpu8Csx1R2wn6rzceOJC/dAJeGVV8Un/fHRANE9Ne4p2WzvlreV02jp5dsuzlLSceCFMv+cfAiFJx7/+uSmw8xPw9l6lSp8hpWTxulIcTkl6dCBby0xcNzENg7efaJ7/trY+38Pr9O56lJ8C7gIOvEWPBJqllAfal5QDiV39oBDiViHEBiHEhrq6up6P9DgSw4zkpUYQF+LPJwWVJ1W8csDw6OHcN/4+SltLabe302nv5F+b/6WS3uFmPKC1JDuc0EHaFLB2wFtXw/NnwO5lKvEpHm9TaTMF5SaMvnqqTWaMBj1Xjklxd1julf+2ti5vKqOn1+l7PeEJIeYAtVLKjafy81LK56WUeVLKvOjo6G6O7uTMGhZPYrgRm0Py9obyU/odlwy8hMuzL2djzUbWVa3j8+LPufSjS3mp4KVujraPGjYPzn8GQl3dJ4wREJernbWXNhnO/CN0NsPiefDiDNi7XCU+xSOZbQ7ecPXhnZYTw7Lt1VyWl0RogMHNkbnZ8ge1dfnD9dA6vTtGeJOAC4QQxcCbaFOZTwNhQogDLQaSgAo3xHZSMqODyEsNJ8jPh5e+LzrlY4Byo3IRCMwObb3K7DDz9KaneSH/he4Mt+8aNg9u3wYLTPCHIm1jemgStNdqLcnG3ATnPqodMvu/i+Hl86DoW3dHrShH+CS/iqZ2KymRAeyva8PulNwwyYu3IjidsO1dMB1nsHC8y09Dryc8KeU9UsokKWUacAXwtZTyauAb4FLXza4DPuzt2E7FrNwEEsONVDR3sqGk6ZR+x7NbnkVyZLJ04uS5/OfIr8vvjjD7l6gsOPdvMPwK0BugZDWUb4A5/4DzHoemYm3D+itzoGSNu6NVFCqbO1m2vRohYF5eMovXlzE9J4b0qEB3h9b7pIRdS2HhBFhyI3Cc6tTQH1m/P0WetFL6B+AOIcRetDW9/7o5nhMyNDGE0Snh6AQ8s/zU2oVVt1d3ebnFYeGFghdUw+mu6H1gyEUw6wltitPaBhte0pLdlW9pI766Qnj5XHj9Ii0hKoobSCl5fW0JTqdk6sBotpQ109hu5UZv22guJez9Cv4zGd68CppLIW4YxA3V+ukezmCE6fd3ewhu7VIqpVwBrHB9vR8Y6854ToUQggtHJLBidy2r9zbQ3GElLODkthDGBcZR1V51zOU+wgeL3cKr21+lw97B1KSp3RV2/xEcB2fdq43yNv8PGvfBiochZTzc9BXs/BBWPQUvToesmXDWPZAw0t1RK15kzf4Gdle30txhY+GKvVSZLPjoBDWm42y56Y+Kv4cv/qQtQfgYIXaoVoGdNhEGz4WyddqanalcG9lNv19byuhm4lTXnTxBXl6e3LDB/e/cHU7Jbf/byLIdNdw4OY375ww5qZ9fun8pC1YvOLiGB+Cj80E6JUaDkfTQdCL8I5iZNpM5GXPUBtXjsZlh58daknPYtHeNObMhYxpsXQSrntFOW8+ZA2ferY0MFaUHtZpt/OmDbeypbWNPTRtWx6G9o0aDnkcuzmXuyC4L0vuHsvWw7I9Q/gPo/SAyE8JStabxgy+EkPgeuVshxEYpZd4xl6uE1z1WFNby6zc246MTbLxvBjrdyc0WL92/lKc3PU11ezVxgXHMHzWfgeEDuevbu9jbvJfEoEQyQjOYlDiJK7KvQK/T99Bf0g+0N8DWxdq7StCmR3LmaFsZNr4Ca54Fi0l7wp15j9a+TFF6wHMr97G+qJF1RY1dHhqdGGZk1d3T3BBZD6vcAp/fA6WrQWfQEl1EJmTNgEEXQGBUj969Sng9zGp3cvlza9hc1szfLsnl8m7aW2O2m3ly45Ms3rWYIEMQORE5jI8fz41Db8Sg9/Jy5p/SsA+2vgnVrsIf3yAYfAEkj4MfXoS1C8HaDrmXwhl/0IphFKWbbCxp5N/f7MPXR8dn27pepxdA0aOzezewnlS9HT7/AxR/p82wRKRD1EDInq3NthjDeiWM4yU8Typa6dN8fXTcMDkdvYAXvzv1LQpH8/fx555x9/Ds9GfRCz2bajexrHgZz2x+hjZrW7fcR78VmQnT7oXpD2ityqxtsGUxfHGfNqr7xRqYNF+rGHt2LLz/C2hUjbyV09ditvH6Gq2BxMWjEjEaup6RSQgzdnl5n1NXCK9eAP+ZqK2nR2RC9iw442646DkYeXWvJbsfo0Z43chidzDzyW8pbexg0c3jmZAZ2a2/v76znjtX3smGmg1E+kcyMWEi80fNJzYwtlvvp1+SUhvp5b8NDa5zCH38IOscSBoHm17RRn0Om/bknHonhHl5BwzllC1csY8NxY0MjA2muqWT9zdX4qMT2J2HXm/7xRpe3W749PfavlchtPW5hBFaBXXWOcd2Seolakqzlzy/ch8Pf7aLiZmRLLp5XLcXmDilkxcLXuTZzc/io/NheMxw7h57NwPDB3br/fRbUkLNdu28veoC7TKdD6ROgqQxUPAObHxZu92on8GU30NoH35BUnrdhuJGFq7QpjINesFHW6u44+yBpEQE8PiyQiqbO0kIM3LnzOy+m+xqd8Jnf3A1eBAQlgypE2DY5dpauZuXW1TC6yVmm4PxDy/H5nDy9s8nMCQhtEfuJ78un18u/yXNlmZSglO4Z+w9TE6a3CP31W817IMdH2qVZAc2/kdnQ+IY2PcVbF6kvWsdfQNMuUPbAqEoP6LFbOP+D7bRYrbjcEpW7q7jN9MGcMc52e4OrXtUFcCye6B4FSC1LQQDztZmRRJHa88XD6ASXi/643v5LF5fxkUjE3jy8p7b89Vua+eXy3/JxpqNBBmCuCX3Fm4YeoPatnCyWqu15tP7vznU0y8gUtsrVLERtr+vvWMdczNM+q12u17YM6T0LVJK/r1iHxtLmqhtMbOtsoXbzszkzpnZffs5KaW2Lvf1Q9p+OemAkERt2nLUtdqbRA+jEl4vqm+1MP6R5UQF+fHqjWPJjgvu0fv75+Z/8tK2l3BKJ2ckncEjkx8h0NcLWxadLptZm6Ip/NR1wrpLaBI0FsG+r10dISQ4DysxNxi1Btcq6Xm1b3bV8vraEvbXtVHc0MGtUzO457ycvpvs7BbY/Tl8/5S2/u20Q0gCjLgG8m7QvvZQKuH1sqtfXMuafQ3cNCmde+cM7vH7W1Wxinu/v5cGcwNJQUn8c9o/GRA+oMfvt1+SEmp3aAmubJ1WyAIgnbDvG3B2cRRUaLLW4FrxSmWNHTy0dAc7q1opbezghklp3D9ncN9Mdu31sPMj+OG/WvWl06aN6MbeCqOv94hqy5+itiX0sjvOHohTwso9deytbe3x+5uUOIm35rzF8OjhVLRVcOXSK1lSuOSnf1A5lhAQOwQm/lorqc67CcLTtXP4ukp2oJ3htXmR9mKheBWzzcHCFXvZVa0lu2snpPa9ZCclVG2FFX/Tmq5/9geo2aaN4uY8BfPzYfJv+0Sy+zFqhNeDpj72DQ1tFm6YlM7vZ/bOPLfZbuaJDU/w0b6P6LR3Mi15Go+f8Ti++pPr76l0obEInj8LzF2diqFDO89YaNWe2edpH9E5HrOQr/SM/35fxOtrSyiub2deXjKPXpyLTufh/+b5b7vWocvAGAkx2dq5kg37wGHR3uBNu09rytALuuo0NTvj1DfkqylNN3htdTH3f7Sd0anhPHxRbo+v5R0gpeTDvR/y7JZnqe6oJjYglmenPUt2pOctLvc5+W/DR78G+2GNf4VOK3DxDdTeKbdVa6c2gLYvKXsWZJ+rbX1Q3XH6ldX76rnv/W3sr29ndm4c/7xylOcnu61vwce/1tbojhY5AGY8CIPm9Fo4XfUS9tf7s2DiglNOeirhuUGH1c6oP39JWIAvc0cm8odze7daa3v9dh5d/ygF9dp+s/mj5nPD0Bt67f77rYPvjsu1tY2RV4OPv9YJ/sB6n92sLfJ3Nh9aB/ELgQEztJHfgBkQEOHev0M5LdUmM9e9tJ7CmlYmZUby2k3j0HtysjNVaC2/PrkdbB3HXm+MhLv29fqMxDlLzunytJj4wHi+uPSLU/qdx0t4bj0eqL8L8PVh7shE3t5Qxo5KEzuqWnpsX15XhkQN4amznuKZTc/wVelX/GPjP/i2/FuePutpQvxCei2OfmfYvK4rMm2d2jaG8g1QuVlLer5B2v49u0X7ft/XsP09EHpImaCN/AaeB1GqwKgv6bQ6uG3RRgprWhkcH8KrN471zGRnNml75vYt1/5fttd1newAOht7PdlZHdYukx0c/5zQ06FGeD1sR2ULs575jqyYIM4YGM29swf1+mK2zWnj3d3vsmjnIopbignxDeHvZ/yd8QnjezUOr+KwQ+127ViUik3Q0aBdLqXW09Nhg5ZKaCnXLo/MOpT8ksdpB9wqHklKyQ2v/MCKwjpSIwJY+pvJBPl70FT1gTde297TTgxpr4VO17qzjz8gu57O7MVKYyklX5Z8yWM/PEZNR02Xt1EjvD5ocEIIw5JC2V/Xzv76draWmxiR3LuVTgadgStyrmBA2AAWbl1Ifl0+t355K5fnXM4fxvwBn6NPG1ZOn94H4odrH3lSa0pdsVGrhGvYB0htSjMyA8wtYGmBNf+G1f8E/zAYOBMGngsDpoN/780KKD/t9+9sZUVhHXEhfiy+ZZxnJDtLm5bcCpZA+Tpoqz20zhwYA7mXw8hrIHWiNsPw8W8ONVmAHjthvCvb67fz0NqH2NawjUBDIMnByVS0VeCUh84K9Nf7M3/U/G6/bzXC6wVvbyjjriX5jEoJZ1hSKA+c776S5bqOOl7If4Gvy76mpqOG1JBUFs5YSHJwslvi8UqWNq2fZ3U+VG05tJXBYYeOeu3deFst2Du1qc+0yYcKX8LT3Bq6t3vk05089+1+ooJ8efG6Mb3+5vUIZpPWGm/7+1CV75pFkNr/mfBUbZ047yaIyTn2Zw9fh+6lbkE17TU8seEJPi/+HIPOQFpoGslByZyZfCZSSv6T/x9Vpflj+krC67Q6GPPXLwkP8GVgbDC/ODOTvDT3FSzYnXY+LfqU/+34H7ubdqMTOu4eezfzslWnkF4nJbTVaC9Ytdu1prxmk3a5uVm7rr0BrK69nOHp2rligy/Uehdue1e1OeslC1fs5W+fFxIZ6Mtf5g5lVm7PnNZ9XFJCzQ4oeFtrgNCw59B6nG+gtgUme7Y2kgv2nBNUOmwdvJj/Iq/seAW7005ScBKpIalMTpzMrPRZhPuHd/t9qoTnZg98uI1F60qZmBlJSmQAf75gqNvLlwsbC1m4dSHrq9fTam1lfPx4njzzSYJ8g9wal1eTUmtrVrtT+6jbqY0Are1awUFbrVZcAKD3c1WFHpoKUm3OesaitSXc+8E2IgIN/N/UTG6dmtE7szRmE+z5UhvFVWzU3gBJp7YVJiDq0FE8OXPA37MK0ZzSyYd7P+SJDU/QYm0hyhhFRmgG4+PHc37m+cQF9lwzdpXw3GxXdQvnPvUdw5NCiQry46bJ6Uwc0LPH3J+Idls7b+x6g/f3vE9paykhviE8PvVxmixN3boRVDkNbXVQv1s7x69hj/Z1SzXUFGgvfkfT+2ktoBJGaAfdhqf3+Q4Z7vTOhjLuXJJPeICBuSMTuee8Qfj69FCTqs4mqN4GhZ9pWwga92tFTgA+Ru2MxvSpWpJLHA0G/56J4zRtqN7AgtULKGktIcgQxICwAeTF5XFB5gWkh6b3+P2rhOcBLv73KqpMZgbFhxAZ6MtfL8rtuSfOSdpYs5H/bP0Pm2s3Y3FY0KHDyZGLyKezEVTpRg47NJfAP0ed+M/4GLU2UeFpED1I66wRnqYlw5AE0HV9Ire3+2hLJfPf3Eyo0cDZg2P50/mDCTnVIpWj182m/QkyztDewJSt17asNOzV1uKcdkBop3bED3Ot4c7S/q08uHNPWUsZC1YvYH3Nenx1vmSEZjAqdhQXDriQQRG9V6GuEp4HWLKxnN+/s5WZQ2KxOySX5SVz7lDPOWPNZDHx8vaXebng5SOS3QGnUyas9IAnh2qtoY7mH65NadYXahvfbZ3aWs/BDzMHz/8D7QSI4DgtAUZma5WjEemuhJimrQ95oc+3VXHbok0E+xuYmhXFn84fTEzwKY6otr6lVUYe3aEnIEorTrK41mh9/CFqoGsUNxfihoOP57cFbLW08sj6R1i6fykISA5OZkT0COYOmMvo2NG9XqSnEp4HMNscjP3rV4xMCcNHp8Poq+fRS4YR5Oc52wKklAx7bViX1wkE+dfl93JEynHlv911efmBNTynU1vzaanQRhUtFVq3DVOZVhBj6wRrx1HJsPPIo49A2yYRlgIRmdqLcWTGodFhUMyRIw43VP/1hK92VPN/r28k0M+H8RmR3Dd7MCmRAT/9g1Jq05Kmcmgq0aagG4sg/y2tR2VXQpO1JgRD5kLWOX2q/ZzdYeff+f/m9e2vY3aYiQ2IZVj0MOYOmMvEhIlu2/Kk9uF5AH+DnotHJbFobQnXTkyjuL6dT/OrmDfGc7YECCGID4zvsvuB0cdIm7VNFbV4igOJ5HgJRqeDkHjtI+mw576U2rTZ4UmwrdpVEVoPDquW/KyHjQxN5drU2473j4xB76vt8wpNBCmgYgNIV8I0lWl9R63tMOLq3h+pnGLyXVFYy8//t4kAPx/y0iK4/eyBpIT7Q0ej9ri1unqlmkq15gGt1drlHY3afkq7WSsmOvqNw/H00WOlluxewjObnqHJ0kSIbwh5sXlcmn0pUxOnYvDQpK1GeL1sd00r5zz5LbedkUlhTSt6neDhi3OJCvJzd2gHddXM9YAAnwBuyb2Fnw35GX56z4lZ6SYOu/bi3VajVYS217q+rtM+W1oOTZFaO46cLj1QXHE8Qq8lPR8jGALA16i1XjMEgl+Q1mvUL1j78A103Sbw0Mfh3xsCtJ/1DdC+PnrK7MdGv7mXabF2NGgJvs31N7ZWUVlZSsGuvUTpWokzdBBtMONrb3eV/x/ntVLotMSv99VGZ4YAbe0tKEbrtRqeqjUUONBt53B98BzF78q/49H1j1LaWoq/3p+ciByuGXwNZyaf6TGvCWpK04NcunA1je1WrhibzLr9jYzPiOSWqRnuDusIhx/XERsQy4SECZS2lLLftJ8mSxPh/uHMHzmfCwdcqDq1eBO7VZuy62zURjSHf/5qwfF/LjILnA5t9Od0uL52fXbaj/rewcGtFivMsNLaG39Z3/PAA7BgQa/d3bb6bTy87mG21W9DJ3RkhmVy3ZDrODv1bIw+xl6L40SoKU0PcuXYFH73zlZSIgLZUNzE2v0NnDMkltRIzykOmJ0x+5iKzLLWMt4ufJtNNZsoMhWxYM0CXih4gTtG38HZqWf3rQMvlVPj46ttau5qY/MP/+26iCYoFuY8qY0OLa2ujwMjRdeH3Xzoa6Q27eq0w9btwO6e/quUH1HYVMiTG55kXdU67NJOUlAS1w6+lgsGXECgwXNes06ESnhuMHtYPH/+ZAdLC6qYMSiWZdureXtDGb8/p3ePDzpZycHJ3DH6DtZWreWDvR9Q0lJCkamI3638Hdnh2dwx+g4mJEzw6L9B6UHT7+96GvGchyB9yon9DulqbGx3Jb9tj6ESXu+TUrK7aTfP5z/PdxXf0WnvJMI/gityruCaQdcQ7Ns7Z3t2NzWl6SYPfryd/60tYfkdZ/DYskI6rQ5+PT3Lvb35TkK7rZ1Piz7l27JvqWqvoqSlBLPDTF5sHrePvp1h0V1Xeir9nKdUaf5UBavL5tImrnx+LTohGJUazk2T0zkrJ6b34/UQUkp2NO7gjZ1vsLJ8Jc2WZgJ8Arhs4GX837D/I9ivbyQ6tYbnYfbUtHL2k9/yx1k5pEcF8eb6UqKD/fjzhUM9ZjP6iahpr+GDvR+wtW4rle2VlLWWYXVYOSvpLH4z6jcMCFfnvClu8hPJd2tZE5c/txYhYFRqBDd7cbJzOB1srt3MJ/s/YVXlKqrbqzHoDMxKn8VdY+7qc+dnqoTngS77z2rq26x88dsp/PmTnVQ2d3LRqETmDEtwd2gnrbCxkPf2vEdpSynlbeWUt5Vjd9o5P+N8fjnylyQGJbo7REU5aGtZM/OeW4MQkJcawS/OzGSSB7T66y0HitKq2qsI9wsnPTSdJnMTpa2lOKWTKYlTeGDiA8QE9M03ACrheaD3N5dz+1tbWXzzOMIDfXliWSG+Pjr+elEuEYGe313haE7pZGPNRpbuX0pVexVlLWVUtlcCMG/gPG4dfitRRu95UVE808FkB4zLiOT352STm+Q9Zw4u3b+UB1Y9gMV57Eb43KhcHpz4IFnhWW6IrPscL+H1nbmzfui8ofGEBRhYvL6UQfEh5KVFYLU7eeuHLird+gCd0DEmbgz3jb+PawZdw8jYkYyJG0NMQAxvFr7Jue+eyzObnqH1wFE3itLLNpc2cflzawCYnBXFA+cP9qpkV9ZaxsPrHu4y2YX7hbN49uI+n+x+jKrSdCN/g55LRiXx2ppi6tsszMtLYmtZMxuKG9lZFc2g+L41b36Aj86HKUlTGBc/jm/Lv+Wr0q+oba+luKWYFwpeYPGuxdyaeytXDboKfx/P7Pau9D/f7q7jltc2ICVMHxTDA+cPIS60////szvtbKndwoqyFWyq3USLtaXL2zVbmns5st6npjTdbG9tKzP+8S13n5fDz8/I5OOtlXywuYLEcCMPnD8EvZvPzOsOVoeV7yu+Z3npcspbyylqKaLJ3ESobyi/GvkrLhl4CQadZ7YiUvquDzZX8PiyQiqbOwkLMNBqtiGEjgtGxPOn2YMJC+h7ywYno9nczPcV37O0aCn7m/dT11mHzWk77u37U3N4tYbnweY9t4aaFjPf/O5M7E7J/R9uo67VwpVjU5gx2HNOLj5dNoeNNVVr+LLkS4pMRRSZimixthDpH8n8UVrXFp1Qs+zK6ftgcwX3vFdAp81xxOXTc6JZeE1en6qEPhlSSgqbCvl438esLF9JTXsNZocZHTqGxwznquyrsDgtPLT2oSNaB/a3479UpxUPdvW4FOa/uYU1+xuYNCCKy8ck86+v9/L+lgry0sL7zTtRg97A1KSpTEyYyJbaLXxV+hVba7dS1FLE/avv519b/sWvRvyKuQPmqs3ryml5fFnhMckOYGdVa79MdvWd9SwrXsbH+z6muKWYdls7ACnBKVyQeQFX5lx5xNYCH52PVx7wrEZ4HsBsczDhkeVMzIzi2atHIaXkn1/vZWtZM6NSw/nlWf1zL9uBbg7LS5fzTdk3FJuKMTvMxBhjuDH3RuYNnOexXdcVz2VzOMm697MurxNA0aP944Xd5rCxqnIVbxW+RUFdASarCdCKT6YkTeHGoTeSGZbp5ijdQ01perjrX1rHit31CCAhzMgvzsxkzb4GzDYHt52VyejUCHeH2KNq2mtYWbaSd/e8y57mPdicNmKMMVyUdRGhfqG8vuN1r3s3qpycNoudN9aV8O8V+2jq6HqtKjHMyKq7p/VyZN3HKZ0U1BfwTuE7rK5cTX1nPRJJgE8AI2JGcFXOVUxNmur1MyQq4XmwDzZX8Id387HYD50ybjTo+dn4VPbVtRFqNPCXuUMJ9KCDYnuKxWFhdcVqXtr2EgX1BTjksdNS/W29QTk91SYzL68uYtHaEtosDsKMBoL9fahuMWNzHHp9Mxr0PHJxLnNH9q0mCFJK9jbvZcnuJawsX0lVexVO6cRX58uAsAFckHkBcwfMJdBLT6bvikp4HmzSo19T0dx5zOUJof6cPzyBvbVtTMmK4vpJ6W6Izj2klOxo2MG1n12L1Xns8TAR/hEsu2SZ2tbgxXZWtfDCd/v5cHMFTgnxYf4khBlJCjNy85QM9ta2HazSTAgzcufM7D6T7KSUlLaU8tG+j/iy9EvKW8uxOW3ohZ7k4GTOTj2bi7MuJik4yd2heiRVtOLBKrtIdgBVJjPXTUxjwUfb+W5PPeMyIvvs3ryTJYRgSNSQ45ZRN5obmfP+HAZFDmJa8jRmpMzoM41tlVMnpeT7vfU8/+1+vttTj9GgY1hyGEaDHqNBz5CEEG6anEFogIGhiaF9JsGBtl9uT9Melpcs55vybyhtKT1YYRkXGMfUpKlcnn05mWGZXj9leapUwvMACWHGLkd4sSHaO9Y5wxP4cHMFr60p5sEL+lZz6dMVFxhHVXvVMZfrhZ4mcxMrylawomwFC9YsIC4gjtzoXKYlT2NS4iRC/byng0Z/Z7U7+SS/kue/3c+u6laigny5fEwypg4bNocTf189l+clMyUrqk8lgw5bBzsadrCqYhUry1dS2V55sMIy2hjNOQnnMC97HrlRuWrLTjdQCc8D3DmvLdDSAAAdHElEQVQzu8s9Q1aHg+L6dmYNjeOHokYqmzv5YEsF8/KS3RRp75s/aj4LVi/ocs/QhPgJfF36NSvLV7KneQ8mi4llxctYVrwMgBhjDCNiRjAxYSKjYkeRFpLWp14MFWgx23hjXSkvryqmusXMwNgg/jR7EE0dVnZWaS3qhiaGct3ENI/vP7t0/1Ke2vgU1R3VhPqFMihiEA3mBmraaw52P4n0j+Ss5LO4PPtyhkcPV/9fu5law/MQh3eFSAgzMm9MEq+uLkEAr9wwlgA/PY98uhOAO2fmkB3nPdN3Bzq7/1iVZrutne3129lYs5F11eto6GygxdqCyWI6WPgS6BPI0KihjIsfx4iYEQyNGorRx+iOP0n5CRXNnbz8fRFv/lBGm8XOpAGR3DAxjVaznc+2VeNwSoy+eq4cm8LEzEiPTQxSSqraq1i0cxGLdy7GLu3H3CbML4xJCZO4MudKhscMd0OU/Y8qWumD9tW1ce1/19PcYeW5n+VR12bmk61VRAT68uCFQwjwVQP0rticNvY27aWgvoCdjTspMZVgspposbRgsprotGvTxzp0ZIZlMiZuDCNjRjIiZgRxgXFujt67basw8cJ3+/kkX5vGPn9YPDdPycDulCxeV0JDm1bANHFAFJeOTiLU6Fn7NG0OG0WmIrbWb2VL7Rb2Nu3FZDVR1VaFE+cxt4/0j+Sbed94bMLuq1TC66NqWsxc99J69tW18filwymoMFFc386EzEhunpLh7vD6hCZzE4VNhexu3E1hUyH1nfW0WFsOJsBWS+vBF6MIvwhGxI5gTOwYRsSMIDsi+5g+nycy4lROnJSSFbvreOHb/aze10CQnw9Xjk3m+knpOJ2SdzaWs71C21SdFG7kmvGpZMW6f4bD6rCypXYLm2s3s6txF0WmIuo662i3tR+xnUYv9F1urwEQCPKvy++tkL2GSnh9mKnTxi2vbuCHkkZun57FjqpWbA4nPz8zkzFp/XtDeneTUlLbUUthUyH7mvdR3FJMXYf2InVgFNhibcHi0I5PMQgDmeGZjI4Zzbj4cdR11vH4D4/36z6EvcVid/Dhlkpe/G4/u2vaiAvx58bJaVwxNgWnU/L+5gpW7a1HSvD31TN3RCLTcmJ6vaF6m7WNvc17ya/LZ1vDNopMRVS1VdFibUFy6PXTV+dLgCGAaGM0GWEZ5EblMi5+HNnh2cx8d2aXxVf9qWGzJ1EJr48z2xz85o3NfLGjhtnD4ui0Ogn08+HBC4Z4/GK9pzNZTJS0lBxsaF3aWkqrtRWTxXRwJNhmazvixe1oMQExLLtkGT46Nc38U0wdNv63roRXVhdT12phUHwIt05NZ3ZuAg6nZNn2apZtr8Zqd6LTCc7KjuH84fEE+5/c9OXJjMQPvBHa07yH/Lp8ChsLKWkpobqj+mDVJGgjMn8ffwJ8Ag4mtwFhA8iNyiU7Ipu00LQu14WX7l963OIr9Uap+6mE1w84nJL7PtjGG+tLGZIQQkywH0MSQvndOQPVGkA3cjgdVHdUU9FaQXlbOeWt5ZS2lFLdUc3Wuq3H/TmBIMQ3hOiAaBICE0gOTiYpOIm4wLiDHxH+EV5bXl7W2MF/vy/i7Q1ldFgdTB0Yza1TMpg0IBKL3cnynbUs215Nu0Ur7BiVGs6lo5OIDTn55gLHSzD3jb+P7PBsttZtpbCxkKKWIsrbyqnvqD+ioEQv9AeT2oHPiUGJDAwfSFpoGinBKSQFJxHse+JTq2oqvPeohNdPSCl58qs9PLN8D3EhfuTEhXDF2GTOHRrv7tD6NSklzZZmLvrwIhrMDcdc7yN8SAhKwOKwYHFYMNvNWByWY0aFeqEnwj+CmIAYEoISSApKIiEo4VBSDIgj1C/0hN/AeNqL6INfv867RS/g1Dehc4RzSfotzM06n+e/289nBVXodYILhidy85R0BsWHYLY5WFFYy2fbqmkzawknKzaYS0YlntA6ncPpoMPeQZu1jTZbG43mRmraa3hk/SO02dp+8ucPTEMeSGqBhkCSg5NJC0k75t9FNTLvO1TC62deX1PMnz7cTqjRwMjkMO6ZNcirtiq4S1cjBz+dH/83/P8YGD6Qmo4aGjobqO+sp8HcQIe9A4vdcjARHp4MLQ4LVof1mKRo0BkI9wsn0hhJTEAM8YHxJAYlkhySTEpQCvFB8QT5BnncNNmDX7/OOyVPInSHuuNIpwFz1cUYrWO4elwq109MIy7UH7PNzpc7y/l0exEmSysOOokLgxGp/oQFOWmztWGymA5OK5ssJlqtrbTaWumwdRx8XLtqO/dTBkcOJiEogfSQdBKCEogyRhEdEE2UfxSRxkg1Ld0PqITXD31aUMWvF2/G36BjysBo/nbxMEID1LvQnnaioyopJS3WFi35uZJgs6UZk9V08MW81dp6KBm6EqPZYT7i+65e1H10PjicjoPJ8hfv13Dbh3U9/rf3Rf++MJqFF2kHKccGxPLlpV+qJYB+TvXS7Idm5cYTcqMPN7zyA9/squWRz3by14tye72KzdvMzph9QiMoIQShfqGE+oUe91wyu9NOq7VVS4SHjWY6bB202drosHfQam2lobOBJnMTbbY2LSHaLVS2V3b3n9av+ev9uX307SrZeTGV8Pq4yVnRvH7jOK57eT1LNpYTHezH787JdndYygny0fkQ7h9OuH/4Cd3e5rQdTIbXfHoN9Z31PRxh3ycQxAfGu319U3E/NaXZT6zYVcsvFm3CYnfwx1mD1KZ0L+DuNTxTh42nl+/htTXF+Bv0DBqwm532l49Zw4s0X80A41SGJYUxKzfOIzaNK/2bmtLs587MiWHBBUN4aOkO/rp0JzohuHGy95yf540OJLXertK0OZwsWlvCU8v30NJp4/IxKdxx9kCig2dyx9JAvqx6GenTDPYwomxzuWboRcwcEkdyRECPxqUoP0WN8PqRA1sWXl9TTFOHjTvOzuLX07LUmoXSLaSUfFNYy1+X7mRfXTuTB0Rx7+xB5MQFs62ihaUFVeyp0U4wMOh1TM6K4tyhcUQF+bk5csXbqBGeFxBCcNuZmTS1W1i2vYZ/fLmH5g4b980ejE4VsiinobC6lYeW7uC7PfVkRAXy3+vymJIVxQ/FTTzw0XYqmrSG3EZfPdNyYpgxOJaQk+yMoig9TSW8fsbfoOf2s7NptzhYX9zIS6uKaWiz8PhlI7zq4File9S3WfjHl7t5c30pwf4G7p8zmItHJbJ6XwN3v1eAqUNbrwsNMHDO4DjOGBiN0Vfv5qgVpWsq4fVDEYG+/Hp6Fn/7bCd+Pjo+3FpFU6edhVePItBP/ZMrP81id/DyqmKe/XovnTYH105I42fjU1hX1MQf3y/AYtNOl0gKNzJzSBxj0yPw0as3VIpnU2t4/diG4kYWrthHpamTXVWtDEsK5aXrxxCp1lSU45BS8tm2ah75bCdljZ1Mz4nhZxNS2VnVysaSRg68XAxOCGHmkDiGJISoNWLF46hOK15qaX4V720qp6nDSkGFieTwAF69cayqmFOOkV/ezEOf7GR9cSPZsUFcOTaV6hbzwUIUvU4wNj1CVVwqHk8VrXipWblx1Laa+X5PPWPSIsgva+aShat59caxDIoPcXd4igeoNpl5bNku3ttUQWSggesnpmGxO/huj9aqzOir58zsGKbnxBCujqJS+jCV8Po5IQTXTUij0+ZgY3ETYzMiKSg3Me+5Nbx4bR7jMiLdHaLiJh1WO89/u5/nVu7H7nAyLScGf4OOssYOQFsLPntwLFMHRuNvUIUoSt+nEp4X0OkEt0zJwGzby/YKE2PSw9lR2cLPXlrPM1eM5Nyhce4OUelFTqfkgy0VPPZ5IdUtZgbFBRMV7IcALDYnqZGBnDs0jtGp4aovq9KvqDU8L2K2OXjyy93srW0jLMBAYU0rOypbeGhuLleNS3F3eEov2FDcyIMfb6egooWoIF9SIwMJMxoQAkamhDNjUCwDY4NUIYrSp6k1PAV/g575M7J47PNCyho7GJYYSpjRwB/fL6Cu1cJvpg9QL3T9VFljB3/5ZAdf7KjB36BjcHwIcaH+BPjqmZoVzbRBMaojitLvqYTnZQJ8fbjjnIE89vkuqprNJIUHMHuYgSe/2k19m4UFFwxR01j9SKvZxiOf7eKtH8qQUpIeFUhqRACJ4UZmDIplQmakWp9TvIZKeF4oxN/AXefm8PdlhZQ3dRIZ5Mu1E1J5bU0JDe0W/jFvhHoR7OOsdid//6KQ19YU02lzEhfiT2ZMEGPStGlLtX9O8Ua9nvCEEMnAa0AsIIHnpZRPCyEigLeANKAYmCelbOrt+LxFiL+BO8/N4ckvd1Nc3054oC/zpw/g6eV7aWxfz4UjEvjX1/uobO4kIczInTOzmTsy0d1hK0f5YHMFjy8rPPjvdNuZmVQ0d/K/tSW0mO2EGg2MTAln9rB4pufEEhfq7+6QFcVter1oRQgRD8RLKTcJIYKBjcBc4HqgUUr5qBDibiBcSvmHH/tdqmjl9HVY7Tz91R721rYRajQwJDGEhz7ZCWjvRg4wGvQ8cnGuSnoe5IPNFdzzXgGdNscx1/kbdOSlRnDthFQmZ0UR4KsmcxTvcbyilV5vfielrJJSbnJ93QrsBBKBC4FXXTd7FS0JKj0swNeH288eSE58MKZOG5tKmwnx9+Hot0GdNgePLyt0S4xK1/72+a4uk52fj463bp3A6zeN5ZwhcSrZKYqLW7u9CiHSgJHAOiBWSlnluqoabcqzq5+5VQixQQixoa6urlfi7O/8DXrmTx9IXloEZqsDk9ne5e0qmzt7OTLlaI1tFl5fU8zVL6ylymTu8jZWu5PhyWFqjU5RjuK2t35CiCDgXeC3UsqWw5+cUkophOhyrlVK+TzwPGhTmr0Rqzfw9dHx8zMyeDfYj1V76zHbncfcJiZEla33JqdTsq+ujY0lTazZ18DaogZqWiwACNdHV0+AhDBjb4apKH2GWxKeEMKAluwWSSnfc11cI4SIl1JWudb5at0RmzcTQnDp6CT21LTywnf7cR71atrcbuXtDWVcNjpJjR56QLvFztayZjaWNLGxtImNxY20WrQpS4NeEGo0kBkdSEKYkVlD47E6nDz62ZHTmkaDnjtnZrvrT1AUj+aOKk0B/BfYKaX8x2FXfQRcBzzq+vxhb8emaO6ZNYggPx/+vWIfnTYHgb56bpmSzur9jdy1JJ8vtlfz8MW5xASrir9TJaWkvKmTTaVNWoIraWJnVcvBNxlxIX5EBfuRFKEn1GggyM+H4UlhTM6KYlhS2MG9kqFGwxFVmqqaVlGOzx1VmpOB74AC4MC82R/R1vHeBlKAErRtCY0/9rtUlWbPKm/q4Nlv9lHbYsbfV88NE9PYWm7isc93YfTV89DcocwZluDuMPsEi93B9soWNpUcSnC1rdr0ZKCvntykUOJD/LE5JS1mGwadtrweE+LHlKxoJmZGEhagTipQlBOhzsNTTkmH1c7Lq4rZVKJtiZw5JI7hyWHc9W4+W8uamTMsnr9cONSrjo05eu9bV6OqulYLm0qbDia4/AoTVte6aHKEkdEp4YxMCSMswJeq5k62lJmwObTrDXodeWnhTM6KIjs2WE0fK8pJUglPOWVSSr7YUcM7G8qRUjIgJojrJ6bx3uYKnvpqN6FGXx69OJcZg7ssrO1Xutr7ZjTo+NW0LEKNBi3BlTZR0qAdseOr1zE0MYTRqeGMTg1nVEo4FrvzYBGKqcN28PcMjAtmQkYkeWnhaiuBopwGlfCU07anppWFK/dh6rDhZ9Bx2ehkYoL9+N07W9lV3cqlo5O4//zBhPgb3B1qj5n06NdU/Mj2jKggP/IOJLfUcIYmhuDno8fUYWNtUQNr9jUcPG8OICbEnwmZkUzIiCQ6WFXBKkp3UAlP6RatZhuL15WyvkhbXs2JD+aacaksWlfKv1fsJS7En8cuHc7krCg3R9r97A4nA+797LjXf3fXWSSFGw9OQXZaHWwua2Ld/ka2V5o48FQL8PNhbHoEEzMjyYgKVFOWitLNVMJTutWG4kZeX1tCm9mOn0HHpaOTtKbU7+azv66dayekcvd5Of1iaq7NYuetH8p46fui447uEsOMrLp7Gha7g/xyE+uLGskvb8bu0J5fep1gWFIoEzKjGJYUikHv1p4PitKvqYSndLsWs43X15QcLGhJCjdy8agkPtpayUurikiJCODvlw0nLy3CzZGempoWM6+sLmaRqxHz2LQIcpNCWbyuhE7boY35/j46fn5mJkaDnq3lzVhc1wkBWbHBjE2LYEx6BEF+fT/5K0pfoBKe0iOklGwqbeKtH8poaLMCMCo1nMzoQP766U7Kmzq5dUoGt589sM8cOVRYrW28/3BLBQ6n5NyhcdwyJYORKeGAVrjy2Oe7qDSZCfU3kBEdSMRhVaoZ0YGMSYtgTFqEV1WvKoqnUAlP6VFWu5MvdlTzaUEVFpsTvU4wITOSggoT722qICsmiH/MG0FuUqi7Q+2SlJLV+xp4/tv9rNxdh9GgZ15eEjdOTic1MhDQ1vAKa1rZWNLEhuIm2i2Heo4mRwQwNl1Lcqr4RFHcSyU8pVc0d1hZsrGcNfsaAG3tKjrYjy+219DYYeVXZw3gV9MGeMwals3hZGl+Fc9/u58dVS1EBflx/cRUrh6XSnigLxa7g20VLWwubWJLWTOd1kPbEeJC/RmXEcnYtAh1zpyieBCV8JReVdbYwacFVfxQ3IiUYHdK6tssbK9sYXB8ME9ePpLsuGC3xddqtvHm+jJeWlVElcnMgJggbpmSzoUjErE7JfnlzWwqaWJbRcvBDeEA8WH+jEoJZ0xaxBEVmYqieA6V8BS3qGkx81lBFav3NeBwSmpbLeyuacXukNx2Via/nTHwYF/I3lDZ3Mkrq4t5Y10prRY74zMiuHlyOqkRgWyvamFbhYnihnYOf1qkRwUyyrVpXI3kFMXzqYSnuFVju5WVu2tZtbeBmhYzu6paqWuzEBvix6+mZTFzcCwxIT2XTLZXmnjxuyI+3lqJU0qmDoxmfHoEVodkd03rEVOVep1gYGwwI1PCGJkSfkRBiqIonk8lPMUjOJ2SndUtfL+nnqUFVeyobMHpalc2IjmMnLgQsmKDSIsMJD7UH5/TWOuTUvLVzloWrtjLptJmDHpBTlwI4QGGY9YQY0L8GJoYytCEULLjgvtMRamiKMdSCU/xOB1WOysK63jii0L217UTHmBgUHwIRley0esEMSF+xAb7ExHke/CYHH+DHoNeh1NKbA4nDqfE7pB02hw0d9iob7OwoaSJLaVNtJjt+Op1JEcYSQwzHkx08WH+DIwNZkBMEANjg4kKUpWVitJfqISneCwpJW+sL+Uvn+xASjgrJ4ZQo4E61/E5J8rmdFLR1ElZUydWu5NAX/3B9beUiACSwgNICjeSFhWoNoErSj92vISnnvWK2wkhuGpcKlOyorlzyVY+21bNtJwYHrxgMFIKalrNNLVbMXXaaLfYsdidWO1O9HqBj07QZrazvriJTSWNWB2S3MRQrhqXwoxBMYQH+J7WtKiiKP2HGuEpHsXplLy6pphHP9uFv0HPX+YO5fxh8V2W/xeUm3j+u/18WlCFAM4fnsDNU9IZkuCZm9sVRekdakpT6VP21bXxu7e3sqWsmRFJodS0Wqg2mYkP82d2bjwFFSbW7m8kyM+Hq8alcP3ENBLCjO4OW1EUD6ASntLn2B1OfvvWZj7Jrz7mulCjD786K4vLxyb36/P3FEU5eWoNT+lzfPQ6Npeaurwu0M+HW6Zm9HJEiqL0ZWo1X/Folcc5f66q2dzLkSiK0tephKd4tOOty6n1OkVRTpZKeIpHu3Nm9sGN6AcYDXrunJntpogURemr1Bqe4tHmjkwE4PFlhVQ2d5IQZuTOmdkHL1cURTlRKuEpHm/uyESV4BRFOW1qSlNRFEXxCirhKYqiKF5BJTxFURTFK6iEpyiKongFlfAURVEUr6ASnqIoiuIVVMJTFEVRvIJKeIqiKIpXUAlPURRF8Qoq4SmKoiheQSU8RVEUxSuohKcoiqJ4BSGldHcMp0wIUQeUuDuObhYF1Ls7CA+lHpvjU4/N8anH5vj662OTKqWMPvrCPp3w+iMhxAYpZZ674/BE6rE5PvXYHJ96bI7P2x4bNaWpKIqieAWV8BRFURSvoBKe53ne3QF4MPXYHJ96bI5PPTbH51WPjVrDUxRFUbyCGuEpiqIoXkElPEVRFMUrqITnIYQQyUKIb4QQO4QQ24UQ890dk6cRQuiFEJuFEJ+4OxZPIoQIE0IsEULsEkLsFEJMcHdMnkIIcbvr+bRNCPGGEMLf3TG5ixDiJSFErRBi22GXRQghvhRC7HF9DndnjD1NJTzPYQd+J6UcDIwHfimEGOzmmDzNfGCnu4PwQE8Dn0spc4DhqMcIACFEIvAbIE9KORTQA1e4Nyq3egU496jL7gaWSymzgOWu7/stlfA8hJSySkq5yfV1K9qLVqJ7o/IcQogkYDbwortj8SRCiFBgKvBfACmlVUrZ7N6oPIoPYBRC+AABQKWb43EbKeW3QONRF18IvOr6+lVgbq8G1ctUwvNAQog0YCSwzr2ReJSngLsAp7sD8TDpQB3wsmu690UhRKC7g/IEUsoK4AmgFKgCTFLKL9wblceJlVJWub6uBmLdGUxPUwnPwwghgoB3gd9KKVvcHY8nEELMAWqllBvdHYsH8gFGAQullCOBdvr5tNSJcq1HXYj2piABCBRCXOPeqDyX1Pao9et9airheRAhhAEt2S2SUr7n7ng8yCTgAiFEMfAmME0I8T/3huQxyoFyKeWB2YAlaAlQgRlAkZSyTkppA94DJro5Jk9TI4SIB3B9rnVzPD1KJTwPIYQQaOswO6WU/3B3PJ5ESnmPlDJJSpmGVnTwtZRSvVMHpJTVQJkQItt10XRghxtD8iSlwHghRIDr+TUdVdBztI+A61xfXwd86MZYepxKeJ5jEvAztNHLFtfHLHcHpfQJvwYWCSHygRHAw26OxyO4Rr1LgE1AAdrrnVe10jqcEOINYA2QLYQoF0LcBDwKnC2E2IM2In7UnTH2NNVaTFEURfEKaoSnKIqieAWV8BRFURSvoBKeoiiK4hVUwlMURVG8gkp4iqIoildQCU9R3EAIkSSE+NDVpX6/EOJfQgi/br6PM4UQEw/7/udCiGtdX18vhEjozvtTFE+nEp6i9DLXJuj3gA9cXeqzACPwWDff1Zkc1llESvkfKeVrrm+vR2u3pSheQ+3DU5ReJoSYDjwgpZx62GUhQAnwJyBHSvkr1+WfAE9IKVcIIRYCY9CS4xIp5QOu2xSjdbo/HzAAlwFmYC3gQGsu/Wu0TiNtQDHaUTEVQCdwL3CLlHKu6/edDdwmpbyoxx4ERXEDNcJTlN43BDiiEbarUXgxWjPo47lXSpkHDAPOEEIMO+y6einlKGAh8HspZTHwH+BJKeUIKeV3h93XEmADcLWUcgTwKZAjhIh23eQG4KXT+PsUxSOphKcofcc8IcQmYDNa0jz8gOADzcY3Amkn80tdXfJfB64RQoQBE4DPTjtaRfEwP/ZuUlGUnrEDuPTwC1xTmnFAAzDwsKv8XdenA78Hxkgpm4QQrxy4zsXi+uzg1J7XLwMfo02FviOltJ/C71AUj6ZGeIrS+5YDAYdVTOqBvwP/AoqAEUIInRAiGRjr+pkQtLPuTEKIWOC8E7ifViD4RK6TUlainQZ+H1ryU5R+RyU8RellrinEi4BLXV3qGwCnlPKvwCq0pLcDeAat0z9Syq1oU5m7gMWu2/2Uj4GLXCdvTDnquleA/7iuM7ouWwSUSSnVETpKv6SqNBXFzVx75d4ALpJSbnJjHP8CNksp/+uuGBSlJ6mEpygKQoiNaFOmZ0spLT91e0Xpi1TCUxRFUbyCWsNTFEVRvIJKeIqiKIpXUAlPURRF8Qoq4SmKoiheQSU8RVEUxSv8P+MITiNcVAjLAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmoAAAJwCAYAAAA5n02CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAADjZklEQVR4nOzdd3gU9drG8e9syZb0XiAkofcOiqCgoCBFRRFUPOrRI4pH7L0CtleFI6hHUY+CKAgqYAFFQQWkSK/SIZBAGqRv6pZ5/9hkIQYwgSSzSZ7Pde1ldmZ29t6EyMOvKqqqqgghhBBCCK+j0zqAEEIIIYQ4MynUhBBCCCG8lBRqQgghhBBeSgo1IYQQQggvJYWaEEIIIYSXkkJNCCGEEMJLSaEmhBBCCOGlpFATQgghhPBSUqgJIYQQQngpKdSEEKIei4+P54477tA6hhCilkihJoSoklmzZqEoCoqisHr16krnVVUlNjYWRVEYPnx4pfPFxcW89dZbXHTRRQQGBmI2m2ndujX3338/+/fvv6BsTqeTmJgYFEXhxx9/rHCuc+fONGvWjHPtlte3b18iIyNxOByeY3l5eUyaNIkuXbrg5+eHxWKhY8eOPPnkk6SkpFxQXi3l5ORgNptRFIU9e/Z4jk+cONHz8z3XY8CAAZ7XrFixguuvv56oqCh8fHyIiIhgxIgRLFy4UINPJkTDZNA6gBCifjGbzcydO5d+/fpVOL5y5UqOHTuGyWSq9JqTJ08yZMgQNm/ezPDhw7nlllvw8/Nj3759zJs3jw8//JDS0tLzzvTrr7+SmppKfHw8c+bM4eqrr/acGzt2LE899RS///47l112WaXXHjlyhHXr1nH//fdjMLj/l3j48GEGDRpEUlISN954I+PGjcPHx4cdO3bw8ccfs2jRogsuLrXy1VdfoSgKUVFRzJkzh5dffhmA66+/npYtW3qus9lsjB8/npEjR3L99dd7jkdGRgLw4osvMnnyZFq1asU999xDXFwcmZmZ/PDDD9xwww3MmTOHW265pW4/nBANkSqEEFUwc+ZMFVCvv/56NSwsTLXb7RXO33333WqPHj3UuLg4ddiwYRXODRs2TNXpdOrXX39d6b7FxcXqo48+ekHZbrvtNrV79+7q9OnTVV9fX9Vms3nOJSUlqYqiqPfcc88ZX/vqq6+qgPrHH3+oqqqqdrtd7dKli2q1WtXff/+90vW5ubnqM888c0F5a1JcXJx6++23V/n6yy67TL3++uvVhx9+WE1ISDjrdSdOnFAB9cUXX6x07quvvlIBddSoUWppaWml80uXLlW///77KmcSQpydFGpCiCopL9S++uorVVEU9YcffvCcKykpUYODg9WpU6dWKtT++OMPFVDvvvvuWslVWFio+vv7q2+88Yaampqq6nQ6dc6cORWu6d+/vxoaGnrGoqJjx45qixYtPM/nzZunAuorr7xy3pmOHDmijh8/Xm3durVqNpvVkJAQddSoUWpiYmKF68q/p6tXr1YffvhhNSwsTLVarep1112nZmRkVLjW5XKpL730ktqkSRPVYrGoAwYMUHft2lWtQu3o0aOqoijql19+qa5fv14F1DVr1pzx2nMVam3btlVDQkLUvLy8Kr2vEOL8yRg1IUS1xMfH06dPH7744gvPsR9//JHc3FxuuummStd/9913APzjH/+olTzfffcdNpuNm266iaioKAYMGMCcOXMqXDN27FgyMzP56aefKhzfuXMnu3btYuzYsTWad+PGjaxdu5abbrqJt99+m3vvvZdffvmFAQMGUFhYWOn6CRMmsH37dl588UXGjx/P999/z/3331/hmhdeeIHnn3+eLl268Oabb9K8eXOuuuoqCgoKqpzriy++wNfXl+HDh9O7d29atGhR6Xv1dw4cOMDevXu57rrr8Pf3r9ZrhRDVJ2PUhBDVdsstt/D0009TVFSExWJhzpw59O/fn5iYmErXlg9Y79SpU61k+fzzz7nkkkuIjY0F4KabbuK+++7jxIkThIeHAzBq1CgmTJjA3LlzK0x0mDt3LkCFQm3Pnj0EBgZ67nc+hg0bxqhRoyocGzFiBH369GHBggWVisDQ0FB+/vlnFEUBwOVy8fbbb5Obm0tgYCAnTpzgjTfeYNiwYXz//fee65599lleffXVKueaM2cO1157LRaLBYAxY8bw4YcfMn36dM/4vL9T2z9PIURF0qImhKi20aNHU1RUxOLFi8nPz2fx4sVnHTiel5cHUCutL+WtZDfffLPn2A033ICiKHz55ZeeY8HBwQwdOpTvvvvO0wKlqirz5s2jZ8+etG7dukLeC81aXggB2O12MjMzadmyJUFBQWzZsqXS9ePGjfMUXwCXXnopTqeTo0ePArB8+XJKS0uZMGFCheseeuihKmfasWMHO3furPC9uvnmmzl58mSllsZzqc2fpxCiMinUhBDVFh4ezqBBg5g7dy4LFy7E6XRWakEqFxAQAEB+fn6N55g/fz52u51u3bpx8OBBDh48SFZWFhdddNEZuz8LCgr49ttvAVi7di1Hjhyp0JpWnvdCsxYVFfHCCy8QGxuLyWQiLCyM8PBwcnJyyM3NrXR9s2bNKjwPDg4GIDs7G8BTsLVq1arCdeHh4Z5r/87nn3+Or68vzZs393yvzGazZ6ZsVdXmz1MIUZl0fQohzsstt9zC3XffTVpaGldffTVBQUFnvK5t27aAezzYpZdeWqMZyguMvn37nvH84cOHad68OQDDhw8nMDCQuXPncssttzB37lz0en2lcXVt27Zl69atJCcnn3f354QJE5g5cyYPPfQQffr0ITAwEEVRuOmmm3C5XJWu1+v1Z7yPeo6136pDVVW++OILCgoKaN++faXzGRkZ2Gw2/Pz8/vZep/88hRC1T1rUhBDnZeTIkeh0Ov74449zrpc1YsQIwN2iU5MSExNZu3Yt999/P1999VWFx/z58/Hx8fGMQQMwmUyMGjWKn3/+mfT0dL766iuuuOIKoqKiajzv119/ze23387UqVMZNWoUV155Jf369SMnJ+e87hcXFwe4B/Kf7sSJE55Wt3MpX+Nu8uTJlb5XH374IYWFhXzzzTdVytK6dWvatGnDt99+i81mq/ZnEUJUjxRqQojz4ufnx/vvv8/EiRM9xc2Z9OnThyFDhvC///3vjMVAaWkpjz32WLXfv7w17YknnmDUqFEVHqNHj6Z///5n7P602+3cc889nDhxolK3J7gnHnTq1IlXXnmFdevWVTqfn5/Ps88+e85ser2+UmvYO++8g9PprO7HBGDQoEEYjUbeeeedCvedNm1alV5f3u35+OOPV/pe3X333bRq1apa3Z+TJk0iMzOTf/3rXxV2cyj3888/s3jx4irfTwhxdtL1KYQ4b7fffnuVrps9ezZXXXUV119/PSNGjGDgwIH4+vpy4MAB5s2bR2pqKlOmTAHcOwUkJCRw++23M2vWrLPec86cOXTt2vWs3ZPXXHMNEyZMYMuWLXTv3h2A/v3707RpU7799lssFkuFFffLGY1GFi5cyKBBg7jssssYPXo0ffv2xWg08ueffzJ37lyCg4N55ZVXzppt+PDhfPbZZwQGBtK+fXvWrVvH8uXLCQ0NrdL366/Cw8N57LHHeO211xg+fDhDhw5l69at/Pjjj4SFhZ3ztSUlJSxYsIArr7wSs9l8xmuuueYapk+fTkZGBhEREX+bZ8yYMezcuZNXXnmFrVu3cvPNN3t2Jli6dCm//PJLhdZMIcT5kxY1IUStCw8PZ+3atbz55pukpqby7LPPct9997Fw4UKuueYadu/e7bm2vDstOjr6rPfbsmULe/fuPWdL3pm6MHU6nWfW44gRI846c7Fly5Zs27aNZ555hp07d/L444/zwAMP8Msvv/Cvf/2LlStXnvPzTp8+ndtuu405c+bw6KOPkpqayvLly6s0BuxsXn75ZSZNmsTWrVt5/PHHOXToED///DO+vr7nfN2SJUvIycn52++Vw+Fg3rx51crzyy+/0K5dO95//33GjRvHG2+8gdVq5dtvv60wu1QIcf4UtaZGqwohRA147733eOKJJzh06JBnX0khhGispEVNCOFVfvvtNx544AEp0oQQAmlRE0IIIYTwWtKiJoQQQgjhpaRQE0IIIYTwUlKoCSGEEEJ4KSnUhBBCCCG8lCx4C7hcLlJSUvD390dRFK3jCCGEEKIBU1WV/Px8YmJi0OnO3WYmhRqQkpJy3psvCyGEEEKcj+TkZJo2bXrOa6RQA8/q5MnJyQQEBGicRgghhBANWV5eHrGxsWfdHeV0UqiBp7szICBACjUhhBBC1ImqDLeSyQRCCCGEEF5KCjUhhBBCCC8lhZoQQgghhJeSMWpCCCGqTVVVHA4HTqdT6yhCeB29Xo/BYKiRJb+kUBNCCFEtpaWlpKamUlhYqHUUIbyW1WolOjoaHx+fC7qPFGpCCCGqzOVykZiYiF6vJyYmBh8fH1koXIjTqKpKaWkpJ06cIDExkVatWv3torbnIoWaEEKIKistLcXlchEbG4vVatU6jhBeyWKxYDQaOXr0KKWlpZjN5vO+l0wmEEIIUW0X0kIgRGNQU78j8psmhBBCCOGlpFATQgghhPBSUqgJIYSoc06XyrpDmXy77TjrDmXidKlaR6ozAwYM4KGHHqrRe06cOJGuXbvW6D2Fd5BCTQghRJ1auiuVfq//ys0f/cGD87Zx80d/0O/1X1m6K7XW3vOOO+5AURTuvffeSuf+/e9/oygKd9xxR629/+kWLlzISy+9VCfv9VcLFixgwIABBAYG4ufnR+fOnZk8eTJZWVk1cv/4+HimTZtWI/cSblKoCSGEqDNLd6Uy/vMtpOYWVziellvM+M+31GqxFhsby7x58ygqKvIcKy4uZu7cuTRr1uyC72+326t0XUhICP7+/hf8ftX17LPPMmbMGHr16sWPP/7Irl27mDp1Ktu3b+ezzz6r8zyiaqRQE0IIcd5UVaWw1FGlR36xnRe/+5MzdXKWH5v43W7yi+1Vup+qVq+7tHv37sTGxrJw4ULPsYULF9KsWTO6detW4dqlS5fSr18/goKCCA0NZfjw4Rw6dMhz/siRIyiKwvz58+nfvz9ms5k5c+bgcDh44IEHPK978sknuf3227nuuus8r/1r12d8fDyvvvoqd955J/7+/jRr1owPP/ywQp4nn3yS1q1bY7Vaad68Oc8//3yVC0OADRs28OqrrzJ16lTefPNNLrnkEuLj47nyyitZsGABt99+u+fa999/nxYtWuDj40ObNm0qFHGqqjJx4kSaNWuGyWQiJiaGBx54wPO5jh49ysMPP4yiKLK+Xg2RddSEEEKctyK7k/Yv/FQj91KBtLxiOk38uUrX7548GKtP9f4au/POO5k5cyZjx44F4JNPPuGf//wnK1asqHBdQUEBjzzyCJ07d8Zms/HCCy8wcuRItm3bVmHZhaeeeoqpU6fSrVs3zGYzr7/+OnPmzGHmzJm0a9eO6dOn880333D55ZefM9fUqVN56aWXeOaZZ/j6668ZP348/fv3p02bNgD4+/sza9YsYmJi2LlzJ3fffTf+/v488cQTVfrcc+bMwc/Pj/vuu++M54OCggBYtGgRDz74INOmTWPQoEEsXryYf/7znzRt2pTLL7+cBQsW8NZbbzFv3jw6dOhAWloa27dvB9xFb5cuXRg3bhx33313lXKJvyeFmhBCiEbj1ltv5emnn+bo0aMArFmzhnnz5lUq1G644YYKzz/55BPCw8PZvXs3HTt29Bx/6KGHuP766z3P33nnHZ5++mlGjhwJwLvvvssPP/zwt7mGDh3qKaKefPJJ3nrrLX777TdPofbcc895ro2Pj+exxx5j3rx5VS7UDhw4QPPmzTEajee8bsqUKdxxxx2eLI888gh//PEHU6ZM4fLLLycpKYmoqCgGDRqE0WikWbNm9O7dG3B36er1evz9/YmKiqpSLvH3pFATQghx3ixGPbsnD67StRsSs7hj5sa/vW7WP3vROyGkSu9dXeHh4QwbNoxZs2ahqirDhg0jLCys0nUHDhzghRdeYP369Zw8eRKXywVAUlJShUKtZ8+enq9zc3NJT0/3FC7g3py7R48entefTefOnT1fK4pCVFQUGRkZnmPz58/n7bff5tChQ9hsNhwOBwEBAVX+3FXtJt6zZw/jxo2rcKxv375Mnz4dgBtvvJFp06bRvHlzhgwZwtChQxkxYgQGg5QTtUXTMWqrVq1ixIgRxMTEoCgK33zzTYXzqqrywgsvEB0djcViYdCgQRw4cKDCNVlZWYwdO5aAgACCgoK46667sNlsdfgp/l5B8m72zbiHguTdWkcRQogapSgKVh9DlR6XtgonOtDM2UYuKUB0oJlLW4VX6X7nOwbqzjvvZNasWXz66afceeedZ7xmxIgRZGVl8dFHH7F+/XrWr18PuLfQOp2vr+95Zfirv7Z0KYriKe7WrVvH2LFjGTp0KIsXL2br1q08++yzlbKcS+vWrTl8+HC1xrWdSWxsLPv27eO9997DYrFw3333cdlll13wfcXZaVqoFRQU0KVLF/773/+e8fwbb7zB22+/zYwZM1i/fj2+vr4MHjyY4uJTs4XGjh3Ln3/+ybJly1i8eDGrVq2q9K8BrWVuXkz+oU1kblmidRQhhNCMXqfw4oj2AJWKtfLnL45oj15Xu4PQhwwZQmlpKXa7ncGDK7cGZmZmsm/fPp577jkGDhxIu3btyM7O/tv7BgYGEhkZycaNp1oNnU4nW7ZsuaC8a9euJS4ujmeffZaePXvSqlUrT9dtVd1yyy3YbDbee++9M57PyckBoF27dqxZs6bCuTVr1tC+fXvPc4vFwogRI3j77bdZsWIF69atY+fOnQD4+PjgdDqrlU2cm6ZtlVdffTVXX331Gc+pqsq0adN47rnnuPbaawGYPXs2kZGRfPPNN9x0003s2bOHpUuXsnHjRk/z8zvvvMPQoUOZMmUKMTExdfZZ/qokOxVHQQ4AWdvdA2Oztv1EaI/hABh8gzAFR2sVTwghNDGkYzTv39qdSd/vrrBER1SgmRdHtGdIx9r//6Jer2fPnj2er/8qODiY0NBQPvzwQ6Kjo0lKSuKpp56q0r0nTJjAa6+9RsuWLWnbti3vvPMO2dnZFzQDslWrViQlJTFv3jx69erFkiVLWLRoUbXucdFFF/HEE0/w6KOPcvz4cUaOHElMTAwHDx5kxowZ9OvXjwcffJDHH3+c0aNH061bNwYNGsT333/PwoULWb58OQCzZs3C6XRy0UUXYbVa+fzzz7FYLMTFxQHu8XOrVq3ipptuwmQynbFbWVSP13YqJyYmkpaWxqBBgzzHAgMDueiii1i3bh033XQT69atIygoqMIYgUGDBqHT6Vi/fr1nMOdflZSUUFJS4nmel5dX4/l3vjq80jGHLZs902/1PO/55uYaf18hhPB2QzpGc2X7KDYkZpGRX0yEv5neCSG13pJ2unON79LpdMybN48HHniAjh070qZNG95++20GDBjwt/d98sknSUtL47bbbkOv1zNu3DgGDx58xoKwqq655hoefvhh7r//fkpKShg2bBjPP/88EydOrNZ9Xn/9dXr06MF///tfZsyYgcvlokWLFowaNcqzPMd1113H9OnTmTJlCg8++CAJCQnMnDnT89mDgoL4v//7Px555BGcTiedOnXi+++/JzQ0FIDJkydzzz330KJFC0pKSqq9hIqoTFG95LuoKAqLFi3yrDWzdu1a+vbtS0pKCtHRp/6FNXr0aM/aNa+++iqffvop+/btq3CviIgIJk2axPjx48/4XhMnTmTSpEmVjufm5lZrcOa5ZG75gcT5E8F1hiZgnZ6EMRMJ7T60Rt5LCCHqSnFxMYmJiSQkJGA2m7WO4/VcLhft2rVj9OjRmu1GILRxrt+VvLw8AgMDq1R3NMoFb59++mlyc3M9j+Tk5Bp/j9DuQ2k34dMznms34VMp0oQQogE6evQoH330Efv372fnzp2MHz+exMREbrnlFq2jiXrKawu18jVY0tPTKxxPT0/3nPvr9GUAh8NBVlbWOddwMZlMBAQEVHjULlmdWQghGgOdTsesWbPo1asXffv2ZefOnSxfvpx27dppHU3UU15bqCUkJBAVFcUvv/ziOZaXl8f69evp06cPAH369CEnJ4fNm0+N9fr1119xuVxcdNFFdZ75r4x+IRj8Q7E2bYuicw8H1FsDMfr9/fpAQggh6p/Y2FjWrFlDbm4ueXl5rF27lssuu0zrWKIe03Qygc1m4+DBg57niYmJbNu2jZCQEJo1a8ZDDz3Eyy+/TKtWrUhISOD5558nJibGM46tXbt2DBkyhLvvvpsZM2Zgt9u5//77uemmmzSd8VnOJyiSzs8sRtEb2f/hfeQf3EDMoLvxCYrUOpoQQggh6gFNC7VNmzZV2P/skUceAeD2229n1qxZPPHEExQUFDBu3DhycnLo168fS5curTAob86cOdx///0MHDgQnU7HDTfcwNtvv13nn+VsdAYfAPwTupF/cAMFSTuBm7UNJYQQQoh6QdNCbcCAAeecuqsoCpMnT2by5MlnvSYkJIS5c+fWRrwa5de8GwD5h7egquoFrakjhBBCiMbBa8eoNTS+zTqi6A3Y805QmnVc6zhCCCGEqAekUKsjeh8L1qbuLTjyD1/YdiJCCCGEaBykUKtD/mXdn7bEbdoGEUIIIUS9IIVaHfJLKBunligtakIIIeqvWbNmERQUVK3XxMfHM23atHNeoygK33zzzXnnaoikUKtDfvFdQVEoOZlMad4JreMIIYSm/jiyies+uY0/jmyqs/dct24der2eYcOG1dl7aiE9PR2j0ci8efPOeP6uu+6ie/fu533/MWPGsH///vN+fW1bsGABAwYMIDAwED8/Pzp37szkyZPJysqqkftXpeisKVKo1SGDxR9LVCsAbIlbNU4jhBDaUVWV6b9/yOHMo0z//cM627z7448/ZsKECaxatYqUlJRafS9VVXE4HLX6HmcTGRnJsGHD+OSTTyqdKygo4Msvv+Suu+46r3vb7XYsFgsREREXGrNWPPvss4wZM4ZevXrx448/smvXLqZOncr27dv57LPPtI5XbVKo1QF73kly966lOOOIjFMTQjQoqqpSWFpU7cdvB1fzZ9o+AP5M28dvB1dX+x7VLe5sNhvz589n/PjxDBs2jFmzZnnO3XLLLYwZM6bC9Xa7nbCwMGbPng24N1h/7bXXSEhIwGKx0KVLF77++mvP9StWrEBRFH788Ud69OiByWRi9erVHDp0iGuvvZbIyEj8/Pzo1asXy5cvr/BeqampDBs2DIvFQkJCAnPnzq3UapOTk8O//vUvwsPDCQgI4IorrmD79u1n/bx33XUXv/zyC0lJSRWOf/XVVzgcDsaOHcvSpUvp168fQUFBhIaGMnz4cA4dOuS59siRIyiKwvz58+nfvz9ms5k5c+ZU6vqsymcEyM/P5+abb8bX15cmTZrw3//+96z5AZKTkxk9ejRBQUGEhIRw7bXXcuTIkbNev2HDBl599VWmTp3Km2++ySWXXEJ8fDxXXnklCxYs4Pbbb/dc+/7779OiRQt8fHxo06ZNhSJOVVUmTpxIs2bNMJlMxMTE8MADDwDupcWOHj3Kww8/jKIotb7clqbrqDUGhcf3cfyn9wEIbHsJfgndyFgzX2Z+CiEahCJ7MRdPH3LB93nom+eq/Zo/HlyK1cdS5eu//PJL2rZtS5s2bbj11lt56KGHePrpp1EUhbFjx3LjjTdis9nw8/MD4KeffqKwsJCRI0cC8Nprr/H5558zY8YMWrVqxapVq7j11lsJDw+nf//+nvd56qmnmDJlCs2bNyc4OJjk5GSGDh3KK6+8gslkYvbs2YwYMYJ9+/bRrFkzAG677TZOnjzJihUrMBqNPPLII5X2sr7xxhuxWCz8+OOPBAYG8sEHHzBw4ED2799PSEjlrQmHDh1KZGQks2bN4oUXXvAcnzlzJtdffz1BQUEUFBTwyCOP0LlzZ2w2Gy+88AIjR45k27Zt6HSn2nKeeuoppk6dSrdu3TCbzfz0008V3stms/3tZwR48803eeaZZ5g0aRI//fQTDz74IK1bt+bKK6+slN9utzN48GD69OnD77//jsFg4OWXX2bIkCHs2LEDHx+fSq+ZM2cOfn5+3HfffWf8M1BeXC5atIgHH3yQadOmMWjQIBYvXsw///lPmjZtyuWXX86CBQt46623mDdvHh06dCAtLc1TFC9cuJAuXbowbtw47r777jO+T02SQq2WmSPiUXR6VJeTwpT9NLnqXgCK0g7iKMzDYK3tDeGFEEKAu9vz1ltvBWDIkCHk5uaycuVKBgwYwODBg/H19WXRokX84x//AGDu3Llcc801+Pv7U1JSwquvvsry5cs9+003b96c1atX88EHH1Qo1CZPnlyh8AgJCaFLly6e5y+99BKLFi3iu+++4/7772fv3r0sX76cjRs30rNnTwD+97//0apVK89rVq9ezYYNG8jIyMBkMgEwZcoUvvnmG77++mvGjRtX6fPq9XrPTj/PP/88iqJw6NAhfv/9d5YtWwbADTfcUOE1n3zyCeHh4ezevZuOHTt6jj/00ENcf/31Z/3edunS5ZyfsVzfvn156qmnAGjdujVr1qzhrbfeOmOhNn/+fFwuF//73/88rVYzZ84kKCiIFStWcNVVV1V6zYEDB2jevDlGo/GsWcH9vbvjjjs8Bd0jjzzCH3/8wZQpU7j88stJSkoiKiqKQYMGYTQaadasGb179wbcP0+9Xo+/vz9RUVHnfJ+aIIVaLdMZTZgj4ilKO4Q97yQoCqbwOEpOHMV2ZBtB7WWzXiFE/WUxmvnjwaVVvl5VVe6c/yD7Mg7iUl2e4zpFR5uIlnwyZnqVu5IsRvPfX1Rm3759bNiwgUWLFgFgMBgYM2YMH3/8MQMGDMBgMDB69GjmzJnDP/7xDwoKCvj22289g/EPHjxIYWFhpYKitLSUbt26VThWXmyVs9lsTJw4kSVLlpCamorD4aCoqMjTJblv3z4MBkOFwf0tW7YkODjY83z79u3YbDZCQ0Mr3LuoqKhCV+Vf3Xnnnfzf//0fv/32G1dccQUzZ84kPj6eK664AnAXNi+88ALr16/n5MmTuFzun0lSUlKFQu2vn+mv/u4zlisvck9/frZB+du3b+fgwYP4+/tXOF5cXHzWz1zV7vA9e/ZUKm779u3L9OnTAXfr5bRp02jevDlDhgxh6NChjBgxAoOh7ssmKdTqgLVJG4rS3H+oCo/vwz+hKyUnjpJ/eKsUakKIek1RlGp1P65J3MCe9MqzBV2qiz3p+9mWsou+Cb1rMiLgbk1zOBzExMR4jqmqislk4t133yUwMJCxY8fSv39/MjIyWLZsGRaLhSFD3N26NpsNgCVLltCkSZMK9y5v4Srn6+tb4fljjz3GsmXLmDJlCi1btsRisTBq1ChKS0urnN9msxEdHc2KFSsqnTvXMhmtWrXi0ksvZebMmQwYMIDZs2dz9913e4rhESNGEBcXx0cffURMTAwul4uOHTtWyvbXz/RXNfEZ/8pms9GjRw/mzJlT6Vx4ePgZX9O6dWtWr16N3W7/21a1c4mNjWXfvn0sX76cZcuWcd999/Hmm2+ycuXKC7rv+ZDJBHXAGtPG83Vhyj78Etz/apKZn0KIxkRVVd5d/T8UztxipqDw7ur/1fgMUIfDwezZs5k6dSrbtm3zPLZv305MTAxffPEFAJdccgmxsbHMnz+fOXPmcOONN3r+Um7fvj0mk4mkpCRatmxZ4REbG3vO91+zZg133HEHI0eOpFOnTkRFRVUYEN+mTRscDgdbt576O+HgwYNkZ2d7nnfv3p20tDQMBkOl9w8LCzvn+991110sWLCABQsWcPz4ce644w4AMjMz2bdvH8899xwDBw6kXbt2Fd6zOv7uM5b7448/Kj1v167dGe/ZvXt3Dhw4QERERKXPHBgYeMbX3HLLLdhsNt57770zns/JyQGgXbt2rFmzptJnaN++vee5xWJhxIgRvP3226xYsYJ169axc+dOAHx8fHA6nWd8j5omLWp1wBQai95kxVlSSFHqAYK7DAKg8NhunKVF6Kvxr1EhhKiv7E47aXkZqJy5EFNRScs7gd1px8dQeaD4+Vq8eDHZ2dncddddlf6Cv+GGG/j444+59173+OFbbrmFGTNmsH//fn777TfPdf7+/jz22GM8/PDDuFwu+vXrR25uLmvWrCEgIKDCbMK/atWqFQsXLmTEiBEoisLzzz/v6WIEaNu2LYMGDWLcuHG8//77GI1GHn30USwWi6fla9CgQfTp04frrruON954g9atW5OSksKSJUsYOXLkObsmb7zxRh544AHuuecerrrqKk9hGRwcTGhoKB9++CHR0dEkJSV5xo9V1999xnJr1qzhjTfe4LrrrmPZsmV89dVXLFmy5Iz3HDt2LG+++SbXXnstkydPpmnTphw9epSFCxfyxBNP0LRp00qvueiii3jiiSd49NFHOX78OCNHjiQmJoaDBw8yY8YM+vXrx4MPPsjjjz/O6NGj6datG4MGDeL7779n4cKFnpmqs2bNwul0ctFFF2G1Wvn888+xWCzExcUB7nXUVq1axU033YTJZPrbYvmCqELNzc1VATU3N7fW3iPll4/V/R8/qO7/+EG1MP2Iuu2lq9WNj3VXcw+sr7X3FEKImlZUVKTu3r1bLSoqOq/Xp+amq3+m7TvrIzUvvYYTq+rw4cPVoUOHnvHc+vXrVUDdvn27qqqqunv3bhVQ4+LiVJfLVeFal8ulTps2TW3Tpo1qNBrV8PBwdfDgwerKlStVVVXV3377TQXU7OzsCq9LTExUL7/8ctVisaixsbHqu+++q/bv31998MEHPdekpKSoV199tWoymdS4uDh17ty5akREhDpjxgzPNXl5eeqECRPUmJgY1Wg0qrGxserYsWPVpKSkv/0ejBs3TgXUL7/8ssLxZcuWqe3atVNNJpPauXNndcWKFSqgLlq0yJMdULdu3VrhdTNnzlQDAwOr9Rnj4uLUSZMmqTfeeKNqtVrVqKgodfr06RXue/p7q6qqpqamqrfddpsaFhammkwmtXnz5urdd9/9t39fz58/X73ssstUf39/1dfXV+3cubM6efLkCj+b9957T23evLlqNBrV1q1bq7Nnz/acW7RokXrRRRepAQEBqq+vr3rxxRery5cv95xft26d2rlzZ9VkMqlnK6XO9btSnbpDKfvGNGp5eXkEBgaSm5tLQEDtzMLM3buWjLVfAhDaYyg5u1aQte0noq8cR5Or7qmV9xRCiJpWXFxMYmIiCQkJmM1VH8wvqufYsWPExsayfPlyBg4cqHUccR7O9btSnbpDuj7riDWmtefrwpT9+DXvTta2n2ScmhBCCH799VdsNhudOnUiNTWVJ554gvj4eC67TCacNXYymaCOGAPCMPq7p1UXpyfiG9sBgIKjO3A57FpGE0IIoTG73c4zzzxDhw4dGDlyJOHh4Z7Fb0XjJi1qdcjapA25e9eiupyoLhcGayCOwlwKj+/FL66T1vGEEEJoZPDgwQwePFjrGMILSYtaHTp9mY6i1P34JbgXSZTtpIQQQghxJlKo1SFLTGsom2pdeHyfp1CzJUqhJoQQQojKpFCrQ3ofC+Yw9+a0pTlpngkGtsRtqK66WThPCCGEEPWHFGp17PTuT9XlQmey4iy2ebaYEkIIIYQoJ4VaHbM2ObVMR1HaQfziOgOynZQQQgghKpNCrY6Zw+PRGd1boxSl7Mc3visgEwqEEEIIUZkUanVM0RuwRLUEwFGUhyXcvW+YLXFrjW9ELIQQQtSlWbNmERQUpHWMBkUKNQ2cPk4NBRS9EXt+JiUnk7ULJYQQdawgeTf7ZtxDQfLuOnvPdevWodfrGTZsWJ29pxZmzZqFoijnfBw5cuSsr584cSJdu3attXy//fYbQ4cOJTQ0FKvVSvv27T0bqdeEAQMG8NBDD9XIvbQmhZoGrE1OW08tPRHfZu5dCmScmhCiMcncvJj8Q5vI3LKkzt7z448/ZsKECaxatYqUlJRafS9VVXE4HLX6HmczZswYUlNTPY8+ffpw9913VzgWGxurSbYPPviAQYMGERUVxYIFC9i9ezczZswgNzeXqVOnapLJm0mhpgFjYCQGq3sT1qLUg/jGdQVknJoQov5RVRVnaVGVH0XpieQnbiU/cRtZ234GIGvrT+QnbiM/cStF6YlVvld1h4vYbDbmz5/P+PHjGTZsGLNmzfKcu+WWWxgzZkyF6+12O2FhYcyePRsAl8vFa6+9RkJCAhaLhS5duvD11197rl+xYgWKovDjjz/So0cPTCYTq1ev5tChQ1x77bVERkbi5+dHr169WL58eYX3Sk1NZdiwYVgsFhISEpg7dy7x8fFMmzbNc01OTg7/+te/CA8PJyAggCuuuILt27ef8bNaLBaioqI8Dx8fH6xWq+d5aWkp119/PX5+fgQEBDB69GjS09MBd2vcpEmT2L59u6f1rfx79Z///IdOnTrh6+tLbGws9913Hzabrco/g2PHjvHAAw/wwAMP8MknnzBgwADPnqb/+9//eOGFFzzXLliwgA4dOmAymYiPj69UxL333nu0atUKs9lMZGQko0aNAuCOO+5g5cqVTJ8+vUqth95OtpDSgKIoWJu0Je/ABlSnHVNwFCAtakKI+sdlL2brs/0u6B6Ogmz2vXdXtV/X7ZXV6H0sVb7+yy+/pG3btrRp04Zbb72Vhx56iKeffhpFURg7diw33ngjNpsNPz8/AH766ScKCwsZOXIkAK+99hqff/45M2bMoFWrVqxatYpbb72V8PBw+vfv73mfp556iilTptC8eXOCg4NJTk5m6NChvPLKK5hMJmbPns2IESPYt28fzZq519a87bbbOHnypGd/z0ceeYSMjIwK+W+88UYsFgs//vgjgYGBfPDBBwwcOJD9+/cTEhJS5e+Dy+Xi2muvxc/Pj5UrV+JwOPj3v//NmDFjWLFiBWPGjGHXrl0sXbrUU1AGBgYCoNPpePvtt0lISODw4cPcd999PPHEE7z33ntVeu+vvvqK0tJSnnjiiTOeLx/ftnnzZkaPHs3EiRMZM2YMa9eu5b777iM0NJQ77riDTZs28cADD/DZZ59xySWXkJWVxe+//w7A9OnT2b9/Px07dmTy5MkAhIeHV/n7422kUNOIJaY1eQc2uJ8oCig6SrKOU5qTjk9QpLbhhBCiAfr444+59dZbARgyZAi5ubmsXLmSAQMGMHjwYHx9fVm0aBH/+Mc/AJg7dy7XXHMN/v7+lJSU8Oqrr7J8+XL69OkDQPPmzVm9ejUffPBBhUJt8uTJXHnllZ7nISEhdOnSxfP8pZdeYtGiRXz33Xfcf//97N27l+XLl7Nx40Z69uwJwP/+9z9atWrlec3q1avZsGEDGRkZmEwmAKZMmcI333zD119/zbhx46r8ffjll1/YuXMniYmJnu7P2bNn06FDBzZu3EivXr3w8/PDYDAQFRVV4bWnj/uKj4/n5Zdf5t57761yoXbgwAECAgKIjo4+53X/+c9/GDhwIM8//zwArVu3Zvfu3bz55pvccccdJCUl4evry/Dhw/H39ycuLo5u3dy7/QQGBlZoQazvpFDTyOkTCopPHMUa05rC43vJT9xKaLchGiYTQoiq0xnNdHtldbVeU3h83xlb0Nrc93GFMbxVee+q2rdvHxs2bGDRokUAGAwGxowZw8cff8yAAQMwGAyMHj2aOXPm8I9//IOCggK+/fZb5s2bB8DBgwcpLCysUIABlJaWegqEcuXFVjmbzcbEiRNZsmQJqampOBwOioqKSEpK8mQzGAx0797d85qWLVsSHBzseb59+3ZsNhuhoaEV7l1UVMShQ9VbMH3Pnj3ExsZWGKPWvn17goKC2LNnD7169Trra5cvX85rr73G3r17ycvLw+FwUFxcTGFhIVar9W/fW1VVlLKtFP8u47XXXlvhWN++fZk2bRpOp5Mrr7ySuLg4mjdvzpAhQxgyZAgjR46sUob6Rgo1jRgs/phCYijJSqEk8xjWZp0oPL4XmxRqQoh6RFGUanU/AuiMpvIXg6p6/qszmqp9r6r6+OOPcTgcxMTEeI6pqorJZOLdd98lMDCQsWPH0r9/fzIyMli2bBkWi4UhQ9z/Py4fh7VkyRKaNGlS4d7lLVzlfH19Kzx/7LHHWLZsGVOmTKFly5ZYLBZGjRpFaWlplfPbbDaio6NZsWJFpXN1tRzGkSNHGD58OOPHj+eVV14hJCSE1atXc9ddd1FaWlqlIql169bk5uaSmpr6t61q5+Lv78+WLVtYsWIFP//8My+88AITJ05k48aNDW55EJlMoCFPq5qq4hPg7j/PPyzj1IQQDZvRLwSDfyjWJu2Iu/4ZrE3aYfAPxehX9XFW1eFwOJg9ezZTp05l27Ztnsf27duJiYnhiy++AOCSSy4hNjaW+fPnM2fOHG688UaMRiPgbnEymUwkJSXRsmXLCo+/mz25Zs0a7rjjDkaOHEmnTp2IioqqMLi9TZs2OBwOtm499f//gwcPkp2d7XnevXt30tLSMBgMld4/LCysWt+Pdu3akZycTHLyqSWhdu/eTU5ODu3btwfAx8cHp7PiHtSbN2/G5XIxdepULr74Ylq3bl3tmbOjRo3Cx8eHN95444znc3JyPBnXrFlT4dyaNWto3bo1er0ecLeKDho0iDfeeIMdO3Zw5MgRfv3117Pmr6+kRU1D1iZtyN71m/tJWVNwcfohHAU5GHyDtAsmhBC1yCcoks7PLEbRG1EUhbCLr0d12tEZfGrl/RYvXkx2djZ33XWXZ1B8uRtuuIGPP/6Ye++9F3DP/pwxYwb79+/nt99+81zn7+/PY489xsMPP4zL5aJfv37k5uayZs0aAgICuP3228/6/q1atWLhwoWMGDECRVF4/vnncblcnvNt27Zl0KBBjBs3jvfffx+j0cijjz6KxWLxdBMOGjSIPn36cN111/HGG294iqQlS5YwcuTISt2t5zJo0CA6derE2LFjmTZtGg6Hg/vuu4/+/ft77hMfH09iYiLbtm2jadOm+Pv707JlS+x2O++88w4jRoxgzZo1zJgxo8rvCxAbG8tbb73F/fffT15eHrfddhvx8fEcO3aM2bNn4+fnx9SpU3n00Ufp1asXL730EmPGjGHdunW8++67nrFwixcv5vDhw1x22WUEBwfzww8/4HK5aNOmjSf/+vXrOXLkCH5+foSEhKDT1dO2KVWoubm5KqDm5ubW6fs67aXqgVmPqvs/flBNnD9J3fH6SHXjY93VrJ2/1WkOIYSoqqKiInX37t1qUVGR1lGqbPjw4erQoUPPeG79+vUqoG7fvl1VVVXdvXu3CqhxcXGqy+WqcK3L5VKnTZumtmnTRjUajWp4eLg6ePBgdeXKlaqqqupvv/2mAmp2dnaF1yUmJqqXX365arFY1NjYWPXdd99V+/fvrz744IOea1JSUtSrr75aNZlMalxcnDp37lw1IiJCnTFjhueavLw8dcKECWpMTIxqNBrV2NhYdezYsWpSUtLffg/++n5Hjx5Vr7nmGtXX11f19/dXb7zxRjUtLc1zvri4WL3hhhvUoKAgFVBnzpypqqqq/uc//1Gjo6NVi8WiDh48WJ09e3aFzzxz5kw1MDDwb/MsW7ZMHTx4sBocHKyazWa1bdu26mOPPaampKR4rvn666/V9u3bq0ajUW3WrJn65ptves79/vvvav/+/dXg4GDVYrGonTt3VufPn+85v2/fPvXiiy9WLRaLCqiJiYl/m6mmnet3pTp1h6Kqsm9RXl4egYGB5ObmEhAQUKfvfXzpexSm7AdAZ/Yje+uPRF52K7EjHq7THEIIURXFxcUkJiaSkJCA2Vz1wfyieo4dO0ZsbCzLly9n4MCBWscR5+FcvyvVqTuk61NjlpjWnkLNJ8A9ziBf1lMTQohG5ddff8Vms9GpUydSU1N54oknPAvBisatnnbYNhwV9v0sU3h8L86SQg3SCCGE0ILdbueZZ56hQ4cOjBw5kvDwcM/it6JxkxY1jZlCm6I3++IsLqA0Jw1jUBT2nDRsR3cQ2PpireMJIYSoA4MHD2bw4MFaxxBeSFrUNKYoCpbo1gC4Souxxri/lu2khBBCCCGFmhc4fSXu8nWEZD01IYQ3k3loQpxbTf2OSKHmBU4fp1b+gy1I2onLUfVVq4UQoi6Uj5kqLJRxtEKcS/nvyIWOM5Qxal7A6BeMT2AEpbkZOAqy0VuDcBbmUJC8G/+ErlrHE0IID71eT1BQEBkZGQBYrdYq7d0oRGOhqiqFhYVkZGQQFBTk2UnhfEmh5iWsMW0ozc0AVcUS1QLb4c3YErdIoSaE8DpRUVEAnmJNCFFZUFCQ53flQkih5iUsTVqTs+d3wN3CBpCfuI3z37JWCCFqh6IoREdHExERgd1u1zqOEF7HaDRecEtaOSnUvIQlqiWKokNVXaC694ArOLIN1eVE0dXMD1sIIWqSXq+vsb+MhBBnJpMJvITex4IpPA4Al6MUncmKs7iAotQDGicTQgghhFakUPMip5bpUDBHJACQf3iLdoGEEEIIoSkp1LzI6ct0GKzuTVptids0SiOEEEIIrUmh5kXM4c3Q+ZgBUF3ucWr5h7fIwpJCCCFEIyWFmhdRdHosUS3dX+sNoDfiKMim+MQRbYMJIYQQQhNSqHmZ8nFqiqLDHBoLyL6fQgghRGMlhZqXqThOzR+QfT+FEEKIxkoKNS9jDAjHULbgbfnINGlRE0IIIRonKdS8jKIoWGNaA6A3+YKiozQ7lZLsVI2TCSGEEKKuSaHmhaxN2gLuyQU+Qe59wqRVTQghhGh8pFDzQtbo1qAoAOgtMk5NCCGEaKykUPNCerMvptCmAJ59PqVFTQghhGh8pFDzUr5l3Z/lOxQUZyRit2VrGUkIIYQQdUwKNS/lWU9Nb8TgFwpIq5oQQgjR2Eih5qXM4fHojCbA3RUKkC+FmhBCCNGoSKHmpRS9AUt0KwB0PhYAbIe3aBlJCCGEEHVMCjUvZvWMUwsEoDBlP85im5aRhBBCCFGHpFDzYuXj1HRGEzqzH6gubEd2aJxKCCGEEHVFCjUv5hMQjjEgDCjbpQAZpyaEEEI0JlKoebnyTdrLl+mwJco4NSGEEKKxkELNy1mbVhynVpD0Jy57iZaRhBBCCFFHpFDzctboVig6HTofC4rRhOq0U5D8p9axhBBCCFEHpFDzcjqjGXNEAgAGc9m+nzJOTQghhGgUpFCrB8qX6dCXdX/KempCCCFE4yCFWj3w1/XUbEd3oDodWkYSQgghRB2QQq0eMIU2RW/2Q2+2gs6Aq6SQwpT9WscSQgghRC2TQq0eUBSlbPFbBYO1bJyadH8KIYQQDZ4UavVEpe5PmVAghBBCNHgGrQOIqqk0oSBxK6rLhaKTWlsIIYSoCU6XyobELDLyi4nwN9M7IQS9TtE0kxRq9YTB4o8ptAnqSRcoOhyFuRSfOIIlsrnW0YQQQoh6b+muVCZ9v5vU3GLPsehAMy+OaM+QjtGa5ZLmmHrE2qQtiqJDb5FxakIIIURNWborlfGfb6lQpAGk5RYz/vMtLN2VqlEyKdTqFWuMjFMTQgghapLTpTLp+92oZzhXfmzS97txus50Re2TQq0esUQmoDP6eAq1vENbUFVt/uAIIYQQDcGGxKxKLWmnU4HU3GI2JGbVXajTSKFWjyh6A5aolp6uT0deBqXZ2jXHCiGEEPVdRv7Zi7Tzua6mSaFWz1ibtEXR6dGbZZyaEEIIcaEi/M01el1Nk0KtnrE2aQecvkyHFGpCCCHE+eqdEEJ0oJmzLcKh4J792TshpC5jeUihVs8YA8Iw+odg8A0AIO+wTCgQQgghzpdep/DiiPZnPFdevL04or1m66lJoVbPuLeTaovB4m5RKz2ZhD3vpMaphBBCiPprSMdoXrymcrEWFWjm/Vu7yzpqonqsTdqh6A3oTL4A5B/Zpm0gIYQQop4rKnUBEBlgomNMANd1jWHJA5dqWqSBFGr1kiW6JYpOd2o9NZlQIIQQQlyQpX+mARDmZyIywD1xIMhi1DISIIVavaT3sWCOiMdgLRundnCTxomEEEKI+islp4jtyTkABFt9AOgRF4xO430+QQq1esvapK1n5mdx+iEcRfkaJxJCCCHqp5/LWtOaBlkwGdylUc94bWZ5/pUUavWUNaYtOoMPOqO7edZ2ZLvGiYQQQoj6qbzb089s8Py3daS/lpE8pFCrp0xhsejNvp5WtfxD0v0phBBCVFemrcSzPVSI76luT62W4/grKdTqKUVRsMa0ObXv5/71GicSQggh6p/le9Jxqe7ZnhajHnAXat5CCrV6zNqkradQK0o7iLO0SONEQgghRP2ydJe72zOwbIanr8lAGy/p9gQp1Oo1a5M26HzMKAYfUF0UJO3SOpIQQghRb+QV21l90L1ofHm3Z7dmQRj03lMeeU8SUW0GayCmkJjTuj//0DiREEIIUX/8tjcDu1Ml1NcHXx/3RIJeXjLbs5wUavWctWk79GXrqeXuk0JNCCGEqKrybs8gq7vb02oy0DbKe7o9QQq1es+3aXtPi1px2kFcTrvGiYQQQgjvV1TqZMW+E8Cpbs+usd7V7QlSqNV75oh4jH6hoDOguhwUHNutdSQhhBDC6606cIIiu5MAswF/s7tFrVe898z2LCeFWj2n6PRYm7b1bCeVs+M3jRMJIYQQ3u+nsm7PUD8TCmDx0dM+OkDbUGcghVoDcHr3Z97BDRqnEUIIIbxbqcPF8j3pgHd3e4IUag1CxX0/E1FdLo0TCSGEEN7rj8OZ5BU78PXRe9ZP85a9Pf9KCrUGwGANwNqkDSg6VGcptqOy76cQQghxNuV7e5Z3e5qNejrEeF+3J0ih1mD4xXbwjFPL3r5M4zRCCCGEd3K6VH7+s3K3p9ELuz1BCrUGw9q0PXpL2Qbth7donEYIIYTwTluSsjlpK8Fk0BFctn5aDy+c7VnOqws1p9PJ888/T0JCAhaLhRYtWvDSSy+hqqrnGlVVeeGFF4iOjsZisTBo0CAOHDigYWptmMPj8AmKBKD4xFFcTofGiYQQQgjvU77IbbifCZ2iYDLq6BgTqHGqs/PqQu3111/n/fff591332XPnj28/vrrvPHGG7zzzjuea9544w3efvttZsyYwfr16/H19WXw4MEUFxdrmLzuKTodAS17Agqqo5S8/eu1jiSEEEJ4FVVVPYVacFm3Z5emQfgYvLcc8t5kwNq1a7n22msZNmwY8fHxjBo1iquuuooNG9xLUKiqyrRp03juuee49tpr6dy5M7NnzyYlJYVvvvlG2/Aa8I3rjN7i3voiZ9cvGqcRQgghvMuu43kczynCqFMILSvUenpxtyd4eaF2ySWX8Msvv7B//34Atm/fzurVq7n66qsBSExMJC0tjUGDBnleExgYyEUXXcS6devOet+SkhLy8vIqPBoCa5O2nvXUbEd2aJxGCCGE8C5L/0wFIMzfhF6n4GPQ0bGJ93Z7Ahi0DnAuTz31FHl5ebRt2xa9Xo/T6eSVV15h7NixAKSluZsvIyMjK7wuMjLSc+5MXnvtNSZNmlR7wTVisPhjiWpBSWYypdmpOApyMPgGaR1LCCGE8Arl3Z7lsz07Nw3CZNBrGelveXWL2pdffsmcOXOYO3cuW7Zs4dNPP2XKlCl8+umnF3Tfp59+mtzcXM8jOTm5hhJrL7BdPwBc9mJy9/2hcRohhBDCOxzMyOfQiQL0ikKYX/3o9gQvb1F7/PHHeeqpp7jpppsA6NSpE0ePHuW1117j9ttvJyoqCoD09HSio6M9r0tPT6dr165nva/JZMJkMtVqdq34J3RDZ/bFVVxAzu5VhHYfonUkIYQQQnPlrWlhfj4YdDqMeh2dvLzbE7y8Ra2wsBCdrmJEvV6Pq2yLpISEBKKiovjll1MD5/Py8li/fj19+vSp06zewhTWDKN/GACFx/5ElWU6hBBCCM9uBOXdnp2aBmI2ene3J3h5i9qIESN45ZVXaNasGR06dGDr1q385z//4c477wRAURQeeughXn75ZVq1akVCQgLPP/88MTExXHfdddqG14ii0+HXrBMlJ45it2VRlJGINbqV1rGEEEIIzSRnFbLreB4K7okEAD3jvL/bE7y8UHvnnXd4/vnnue+++8jIyCAmJoZ77rmHF154wXPNE088QUFBAePGjSMnJ4d+/fqxdOlSzGazhsm1FdRxAJmbF+MqKST/8GYp1IQQQjRqP3n29vTBR+/u9uwSG6RtqCpS1NOX+W+k8vLyCAwMJDc3l4AA79yUtTqcxQVsf2kwrtIiAtv2pdVdb2sdSQghhNDMjTPWsvFINq0j/YgNttKtWRD3X6FdI0Z16g6vHqMmzo/e7IsppAkARRlHsNuyNU4khBBCaCMjv5hNR91/D4b7lXV7xodoGalapFBroPwSugHgLMyj8NhujdMIIYQQ2li2Ox1VhWCrEbNRj16n0KVpkNaxqkwKtQYquMuVADiL88k/sl3jNEIIIYQ2/rrIbccmgVh8vH+2Zzkp1Boo/+bd0RndEypshzbjcpRqnEgIIYSoW7mFdtYdygQgvHy2Zz1Y5PZ0Uqg1UIqiYI5sDoDdlkVhyn6NEwkhhBB165e96ThcKgFmA74+BvQ6ha71ZLZnOSnUGrCAlr0BcBTmUpgs49SEEEI0Lj+Wd3uWTSLoEBOI1cerVyarRAq1Biy462AAnEX52I7uRFZiEUII0VgUlDhYtf8EABF+9bPbE6RQa9CsMa3c49RUFyXZxynJPKZ1JCGEEKJOrNx/ghKHC1+THj+zAV097PYEKdQaNEVRsMS0BsBZmEtB8p8aJxJCCCHqRvlsz1BfEwrQPjoAX1P96vYEKdQavMC2fQFwFEihJoQQonEocTj5dW8GABH1dLZnOSnUGjhPoVaUR8nJJByFuRonEkIIIWrX2oOZ2EocmI06AixGFEWhWzMp1IQXska3QjGYwOXEWVwgrWpCCCEavPJuzzA/d7dnu2h//OphtydIodbgKXoD1qbtAHAU5lGQJIWaEEKIhsvhdLFsTzpQP/f2/Csp1BqBwDaXAO4JBYUp+3E57BonEkIIIWrHxiPZZBWU4qNXCLKWd3sGaR3rvEmh1gj4N+8OuBe+VZ12ilJllwIhhBAN009/ls329DOhUxTaRvkTYDZqnOr8SaHWCPjGtge9AdVpx1VaJN2fQgghGiSXS/WMTyuf7dmjns72LCeFWiOgM5rwje0IuFvVCpL/lF0KhBBCNDg7jueSlleMQacQ7OuDokD3ejrbs5wUao1EQIsegLtQcxTmyi4FQgghGpzy1rQQXx/0ikLrSH8CLfW32xOkUGs0/BK6AXjWUSs8Jpu0CyGEaDhUVWXprlSg/i9yezop1BoJv7jOgIJqL8FlL5FxakIIIRqUfen5HMksRKe4JxI0hG5PkEKt0dCbfU9bTy2XYtmlQAghRANyerenQafQMsKfIKuPxqkunBRqjYh/Wfens6xAK0iW7k8hhBANQ3mhFu5vBqBnXP1vTQMp1BoVv+bl49TyAGQ7KSGEEA3CkZMF7E3LRwHC/dyzPXtIoSbqG7+ErgC4SgtRnXYKj++TXQqEEELUe+WL3AZZjRj1OlpG+BPsW/+7PUEKtUbF6BuMObI5cGqXgsKUvRqnEkIIIS7M0j/LF7l1d3v2agCzPctJodbI+Cf8pfvz6E4t4wghhBAXJC23mK1JOQCE+7tne/aMq7+bsP+VFGqNTPk4NWdRWaGWtAvV5dQykhBCCHHeft7tbk0LtBgxGXTuRW6t9XuR29NJodbIeGZ+FtlQXU6cJYUUpR/WOJUQQghxfk7N9nQvctsrvuG0poEUao2OT1AUPsExgIqzvPszSbo/hRBC1D9ZBaX8cTgTcO9GoCjQvYHM9iwnhVoj5F++TEdxPgC2oztlk3YhhBD1zvI96bhU8DMZsBj1tImq/3t7/pUUao1Q+b6fLnsJAA5btmzSLoQQot75aVf5bM+G2e0JUqg1Sv7NuwNgzzuJqroAmf0phBCifrGVOFi1/wRQPttTaXDdniCFWqNkCmuGwS8EXA6cRWXdnzJOTQghRD3y294M7C4Vq1GPr8lAu2h/AswNq9sTpFBrlBRF8YxTUxT3H4HS7FRK805oGUsIIYSoMs9szwATCg2z2xOkUGu0/BLc3Z/O0iLPMen+FEIIUR8U2538ujcdKJ/t2TC7PUEKtUarfD214pNJgHvGp00KNSGEEPXA7wdOUmR3YTLo8DcbaR8TgJ/JoHWsWiGFWiNliW6J3uyHWlqEzujeG634xBHP1lJCCCGEt1p62mxPd7dnw2xNAynUGi1Fp8cvvov7a33Z4EtVpSBpl4aphBBCiHOzO10s231qNwK9TqF7MynURAPkV75Mhy3Lc8x2dIdWcYQQQoi/tf5wFnnFDox6hSCrD+1jAvBtoN2eIIVao1Y+Tq3w+F4MvkEAFKUeqDDBQAghhPAmS/9MBcrWTqPhzvYsJ4VaI2Zt2h7FYMJZmFu2/yeoLieFx/ZonEwIIYSozOVSK2zCrtcpdGsWpG2oWiaFWiOmMxjxi+vofqI6Pcel+1MIIYQ32pqczUlbKXqdQojVhw4xgVh9Gm63J0ih1uiVr6dWfPIYepMVgMJju3E57FrGEkIIISopb00L8/NBpyj0Smi4kwjKSaHWyJXv+1lwZBu+zdytay57KUWp+7WMJYQQQlSgqio/7nKPT4so6/bsGhukbag6IIVaI+cb1wlFp6c0J80zTg2k+1MIIYR32Z2ax7HsYnQKhPqa6NSk4Xd7ghRqjZ7ex4K1aTsAnIV56Iw+gHs7KdXp0DKaEEII4fFTWbdnqK8Pep1Cr4SGPduznBRqAr+yZTpsSTuwNm0PgLOkkKK0Q1rGEkIIITx+2Fm2LEeAGYO+cXR7ghRqglPj1GyHt+AX39Vz3HZku0aJhBBCiFMOZtg4eKIABfdEgs5NgzAb9VrHqhNSqAnPVlLFJ47iExzl2VLKdnQ7qst5rpcKIYQQte6nP93dnsG+Phh1OnrGNfzZnuWkUBMYrIFYoloCUJj0J76xZd2fxQXS/SmEEEJzS0+b7WnU6+jSSLo9QQo1UaZ8nFp+4lb8Erp6jtuObNMmkBBCCAEczyli5/E8wL0bQefYwEbT7QlSqIkynnFqiVvwbdr+VPfnkR2oLpeW0YQQQjRi5bM9gyxGfPS6Br+3519JoSaAUy1qhSkHcDlK8Y0tW7Kj2Cbdn0IIITRTvshtuL8Jk1FH56aBGieqW1KoCQB8AsMxhTYF1UXB0R1/mf25TbNcQgghGq8T+SVsPJINuMendYsNxmRoPN2eIIWaOI1fWfdnfuJWfGPbo+jdKz7bjkr3pxBCiLq3fE86AP5mA2ajnt6NZJHb00mhJjz8yxe+PbwFndF8aseConzp/hRCCFHnfthxaran1WSgQ0yAxonqnhRqwqN8nFpB8m5c9mL8E7p7ztkSt2oVSwghRCOUW2Rn7eGTgHt8Ws+4YAz6xle2NL5PLM7KFNoUY0AYqtNOQdl6ajqDe+9P25FtsvenEEKIOvPb3gycLvD10ePrY2iU3Z4ghZo4jaIo+JW1ouUf3oLOaMIa2wFw7/1ZmHpAy3hCCCEakcU7UgB3a1qg1UibSH+NE2lDCjVRgWecWllXZ/n6aqcfE0IIIWpTUamTlftPAO5CrVd8CDqdonEqbUihJirwa15WqB3dgep0YG3SFp2P2XPM5bBrGU8IIUQjsHJ/Bnanitmow99sbLTdniCFmvgLS2QL9JYAXKVFFKbsQ2cw4tusEwCu0mIKj+/VOKEQQoiG7vvtZd2efibC/HxoHuarcSLtSKEmKlB0Os9en/mHtwDS/SmEEKLulDpc/LonA4CIADO9E0JRlMbZ7QlSqIkz+Os4NWt0K/QmKwAFSbtw2Us0yyaEEKJhW3voJEUOFz56HYEWIxc14m5PkEJNnEH5OLX8xG2oLheK3oBffBcAXI5SCpL/1DKeEEKIBuzbbccBCPf3ISbITNNgi8aJtCWFmqjE2qQtOqMZZ2EuxRmJAJ5lOwDyD23SKpoQQogGzOlSWba7rNvTX7o9QQo1cQY6vRHfuM7AqXFqlqgWGKyBABQe34uz2KZZPiGEEA3TpiNZ2EocGHQKQVYjFzfybk+QQk2chX/ziuPUFJ3OM6lAdbnIT9ymVTQhhBAN1IItxwAI8zPRPNyPiACzxom0J4WaOKPyfT/zE7eiqioA/i16eM7nH9qsSS4hhBANk6qq/PxnOgARAe5FboUUauIsfJt1RNEbsOdmUJrlHtjpE9IEn6AoAIozErHnZ2oZUQghRAOy41gOOUV2dAqE+Po06kVuTyeFmjgjvY8Fa9P2gLtVDdx7gVZoVTssrWpCCCFqxpebTnV7to0KIMTXR+NE3kEKNXFWnnFqh08tcvvX7s/yblEhhBDifLm7PdMA996ejX3ttNNJoSbOqnxJjvzTdiMw+oVgiWoOQGlOuqdbVAghhDhfB9LzOWErRcFdqPWID9Y6kteQQk2clV98F1AUSk4mYc876Tnu37yn5+s8WVNNCCHEBZq7Pglwj03r3DSIALNR40TeQwo1cVYGiz+W6NZAxVY1v/guKDq9+/ihzagupyb5hBBCNAw/7S6b7SndnpVIoSbOyb9sg/bTN2PXm33xbdYBAGdRPoXH92oRTQghRAOQeKKA1NxiAKICLXRrFqRtIC8jhZo4J7+yRW7zT5tQAODfspfn67yDG+s0kxBCiIbj8/VHAQi2GukZH4zVx6BxIu8ihZo4J/+yhW+L0g7gKMzzHPdt0g692Q+AgqM7cZYUapJPCCFE/Xb6bE9ZO60yKdTEORn9QzGFx4GqYjuyzXNc0Rs8S3WoLmeFrlEhhBCiKlKyC0nOLgKgabCVzk0DNU7kfaRQE3/r1Di1bRWOB5ze/XlgQx0mEkII0RDMWufu9gwwG+jTPBSTQa9xIu8jhZr4W+XrqeXsWc2+GfdQkLwbAFNoU0whMQAUnzhKaW6GZhmFEELUP+XdnhHS7XlWUqiJv+VfNqGgOP0w+Yc2kbllyalzp7Wq5cukAiGEEFWUmlPEkUz3+Ob4MF86xARonMg7SaEmzqkkOxV7QQ4GvxDAvV1U1rafKDi2h4JjezCFNkVR3H+M8g5uRHW5NEwrhBCivpi59ggAviY9l7eNwKCXkuRMZA6sOKedrw6vdMxhy2bP9Fs9z2OucneHOgpyKEzZh2/TdnUZUQghRD3085/li9yaubh5qMZpvJeUr+KcEm5+CXRnGdyp05Nw80sEtO7jOZS3/486SiaEEKK+Op5dyNGsAgDaRvnTPMxX40TeS1rUxDmFdh+KOSKhQgtauXYTPsW3aTtUpwO9xR9nUT4FSbtwFOVjsPhrkFYIIUR9MGvtUVQVLEYdgztEoiiK1pG8lrSoiWo48y+Sojd4lupQXU7yD22uy1BCCCHqmeV73N2e4f5m+rQI0ziNd5NCTfwto18IBv9QrE3bYY5sDoCiN2L0OzWVOqDVRZ6v8/b/gaqqdZ5TCCGE9zt8wkZSprvbs2tsIJEBZo0TeTfp+hR/yycoks7PLEbRGyk5mcSuKTeiOu0Upu7HJyjSc405IoHijERKc9IoOXEUc0S8tsGFEEJ4nTnrj+JUwWTQMaJzjNZxvJ60qIkq0Rl8UBQFc3gcUZe5x6slfzcVl6PUc01g64s9X+fKpAIhhBB/oaoqv+xxL44e4W+it8z2/FtSqIlqix54F8aAMEpOJpO+6nPPcb+EruiMPgDYErfgspdoFVEIIYQX2pOax7GyvT17JYQQaDFqnMj7SaEmqk1v9qXpsAcBSF3+MaU57kGhOqPJs92Uy15KvmzULoQQ4jRfbkrG4VIx6hSu79ZE6zj1ghRq4ryEdLsav4SuuOzFHFsy3XM8sM1pa6rtXatFNCGEEF7I7nSxYt8JACIDzfSMl709q0IKNXFeFEWh2bVPgKIja9tP5B3aBIAprBmmUPe/kopPJlF8MlnLmEIIIbzEjuQcUnKLAejbIgyz8SyLqYsKpFAT583apA3hF18PQPI3b6I6HSiKQmCbvp5r8vat0yqeEEIIL7Jo23FKHS70OoXRvZpqHafekEJNXJAmg8ejtwZSlHaQjHVfA+DfortnUkH+4U247MVaRhRCCKGxwlIHqw+cBCAqwEzX2GCNE9UfUqiJC2LwDaLJkPsASPl5BnZbNjqjGf/mPYGySQWHtmgZUQghhMY2HckiPc/9j/b+rcPR62TLqKqSQk1csPCLRmJt0gZnUT7Hf3wXgMC2l3jO5+5bIzsVCCFEI7ZkZxpFdhc6BW69uJnWceoVKdTEBVN0eppd9yQAJzd+S0HybkyhTTGHuX8ZSzKPU3IyScuIQgghNJJpK2FDYhYA0YEW2kUHaJyofpFCTdQIv/guhHYfBqpK0jevo7pcBJzeqrZ3jYbphBBCaGXd4Uwy8t3dnpe3DUdRpNuzOqRQEzWmybAJ6Ey+FCTtInPzYvybd0fnYwEg//AWnMUFGicUQghRl1RV5ac/0ygocaIAd/ZN0DpSvSOFmqgxPgHhxAz6FwDHfngHl72EgFa9AVCdDvJk/08hhGhUDp8sYHdKHgBNgy00D/fTOFH9I4WaqFER/W7GHB6Hw5ZF6rKPCGzXz3Mud+8aVJdLw3RCCCHq0tqDJzmR7973eVD7SI3T1E9eX6gdP36cW2+9ldDQUCwWC506dWLTpk2e86qq8sILLxAdHY3FYmHQoEEcOHBAw8SNm85gJPbaxwFIXzMPZ2Ee1qbtALDbsig4tlvLeEIIIeqI3elixf4T5BU7APjnJfHaBqqnvLpQy87Opm/fvhiNRn788Ud2797N1KlTCQ4+tVDeG2+8wdtvv82MGTNYv349vr6+DB48mOJiWWRVK4Ft+hDUYQC4nCR9+yaBbU/tVJC753ftggkhhKgz25NzSM4qBNzdns1CfTVOVD8ZtA5wLq+//jqxsbHMnDnTcywh4dRARFVVmTZtGs899xzXXnstALNnzyYyMpJvvvmGm266qc4zC7fYax4hd9868g9upCQ7BaN/KPb8TAqP76M0NwOfwAitIwohhKhFaw5mklHW7TmkQ5TGaeovr25R++677+jZsyc33ngjERERdOvWjY8++shzPjExkbS0NAYNGuQ5FhgYyEUXXcS6dWffY7KkpIS8vLwKD1GzTCFNiBpwGwDHF0/Hv2Uvz7ncvau1iiWEEKIO5BXb2ZKURU6hHYB/9InTOFH95dWF2uHDh3n//fdp1aoVP/30E+PHj+eBBx7g008/BSAtLQ2AyMiKAxQjIyM9587ktddeIzAw0POIjY2tvQ/RiEVdfjs+QVGU5qRRmLIPRW8EIG//epylRRqnE0IIUVv+OJRJRp67Na1JkJk46fY8b15dqLlcLrp3786rr75Kt27dGDduHHfffTczZsy4oPs+/fTT5Obmeh7Jyck1lFicTu9jIXbEIwBkrJ6HJbolAC57CfkHNmgZTQghRC1ae+hUt+ewztEap6nfvLpQi46Opn379hWOtWvXjqQk93ZEUVHuPu/09PQK16Snp3vOnYnJZCIgIKDCQ9SOoE5X4N/qIlRHKQVHtnuO5+xeJUt1CCFEA5ScVcjhkzayCkoBGN1Teq0uhFcXan379mXfvn0Vju3fv5+4OHdfd0JCAlFRUfzyyy+e83l5eaxfv54+ffrUaVZxZoqi0Ozax1F0evIOrEdvdjd/2/MzKUj+U+N0Qgghatq6Q5lk2kpRgagAEy0j/LWOVK+dV6E2efJkCgsLKx0vKipi8uTJFxyq3MMPP8wff/zBq6++ysGDB5k7dy4ffvgh//73vwF3EfDQQw/x8ssv891337Fz505uu+02YmJiuO6662osh7gwlsgEIvq5Z+DmJ25DVd0taTl/rtAwlRBCiJrmdKmsO5zpWeR2RJcYjRPVf+dVqE2aNAmbzVbpeGFhIZMmTbrgUOV69erFokWL+OKLL+jYsSMvvfQS06ZNY+zYsZ5rnnjiCSZMmMC4cePo1asXNpuNpUuXYjabayyHuHAxV47D4BeKPScNZ6F7lm1R2iFKMo9pnEwIIURN2Z2SR3ZhKSdt7kLtmi5NNE5U/ymqqqrVfZFOpyM9PZ3w8PAKx3/99VfGjBnDiRMnaixgXcjLyyMwMJDc3FwZr1aLTm76niPzJ6IYTfjFd0Vn8MG/ZS+iLhv79y8WQgjh9WasPMQPO1LZcTyXcD8TG54diKIoWsfyOtWpO6q14G1wcDCKoqAoCq1bt67wzXc6ndhsNu69997zSy0avNDuwzixbgEFSTspOZmEJaoltsNbcPQcjsEaqHU8IYQQFyC/2M4ve9I5WrYbwdWdoqRIqwHVKtSmTZuGqqrceeedTJo0icDAU3+5+vj4EB8fL4P4xVkpOh3NRj7Jnrf/QWl2KsaAcAzWQHJ2ryKs5wit4wkhhDhPS3el8szCnWSVLXALsGRHKpe0CGVIR1me40KcV9fnypUr6du3LwaDV+9AVWXS9Vm3jnz9MifXL0Jn9sM/oSs6HysJY15EZ5RxhUIIUd8s3ZXK+M+38Ndiorwt7f1bu0ux9hfVqTvOazKBv78/e/bs8Tz/9ttvue6663jmmWcoLS09n1uKRqTJkH+jt/jjKrZRkp2Kq7SI3H1n3/JLCCGEd3K6VCZ9v7tSkQZ4jk36fjdOV7XbhESZ8yrU7rnnHvbv3w+4t3kaM2YMVquVr776iieeeKJGA4qGx+gXTJPB4wEozjiK6rST8+dKVKdD42RCCCGqY0NiFqm5xWc9rwKpucVsSMyqu1ANzHkVavv376dr164AfPXVV/Tv35+5c+cya9YsFixYUJP5RAMVfvENWKJagstBccYRHAU55Cdu1TqWEEKIasjIP3uRdj7XicrOq1BTVRVX2fY/y5cvZ+jQoQDExsZy8uTJmksnGixFb6DZde7W19KcNJzFNnJ2/cZ5DJkUQgihkQj/qo0trup1orLzKtR69uzJyy+/zGeffcbKlSsZNmwYAImJiURGRtZoQNFw+bfoQUjXwUDZ4rdZKRQe36txKiGEEFXVOyEEP9PZJxYqQHSgmd4JIXUXqoE5r0Jt2rRpbNmyhfvvv59nn32Wli1bAvD1119zySWX1GhA0bA1HfYgisGEsyiP0twMsncs0zqSEEKIKsovttM83PeM58pnfb44oj16nayndr7Oa32Nzp07s3PnzkrH33zzTfR6/QWHEo2HT1Ak0YP+RcrS/1KccRijfyhFaYewRLXQOpoQQoi/sfZQ5llb1KICzbw4or0szXGBLmghtM2bN3uW6Wjfvj3du3evkVCicYnqfysn1n6FPS+D4hNJZG1fRhMp1IQQwqupqsrqgydJLtuJoHd8MA9f2YaM/GIi/N3dndKSduHOq1DLyMhgzJgxrFy5kqCgIABycnK4/PLLmTdvXqU9QIU4F53Bh2bXP82hWQ9TmnWM/MQtFJ9MxhwWq3U0IYQQZ3HohI3j2UWklC3Pce+AFvRpEapxqobnvMaoTZgwAZvNxp9//klWVhZZWVns2rWLvLw8HnjggZrOKBqB4A6XYY3tAEBx2iGytstYNSGE8Gar9p8kLbcIp0slKsDMgNYRWkdqkM6rUFu6dCnvvfce7dq18xxr3749//3vf/nxxx9rLJxoXOLHTARFwVGQQ86uXynNSdM6khBCiDMotjvZeCSL5OwiAP7VLx6ddHPWivMq1FwuF0ajsdJxo9HoWV9NiOqyRjYnqOMVABSlHyZzixT9QgjhjTYeySIlt4jCUicmg46bLorTOlKDdV6F2hVXXMGDDz5ISkqK59jx48d5+OGHGThwYI2FE41P3A3PoBjNqPYSTm76ntLcDK0jCSGE+IvVB06SnOVuTRvWOfqca6mJC3Nehdq7775LXl4e8fHxtGjRghYtWpCQkEBeXh7vvPNOTWcUjYjRN4jwi68HoORkMhnrvtY4kRBCiNOl5hax/VgOWQWlADxwRUuNEzVs51UCx8bGsmXLFpYvX87eve6V5Nu1a8egQYNqNJxonJoMuY+srT/isGWTueFbIvqMwidQBqkKIYQ3WH3gJMfKxqZ1bhpIfJifxokatmq1qP3666+0b9+evLw8FEXhyiuvZMKECUyYMIFevXrRoUMHfv/999rKKhoJvY+FqAG3A2DPP0nK8v9pnEgIIQSAw+lixf4TpOS4C7UJ0ppW66pVqE2bNo27776bgICASucCAwO55557+M9//lNj4UTjFXHJaExhzQDI2vIjxVnHNU4khBBi+7Fc9qfl41IhzM+HQe1kf+/aVq1Cbfv27QwZMuSs56+66io2b958waGE0BlNRF9xJ4regKu0kORvp2gdSQghGr0V+zJIznbvRHBTr2YoiizJUduqVailp6efcVmOcgaDgRMnTlxwKCEAQrpehaVJWwBy966hIHm3xomEEKLxOpFfwsr9Jyi2u/DRK9w3QLb6qwvVKtSaNGnCrl27znp+x44dREfL5quiZuiMJqL6/wOd2Q9cTo5+/YrWkYQQotH6/cAJz76e/dtEYJUlOepEtQq1oUOH8vzzz1NcXFzpXFFRES+++CLDhw+vsXBCBLW/DL/4LgAUpuwla9vPGicSQojGx+F0sWRHKtmFdgAevaq1xokaj2qVw8899xwLFy6kdevW3H///bRp0waAvXv38t///hen08mzzz5bK0FF46Qz+BBxyWiKUg9iz00n6bspBHceiKLTax1NCCEaje3HctiTmgdAm0h/2kZVnlQoake1CrXIyEjWrl3L+PHjefrpp1FVFQBFURg8eDD//e9/iYyUGSCiZgW2vhj/5t3I2r4MR34mKcs+pMng8VrHEkKIRmPprjTS8ty9aXddmqBxmsal2h3McXFx/PDDD2RnZ3Pw4EFUVaVVq1YEBwfXRj4hUPQGwnpfR2HKforTD5O24jMi+t2C0TdQ62hCCNHgZeQX8+veDFwqBFuNjOreROtIjcp5bSEFEBwcTK9evejdu7cUaaLW+TfvgV9CN3Q+VlRHCUkLX9U6khBCNAq/7c3w7EQwoksMOt15lw7iPMh3W9QLik5HWM8RWKLc08Gzdyyn4Ng+jVMJIUTD5nC6+GrTMUocLnz0OtmJQANSqIl6w7dZR/wSumH0DwMgcf7znnGSQgghat625Bz2p+cD0Cs+mHB/s8aJGh8p1ES9oSgKYb2uwRyZAIqO4rRDZG5ZonUsIYRosL7clExesQMFGC8L3GpCCjVRr1giEwho1RtTaCwAyd9OxVlSqHEqIYRoeDLyilm1/yQAcaFW+rYM0zhR4ySFmqh3QnuMwBzeDMVoxlmUx/Gf3tc6khBCNDiLd6SQXrYkx029YmVfT41IoSbqHZ/AcILaXYolsjkAGavnUXwiSeNUQgjRcDicLuZvOoYKBFmM3HJxnNaRGi0p1ES9FNz1KkwhMRh8g0F1cfTrl7WOJIQQDcb6xCwOn7AB0L9NOAFmo8aJGi8p1ES9ZLD4E9J1cNlyHQr5hzeT/edKrWMJIUSD8MnqROxOFZNBx79kJwJNSaEm6q3A9pdiCovFFOpeJTtp4Wu47CUapxJCiPrteHYh6xOzAGgT5U/HGNkFRktSqIl6S6c3Etb7WkxhzVAMRux5J0hbMVvrWEIIUa/NXHsEW4kDnQL/vCReJhFoTAo1Ua/5xnbEt2k7zBHuiQWpv3xMaU6axqmEEKJ+Kix1sHh7CgBNgiwM7hilcSIhhZqo1xRFIeyikfgERqC3BKA67Rz95k2tYwkhRL30/fZU0vLcQ0iu6RqD1cegcSIhhZqo90zB0QS26+fZBzT3zxXkHdqkcSohhKhfVFVl1tpEAIKtRm7u3UzjRAKkUBMNRGj3ofgEReITHA3A0a9eRnU6NE4lhBD1x9akHA6ku5fkuLh5KE2DrRonEiCFmmgg9CYrYT2vwRweBzoDJZnJpK/5UutYQghRb7y34hAOl4rZqOOffWVJDm8hhZpoMPxb9cYS3QpzRDwAKT/9F7stS9tQQghRD5zIL2bdIfe+nq0j/ekRF6xxIlFOCjXRYCiKQkSfUZiCo9GZfXGVFpP83VStYwkhhNf76PdECkqd6BS49eI49DpZksNbSKFWy5wulXWHMvl223HWHcrE6VK1jtSgmUKblu0D2hKArK1LsSXt0jiVEEJ4r1KHi2+3HQfKluToIEtyeBOZd1uLlu5KZdL3u8ko3IvZ+gvFhQOJsLblxRHtGdIxWut4DVZIj6HYjmynNDsVe14GR+ZPpMOjX6Lo5N8lQgjxV99vTyG9bEmOoZ2jCbTIvp7eRP7mqiVLd6Uy/vMtpOYWYbKuQm/IxGRdRVpuEeM/38LSXalaR2yw9D4Wwi6+HnNkAuh0FGckcmL9Qq1jCSGE11FVlY9Xu5fkCPX1YXTPWI0Tib+SQq0WOF0qk77fjQrojUcwGNwr5RsMaeiMRwCY9P1u6QatRX7xXfBP6IY5LA6AY0um4yjK1ziVEEJ4l53Hc9mX7v5/Y4/4YJqH+WqcSPyVFGq1YENiFqm5xYCKyboKtaweU1UFk/V3VFRSc4vZkCgzEmuLoiiE9xmFOSIBnY8FV0khSd/KjgVCCHG6d389iNOlYvXRc9vFcbKvpxeSQq0WZOQXA+WtaemU/7lXFBWDIQ19Wata+XWidhj9ggnrORxLpHvHgqzNP5C5+Qf2zbiHguTdGqcTQght5RSUsvqAe0mOFuF+9E4I1TiROBMp1GpBhL8Zd2va76hqxX+dqCqYrKsAtew6UZsC212KX0IXDH6hgErSt2+Qf2gTmVuWaB1NCCE09f7KQxTaneh1Cjf1jsXHICWBN5KfSi3onRBCeNBxDIY0FKXiODRFAYMhnfCg4/ROCNEoYeOh6HQEdRqIKSQaUHCWjVPL2vYTBcf2UHBsDyXZMrFDCNG4lDpcLNzqXpKjqSzJ4dVkeY5aoFMgPOQPknPgbN39fv6/oFPG1Wmuxmrff++sdMxhy2bP9Fs9z3u+ubkuIwkhhKYWbjnGiXz3khxXd4oizM+kcSJxNtKiVgvsTjtF9uyzFmkAmYXpHDh5uO5CNWIJN78Eyln+qOv07vNCCNFIqKrKx2vcS3KE+/lwoyzJ4dWkRa0W+Bh8+OIfH5JVlIPLpbLzWDbLDvzErtTD2ErsWM05lDoLePL7ycy59X2sPlatIzdood2HYo5IqNCCVq7lHW8R1K6vBqmEEEIbGxKzOJRhA+Ci5qG0CPfTOJE4F2lRqyVRARG0j2xNx+g23NzrYt4d9QQ9YlujqmZKSyOwGi0cyjzCC0tfR1VlPTWtHFnwCqW5J7SOIYQQdeadXw/gUsHXpOeOS+K1jiP+hhRqdaSwVMezV47DbLBid+oI841Fp+j4ed8KPt04X+t4DZ7RLwSDfyiWJu0IaHUROpN7UUdHbjr7P7wXe36mxgmFEKL2JWUWsOlINgDtowPo3ixY40Ti70ihVstScop4b8VBnlqwg8MnYES7UaDqyC7Q0zzUvWr+tFUfsP7oFo2TNmw+QZF0fmYx7R/8jPibJhHQ+mL8WvRAMfhQnHGEfR/ci92WrXVMIYSoVe/+dpBihwujXuGOS+LR6WSBW28nhVotK3G42HwkG1WFZbvT+VffXthLepJVUEqwJZxI/3Bcqosnvp9IWl6G1nEbNJ3BB0VR8AkIJ7z3deh9rPjFdUYxmihOP8z+D8fjKMjROqYQQtSKvGI7y3anAxAX6ssVbSM1TiSqQgq1WpYQ5kvLCPdAzZScIvKKHfSJ74a9pD0pOUW0CmuOv8mP7KJcHvn2eUocJRonbhwC2vTBN7Y9Oh8Lfs06ofOxUJR6gP0f3YejME/reEIIUeM+W3eU7EI7CjCmZywWH73WkUQVSKFWB67qcOpfLct2p3Nz72Y4StuSnh2FouhoF9kao87IrrS9/N8vb2uYtPFQFIWIfjejN/uh87FgbdoendmPwuP72P/Rv2UDdyFEg1LqcDF/YzIAEQFmRnZvonEiUVVSqNWBbrHBhPr5ALDreC4dogMI9TWRldsZPeGYjSbaRrYEYMGOxSzcIdsb1QWDxZ+o/u4lO/QmK75N26E3+1F4bDcH/jcBZ7FN44RCCFEzft6dRnJWIeBuPJAFbusPKdTqgE6nMKjdqVa1lQdOcEOPpoCe3NxehPmGEGwNIj7EvejgK8veYlfqHo3SNi7WJm0J7nQFADqjGf+WvdCZ/SlI2smBjx/AWVKocUIhhLgwqqry0arDqECA2SBLctQzUqjVkUtbhWM2uscDrD2YyfDO0QD8fiCfkR1vwmq00CyoKaHWYOwuO498+wJZhTkaJm48QrsPxRzWDADV6SCs5zB0Jl9sR7Zz4JOHcJYWaZxQCCHO3/bkHPakuodz9IwPkQVu6xkp1OqIxUfPpa3CALA7XSRlFdI7IQSXCiv3lnBn71vQ6XS0jWiFxWgmLT+DJ7+fjMPl0Dh5w6foDUQNuA2d0d0VUJJ5nJir7kFv9sV2eDMHZz6My16scUohhDg/7688RKnThY9ex7jLmmsdR1STFGp1aFD7SM/+n7/uyeDGHk0BmL8xmdbhLRnd9Vr0ej0dotqiU3SsT9rMO7//T8PEjYcxIIyIfjd7ntsObyHuhufQmazkH9zIwVmP4rLLjFwhRP2SlFnIukPuBb1bR/rROz5E40SiuqRQq0Nhfia6la0CnVtkJ9zfRIDZwPGcIlYfPEm/hIu4vGU/rD4W2kS4JxfM3PAFy/at1DJ2o+Gf0JWgDv0BUF1O8vb/QYtb30BnNJO3/w8OzX4cl6NU45RCCFF1H60+TF6xAwW4s1+CLHBbD0mhVscGn7ZUx4p9J7iuawwA8zYmATCy01A6RbUj3C+UpoHuc8/98CqHM4/UedbGKKznCMwRCQDYbVnYknbQ4s630BlN5O5dw+HPnsLlsGucUggh/l5GXjE//5kGQGyIlWFlY6NF/SKFWh1rEe5HfJh7n8nkrEIubuEet7ZsdzonbSXoFB139L6JpoHRJIQ2I9AcQJGjmAcXPYetpEDL6I2CojcQdflt6M3un1HhsT04ck/Q8o63UAw+5OxeyeE5z+BySrEmhPBu8zcmk5HnHrJxc+9YTAZZ4LY+kkKtjimKwlXtT7WqHcqw0aVpIHanysItxwAwGUzc0+d2giyBtI9sjY/eh6PZyTz3w6uoqqpV9EbD6BtM1IA7UBT3r0fW9mUoRh9a3j4VRW8kZ9evJH7xAqpTJnoIIbxTTmEpi7YeRwVCrD7cLkty1FtSqGmgR1wwwb7uBXC3H8thaCd3c/S8jcmeQizYGsS4Prdh9bHSIaoNCgq/HlzNJxvmapa7MbHGtCK01zWe5xm/f4E5Ip4Wt72BojeQvf1nEudPRHU5NUwphBBntmRHKsnZ7nUgh3eJxupj0DiROF9SqGnAoNcxsG0EAKoKRr0Oq4+ewycK2JCY5bkuLrgpt/cag7/Zj5Zh7nFTb6/6iHVHNmqSu7EJ6tAf/xY9AXA5Skn95X/4N+9O81v/D0WnJ2vrjxz56iVUl0vjpEIIcYqtxMG8jcnYnSpmo44HB7bSOpK4AFKoaeSy1uH4GNzf/o1Hsri6YxSAZy+2cl2bdOSaDkOIDowkyj8CFZXHvptISm5aXUdudBRFIaLvGEyh7mVU7PlZpP76CYHt+pEw9lXQ6cnc9D1HF7wixZoQwmv8uiedwyfdW+D1bxVOqGwXVa9JoaYRX5OBvi3dEwlKHS7PStFLdqaSW1hxoPqVrftzSXwvWoYl4GfyJb/Exv0Ln6JY1vWqdTqDkehBd2GwBABQlHaYE2u/IrjTQJrf/BIoOk5u+Iakb16X8YNCCM0V253M25hMQYkTnQJPDmmrdSRxgaRQ09CVpy2Ae/ikjTaRfpQ4XHyz7XiF6xRFYXTXa+kQ1ZYOkW0w6gwcPJnIpJ/ekOKgDhh9g4kedBeK3ghA3oENZO9YTkjXwSSMmQSKwol1X5P83RT5eQghNLVq/wkOpLu3i+oSG0TzCNkuqr6TQk1DkQFmOjcNAiC7wE6fFqEAfLEhqdJf+AadgbsuGkuLsHjaRbYGYMme5czbuqhOMzdW5vA4Ii+7xfM8c/MS8hO3EtpjKPE3vgBAxup5HFs8TYo1IYQmHE4Xi7Ye54TNvTD3o1e21jiRqAlSqGnsytOW6nC6VIx6hb1p+ew4llvpWrPRvWxHfEgzEkLcm4i//us7bD2+s87yNmb+Cd0I7THU8zx95ecUpR0krNc1xN3wrPvYqs85/uO7UqwJIercusOZ/Jni/rsjLsRKv1bhGicSNUEKNY21jfInNsQKQEpOMZeVbdxevlPBXwVbgxjf9w5ahTUnzDcEl+ri/gVPkVmQdcbrRc0K7nwlAa16A+5tplKWf0xJdirhF19Ps+ueBCDtt1mk/DxDy5hCiEbG5VL5fnsKx3OKARh3WYLGiURNkUJNY39dADciwAzAd9tSKCg584KqTQKjufPisbSLbI3VaCG/xMbdXz6CwyULsNY2RVGIuGQ01qbtAHCVFpHy8wfYC7KJ6Dua2GseBSB1+f9IWfaRllGFEI3IlqRstifn4nSpBJoN3Nw7TutIooZIoeYFeieEEGhxD1TPyC+hWYiVglIni3eknPU17SNbc2uPUXSIaoNe0XHwZCLPLnm1riI3aoreQPTld2AOc3c/OwpySPlpBs7iAiIvvYWmwx4EIOXnGaT+OlPLqEKIRkBVVb7bluJZ4HZMr1jZfL0BkULNCxj0Oi4vWwAXFTrEuJeC+GJD8jleBX3ie3Fdp6G0iXAvZvjj3l+YvfHLWs0q3HRGE9FX3o0xoGyJlZx0Un7+AJe9mKgBt9Hk6n8DcPzHd0lb+ZmWUYUQDdyWpGx2HM+lsNSJUa9w/xUttY4kapAUal5iQJtwjHr3j8PudKFXYFtyDnvT8s75uuHtr2JI2yuIDWoCwH9Wvs/GpK21nleAweJPk6vuxWB1F9bFJ5NIWf4xLoed6CvuJOaqewA4tnga6au/0DKqEKKBUlWVb7elkJzlbk0b0jGKAIuPxqlETZJCzUv4m42e5TlU1b3+DcC8v2lVUxSFsT1GMaj1ZQRZAnGpLh5c9Axpeem1HVkAxoAwYgaPR29yTwgpSj1A2m+zUJ0OYq4cR/TAuwBI/nYKGWu/0jKqEKIB2nQ0m/3p+WQWyJIcDZUUal7k9KU6/EzuDXQXbjlGsf3cG38b9QbG9bmNy5pfjMngg620kDvnPUSxvbhW8wo3U3A0MVfdg87o/ldsQfKfpK2c7S7WBo8nasDtACQt+j9OrF+oZVQhRAPicql8u+04x7KLAOidEEx8mCxw29BIoeZFYoIsdGgSCLjHrYX5+ZBX7GDprr/f19PXx8rD/e+ld7PuKCgcy03h/oVP43Sdu8gTNcMcHkf0wLs9uxfYjuwgbdXnoLpoMnQCkZeOBeDoglc5ufE7LaMKIRqIjUeySMoqJDXHXahNuFw2X2+IpFDzMuVLdShAfKgv4N6poCpCfUN4euCDtI9yN31vSNrCK8tlpfy6Yo1pRcygu1D07tZQW+I20lfNAVWl6YiHieg7BlSVI19NJnPzDxqnFULUZy6XyrfbU0jNKcapQlyIhX5l63CKhkUKNS/TISaA6CD3Wmomgw4FWJ+YxeETtiq9vmlQDJMGP0lMQBQA3+xcwuxNMhO0rlibtCX6ijtRdHoA8g9vcc/6dDmJvfZxwi++AVSVxPkvkrXtJ43TCiHqqz8SM0nLLfYsyTHushYoiizJ0RBJoeZl3Avguosss1FP83B3q9r8TeeeVHC61hEtmDzkSfxNfjhcTmasncXP+1bURlxxBr6x7YkeeKpYsyVuJXXFp6guB81GPkVY7+tAdXH4i+fJ2rFc27BCiHrHWbYLwcn8EortLvzNBq7v3lTrWKKWSKHmhS5uHoqf2d19Vj6pYMHmY5Q6XFW+R++47jx+xf0YdUYKSgt589d32Zy8vVbyisp8Yzu4i7WybtCCoztJ/eUTVJeTuBueJbTHcHA5SZzzDNm7VmgbVghRr/xxOJOMvBJPa9rYi+Kw+Og1TiVqixRqXsjHoOOKsgVwQ3x98DMZOGkr5Zc91Vty47qOV3Nbr9EApNtO8Nov09mfcajG84oz843tQMygUxMMCo/tIeXnGbgcJcSPfoGQbkNQXU4Of/4kOXt+1zitEKI+cDhdfL89BVuJg+xCOzoF/tFHtotqyKRQ81KXt43AqNehUxQiA0wAzNtY9e7Pcg9cejdXtOwHwIETh3jjt3c5lpNao1nF2VmbtKHJ4FNLdxSlHeLYkrdxFOWRMGYSwV2uRHU6OPTp4+TuW6txWiGEt1t3OJMT+SUVFrhtEmTROJWoTVKoeakAs5FLWroXwC3fqH3VgRMcK2vqripFUZhyzSRahiWgAluP7+Stle+TWZBV05HFWViiWtJkyP3oze71jUqzUzm2eDqleSdIuPklgjpegeq0c3DWY+Qd2KBxWiGEtypvTSt1ukjLc6+T+c++CRqnErVNCjUvdlX7KBQFrEY94X4mVBW+3HSs2vcx6A18MmYagZZA7E4765O28M7v/yO/pGozScWFM4c3o+nwBzH6u4tvR0EOx5a8TcnJZJqPfZXA9pehOko4OPMh8g5t0jitEMIb/X7gJJm2UlJyinCp0LFJAD3jgrWOJWqZFGpeLCrQTNeyraQiyro/v9qUjNNV/XXRgqxBfHjjVAw6A3nF+fxxdDMz1syi2F5Sk5HFOfgEhNN0+EOYQt2zs1ylRRxf+h6Fx3bT4h+vE9i2Ly57CQc/eYj8RNmvVQhxSrHdyXfbU3Cpqmcngn9ekiBLcjQCUqh5uSEd3Ut1hPub8DHoSM0tZtX+E+d1r3aRrZg05AkAUvLS2Ji8lQ//mI3daa+xvOLcDBZ/mg69H2uMe1Fi1ekg9bdZ5B3YQIvb3iSg9cW4Sos48PED2I7s0DitEMJbLNudTl6RnRP5JZQ4XIT5+TC8S7TWsUQdkELNy7WM8KdFhB96RSHS392qVtWdCs5kRIfB3NL9egD2nzjM1mM7+WT9XBwuR43kFX9PZzQTc+U4/Fv0dB9QVU6s+5rMLUtocdsb+LfshaukkAMf309B8p/ahhVCaC6/2O7ZSjC5rDXtloviMBlkSY7GQAq1emBwB/e2UuUze37Zm0FG3vlvuP745ffTvWknXKqLP9P2svX4Tj7b9BUuterrtIkLo+gNRF42luBOV3iO5fy5itRfZ5Fwyyv4Ne+Os7iA/R/9m4JjezRMKoTQ2pIdqRTbneQV28ktsmPUK9x6cTOtY4k6IoVaPdAtNpiIABO+JgOBFiNOl8rXW6o/qaCcXqdn+nWvEuEXRrGjhD3pB9icvJ0vt34r+4LWIUVRCOt1DRGXjPbsYlCUeoCUpf+l2XVP4hvXBWdRPvs/+jeFKfs1TiuE0MJJWwm/7s0A4HhZa9rwzjFE+Ju1jCXqkBRq9YBOd2pbqZiyfUDnb0zGdR6TCsoFWgJ49/r/w6g3kF2Uw5HsZFYfWc+3u36UYq2OBba9hCZX/xu9xR8Ae34Wqcs+JObKu/Ft1hFnYS77PxxPUdpBjZMKIeraN1uP43SplDhcpJf1pNxxSby2oUSdkkKtnrikZSi+JgOR/mYMOoWjmYX8cTjzgu7ZNrIVEwe7JxckZR8jqyCb5QdW8fO+32oisqgGS2RzYq95BHOYuzvD5SglY818Qntdg6VJOxwFOez7YDxF6YkUJO9m34x7KEjerXFqIURtOnKygHWH3P+fz8gvxqlC92ZBdClbDUA0DlKo1RMmg54r2kag153aqeCL89ip4K9GdBjMzd1GArAn4wBFpcV8v/tnVhxcc8H3FtVj9A2mydAJpyYZALm7fyewVW/MUS1x2LLY/8E9pK/+gvxDm8jcskTDtEKI2qSqKvM3uf8f71JVUnNlgdvGSgq1euSKdu5tpWLKJhUs3ZlKdkHpBd/3scv/TdeYjjhdTv5M24vT5eLrHd/z++E/Lvjeonp0BiORl40lrPe1ULY+UlH6YUzB0RgDI7HnZ5K19UcAsrb9RMGxPRQc20NJtmwLJkRDsi05h/1p+QAUlTrJL3YQFWD2LNkkGo96Vaj93//9H4qi8NBDD3mOFRcX8+9//5vQ0FD8/Py44YYbSE+v3ubl9UX5tlIBZiN+JgN2l8rCrccv+L5GvZEp104izDeEQnsR+zMOggrzt33DmkTZ0qiuKYpCcMfLaXLVvZ5tp3L3/I49t+zPddkYQoctmz3Tb2XP9FvZ+epwreIKIWqYw+niq83uCWMq7m5PcG++btTXq7+2RQ2oNz/xjRs38sEHH9C5c+cKxx9++GG+//57vvrqK1auXElKSgrXX3+9RilrX/m2UuVLdXyx/miNDP6P8AtjyjWT0Cs6ThRkcjzX3UIzb+si/ji6+YLvL6rP2qQNza57HEt0Kywxbc5+oaIj4eaX6i6YEKJWrdx/gvSyrs4As4HDJwsxGXTc3FuW5GiM6kWhZrPZGDt2LB999BHBwaf2NcvNzeXjjz/mP//5D1dccQU9evRg5syZrF27lj/+aJjdduXbSkUGmtApcPBEAVuSsmvk3t2bdubxK+4H4HDmUXKL8lBRmbP5azYkbamR9xDVY7AG0mTweKKvuAO/5t3PfJHq4uSGb2UnAyEaAFuJg2+3pXie5xS6d465rmsTQnx9tIolNFQvCrV///vfDBs2jEGDBlU4vnnzZux2e4Xjbdu2pVmzZqxbt+6s9yspKSEvL6/Coz4Z0jEKo07nWUfni/Xnv1PBX93c7XqGtbsSFZUDJxMpdZSiovLZpq/YlLy9xt5HVJ2i0xHS5SoiLhlzlgv05B/axN7//pMDnzxI4fF9dRtQCFFjvtl6nIIS904x7WMC+P3gSQD+2S9ew1SNi7fNrPf6Qm3evHls2bKF1157rdK5tLQ0fHx8CAoKqnA8MjKStLS0s97ztddeIzAw0POIjY2t6di1qkW4H83DfWkS7O7+/H5HKvnFNbNfp6IovDD4MdqEt6SwtJDk7OOoLhUVldmb5rPlmLTaaMUvrhN6vxCMAeFYolqiM/uh6I0Etr2EoI4DQKcnd89qdk+7hUOfP0VRRqLWkYUQ1ZCcVciKfe7FbU1GHfnFDpwulT7NQ2kbFaBxusYjc/Nir5pZ79WFWnJyMg8++CBz5szBbK65VZiffvppcnNzPY/k5Atf5qIuKYrCkI5RBFqMWH30lDhcFZrKL5TFaOY/107G3+TH8bw0bKUFALhUF59ulGJNKz5BkXR5dgmdnv2BJkMnENCqN/6tegOgOp1ED/wXwZ0HgaKQvX0Zf04ZTeL8iZRk1dyfDSFE7VBVlXkbk8rnCnFluyi+2eaeLPbPvvHaBWskSrJTPbPos7b9BEDmlqVeMbPeqwu1zZs3k5GRQffu3TEYDBgMBlauXMnbb7+NwWAgMjKS0tJScnJyKrwuPT2dqKizT2E2mUwEBARUeNQ33WKDiQwweSYVfLbuaI3ePza4Cf83/HkUFLYe34mfjy85hbmsP7qZ/6x4X8asaURn8EGn0xHUrh9x1z2JNbqV51zhsd3ozb40v/V1gjr0B9VF5qbv2fXGSI4u/D9Kc09omFwIcS6bj2azN9W9HEdEgAlbqZ2cQjuxIRYGtovUOF3Dt/PV4Z5Z9I6CHACchTleMbPeqwu1gQMHsnPnTrZt2+Z59OzZk7Fjx3q+NhqN/PLLL57X7Nu3j6SkJPr06aNh8tpXvq1UVKAZBdiXns+u47k1+h6XNr+Y8X3vAODnvSs4nptGob2Iw1lH+WzTV6w7srFG309UjzEgjCZX30/4xdejM7gHGdvzs8jc9D0BbS6h9b0fEtDqIlSngxPrvmLn/11L8uJp2AtqZvKJEKJmlDicfLnpVM/OjT1iPf/4vr1PPHqdolW0RsHlsBPac8TZL9DpNZ1Zb9DsnavA39+fjh07Vjjm6+tLaGio5/hdd93FI488QkhICAEBAUyYMIE+ffpw8cUXaxG5Tl3SMpRFW48T7m8iI7+EWWsTmXJj1xp9j3F9bmNX2l5WHVpHZmEWALaSArIKs5mzZQEOl5NLmzf877W3UhSFoPaXYW3ajozVX1CUdhiA3D2rKTiyg+hB/yLqijtJ+ek9bEe2k77yM078sZDIS28h8rKxGMr2FxVCaGfJjlQybe7FyzvEBFBY6mB/ug2rj54be9avMdT1iepykrX1J47/9D6l2WcfItJuwqf4Nm1Xh8kq8uoWtap46623GD58ODfccAOXXXYZUVFRLFy4UOtYdcJk0DOwXYSn+/P77akUljpq9D10io5Xrn4Go97oOaYAiVlJnkVxfzuwukbfU1SfT0A4Ta6eUKF1zVGUR9qK2eQdWE/CLa/Q6q63sTZpg6ukgNTlH7Hz/64l9bdPcZYWaZxeiMYrNbeIpbvck9/0OoVbLopj1tojAIzq0ZRAi/EcrxbnQ1VVsnf9xq6pN5E473lKs1NQ9EZMoU21jnZGiloTq6XWc3l5eQQGBpKbm1vvxqvZShw8/tV2fvv/9u47vur6+uP46+6bebP3ZoUQ9t4I4sZRa7WOOlq1inXVtv5q1dbW2eGoddZq67ZWHDhQkb33SoCQvXfuzU3uvt/fHzdcCAQhCtyb5DwfDx6Qu3JCknvf9zPOZ18DdpeXP16UzzVTM0/q51hTupFb3v/VUZfnJw0nJiwKgAtHnMNZw+ac1M8rvhuXtYXGDYvoKN/lv0yl1hCVfwbRI+dh3reGmiUvYO/aFaqLiCV53k+Jm3yJP+QJIU49RVH4y5f72FvbjgLkJkUQG67nj4sLAVj6y9kMig8PbJH9jKVoI1Wf/Z3Oqq7WG2oNxth09DEpKB431vId6KOSSJxxJU2bPsJprifv9tfRR53cdYK9yR0S1OjbQQ3g3U0VvLSyhOLGDrJiQ1n+qzNO2mMrisKVb9xMYX0RXsXb7Tqj1sC4tFFoNb4Z9HNz53He8DNRqWQ9RTDoqNxD4/r/4Wpv8V+mDY8mbuJFhGXk07LtC2q+eglni29nmT4qiZT5NxE7/nxUmqBeFSFEv7C+pJmXV5bQ0G7nQEMHNpfHf51Bq+bpK8ZwTn5yACvsP6wVu6j67B9Yi7vWVqvUGGJTMcSkodJoMcSkED36LELThqPW6lGpVCiKguJxnZI3sBLUeqmvB7XWDid3vrudFft9u/o+vm06o9KiTspjH2s07aAwfSiD43Iwda11mpUzlctGXyhhLUh43S5ad35F686lKN5DLwLGhGziJl2IISaNpk0fUfv1P3FZfD8/hvhMUs+6mehR81Gp+/zqCCGCUqfTzX2LdnOgoZ1d1T03XVcBz189TsLa92CrO0DV589hLljRdYkKfXQyxrh0VFo9hrh0YsacRVh6/ml93ZKg1kt9PagBvLqmlH8sO0CT1cm83AReuW7i937Mg6NpBXX7Ufj2H5Os6HQyolNBpWJ82miumXAZWrWMygQLp7mBxnXv01mzv9vl4dljiB1/PtqQCBrWvk/dslf9W9NDkoeQevYtmPJmSfAW4iR7fX05y/Y2sOZAEw63t8fbqPAdG7j6N3Nl52cvOZqrqFryPK3bvvBfpjMlYozPQK0zYozPJGbsOYSm5gbk+a03uUNeSfuJc/OT+XBbNU1WJ6uKGmm3u4gwfr9FqC6PizpLw7eGNINGj8PjpKy1kjabmdzEIWyp2kGn08bPplyFQWv4XjWIk0NvSiDl7FvorCqgaeNHOM2+7ufW0u10lO/CNHwG8ZMvIX7yJdSvfpv6Fa9jqy3iwGt3E5aRT+o5C4nsaq4rhPh+iurbWb63gbZO5zFDGoAC1JrtbCxtYeqg2NNXYB/mtDRS8+VLNG38ELqW6+gi4jDEZ6IxhBKSNIiY0WcRkjK0z7wBlRE1+seIGsA/lhXxzNIDONxefj47h3vP/f7biessDbTY2o55fUxoFBvLt/Lw109hc9nQqbUMSxhMTFg0WdEZ3DL9OsL0od+7DnHyKF4Plv0baN76GR671X+5Wh9CdP4cTHmzUNxO6pb/h4bV7+B12QGIGDSB1HNuJTxrdKBKF6LPc3m8/P7jPdSZ7dRZ7OypOf5Z009fMYaLxqSehur6Lnenmdql/6JhzTsoHl/3A21YNMaELDTGcEJThhIz5ixCkgYHuFIfmfrspf4S1MqbO7j2Xxspa+4kIdLAunvnnbbh8rKWSn79yR/Y21AEQKopmZyYTJJNidw246dEhZhOSx3ixHlddlp3fUPrrmUonkNnxWoMoUSNmIMpbyZeewe1y16lcd3//LcxDZ9B6tm3Epo6LFClC9Fnfbitmk92+Hp2GXQaPtt1/KOJ3r5xioyoHYPH0Und8v9Qv+I/eF0OADQhkRgTstCGmghNG+4LaAnZAa60OwlqvdRfghrAgx/t5t9dHa2fuWIMF57Gd2FOt5MnV77Im1veByBcH8bwxKGkmpK4dcYNJEUknLZaxIlzd7TRvO1z2os2oRy2s1djCCUqfw5RebNwWVup/fqfNG3+BLo2JUSPOpOUs38edE+AQgSrqtZOHvqkAI9XQa1Wcd95uZz/zGo6nJ4eby9r1I7N63JQv/ptapf+C6/Ddx612hCGMSELXXgMYRn5xIw+C2N8RoAr7ZkEtV7qT0Ftb52FK19eT0uHi5GpkXx824zTPg+/ongt9332CBZ7O2qVmiHxOWTHZHDT1J8wOE5e1IOV09JI646vaD+wucfAZsqdgcvSRM1XL/oOLVYUUKmJHXceKWfdhCFGpmaEOBaPV+HRzwopbfKFivNHJVPR0slTXxf1ePuDz9qy67M7xeOmYe1/qfnqJTw237SxWmf0BbTIOMKzRhMz+qygbV57kAS1XupPQU1RFH72n80sLWxAr1Hzzk2TGZcZc9rrqG9v5Fcf/57tNbsBSAiPIzdxCNdP+jHj02SNUzBzWhpp2f4l7cWbfWGsi1qnJ3LoVKJGzMHV3kTNkhdo27McAJVGS9yki0me9zP0pvgAVS5E8PpsVy3/21IFQKLJSGpUCH9esg/wnUCw5kATtWa7//bJJiMPLsiTkNZF8Xpp3LCImi+fx231nVes0uoxxmegj0omYtAEokfNwxDdN/6/JKj1Un8KagCbSlu48p/rcXkUzspL5KWfTAhIHR6vh+fXvMZL6/8DQIjOyPDEoVw57lLmD53dZ3bcDFROc4MvsJVs6RbYVCo14TljiR45F3dHG9VfPIdl/3rfdVoDCdMuI2nudejCogNVuhBB5fApT5XKdwLBs8uKAfjV2cNYeMZgPF6FjaUtNLTbSYgwMik7RqY78Q0+NG/6mOolz+GyNAGgUmsxxKVjjM8gcuhUokfORRfRt9bwSVDrpf4W1BRF4fxnVlNQayEuTM9bN01haGLgDt/eVLGNOz/8He0OKypU5MRmcvmYi7lszIVo1JqA1SVOjNPSSNvu5ViKNnbbdAAQmjqMqBFz8Ng7/Ae/A6gNoSTOvEoOfhcDntvj5ZHP9lLe7JvyjA7T837XyNrtcwdz91myKacniqLQtPkTar58EVeb7yxU1BoMMamEJA0iasQcokbM7rPPLxLUeqm/BTWA97dUcs9/dwJw/fQsHlwwIqD1tHWaueX9X7Gn3jfUHxMazUX553Dr9Oul11of4ba1Y967GnPBKjyOzm7X6SLjMA2bDijULn2Fzuq9gG/3VdIZ15Iw/XI0+pAAVC1EYC3eWcOirb5j2uwuD2uKmwG4cWY2vz1vuMwsHEHxuGna9DG13/wLZ2vXjliVCn10CqGpucSMOQtT7vQ+/3wiQa2X+mNQc3u8TH30GxqtDnLiwnj52gkBP9xXURQeX/p33t72AQoKeo2OWTlTuf+sXxIdGhXQ2sSJ87qdWIo20LZ7WbdzRAFUGh0Rg8ahUmlpWPuu/+B3bXgsyfNuIH7KD/zn5nVUFlD16dOknX8HYel5p/3rEOJUK2/u4OFPC/F4FRqtDnZXm/EqcPWUDP540ek9sijYeRydNG36iPqVbx4KaIAuKonwzFHEjj+fyCGTUWu/XyP3YCFBrZf6Y1ADeOzzQl5YUYJRq+bm2YO4a/7QQJcEwJd7l/HgkifocPpGZYbE5fD4ggdkR2gfo3i9dFTtwVyw6qijqQCMCZmoVBpadnyFs9XXN0oflUTy/BuJG38BlZ/8jYY175Iw4woyLjr2ebJC9EUOt4eHPimgzmynqSukeRTfxoEnLh2FWtafAeCyNNG0+RMa13/gf54A0EXGEzlsKnETLyQ8cxSqfrZMRoJaL/XXoGa1uxj7x69weRTGpEfx5OVjyI4LC3RZAJQ0lXPHh7+lvNW3VsNkjOS++XdxTu7cAFcmvgtnWz3mvWuwFG3wN508SKXVoVJraC/egtvqG4HTRSXhsbXjdXSgDY9myE//DoA2LKrP7NoS4tu80XWWZ0uHkx1VbXgVWDA6hacuHzPgNwkoioK9sYzmLZ/Rsn2JL6B1RRFteAzRo+aTMO2HGBOy++2oowS1XuqvQQ3gZ69t4uu9DSREGLhmSia/mDck0CX5tTus3PfpI6wqWYdH8aJVa7hs9EXcO+/2fvvL2d95XXYsBzZjLlyN8+AC4C6K4sWyd81xH2PCn7ecqvKEOC12VrXx9NdFtHa62F7ZileBs/IS+cdV49Bp1IEuL2C8bhfWkq207v4GS9EGHC3V4PX1bNSERRE3YQGJM68aEC1+JKj1Un8Oaruq2ljw7BpUwIwhcTx88UgyYoPn7E23183L617njS3v0+7wnTuZn5TL85f9GZOxf30vBhJFUXA0lmPevx5r6Va8Lifga/lhq9l3zPuFpAwlYdplRA2fhS4y7nSVK8RJY7G7eODD3VS12dhW0YbHqzB7aDwv/WQ8Bm3/mr47US5LE+a9azDvW4et7gD2pkrw+s7j1ISaiJ9yKUlzrkUbEth11KeTBLVe6s9BDeCMPy+jtLmTwQlhXDI2jYVnBMehtAcpisI3Rav424oXqGzz7Y4yGSN56uI/Mj59TGCLE9+b1+XAWrod8/712BtK8ditWEu3Hfd+YRn5RI2YTdSIOf16CkT0H4qi8OTXRawvbmJrRRtur8KU7Bheu2ESRt3ACmmKotBZvRdz4So6KvfgaK3D0VSB4va9adOERJAw/QqS5/2032wQ6A0Jar3U34Pa6+vLuP/DPYTqNUzJieUPF44gPSZ4RtUO2ltfxOPf/J2dNQW4vC7UKjU/m3w1C2fcIC/S/YTT3EDjhkXUfvXSUdeFpuaieL147O3ddn0BGOLSicrzhbbwrP63sFj0D5/vquXfa8vYUtGKy6MwKi2St2+cSphBG+jSThtL8RYqFj2OMS4dxevGaW7E0ViO1+U7dUETEkHSnGtJnH0Nak1w/r+sL9vMY988w71zb2dK1qlpGC9BrZf6e1CzOtyM++NXON1exmVEMT8viVvmDAp0WT1qsDbx9IqXWFW6njabGYBRKXk8d+kTRBr7ZmND0Z2zrZ49T1+NLiyK0KTBmPevx+u0EZ49FrXO11PP63bitVvxOG3YmyrA4/bfXxtqwjR8JlEjZhM5bGqf76ck+ocDDVYe/Gg3m8pacXq8DI4P54OF04g09v/RIkVRsNUdwLJ/A43r/oujuQpteAxelx1vV89FtTGclHk/JWHGFf4WPcFIURSufONm9tTtY0TSMN66+sVTMlAgQa2X+ntQA/jVf3fw3y1VJEUayU+N5KGL8kmJCs4XOJvLzuub3+PTgq8oa6lAASIM4Tx58Z+YlDE20OWJk8DrdqLS6FCpVL4FxuU76SjfQUdlAcphoQxA8XrwOm0obie2hjK8jg7/dSqtgcghk3xTpHmz+twxMqJ/6HC4+dX7O1ha2IDD7SXZZOSz22cSHRa8geRkcHeasRRtpHX3MlzmBhSvh47KPeD1+G+j0hmIn/ZDUs+6pU+8qVpTupFb3j/ULuj5H/6Z6dmTTvrnkaDWSwMhqG2raOWS59aiVsGMwXHMGBLHTbOCc1QNfO9qvt6/kje2/JeC+v043A5UqLhu4hXcMfsm1KqBu3OqP/O67HRUFmAt3U5HVeFRR1ahKHicnSheD47matztTYeuU6kIyxhJVN6srnVtWTJlLk45RVF49PO9/GddGXaXF1OIjiV3ziLJZAx0aaeE4nHTUVWIZf96OqsK8Tg6aC/efNz79YXd3DannQWvXEWD9dDzyqkaVZOg1ksDIagpisLZT61kf72VoYnhZMSE8qeLRwb9k8n+hmJeWv8ftlXtorHDd/RKXuIw/nHpY8SGxQS4OnEqeV0OX2gr20ZHZQ+hDfA4O8HrxWlpwtlc2e06Q1xG12aE2f2yYaYIDu9srOChxQV0Oj2E6jV8cMs0cpP71+vIwb5n7Qc2016yFWdbLa72FtzWFrxO27ffWa0h+/LfEzvuvNNT7HegKApf7V/Bw189Saut7ajrT8WomgS1XhoIQQ3gtTWl/P6TAsIMGiZnxzJtUCw/m5kT6LKOq7WzjVc2vMn68i0caCrFq3gJ1YXyxIL7mTVoWqDLE6eB1+Wgs2Y/HRW76Kjcg8fecfRt3A68jk7cNiuO5spu0y/asGhMeTOJyptN5NDJfWIKRgS/9SXN/Ozfm7A6PBi0av5x5TjOzEsMdFknjdPSSHvxZsx712KrO4Db2oLL2trtd8s3kj2KsIwRNKx666jHGH7HG4SlDT+NVffOwU1sW6p29Hi9ChV5SUNP+qiaBLVeGihBzdzpYsLDvpMKJmZFYwrR9YlRNQCXx80HOxezZN8yCur20enyvYu7bPSF3DvvDnRBuntInHyK14u9sYyO8l1YK3bjsjT2cBsPbmsrXqcNR1sdSteOM+ha1zZ0sm+0bfhMWdcmvpPy5g4uenYNbTYXeo2a35w7jJ/OCP43vsfjsrbQXrqdtt3L6Kjcg7u9BY+9vdtt1PoQInLGEzP+PEzDpqENiaCjqpDCp68Glcp3ykDX38Ea1Fo623h21T/5387FKCioUKFw7Dh0skfVJKj10kAJagB3vrOND7fXkBJlZHhSJJOyY7h5dvCuVTvSpoptvLn1fxTW76fWUg9AZnQ6z136BOnRKQGuTgSC09xIZ3UhndV7sdUewNvVp+kgRfHi6bTg7jTjtrZ2f9HpGg2IGjGLqBGzCUmQ82bF8bV2ODn7qZU0tDvQaVT8eGIGf7hoRJ9dE+nqaMVStInW7UvorN6Ly9ri73d2kDYilsjBk4ibcgkRWWOOWkrgbKun4Jlr0JsSiZ90MY0bP8Rprifv9tfRRwXPKKPL4+KdbYt4bs2r/vOm48Ni6XTZ/B8f6VSMqklQ66WBFNTWlzRzxUvr0ahVzBgch1at4vdB2lftWBqsTfxrw1tsr97FvsZiPF4Peo2OB866hwvzzwl0eSKAvB4X9voyf3BztNQcdRuPvQNXezPujhY8tu4jBYb4zK5+bbMJzxwp69rEUWxON+c+vYqy5k60ahVn5Cbw5OVjCO9jvdKc5gbaClbSunMpttoi3J1mULyHbqBSo49OxjR0CvFTLyM05fjHDx6+m1tRFBSPK6hacawqWc/jS/9ORZvvjOkwfRiD47KINESwsWIrDo/zmPeNDY1hyc3voj9JX48EtV4aSEFNURTm/nUFpU0d5CZFkBoVwpj0qKA6A/REuDxuPtr9GUv2LqOwvgiLw/eCO3/obP503m8J0QX/dK449dydZjqr99FRVYitdv9Ra9u8LgcuazPu9hbcHW1w2NSHJjSK6BGzMeXNOua6to7KAqo+fZq08+8gLD3vFH81ItAcbg8/eG4te2osaFQwKTuGxy8dHVTH8h2LoijY64pp3v4F5r1rcDRX+XucHaTSGTDGpmMaPpO4yRdjjE0LULUnV2lLBU9883fWlG4EQKfWkh2bSVJEPBGGCM4dPo9BsVmYHe3HfIyY0CiSIhJOWk0S1HppIAU1gBdWFPPY53uJDtUxLiMagN+eP5xB8X3vnLWdNQW8vvk9Cuv3U9F1/FR8eCzP/uAxhicODXB1IpgoioKzrQ5bXTG2ugPYag/gsVsPXe9147a24mpvxmVt6d4LSqMjImc80aPnEzViFrpw347jig+foGHNuyTMuIKMi3511OcU/Yfb4+XqVzawvqQFtQrGpEfxf+cNZ2JW8O4+9zg6aS/ZSsv2L7GWbsNpbvCfsXmQJiQSY0Im0flziR5zNoYgmqb8viz2dl5Y+xpvbf0Ar+JFhYpUUzKZ0WmE6EOYN2Qmc4fMDMgbewlqvTTQglpju4Opjy7F7VWYnB1DuEFLXkokvzxrWKBL+05aO9t4dePbbK3ayd6GIpwe3/FTC6ffwM+mXN1n142IU0tRFFzmBl9oqyvGVnsAt83SdZ1vXZsvtDWjuBzd7quLSiI8azTmfevw2ixow6MZ8tO/A6ANi8IQnXzavx5x6ni8Cj9/fQtfFdajUsGYtCiunZbFxWNTA11aN742GhWYC1bQVrgKW90BPJ2W7jdSa9GFRxOaNpzoUWcSOWQS+sj4wBR8ini8Hj7YuZinVr5Ie1eD7JjQaAbFZhGqD2F61iTOHT4PU0jgXu8lqPXSQAtqALe8sYXPd9cxJMHXUw3gV+cMIzepb379Hq+HL/ct5+PdX1DYsJ+WzjYARifn8eyljwf0F1L0DYqi4LI0YqsvwdFYgb2xDEdrra/Jrr0DV3sTLmsz3h5agxxp2MJXMcanow2NkjcKfZzXq3D3e9v5cHsNKmBUmon5eYksPGNwwL+3B99sdFQV0LZnJday7TjN9Ue9sVAbQtFFxhGRPY7oUWcSlpGPNqR/Hsm3uXI7f1zyV0pbKwAI0RkZFJdNTGgUo5LzuHDEOSRFnrwpzO9KglovDcSgtmJ/I9f+ayOhOjWTcmLRqFQMTgjn3nNzA/7k832Ut1bx703vsK1qFyXN5SgohOvDePyC+5k5aOppOWxX9B9elx17YyX2xjLsjeXYG8rorNmHvb7khO6v0urRRyViiEsnJHEQxvhMDLFpGGLT0JsSUanlhI1gpigKv/twN29u8L3o56dGMiEzhnvPzcWoO/0bTRRFwdXehK32ANbSbVgObPSd0NHRdsRGABXa0CiMCVmYhs/ANHQqxsQc1Nr+e+5ojbmOR75+kpUl6wHQqDVkRaeTYkoiOyaTi0eey+C44NnVLUGtlwZiUPN4FWY9sYzqNhvTB8X6n3TuOHMIo9KiAlvc9+R0O/lo9xd8WvAVBfX7sbvtqFBxUf457G8opqBh/yk9bFf0X4qi4La20LpnBRX/e/io67XhMd3OJv1Wag2GqCQMCVkY49L9Ac4Qm4YhJjWodssNRIqi8Mhnhby8qhSAvJRIcpMi+N35ecScojM8j9yc4nW7cDRVYGsoxV5firV8B47mKlzWlqNGdlVaPbrIeMIzRxE9ah7hWaP9ayn7s06njefW/Is3t/4PT9e60uTIRLJiMkiJTOSi/HMZnRJ8rVN6kzv61n5icdJo1Cp+NCGdJ7/eT2unk2STb0fbB1urGZlqCrof6t7Qa/VcNuZCRiTn8u9N77ClcgcN1iY+3P25/zZ76vaxtmzTKTlsV/RfKpUKXUTsoQaeB5t7dkmY9iMUxYuzuRpXZxtepx2vy+b722nH67T5/rgc4PXgaKnG0VKNpYfPpTMlYIhN94W4riBn7ApyGmPf2/jT1zz1dZE/pOUmRZAVG8qd84aespCmeNw0rHmH9uLNVH36NKGpw7A3lPvXSbqtrUcdo6YJiSQkZShRuTMw5c3CGJc+YEZpFUXhg52L+duKF2h3+DYFmYyRDI7LJjkygXNy5zEteyJadd+POTKixsAcUQOoabMx4/Fv8Crwg7GpmG2+J4Fb5gxiQhDvZOqNDmcn7277kM8Lv2ZfY3G363IThvDuT17u06FUBMaJNPd0d5pxNFfjaK3B2VqHs60WZ1tD14utgtfl8Ic3z+GBzmUDr/dbP78mNBJDbMZRI3HGuHS04TG9+pmWFiNHe355MY9/sRfAfzby7fNO3myDx2nz/Uy01tJRuQd7YxkuSxPWsh2+nw+VGrUhFO9hu5IBVGoNhvhM36kA484lPH0EqgF4KsuWyh08+MXj/p3+Bq2BQbFZpEelMH/YbGYPmoZBawhwld9Opj57aaAGNYDrX93Isn2N/GBcKuZOX1BLjjLy0IX5qNX9J8C8vvk9/rzsH0ddfkn++fzurLvlCCrRa9+luafi9eKyNh8Kbq11ONvqcLbVoxzWDkRxO/G4Do7AHTYa57L3eDj94VQ6A4aYVAxxGRjjMvyjcIa4rnVxR/ysS4uR7l5dU8ofPikAYFB8GFmxYVwzNZM5w3q3AF1RFDx2K862et8ax4ZSHE1VOFprcXeaUdwuFI8LZ+vRTZmPFDVyHtGj5hGVfwaaATwlXmOu44EvHmNjxTYA1Co1GdGpZMdkMnfITM4cOoswffD3tAOZ+hS9cMWkDJbta2TFvgYuGZtGaVMHtW121pc0M21wXKDLOykUReGzwq97PMtt0e5PWVW6nt/M/QVnDZsjo2vihB0eylQqFaoTeAFVqdXoI+N97RAyR/ovV7weXNYWXJYmXJZGnOYGXJZG3x9ra7fpVcXrPhTeXF2jcV2BTnE7UFwO7PUl2OtLMB9dALqIOLQRMegi4zDEpNGy5VMAmrd+jmn4TNRaAzpTAsbY4Go9cTwnY2Tw7Y0V/pCWFecLaReNTe0W0jxOG+6ONn/PPUdLtS9smxtwWZpwd7TisVnwODrxupxH9S3rFbWG7Mt/T+y48777Y/QDNqeNx5Y+w8d7luBRfG9oEsLjGByXzRmDZ3BO7tx+vbNfRtQY2CNqLo+XaY99Q2O7g9+dN5x1Jc0AxITpefiSkei1fX+9w5rSjdzy/vFHCobGD+LeebczIX3MqS9KiBPk9bhwtzfjtDTiMjf6jr+ytvrXLR1+tqmieFFc9q7wdnAU7tCoHN9y6PSRVFo9Kq0Bjd6IWh+KxhiGxhCG2tD1b30Ian2I7+Ouf2sMob7Ljvy3PoRmSyhqnfGUraGq+uzvNG38kLjJl5B27m0ndB/F68Fta8fdYWb17mLeXV1AuGIjzeAkxWAj3eggUWvHbTPjsbXjdXaieL5j8FJrUWt0qLR6NMZwtGFRaCNiMUQlodJqaVj11lF3GXLT84SlnPzG3fF9pG2a1+vlXxvf5JUNb/nP4YwwhPsD2vl584kPjw1wld+NTH320kAOagBPfLGX55YXM2toPGPSo9hT7Xsffun4NM4b2bcbdyqKwpVv3ExB3f6jRtMO0mt0uL0evF3b26dlTeTu2bcwNKHvHFYvBqaD02u+4NaC29ri/9vd0Ya703zYsVkKXpcTr9OG09KAq63+tNY68S9bTuvnE8cW7K/6iqLwWcHXPLXyReqtjYDveTo7NpO5g2dwYf45pJr69muTTH2KXrl8YjrPLS9mVVEjt88dTEGNGUWBT3fVMmNIHJHGvtt7x+VxUWdpOGZIA1Cp1ExMH0llWw21ljrWlm1ibdkmLsg7i9tm/JQUU9JprFiIE6dSqdCGRKANicAYn9HjbbweF56uUSN3ZxvuDjOeTjOdtUU0rH77qNuHZY5GYwhB8XhQFI9v7ZzX97fi9R72766PlUMf03VZt/sonuNujhACfAFtXdkm/rbiBfZ3bf5SoSItKoU5g6Zx6egLyInNCmyRASBBTZAZG8a0QbGsLW5mZVETMwbHsaqoCbvTwyc7arhqcmagS/zO9Fo9b1/zEi22tmPexmSMoLC+iM8KvybVlExZSwWNHc0sLviSL/Z+w5XjfsDPplxNVIjp9BUuxEmi1uhQh8cc1VOro6rQF9SOaDGSNPc6DFFJeOxW3x9bu+9vRwdep9239qqrzYjHaQv+4RkR9BRFYWftHp5Z+TLbqnfh7tpYExcWw4zsKVwx9mKGJw4dsGuIJagJwLepYG1xM//dXMniX8xgY1kLDpeX5fsamZebSJLp9B9ae7IkRSYc98iQVFMy49JG8f6OTwjRG0m3WylpLqfNbuE/m9/jfzsW89MpV3HV+B8G5ABfIU42XXgM2ojYo1qMhKUM87cYOR5FUfAe3J3q6MTjsOF1O1DcTrxu56G/Xcdp/isGJEVRKKjfxyvr32Rt2SY6XTYAwnShTM2awA2Tr2REUt8+LedkkDVqyBo1AIfbw+RHltLW6eLV6ybS7nDz0TZfj5ox6VH8Yt6QAFd4+uyqLeT9HR/T3NFKq62NkuZy/0LW+LBYbpl+PRePPLdfNFIUA9t3aTHyXTU2npKHpaNmP0Uv3XJoZLDr729biL+rqo2bX9+C3e0lOlTHiORIMuPCuGXOIEL1/f/3OtCbCRRFobChiHe3LWJl8TqaO1sB0Kq1jE0dyW0zf8qYlPx+HdBkjZroNYNWww/GpvGvNaW8vbGCZ348luX7GjB3uthe2ca+unaGJfXPQ3yPNDJ5OMPiB/HV/hV8vX8l0SFRNFibKO2aEn3oy7/wn83vccfMG5k7ZGa/fjIR/dt3aTHyXZ2qcGDSmWhL1Bw1MpiSaUIfdfTt99SYuX3Relx6D3FROkanhzI43sjdZw2MkBZIiqKws2YPiwu+Ym3ZRqraav3rh4fGD+Lu2T9natZEeU49goyoISNqBxXVtzP/yZVo1CrW3TuXffXtvLamDPCtY7v/guED7heopbONj3Z/zpaqHShehRpLHeWtVbi7eiONThnBnbNvZnza6ABXKsTAdaIjg0X17fzwhXWYbS5MITrGpEcxNDGcu+YPlZB2Crm9brZU7uTLfcvYUbOH0uYKXF5f4+akiATumHkT5+WdOaBeX6Q9Ry9JUDvk0ufXsqW8lV+dPYxbZg/iD5/soarVt27gZzNzmDqob/as+b6Km8r4387FVLRV4fF4qDTXUNVW42/pMXvQNG6feSND4nMCXKkQoielTR384Lk1tHa6iDBqGZsRxbDECAlpp5DL42J9+Ra+3r+C0uYKDjSVYnX62sVEGML56eSruG7iFagHyPmkh5Og1ksS1A55b3Mlv35/J5mxoSz75RwK6yz87cv9QP9qgvtdKIrChvItfLznCywOK063i/LWSmotvn5UKlRclH8Ot06/4bibF4QQp09lSyeX/GMNTR1OwgwaxmdEMyotitvmDsao0wS6vH5lfdlmHln6FGcPO4Nqcy2N1hZKWspptDYBoFPruHzsRdw562b0A/g4LAlqvSRB7ZBOp5vJDy+l3eHmrZ9NZtrgOJ78aj+7+1ET3O/L4XbwTdFqvt6/AofHic1pp7SlnKaOFsD3RHTV+Ev56eSr+vWxJkL0BXVmOwv+vppGq4NQvYbxmdFMyorh5tmDBuybzlPFbLNwxes3Um2uI1wfRmxYNJWHzTycOXQW9515F7FhMcd5pP5PglovSVDr7r5Fu3hzQwULRqfw9x+Ppaq1k99/vAdFAaNOw6OXjuzTTXBPlnaHlSV7l7G6ZD1uxUN7V0sPs90CQLg+jJ9NuZorx12KUWcIcLVCDDwNFjsX/H01De0OQnRqxmfGMHtoPNdPz0KrkZB2slS11bLswGr/GrQj5SUO44Gz7yEv8eQfh9VXSVDrJQlq3e2uNnPB31ej16jZ8Nt5RIfp+ffaMlbu9+2vnzkkjuumZwe4yuDR3NHCpwVfsalyO4qi0NLZRmlzOR2ugy094lg44wYuzD9bWnoIcZo0We2c//Rq6tsdGLRqxmdGc/GYVC6bkDagFq2fKoqisLtuL8sOrGZ/YzFOt5OtVbtweg71zNOoNDxy/n2ckztX/s+PIO05xPeSn2piREoke2osfLCtmp/OyObisalsLGvB7vSw+kATs4clkB0XFuhSg0JsWAw/mXg5c4fM4tOCL9lVV0hMqIl6a1PXKQdN/H7JE/xn07vcMftm5gyaJk9aQpxCdRYbC/6+hsZ2B3qNmnEZ0Vw3LYuzRshxcN+Xw+1gQ/lWlh9YQ217PU3WFuqtjbTZzEfd1qN4iDRGyPPd9yQjasiIWk9eX1/O/R/uZkhCOF/eNQuVSsWSPXW8t6kSgJz4MH573sBr13EiKlqr+GLvN+ysLcDr9VJrqT+qpcfds29hbNrIAFcqRP/g8SpsLG2hod2O4oU/fVZAk9WJTqNiUlYMt88bwuScgblj/WRp7WxjZck6VpWsp8ZcR317I82drf71Zz1Rq9QMTxzCW1e/KK8VR5Cpz16SoHY0i93F5IeXYnN5+N8tUxmfGYPb4+X3n+yhts0OwA0zspk+OC7AlQavytZqPt+7lJ21BXg8Hiraqqk21/qf2GZkT+GXc25hUFxWYAsVog/7Ynctf/ikgFqzvdvlahXMGhrPfecNZ0jiwGjWfbIpisLehiJWlaxnbdkm6iwNNFqbcHW96QRfH7QJ6WNYXPDlMR/n+R/+menZk05HyX2GTH2K7y3SqOP8Ucm8v6WKdzZWMj4zBq1GzY8nZfjbdfx3cyVjM6KkB9ExpEenctPUn1DVVsNnhUvRaDSkmpIob6mitr2e1aXrWVO6gbNz53L3nJ+TFCEtPYTojS9213LLG1vpabTBq8C5I5IkpH0HHc5O1pdt5ou937C34QD17Y3Y3YeCcKguhPnD5vgOS08YylVv/hwVKv8pA4dToeLZ1f9kmpw48J3JiBoyonYsm8ta+OEL6wjRadh43zwiunZ6/mPZAbaW+85mOzMvkR9PyghkmX1GnaWBpUUr2VSxjXaHldKWCn9LD41aw4K8s/jlnFulpYcQJ8DjVZjx+DdHjaQdLtlkZPVv5qJRS0A4HkVRKG0p58t9K/h6/wpqLfW0O6z+69UqNaOS87h6wmXMHTLDvzHK6XZy9os/8p/X2ZPY0BiW3PzugO6bdiSZ+uwlCWo9UxSF+U+u5ECDlT9dnM/VUzIBaLI6+N2i3bg8XlQqeOCCEWTEhga42r7DbLOwvHgNq0s2UG9tpKS5HIu9HQCdRscFw+fzyzNuJdIoIwFCHMu64mZ+/PL6497u7RunDNgTVU6Exd7OmtKNLNr1KfsbS2jtbO02LpZmSuH8vPlcM+GyYz4n1VkaaLG1HfNzxIRGyYzBESSo9ZIEtWP756oS/vRpISNSIvjd+SNoaLeTEGGkyergw23VAGTFhXHfecNRy7vWXul02lhbtollRaspbSmnpLmcTpfvuC6j1sDZuXO5dfr1JEcmBrhSIYJLQ7udhW9uZVPZsUdxDnr6ijFcNCb1NFTVd3i8HvbU7eW/Oz5hQ/kWGq1NeA7bFBBpiGBq1gRumHQlw5Ok99mpIEGtlySoHVtLh5NJD3+N29v9xyQp0sDQpAh0XWe0XT0lkzNy5R3Td+H2utlRs4flRWtYX76FspYKHF29iEJ1IczMmcIVYy9hVMoIdBot68s289g3z3Dv3NuZkjUhwNULcfqUNFp5cWUx72+uxnOCL10youajKArV5jo+2fMFX+5bTmVbNU6Py3+9QWsgN2Ewl466gPPz5qPTSFPzU0k2E4iTZmNp81EhDaDe4qDO4mBkaiQJEUb+t7WKcZnRmELkl7u3tGot49NGMz5tNFVtNSwtWsnHu5dQ2uIbYVuybxnryjczInEYZw6dzTvbFlHSXM7Tq15icuZ4WaAr+r1tFa28uKKEL/bU+S+LNGqxOT24enh+AlABSSYjk7IH9nFFrZ1tfLV/BZ/sWcKBxlJ/I24ArVpDqimZs4bN4bIxF8n0ZJCSETVkRO1YjrdYVwVEGLVMyIpBBUzOieGmWYNOa439VYezk2/2r+Lfm9/lQFMJ3q5f00hDBBZHu/92T170R+YNnRWoMoU4ZRRFYdm+Bl5YUcLG0hb/5XHhejJjw4gJ0zMoPowXVpSggm7rqg6+dXn+6nGckz/wzibucHayrmwzi3Z9yq7aAtpsFv91KlTEhcUwMWMsl4+5mFEpeWjUcjD96SYjauKk2Fja8q07qhTAYndjc3kI1WnYUNLC1Jw4RqaZTl+R/VSYPpQF+WdzwYizWF++mWdXv8Ku2sJuIQ3g/s8f40BTKRMyxjAyabjsqhJ9ntPt5ZMdNby0soR99b6fd7UKEiONZMaEEmbQkhBp5KZZOWTHhTEmPeqoPmpJJiMPLsgbUCGtw9nJ1qqdfLxnCVurdtBkbenWLsNkjGRE0jAuGXk+M3ImE6aXDWB9hYyoISNqx/LR9mrueGf7cW93y5xB7K/zPaHGhOn548X5GHXyDu1ke3vL/3j0m2eOulyn1hEdaiI2NJpJmeM4e9gZ5CYOkXNFRZ9idbh5Z2MFr6wu9YeuEJ2GtOgQEiKNGLW+9bCzhsZz+cT0bs8xh59MkBDhm+4cCC05Opyd7KzZw+eF37CxYisN1ib/CSjgW+OaE5vJBXlncdawOcSFy1q9YCEjauKkSIgwntDtZg6OQ62CvbXttHQ4+WBrNVdOlt5qJ5OiKHxcsAS1Sn3UkS0ur4sGaxMN1iYKG4p4Y8v7RIeYyE0YwuxBUzl3+JnS6kMErcZ2B6+tLeX1deVY7L6QEReuZ3xGNDa3x79hKcyg5brpWYzLiD7qMTRq1YDZMNBkbWZXbSErS9axuXJ7VzNah/96vUZHelQa84fO5ry8M8mMlkPo+zoJauKYJmXHkGwyUme299j5G3wNJSfnxDI4IZwHPtqDy+Plm731TM6JYVB8+Gmttz9bW7aJPXX7jnl9XuIw6tobaLOZ8Xg9NHW0sLp0A6tLN/DI10+REB7PqJQRzBk8nSmZ44mXd9YiwEqbOnh5VQnvb6nC6fa9+ciJC+O8kUlUt9mx2Fz+kDYiJZIbZmQTFTrwpvYVRaGirZqdNXvYVLGdXbUFNFgbaXd0+G+jVqlJNSVxxuAZXDLyPHJisySc9SMS1MQxadQqHlyQxy1vbD1qse5Bk7Nj0ahVJEQauXhsKv/dXImiwKtrSnlwwQh0GvXpLrvfURSFZ1f/81uPaFGp4Mub/8ue+r0s2buMLVU7aOloxWxvx+lxUm9t5Kv9y/lq/3IAYkKjGZuaz5TMCYxLG8WguCzUKvleiVNvR2UbL6wo5os9dRxceDMmPYprp2bR0G7vtnFAr1Xzg3FpnDk8YUAEj4Otd26feSPhhjAK64vYVVtIRWsV9e2NtB7RVDYpIoHp2ZP50ZgLyU0YMiD+jwYiWaOGrFE7np4OPQ43aLA6PADcPCuHe8/NxavAw58WUt7se6d3/qhkfjAuLSA19yff5YgWl8fFvoYD7KjZw4aKrdRZGrDYLZjt7XQ4O4+6f6guhDEp+YxLH83Y1Hzyk4cTojuxqW8hjkdRFJbvb+TFFcWsLzkUxOblJnDTrBw8XoV3NlXS4Ti0viovJZKfTM0iPsIQiJJPK7fXTWlzBbcv+j+qzXWE68PIjsmg3tpIU0dLt+UOsWExzMr29VbMTZRw1ldJw9tekqB2fD0t1n1ldQmPfLYXgB9NSOORS0ZSa7bz0OICvF4FlUrFfecPJzsuLMDV933f54gWj9dDcXMZO2v2sKu2kIb2JiyOdsz2diy2diyO9qPWvWlUanIThzIudSRjUkcyNjVfFiKLXnN5vCzeWcOLK0rY27XhSKtWcdGYVG6alUNUqI43N1Swp9rsv0+YQcsVE9OZOii234YQj9dDRVs1RY3F7G8soaS5nBpzHQX1PS9viDREMCNnMlePv4z85NzTXK04FSSo9ZIEte/uvc2V3Pu/nXgVOHtEIk9fMZYvC+r5qOt4qeQoIw9cMAK9VqbVgoGiKNS3N1JQv489dfsobirF5XXT4ejEbLdgsbf7p0uPlBqZzNi0kYxNHcmY1HyZLhXH1OFw886mSl5ZVUJN10h8mF7DjydlcMOMbGLC9CzeWcuXe+rwHNawdlJ2DFdMyuh3jbNdHhflrVWUNJWxq7aQPfV7abNZ6HTafH9cnd1OCQDfkoazhs7hx+MuYWzaqH4bWgcqCWq9JEHt+/lidx23v70Np8fLtEGxPHfVOJ5ZesA/BXruyGR+OF6mQIOR3eVgf2MxBXX72Nd4gMaOZlDA4Xb4Rty+Zbo0XB/G2DRfaBubOpIRSbkyXTrANVkd/HttGf9ZV47Z5gseceEGrp+exdWTM4kM0bK+pIX/bqnE3HkomESH6blmSiaj06MCVPnJ1WazsKliG1urd7K3vogaSx0djk46XZ24vZ4Tfpznf/hnpmdPOoWVikCRoNZLEtS+v7XFTdz47810OD2MSjPxyCUjeWZpER6vgkoF9547nMEJsgs02DV3tFLUVML+hgPsayzGbPd1NPd4PIdNl1qwOKw9TpcOSxzK+NSRjE0bxdjUfGLDjn18j5xZ2n+UN/t2cP53cxWOrh2c2XFh3Dgzhx+MS8Wo01DR3MmbG8o50GD130+jVnFOfhLnjUzuk70XfWtBi9lcuZ09dXspbamgvr2BdkfHUb8fhwvVhZAYEc+guGzGpIzg/R2LqWir6nYftUrN8MQhvHX1izKa1g9JUOslCWonx86qNq57dRMtHU4GxYdx/fRslu1tACAh0sCDC0b0ySfjgUpRFBqsTexvLKa0uZzi5jL/hgZFUfzTpQdH3o6cugHfrrTxaaMZnz6KMakjyYnNRK1SoygKV75xM3vq9jEiaZi8GPVRO6vaeHFFCZ/vruXgDObo9ChumZ3D/LwkNGoVbZ1OPtxWzeoDTRz+ajMmPYrLJ6aTEBn8o7Adzk5KmsrYXbuXPfW+JQPVljrMNkuPO7HBN3UZqgshVB9CfHgsg+NyGJ0ygsmZ40iPSvX/vK8p3cgt7//qmJ9bRtX6JwlqvSRB7eQ50GDlJ69soMZsJznSwIwh8bR0+NY7zRwSx3XTswNcofg+zDYLxc1llDSXU9pcTqW5xjcKoIDd7eha4+Zb69bTdGmIzsiw+MEkRcbzxd5l/svlxajvUBSFlUVNvLiimLXFzf7LzxgWz82zBzE5OwaVSoXN6eHz3bV8uacel+fQSFGiyciPJ2YE5VFzLZ1tlDSXU9RQzO76vRxoLKXaXHvU0W2H06jUhOpD/aHMZIxkcHw2+Um5DI7LISc2k3BDzxuqDr5hKajbf8zWO3lJQ+WNTD8kQa2XJKidXNVtNq55ZQMljR1EhegYkRLpH0lbOHdwj53FRd/k8rioMtdS1VZDeWsVla1V1LY34FW8uD1uLA6rL7zZLLT3MF16kEatYWhcDulRqaRHp5ISmURSZAJJEQkkRyYe84VOnD5uj5dPd9XywooSCmt9U+JatYoLR6dw0+wccpMi/bdbvq+RT3bWYLUfardh1GtYMCqZM4cnoj0F/RVPdCrdq3ipszRwoLmUPbV72ddwgLKWSmrb67G5jn22sU6tI1Qf4v8TpgslwhBOTmwWmTFpZESnkRWdTkJE3AlvsvkurXdE/yBBrZckqJ18zVYH17+2iZ1VZow6NXnJkUSH6gkzaHnoohEDssP4QOF0O6k211LRVk1FazWVbdXUWurxKl46HB3UtjdQa6nv1WOGaENIiownJTKJFFP3EJcUkUBiRDw6Tf/aKRgsOp1u3t1UyT9XlVLdZgMg9LAdnKlRIYBvdGhjaQuLtlXT2H7oSCONWsXc3ATOH5VMhPHUfI96mkp3ez2UNpezq7aQwoYiSpvLqTLX0Ght7nYe5pEMWgOhuhDC9CHdRsriw2NJiUwmxZREqimZVFMS8eGx3/tM3e/Tekf0XRLUekmC2qlhdbi58d+bWVfSjEatIi85koQIAyNSIrlr/lAZyh9AXB4X9e1N1FrqeOCLx6gx1x811WPUGkiKTMTpdmB3O3G4HTjcjhPeJRcbGk1SZCIpXeEtqevv5EhfoIsOjZJ2Ikf4tsPMm60O/r2unP+sK6Ot8+AOTj3XTcvi6imZ/jdbiqKwtaKVj7fXUNVq6/b4k7JjuGRc6gmfG3wivIqXDmcn7Xar74zb9iY2lG/hvzs/9t8mVBeCzWX/1vVjITpj1+jYoTAWqgsh3BBGQng8KaZEUiJ9oSzFlESYPvSkfQ1CyKHsIiiEG7S8ev1Ebn97G18W1LOr2szwZN/h4F/sruPckckBrlCcLjqNjrSoZMpbK6k21/V4G7vbQX5Xi4/mjhbcii+gebweHP7g5sTeFeAcLgcOjxO7y4GCQnNnK82dreyp29vj42vVWuLDY0mOSCCl68U3KSL+sECX2OsX4768c/XgiSMNnXsxhi7F3jmPhNBcbp0zmP317by3udK/gzMrNpQbZ+Vw6bg0/zIGRVHYVtnGx9trqGzpvh5xeHIkPxyfRtYRza5dHjcdzg6sjg7aHVasDt+/rf7LOjDbzLTZzF2bVNp9t3N20unsxOF29Lhp5UidLl9gVKvUh0KYPoRQXShh+hDC9GEkRMSRGBFPQng8ieFxJETEER8eR7g+TN5EiqAiI2rIiNqp5vZ4+e2iXby3uQqAIQnhZMWFce+5uXJw+wDSm4XTCgqtnWYarU00djTTaG32/7vJ2uwPcb4H9o3YdQtxXcHO3vXvnhr49sSoNRITGkV8eCwJ4XGkRCaRHp3qWzsXlUJiRAI6jbbb17PjQB3DEgbz4mV/7TMv8EsL6/n1+ztRUAiJeA+ttgG3OwFb+4+AQ19DXnIE103LZs6weNxeFx2ODqzOTnZWN7CqqJr6dgserx2P4sCrOAgzekiKVKFWO+hwddLeFcQ6nJ3YXDZcJxCyTpQKFRq1BlQq3F2Pqw0/dMLB2NSRjEzOIzYsmtjQaGLCookJjSYhLJaYsGgZXRUBJVOfvSRB7dRTFIVHP9/LSytLAMiMDWVydgy/v3AEoXoZ2B0ITtbCaa/ixWJvp7WzjRZbG62dZlo722i1tdHS9feRO04VRek2Knd4iDv4b88JTrEatQbC9GFoNRrq2xvZ9esVJ/YfIE65kU/MBmS3pAh+MvUpgo5KpeK35w3HFKLjz0v2Ud7cicvj5V+rS1l4xmB5Mh0A9Fo9b1/z0nEXTh9vd5tapSYqxERUiIlsMnu8jcPtoNVm9p9lenAKzdI1neb7Y8Xq7PCP7h0+xWrvmlZ1uBxdQc53uYKCvSvYieCloLCnbh9ryzZJ2xfR50lQE6fVwjMGo9eqefjTQmra7PxnXTmDEsI5N1/Wqw0ESZEJJEWe+h1sBq3Bt6HgOLvlPF6Pf42U79zFTjpdNjqcNjq61kV1dF1mdXRgtlkw2y3UmOsoa6085V+H+O5UqHh29T+ZljVR3giKPk2CmjjtbpyZg9Pt5S9L9tHQ7uB3i3aTGhXCqLSoQJcmBhiNWoMpJBJTyIkveTi4Nk2F6pi7CkXgKSjUWRpxeVzSg0z0aRLUREAsPGMw5k4X/1xdQnOHk2v/tZGPFk4nI1Yam4rgtrZsE3vq9vk/Hv7Ahd2uf2LB75mcOe50l/Wtdleb+cuSveys9jWq1enKMYZ/fMzbOzsvYlL6oa8hIzaU+XmJjEw1BdXoVH17I202i//jmLiXu11/IlPpQgQ7CWoiYH5zbi7NHQ4+2l5Da6eLi/6xhk9vn0lKVwNNIYKNoig8u/qf3UbTDt9pqELFm4UvcP744FjE3mCx88SSfby/xbfjOiJKw61zBvFp0VtUmc30VKKiQFTEUowRIxmeEsl5I5PJS44Miq/nSPHx8UB8oMsQ4pSSoCYCRqNW8cAFIzDbXKwqaqK108V5T69i0cLpZMfJyJoIPi6PizpLwzGnPINlus3u8vCvNaX845sDdDh9u1l/MC6V35yTS3Somv8VtvYY0gBUKtBo2vn1uUPITZLj3oQINGnPgbTnCLT99e089EkBW8pbsbk8mEK0vPmzKeSnBt+hzUIE85E/iqLwZUE9D39aSEVXE9ox6VE8uCCPsV1n7DZY7Ly3dQ/riitxexXa7S5cHgW9Vs3UQbHMGBxHblKSHFskxCkkfdR6SYJa4C0trOe1tWVsq2jD6nATptfwr+smMjknNtClCdEn7Ktr56HFe1hzoBmAhAgD956by8VjUlGrVVS2dPLZrlo2lbVw+LO+VqNixpB4zhmRRHyEIUDVCzGwSB810efMzU2goqUTlQp2Vppps7m45pUNPHfVeM7MSwx0eUIErdYOJ09+vZ831pfjVUCvVXPTzBxumTOIMIOWAw3tfLqzjp1Vbd3uZ9RpOCM3gfnDEzGFyoH2QgQrCWoiKKhUKq6ekklNmw21SsXuajNNVic3vb6Zv1w2mh+MSwt0iUIEFZfHy5vry3ny6yLMNt8RSufmJ/Hb84aTFh3C9so2vthdx4EGa7f7hRu1zM9LZG5ugpwKIkQfIL+lImjoNGoWnjGYhxYXMDLVRGFtO3UWO3e/t4O2Thc3zMgOdIlCBIVVRY089EkBRV0hLDcpggcW5DExK4Z1xc08v6KYerO9232iw/ScMyKJmUPjMGg1gShbCPEdyBo1ZI1asClt6uDxz/fi9Hgpqm+nstUGwO1zB3PX/KFB2SZAiNOhrKmDP31ayNeF9QBEh+r45VnDuHB0MqsPNPN1Qb1/dO2glKgQzslPYnJ2DFqNHEQuRDCQzQS9JEEt+Gwpb+X55QfwKr4Xp5KmDgCumZLJHy4cgVotYU0MHO12F88uO8C/Vpfi8iho1Sp+MjWLn0zNZENpMyv2N+JwebvdZ2hSBOeMSGJUWnA1qRVCyGYC0Q+Mz4zmh+PT+O/mKrLjwjDo1BTWtvP6+nLabC7+etlo9FoZHRD9m9er8P6WKp5Yso8mq+8g+FlD47lpZjZ769p5+LNCvN5D77VVKhibEc05+UkMig8PVNlCiJNIgpoIWmePSKLObGdVURMpphBCdBp2VrXxyY4aLDYXz189ThZDi35rc1kLf/ikgF3VvpMPsmJDuWFGFs1WJ6+uKet2W61GxYzBcZw1IonESGMAqhVCnCoy9YlMfQYzt8fL3785wO6uFyuH28vmshbsbi/jM6P517UTpbWA6Fdq2mw89vlePt5RA0C4XsMPxqX5e6EdLtSgZW5uPHNzEzGFyO+BEH2FrFHrJQlqwc3u8vDnJfso61qnptWoWFfcjMXuZlhiBK//dBIJMoog+jib08NLK0t4fsUB7F3rzWYNiSM23IDliA0CMWF6zh6RxIwhcRh1soNTiL5GglovSVALfha7i0c/K6TB4lunExWqZ+X+BhqtTtJjQnjjp5PJjJXzQUXfoygKn+6q5dHP9lLd5tvhnB0XRlp0CPojdmmmx4RyTn4SEzKjZQenEH2YBLVekqDWNzS023n0s73+0YWUqBBW7G+gosVGfISB/9wwieHJ8v0TfcfuajMPfVLAxrIWACKNWrLiwogLN3D4Ps28lEjOyU8iLzlSdnAK0Q9IUOslCWp9R2VLJ08s2Uenww3A4IRwVuxvZG9dOxFGLa9eN5EJWTEBrlKIb9dkdfCXJft4Z1MlABo1ZMSEkRkTiqar9YxGrWJyTixn5SWSHhMayHKFECeZBLVekqDWtxQ3Wvnrl/v8faPyU02sOdDI5vI2jDo1z181njNyEwJcpRBHc7q9/HttGU9/vR+r0wNAYqSBwfHh/rVm4UYtZwxL4IxhCbJRRoh+SoJaL0lQ63sKay089fV+3B7fj+/YjGi2lLewbF8jWrWKv/5oNBeNSQ1wlUL4KIrCsn0N/P7jAiq6dm5GGLUMTYwgqmu3ZnKUkfl5SUzNiZUegUL0c9LwVvR7w5MjWXjGYJ795gAer8K2ilYmZccQadTy0Y5a7nx3O2abi59MzQp0qWKAK6q38H8f7GZzeSvgO9N2cEIYyaYQVMCIlEjm5yWRnyrrz4QQR5OgJvqsUWlRLDxjMP9Y5gtrm8t8Yc0Uquc/68p54KM9tHa4uH3eYHkBFKddo8XBfR/u4quCehRAhW/XZnZcKEadhik5sczPSyQtWtafCSGOTaY+kanPvm57ZRvPdYU1gHGZUThdCk9/UwTAddOyeOCCPBRgY2kLDe12EiKMTMqO8S/cFqK3PF6lx5+nerOdx77Yy+KdNbi6pubjwvUMSYggMdLAGbkJnJGbQKRR1p8JMVD1mzVqjz76KB988AF79+4lJCSEadOm8fjjjzNs2DD/bex2O7/85S955513cDgcnH322Tz33HMkJiae8OeRoNb3bato5fnlxf6wlp9qIjJEyx8XFwIwKSuaihYbdRa7/z7JJiMPLsjjnPzkgNQs+q4vdtfyh08KqDUf+nnyhbFwdlWbsTp8GwXC9BqGJEYwMSuaubmJTMiKRif9z4QY8PpNUDvnnHO44oormDhxIm63m9/+9rfs3r2bgoICwsJ8zU1vueUWPv30U1577TVMJhO33XYbarWaNWvWnPDnkaDWP+yuNvPsNwdweXy7QYclRZAdF8Zv/rcTbw8/5QfH0p6/epyENXHCvthdyy1vbOXbnji1ahWDE8L5wbhU5uclkR0nzZiFEIf0m6B2pMbGRhISElixYgWzZs3CbDYTHx/PW2+9xQ9/+EMA9u7dy/Dhw1m3bh1Tpkw5oceVoNZ/7Ktr5+ml+/2tO9JjQlm0rQqzzd3j7VVAksnI6t/MlWlQcVwer8KMx7/pNpJ2JI1axZ8uyuf80ckyvSmE6FFvckefGoM3m30Hc8fE+BqabtmyBZfLxZlnnum/TW5uLhkZGaxbt+6Yj+NwOLBYLN3+iP5hWFIEvzxrGKEG3z6ZnVVtxwxpAApQa7azsbTlNFUo+iqXx8vLq4q/NaSBL8xlxYVJSBNCnBR9Zten1+vlzjvvZPr06eTn5wNQV1eHXq8nKiqq220TExOpq6s75mM9+uij/OEPfziV5YoAGhQfzv+dm8vfvtrfbU3at2loP7HbiYGlwWLn68J6PttVx+5qM21HHI5+zPvJz5MQ4iTpM0Ft4cKF7N69m9WrV3/vx/q///s/7r77bv/HFouF9PT07/24InikRIXw2/OG8+v3d7Kn5vgjpgkRxtNQlQhmXq9CUYOVzeUtbCptYW1xEw3tzu/0WPLzJIQ4WfpEULvttttYvHgxK1euJC0tzX95UlISTqeTtra2bqNq9fX1JCUlHfPxDAYDBoPhVJYsgkBMmJ6//mg00x5dSkfXcT09UQHlzR1MyYmRfmsDiM3pYUdVG5vLWthc3srW8lYs9qOnycMMGqJC9MSE6ZkxOJb3tlTRbO05wB1c8zgpW86bFUKcHEEd1BRF4Re/+AWLFi1i+fLlZGdnd7t+/Pjx6HQ6li5dyqWXXgrAvn37qKioYOrUqYEoWQQZU4iOxy8dyW1vbz/mbRTg3g928XVhA49dOpK4cAnx/VFDu50tZa1sLvf92VNtxn3EdmC1yvczYwrRERWqJzJES2pUKLOHxjN9cCwRRh2j06O45Y2tAN12fh6M+A8uyJONKUKIkyaod33eeuutvPXWW3z00UfdeqeZTCZCQkIAX3uOzz77jNdee43IyEh+8YtfALB27doT/jyy67P/+3xXDf/3we5ua4zCDBoeWpBPU4eDv365H6fHS2yYnscuHcX8vBPvwyeCj9ercKDRyuayVjaXt7ClvJXy5s6jbhdp1BJu1BKm1xIVqiPcoEWtUqFRqxiXGc3sofHkJkUcNdLaUx816csnhDhR/aY9x7GmoV599VWuu+464FDD27fffrtbw9tvm/o8kgS1gcHjVfjX6lI+3lGDTqMiKtQ3nXXbGYOxuTzc9e529ta1A/CjCWk8sGAE4YagHnQWXewuDzsq23yjZWUtbK1ow3zEwn+VCobEh5MWE4KigMPtxajTcPizTEKkgVlD4pk+JO64uzaPdTKBEEIcT78JaqeLBLWBpbjRyj+WHcDc6Xsh12pUXDU5k0nZ0Tz5VREvrSpBUSA9JoS//WgME7NkvdHJ9n1DTmO7gy3lLV0jZq3sqTH7j2s6KESnYUx6FOMzo0iMNNLa6aKgxuJviHyQRq1iTEYUs4fGk5csB6MLIU49CWq9JEFt4GnrdPLc8mKKG6z+y6YOiuXqKZnsqGzjl//dQVWrDZUKbp41iLvmD8Gg1QSw4v6jt9OGXq9CcaO1a7SslS3lLZT1MI2ZEGFgQlY04zNjmJgVTUKEgQ2lLaw50NTj4v/0mFBmDI5jck4MEdLzTAhxGklQ6yUJagOTy+PlnU2VLN/b4L8sJSqEn88ZRKRRy0OfFPDfLVUA5CZF8NQVY8hNkp+P7+NYxy8dfpzXnGEJ7Kwy+9aWlbWypaKVts6jpzGHJkQwISva9yczhrToEFweha0VrawuaqKw9ui2LKEGLVNzYpkxOI6M2NBT80UKIcRxSFDrJQlqA9uGkmb+va7Mf+yUTqPmsglpzM1N4MuCev7vg120dDjRa9Tcc/ZQfjojR9YifQcncvySTqNCURTc3WcnMerUjEmPYkJmDOOzohmXEY0pxDcKpigK++utrCtuYnN5K7YjWrGoVDAixcSMIXGMSY+SQ9GFEAEnQa2XJKiJWrON55cXU91q8182Ms3E9dOzcbq9/N8HO/m60DfyNjk7hr/+aDRp0TIi0xvripv58cvrT+i28REGJmRGMz4zmglZMYxIiTwqYNW02VhX3Mz6kmZaOo6e2kyINDB9cBzTBsURE6Y/KV+DEEKcDBLUekmCmgBwur28v6WKpYX1/svCDFqumpzBxKxo3ttcxUOLC+h0egg3aHlwQR4/HJ8mi89P0Ifbqrnz3e3Hvd0DF+Rx/fSsHv9fzZ0uNpQ2s66kmYoe1qkZdGrGZ8Ywc0gcQxLC5XsjhAhKEtR6SYKaONyuKjP/WlOK5bD2DmPSo7hmaiZmm4u739vBlvJWAM4ekcgjl4wkVprkHpPT7eXjHTU89fU+qlqPfwbm2zdOYeqgWP/HdpeHbRVtrCtppqDGzJHPWCqVivzUSKbmxDImI0o2fQghgp4EtV6SoCaOZLG7eHN9BZvLWvyXheg1XDoujRmD43h5dQlPfrUfl0chLtzA45eOZN5waZJ7OKvDzTsbK3hldal/XZoKjtpIcNDB45dW/2YuAIW1FtaXNLO1otW/fvBwWXFhTM2JZVJOzHF7ngkhRDCRoNZLEtTEsWwpb+H1deW0H3YGZHZcGNdMzcTqcHPXu9vZX+9r8fHjSen87vw8wgZ4k9yGdjuvrSnj9fWH/t/iIwzcMD2bhEgD97y3Azj6+CUFeOCC4ei0GraUtXT7Pz8oNlzP1EGxTMmJJdkUcuq/GCGEOAUkqPWSBDXxbdrtLt7bXMXaA03+y1QqmDkknnPyk3h5ZQmvrClFUSAjJpQnLx/N+MyB1yS3pNHKy6tK+d/WKpxd2zZz4sO4eVYOF49N9U9J9tRHzRSiZXhyJGH6o0NuiF7DpOwYpubEMljWnQkh+gEJar0kQU2ciH117by+vozatkMBw6BTc97IZCKNWu793y5qzHbUKrhlziDumDcUvbb/t4LYXtnGC8uLWVJQ518/NjYjip/PHsT84Ymoj2hloigKZc2dvLupku2VrTjdXqJC9d2OctJp1IxMMzElJ5ZRaSZpqSGE6FckqPWSBDVxotweL18X1vPJzlrsh/XrMoXqOGNYAkv31vPhthoARqRE8uTlYxiaGBGock8ZRVFYvq+RF1YUs6H00Dq+ebkJ3Dx7EBOzoo8a+apps7GxtIWNZS3U99BLTaNWkZ9qYmJWDGMzojDqZFOAEKJ/kqDWSxLURG9Z7C4+2l7Din0N3XYhRofpSYww8OaGctpsbvRaNb8+exg3TM8+amSpL3J5vHyyo4YXV5Swr953gL1WreKiMancPDunWyhVFIUas52tXQelVx3Wo+4glUpFXnIEE7NjGJcRPeDX9wkhBgYJar0kQU18VzVtNhZtq2ZrV7uOg3QaNZUtHeyp9YWZqTmx/OVHo0mN6psL4Dscbt7ZVMkrq0qo6RoNC9NruHJyBjfMyPYv7FcUhdKmDrZWtLG1orXHkTOVCoYkRjApy3fKgOzYFEIMNBLUekmCmvi+yps7+HBbDTur2vyXKUCDxc6+unZcXoUIg5aHLh7BxWNS+8yC+Carg3+vLeM/68oxd/WViws3cP30LK6ekokpRIfT7WVfXTs7q9vYVtFGaw+nBIBvY8HErBgmZsUQLScFCCEGMAlqvSRBTZwspU0dfLG7ji3lLf4p0U6nhz01Zixd7SbOykvg8UtHB3VYKWvq4OVVJby/pQpH1w7O7LgwbpqVwyVjU7HYXOysMrOr2uwLop6j+5wdHDkblxHN2Iwo4qQpsBBCABLUek2CmjjZGix2lhTUs664CYfLi1dRKG/upLSpAwXftOHtZw7h2qlZQbVofmdVGy+uKOHz3bV4u54ZRqdH8ZMpGaRFh1LUYGVPjZkGi6PH+2vUKvJSIhmXEc2YjCiZ1hRCiB5IUOslCWriVLG7PKwrbmb5vgaqWm1Y7C721Fjo7NoxmhYdwoLRKUzMimZ4ciRJkcbTPi2qKAori5p4YXkx60qa/ZePTjMxJj0Kh9tLY3vPwQx8O15HppoYmWpiRIqJEH3wBE8hhAhGEtR6SYKaONWUrhG1dSXNrD3QxPbKNiq7dkGG6DSMSInEFKLDFKojNymCnLhwsuJCSY8JPWVnV7o8Xj7aVs1zy4spaeoAfCcEpEaHkBoVQvgxdmCqVCqGJIb7w1ladEifWXMnhBDBQIJaL0lQE6eTx6uwt87C+1uqeGdjJTaXb3QtKzaU7Lgw1IeFHpVKRXyEgaRII8kmI/ERBiJDdESF6og06jDq1Bi0GnQaVbew5PZ4cbh9fzocbix2F2abC4vNRU2bjRX7G9lU1uof2VOrIDUqhIyY0KOmYjVqFdnxYQxNiGBoYgSDE8Jl1EwIIb4HCWq9JEFNBEpbp5Nf/XcHXxU2ABBp1JKX0vNRSt9GpfKFOt9vs0JPv9VOj5fKlk6qWm24uxag6TQq0qNDSYsO8Xf/N4XqSI8OZXBCOEMTI8iOCxsQJywIIcTpIkGtlySoiUBbvLOG+xbtxmxzodOouGx8GoMTIqho6aTObO9xV+WJsrk8lDd3Umu2+TcIhOjU5MSHMy4jmqy4MNKjQ0iP8QW2CNkAIIQQp5QEtV6SoCaCQb3Fzq/e38nK/Y0ATB8cy18uG01SpJHWThe1ZhutHS7abE7MNhftdjcOlxe724PT7fWPoqlUoNWosHS62FbZxr66dg7+kg+KD+PqKZlcMjYVU4hO1pYJIUQASFDrJQlqIlgoisIb68t5+LNC7C4vkUYtf7w4n4vGpAK+9W0bS1toaLeTEGFkUnYMmsOOplIUhdUHmnhhRTFrDhzawTl7aDw/nz2IKTkxEs6EECLAJKj1kgQ1EWyKG63c/d4OdlS2AXDBqGTOGBbPX77cT+1hxzIlm4w8uCCPM4cn8umuWl5cUUJBrQXwbQK4cHQKN83KYXiy/FwLIUSwkKDWSxLURDBye7z8Y1kxz3xThMfb86+pCt9RVbFhepq7jm4K0Wm4YlI6P52RTVp06OkrWAghxAnpTe7o3dYyIcRpo9WouePMIcwcEsdlL67rMawdvKS5w0l0qI7rp2dzzZTMoD6eSgghxImToCZEkHO4vcccUTvcU5ePYfawhNNQkRBCiNNFmiMJEeQa2u3HvxHQZnOd4kqEEEKcbhLUhAhyCRHGk3o7IYQQfYcENSGC3KTsGJJNRo7VVEOFb/fnpOyY01mWEEKI00CCmhBBTqNW8eCCPICjwtrBjx9ckNetn5oQQoj+QYKaEH3AOfnJPH/1OJJM3ac3k0xGnr96HOfkJweoMiGEEKeS7PoUoo84Jz+Z+XlJ33oygRBCiP5FgpoQfYhGrWLqoNhAlyGEEOI0kalPIYQQQoggJUFNCCGEECJISVATQgghhAhSEtSEEEIIIYKUBDUhhBBCiCAlQU0IIYQQIkhJUBNCCCGECFIS1IQQQgghgpQENSGEEEKIICVBTQghhBAiSElQE0IIIYQIUhLUhBBCCCGClAQ1IYQQQoggJUFNCCGEECJISVATQgghhAhSEtSEEEIIIYKUBDUhhBBCiCClDXQBwUBRFAAsFkuAKxFCCCFEf3cwbxzMH99GghrQ3t4OQHp6eoArEUIIIcRA0d7ejslk+tbbqJQTiXP9nNfrpaamhoiICFQqVaDLCVoWi4X09HQqKyuJjIwMdDkDlnwfgod8L4KHfC+Cg3wfToyiKLS3t5OSkoJa/e2r0GREDVCr1aSlpQW6jD4jMjJSfgGDgHwfgod8L4KHfC+Cg3wfju94I2kHyWYCIYQQQoggJUFNCCGEECJISVATJ8xgMPDggw9iMBgCXcqAJt+H4CHfi+Ah34vgIN+Hk082EwghhBBCBCkZURNCCCGECFIS1IQQQgghgpQENSGEEEKIICVBTQghhBAiSElQE9/q0UcfZeLEiURERJCQkMDFF1/Mvn37Al2WAB577DFUKhV33nlnoEsZcKqrq7n66quJjY0lJCSEkSNHsnnz5kCXNeB4PB7uv/9+srOzCQkJYdCgQfzxj388ofMTxfezcuVKFixYQEpKCiqVig8//LDb9Yqi8MADD5CcnExISAhnnnkmRUVFgSm2j5OgJr7VihUrWLhwIevXr+err77C5XJx1lln0dHREejSBrRNmzbx4osvMmrUqECXMuC0trYyffp0dDodn3/+OQUFBfz1r38lOjo60KUNOI8//jjPP/88zz77LIWFhTz++OM88cQT/P3vfw90af1eR0cHo0eP5h//+EeP1z/xxBM888wzvPDCC2zYsIGwsDDOPvts7Hb7aa6075P2HKJXGhsbSUhIYMWKFcyaNSvQ5QxIVquVcePG8dxzz/GnP/2JMWPG8NRTTwW6rAHj3nvvZc2aNaxatSrQpQx4F1xwAYmJibzyyiv+yy699FJCQkJ44403AljZwKJSqVi0aBEXX3wx4BtNS0lJ4Ze//CX33HMPAGazmcTERF577TWuuOKKAFbb98iImugVs9kMQExMTIArGbgWLlzI+eefz5lnnhnoUgakjz/+mAkTJnDZZZeRkJDA2LFjefnllwNd1oA0bdo0li5dyv79+wHYsWMHq1ev5txzzw1wZQNbaWkpdXV13Z6jTCYTkydPZt26dQGsrG+SQ9nFCfN6vdx5551Mnz6d/Pz8QJczIL3zzjts3bqVTZs2BbqUAaukpITnn3+eu+++m9/+9rds2rSJ22+/Hb1ez7XXXhvo8gaUe++9F4vFQm5uLhqNBo/Hw8MPP8xVV10V6NIGtLq6OgASExO7XZ6YmOi/Tpw4CWrihC1cuJDdu3ezevXqQJcyIFVWVnLHHXfw1VdfYTQaA13OgOX1epkwYQKPPPIIAGPHjmX37t288MILEtROs/fee48333yTt956ixEjRrB9+3buvPNOUlJS5Hsh+g2Z+hQn5LbbbmPx4sUsW7aMtLS0QJczIG3ZsoWGhgbGjRuHVqtFq9WyYsUKnnnmGbRaLR6PJ9AlDgjJycnk5eV1u2z48OFUVFQEqKKB61e/+hX33nsvV1xxBSNHjuSaa67hrrvu4tFHHw10aQNaUlISAPX19d0ur6+v918nTpwENfGtFEXhtttuY9GiRXzzzTdkZ2cHuqQBa968eezatYvt27f7/0yYMIGrrrqK7du3o9FoAl3igDB9+vSjWtTs37+fzMzMAFU0cHV2dqJWd38Z02g0eL3eAFUkALKzs0lKSmLp0qX+yywWCxs2bGDq1KkBrKxvkqlP8a0WLlzIW2+9xUcffURERIR/fYHJZCIkJCTA1Q0sERERR60NDAsLIzY2VtYMnkZ33XUX06ZN45FHHuFHP/oRGzdu5KWXXuKll14KdGkDzoIFC3j44YfJyMhgxIgRbNu2jb/97W/ccMMNgS6t37NarRw4cMD/cWlpKdu3bycmJoaMjAzuvPNO/vSnPzFkyBCys7O5//77SUlJ8e8MFb2gCPEtgB7/vPrqq4EuTSiKMnv2bOWOO+4IdBkDzieffKLk5+crBoNByc3NVV566aVAlzQgWSwW5Y477lAyMjIUo9Go5OTkKPfdd5/icDgCXVq/t2zZsh5fG6699lpFURTF6/Uq999/v5KYmKgYDAZl3rx5yr59+wJbdB8lfdSEEEIIIYKUrFETQgghhAhSEtSEEEIIIYKUBDUhhBBCiCAlQU0IIYQQIkhJUBNCCCGECFIS1IQQQgghgpQENSGEEEKIICVBTQghhBAiSElQE0KI02z58uWoVCra2toCXYoQIshJUBNC9DuVlZXccMMNpKSkoNfryczM5I477qC5ufm01zJnzhzuvPPObpdNmzaN2tpaTCYTAK+99hpRUVGnvTYhRPCToCaE6FdKSkqYMGECRUVFvP322xw4cIAXXniBpUuXMnXqVFpaWgJdInq9nqSkJFQqVaBLEUIEOQlqQoh+ZeHChej1er788ktmz55NRkYG5557Ll9//TXV1dXcd999AKhUKj788MNu942KiuK1117zf/yb3/yGoUOHEhoaSk5ODvfffz8ul8t//e9//3vGjBnD66+/TlZWFiaTiSuuuIL29nYArrvuOlasWMHTTz+NSqVCpVJRVlbWbepz+fLlXH/99ZjNZv9tfv/73/PQQw+Rn59/1Nc3ZswY7r///pP/HyeECEoS1IQQ/UZLSwtLlizh1ltvJSQkpNt1SUlJXHXVVbz77rsoinJCjxcREcFrr71GQUEBTz/9NC+//DJPPvlkt9sUFxfz4YcfsnjxYhYvXsyKFSt47LHHAHj66aeZOnUqN954I7W1tdTW1pKent7t/tOmTeOpp54iMjLSf5t77rmHG264gcLCQjZt2uS/7bZt29i5cyfXX3/9d/nvEUL0QdpAFyCEECdLUVERiqIwfPjwHq8fPnw4ra2tNDY2ntDj/e53v/P/Oysri3vuuYd33nmHX//61/7LvV4vr732GhEREQBcc801LF26lIcffhiTyYReryc0NJSkpKQeP4der8dkMqFSqbrdJjw8nLPPPptXX32ViRMnAvDqq68ye/ZscnJyTqh+IUTfJyNqQoh+53gjZnq9/oQe591332X69OkkJSURHh7O7373OyoqKrrdJisryx/SAJKTk2loaOh90T248cYbefvtt7Hb7TidTt566y1uuOGGk/LYQoi+QYKaEKLfGDx4MCqVisLCwh6vLywsJD4+nqioKFQq1VGB7vD1Z+vWreOqq67ivPPOY/HixWzbto377rsPp9PZ7T46na7bxyqVCq/Xe1K+ngULFmAwGFi0aBGffPIJLpeLH/7whyflsYUQfYNMfQoh+o3Y2Fjmz5/Pc889x1133dVtnVpdXR1vvvkmCxcuBCA+Pp7a2lr/9UVFRXR2dvo/Xrt2LZmZmf7NBwDl5eW9rkmv1+PxeL7TbbRaLddeey2vvvoqer2eK6644qi1d0KI/k1G1IQQ/cqzzz6Lw+Hg7LPPZuXKlVRWVvLFF18wf/58hg4dygMPPADA3LlzefbZZ9m2bRubN2/m5z//ebfRsSFDhlBRUcE777xDcXExzzzzDIsWLep1PVlZWWzYsIGysjKampp6HG3LysrCarWydOlSmpqaugXGn/3sZ3zzzTd88cUXMu0pxAAkQU0I0a8MGTKETZs2kZOTw49+9CMyMzM599xzGTp0KGvWrCE8PByAv/71r6SnpzNz5kyuvPJK7rnnHkJDQ/2Pc+GFF3LXXXdx2223MWbMGNauXfud2mLcc889aDQa8vLyiI+PP2qNG/h2fv785z/n8ssvJz4+nieeeKLb1zNt2jRyc3OZPHnyd/gfEUL0ZSrlRPepCyFEH/Xggw/yt7/9ja+++oopU6YEupxeURSFIUOGcOutt3L33XcHuhwhxGkma9SEEP3eH/7wB7Kysli/fj2TJk1Cre4bkwmNjY2888471NXVSe80IQYoGVETQoggpVKpiIuL4+mnn+bKK68MdDlCiACQETUhhAhS8j5aCNE3xv+FEEIIIQYgCWpCCCGEEEFKgpoQQgghRJCSoCaEEEIIEaQkqAkhhBBCBCkJakIIIYQQQUqCmhBCCCFEkJKgJoQQQggRpP4fKxFHhLwFoR0AAAAASUVORK5CYII=", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -378,9 +370,9 @@ "avc = individual_firm_costs.column(\"Average Variable Cost\")[1:]\n", "atc = individual_firm_costs.column(\"Average Total Cost\")[1:]\n", "\n", - "sp_mc = csaps.UnivariateCubicSmoothingSpline(output, mc, smooth=0.85)\n", - "sp_avc = csaps.UnivariateCubicSmoothingSpline(output, avc, smooth=0.85)\n", - "sp_atc = csaps.UnivariateCubicSmoothingSpline(output, atc, smooth=0.85)\n", + "sp_mc = csaps(output, mc, smooth=0.85) #slightly different command\n", + "sp_avc = csaps(output, avc, smooth=0.85)\n", + "sp_atc = csaps(output, atc, smooth=0.85)\n", "\n", "output_s = np.linspace(output.min(), output.max(), 150)\n", "mc_s = sp_mc(output_s)\n", @@ -390,12 +382,12 @@ "plt.figure(figsize=[7,7])\n", "plt.plot(output, mc, marker = 'o', color = 'tab:blue')\n", "plt.plot(output_s, mc_s, alpha=0.7, lw = 2, label='_nolegend_', color = 'tab:blue')\n", - "plt.plot(output, avc, marker = 'o', color = 'tab:green')\n", - "plt.plot(output_s, avc_s, alpha=0.7, lw = 2, label='_nolegend_', color = 'tab:green')\n", - "plt.plot(output, atc, marker = 'o', color = 'tab:orange')\n", - "plt.plot(output_s, atc_s, alpha=0.7, lw = 2, label='_nolegend_', color = 'tab:orange')\n", - "plt.hlines(y=min(avc), xmin = 6, xmax = 8, lw=3, color='r', zorder = 10)\n", - "plt.hlines(y=min(atc), xmin = 7.5, xmax = 9.5, lw=3, color='r', zorder = 10)\n", + "plt.plot(output, avc, marker = '^', color = '#2D8A3E')\n", + "plt.plot(output_s, avc_s, alpha=0.7, lw = 2, label='_nolegend_', color = '#2D8A3E')\n", + "plt.plot(output, atc, marker = '*', color = '#CB7432')\n", + "plt.plot(output_s, atc_s, alpha=0.7, lw = 2, label='_nolegend_', color = '#CB7432')\n", + "plt.hlines(y=min(avc), xmin = 6, xmax = 8, lw=3, color='b', zorder = 10)\n", + "plt.hlines(y=min(atc), xmin = 7.5, xmax = 9.5, lw=3, color='b', zorder = 10)\n", "plt.xlabel('Quantity')\n", "plt.ylabel('Cost')\n", "plt.title('MC, AVC and ATC')\n", @@ -430,26 +422,29 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 20, "metadata": {}, "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "No production\n" + "ename": "AttributeError", + "evalue": "module 'csaps' has no attribute 'UnivariateCubicSmoothingSpline'", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mAttributeError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[1;32mIn[20], line 1\u001b[0m\n\u001b[1;32m----> 1\u001b[0m \u001b[43mfirm_behaviour\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m24\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mindividual_firm_costs\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[1;32mc:\\Users\\lynnc\\OneDrive\\Documents\\GitHub\\textbook\\content\\02-supply\\utils.py:14\u001b[0m, in \u001b[0;36mfirm_behaviour\u001b[1;34m(price, individual_firm_costs)\u001b[0m\n\u001b[0;32m 12\u001b[0m output \u001b[38;5;241m=\u001b[39m individual_firm_costs\u001b[38;5;241m.\u001b[39mcolumn(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mOutput\u001b[39m\u001b[38;5;124m\"\u001b[39m)[\u001b[38;5;241m1\u001b[39m:]\n\u001b[0;32m 13\u001b[0m mc \u001b[38;5;241m=\u001b[39m individual_firm_costs\u001b[38;5;241m.\u001b[39mcolumn(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mMarginal Cost\u001b[39m\u001b[38;5;124m\"\u001b[39m)[\u001b[38;5;241m1\u001b[39m:]\n\u001b[1;32m---> 14\u001b[0m sp_mc \u001b[38;5;241m=\u001b[39m \u001b[43mcsaps\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mUnivariateCubicSmoothingSpline\u001b[49m(output, mc, smooth\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m0.85\u001b[39m)\n\u001b[0;32m 15\u001b[0m output_s \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39mlinspace(output\u001b[38;5;241m.\u001b[39mmin(), output\u001b[38;5;241m.\u001b[39mmax(), \u001b[38;5;241m150\u001b[39m)\n\u001b[0;32m 16\u001b[0m mc_s \u001b[38;5;241m=\u001b[39m sp_mc(output_s)\n", + "\u001b[1;31mAttributeError\u001b[0m: module 'csaps' has no attribute 'UnivariateCubicSmoothingSpline'" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeYAAAFdCAYAAADWns55AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdeVxWZf7/8dd13+z7Dbjv5i6yg5Za7po5Wpmpmem019Q4zdSUbTM/a5q2mWmq+bZaLlNmmpptlkualkuAuC+4oCioyL5v9/X7gxsGFBAQODfweT4ePuA+59znvEXww3Wd61yX0lojhBBCCPtgMjqAEEIIIf5HCrMQQghhR6QwCyGEEHZECrMQQghhR6QwCyGEEHZECrMQQghhR6QwC9EKKaVGKKXONNK5s5VSPRvj3EK0BlKYhbBjSql4pVSerdidV0otUkp5GJ2rjFJqs1Lq3orbtNYeWusTRmUSormTwiyE/fuN1toDCAXCgWcr7lSl5GdZiBZCfpiFaCa01meB74AAW0v1b0qpn4FcoKdSqqNSaq1SKlUpdUwpdV/Ze5VSrrbWdppS6iAQUfHcSimtlOpV4fUipdSLFV5PUUrFKqUylVLHlVITlFJ/A4YDb9ta9G9fei6llLdSaolSKlkpdUop9WzZLxFKqblKqW1KqddtuU4qpW5stC+gEM2Eg9EBhBC1o5TqAkwEVlFaEGcDNwJHAAVsBPYDHYF+wHql1HGt9SbgL8A1tj/ulBb42l43ElgC3Ga7RgfAU2u9Tik1FPiv1vrDat7+FuAN9AT8gB+AJGChbf9gYDHgD9wPLFRKddIyV7BoxaTFLIT9W6OUSge2AVuAl2zbF2mtD2iti4H2wFDgSa11vtY6FvgQuMt27O3A37TWqVrrBODNOlz/HuAjrfV6rbVVa31Wa334Sm9SSpmBGcB8rXWW1joe+Aelv1CUOaW1/kBrXUJpge4AtKtDNiFaHGkxC2H/btZab6i4QSkFkFBhU0cgVWudVWHbKUrvSZftT7hkX211Ab6tw/Fl/AHHS651CuhU4fW5sk+01rm2v5fdDG4TwgjSYhai+arY3ZsI+CqlPCts6wqctX2eRGmBrbivolzArcLr9hU+T6C0C/xKGS51ESgCulWTSQhRBSnMQrQAtu7pX4C/K6VclFKBlHZB/9d2yOfAfKWURSnVGXj0klPEAncopcxKqQnADRX2LQR+q5QarZQyKaU6KaX62fadp/T+cVWZSmzX/ZtSylMp1Q34Y4VMQogqSGEWouWYCXSntPW8GvhLhS7w/0dpN/JJSgdgLb3kvfOA3wDpwCxgTdkOrfUu4LfAv4AMSu9zl7WC/w3cZhtVXdV960eBHOAEpffIPwU+upq/pBAtnZLBj0IIIYT9kBazEEIIYUekMAshhBB2RAqzEEIIYUekMAshhBB2RAqzEEIIYUea9cxf/v7+unv37kbHEEIIIeokOjr6ota6TVX7mnVh7t69O1FRUUbHEEIIIepEKVXttLjSlS2EEELYESnMQgghhB2RwiyEEELYkWZ9j1mI+igqKuLMmTPk5+cbHUU0cy4uLnTu3BlHR0ejo4gWRAqzaHXOnDmDp6cn3bt3L1vXWIg601qTkpLCmTNn6NGjh9FxRAsiXdmi1cnPz8fPz0+KsrgqSin8/Pyk50U0OCnMolWSoiwagnwficYghVkIg6xZswalFIcPHzY6So1yc3Px8/MjMzOz0vabb76Z5cuX1/o8iYmJ3HbbbTUes3nzZiZNmlTlvu7du3Px4sVaX6+oqIinnnqK3r17ExoayrXXXst3331X6/eXWbRoEYmJiXV+nxD1JYVZiCvYtDuVOa8cYOL8WOa8coBNu1Mb5LzLli1j2LBhLFu2rEHOV1xc3CDnuZSbmxvjx49n9erV5dsyMjLYtm0bv/nNb2qdrWPHjqxcubJRMlblueeeIykpif379xMTE8OaNWvIysqq83mkMIumJoVZiBps2p3Km6sTuJBehAYupBfx5uqEqy7O2dnZbNu2jYULF/LZZ5+Vb58xYwbffPNN+eu5c+eycuVKSkpKeOKJJ4iIiCAwMJD33nsPKG1hDh8+nMmTJzNgwACgtCUbFhbGwIEDef/998vPtXDhQvr06UNkZCT33XcfjzzyCADJyclMnTqViIgIIiIi+Pnnny/LO3PmzEo5V69ezfjx43Fzc2PXrl1ce+21hISEcN1113HkyBGgtKBNnjyZUaNGMXr0aOLj4wkICAAgPj6e4cOHExoaSmhoKL/88kv5uTMzM7npppvo27cvDz74IFar9bI8//3vf4mMjCQ4OJgHHniAkpKSSvtzc3P54IMPeOutt3B2dgagXbt23H777UDpL0WDBg0iICCAJ598EoCSkhLmzp1LQEAAgwYN4l//+hcrV64kKiqKWbNmERwcTF5eXs3/sEI0gEYbla2U+giYBFzQWgfYtvkCy4HuQDxwu9Y6TZXeqPk3MBHIBeZqrWMaK5sQZd796gwnkqr/z/bw6VyKSnSlbQVFmje+SGDdrylVvqdnB1ce/E3nGq/75ZdfMmHCBPr06YOfnx/R0dGEhYUxffp0Pv/8c2666SYKCwvZuHEj77zzDgsXLsTb25tff/2VgoIChg4dyrhx4wCIiYlh//795SODP/roI3x9fcnLyyMiIoKpU6dSUFDACy+8QExMDJ6enowaNYqgoCAA5s2bx2OPPcawYcM4ffo048eP59ChQ5Xyjh8/nnvvvZeUlBT8/Pz47LPPygt7v3792Lp1Kw4ODmzYsIGnn36aL774ojzb3r178fX1JT4+vvx8bdu2Zf369bi4uBAXF8fMmTPLp9fdtWsXBw8epFu3bkyYMIFVq1ZV6gI/dOgQy5cv5+eff8bR0ZGHH36YTz75hLvuuqv8mGPHjtG1a1e8vLwu+9onJiby5JNPEh0djcViYdy4caxZs4YuXbpw9uxZ9u/fD0B6ejo+Pj68/fbbvP7664SHh9f4bypEQ2nMx6UWAW8DSypsewrYqLV+WSn1lO31k8CNQG/bn8HAO7aPTWJXyk7WJq4mrTAVi5MvkzveQqRfk11e2LFLi/KVttfWsmXLmDdvHlDaSl62bBlhYWHceOONzJs3j4KCAtatW8f111+Pq6srP/zwA3v37i3vCs7IyCAuLg4nJyciIyMrPa7z5ptvlnc7JyQkEBcXx7lz57jhhhvw9fUFYNq0aRw9ehSADRs2cPDgwfL3Z2Zmkp2djYeHR/k2JycnJk+ezMqVK5k6dSq7d+9m/Pjx5VnmzJlDXFwcSimKiorK3zd27Njya1b6+hUV8cgjjxAbG4vZbC7PAhAZGUnPnj2B0pb6tm3bKhXmjRs3Eh0dTUREBAB5eXm0bdu21l/7X3/9lREjRtCmTen6AbNmzeKnn37iueee48SJEzz66KPcdNNN5b/4CNHUGq0wa61/Ukp1v2TzFGCE7fPFwGZKC/MUYInWWgM7lFI+SqkOWuukxspXZlfKTj49tZQiXQhAWmEqn55aCiDFuRW4Ust2zisHuJBedNn2tj6OvHp/73pdMzU1lU2bNrFv3z6UUpSUlKCU4rXXXsPFxYURI0bw/fffs3z5cmbMmAGUPjP71ltvlRfDMps3b8bd3b3S6w0bNrB9+3bc3NwYMWLEFR/nsVqt7NixAxcXlxqPmzlzJi+88AJaa6ZMmVI+qcZzzz3HyJEjWb16NfHx8YwYMaL8PRWzVfSvf/2Ldu3asWfPHqxWa6VrXzrS+dLXWmvmzJnD3//+92qz9urVi9OnT5OZmVllq7kqFouFPXv28P333/Puu+/y+eef89FHH9XqvUI0pKa+x9yuQrE9B7Szfd4JSKhw3Bnbtka3NnF1eVEuU6QLWZu4upp3iNZkzrgOODtWLgzOjoo54zrU+5wrV65k9uzZnDp1ivj4eBISEujRowdbt24FYPr06Xz88cds3bqVCRMmAKVdye+88055a/To0aPk5ORcdu6MjAwsFgtubm4cPnyYHTt2ABAREcGWLVtIS0ujuLi4vKsZYNy4cbz11lvlr2NjY6vMPWLECOLi4vjPf/7DzJkzK12zU6fSH9dFixbV6muQkZFBhw4dMJlMLF26tNI94l27dnHy5EmsVivLly9n2LBhld47evRoVq5cyYULF4DSX3ROnaq8UI+bmxv33HMP8+bNo7Cw9Oc7OTmZFStWEBkZyZYtW7h48SIlJSUsW7aMG264gYsXL2K1Wpk6dSovvvgiMTGld9M8PT3rNWhMiPoybPCXrXVc5/5ApdT9SqkopVRUcnLyVedIK6x6EE9120XrMirEl9/f0oW2Po4oSlvKv7+lC6NCLu+era1ly5Zxyy23VNo2derU8tHZ48aNY8uWLYwZMwYnJycA7r33XgYMGEBoaCgBAQE88MADVY7CnjBhAsXFxfTv35+nnnqKIUOGANCpUyeefvppIiMjGTp0KN27d8fb2xso7fqOiooiMDCQAQMG8O6771aZ22Qycdttt5GSksINN9xQvv3Pf/4z8+fPJyQkpNYjwx9++GEWL15MUFAQhw8frtSyjoiI4JFHHqF///706NHjsq/VgAEDePHFFxk3bhyBgYGMHTuWpKTLO9defPFF2rRpw4ABAwgICGDSpEl4eXnRoUMHXn75ZUaOHElQUBBhYWFMmTKFs2fPMmLECIKDg7nzzjvLW+Rz587lwQcflMFfosmo0vrYSCcv7cr+usLgryPACK11klKqA7BZa91XKfWe7fNllx5X0/nDw8P11a7H/Oy+p6oswhYnX14c9PJVnVvYp0OHDtG/f3+jYzS5svvGxcXF3HLLLdx9992XFT1Rd631+0lcHaVUtNa6yhGFTd1iXgvMsX0+B/iywva7VKkhQEZT3F8GmNzxFhyVU6VtjsqJyR3lPyzRsvz1r38lODiYgIAAevTowc0332x0JCFEFRrzcalllA708ldKnQH+ArwMfK6Uugc4BdxuO/xbSh+VOkbp41K/baxclyob4FU2KttBOXBHt9ky8Eu0OK+//rrREYQQtdCYo7JnVrNrdBXHauB3jZXlSiL9BhPpN5jvkr7h68Qv6e1Zv9G2QgghxNWSmb8qCLOUdvfHpEUbnEQIIURrJYW5grYu7eji1pXo1F+NjiKEEKKVksJ8iTBLOKdy47lYcPWPYgkhhBB1JYX5EqHl3dlX9xiWEFfSXJZ9/P777wkODiY4OBgPDw/69u1LcHBwpbmpLxUTE8O6deuueO4NGzZUOzp8x44dDBs2jH79+hESEsL9999f5+eIT5w4UWnxDSGaAynMl/Bz9qeHe0+ipDtb2OxK2cmz+57id9H38+y+p9iVsrNBzttcln0cP348sbGxxMbGEh4ezieffEJsbCxLliyp9j21LczVSUpKYvr06fzzn//k8OHDxMTEMHr0aLKzs+t0HinMojmSwlyFUEs4Z/POcD7/nNFRhMHK5lIvm4SmbC71qy3OzW3Zx+rk5eUxZ84cBg0aRGhoKD/99BN5eXksWLCATz75hODgYFauXMmOHTvKl4YcOnQocXFxNZ73rbfe4p577iEyMhIonS97+vTptGnThosXLzJ58mQCAwO57rrryleD2rRpE0FBQQQHBxMaGkpOTg5PPfUUP/74I8HBwbz55pu1/nsJYaTGXF2q2Qq1hLHqzAqiU6OY2HGS0XFEI1qZsJwzuQnV7j+Zc4JiXbklWqQL+eTUYn65uLXK93R268JtXabXeN3mtuxjdd58802cnZ3Zt28fBw4cYOLEicTFxfH888+zf/9+3njjDaB0buyypSHXrVvHs88+y/Lly6s97/79+3nggQeq3Pfcc88xePBg1q5dyw8//MDcuXOJioritdde4/3332fw4MFkZ2fj4uLCyy+/zNtvv82aNWtq9fcRwh5IYa6Cj5OFnh69iE77lRs73HTZ6jai9bi0KF9pe201t2Ufq7Nt2zaeeOIJAAYOHEjHjh05duzYZcelp6dz1113cfz48fp8uS67Zlmvwrhx45g7dy45OTkMHTqUefPmMWvWLKZOnVqr/ELYIynM1Qi3RLA84VMS88/SybXmpQFF83Wllm1Nc6n/oe/j9bpmc1328Wo888wzjB8/nocffphjx46Vr5pVnYEDBxIdHc1NN91U62s8++yzTJ48mW+++YYhQ4awcePGq40thCHkHnM1gi2hKBQxqTI6uzVrjLnUm+uyj1UZPnw4n3zyCVC6mENSUhK9evW6bKnEui4N+eijj7Jw4ULKFqnRWrNixQqSk5MrXXPDhg106tQJd3d3jh8/TmBgIPPnzyc0NJQjR47Iko2iWZLCXA0vRy/6ePYlOi2KxlyBS9i3SL/B3NFtNhan0i5gi5PvVc+l3lyXfazKo48+Sl5eHoMGDWLWrFksWbIEJycnRo0axZ49ewgJCWHlypU8+eSTPPHEE4SGhtbq56ljx458+umnzJs3j379+jFgwAA2bdqEh4cHCxYsYPv27QQGBvL888/z8ccfA6VzgQcEBBAYGIiHhwfjxo0jJCSEkpISgoKCZPCXaDYaddnHxtYQyz7W5OfkrXx6eilP9n+Grm7dGu06omm11mX6ZNnHxtFav5/E1bGnZR+blSBLCCZMMkWnaBFk2UchmgcZ/FUDDwcP+nkNICYtmps7TZXR2aJZk2UfhWgepMV8BWG+4aQWphCfc9LoKEIIIVoBKcxXEOQTjINyIDpNurOFEEI0PinMV+BqdmOA10Bi0qKxaqvRcYQQQrRwUphrIcw3goyidI5nXz6jkRBCCNGQpDDXQoB3II7KUZaCFA1GKcWdd95Z/rq4uJg2bdowaVLDzc1+7733Vppqsy4WLVpUvsjFpb777jvCw8MZMGAAISEh/OlPf6rz+WNjY/n222/rlU2Ilk5GZdeCi9mFAJ9AYtKiua3LdMzKbHQk0USODhtOycWLl203+/vTZ1vVi1jUhru7O/v37ycvLw9XV1fWr19fPjNWbRUXF+PgUP2P8IcffljvfNXZv38/jzzyCN988w39+vWjpKSk0gpWtRUbG0tUVBQTJ05s8IxCNHfSYq6lMEs42cVZxGUdMTqKaEJVFeWattfFxIkTyxdjWLZsGTNnzizft2vXrvJlEq+77jqOHCn9vlu0aBGTJ09m1KhRjB49GqvVysMPP0y/fv0YO3YsEydOLF/oYsSIEeVTWnp4ePDMM88QFBTEkCFDOH/+PABfffUVgwcPJiQkhDFjxpRvr86rr77KM888Q79+/QAwm8089NBDAMTHxzNq1CgCAwMZPXo0p0+fBmDFihUEBAQQFBTE9ddfT2FhIc8//zzLly8nODi4xlWmhGiNpDDX0kDvQTibnImW7mzRQGbMmMFnn31Gfn4+e/fuZfDg/03z2a9fP7Zu3cru3btZsGABTz/9dPm+mJgYVq5cyZYtW1i1ahXx8fEcPHiQpUuXsn379iqvlZOTw5AhQ9izZw/XX389H3zwAQDDhg1jx44d7N69mxkzZvDqq6/WmHn//v2EhYVVue/RRx9lzpw57N27l1mzZvH73/8egAULFvD999+zZ88e1q5di5OTEwsWLGD69OnExsYyfXrNC4kI0dpIV3YtOZmcGOQTxJ603UzvcgcOJvnSiasTGBhIfHw8y5Ytu6xLNyMjgzlz5hAXF4dSqnzxCoCxY8eWL9+4bds2pk2bhslkon379owcObLKazk5OZXfvw4LC2P9+vUAnDlzhunTp5OUlERhYWGl5SPravv27axatQqA2bNn8+c//xmAoUOHMnfuXG6//XZuvfXWep9fiNbCkBazUmqeUmq/UuqAUuoPtm2+Sqn1Sqk420eLEdlqEm6JIKckh8NZtVtEXogrmTx5Mo8//nilbmyA5557jpEjR7J//36++uqrSks3VlzmsbYcHR3LZ64zm83lC2A8+uijPPLII+zbt4/33nvviktEli3HWBfvvvsuL774IgkJCYSFhZGSklLn/EK0Jk1emJVSAcB9QCQQBExSSvUCngI2aq17Axttr+1KP68BuJpdZSlI0WDuvvtu/vKXvzBo0KBK22u7TOLQoUP54osvsFqtnD9/ns2bN9fp+hWvs3jx4ise/8QTT/DSSy9x9OhRoHQt57LVqK677jo+++wzAD755BOGDx8OwPHjxxk8eDALFiygTZs2JCQkyHKMQtTAiBZzf2Cn1jpXa10MbAFuBaYAZf8zLAbsboZ9R5MjQT4h7EnfTZG16MpvEM2e2d+/TtvrqnPnzuX3Yiv685//zPz58wkJCalyeccyU6dOpXPnzgwYMIA777yT0NDQ8uUca+Ovf/0r06ZNIywsDP9a/J0CAwN54403mDlzJv379ycgIIATJ04A8NZbb/Hxxx8TGBjI0qVL+fe//w2UFvNBgwYREBDAddddR1BQECNHjuTgwYMy+EuIKjT5so9Kqf7Al8C1QB6lreMoYLbW2sd2jALSyl5Xp7GXfazKwYwD/OfYv7n/mocJ8glu0muLhtHSlukrW84xJSWFyMhIfv75Z9q3b290rFajpX0/iaZR07KPTT6CSWt9SCn1CvADkAPEAiWXHKOVUlX+xqCUuh+4H6Br166NnPZyfb364m52Jzr1VynMwi5MmjSJ9PR0CgsLee6556QoC9HMGTK0WGu9EFgIoJR6CTgDnFdKddBaJymlOgAXqnnv+8D7UNpibqLI5czKgWBLKL+m7qLQWoCTybmpIwhRSV3vKwsh7JtRo7Lb2j52pfT+8qfAWmCO7ZA5lHZ326UwSwSF1gL2Z+wzOooQQogWxqgJRr5QSh0EvgJ+p7VOB14Gxiql4oAxttd2qbdnHzwdvIhOlaUghRBCNCyjurKHV7EtBRhtQJw6MykToZYwfrm4jfySfFzMLkZHEkII0ULIlJz1FOobTpEuYm/6HqOjCCGEaEGkMNdTT/dr8HG0EJMm3dmi7sxmM8HBwQQEBDBt2jRyc3OrPG7ixImkp6c3cTohhJGkMNdTaXd2OAczD5BbnGN0HNHMuLq6Ehsby/79+3FyciqfPauM1hqr1cq3336Lj0+Nj/MLIVoYKcxXIcw3nBJdwp70WKOjiGZs+PDhHDt2jPj4ePr27ctdd91FQEAACQkJdO/enYu2JSaXLFlCYGAgQUFBzJ49G4Dk5GSmTp1KREQEERER/Pzzz0b+VYQQDUCWSLoK3dy64+fkT3RaFNf6DzU6jqiHsoUdGlptZ9QrLi7mu+++Y8KECQDExcWxePFihgwZUum4AwcO8OKLL/LLL7/g7+9PamoqAPPmzeOxxx5j2LBhnD59mvHjx3PokCyyIkRzJoX5KiilCPMNZ8O5H8guzsLDwdPoSKKZyMvLIzi4dOa44cOHc88995CYmEi3bt0uK8oAmzZtYtq0aeXzWZct+7hhwwYOHjxYflxmZmb5FJ1CiOZJCvNVCrVE8MO5dexOi2F4mxuMjiPqqKnnii9Tdo/5UnVd0tFqtbJjxw5cXOSRPSFaCrnHfJU6u3amrXM7YtJkKUjReEaNGsWKFSvK1zIu68oeN24cb731VvlxVRV7IUTzIi3mq1TWnb0u6VsyitLxdpQRtKLhDRw4kGeeeYYbbrgBs9lMSEgIixYt4s033+R3v/sdgYGBFBcXc/311182wlsIUT9Hhw2nxDb4siKzvz99tm1ttOs2+bKPDcmIZR+rkpSXyIsH/8q0LjMY0XaU0XHEFcgyfaIhyfdTy3WoX/X/rv0PX90gy5qWfZSu7AbQwbUjHV06ytzZQgghrpoU5gYS6hvBiZzjpBWmGh1FCCFEMyaFuYGEWUp7JGLSog1OIoQQojmTwtxA2rq0o4tbV+nObiaa89gKYT/k+0g0BinMDSjMEs6p3HguFiQbHUXUwMXFhZSUFPlPVVwVrTUpKSnyDHkLZrZN6FPb7Q1FHpdqQKGWcNacXUVMWhTj2t9odBxRjc6dO3PmzBmSk+UXKHF1XFxc6Ny5s9ExRCPps20rxSkpJD33PAAdXliAg59fo19XCnMD8nP2p4d7T6JTpTDbM0dHR3r06GF0DCFEM5C1YSNYrbgNHtwkRRmkK7vBhVrCOZOXwPn8c0ZHEUIIcRVKsrLI2bYNAM+xY5vsulKYG1ioJQyFIjrV+IlPhBBC1F/25s3ooiJcAgJw6typya4rhbmB+ThZ6OnRi+i0X2VwkRBCNFPWggKyN28BwGv8uCa9thTmRhBuieBcfhKJ+WeNjiKEEKIecrZtw5qTg1PPnjj16tWk15bC3AiCLaEoFDHSnS2EEM2OLi4uHfRFaWtZKdWk15fC3Ai8HL3o49mX6LQo6c4WQohmJjcqipK0NBw6tMclMLDJr29IYVZKPaaUOqCU2q+UWqaUclFK9VBK7VRKHVNKLVdKORmRraGE+UaQXHCBhLzTRkcRQghRS1prMr//HgCvcU3fWgYDCrNSqhPweyBcax0AmIEZwCvAv7TWvYA04J6mztaQgn1CMWGSKTqFEKIZyd+3j+Kkc5gtFtwiIgzJYFRXtgPgqpRyANyAJGAUsNK2fzFws0HZGoS7gzv9vAYQkxYt3dlCCNFMlLWWPceMRjkYMwdXkxdmrfVZ4HXgNKUFOQOIBtK11sW2w84ATffQWCMJ8w0ntTCF+JyTRkcRQghxBQXHjlF4/AQmNzfchw0zLIcRXdkWYArQA+gIuAMT6vD++5VSUUqpKHuf6zjIJxgH5UB0mnRnCyGEvStrLXuMuAGTs7NhOYzoyh4DnNRaJ2uti4BVwFDAx9a1DdAZqPIhYK31+1rrcK11eJs2bZomcT25mt0Y4DWQmLRorNpqdBwhhBDVKDp7lvx9+1GOjniMHGloFiMK82lgiFLKTZUOdxsNHAR+BG6zHTMH+NKAbA0uzDeCjKJ0jmcfMzqKEEKIamT+sB4A96HXYfb0NDSLEfeYd1I6yCsG2GfL8D7wJPBHpdQxwA9Y2NTZGkOAdyCOypGYNJlsRAgh7FFxSgq5UVFgMuE5ZozRcYxZ9lFr/RfgL5dsPgFEGhCnUbmYXQjwCWR3WjS3dZmOWZmNjiSEEKKCrA0boaQEt4hwHPz9jY4jM381hTBLOFnFWcRlHTE6ihBCiAoqLe04vtbjkBuVFOYmMNB7EM4mZ3c5ukMAACAASURBVKKlO1sIIexK9qZNpUs7DmrapR1rIoW5CTiZnAj0CWZP2m6KrcVXfoMQQohGZ83LI3uLbWnHCfbRWgYpzE0mzBJOTkkOh7MOGR1FCCEEkL11K9bcPJx798L5mmuMjlNOCnMT6ec1AFezqywFKYQQdkAXFpK9sXRpR3u5t1xGCnMTcTQ5EuQTwp703RRZi4yOI4QQrVrOzp2UZGTi2KULLgMHGB2nEinMTSjMEkG+NZ+DmQeMjiKEEK2WLikh64cfAPAab8zSjjWRwtyE+nr1xd3sLktBCiGEgfJiYihOvohDmza4hoYaHecyUpibkFk5EGwJZV/GXgqtBUbHEUKIVkdrTeY629KO48ahTPZXBu0vUQsXZomg0FrA/ox9RkcRQohWJ3//forOnsXs7Y37kMFGx6mSFOYm1tuzD54OXkTL6GwhhGhymevWAeAxZjTK0dHgNFWTwtzETMpEqCWMAxn7yC/JNzqOEEK0GgVxcRQeP4HJzQ2P4cONjlMtKcwGCPUNp0gXsTd9j9FRhBCi1Si7t+wxcgQmFxeD01RPCrMBerpfg4+jhZg0GZ0thBBNoTAhgfwDB1BOTniMHGl0nBpJYTZAaXd2OAczD5BbnGN0HCGEaPGyvi9tLbsPG4rZw8PgNDWTwmyQMN9wSnQJe9JjjY4ihBAtWtGFC+RGx4CDGc+xY42Oc0VSmA3Sza07fk7+shSkEEI0sqwf1oPWuEdG4mCxGB3niqQwG0QpRZhvOEcyD5FdnGV0HCGEaJFK0tPJ2bEdlMJz/Hij49SKFGYDhVoisGJld1qM0VGEEKJFytq4EYpLcA0OxrFdO6Pj1IoUZgN1du1MW+d2xEh3thBCNLiS7Byyf9oKgNeE5tFaBinMhirtzo4gLusoGUUZRscRQogWJXvLZnRBAc79++HUrZvRcWpNCrPBwizhaDS706KNjiKEEC2GtaCA7E0/AuA1YYLBaepGCrPBOrh2pKNLR1kKUgghGlD2Tz9hzcnBqUcPnPv0MTpOnTR5YVZK9VVKxVb4k6mU+oNSylcptV4pFWf7aP9j2htIqG8EJ3KOk1aYanQUIYRo9nRhIdkbNgDgNXEiSimDE9VNkxdmrfURrXWw1joYCANygdXAU8BGrXVvYKPtdasQZgkHIEa6s4UQ4qpl//wzJRmZOHbtgkvAQKPj1JnRXdmjgeNa61PAFGCxbfti4GbDUjWxti7t6OLWVbqzhRDiKuni4tIJRQCvG29sdq1lML4wzwCW2T5vp7VOsn1+DmgeD5w1kDBLOKdy47lYkGx0FCGEaLZytu+gJC0Nx44dcA0ONjpOvRhWmJVSTsBkYMWl+7TWGtDVvO9+pVSUUioqObnlFLHQ8u5seaZZCCHqQ5eUkPn9OqD5tpbB2BbzjUCM1vq87fV5pVQHANvHC1W9SWv9vtY6XGsd3qZNmyaK2vj8nP3p4d6T6FQpzEIIUR+5v0ZRcjEFh7ZtcQ0LMzpOvRlZmGfyv25sgLXAHNvnc4AvmzyRwUIt4ZzJS+B8/jmjowghRLOirVYyv/sOAK8bJ6BMRt+prT9Dkiul3IGxwKoKm18Gxiql4oAxttetSqglDIWSVrMQQtRR3u7dFJ8/j9nPF7eICKPjXBVDCrPWOkdr7ae1zqiwLUVrPVpr3VtrPUZr3eoe6vVxsnCNRy+i02R0thBC1JbWmsxvba3lCRNQDg4GJ7o6zbet30KFWSI4l59EYt5Zo6MIIUSzkL93L0Vnz2L29sZ9yBCj41w1Kcx2JtgSauvOllazEEJcScXWsuf4cShHR4MTXT0pzHbGy9GLPp59iU6LovSpMSGEENXJP3iQwlOnMHl64j5smNFxGoQUZjsU5htBcsEFEvJOGx1FCCHsVmlr+VsAPMeMweTkZHCihiGF2Q4F+4RiwiTd2UIIUYOCo3EUHj+Byd0djxuuNzpOg5HCbIfcHdzp5zWAmLRo6c4WQohqlLWWPUaNxOTiYnCahiOF2U6F+YaTWphCfM5Jo6MIIYTdKYiLo+DIEZSrC54jRxodp0FJYbZTQT7BOCgHeaZZCCGqkPH1NwB4jhqFyc3N4DQNSwqznXI1uzHAayAxadFYtdXoOEIIYTfyjx6l4MgRTG6ueI4ebXScBieF2Y6F+UaQUZTO8exjRkcRQgi7kWlrLXuMGt3iWssghdmuBXgH4qgcZSlIIYSwyT9ylIKjR0tby6Na1r3lMs17QtEWzsXsQkfXTmxN3sJPyZuxOPkyueMtRPoNNjqaEEI0Oa01mV9/DYDH6JbZWgZpMdu1XSk7OZN3Bk3pI1Nphal8emopu1J2GpxMCCGaXsHRoxTExWFyc8Nz1Cij4zQaKcx2bG3iakp0caVtRbqQtYmrDUokhBDG0FqT+dVXAHiOHYPJ1dXgRI1HCrMdSyuseuXL6rYLIURLVXD4MAXHjpfO8jVihNFxGpUUZjtmcfKt03YhhGiJtNZk2O4tt/TWMkhhtmuTO96Co7p8UvaRbVvuvRUhhLhUwaFD/5sTu4W3lkEKs12L9BvMHd1ml7eQvR29cVSO/HLxZ/JKcg1OJ4QQjU9rTcZXZa3lsS1qTuzq1OpxKaXUUq317CttEw0v0m9wpcejjmYd4a2j/2LhiQ94qNcjmJXZwHRCCNG48g8epPDkSUweHniMHGF0nCZR2xbzwIovlFJmIKzh44gr6ePZlxndZnEo8wCrz6w0Oo4QQjSa0ueWbXNijx2LydnZ4ERNo8bCrJSar5TKAgKVUpm2P1nABeDLJkkoLjPUfzij2o7hxwsb2Zq8xeg4QgjRKPIP2FrLnp54jLjB6DhNpsbCrLX+u9baE3hNa+1l++OptfbTWs9vooyiCrd0vo2BXgF8fnoZRzIPGx1HCCEaVKXnlse1ntYy1L4r+2ullDuAUupOpdQ/lVLdGjGXuAKTMvHbnvfR1qUdH554l/P5542OJIQQDSYvNpbCU6cweXnicf31RsdpUrUtzO8AuUqpIOBPwHFgSX0vqpTyUUqtVEodVkodUkpdq5TyVUqtV0rF2T5a6nv+1sLV7MpDvR7FpEy8e+xtcotzjI4khBBXTVutZKxdC4DXxImtqrUMtS/MxVprDUwB3tZa/wfwvIrr/htYp7XuBwQBh4CngI1a697ARttrcQX+zv7cd81DpBRe5MMT7102hacQQjQ3ubt+pTjpHGY/XzyGDTM6TpOrbWHOUkrNB2YD3yilTIBjfS6olPIGrgcWAmitC7XW6ZQW/cW2wxYDN9fn/K1RL4/ezOw6myNZh1mRsJzS36GEEKL50cXFZHxdem/Ze9IklEPrWwSxtoV5OlAA3K21Pgd0Bl6r5zV7AMnAx0qp3UqpD233r9tprZNsx5wD2tXz/K3Stf7XMbbdeLYmb2FL8o9GxxFCiHrJ+flnSi6m4NChPW6DW+cSt7UqzLZi/AngrZSaBORrret7j9kBCAXe0VqHADlc0m1t6zavstmnlLpfKRWllIpKTk6uZ4SWaXKnWxjkHcTKhOUcyjxgdBwhhKgTa2Ehmd9+C4D3byajTK1zcspa/a2VUrcDu4BpwO3ATqXUbfW85hngjNa6bFHhlZQW6vNKqQ6263Wg9Fnpy2it39dah2utw9u0aVPPCC2TSZmY2+MeOrp2YuGJ9zmXl3TlNwkhhJ3I/nEzJRmZOHXrimtIsNFxDFPbX0eeASK01nO01ncBkcBz9bmgrfWdoJTqa9s0GjgIrAXm2LbNQSYwqRcXswsP9vodDsqBd46/TXZxttGRhBDiiqy5uWR9/z0A3lOmoJQyOJFxVG0GCiml9mmtB1V4bQL2VNxWp4sqFQx8CDgBJ4DfUvpLwudAV+AUcLvWusaFh8PDw3VUVFR9IrR4J7KP8++j/6CHe08e6f0HHEytbwCFEML+HR02nJKLFy/bbvb3p8+2rQYkahpKqWitdXhV+2r7v/U6pdT3wDLb6+nAt/UNpLWOBaoKNLq+5xSV9fS4hlnd5rA4fiHLT3/KHd1mt+rfQIUQ9qmqolzT9tagxsKslOpF6WjpJ5RStwJlD5Rtp3QwmLBjkX6DOZ+fxLpz39LBtQOj2o01OpIQQogruFKL+Q1gPoDWehWwCkApNci27zeNmk5ctZs6TuZc/jlWnVlJW5d2BHgHGh1JCCFEDa40+Kud1nrfpRtt27o3SiLRoEzKxF3df0tnty58fOJDEvPOGh1JCCFEDa5UmH1q2OfakEFE43E2O/PANb/D2ezMu8feJqso0+hIQghBwYmTRkewS1cqzFFKqfsu3aiUuheIbpxIojFYnCw8cM3vyCzK5P3j71BkLTI6khCiFdNak7F6FThWPbuz2d+/iRPZjyvdY/4DsFopNYv/FeJwSh9zuqUxg4mG1829O7O7/5aPTr7PslP/ZXb3uTJSWwhhiPy9eymIO4bXuHF0eGEBJjc3oyPZjRoLs9b6PHCdUmokEGDb/I3WelOjJxONIsw3nHP5SXyb9BXtXTswrv0EoyMJIVoZXVJC+po1AHjddJMU5UvU6jlmrfWPgKyM0EJM7DCJ8/lJrD27mnYu7QjyCTE6khCiFcnZvoPipHM4tPHH4/rhRsexO61zhvBWTinFnd3n0tWtG4tOfkRCboLRkYQQrYS1oIDMr2zLOk6Z0iqXdbwSKcytlJPJiQd6PYyb2ZX3jr1NRlGG0ZGEEK1A1oYNlGRk4NStG65hYUbHsUtSmFsxb0cfHuz1CDklObx//P9kpLYQolEVp6WR9f0PAHhPvVUGn1ZDCnMr18WtK3O63018zkn+G7+Y2ixqIoQQ9ZHx5ZfowkJcQ0Jw6dPH6Dh2SwqzINgSym863kxU2i7Wnav32iRCCFGtwvh4cnfsBAczPrfK07Y1kbvuAoDx7W/kXH4SXyd+STuX9oRa5N6PEKJhaK1JW7ECAM9Ro3Fo08bgRPZNWswCKB2pPavbXfRw78mSkx9xOueU0ZGEEC1EXkwMhcdPYPL0xOtGmTvhSqQwi3KOJkfuv+ZhPBw9eff4f0gvTDM6khCimdOFhaSvWgWA9+TJmFxlmYUrkcIsKvFy9OKhax4hrySP947/H4XWAqMjCSGasayNGylJScWxUyfch15ndJxmQQqzuEwnt87c3eNeEnJPs+Tkx1i11ehIQohmqCQ9ncx13wPgc/s0lElKTm3IV0lUaZBPEDd3msru9Bi+Tfra6DhCiGYo48sv0QUFuAYF4tK3r9Fxmg0ZlS2qNbrdWJLyE/ku6Wvau7Qn3DfS6EhCiGai4MQJcrbvAAcz3rdONTpOsyItZlEtpRQzus7iGo/eLI1fxMmcE0ZHEkI0A9pqJW3ZZwB4jR2LY7u2BidqXqQwixo5mhy5r+eDeDv68N6x/yOtMNXoSEIIO5ezdStFCQmYLRY8J8jjUXUlhVlckaejJw/2eoQiayHvHHub/JJ8oyMJIexUSVYWGV9+CYDPtGmYnJ0NTtT8GFKYlVLxSql9SqlYpVSUbZuvUmq9UirO9tFiRDZRtY6uHbm7530k5p1lSfxHMlJbCFGljNVrsObm4dy/H64hwUbHaZaMHPw1Umt9scLrp4CNWuuXlVJP2V4/2dghjg4bTsnFi5dtN/v702fb1sa+fLMy0HsQUzvfzsozy/kqcQ1TOt1qdCQhhB0pOHGSnF9+AQczlhkzZPWoerKnruwpwGLb54uBm5violUV5Zq2t3Yj2o5iqP9wfji3jp0p242OI4SwE9pqJX156YAvz9FjcGzXzuBEzZdRLWYN/KCU0sB7Wuv3gXZa6yTb/nOA/KvaIaUU07vO5EL+eZbGL2L1mS/IKs7E4uTL5I63EOk32OiIQggD5Pz8M4WnTmO2WPCaeKPRcZo1owrzMK31WaVUW2C9UupwxZ1aa20r2pdRSt0P3A/QtWvXxk8qLmNWDoRZIojLPkpWcSYAaYWpfHpqKYAUZyFamZKsLDLW2AZ83TZVBnxdJUO6srXWZ20fLwCrgUjgvFKqA4Dt44Vq3vu+1jpcax3eRpYOM8z357+7bFuRLmRt4moD0gghjJS+YiXWnJzSAV+hoUbHafaavDArpdyVUp5lnwPjgP3AWmCO7bA5wJdNne1SmTnFRkewW9U9zyzPOQvRuuQdOEDurl0oR0csM2fKgK8GYESLuR2wTSm1B9gFfKO1Xge8DIxVSsUBY2yvG53Z37/K7VnO3vzpvTjOpxU2RYxmx+LkW+V2R5MTucW5TZxGCGEEa2EhacuWAeB10004tpUZvhpCkxdmrfUJrXWQ7c9ArfXfbNtTtNajtda9tdZjtNZN0vTqs20r3VeuxOs3v6HD3/9O/8OH6H/4EG5rNpCeVcwf3znKiaS8pojSrEzueAuOyqnSNrMyU2Qt5KVDCziWHWdQMiFEU8n85ltKLqbg2KkTnmNGGx2nxbCnx6UMY3Jzw5qdTdb69RSeOQtAQA8PXnugF0opnngvjj3HswxOaV8i/QZzR7fZ5S1ni5Mvd3aby+P9nsKMiTeOvM43iWsp0SUGJxVCNIbCM2fIWr8elMIyaxbKQdZEaihK6yoHPzcL4eHhOioqqkHOlfbZZ2Rv3oJTjx60feLx8nVDk9MLefbjEySmFPDE7V25PlAmJLuSvJI8Vpz+jJ2p2+npfg1ze9yDn3PVtwyEEM2Ptlq58OprFMbH4zHiBiwzZhgdqdlRSkVrrcOr2ictZhvvKVMwe3tTePIk2T/9VL69jY8Trz/Yi35d3Hj5s1Os+TnZwJTNg6vZlbt6/Ja5Pe4hMe8sfz/0AtGpvxodSwjRQLI3b6EwPh6zjw/eU6YYHafFkcJsY3J1xWf6dAAy1nxJcVpa+T5PVwdevPsarh3gzXtfn2Xhd4lYrc23p6GpRPgOZv6A52jv0oGPTn7A0vhFsgCGEM1ccWrq/xapmH47JldXgxO1PFKYK3ANCcY1KBCdn0/65ysq7XN2NPH0Hd2ZNMSflT9d4B8rTlNULAs5XIm/cxse6/s4N3a4iZ0p23n50Iucyok3OpYQoh601qQuXYouKMA1OAi3kBCjI7VIUpgrUErhM2MGytmZvN27yduzp9J+s0nx8ORO3DWuPZti0/jrkpPkFsjgpisxKwcmdZzCvD5/oshaxOuHX2b9uXWyQpUQzUzOtm0UHDqMyd0dy8yZRsdpsaQwX8LBYsF7ymQA0j5bjjW/cterUoqZI9vz2NQuxB7P4sn3j5GWVWRE1Gant2cfnh7wPIE+waw5u4q3494gvTDd6FhCiFooTkkhfeUXAFhmTMfs7W1wopZLCnMVPEaMwKlbN0rS0sj46qsqjxkX7sdfZvcgIbmAP74bR+LFgiZO2Ty5O7hzb88HuKPbbE7mnOClg/+PvemxRscSQtSgUhd2SAiu4VUOJhYNRApzFZTJhOXOWWAykb3pRwpPnaryuMh+3rxy3zXkFpTwx3fjOJIgM17VhlKKof7DebL/M1icfHnv+P+x/PSnFFplljUh7FHO1q0UHD6CycMDyx0y7WZjk8JcDacuXfAcPQq0JvW/n6BLqr6X3LeLO/94oDcuTiae/OAYUUcymzhp89XepQOP93uK0e3G8lPyZl499BJn884YHUsIUUHxxYukf7EKAMvMGZg9PQ1O1PJJYa6B16RJmH19KUpIIPvHH6s9rnMbF/75UG86t3Hmr0tOsD5aFnKoLUeTI7d2nsbves0juzibVw+9xOYLm2jOE98I0VKUdmH/t7QLOywUt7AwoyO1ClKYa2BydsYys3RGm4y1X1GcklLtsb6ejrxyXy8G9fDgnytPs3zzeSkudTDAeyDPDHievp79WJHwGe8e/w9ZRTINqhBGyv5xMwVHjmDy9JTZvZqQFOYrcB00CNewUHRhIWmffVZjsXV3MbNgbk9GBFlY9H0S73x1lhKZiKTWPB29eKjXo9zWZTqHMw/y0sH/x6HMg0bHEqJVKjxzlozVZV3YM6ULuwlJYa4Fy7RpmNxcyd+3n7yYmBqPdXQw8cTtXbl1eBu+2n6Rl5fFU1gkz+vWllKKkW1H8+d+T+Pm4M7bcW+w6sxKiq2yNrYQTUUXFpL60UJ0UTHuw4bhFioTiTQlKcy1YPbxwfvmmwFI//xzrLk1j742mRT3TezEfRM7sm1/Bs98fJzsPCksddHJrTNP9n+aYf43sPH8D7x+5GXO5583OpYQrUL6qlUUJSbh0K4dPtNuMzpOqyOFuZbchw/H6ZqelGRkkr5mTa3ec+vwtjw5vRuHT+fyxHvHuJghjwPVhZPJmZndZnH/NQ+RWpDCy4de4JeL2+TevRCNKG/fPrI3bwEHM3733I3J2dnoSK2OFOZaUkrhe8cdYDaT89NWCk6cqNX7RgRbWDC3J+fTC/njO3GcOi+LONRVkE8ITw94nu7uPfjk1BI+OvkBucU5RscSosUpSU8ndfESoHTFPaeuXQ1O1DpJYa4Dx06d8Bo3FoC0/36CLq5d93RIL09eu78XxVbN4+/FcSA+uzFjtkg+ThYe7f0YUzrdQmxaDC8deoFjWXFGxxKixdBak7J4MdbsbJz798NzzBijI7VaUpjryOvGG3Fo04aixESyNmyo9fuu6ejGPx/sjbe7A08vPM4vB2SO6LoyKRPj2t/In/o9iVmZeePo63yduJYSLQuJCHG1sjZsKF2gwsMDvzlzZHYvA0lhriPl5IRl1h0AZH7zLUUXLtT6ve19nfnHg73p0cGVv30Szzc7LzZWzBatu3sP5vd/jki/IXyX9DVvHHmdlAL5WgpRXwVxcWSsLh0743vXbMw+PgYnat2kMNeDS79+uA0ejC4qIm3ZsjoNRvJ2d+Dle68hvI8Xb685w5L1STKYqR5czC7c1f23/LbHvSTmneWlgwuISt1ldCwhmp2SjAxSPlwIViueY8fiGhhodKRWTwpzPfncNhWTuzsFhw6T88svdXqvi5OZ52f3YFy4L8s2neffqxIoKZHiXB/hvpHMH/A8HVw78vHJD1kS/zH5JTLAToja0CUlpHy4kJKMDJx798b75ilGRxKAg9EBmiuzpyc+t99O6scfk/HFF7gOHFin7h+zWfGHW7vg5+XIsk3nScsuZv7M7rg4ye9KdeXv7M9jfZ/gu6RvWJf0DSeyj/PbHvdyPv88axNXk1aYisXJl8kdbyHSb7DRcYWwGxlr1lAQF4fZ2xu/e+9Bmc1GRxIY2GJWSpmVUruVUl/bXvdQSu1USh1TSi1XSjkZla223CIjcBkUgDU3r85d2lD6CNZdYzvwyM2diTqSyfwPj5GRIxOR1IdZmZnUcTJ/6PM4xdYiXj38Ev89tYi0wtIFRdIKU/n01FJ2pew0OKkQ9iE3ZjdZ6zeA2Yzfffdi9vY2OpKwMbJ5Ng84VOH1K8C/tNa9gDTgHkNS1YFSCssdd6BcXcjbs5e8qKh6neemwf48M6s7J5Ly+NO7cZxPK2jgpK1HL8/ePD3geRyV42WjtYt0IWsTVxuUTAj7UXT+PKlLSp9X9rn1Fpx79TI4kajIkMKslOoM3AR8aHutgFHAStshi4GbjchWVw4WCz633gpA2vLPKcmq34pI1w304W/3XENGdjGPvRPH8cSap/0U1XNzcKdIF1W5r6wFLURrZc3LI+W999D5+biGheIxapTRkezarpSdPLvvKX4XfT/P7nuqSXrdjGoxvwH8GShb3cEPSNdal/XjngE6GRGsPtyHDcO5b1+s2dmkf/55vc8T0N2D1x/sjYNJ8cT7x4g9Lsse1pfFybfafa8ffpmfkjeTI7OHiVambLBXUWISDh3a4zt7tjyvXINdKTv59NTSJr8l1uSFWSk1CbigtY6u5/vvV0pFKaWikpOTGzhd/Sil8L1zFsrJidxfo8jbu7fe5+rWzoV/PNSbdj5OPPfxCf7zZQJzXjnAxPmxzHnlAJt2S4uvNiZ3vAXHS4YpOCpHwn0iKSjJZ/npT5m/93E+OP4Oe9JjZfUq0Sqkr/yC/AMHMLm74//QQ5hcXIyOZNfWJq6mSFde46ApbokZMSp7KDBZKTURcAG8gH8DPkopB1uruTNwtqo3a63fB94HCA8Pt5tnjBzatMF7ymTSV6wk7ZNPce7VC5ObW73O1cbbidce6MVj/3eUr3eklG+/kF7Em6sTABgVUn2LUFA++rqqUdlaa87knWFXyg5+Td1JbPpu3M3uhPlGMNjvWrq5dZdWhGhxsjZvJvvHH8HBjP9DD+LYtq3RkexaemFatbe+GvuWWJMXZq31fGA+gFJqBPC41nqWUmoFcBvwGTAH+LKps10tj5EjyY2OofDECdJXfoHvXbPrfy5XBwqKLv+9o6BIs/iHJCnMtRDpN7jKx6OUUnRx60IXty7c3PlWDmceZGfKDrZf/JmfkjfTzrkdkX7XEuk3GF8nPwOSC9Gw8g4cIP3zFQD43nmnDPaqRqG1gD3psexM2c7hzEPVHlfTrbKGYE/PMT8JfKaUehHYDSw0OE+dKZMJ39l3cu5vfyPnl19wiwjHpX//ep/vYkbVA5iS06veLurOrMwM9B7EQO9B5JXksjsthp0p2/kqcQ1fJa6ht0cfBvtdS7AlFFezq9FxhaizosRETs28A11Y2iWbvXlz+T6zvz99tm01KJl90FpzPPsYO1O2E5MWRb41H4uTL+PbT8TV7MrXiWsrdWc7Kicmd7ylUTOp5jwdZHh4uI6q5yNKjSnzu+/I+HItZj9f2j//fL3XM53zygEuVFOEZ4xsx63D2+Dpak+/W7UcFwsu8mvqDnam7CC54AKOypEgSwiDfa+ln1d/TEomghH2ryQjg/OvvkrGF6uqPab/4epbhi3ZxYJkdqZsZ2fKDlIKL+JkcibEEsoQv2vp5dGn/Gd8V8rORpmoSCkVrbUOr3KfFOaGp4uLOf/KqxQlJOAxciSW6bfX6zybdqfy5uqESl3aTg6KHu1dOHImDw8XM7de34Yp17XBzVlm7GkMWmvic06yM3U70am/kluSi7ejXsWmVgAAIABJREFUN+G+gxnsN4ROrp2NjihElay5uVz4xz8pOnu2Uiv5Uq2pMOeV5LE7LZodKds5nh2HQtHHsy+D/a4lyCcEF3PTDYaTwmyAwoQEzr/8CpSU0OaxP+DSt2+9zrNp9/9v777Do7rOxI9/z/SmNqMCCJBEFVV0sIkxLuDEJOuSstnELRuvvbuxUzbJpm75PZtknTjZbLrjtZPYjkts7CRuWYMxtmENwvQm0SVRJCSNpJE0o6n3/P64w4CQBEIg3RnpfJ5Hz4zuHc28DNK897T3tPDEmnqa2mIU5Fq5e+Vorp/r5Wh9F0+trWdzVTvZbjOfuLaIDy/Jx25VLbnBEtNi7AvsodK/ib2BPWhojHWOY5FvCQu8i8ixqspJSnrQIhGafvpTokeOYikqou0Pf+jzscM9MWtSo7q9isqWTexq3UFMxii0F7HY4HkkKjEbJPDqa7S/+qrepf3tb2NyXvkxygPHgzy5toHthzrwZln45HVF3LTQh82iEvRg6ox3sLXlfbb4N1MbqsGEifLs6Sz2LWF27hxsprSvKKsMUzIep/lXjxDetw9zXh6FX/0Kh65e2ufjh2tiru86RaV/E1taKgnE2nCZXamVF6WuMsNXXqjEbBAZj9P48MNEa+twX331Zc3Svpg9xzp5ck09e2uCFOZa+dT1o7hxnhezWS37GWwN4Xq2+Dezxb+Z1lgrDpODeXkLWORbzETPZDUerQwZqWm0/OY3hLZuw+TxUPiVL2MdNYqq8r4noQ6nxHzmgrnSv4m6UC0mTEzPmcli31XMypmN1WQ1OsQUlZgNFKuv5/T3voeMxcn/3D/inDVr0F5LSsmOw3qCPnAixBifjTtuHM2y2bmYTSpBDzZNahzuPEilfzM7WrcR0SJ4bT4WeZewyLeEIkeR0SEqw5iUktZnniG4YSPC4aDwS1/EVlICwMEPXEOiubnHzwyHWdlxLc6+9rNDTAmZYKxzHIt9V7HAu4hsa7bRIfZKJWaDta9dS+DFlzDnZFP0L/+K2eMe1NeTUlJZ1c6Ta+s51hCmpMjBnTeO4uoZOYZ334wUkYS+HnJLy2aq2/cjkZS5J7DIt4T5eQvZF9irtqRUrhgpJYEXX6TjzXUIq4X8Bx/EMWWK0WENGikldaFaKv2b2NqyhWAiSJYlm4XexSzxXUWxK/0nZarEbDCpaTT9+MdEDh3GtWA+vnvvHZLX1TTJxr1tPPVmAyeaIkwa4+TOFaNZODVLJegh1BZtY2vLFir973EqfAqB/t5Lzv7tWYWNT5XcqZKzcsmklLQ9/8LZql733Ydz9myjwxoUbdE23m/ZzGb/JhrC9ViEhdm5c1jsu4pp2dMxi8xZnaIScxqINzXR8J3vIiMRfPd+FteCXv8/BkUiIVm/q5Wn32ygoTXKtPEu7lo5mjkTs4YsBoVUKdAfH3iYiBbucd5tdvPl8q9TaC9UF05Kv0gpaX32WYLvbhi2STmqRdjdtovN/k3dep8W+65ift4CXJbB7YEcLCoxp4nODRtoffoZTG43Rd/+Fpa8vCF9/XhCsmabn2ffOk1zIEbFRA93rRjN9JLM/MXOVJ/bdt8Fz7vNbkrcpZS6J1DqLqPUXYY7Qz98lMEjNY3W3z9N8L33EFYrvvvvxzlzhtFhDUiPIh6jb8Vr9/WoxrXYexWLfUsoHML5Gn0tWb1cKjGnCSklzT//BeF9+7CXT6XgC18wpGUUjWm8vsXPH94+TVtnnIVTs7lrxSgmFQ9s0w3l0nx7z9d7LYKfbcnhI8W3cCx4lJrgMeq7TqW6u4vsRXqi9pRR5p7AGGdxRnXbKVeW1DRanniSUGUlwmol/3P/iKO83OiwBuTM1orn7+IE9FmNa6j0VuTJbhV8/rZxl52cVWJOI4n2dhr+4ztoHR3k3H4b2StXGhZLOJrg5U3NrH6nkY6uBEtn5HDHjaMoHaVqQg+m3j6IehtjDifC1AZrqAkeSybro3TEO5KPtzLeXUqpu4wyt56sc21D2wOjGENGo/ifeIKubdsRdruelDNwoldMi3Gq6yQ/P/TfhBKhHufdZjf/Mesh7OaBlTS+Evoqi1yYa+WJr11e78SFErMqtDzEzNnZeO+6i+Zf/ILAn1/GMXVqaknDUHPY9Iphqxbn86eNTby0sZH39ge4dnYed9w4iuJ84/4ghrMLbUl5LofZwdTscqZm6y0hKSUtUX+qRV0TPMY7jW+xTup7Sedac1Pd32XuCYx3j8dmUv+Hw4kWDNL8yK+JHDqEcDooeOAB7BMnGh3WRWlS43S4gZpgDXWhGmqDNZzsOkFc9r0PejARNCwphyIJ1u9s7XOvgsHeSEi1mA3S+ofn6Vy/HktREUXf/MaAN7q4ktqDcV7c0Mif32smltC4cZ6XT11fRFGe8bEpvYtpMU52nTibrDuP0hzV16uaMFHsLKbUM4GyZMIusBeqgicZKt7SQtPPfka8vgFzbi75DzyAbWyx0WH1cOYCsjaZgGuDNdSFaoloEQAcJgfjXOMpcZdS4i5j9fE/EIi19XiePJuX78x6aEhjP1rfxWubm1m/s5WuqIbFJIhrPXPkYLeYVWI2iIxGOf3Q94mdOoV76VK8d95hdEgprR0xnn+nkdcqm5ESPrjQxyevK8KXnT5Vc5S+dcTaqQnWUBM8yrHgUWqDNYSTs8BdZhclye7vM63r8yeWDdZuOsrARY8fp/nnvyARCGAdM5r8Bx8c8smjfemItXdLwrWhWjqTQy4WYaHYOTaZhEspdZVR6CjqdnHY36GdwRKJaby7u43XK5upPh7CZhFcW5HHqsU+TjaF+emfTqgx5kuRyYkZIHbyJKcfeggZi+O77z5c8+YaHVI3TYEoz60/zRvv+zGbBB++Kp+PLysi16NGQDKJJjUawg3UJFvVx4JHu00sK7QXpVrUwUSQN+r/YtiHpNJTuKqK5l8/igyHsU+ZQv7f34/JZcxEzXAiTF2oNpmEj1EbqqUl6gdAIBjlGJ1KwiWuUoqdY7GYLv55YcTF4ImmMK9X+lm7vYXOrgTjCuzcvDifG+blddtOV83KvkSZnpgBOt5aT9vzz2NyuSj6l2+nzVXwuepbIjyzroG3drRis5q4dWkBt19TwPvV7YPyC6sMPv0DtoZjnT0nlvXGY8nic5M/T441hyxLtuoOHwJSSjrXv03b6tWgabgWLsB7110I69D0XJ0ZJtFbwXpr+HS4IXVB57PlpxJwibuEca6SId02cSBicY3NVe28VtnMriOdWMyCq2fksGqxj1llniFdJaMScxqTUtL8y18S3rMX24QJFP7TlxCW9GyRHm8M8/t1Dby7uw2bBRKa/nXGleriUYbemXHBf937zYs+ViDIsmTpSdqaQ07yK/uc2zP302nTgEwio1FannmG0OZKALJuuomcW2+5rMRxoVbpmV4VPQkfS03OSsiE/vqWLErcZakkPN5VSpY1cwoUnW6N8pctftZs9dPaGacw18rNi/NZOd9LXpYxv6MqMae5RGcnp7/7PRKtrWTdeAO5H/uY0SFd0LH6Lr74y4NE44MzKUIxTt9rrLP56/Gfpj0eoD0WIBDrftsea+9WYvQMp9nVS9LO7pHMHSZnv5LOSBj/jre00PzII8TqjiNsNrx33XnZlQJ7G8c1CwtTs8qJahGOh+q6Tc4a7y5JJmH9K8/qzbhqdAlNsvVAO69X+nn/YDsCWFiezarF+cybnGX4xj5quVSaM3s8+P7uXhp/9F90vLkO28SJuOam13jzucpGO4n1kpQBGttixBMSi9puMiP91Zjbep2Ic9vYjzMnr+/fSU1qdMY7k4m67bzE3U57LMDRziO0xwLEZM+lJlZh7Za8e2uBH+08zB9PvJiKrTXawjO1TwGkTXK+3AuH8IED+P/nMbTOTiwF+fju//s+Z14nZJyuRBfhRDh525X6PnVM049V+jf1KOCRkHH2t++l1F3GEt/VqSRcaC/K6KGKlo4Yb2z1879b/DS2xcjLsvDJ5UV8cJGPwtzM2CddtZjTSMe6dbS9sBrhdFD0jW9gLSw0OqQ+9bXwHiDPY+H6uXmsmO+jpCi9x5yUngazVSqlpCvRpbey43ri7q31HYgF6Oql6ERvrMLKjJyZWExWrMKK1ZT8EtYexyzCitVkSd23mWxYTJbUY/Rj+s9ZhOWSElR/ZxdrUiOinZM8E2G6Yp3E3tyAeGMjiUScrolFNHx8EUG71i3x6sk3TDjR1esFzvlMmHCanQQTwT4f84v5j/b735iupJTsPNLJ65XNbNofIKHB3Ekebl6cz5JpOWnZUFBd2RlCSon/14/StXMn1nHjKPrqVxC29LzC66tU3arFPupbYmyp1v84po51sXKBl2sr8nA7VAlJpf+iWjTV2g7E2njs6K/7fOwYxxhiMk5MixHTosn70V671y+FRViwCEsysduwCoue7HtJ+HsCu4kmu4PPZRYWCuwFyZZsV2rp2hmOjhhzXzuB94R+IXJkUT4HPlCEw+rEYXLgNDtxJL+cZsc59504zMnzpvO+T963CitCiD6HKIxYK3wltQfjvLm9hde3+DnZHCHLaWbFAi8fWuhjbEF6NwpUV3aGEELgvetOTp88Qez4cVpfeAHvpz9tdFi9OjPBq69Z2W2dMd7a0crabS387E8n+PWrJ1k6M5cV871UTPBgMnh8R0l/NpONfHs++fZ8QE8ifSWXb834916fIyETyWQdIy7125iMEdfiRLXo2WNanLiM6ce0ODF53s+kfu7MfT3xB+NB4skLgt6Ssh5DnFGOUeck07MJ1LXvOPYX38IcHo15TA7Zd36a62fNwWayXdHu5L6GKP5qzG1X7DWGipSS6roQr1U28+6eNmJxyfQSN39zXRHXzMrFZs3cbvgzVIs5DUXr6mh8+GFkLI73nntwL0mP8bOBkFJy6GQXa7b6eWdXG53hBIW5VlbM97JivldVFVP6zehCFBdzKa1SLRKh7YXVBDduBMAxcybeu+/CnDV4M50zfeJcKJLgrR2tvF7ZzLGGME67iRvmerl5kY+y0ZlX3z+turKFEA7gXcCO3mJfLaX8NyFEGfAc4AO2AXdK2ct2I+cYrokZzm4RKawWCr/8ZWylpUaHdNmiMY339gdYs7WFnUc6kBIqJnhYucDL1TNycdgy/0pXGVzpnFz6vTlJdTUtv/89iWY/wmoh57bb8Vy3PONmPQ+VI6dCvF7pT5XJnDDayaolPpZX5OGyZ+7wWLolZgG4pZSdQggrsBH4AvBPwEtSyueEEI8Au6SUv7rQcw3nxCylpPWZZwhu2Ig5J4eib3wdc26u0WFdMY1tUdZtb2HNthYaWqK47CaWzc5j5QIv5eNc6kNKyUgXXCscCtG2+kWC770HgLW4GO9nPpOW9a6H2vnVtT59wyiEELxW2cyBc8pk3rzIx9Rh8vmQVom524sL4UJPzP8AvAaMklLGhRBXAf8upbzpQj8/nBMzgIzHafrJT4gcOoytrIzCL30xbSeDDZSmSfbWBFm7zc+GPQEiMY1xBXZWzPdyw1wvXlWfWxkGunbupPXZ50gEAmAxk7NqFVkrVqRtMaGh1NtE0jPGFti5eZGPG+d7u5XJHA7SLjELIczo3dWTgF8ADwObpZSTkufHAX+RUs680PMM98QMkOjo4PRDD5Hwt+BavBjvPXcPi6vF3oQiCTbsbmPNthb21wYxmWDBlGxWzveyqDwbq0V1dSuZJe7307b6Rbp27ADANnEC3jvuwDp6tMGRpYfOrjj3/qiKQDDR41yux8Iz35wxbD/v0m5WtpQyAcwRQuQCfwTK+/uzQoj7gPsAxo8fPzgBphFzVhb5//APNP7gYUKVlVjHFpO9YoXRYQ0Kl93MTQt93LTQx4mmMGu3tfDm9ha2VLeT7TZz/RwvK+d7M3KihzL8HfzANSSam3uesFrJuv56cm69Bc/ykT2WHIok2HssyO6jHew+2smRU130sqsiAIHO+Ih9rwyflS2E+FegC/gaqiu7T6HtO/A/+igIQf7nPodz5sgoe5lISLYd6mDtNj+bq9qJJySTi52smO9leUUeWa7h1b2lZK6q8ml9npu86b203KBmsIWjCfbVBNl9tJNdRzs5dDKEpoHFLCgf52L2BA+vb/HT1hnv8bPDvbxvWrWYhRAFQExK2SaEcAIrgO8D64GPoc/Mvhv481DHls5c8+YSW7WK9tdew//YYxR++Z+wjRtndFiDzmwWLCrPZlF5NoFgnLd3trJmWwu/fPkkj752iqtn5LByvpc5k4yvfasofRkpSTkS09hfG2RPMhEfPBEinpCYTTB1nJuPLyuiYqKHaePdqVUYxfn2XosV3b1y5Hb3G9HcGA08kRxnNgHPSylfFULsB54TQnwH2AE8bkBsaeVCXWMmu43Cf/5nLD7f0AdmkBy3hVuWFnDL0gIOnwqxdmsL63e28u7uNvJzrNw4z8uKeV7G5OtrowdrH1VFOVf0xEkCL4/MdkQ0rlFdF2L30Q52He2kuk5PxCYBk4td3PaBAiomeJhe4sbZx9KmixUrGokM78q+HMO9K/tCXWOe5cuxFBVR+NWvYva4hzCq9BKNa1RWtbNmq5/thzrQJMwsdTOu0M5bO1p7XIWrbSmVKyXW2Ej7q68Rev99kJLOt9/u87HTqquGLrBBFItrHDwRSnVNV9UGicYlQsCkMU5mTfBQMcHDjFKPKsF7EWnVla1cGdbiYmInT9L8y19S8MUvYBpmy6j6y2Yxcc2sXK6ZlUtzIMq6Ha2s3drC3pqeRfsjMckTa+pVYlYuS6yhgY433iC45X1IJMBixnPNsgsm5kyVSEgOnkwm4iOd7K8NEonpm7BPGO3g5sX5VEzwMLPMjWeYLWcykmoxp7GLTSZp/MHDJFpbcVbMxnfffQizukIFvTjLzd/c1ef5WWVuxhU6GH/OlzfLMmJngCr9E62ro/1/39CXPkkJQuBespjsD38Yi8/X59CTOT+fKRs3GBDxpUtokiOnupKJuIN9NUG6onoiLilyMDvZIp5V5iHbrRLx5VAt5mHIkpdHwecfpPHhH9K1azetzz1H3qc+pZIL+mYghbnWXreldNhMJDR4N1m3+wy3w5RK0ucm7YIcq9pwYwSTUhI5eJCON9YQ3r9fP2gx477qKrJWrOi2NWu6J9/e5lwsr8jjaEMXu4/oXdN7j3USiuiJeFyBnevm5lExwcPsCR5yParYz1BRLeY0dqEW85kxq8jhwzT95CfIWJysFTeSc/vtKjnT97aUZ8aYpZS0dsapawxTdzpMXWOY400R6hrD3ZZu2K0mxhfaeyTtUV6bmgU+jGnRKKHKLXSuX0/s1CkAhN2OZ9k1ZN1wQ8aVx+3t78EkwGoRqWNjfDZmT8hKJWJVdW9wqRZzhjLn5/fZNXaGfdIkfPfeS/Oj/0PH2jcRFgs5t9wylGGmpYvN9BRC4M2y4s2yMmdi9x192oNx6prCqaR9vCnCrqOdrNvRmnqM1SIozrd36w4fX2hnjM+uKpRlsHhrK51vv0Nw40a0oD5PwZyTjXvZMjzXLk/7iZbBcILmQJSmthhNgRhNgSjNgRhv72olFu/eCNOk/nfwlY+PY/ZEDwU5I3OeSjpSLeZhIrR9B/7HHgNNI/sjHyZn1SqjQxp2guEExxvDHG8KU9cY0VvaTWFOt0Y582dkMkGxz37eGLadsQUO7OfsE6uWcqUPmUgQ3ruXzo0bCe/dx5n/TFtJCZ7rr8c1f15a1LSOxDSa2qI0BWLdkm9zQD/W1BZNdUOfIQR4s6z423sO6wAI4PX/nDME0SvnUy3mEcA1by585h78v/kt7a+8ijBbyP7gBQunKZfI7TBTPt5N+fjuraZwVONE89nWdV2j3treXBVAS35OCgFFeTbGFzpASrYf7iSe0BNAY1uMn/7xOIBKzkMo7vcTfO89ghv/T99cAsBixjV3Lp7rrsNWVnbJw0IDveCKxTX87bFUgm0OnG3xNrXpybc91LOedI7bQkGONdkN7aEgx0pBjo38XP3Wl23FYhbc/f19vc65KMhV3dXpSLWYh5ng5s20PPEkSEnuxz9G1g03GB3SiBWLa5zyR/TWdTJZ1zWGqWkI9/p4swmmjHWR47Z0+8o+7/sct0XtXT1AWjhM144dBDdXEjl4MNU6thQW4r7mA7iXLMGclXWRZ+ldX/MaHrh1LBUTs2huSybaXpJvW2ec8z+KPU5zt0Sbn7yfOpZjxWbt3+/BxeZcKENPtZhHEPeSJchEgtanfk/bC6uRmjZsN71Id1aLiZIiJyVF3TfduPkbO+ntcjih6ZPNTrdGOXgiRHsokWpVn89uNZHjNvdI2L0ndTNuh7nfrb907WYf6HIkmUgQrqomVFlJ186dyJjechRWC845c3B/4BrsUyb3+v7EE5JITCMS1QhHNSIx/TZ85ljs7LGn1tb32LowEpP86IXjPZ7XaTOlWrVlo7K7tXILcvQk3FelrIFQ1bUyi0rMw5Bn6VJIJGh95lkCL76E7Ooi+yMfUbO100RBH0u5CnOt/Oe9k1LfSykJRTQCnXECwQt/1TWGCQQTqeIP57OYBdku80Vb4tXHgzz9ZgPRePp1s/danjZ5/HRrNJU4IzGNcCRB7OQJ2LkVy74d0NmOpoEmJR0FJTSWVtAwehohYSO8QSPy1qFUgo3EJOFogkhM9nlhdKkevHUs+Tk2CnKtFORYL+lC6Uq5fq7X8P9DpX9UYh6mPMuWIWw2Wp58ivbX/4IW6iL3rz+hknMauHvl6H4V7RdC4Hbord0z9b8vJhzVuiXs9j4S+aGTIQLBOMFw74n8XJGY5IfP1/HzP524tH/oFfbdC5y75wf7QUryQs1M8FdT5j9ATvjsLPp2Rx6HCqZTUzSDeJYXuzThaJLYbVEcNjMOm4lcjwW71YTDZsJuNXW7f/6t3dbz2IM/O0BToPcLrpsX5/c4rih9UYl5GHMvWYLJ4aD5scfofPtttK4uvHfekRYzTEeywexWdNhMOGw2ivL6t/QlFtfoCCUIBOO0BeN88/EjvT5OAh9aZPCGKX/o+9Q3R1XhOrwHa2sjJrPAXCQwZRVhmzMX9+LFuCZNwGkzYzYP3oXpPTf174JLUS5GfUIPc845cyh44AGaf/UIocpKZLgL32c/ixihtbXTRbp0K1otJrzZplQxib4qphXmWvm7VcVDHV43VV/u+1xp1bsAmIpycc6bi2v+fOyTJw9pmVo1jqtcKRk9K1sIkbnBK4qiKCNZn7Oy1ZoLRVEURUkjGd2VPX/+fNQ65ksTb22l+Ze/Inb8OCaXE9/99+OYOtXosBQlJVZfT9eOHYR27CR2/OxSI5PLibOiAue8+Timlau5EkpGu9BE3IzuylYFRgZGi0Ro+e1v6dq5C8xm8j71N/oSK0UxgJSS2IkTdG3fTmjHDuINp1PnhMOBs6IC14L5OMrLEVZVqUoZHlSBEaUbk92O7/77Cbz0RzrWrqX1qd8Tb2gg59Zb1Z7OypCQUhI9dizZMt5BotmfOmdyuXBWzMY5bx6OqVPVREVlxFGJeYQSQpD70duxFBXR+uyzdKx9k2htHb7P/i3mnByjw1OGIalpRA4dpmvHDrp27iTR1pY6Z8rOwjlnDq65c/XZ1KqbWhnB1G//COf5wFIshQW0PP44kYMHOf29/8T72b/FMWWK0aEpw4CMxwlXH9CT8e7daB0dqXPmvDx9adPcudgmTECY1FxURQE1xqwkJQIB/I89TuTQITCZyLn1FrJWrFCVwpRLpoXDhPfto2vXbsJ796CFulLnLAUFOOfNwzV3DtaSEvX7pYxYaoxZuShzTg4FX/wCgZdfoeONNwi89EeiR4+Sd8edab85vGK8eGsr4d279WR88ADEz25RaB0zBufcuTjnzsVaPEYlY0W5CJWYlRRhNpN7263YJ5TR8sQTdO3cRfRYDXl33olz5gyjw1PSiJSS2MlTdO3aSXj3HqK1tWdPCoF90kQcFRU4Z1dgLSo0LlBFyUBD3pUthBgHPAkUoZfgfVRK+RMhhBe9Gm4pUAN8QkrZ2tfzgOrKHkzx5mZafvc7Iof12smea5eRc/vtmOz920xBGX5kPE7kyBG6du2ia9cuEv6W1DlhteKYPg1nRQWOWbMGvKexoowUF+rKNiIxjwZGSym3CyGygG3ArcA9QIuU8iEhxNeBPCnl1y70XCoxDy6paXSsWUvg1VcgnsBSWIj3nnuwTygb8N64Snrr6/9VuFxkLV+OFgqljpmysnDOmoVzToW+xlgta1KUfkurMWYpZT1Qn7zfIYSoAoqBW4DlyYc9AbwNXDAxK4NLmExkf/AmHDNn0PKb3xI7dYrGhx8m68YbL7g3rpK5+vr/k6EQWiiEpahIr75VMRtbWZmaSa0og8DQMWYhRCkwF6gEipJJG6ABvatbSQO2sWMp+vrXCLzyCh1vrqNj7VqjQ1KuIC0UIlx9gPDePRd83Kj/9+9Yi9SfpaIMNsMSsxDCA7wIfFFK2X7uTE0ppexr5yghxH3AfQDjx48filAVQNhs5H70o7jmz6fl6WeMDke5DFJK4vX1dO3dS3jvPiJHjkAicdGfU0lZUYaGIYlZCGFFT8pPSylfSh4+LYQYLaWsT45DN/b2s1LKR4FHQR9jHpKAlRRbaSlFX/8arU89ZXQoyiVIdHYSqa4mvL+KcHU1iZazE7cwmbBPnoRjxkw6337bsBgVRdENeWIWetP4caBKSvlf55x6GbgbeCh5++ehjk3pn4vV05ZSqrWqBpOxGJGjRwnvryJSXUW07jicM9HTlJWFc+YMHDNn4igvx+TW16qfNCpgRVFSjGgxLwXuBPYIIXYmj30TPSE/L4T4LFALfMKA2JR+Mufn9z5RyGql8aHvk/PR21VZzz4Mxoz2M+uKI9VVejI+dAgZi519gMWMfdIkHOXTcEyfhnXcuF4vnvr6fzXn5w8oLkVRLp0qyalcEVJlQS4SAAAJoUlEQVTTCG7aRPvLr5AIBABwzJ5Fzs03YystNTa4NFNVPq3Pc9Oqq/r9PPHWViIHDhCuqiZSXUUi0N7tvLW4GMf0adjLy7FPnoxJLWdSlLSRVsullOFJmEx4li7FtWABHW++SceatYR37yG8ew+O6dPJvvlD2CdNMjrMjJZoayN88CCRAweJHDxIvKmp23lzTg72aeV6q3haudolTFEylErMyhVlstvJWbUKzzXX0PHmOjrfeYfw/v2E9+/HPnky2R/6IPZp09QYdD8k2tuJHDxI+MABIgcPET99utt54XDo3dPTynGUl2MZo+pQK8pwoBKzMijM2dnk3n4bWStX0rn+LTrXrydy6BBNhw5hGT0Kz7JluBcvxuRyGR1qWglt3653Tx88SLy+ods5YbdjnzQJ+5Qp2KdMxjZ+/EUn4imKknnUGLMyJLRQiM533qHz7XdSY9DCbse1aCGea5djG1tscIRD50JjzJ7ly1P3hdWKbdJEHFOnYp8yRU/EFnUtrSjDgRpjVgxncrnI/tCHyFqxgq7du+l8510iBw4Q3LCR4IaNWMePw7VgAa7587H4fEaHe8WdmTUdPXIY4XIhz6k5nWKzYZ86FcfUKXoiLi1ViVhRRiDVYlYME6uvp/PdDQQ3b0J2hVPHbRMm4FqwAOfcOVjy8gyMcOC0UIhobS3R2loiR44QPXIELdTV7TEmlwvbxAnYJ03GPnkStnHjEFarQRErijKU0mp3qStJJebhQUajhPfvJ7R1K127dndbf2sZPSq19tY+ZUpabjspo1GiJ04QrakhWqMn4/MnagGY8/KwT5qojxNPmqQmaynKCKYSs5IxtEiE8O7dhLZtI1xVjYxEzp60mLGXlmItKcE2bjy2kvFYioqGbIcjqWnEm5qJ158iduoUsfp6YqfqiTU09Kw1bTFjGzsOW2kpttJS7JMnDcsuekVRBkaNMSsZw2S341q4ENfChch4nOixY4STNZ6jNTVEDh8hcvhI6vHCbsc6thhLfgGWfB9mrxdLfj4WrxeT241wOPqVuGUshhYMkugMogU70drbiftbiPubSfj9xJv9xFv8EO9lswchsBYXYyspwVZagq2kBGtxsRofVhRlQFSLWckYWjBI5FgNseN1RGvriNbVdd+MoQ/CZsPkdCDsDjCbIJ5AaglIaMhEAhmLIcPhiz4P6N3R1tGjsRaP0W/HjMEyenRadrEripK+VItZGRZMbjfOmTNwzpyROpbo6CB28iRxv19v2fpbSPibiftb0EIhZCSCjEZJRKNA+wWe3ITJ48bs8WByezB5PFh8XsxeH5aCfCw+H2afTyVgRVEGXUa3mIUQTegbXowE+UAvu0YovSm32yvMiB4XnglkvDoS2WVETBlI/c4NnHrvBmYkvW8lUsqC3k5kdGIeSYQQW/vq9lAuTL13A6Pet4FT793AqPdNNzTTWRVFURRF6ReVmBVFURQljajEnDkeNTqADKbeu4FR79vAqfduYNT7hhpjVhRFUZS0olrMiqIoipJGVGJOc0KIcUKI9UKI/UKIfUKILxgdUyYRQpiFEDuEEK8aHUsmEULkCiFWCyGqhRBVQoirjI4pEwghvpT8O90rhHhWCOEwOqZ0JYT4jRCiUQix95xjXiHEWiHEoeRtZu5ic5lUYk5/ceDLUsrpwBLgc0KI6QbHlEm+AFQZHUQG+gnwv1LKcqAC9R5elBCiGPg8sEBKORMwA580Nqq09jvgg+cd+zqwTko5GViX/H7EUYk5zUkp66WU25P3O9A/IIuNjSozCCHGAquAx4yOJZMIIXKAZcDjAFLKqJSyzdioMoYFcAohLIALOGVwPGlLSvkucH5N3VuAJ5L3nwBuHdKg0oRKzBlECFEKzAUqjY0kY/w38M+AZnQgGaYMaAJ+mxwGeEwI4TY6qHQnpTwJ/BCoA+qBgJRyjbFRZZwiKWV98n4DUGRkMEZRiTlDCCE8wIvAF6WUFyj6rAAIIT4MNEoptxkdSwayAPOAX0kp5wJBRmiX4qVIjofegn5hMwZwCyHuMDaqzCX1JUMjctmQSswZQAhhRU/KT0spXzI6ngyxFPgrIUQN8BxwvRDi98aGlDFOACeklGd6ZlajJ2rlwm4Ejkkpm6SUMeAl4GqDY8o0p4UQowGSt40Gx2MIlZjTnBBCoI/1VUkp/8voeDKFlPIbUsqxUspS9Ak4b0kpVeulH6SUDcBxIcTU5KEbgP0GhpQp6oAlQghX8u/2BtSkuUv1MnB38v7dwJ8NjMUwKjGnv6XAnegtvp3Jr5uNDkoZ9h4EnhZC7AbmAN8zOJ60l+xhWA1sB/agf76qSlZ9EEI8C2wCpgohTgghPgs8BKwQQhxC74F4yMgYjaIqfymKoihKGlEtZkVRFEVJIyoxK4qiKEoaUYlZURRFUdKISsyKoiiKkkZUYlYURVGUNKISs6IME0KIsUKIPyd35jkqhPi5EMJ+hV9juRDi6nO+/3shxF3J+/cIIcZcyddTlJFIJWZFGQaSBS1eAv6U3JlnMuAEfnCFX2o551SzklI+IqV8MvntPeilKBVFuQxqHbOiDANCiBuAf5NSLjvnWDZQC/wLUC6lfCB5/FXgh1LKt4UQvwIWoifx1VLKf0s+pgZ9d5+PAFbg40AY2Awk0De5eBC9ulUnUIO+jd9JoAv4FvB3Uspbk8+3AvhHKeVtg/YmKMowoVrMijI8zAC6bdiR3OykBn1Tir58S0q5AJgNXCuEmH3OuWYp5TzgV8BXpJQ1wCPAj6WUc6SUG855rdXAVuDTUso5wOtAuRCiIPmQzwC/uYx/n6KMGCoxK8rI9gkhxHZgB3pyn37OuTMbpmwDSi/lSZM7Az0F3CGEyAWuAv5y2dEqyghwoStpRVEyx37gY+ceSHZljwL8wJRzTjmS58uArwALpZStQojfnTmXFEneJhjYZ8VvgVfQu8BfkFLGB/AcijLiqBazogwP6wDXOTOkzcCPgJ8Dx4A5QgiTEGIcsCj5M9noey0HhBBFwIf68TodQFZ/zkkpTwGngG+jJ2lFUfpBJWZFGQaSXce3AR9L7szjBzQp5XeB/0NPzvuBn6LvfoSUchd6F3Y18EzycRfzCnBbcpeza8479zvgkeQ5Z/LY08BxKaXa/lBR+knNylaUYSi51vhZ4DYp5XYD4/g5sENK+bhRMShKplGJWVGUQSGE2IbeVb5CShm52OMVRdGpxKwoiqIoaUSNMSuKoihKGlGJWVEURVHSiErMiqIoipJGVGJWFEVRlDSiErOiKIqipBGVmBVFURQljfx/vK467KgnY/cAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAr4AAAIRCAYAAACszb5OAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAf+0lEQVR4nO3df2zV9b348Ret9lQzW/FyKT9uHVd3ndtUcCC91Rnj0rsmGnb542ZcXYBL/HHduMbR3DtBlM65Ua5XDcnEEZle98e8sBk1yyB4Xe/I4uwNGdDEXUHj0MFd1gp315aLG5X28/1jWfft+CGntAV8PR7J+YO37/f5vI9viU8/nn4YVxRFEQAA8AFXcao3AAAAY0H4AgCQgvAFACAF4QsAQArCFwCAFIQvAAApCF8AAFIQvgAApCB8AQBIQfgCAJBC2eH74x//OObMmRNTpkyJcePGxfPPP/++a7Zs2RKf/OQno1QqxUc+8pF46qmnhrFVAAAYvrLD9+DBgzF9+vRYs2bNCc1/880348Ybb4zrr78+Ojs740tf+lLceuut8cILL5S9WQAAGK5xRVEUw148blw899xzMXfu3GPOufvuu2Pjxo3xs5/9bHDsb//2b+Odd96JzZs3D/fSAABQlrNG+wIdHR3R1NQ0ZKy5uTm+9KUvHXPNoUOH4tChQ4O/HhgYiF//+tfxJ3/yJzFu3LjR2ioAAKeJoijiwIEDMWXKlKioGJkfSxv18O3q6oq6urohY3V1ddHb2xu/+c1v4pxzzjliTVtbW9x///2jvTUAAE5ze/fujT/7sz8bkfca9fAdjmXLlkVLS8vgr3t6euLCCy+MvXv3Rk1NzSncGQAAY6G3tzfq6+vjvPPOG7H3HPXwnTRpUnR3dw8Z6+7ujpqamqPe7Y2IKJVKUSqVjhivqakRvgAAiYzk11xH/Tm+jY2N0d7ePmTsxRdfjMbGxtG+NAAADCo7fP/v//4vOjs7o7OzMyJ+97iyzs7O2LNnT0T87msKCxYsGJx/xx13xO7du+PLX/5y7Nq1Kx577LH47ne/G0uWLBmZTwAAACeg7PD96U9/GldeeWVceeWVERHR0tISV155ZaxYsSIiIn71q18NRnBExJ//+Z/Hxo0b48UXX4zp06fHww8/HN/61reiubl5hD4CAAC8v5N6ju9Y6e3tjdra2ujp6fEdXwCABEaj/0b9O74AAHA6EL4AAKQgfAEASEH4AgCQgvAFACAF4QsAQArCFwCAFIQvAAApCF8AAFIQvgAApCB8AQBIQfgCAJCC8AUAIAXhCwBACsIXAIAUhC8AACkIXwAAUhC+AACkIHwBAEhB+AIAkILwBQAgBeELAEAKwhcAgBSELwAAKQhfAABSEL4AAKQgfAEASEH4AgCQgvAFACAF4QsAQArCFwCAFIQvAAApCF8AAFIQvgAApCB8AQBIQfgCAJCC8AUAIAXhCwBACsIXAIAUhC8AACkIXwAAUhC+AACkIHwBAEhB+AIAkILwBQAgBeELAEAKwhcAgBSELwAAKQhfAABSEL4AAKQgfAEASEH4AgCQgvAFACAF4QsAQArCFwCAFIQvAAApCF8AAFIQvgAApCB8AQBIQfgCAJCC8AUAIAXhCwBACsIXAIAUhC8AACkIXwAAUhC+AACkIHwBAEhB+AIAkILwBQAgBeELAEAKwhcAgBSELwAAKQhfAABSEL4AAKQgfAEASEH4AgCQgvAFACAF4QsAQArCFwCAFIQvAAApCF8AAFIQvgAApCB8AQBIQfgCAJCC8AUAIIVhhe+aNWti2rRpUV1dHQ0NDbF169bjzl+9enV89KMfjXPOOSfq6+tjyZIl8dvf/nZYGwYAgOEoO3w3bNgQLS0t0draGtu3b4/p06dHc3NzvP3220ed//TTT8fSpUujtbU1du7cGU888URs2LAh7rnnnpPePAAAnKiyw/eRRx6J2267LRYtWhQf//jHY+3atXHuuefGk08+edT5L7/8clxzzTVx8803x7Rp0+Izn/lM3HTTTe97lxgAAEZSWeHb19cX27Zti6ampj+8QUVFNDU1RUdHx1HXXH311bFt27bB0N29e3ds2rQpbrjhhmNe59ChQ9Hb2zvkBQAAJ+Oscibv378/+vv7o66ubsh4XV1d7Nq166hrbr755ti/f3986lOfiqIo4vDhw3HHHXcc96sObW1tcf/995ezNQAAOK5Rf6rDli1bYuXKlfHYY4/F9u3b49lnn42NGzfGAw88cMw1y5Yti56ensHX3r17R3ubAAB8wJV1x3fChAlRWVkZ3d3dQ8a7u7tj0qRJR11z3333xfz58+PWW2+NiIjLL788Dh48GLfffnssX748KiqObO9SqRSlUqmcrQEAwHGVdce3qqoqZs6cGe3t7YNjAwMD0d7eHo2NjUdd8+677x4Rt5WVlRERURRFufsFAIBhKeuOb0RES0tLLFy4MGbNmhWzZ8+O1atXx8GDB2PRokUREbFgwYKYOnVqtLW1RUTEnDlz4pFHHokrr7wyGhoa4o033oj77rsv5syZMxjAAAAw2soO33nz5sW+fftixYoV0dXVFTNmzIjNmzcP/sDbnj17htzhvffee2PcuHFx7733xi9/+cv40z/905gzZ058/etfH7lPAQAA72NccQZ836C3tzdqa2ujp6cnampqTvV2AAAYZaPRf6P+VAcAADgdCF8AAFIQvgAApCB8AQBIQfgCAJCC8AUAIAXhCwBACsIXAIAUhC8AACkIXwAAUhC+AACkIHwBAEhB+AIAkILwBQAgBeELAEAKwhcAgBSELwAAKQhfAABSEL4AAKQgfAEASEH4AgCQgvAFACAF4QsAQArCFwCAFIQvAAApCF8AAFIQvgAApCB8AQBIQfgCAJCC8AUAIAXhCwBACsIXAIAUhC8AACkIXwAAUhC+AACkIHwBAEhB+AIAkILwBQAgBeELAEAKwhcAgBSELwAAKQhfAABSEL4AAKQgfAEASEH4AgCQgvAFACAF4QsAQArCFwCAFIQvAAApCF8AAFIQvgAApCB8AQBIQfgCAJCC8AUAIAXhCwBACsIXAIAUhC8AACkIXwAAUhC+AACkIHwBAEhB+AIAkILwBQAgBeELAEAKwhcAgBSELwAAKQhfAABSEL4AAKQgfAEASEH4AgCQgvAFACAF4QsAQArCFwCAFIQvAAApCF8AAFIQvgAApCB8AQBIQfgCAJCC8AUAIAXhCwBACsIXAIAUhC8AACkIXwAAUhC+AACkIHwBAEhB+AIAkMKwwnfNmjUxbdq0qK6ujoaGhti6detx57/zzjuxePHimDx5cpRKpbjkkkti06ZNw9owAAAMx1nlLtiwYUO0tLTE2rVro6GhIVavXh3Nzc3x2muvxcSJE4+Y39fXF3/1V38VEydOjGeeeSamTp0av/jFL+L8888fif0DAMAJGVcURVHOgoaGhrjqqqvi0UcfjYiIgYGBqK+vjzvvvDOWLl16xPy1a9fGv/zLv8SuXbvi7LPPHtYme3t7o7a2Nnp6eqKmpmZY7wEAwJljNPqvrK869PX1xbZt26KpqekPb1BREU1NTdHR0XHUNd///vejsbExFi9eHHV1dXHZZZfFypUro7+//5jXOXToUPT29g55AQDAySgrfPfv3x/9/f1RV1c3ZLyuri66urqOumb37t3xzDPPRH9/f2zatCnuu+++ePjhh+NrX/vaMa/T1tYWtbW1g6/6+vpytgkAAEcY9ac6DAwMxMSJE+Pxxx+PmTNnxrx582L58uWxdu3aY65ZtmxZ9PT0DL727t072tsEAOADrqwfbpswYUJUVlZGd3f3kPHu7u6YNGnSUddMnjw5zj777KisrBwc+9jHPhZdXV3R19cXVVVVR6wplUpRKpXK2RoAABxXWXd8q6qqYubMmdHe3j44NjAwEO3t7dHY2HjUNddcc0288cYbMTAwMDj2+uuvx+TJk48avQAAMBrK/qpDS0tLrFu3Lr797W/Hzp074wtf+EIcPHgwFi1aFBERCxYsiGXLlg3O/8IXvhC//vWv46677orXX389Nm7cGCtXrozFixeP3KcAAID3UfZzfOfNmxf79u2LFStWRFdXV8yYMSM2b948+ANve/bsiYqKP/R0fX19vPDCC7FkyZK44oorYurUqXHXXXfF3XffPXKfAgAA3kfZz/E9FTzHFwAgl1P+HF8AADhTCV8AAFIQvgAApCB8AQBIQfgCAJCC8AUAIAXhCwBACsIXAIAUhC8AACkIXwAAUhC+AACkIHwBAEhB+AIAkILwBQAgBeELAEAKwhcAgBSELwAAKQhfAABSEL4AAKQgfAEASEH4AgCQgvAFACAF4QsAQArCFwCAFIQvAAApCF8AAFIQvgAApCB8AQBIQfgCAJCC8AUAIAXhCwBACsIXAIAUhC8AACkIXwAAUhC+AACkIHwBAEhB+AIAkILwBQAgBeELAEAKwhcAgBSELwAAKQhfAABSEL4AAKQgfAEASEH4AgCQgvAFACAF4QsAQArCFwCAFIQvAAApCF8AAFIQvgAApCB8AQBIQfgCAJCC8AUAIAXhCwBACsIXAIAUhC8AACkIXwAAUhC+AACkIHwBAEhB+AIAkILwBQAgBeELAEAKwhcAgBSELwAAKQhfAABSEL4AAKQgfAEASEH4AgCQgvAFACAF4QsAQArCFwCAFIQvAAApCF8AAFIQvgAApCB8AQBIQfgCAJCC8AUAIAXhCwBACsIXAIAUhC8AACkIXwAAUhC+AACkIHwBAEhB+AIAkMKwwnfNmjUxbdq0qK6ujoaGhti6desJrVu/fn2MGzcu5s6dO5zLAgDAsJUdvhs2bIiWlpZobW2N7du3x/Tp06O5uTnefvvt465766234h//8R/j2muvHfZmAQBguMoO30ceeSRuu+22WLRoUXz84x+PtWvXxrnnnhtPPvnkMdf09/fH5z//+bj//vvjoosuOqkNAwDAcJQVvn19fbFt27Zoamr6wxtUVERTU1N0dHQcc91Xv/rVmDhxYtxyyy0ndJ1Dhw5Fb2/vkBcAAJyMssJ3//790d/fH3V1dUPG6+rqoqur66hrXnrppXjiiSdi3bp1J3ydtra2qK2tHXzV19eXs00AADjCqD7V4cCBAzF//vxYt25dTJgw4YTXLVu2LHp6egZfe/fuHcVdAgCQwVnlTJ4wYUJUVlZGd3f3kPHu7u6YNGnSEfN//vOfx1tvvRVz5swZHBsYGPjdhc86K1577bW4+OKLj1hXKpWiVCqVszUAADiusu74VlVVxcyZM6O9vX1wbGBgINrb26OxsfGI+Zdeemm88sor0dnZOfj67Gc/G9dff310dnb6CgMAAGOmrDu+EREtLS2xcOHCmDVrVsyePTtWr14dBw8ejEWLFkVExIIFC2Lq1KnR1tYW1dXVcdlllw1Zf/7550dEHDEOAACjqezwnTdvXuzbty9WrFgRXV1dMWPGjNi8efPgD7zt2bMnKir8gXAAAJxexhVFUZzqTbyf3t7eqK2tjZ6enqipqTnV2wEAYJSNRv+5NQsAQArCFwCAFIQvAAApCF8AAFIQvgAApCB8AQBIQfgCAJCC8AUAIAXhCwBACsIXAIAUhC8AACkIXwAAUhC+AACkIHwBAEhB+AIAkILwBQAgBeELAEAKwhcAgBSELwAAKQhfAABSEL4AAKQgfAEASEH4AgCQgvAFACAF4QsAQArCFwCAFIQvAAApCF8AAFIQvgAApCB8AQBIQfgCAJCC8AUAIAXhCwBACsIXAIAUhC8AACkIXwAAUhC+AACkIHwBAEhB+AIAkILwBQAgBeELAEAKwhcAgBSELwAAKQhfAABSEL4AAKQgfAEASEH4AgCQgvAFACAF4QsAQArCFwCAFIQvAAApCF8AAFIQvgAApCB8AQBIQfgCAJCC8AUAIAXhCwBACsIXAIAUhC8AACkIXwAAUhC+AACkIHwBAEhB+AIAkILwBQAgBeELAEAKwhcAgBSELwAAKQhfAABSEL4AAKQgfAEASEH4AgCQgvAFACAF4QsAQArCFwCAFIQvAAApCF8AAFIQvgAApCB8AQBIQfgCAJCC8AUAIAXhCwBACsIXAIAUhC8AACkIXwAAUhC+AACkMKzwXbNmTUybNi2qq6ujoaEhtm7desy569ati2uvvTbGjx8f48ePj6ampuPOBwCA0VB2+G7YsCFaWlqitbU1tm/fHtOnT4/m5uZ4++23jzp/y5YtcdNNN8WPfvSj6OjoiPr6+vjMZz4Tv/zlL0968wAAcKLGFUVRlLOgoaEhrrrqqnj00UcjImJgYCDq6+vjzjvvjKVLl77v+v7+/hg/fnw8+uijsWDBghO6Zm9vb9TW1kZPT0/U1NSUs10AAM5Ao9F/Zd3x7evri23btkVTU9Mf3qCiIpqamqKjo+OE3uPdd9+N9957Ly644IJjzjl06FD09vYOeQEAwMkoK3z3798f/f39UVdXN2S8rq4uurq6Tug97r777pgyZcqQeP5jbW1tUVtbO/iqr68vZ5sAAHCEMX2qw6pVq2L9+vXx3HPPRXV19THnLVu2LHp6egZfe/fuHcNdAgDwQXRWOZMnTJgQlZWV0d3dPWS8u7s7Jk2adNy1Dz30UKxatSp++MMfxhVXXHHcuaVSKUqlUjlbAwCA4yrrjm9VVVXMnDkz2tvbB8cGBgaivb09Ghsbj7nuwQcfjAceeCA2b94cs2bNGv5uAQBgmMq64xsR0dLSEgsXLoxZs2bF7NmzY/Xq1XHw4MFYtGhRREQsWLAgpk6dGm1tbRER8c///M+xYsWKePrpp2PatGmD3wX+0Ic+FB/60IdG8KMAAMCxlR2+8+bNi3379sWKFSuiq6srZsyYEZs3bx78gbc9e/ZERcUfbiR/85vfjL6+vvibv/mbIe/T2toaX/nKV05u9wAAcILKfo7vqeA5vgAAuZzy5/gCAMCZSvgCAJCC8AUAIAXhCwBACsIXAIAUhC8AACkIXwAAUhC+AACkIHwBAEhB+AIAkILwBQAgBeELAEAKwhcAgBSELwAAKQhfAABSEL4AAKQgfAEASEH4AgCQgvAFACAF4QsAQArCFwCAFIQvAAApCF8AAFIQvgAApCB8AQBIQfgCAJCC8AUAIAXhCwBACsIXAIAUhC8AACkIXwAAUhC+AACkIHwBAEhB+AIAkILwBQAgBeELAEAKwhcAgBSELwAAKQhfAABSEL4AAKQgfAEASEH4AgCQgvAFACAF4QsAQArCFwCAFIQvAAApCF8AAFIQvgAApCB8AQBIQfgCAJCC8AUAIAXhCwBACsIXAIAUhC8AACkIXwAAUhC+AACkIHwBAEhB+AIAkILwBQAgBeELAEAKwhcAgBSELwAAKQhfAABSEL4AAKQgfAEASEH4AgCQgvAFACAF4QsAQArCFwCAFIQvAAApCF8AAFIQvgAApCB8AQBIQfgCAJCC8AUAIAXhCwBACsIXAIAUhC8AACkIXwAAUhC+AACkIHwBAEhB+AIAkILwBQAgBeELAEAKwhcAgBSGFb5r1qyJadOmRXV1dTQ0NMTWrVuPO/973/teXHrppVFdXR2XX355bNq0aVibBQCA4So7fDds2BAtLS3R2toa27dvj+nTp0dzc3O8/fbbR53/8ssvx0033RS33HJL7NixI+bOnRtz586Nn/3sZye9eQAAOFHjiqIoylnQ0NAQV111VTz66KMRETEwMBD19fVx5513xtKlS4+YP2/evDh48GD84Ac/GBz7y7/8y5gxY0asXbv2hK7Z29sbtbW10dPTEzU1NeVsFwCAM9Bo9N9Z5Uzu6+uLbdu2xbJlywbHKioqoqmpKTo6Oo66pqOjI1paWoaMNTc3x/PPP3/M6xw6dCgOHTo0+Ouenp6I+N3fAAAAPvh+331l3qM9rrLCd//+/dHf3x91dXVDxuvq6mLXrl1HXdPV1XXU+V1dXce8TltbW9x///1HjNfX15ezXQAAznD/8z//E7W1tSPyXmWF71hZtmzZkLvE77zzTnz4wx+OPXv2jNgH58zR29sb9fX1sXfvXl91Scj55+b8c3P+ufX09MSFF14YF1xwwYi9Z1nhO2HChKisrIzu7u4h493d3TFp0qSjrpk0aVJZ8yMiSqVSlEqlI8Zra2v9g59YTU2N80/M+efm/HNz/rlVVIzc03fLeqeqqqqYOXNmtLe3D44NDAxEe3t7NDY2HnVNY2PjkPkRES+++OIx5wMAwGgo+6sOLS0tsXDhwpg1a1bMnj07Vq9eHQcPHoxFixZFRMSCBQti6tSp0dbWFhERd911V1x33XXx8MMPx4033hjr16+Pn/70p/H444+P7CcBAIDjKDt8582bF/v27YsVK1ZEV1dXzJgxIzZv3jz4A2x79uwZckv66quvjqeffjruvffeuOeee+Iv/uIv4vnnn4/LLrvshK9ZKpWitbX1qF9/4IPP+efm/HNz/rk5/9xG4/zLfo4vAACciUbu28IAAHAaE74AAKQgfAEASEH4AgCQwmkTvmvWrIlp06ZFdXV1NDQ0xNatW487/3vf+15ceumlUV1dHZdffnls2rRpjHbKaCjn/NetWxfXXnttjB8/PsaPHx9NTU3v+88Lp7dyf///3vr162PcuHExd+7c0d0go6rc83/nnXdi8eLFMXny5CiVSnHJJZf4d8AZrNzzX716dXz0ox+Nc845J+rr62PJkiXx29/+dox2y0j58Y9/HHPmzIkpU6bEuHHj4vnnn3/fNVu2bIlPfvKTUSqV4iMf+Ug89dRT5V+4OA2sX7++qKqqKp588sniv/7rv4rbbrutOP/884vu7u6jzv/JT35SVFZWFg8++GDx6quvFvfee29x9tlnF6+88soY75yRUO7533zzzcWaNWuKHTt2FDt37iz+7u/+rqitrS3++7//e4x3zkgo9/x/78033yymTp1aXHvttcVf//Vfj81mGXHlnv+hQ4eKWbNmFTfccEPx0ksvFW+++WaxZcuWorOzc4x3zkgo9/y/853vFKVSqfjOd75TvPnmm8ULL7xQTJ48uViyZMkY75yTtWnTpmL58uXFs88+W0RE8dxzzx13/u7du4tzzz23aGlpKV599dXiG9/4RlFZWVls3ry5rOueFuE7e/bsYvHixYO/7u/vL6ZMmVK0tbUddf7nPve54sYbbxwy1tDQUPz93//9qO6T0VHu+f+xw4cPF+edd17x7W9/e7S2yCgazvkfPny4uPrqq4tvfetbxcKFC4XvGazc8//mN79ZXHTRRUVfX99YbZFRVO75L168uPj0pz89ZKylpaW45pprRnWfjK4TCd8vf/nLxSc+8YkhY/PmzSuam5vLutYp/6pDX19fbNu2LZqamgbHKioqoqmpKTo6Oo66pqOjY8j8iIjm5uZjzuf0NZzz/2PvvvtuvPfee3HBBReM1jYZJcM9/69+9asxceLEuOWWW8Zim4yS4Zz/97///WhsbIzFixdHXV1dXHbZZbFy5cro7+8fq20zQoZz/ldffXVs27Zt8OsQu3fvjk2bNsUNN9wwJnvm1Bmp9iv7T24bafv374/+/v7BP/nt9+rq6mLXrl1HXdPV1XXU+V1dXaO2T0bHcM7/j919990xZcqUI35DcPobzvm/9NJL8cQTT0RnZ+cY7JDRNJzz3717d/zHf/xHfP7zn49NmzbFG2+8EV/84hfjvffei9bW1rHYNiNkOOd/8803x/79++NTn/pUFEURhw8fjjvuuCPuueeesdgyp9Cx2q+3tzd+85vfxDnnnHNC73PK7/jCyVi1alWsX78+nnvuuaiurj7V22GUHThwIObPnx/r1q2LCRMmnOrtcAoMDAzExIkT4/HHH4+ZM2fGvHnzYvny5bF27dpTvTXGwJYtW2LlypXx2GOPxfbt2+PZZ5+NjRs3xgMPPHCqt8YZ4pTf8Z0wYUJUVlZGd3f3kPHu7u6YNGnSUddMmjSprPmcvoZz/r/30EMPxapVq+KHP/xhXHHFFaO5TUZJuef/85//PN56662YM2fO4NjAwEBERJx11lnx2muvxcUXXzy6m2bEDOf3/+TJk+Pss8+OysrKwbGPfexj0dXVFX19fVFVVTWqe2bkDOf877vvvpg/f37ceuutERFx+eWXx8GDB+P222+P5cuXR0WF+3kfVMdqv5qamhO+2xtxGtzxraqqipkzZ0Z7e/vg2MDAQLS3t0djY+NR1zQ2Ng6ZHxHx4osvHnM+p6/hnH9ExIMPPhgPPPBAbN68OWbNmjUWW2UUlHv+l156abzyyivR2dk5+PrsZz8b119/fXR2dkZ9ff1Ybp+TNJzf/9dcc0288cYbg//BExHx+uuvx+TJk0XvGWY45//uu+8eEbe//4+g3/2MFB9UI9Z+5f3c3ehYv359USqViqeeeqp49dVXi9tvv704//zzi66urqIoimL+/PnF0qVLB+f/5Cc/Kc4666zioYceKnbu3Fm0trZ6nNkZrNzzX7VqVVFVVVU888wzxa9+9avB14EDB07VR+AklHv+f8xTHc5s5Z7/nj17ivPOO6/4h3/4h+K1114rfvCDHxQTJ04svva1r52qj8BJKPf8W1tbi/POO6/4t3/7t2L37t3Fv//7vxcXX3xx8bnPfe5UfQSG6cCBA8WOHTuKHTt2FBFRPPLII8WOHTuKX/ziF0VRFMXSpUuL+fPnD87//ePM/umf/qnYuXNnsWbNmjP3cWZFURTf+MY3igsvvLCoqqoqZs+eXfznf/7n4F+77rrrioULFw6Z/93vfre45JJLiqqqquITn/hEsXHjxjHeMSOpnPP/8Ic/XETEEa/W1tax3zgjotzf//8/4XvmK/f8X3755aKhoaEolUrFRRddVHz9618vDh8+PMa7ZqSUc/7vvfde8ZWvfKW4+OKLi+rq6qK+vr744he/WPzv//7v2G+ck/KjH/3oqP8u//15L1y4sLjuuuuOWDNjxoyiqqqquOiii4p//dd/Lfu644rC/xsAAOCD75R/xxcAAMaC8AUAIAXhCwBACsIXAIAUhC8AACkIXwAAUhC+AACkIHwBAEhB+AIAkILwBQAgBeELAEAKwhcAgBT+HzgRrWHQVr4zAAAAAElFTkSuQmCC", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -468,26 +463,29 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 21, "metadata": {}, "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "Production at loss minimising quantity\n" + "ename": "AttributeError", + "evalue": "module 'csaps' has no attribute 'UnivariateCubicSmoothingSpline'", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mAttributeError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[1;32mIn[21], line 1\u001b[0m\n\u001b[1;32m----> 1\u001b[0m \u001b[43mfirm_behaviour\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m28\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mindividual_firm_costs\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[1;32mc:\\Users\\lynnc\\OneDrive\\Documents\\GitHub\\textbook\\content\\02-supply\\utils.py:14\u001b[0m, in \u001b[0;36mfirm_behaviour\u001b[1;34m(price, individual_firm_costs)\u001b[0m\n\u001b[0;32m 12\u001b[0m output \u001b[38;5;241m=\u001b[39m individual_firm_costs\u001b[38;5;241m.\u001b[39mcolumn(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mOutput\u001b[39m\u001b[38;5;124m\"\u001b[39m)[\u001b[38;5;241m1\u001b[39m:]\n\u001b[0;32m 13\u001b[0m mc \u001b[38;5;241m=\u001b[39m individual_firm_costs\u001b[38;5;241m.\u001b[39mcolumn(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mMarginal Cost\u001b[39m\u001b[38;5;124m\"\u001b[39m)[\u001b[38;5;241m1\u001b[39m:]\n\u001b[1;32m---> 14\u001b[0m sp_mc \u001b[38;5;241m=\u001b[39m \u001b[43mcsaps\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mUnivariateCubicSmoothingSpline\u001b[49m(output, mc, smooth\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m0.85\u001b[39m)\n\u001b[0;32m 15\u001b[0m output_s \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39mlinspace(output\u001b[38;5;241m.\u001b[39mmin(), output\u001b[38;5;241m.\u001b[39mmax(), \u001b[38;5;241m150\u001b[39m)\n\u001b[0;32m 16\u001b[0m mc_s \u001b[38;5;241m=\u001b[39m sp_mc(output_s)\n", + "\u001b[1;31mAttributeError\u001b[0m: module 'csaps' has no attribute 'UnivariateCubicSmoothingSpline'" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeYAAAFdCAYAAADWns55AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdeVxWZf7/8dd13+z7Dbjv5i6yg5Za7po5Wpmpmem019Q4zdSUbTM/a5q2mWmq+bZaLlNmmpptlkualkuAuC+4oCioyL5v9/X7gxsGFBAQODfweT4ePuA+59znvEXww3Wd61yX0lojhBBCCPtgMjqAEEIIIf5HCrMQQghhR6QwCyGEEHZECrMQQghhR6QwCyGEEHZECrMQQghhR6QwC9EKKaVGKKXONNK5s5VSPRvj3EK0BlKYhbBjSql4pVSerdidV0otUkp5GJ2rjFJqs1Lq3orbtNYeWusTRmUSormTwiyE/fuN1toDCAXCgWcr7lSl5GdZiBZCfpiFaCa01meB74AAW0v1b0qpn4FcoKdSqqNSaq1SKlUpdUwpdV/Ze5VSrrbWdppS6iAQUfHcSimtlOpV4fUipdSLFV5PUUrFKqUylVLHlVITlFJ/A4YDb9ta9G9fei6llLdSaolSKlkpdUop9WzZLxFKqblKqW1KqddtuU4qpW5stC+gEM2Eg9EBhBC1o5TqAkwEVlFaEGcDNwJHAAVsBPYDHYF+wHql1HGt9SbgL8A1tj/ulBb42l43ElgC3Ga7RgfAU2u9Tik1FPiv1vrDat7+FuAN9AT8gB+AJGChbf9gYDHgD9wPLFRKddIyV7BoxaTFLIT9W6OUSge2AVuAl2zbF2mtD2iti4H2wFDgSa11vtY6FvgQuMt27O3A37TWqVrrBODNOlz/HuAjrfV6rbVVa31Wa334Sm9SSpmBGcB8rXWW1joe+Aelv1CUOaW1/kBrXUJpge4AtKtDNiFaHGkxC2H/btZab6i4QSkFkFBhU0cgVWudVWHbKUrvSZftT7hkX211Ab6tw/Fl/AHHS651CuhU4fW5sk+01rm2v5fdDG4TwgjSYhai+arY3ZsI+CqlPCts6wqctX2eRGmBrbivolzArcLr9hU+T6C0C/xKGS51ESgCulWTSQhRBSnMQrQAtu7pX4C/K6VclFKBlHZB/9d2yOfAfKWURSnVGXj0klPEAncopcxKqQnADRX2LQR+q5QarZQyKaU6KaX62fadp/T+cVWZSmzX/ZtSylMp1Q34Y4VMQogqSGEWouWYCXSntPW8GvhLhS7w/0dpN/JJSgdgLb3kvfOA3wDpwCxgTdkOrfUu4LfAv4AMSu9zl7WC/w3cZhtVXdV960eBHOAEpffIPwU+upq/pBAtnZLBj0IIIYT9kBazEEIIYUekMAshhBB2RAqzEEIIYUekMAshhBB2RAqzEEIIYUea9cxf/v7+unv37kbHEEIIIeokOjr6ota6TVX7mnVh7t69O1FRUUbHEEIIIepEKVXttLjSlS2EEELYESnMQgghhB2RwiyEEELYkWZ9j1mI+igqKuLMmTPk5+cbHUU0cy4uLnTu3BlHR0ejo4gWRAqzaHXOnDmDp6cn3bt3L1vXWIg601qTkpLCmTNn6NGjh9FxRAsiXdmi1cnPz8fPz0+KsrgqSin8/Pyk50U0OCnMolWSoiwagnwficYghVkIg6xZswalFIcPHzY6So1yc3Px8/MjMzOz0vabb76Z5cuX1/o8iYmJ3HbbbTUes3nzZiZNmlTlvu7du3Px4sVaX6+oqIinnnqK3r17ExoayrXXXst3331X6/eXWbRoEYmJiXV+nxD1JYVZiCvYtDuVOa8cYOL8WOa8coBNu1Mb5LzLli1j2LBhLFu2rEHOV1xc3CDnuZSbmxvjx49n9erV5dsyMjLYtm0bv/nNb2qdrWPHjqxcubJRMlblueeeIykpif379xMTE8OaNWvIysqq83mkMIumJoVZiBps2p3Km6sTuJBehAYupBfx5uqEqy7O2dnZbNu2jYULF/LZZ5+Vb58xYwbffPNN+eu5c+eycuVKSkpKeOKJJ4iIiCAwMJD33nsPKG1hDh8+nMmTJzNgwACgtCUbFhbGwIEDef/998vPtXDhQvr06UNkZCT33XcfjzzyCADJyclMnTqViIgIIiIi+Pnnny/LO3PmzEo5V69ezfjx43Fzc2PXrl1ce+21hISEcN1113HkyBGgtKBNnjyZUaNGMXr0aOLj4wkICAAgPj6e4cOHExoaSmhoKL/88kv5uTMzM7npppvo27cvDz74IFar9bI8//3vf4mMjCQ4OJgHHniAkpKSSvtzc3P54IMPeOutt3B2dgagXbt23H777UDpL0WDBg0iICCAJ598EoCSkhLmzp1LQEAAgwYN4l//+hcrV64kKiqKWbNmERwcTF5eXs3/sEI0gEYbla2U+giYBFzQWgfYtvkCy4HuQDxwu9Y6TZXeqPk3MBHIBeZqrWMaK5sQZd796gwnkqr/z/bw6VyKSnSlbQVFmje+SGDdrylVvqdnB1ce/E3nGq/75ZdfMmHCBPr06YOfnx/R0dGEhYUxffp0Pv/8c2666SYKCwvZuHEj77zzDgsXLsTb25tff/2VgoIChg4dyrhx4wCIiYlh//795SODP/roI3x9fcnLyyMiIoKpU6dSUFDACy+8QExMDJ6enowaNYqgoCAA5s2bx2OPPcawYcM4ffo048eP59ChQ5Xyjh8/nnvvvZeUlBT8/Pz47LPPygt7v3792Lp1Kw4ODmzYsIGnn36aL774ojzb3r178fX1JT4+vvx8bdu2Zf369bi4uBAXF8fMmTPLp9fdtWsXBw8epFu3bkyYMIFVq1ZV6gI/dOgQy5cv5+eff8bR0ZGHH36YTz75hLvuuqv8mGPHjtG1a1e8vLwu+9onJiby5JNPEh0djcViYdy4caxZs4YuXbpw9uxZ9u/fD0B6ejo+Pj68/fbbvP7664SHh9f4bypEQ2nMx6UWAW8DSypsewrYqLV+WSn1lO31k8CNQG/bn8HAO7aPTWJXyk7WJq4mrTAVi5MvkzveQqRfk11e2LFLi/KVttfWsmXLmDdvHlDaSl62bBlhYWHceOONzJs3j4KCAtatW8f111+Pq6srP/zwA3v37i3vCs7IyCAuLg4nJyciIyMrPa7z5ptvlnc7JyQkEBcXx7lz57jhhhvw9fUFYNq0aRw9ehSADRs2cPDgwfL3Z2Zmkp2djYeHR/k2JycnJk+ezMqVK5k6dSq7d+9m/Pjx5VnmzJlDXFwcSimKiorK3zd27Njya1b6+hUV8cgjjxAbG4vZbC7PAhAZGUnPnj2B0pb6tm3bKhXmjRs3Eh0dTUREBAB5eXm0bdu21l/7X3/9lREjRtCmTen6AbNmzeKnn37iueee48SJEzz66KPcdNNN5b/4CNHUGq0wa61/Ukp1v2TzFGCE7fPFwGZKC/MUYInWWgM7lFI+SqkOWuukxspXZlfKTj49tZQiXQhAWmEqn55aCiDFuRW4Ust2zisHuJBedNn2tj6OvHp/73pdMzU1lU2bNrFv3z6UUpSUlKCU4rXXXsPFxYURI0bw/fffs3z5cmbMmAGUPjP71ltvlRfDMps3b8bd3b3S6w0bNrB9+3bc3NwYMWLEFR/nsVqt7NixAxcXlxqPmzlzJi+88AJaa6ZMmVI+qcZzzz3HyJEjWb16NfHx8YwYMaL8PRWzVfSvf/2Ldu3asWfPHqxWa6VrXzrS+dLXWmvmzJnD3//+92qz9urVi9OnT5OZmVllq7kqFouFPXv28P333/Puu+/y+eef89FHH9XqvUI0pKa+x9yuQrE9B7Szfd4JSKhw3Bnbtka3NnF1eVEuU6QLWZu4upp3iNZkzrgOODtWLgzOjoo54zrU+5wrV65k9uzZnDp1ivj4eBISEujRowdbt24FYPr06Xz88cds3bqVCRMmAKVdye+88055a/To0aPk5ORcdu6MjAwsFgtubm4cPnyYHTt2ABAREcGWLVtIS0ujuLi4vKsZYNy4cbz11lvlr2NjY6vMPWLECOLi4vjPf/7DzJkzK12zU6fSH9dFixbV6muQkZFBhw4dMJlMLF26tNI94l27dnHy5EmsVivLly9n2LBhld47evRoVq5cyYULF4DSX3ROnaq8UI+bmxv33HMP8+bNo7Cw9Oc7OTmZFStWEBkZyZYtW7h48SIlJSUsW7aMG264gYsXL2K1Wpk6dSovvvgiMTGld9M8PT3rNWhMiPoybPCXrXVc5/5ApdT9SqkopVRUcnLyVedIK6x6EE9120XrMirEl9/f0oW2Po4oSlvKv7+lC6NCLu+era1ly5Zxyy23VNo2derU8tHZ48aNY8uWLYwZMwYnJycA7r33XgYMGEBoaCgBAQE88MADVY7CnjBhAsXFxfTv35+nnnqKIUOGANCpUyeefvppIiMjGTp0KN27d8fb2xso7fqOiooiMDCQAQMG8O6771aZ22Qycdttt5GSksINN9xQvv3Pf/4z8+fPJyQkpNYjwx9++GEWL15MUFAQhw8frtSyjoiI4JFHHqF///706NHjsq/VgAEDePHFFxk3bhyBgYGMHTuWpKTLO9defPFF2rRpw4ABAwgICGDSpEl4eXnRoUMHXn75ZUaOHElQUBBhYWFMmTKFs2fPMmLECIKDg7nzzjvLW+Rz587lwQcflMFfosmo0vrYSCcv7cr+usLgryPACK11klKqA7BZa91XKfWe7fNllx5X0/nDw8P11a7H/Oy+p6oswhYnX14c9PJVnVvYp0OHDtG/f3+jYzS5svvGxcXF3HLLLdx9992XFT1Rd631+0lcHaVUtNa6yhGFTd1iXgvMsX0+B/iywva7VKkhQEZT3F8GmNzxFhyVU6VtjsqJyR3lPyzRsvz1r38lODiYgIAAevTowc0332x0JCFEFRrzcalllA708ldKnQH+ArwMfK6Uugc4BdxuO/xbSh+VOkbp41K/baxclyob4FU2KttBOXBHt9ky8Eu0OK+//rrREYQQtdCYo7JnVrNrdBXHauB3jZXlSiL9BhPpN5jvkr7h68Qv6e1Zv9G2QgghxNWSmb8qCLOUdvfHpEUbnEQIIURrJYW5grYu7eji1pXo1F+NjiKEEKKVksJ8iTBLOKdy47lYcPWPYgkhhBB1JYX5EqHl3dlX9xiWEFfSXJZ9/P777wkODiY4OBgPDw/69u1LcHBwpbmpLxUTE8O6deuueO4NGzZUOzp8x44dDBs2jH79+hESEsL9999f5+eIT5w4UWnxDSGaAynMl/Bz9qeHe0+ipDtb2OxK2cmz+57id9H38+y+p9iVsrNBzttcln0cP348sbGxxMbGEh4ezieffEJsbCxLliyp9j21LczVSUpKYvr06fzzn//k8OHDxMTEMHr0aLKzs+t0HinMojmSwlyFUEs4Z/POcD7/nNFRhMHK5lIvm4SmbC71qy3OzW3Zx+rk5eUxZ84cBg0aRGhoKD/99BN5eXksWLCATz75hODgYFauXMmOHTvKl4YcOnQocXFxNZ73rbfe4p577iEyMhIonS97+vTptGnThosXLzJ58mQCAwO57rrryleD2rRpE0FBQQQHBxMaGkpOTg5PPfUUP/74I8HBwbz55pu1/nsJYaTGXF2q2Qq1hLHqzAqiU6OY2HGS0XFEI1qZsJwzuQnV7j+Zc4JiXbklWqQL+eTUYn65uLXK93R268JtXabXeN3mtuxjdd58802cnZ3Zt28fBw4cYOLEicTFxfH888+zf/9+3njjDaB0buyypSHXrVvHs88+y/Lly6s97/79+3nggQeq3Pfcc88xePBg1q5dyw8//MDcuXOJioritdde4/3332fw4MFkZ2fj4uLCyy+/zNtvv82aNWtq9fcRwh5IYa6Cj5OFnh69iE77lRs73HTZ6jai9bi0KF9pe201t2Ufq7Nt2zaeeOIJAAYOHEjHjh05duzYZcelp6dz1113cfz48fp8uS67Zlmvwrhx45g7dy45OTkMHTqUefPmMWvWLKZOnVqr/ELYIynM1Qi3RLA84VMS88/SybXmpQFF83Wllm1Nc6n/oe/j9bpmc1328Wo888wzjB8/nocffphjx46Vr5pVnYEDBxIdHc1NN91U62s8++yzTJ48mW+++YYhQ4awcePGq40thCHkHnM1gi2hKBQxqTI6uzVrjLnUm+uyj1UZPnw4n3zyCVC6mENSUhK9evW6bKnEui4N+eijj7Jw4ULKFqnRWrNixQqSk5MrXXPDhg106tQJd3d3jh8/TmBgIPPnzyc0NJQjR47Iko2iWZLCXA0vRy/6ePYlOi2KxlyBS9i3SL/B3NFtNhan0i5gi5PvVc+l3lyXfazKo48+Sl5eHoMGDWLWrFksWbIEJycnRo0axZ49ewgJCWHlypU8+eSTPPHEE4SGhtbq56ljx458+umnzJs3j379+jFgwAA2bdqEh4cHCxYsYPv27QQGBvL888/z8ccfA6VzgQcEBBAYGIiHhwfjxo0jJCSEkpISgoKCZPCXaDYaddnHxtYQyz7W5OfkrXx6eilP9n+Grm7dGu06omm11mX6ZNnHxtFav5/E1bGnZR+blSBLCCZMMkWnaBFk2UchmgcZ/FUDDwcP+nkNICYtmps7TZXR2aJZk2UfhWgepMV8BWG+4aQWphCfc9LoKEIIIVoBKcxXEOQTjINyIDpNurOFEEI0PinMV+BqdmOA10Bi0qKxaqvRcYQQQrRwUphrIcw3goyidI5nXz6jkRBCCNGQpDDXQoB3II7KUZaCFA1GKcWdd95Z/rq4uJg2bdowaVLDzc1+7733Vppqsy4WLVpUvsjFpb777jvCw8MZMGAAISEh/OlPf6rz+WNjY/n222/rlU2Ilk5GZdeCi9mFAJ9AYtKiua3LdMzKbHQk0USODhtOycWLl203+/vTZ1vVi1jUhru7O/v37ycvLw9XV1fWr19fPjNWbRUXF+PgUP2P8IcffljvfNXZv38/jzzyCN988w39+vWjpKSk0gpWtRUbG0tUVBQTJ05s8IxCNHfSYq6lMEs42cVZxGUdMTqKaEJVFeWattfFxIkTyxdjWLZsGTNnzizft2vXrvJlEq+77jqOHCn9vlu0aBGTJ09m1KhRjB49GqvVysMPP0y/fv0YO3YsEydOLF/oYsSIEeVTWnp4ePDMM88QFBTEkCFDOH/+PABfffUVgwcPJiQkhDFjxpRvr86rr77KM888Q79+/QAwm8089NBDAMTHxzNq1CgCAwMZPXo0p0+fBmDFihUEBAQQFBTE9ddfT2FhIc8//zzLly8nODi4xlWmhGiNpDDX0kDvQTibnImW7mzRQGbMmMFnn31Gfn4+e/fuZfDg/03z2a9fP7Zu3cru3btZsGABTz/9dPm+mJgYVq5cyZYtW1i1ahXx8fEcPHiQpUuXsn379iqvlZOTw5AhQ9izZw/XX389H3zwAQDDhg1jx44d7N69mxkzZvDqq6/WmHn//v2EhYVVue/RRx9lzpw57N27l1mzZvH73/8egAULFvD999+zZ88e1q5di5OTEwsWLGD69OnExsYyfXrNC4kI0dpIV3YtOZmcGOQTxJ603UzvcgcOJvnSiasTGBhIfHw8y5Ytu6xLNyMjgzlz5hAXF4dSqnzxCoCxY8eWL9+4bds2pk2bhslkon379owcObLKazk5OZXfvw4LC2P9+vUAnDlzhunTp5OUlERhYWGl5SPravv27axatQqA2bNn8+c//xmAoUOHMnfuXG6//XZuvfXWep9fiNbCkBazUmqeUmq/UuqAUuoPtm2+Sqn1Sqk420eLEdlqEm6JIKckh8NZtVtEXogrmTx5Mo8//nilbmyA5557jpEjR7J//36++uqrSks3VlzmsbYcHR3LZ64zm83lC2A8+uijPPLII+zbt4/33nvviktEli3HWBfvvvsuL774IgkJCYSFhZGSklLn/EK0Jk1emJVSAcB9QCQQBExSSvUCngI2aq17Axttr+1KP68BuJpdZSlI0WDuvvtu/vKXvzBo0KBK22u7TOLQoUP54osvsFqtnD9/ns2bN9fp+hWvs3jx4ise/8QTT/DSSy9x9OhRoHQt57LVqK677jo+++wzAD755BOGDx8OwPHjxxk8eDALFiygTZs2JCQkyHKMQtTAiBZzf2Cn1jpXa10MbAFuBaYAZf8zLAbsboZ9R5MjQT4h7EnfTZG16MpvEM2e2d+/TtvrqnPnzuX3Yiv685//zPz58wkJCalyeccyU6dOpXPnzgwYMIA777yT0NDQ8uUca+Ovf/0r06ZNIywsDP9a/J0CAwN54403mDlzJv379ycgIIATJ04A8NZbb/Hxxx8TGBjI0qVL+fe//w2UFvNBgwYREBDAddddR1BQECNHjuTgwYMy+EuIKjT5so9Kqf7Al8C1QB6lreMoYLbW2sd2jALSyl5Xp7GXfazKwYwD/OfYv7n/mocJ8glu0muLhtHSlukrW84xJSWFyMhIfv75Z9q3b290rFajpX0/iaZR07KPTT6CSWt9SCn1CvADkAPEAiWXHKOVUlX+xqCUuh+4H6Br166NnPZyfb364m52Jzr1VynMwi5MmjSJ9PR0CgsLee6556QoC9HMGTK0WGu9EFgIoJR6CTgDnFdKddBaJymlOgAXqnnv+8D7UNpibqLI5czKgWBLKL+m7qLQWoCTybmpIwhRSV3vKwsh7JtRo7Lb2j52pfT+8qfAWmCO7ZA5lHZ326UwSwSF1gL2Z+wzOooQQogWxqgJRr5QSh0EvgJ+p7VOB14Gxiql4oAxttd2qbdnHzwdvIhOlaUghRBCNCyjurKHV7EtBRhtQJw6MykToZYwfrm4jfySfFzMLkZHEkII0ULIlJz1FOobTpEuYm/6HqOjCCGEaEGkMNdTT/dr8HG0EJMm3dmi7sxmM8HBwQQEBDBt2jRyc3OrPG7ixImkp6c3cTohhJGkMNdTaXd2OAczD5BbnGN0HNHMuLq6Ehsby/79+3FyciqfPauM1hqr1cq3336Lj0+Nj/MLIVoYKcxXIcw3nBJdwp70WKOjiGZs+PDhHDt2jPj4ePr27ctdd91FQEAACQkJdO/enYu2JSaXLFlCYGAgQUFBzJ49G4Dk5GSmTp1KREQEERER/Pzzz0b+VYQQDUCWSLoK3dy64+fkT3RaFNf6DzU6jqiHsoUdGlptZ9QrLi7mu+++Y8KECQDExcWxePFihgwZUum4AwcO8OKLL/LLL7/g7+9PamoqAPPmzeOxxx5j2LBhnD59mvHjx3PokCyyIkRzJoX5KiilCPMNZ8O5H8guzsLDwdPoSKKZyMvLIzi4dOa44cOHc88995CYmEi3bt0uK8oAmzZtYtq0aeXzWZct+7hhwwYOHjxYflxmZmb5FJ1CiOZJCvNVCrVE8MO5dexOi2F4mxuMjiPqqKnnii9Tdo/5UnVd0tFqtbJjxw5cXOSRPSFaCrnHfJU6u3amrXM7YtJkKUjReEaNGsWKFSvK1zIu68oeN24cb731VvlxVRV7IUTzIi3mq1TWnb0u6VsyitLxdpQRtKLhDRw4kGeeeYYbbrgBs9lMSEgIixYt4s033+R3v/sdgYGBFBcXc/311182wlsIUT9Hhw2nxDb4siKzvz99tm1ttOs2+bKPDcmIZR+rkpSXyIsH/8q0LjMY0XaU0XHEFcgyfaIhyfdTy3WoX/X/rv0PX90gy5qWfZSu7AbQwbUjHV06ytzZQgghrpoU5gYS6hvBiZzjpBWmGh1FCCFEMyaFuYGEWUp7JGLSog1OIoQQojmTwtxA2rq0o4tbV+nObiaa89gKYT/k+0g0BinMDSjMEs6p3HguFiQbHUXUwMXFhZSUFPlPVVwVrTUpKSnyDHkLZrZN6FPb7Q1FHpdqQKGWcNacXUVMWhTj2t9odBxRjc6dO3PmzBmSk+UXKHF1XFxc6Ny5s9ExRCPps20rxSkpJD33PAAdXliAg59fo19XCnMD8nP2p4d7T6JTpTDbM0dHR3r06GF0DCFEM5C1YSNYrbgNHtwkRRmkK7vBhVrCOZOXwPn8c0ZHEUIIcRVKsrLI2bYNAM+xY5vsulKYG1ioJQyFIjrV+IlPhBBC1F/25s3ooiJcAgJw6typya4rhbmB+ThZ6OnRi+i0X2VwkRBCNFPWggKyN28BwGv8uCa9thTmRhBuieBcfhKJ+WeNjiKEEKIecrZtw5qTg1PPnjj16tWk15bC3AiCLaEoFDHSnS2EEM2OLi4uHfRFaWtZKdWk15fC3Ai8HL3o49mX6LQo6c4WQohmJjcqipK0NBw6tMclMLDJr29IYVZKPaaUOqCU2q+UWqaUclFK9VBK7VRKHVNKLVdKORmRraGE+UaQXHCBhLzTRkcRQghRS1prMr//HgCvcU3fWgYDCrNSqhPweyBcax0AmIEZwCvAv7TWvYA04J6mztaQgn1CMWGSKTqFEKIZyd+3j+Kkc5gtFtwiIgzJYFRXtgPgqpRyANyAJGAUsNK2fzFws0HZGoS7gzv9vAYQkxYt3dlCCNFMlLWWPceMRjkYMwdXkxdmrfVZ4HXgNKUFOQOIBtK11sW2w84ATffQWCMJ8w0ntTCF+JyTRkcRQghxBQXHjlF4/AQmNzfchw0zLIcRXdkWYArQA+gIuAMT6vD++5VSUUqpKHuf6zjIJxgH5UB0mnRnCyGEvStrLXuMuAGTs7NhOYzoyh4DnNRaJ2uti4BVwFDAx9a1DdAZqPIhYK31+1rrcK11eJs2bZomcT25mt0Y4DWQmLRorNpqdBwhhBDVKDp7lvx9+1GOjniMHGloFiMK82lgiFLKTZUOdxsNHAR+BG6zHTMH+NKAbA0uzDeCjKJ0jmcfMzqKEEKIamT+sB4A96HXYfb0NDSLEfeYd1I6yCsG2GfL8D7wJPBHpdQxwA9Y2NTZGkOAdyCOypGYNJlsRAgh7FFxSgq5UVFgMuE5ZozRcYxZ9lFr/RfgL5dsPgFEGhCnUbmYXQjwCWR3WjS3dZmOWZmNjiSEEKKCrA0boaQEt4hwHPz9jY4jM381hTBLOFnFWcRlHTE6ihBCiAoqLe04vtbjkBuVFOYmMNB7EM4mZ3c5ukMAACAASURBVKKlO1sIIexK9qZNpUs7DmrapR1rIoW5CTiZnAj0CWZP2m6KrcVXfoMQQohGZ83LI3uLbWnHCfbRWgYpzE0mzBJOTkkOh7MOGR1FCCEEkL11K9bcPJx798L5mmuMjlNOCnMT6ec1AFezqywFKYQQdkAXFpK9sXRpR3u5t1xGCnMTcTQ5EuQTwp703RRZi4yOI4QQrVrOzp2UZGTi2KULLgMHGB2nEinMTSjMEkG+NZ+DmQeMjiKEEK2WLikh64cfAPAab8zSjjWRwtyE+nr1xd3sLktBCiGEgfJiYihOvohDmza4hoYaHecyUpibkFk5EGwJZV/GXgqtBUbHEUKIVkdrTeY629KO48ahTPZXBu0vUQsXZomg0FrA/ox9RkcRQohWJ3//forOnsXs7Y37kMFGx6mSFOYm1tuzD54OXkTL6GwhhGhymevWAeAxZjTK0dHgNFWTwtzETMpEqCWMAxn7yC/JNzqOEEK0GgVxcRQeP4HJzQ2P4cONjlMtKcwGCPUNp0gXsTd9j9FRhBCi1Si7t+wxcgQmFxeD01RPCrMBerpfg4+jhZg0GZ0thBBNoTAhgfwDB1BOTniMHGl0nBpJYTZAaXd2OAczD5BbnGN0HCGEaPGyvi9tLbsPG4rZw8PgNDWTwmyQMN9wSnQJe9JjjY4ihBAtWtGFC+RGx4CDGc+xY42Oc0VSmA3Sza07fk7+shSkEEI0sqwf1oPWuEdG4mCxGB3niqQwG0QpRZhvOEcyD5FdnGV0HCGEaJFK0tPJ2bEdlMJz/Hij49SKFGYDhVoisGJld1qM0VGEEKJFytq4EYpLcA0OxrFdO6Pj1IoUZgN1du1MW+d2xEh3thBCNLiS7Byyf9oKgNeE5tFaBinMhirtzo4gLusoGUUZRscRQogWJXvLZnRBAc79++HUrZvRcWpNCrPBwizhaDS706KNjiKEEC2GtaCA7E0/AuA1YYLBaepGCrPBOrh2pKNLR1kKUgghGlD2Tz9hzcnBqUcPnPv0MTpOnTR5YVZK9VVKxVb4k6mU+oNSylcptV4pFWf7aP9j2htIqG8EJ3KOk1aYanQUIYRo9nRhIdkbNgDgNXEiSimDE9VNkxdmrfURrXWw1joYCANygdXAU8BGrXVvYKPtdasQZgkHIEa6s4UQ4qpl//wzJRmZOHbtgkvAQKPj1JnRXdmjgeNa61PAFGCxbfti4GbDUjWxti7t6OLWVbqzhRDiKuni4tIJRQCvG29sdq1lML4wzwCW2T5vp7VOsn1+DmgeD5w1kDBLOKdy47lYkGx0FCGEaLZytu+gJC0Nx44dcA0ONjpOvRhWmJVSTsBkYMWl+7TWGtDVvO9+pVSUUioqObnlFLHQ8u5seaZZCCHqQ5eUkPn9OqD5tpbB2BbzjUCM1vq87fV5pVQHANvHC1W9SWv9vtY6XGsd3qZNmyaK2vj8nP3p4d6T6FQpzEIIUR+5v0ZRcjEFh7ZtcQ0LMzpOvRlZmGfyv25sgLXAHNvnc4AvmzyRwUIt4ZzJS+B8/jmjowghRLOirVYyv/sOAK8bJ6BMRt+prT9Dkiul3IGxwKoKm18Gxiql4oAxttetSqglDIWSVrMQQtRR3u7dFJ8/j9nPF7eICKPjXBVDCrPWOkdr7ae1zqiwLUVrPVpr3VtrPUZr3eoe6vVxsnCNRy+i02R0thBC1JbWmsxvba3lCRNQDg4GJ7o6zbet30KFWSI4l59EYt5Zo6MIIUSzkL93L0Vnz2L29sZ9yBCj41w1Kcx2JtgSauvOllazEEJcScXWsuf4cShHR4MTXT0pzHbGy9GLPp59iU6LovSpMSGEENXJP3iQwlOnMHl64j5smNFxGoQUZjsU5htBcsEFEvJOGx1FCCHsVmlr+VsAPMeMweTkZHCihiGF2Q4F+4RiwiTd2UIIUYOCo3EUHj+Byd0djxuuNzpOg5HCbIfcHdzp5zWAmLRo6c4WQohqlLWWPUaNxOTiYnCahiOF2U6F+YaTWphCfM5Jo6MIIYTdKYiLo+DIEZSrC54jRxodp0FJYbZTQT7BOCgHeaZZCCGqkPH1NwB4jhqFyc3N4DQNSwqznXI1uzHAayAxadFYtdXoOEIIYTfyjx6l4MgRTG6ueI4ebXScBieF2Y6F+UaQUZTO8exjRkcRQgi7kWlrLXuMGt3iWssghdmuBXgH4qgcZSlIIYSwyT9ylIKjR0tby6Na1r3lMs17QtEWzsXsQkfXTmxN3sJPyZuxOPkyueMtRPoNNjqaEEI0Oa01mV9/DYDH6JbZWgZpMdu1XSk7OZN3Bk3pI1Nphal8emopu1J2GpxMCCGaXsHRoxTExWFyc8Nz1Cij4zQaKcx2bG3iakp0caVtRbqQtYmrDUokhBDG0FqT+dVXAHiOHYPJ1dXgRI1HCrMdSyuseuXL6rYLIURLVXD4MAXHjpfO8jVihNFxGpUUZjtmcfKt03YhhGiJtNZk2O4tt/TWMkhhtmuTO96Co7p8UvaRbVvuvRUhhLhUwaFD/5sTu4W3lkEKs12L9BvMHd1ml7eQvR29cVSO/HLxZ/JKcg1OJ4QQjU9rTcZXZa3lsS1qTuzq1OpxKaXUUq317CttEw0v0m9wpcejjmYd4a2j/2LhiQ94qNcjmJXZwHRCCNG48g8epPDkSUweHniMHGF0nCZR2xbzwIovlFJmIKzh44gr6ePZlxndZnEo8wCrz6w0Oo4QQjSa0ueWbXNijx2LydnZ4ERNo8bCrJSar5TKAgKVUpm2P1nABeDLJkkoLjPUfzij2o7hxwsb2Zq8xeg4QgjRKPIP2FrLnp54jLjB6DhNpsbCrLX+u9baE3hNa+1l++OptfbTWs9vooyiCrd0vo2BXgF8fnoZRzIPGx1HCCEaVKXnlse1ntYy1L4r+2ullDuAUupOpdQ/lVLdGjGXuAKTMvHbnvfR1qUdH554l/P5542OJIQQDSYvNpbCU6cweXnicf31RsdpUrUtzO8AuUqpIOBPwHFgSX0vqpTyUUqtVEodVkodUkpdq5TyVUqtV0rF2T5a6nv+1sLV7MpDvR7FpEy8e+xtcotzjI4khBBXTVutZKxdC4DXxImtqrUMtS/MxVprDUwB3tZa/wfwvIrr/htYp7XuBwQBh4CngI1a697ARttrcQX+zv7cd81DpBRe5MMT7102hacQQjQ3ubt+pTjpHGY/XzyGDTM6TpOrbWHOUkrNB2YD3yilTIBjfS6olPIGrgcWAmitC7XW6ZQW/cW2wxYDN9fn/K1RL4/ezOw6myNZh1mRsJzS36GEEKL50cXFZHxdem/Ze9IklEPrWwSxtoV5OlAA3K21Pgd0Bl6r5zV7AMnAx0qp3UqpD233r9tprZNsx5wD2tXz/K3Stf7XMbbdeLYmb2FL8o9GxxFCiHrJ+flnSi6m4NChPW6DW+cSt7UqzLZi/AngrZSaBORrret7j9kBCAXe0VqHADlc0m1t6zavstmnlLpfKRWllIpKTk6uZ4SWaXKnWxjkHcTKhOUcyjxgdBwhhKgTa2Ehmd9+C4D3byajTK1zcspa/a2VUrcDu4BpwO3ATqXUbfW85hngjNa6bFHhlZQW6vNKqQ6263Wg9Fnpy2it39dah2utw9u0aVPPCC2TSZmY2+MeOrp2YuGJ9zmXl3TlNwkhhJ3I/nEzJRmZOHXrimtIsNFxDFPbX0eeASK01nO01ncBkcBz9bmgrfWdoJTqa9s0GjgIrAXm2LbNQSYwqRcXswsP9vodDsqBd46/TXZxttGRhBDiiqy5uWR9/z0A3lOmoJQyOJFxVG0GCiml9mmtB1V4bQL2VNxWp4sqFQx8CDgBJ4DfUvpLwudAV+AUcLvWusaFh8PDw3VUVFR9IrR4J7KP8++j/6CHe08e6f0HHEytbwCFEML+HR02nJKLFy/bbvb3p8+2rQYkahpKqWitdXhV+2r7v/U6pdT3wDLb6+nAt/UNpLWOBaoKNLq+5xSV9fS4hlnd5rA4fiHLT3/KHd1mt+rfQIUQ9qmqolzT9tagxsKslOpF6WjpJ5RStwJlD5Rtp3QwmLBjkX6DOZ+fxLpz39LBtQOj2o01OpIQQogruFKL+Q1gPoDWehWwCkApNci27zeNmk5ctZs6TuZc/jlWnVlJW5d2BHgHGh1JCCFEDa40+Kud1nrfpRtt27o3SiLRoEzKxF3df0tnty58fOJDEvPOGh1JCCFEDa5UmH1q2OfakEFE43E2O/PANb/D2ezMu8feJqso0+hIQghBwYmTRkewS1cqzFFKqfsu3aiUuheIbpxIojFYnCw8cM3vyCzK5P3j71BkLTI6khCiFdNak7F6FThWPbuz2d+/iRPZjyvdY/4DsFopNYv/FeJwSh9zuqUxg4mG1829O7O7/5aPTr7PslP/ZXb3uTJSWwhhiPy9eymIO4bXuHF0eGEBJjc3oyPZjRoLs9b6PHCdUmokEGDb/I3WelOjJxONIsw3nHP5SXyb9BXtXTswrv0EoyMJIVoZXVJC+po1AHjddJMU5UvU6jlmrfWPgKyM0EJM7DCJ8/lJrD27mnYu7QjyCTE6khCiFcnZvoPipHM4tPHH4/rhRsexO61zhvBWTinFnd3n0tWtG4tOfkRCboLRkYQQrYS1oIDMr2zLOk6Z0iqXdbwSKcytlJPJiQd6PYyb2ZX3jr1NRlGG0ZGEEK1A1oYNlGRk4NStG65hYUbHsUtSmFsxb0cfHuz1CDklObx//P9kpLYQolEVp6WR9f0PAHhPvVUGn1ZDCnMr18WtK3O63018zkn+G7+Y2ixqIoQQ9ZHx5ZfowkJcQ0Jw6dPH6Dh2SwqzINgSym863kxU2i7Wnav32iRCCFGtwvh4cnfsBAczPrfK07Y1kbvuAoDx7W/kXH4SXyd+STuX9oRa5N6PEKJhaK1JW7ECAM9Ro3Fo08bgRPZNWswCKB2pPavbXfRw78mSkx9xOueU0ZGEEC1EXkwMhcdPYPL0xOtGmTvhSqQwi3KOJkfuv+ZhPBw9eff4f0gvTDM6khCimdOFhaSvWgWA9+TJmFxlmYUrkcIsKvFy9OKhax4hrySP947/H4XWAqMjCSGasayNGylJScWxUyfch15ndJxmQQqzuEwnt87c3eNeEnJPs+Tkx1i11ehIQohmqCQ9ncx13wPgc/s0lElKTm3IV0lUaZBPEDd3msru9Bi+Tfra6DhCiGYo48sv0QUFuAYF4tK3r9Fxmg0ZlS2qNbrdWJLyE/ku6Wvau7Qn3DfS6EhCiGai4MQJcrbvAAcz3rdONTpOsyItZlEtpRQzus7iGo/eLI1fxMmcE0ZHEkI0A9pqJW3ZZwB4jR2LY7u2BidqXqQwixo5mhy5r+eDeDv68N6x/yOtMNXoSEIIO5ezdStFCQmYLRY8J8jjUXUlhVlckaejJw/2eoQiayHvHHub/JJ8oyMJIexUSVYWGV9+CYDPtGmYnJ0NTtT8GFKYlVLxSql9SqlYpVSUbZuvUmq9UirO9tFiRDZRtY6uHbm7530k5p1lSfxHMlJbCFGljNVrsObm4dy/H64hwUbHaZaMHPw1Umt9scLrp4CNWuuXlVJP2V4/2dghjg4bTsnFi5dtN/v702fb1sa+fLMy0HsQUzvfzsozy/kqcQ1TOt1qdCQhhB0pOHGSnF9+AQczlhkzZPWoerKnruwpwGLb54uBm5violUV5Zq2t3Yj2o5iqP9wfji3jp0p242OI4SwE9pqJX156YAvz9FjcGzXzuBEzZdRLWYN/KCU0sB7Wuv3gXZa6yTb/nOA/KvaIaUU07vO5EL+eZbGL2L1mS/IKs7E4uTL5I63EOk32OiIQggD5Pz8M4WnTmO2WPCaeKPRcZo1owrzMK31WaVUW2C9UupwxZ1aa20r2pdRSt0P3A/QtWvXxk8qLmNWDoRZIojLPkpWcSYAaYWpfHpqKYAUZyFamZKsLDLW2AZ83TZVBnxdJUO6srXWZ20fLwCrgUjgvFKqA4Dt44Vq3vu+1jpcax3eRpYOM8z357+7bFuRLmRt4moD0gghjJS+YiXWnJzSAV+hoUbHafaavDArpdyVUp5lnwPjgP3AWmCO7bA5wJdNne1SmTnFRkewW9U9zyzPOQvRuuQdOEDurl0oR0csM2fKgK8GYESLuR2wTSm1B9gFfKO1Xge8DIxVSsUBY2yvG53Z37/K7VnO3vzpvTjOpxU2RYxmx+LkW+V2R5MTucW5TZxGCGEEa2EhacuWAeB10004tpUZvhpCkxdmrfUJrXWQ7c9ArfXfbNtTtNajtda9tdZjtNZN0vTqs20r3VeuxOs3v6HD3/9O/8OH6H/4EG5rNpCeVcwf3znKiaS8pojSrEzueAuOyqnSNrMyU2Qt5KVDCziWHWdQMiFEU8n85ltKLqbg2KkTnmNGGx2nxbCnx6UMY3Jzw5qdTdb69RSeOQtAQA8PXnugF0opnngvjj3HswxOaV8i/QZzR7fZ5S1ni5Mvd3aby+P9nsKMiTeOvM43iWsp0SUGJxVCNIbCM2fIWr8elMIyaxbKQdZEaihK6yoHPzcL4eHhOioqqkHOlfbZZ2Rv3oJTjx60feLx8nVDk9MLefbjEySmFPDE7V25PlAmJLuSvJI8Vpz+jJ2p2+npfg1ze9yDn3PVtwyEEM2Ptlq58OprFMbH4zHiBiwzZhgdqdlRSkVrrcOr2ictZhvvKVMwe3tTePIk2T/9VL69jY8Trz/Yi35d3Hj5s1Os+TnZwJTNg6vZlbt6/Ja5Pe4hMe8sfz/0AtGpvxodSwjRQLI3b6EwPh6zjw/eU6YYHafFkcJsY3J1xWf6dAAy1nxJcVpa+T5PVwdevPsarh3gzXtfn2Xhd4lYrc23p6GpRPgOZv6A52jv0oGPTn7A0vhFsgCGEM1ccWrq/xapmH47JldXgxO1PFKYK3ANCcY1KBCdn0/65ysq7XN2NPH0Hd2ZNMSflT9d4B8rTlNULAs5XIm/cxse6/s4N3a4iZ0p23n50Iucyok3OpYQoh601qQuXYouKMA1OAi3kBCjI7VIUpgrUErhM2MGytmZvN27yduzp9J+s0nx8ORO3DWuPZti0/jrkpPkFsjgpisxKwcmdZzCvD5/oshaxOuHX2b9uXWyQpUQzUzOtm0UHDqMyd0dy8yZRsdpsaQwX8LBYsF7ymQA0j5bjjW/cterUoqZI9vz2NQuxB7P4sn3j5GWVWRE1Gant2cfnh7wPIE+waw5u4q3494gvTDd6FhCiFooTkkhfeUXAFhmTMfs7W1wopZLCnMVPEaMwKlbN0rS0sj46qsqjxkX7sdfZvcgIbmAP74bR+LFgiZO2Ty5O7hzb88HuKPbbE7mnOClg/+PvemxRscSQtSgUhd2SAiu4VUOJhYNRApzFZTJhOXOWWAykb3pRwpPnaryuMh+3rxy3zXkFpTwx3fjOJIgM17VhlKKof7DebL/M1icfHnv+P+x/PSnFFplljUh7FHO1q0UHD6CycMDyx0y7WZjk8JcDacuXfAcPQq0JvW/n6BLqr6X3LeLO/94oDcuTiae/OAYUUcymzhp89XepQOP93uK0e3G8lPyZl499BJn884YHUsIUUHxxYukf7EKAMvMGZg9PQ1O1PJJYa6B16RJmH19KUpIIPvHH6s9rnMbF/75UG86t3Hmr0tOsD5aFnKoLUeTI7d2nsbves0juzibVw+9xOYLm2jOE98I0VKUdmH/t7QLOywUt7AwoyO1ClKYa2BydsYys3RGm4y1X1GcklLtsb6ejrxyXy8G9fDgnytPs3zzeSkudTDAeyDPDHievp79WJHwGe8e/w9ZRTINqhBGyv5xMwVHjmDy9JTZvZqQFOYrcB00CNewUHRhIWmffVZjsXV3MbNgbk9GBFlY9H0S73x1lhKZiKTWPB29eKjXo9zWZTqHMw/y0sH/x6HMg0bHEqJVKjxzlozVZV3YM6ULuwlJYa4Fy7RpmNxcyd+3n7yYmBqPdXQw8cTtXbl1eBu+2n6Rl5fFU1gkz+vWllKKkW1H8+d+T+Pm4M7bcW+w6sxKiq2yNrYQTUUXFpL60UJ0UTHuw4bhFioTiTQlKcy1YPbxwfvmmwFI//xzrLk1j742mRT3TezEfRM7sm1/Bs98fJzsPCksddHJrTNP9n+aYf43sPH8D7x+5GXO5583OpYQrUL6qlUUJSbh0K4dPtNuMzpOqyOFuZbchw/H6ZqelGRkkr5mTa3ec+vwtjw5vRuHT+fyxHvHuJghjwPVhZPJmZndZnH/NQ+RWpDCy4de4JeL2+TevRCNKG/fPrI3bwEHM3733I3J2dnoSK2OFOZaUkrhe8cdYDaT89NWCk6cqNX7RgRbWDC3J+fTC/njO3GcOi+LONRVkE8ITw94nu7uPfjk1BI+OvkBucU5RscSosUpSU8ndfESoHTFPaeuXQ1O1DpJYa4Dx06d8Bo3FoC0/36CLq5d93RIL09eu78XxVbN4+/FcSA+uzFjtkg+ThYe7f0YUzrdQmxaDC8deoFjWXFGxxKixdBak7J4MdbsbJz798NzzBijI7VaUpjryOvGG3Fo04aixESyNmyo9fuu6ejGPx/sjbe7A08vPM4vB2SO6LoyKRPj2t/In/o9iVmZeePo63yduJYSLQuJCHG1sjZsKF2gwsMDvzlzZHYvA0lhriPl5IRl1h0AZH7zLUUXLtT6ve19nfnHg73p0cGVv30Szzc7LzZWzBatu3sP5vd/jki/IXyX9DVvHHmdlAL5WgpRXwVxcWSsLh0743vXbMw+PgYnat2kMNeDS79+uA0ejC4qIm3ZsjoNRvJ2d+Dle68hvI8Xb685w5L1STKYqR5czC7c1f23/LbHvSTmneWlgwuISt1ldCwhmp2SjAxSPlwIViueY8fiGhhodKRWTwpzPfncNhWTuzsFhw6T88svdXqvi5OZ52f3YFy4L8s2neffqxIoKZHiXB/hvpHMH/A8HVw78vHJD1kS/zH5JTLAToja0CUlpHy4kJKMDJx798b75ilGRxKAg9EBmiuzpyc+t99O6scfk/HFF7gOHFin7h+zWfGHW7vg5+XIsk3nScsuZv7M7rg4ye9KdeXv7M9jfZ/gu6RvWJf0DSeyj/PbHvdyPv88axNXk1aYisXJl8kdbyHSb7DRcYWwGxlr1lAQF4fZ2xu/e+9Bmc1GRxIY2GJWSpmVUruVUl/bXvdQSu1USh1TSi1XSjkZla223CIjcBkUgDU3r85d2lD6CNZdYzvwyM2diTqSyfwPj5GRIxOR1IdZmZnUcTJ/6PM4xdYiXj38Ev89tYi0wtIFRdIKU/n01FJ2pew0OKkQ9iE3ZjdZ6zeA2Yzfffdi9vY2OpKwMbJ5Ng84VOH1K8C/tNa9gDTgHkNS1YFSCssdd6BcXcjbs5e8qKh6neemwf48M6s7J5Ly+NO7cZxPK2jgpK1HL8/ePD3geRyV42WjtYt0IWsTVxuUTAj7UXT+PKlLSp9X9rn1Fpx79TI4kajIkMKslOoM3AR8aHutgFHAStshi4GbjchWVw4WCz633gpA2vLPKcmq34pI1w304W/3XENGdjGPvRPH8cSap/0U1XNzcKdIF1W5r6wFLURrZc3LI+W999D5+biGheIxapTRkezarpSdPLvvKX4XfT/P7nuqSXrdjGoxvwH8GShb3cEPSNdal/XjngE6GRGsPtyHDcO5b1+s2dmkf/55vc8T0N2D1x/sjYNJ8cT7x4g9Lsse1pfFybfafa8ffpmfkjeTI7OHiVambLBXUWISDh3a4zt7tjyvXINdKTv59NTSJr8l1uSFWSk1CbigtY6u5/vvV0pFKaWikpOTGzhd/Sil8L1zFsrJidxfo8jbu7fe5+rWzoV/PNSbdj5OPPfxCf7zZQJzXjnAxPmxzHnlAJt2S4uvNiZ3vAXHS4YpOCpHwn0iKSjJZ/npT5m/93E+OP4Oe9JjZfUq0Sqkr/yC/AMHMLm74//QQ5hcXIyOZNfWJq6mSFde46ApbokZMSp7KDBZKTURcAG8gH8DPkopB1uruTNwtqo3a63fB94HCA8Pt5tnjBzatMF7ymTSV6wk7ZNPce7VC5ObW73O1cbbidce6MVj/3eUr3eklG+/kF7Em6sTABgVUn2LUFA++rqqUdlaa87knWFXyg5+Td1JbPpu3M3uhPlGMNjvWrq5dZdWhGhxsjZvJvvHH8HBjP9DD+LYtq3RkexaemFatbe+GvuWWJMXZq31fGA+gFJqBPC41nqWUmoFcBvwGTAH+LKps10tj5EjyY2OofDECdJXfoHvXbPrfy5XBwqKLv+9o6BIs/iHJCnMtRDpN7jKx6OUUnRx60IXty7c3PlWDmceZGfKDrZf/JmfkjfTzrkdkX7XEuk3GF8nPwOSC9Gw8g4cIP3zFQD43nmnDPaqRqG1gD3psexM2c7hzEPVHlfTrbKGYE/PMT8JfKaUehHYDSw0OE+dKZMJ39l3cu5vfyPnl19wiwjHpX//ep/vYkbVA5iS06veLurOrMwM9B7EQO9B5JXksjsthp0p2/kqcQ1fJa6ht0cfBvtdS7AlFFezq9FxhaizosRETs28A11Y2iWbvXlz+T6zvz99tm01KJl90FpzPPsYO1O2E5MWRb41H4uTL+PbT8TV7MrXiWsrdWc7Kicmd7ylUTOp5jwdZHh4uI6q5yNKjSnzu+/I+HItZj9f2j//fL3XM53zygEuVFOEZ4xsx63D2+Dpak+/W7UcFwsu8mvqDnam7CC54AKOypEgSwiDfa+ln1d/TEomghH2ryQjg/OvvkrGF6uqPab/4epbhi3ZxYJkdqZsZ2fKDlIKL+JkcibEEsoQv2vp5dGn/Gd8V8rORpmoSCkVrbUOr3KfFOaGp4uLOf/KqxQlJOAxciSW6bfX6zybdqfy5uqESl3aTg6KHu1dOHImDw8XM7de34Yp17XBzVlm7GkMWmvic06yM3U70am/kluSi7ejXsWmVgAAIABJREFUN+G+gxnsN4ROrp2NjihElay5uVz4xz8pOnu2Uiv5Uq2pMOeV5LE7LZodKds5nh2HQtHHsy+D/a4lyCcEF3PTDYaTwmyAwoQEzr/8CpSU0OaxP+DSt2+9zrNp9/9v777D47rqhI9/z/SmOiqWZavYsi3biSW5pztOnAokNmVZSGOBBJaEwML7EsouvM9SwsIuCxsgm02AJCSBxAmQBomTOE68sZViuVtusiQXyeojzYym3vP+ccdjy5JsuUh3Rjqf59Ezo3tnRj+PpfndU39dPPpqC+09UfKzrdx+TRHLa3JpaOnn8TUtbNzVS6bbzCeuKORDS/OwW1VLbrREtSg7fNuo7dzAdt82NDSmOKey2LuUhbmLybKqnZOU1KCFw7T/4hdE9jdgKSyk549/HPax4z0xa1KjvncXtV0b2NJdR1RGKbAXssTgeSQqMRvE9+JL9L74ot6l/Z3vYHKe/zHK3QcDPLamlU17+8jNsPDJKwu5dpEXm0Ul6NHkj/Xxftd7vNu5kaZgIyZMVGbOYYl3KfOyq7GZUn5HWWWckrEYHb9+kNCOHZhzcij4P19n78WXDPv48ZqYW/qPUNu5gXe7avFFe3CZXcmVF2WucsNXXqjEbBAZi9H2k58QaWrGffHF5zRL+3S2HfDz2KstbG8MUJBt5VPLJ3H1/FzMZrXsZ7S1hlp4t3Mj73ZupDvajcPkYH7OQhZ7lzDdM0ONRytjRmoaXb/5DcH3P8Dk8VDw9a9hnTSJXZXDT0IdT4n52AVzbecGmoNNmDAxJ+sClngv4sKseVhNVqNDTFKJ2UDRlhaO/vCHyGiMvC/9I84LLxy1nyWlpG6fnqB3Hwoy2WvjlquLuHxeNmaTStCjTZMa+/x7qO3cSF33B4S1MLk2L4tzl7LYu5RCR6HRISrjmJSS7iefJPD2eoTDQcFXv4KttBSAPZdeRryjY9BzxsOs7JgWY0fv8SGmuIwzxTmVJd6LWJi7mExrptEhDkklZoP1rlmD79nnMGdlUvjP/4LZ4x7VnyelpHZXL4+taeFAa4jSQge3Xj2Ji+dmGd59M1GE4/p6yHe7NlLfuxOJpNw9jcXepSzIWcQO33ZVklI5b6SU+J59lr7XXkdYLeTdcw+OmTONDmvUSClpDjZR27mB97veJRAPkGHJZFHuEpZ6L6LYlfqTMlViNpjUNNp/9jPCe/fhWrgA7+c+NyY/V9Mk67f38PhrrRxqD1Mx2cmtK4pYNCtDJegx1BPp4f2ud6ntfIcjoSMI9PdecvxvzypsfKr0VpWclTMmpaTn6WeO7+p15504580zOqxR0RPp4b2ujWzs3EBrqAWLsDAvu5ol3ouYnTkHs0if1SkqMaeAWHs7rd//ATIcxvu5z+JaOOT/x6iIxyVrt3TzxGuttHZHmF3i4rZriqienjFmMSgktwL92e6fENZCg867zW6+VnkfBfYCdeGkjIiUku6nniLw1tvjNilHtDBbe7awsXPDgN6nJd6LWJCzEJdldHsgR4tKzCnC//bbdD/xJCa3m8LvfBtLTs6Y/vxYXPLqB5089cZROnxRqqZ7uG1FEXNK0/MXO1196YM7T3nebXZT6i6jzD2NMnc5Ze5y3Gn64aOMHqlpdP/+CQLvvIOwWvHedRfOC+YaHdZZGbSJR9HN5Nq9g3bjWpJ7EUu8SykYw/kawy1ZPVcqMacIKSUdD/yS0I4d2CtnkX/vvYa0jCJRjZff7eSPbx6lxx9j0axMblsxiYrisyu6oZyZ72y7b8hN8DMtWXy4+CYOBBpoDBygpf9Isru70F6oJ2pPOeXuaUx2FqdVt51yfklNo+vRxwjW1iKsVvK+9I84KiuNDuusHCuteHIVJ2DY3bjGylCbPNmtgi+vnHrOyVkl5hQS7+2l9V+/j9bXR9aqlWRec41hsYQicZ7f0MHqdW309ce5ZG4Wt1w9ibJJak/o0TTUB9FQY8yheIimQCONgQOJZN1AX6wv8XgrJe4yytzllLv1ZJ1tG9seGMUYMhKh89FH6f9gE8Ju15NyGk70impRjvQf5oG9/0kwHhx03m12868X3o/dfHZbGp8Pw22LXJBt5dFvnFvvxKkSs9poeYyZMzPJve02On75S3x/eR7HrFnJJQ1jzWHTdwy7cUkef17fznPr23hnp48r5uVwy9WTKM4z7g9iPDtVScoTOcwOZmVWMitTbwlJKemKdCZb1I2BA6xre4PXpV5LOtuanez+LndPo8Rdgs2k/g/HEy0QoOPB/ya8dy/C6SD/7ruxT59udFinpUmNo6FWGgONNAcbaQo0crj/EDE5fB30QDxgWFIOhuOs3dw9bK2C0S4kpFrMBun+49P4167FUlhI4be+edaFLs6n3kCMZ99u4y/vdBCNa1w9P5dPLS+kMMf42JShRbUoh/sPHU/W/gY6Ivp6VRMmip3FlHmmUZ5I2Pn2ArXhSZqKdXXR/l//RaylFXN2Nnl3341tSrHRYQ1y7AKyKZGAmwKNNAebCGthABwmB1NdJZS6yyh1l7P64B/xRXsGvU6OLZfvX3j/mMbe0NLPSxs7WLu5m/6IhsUkiGmDc+Rot5hVYjaIjEQ4ev+PiR45gvuSS8i99RajQ0rq7ovy9Lo2XqrtQEq4bpGXT15ZiDczdXbNUYbXF+2lMdBIY6CBA4EGmgKNhBKzwF1mF6WJ7u9jreuTJ5aNVjUd5exFDh6k44FfEvf5sE4uIu+ee8Z88uhw+qK9A5JwU7AJf2LIxSIsFDunJJJwGWWucgochQMuDkc6tDNawlGNt7b28HJtB/UHg9gsgiuqcrhxiZfD7SF+8edDaoz5TKRzYgaIHj7M0fvvR0ZjeO+8E9f8GqNDGqDdF+EPa4/yynudmE2CD12Ux8cvLyTbo0ZA0okmNVpDrTQmWtUHAg0DJpYV2AuTLepAPMArLX817ENSGSy0axcd//0QMhTCPnMmeV+4C5PLmImaoXiI5mBTIgkfoCnYRFekEwCBYJKjKJmES11lFDunYDGd/vPCiIvBQ+0hXq7tZM2mLvz9cabm27lhSR5Xzc8ZUE5Xzco+Q+memAH63lhLz9NPY3K5KPzn76TMVfCJWrrCPPl6K2/UdWOzmrj5knxWXZbPe/W9o/ILq4w+/QO2kQP+wRPLhuKxZPClGV8my5pFhiVTdYePASkl/rVv0rN6NWgarkULyb3tNoR1bHqujg2T6K1gvTV8NNSavKDz2vKSCbjUXcpUV+mYlk08G9GYxsZdvbxU28GW/X4sZsHFc7O4cYmXC8s9Y7pKRiXmFCalpONXvyK0bTu2adMo+KevIiyp2SI92Bbi96+38tbWHmwWiGv61zHnq4tHGXvHxgX/Zfu3TvtYgSDDkqEnaWsWWYmvzBNuj91PpaIB6URGInQ9+STBjbUAZFx7LVk333ROieNUrdJjvSp6Ej6QnJwVl3H951syKHWXJ5NwiauMDGv6bFB0tDvCX9/t5NX3O+n2xyjItnLDkjyuWZBLToYxv6MqMae4uN/P0R/8kHh3NxlXX0X2xz5mdEindKCln6/8ag+R2OhMilCMM/wa60z+ruTT9MZ89EZ9+KIDb3ujvQO2GD3GaXYNkbQzByVzh8k5oqQzEca/Y11ddDz4INHmgwibjdzbbj3nnQKHGsc1CwuzMiqJaGEOBpsHTM4qcZcmkrD+lWPNTbvd6OKa5P3dvbxc28l7e3oRwKLKTG5cksf8GRmGF/ZRy6VSnNnjwfv5z9H27/9B32uvY5s+HVdNao03n6i8yEl0iKQM0NYTJRaXWFS5ybT0kckrh5yIs3LKx6nOGf53UpMa/pg/kah7TkrcvfRGfTT499Mb9RGVg5eaWIV1QPIeqgXe4N/Hnw49m4ytO9LFk02PA6RMcj7XC4fQ7t10/s/DaH4/lvw8vHd9YdiZ13EZoz/eTygeStz2J79PHtP0Y7WdGwZt4BGXMXb2bqfMXc5S78XJJFxgL0zroYquviivvN/J397tpK0nSk6GhU8uK+S6xV4KstOjTrpqMaeQvtdfp+eZ1Qing8JvfhNrQYHRIQ1ruIX3ADkeC8trclixwEtpYWqPOSmDjWarVEpJf7xfb2XH9MQ9VOvbF/XRP8SmE0OxCitzsy7AYrJiFVaspsSXsA46ZhFWrCZL8r7NZMNisiQfox/Tn2cRljNKUCOdXaxJjbB2QvKMh+iP+om+9jbilfXE4zH6pxfS+vHFBOzagMSrJ98QoXj/kBc4JzNhwml2EogHhn3MLxc8NOJ/Y6qSUrJ5v5+XazvYsNNHXIOaCg83LMlj6eyslGwojNuu7B+Vlspv3nef0WGcNxIIvPU2kUOHMOfkkLni6pQdb64/GGDt5m5i8ePHLGa4oNxDbyBOY2s/moTCHCtzSt3MKHZht6bvVbgy9qIyRjiRlPrj/fxvx/G6wX05TrZcVZ78frJjMlEZI6pFiWqRxP3IkN3rZ8IiLFiEJZHYbViFRU/2QyT8bb6tRBLdwScyCwv59vxES7Y/uXTtGEdflJqXDpF7SL8Q2b84j92XFuKwOnGYHDjNThyJL6fZccJ9Jw5z4rzppO8T963CihBi2CEKI9YKn0+9gRivberi5Xc7OdwRJsNpZsXCXK5f5GVKfmo3CsZtV3ab1QpTUr/u5kgJwPXRVUSeeYaIrxd/YyMZy5YZHdaQKqdAuKCPN+q68QViZLktXF6TQ1WiYpW/P8bWBj+b9/lZvT+CpTHO7FIH1dMzKJ/kwGTw+I6S+qyJL0/i+3W2vcn1sdltx1uAObZcvj33e0O+RlzGE8k6Skzqt1EZJabFiGiR48e0GDEZ1Y9pMaLypOckn3fsvp74A7EAscQFwVBJWY8hxiTHpBOS6fEE6tpxEPuzb2AOFWGenEXmrZ9m+YXV2Ey289qdPNwQxUcmrzxvP2OsSCmpbw7yUm0Hb23rIRqTzCl18/dXFnLZhdnYxkEDIK0T83hkstvJuPZafM89R2jHTqyTinBUzjI6rCFVTc9IJuKTeZwWLp6bzUVzsjjSGaFuXy/bDwTY1uAny22husJDdUUGOR41a1cZmSW5S1nXvnbANo6nSy5mYcZsNo/JMp5TtUo/P/2LA45p4TA9z6wmsH49YMVRVUPu7bdhzhidmc4j3QY2lQXDcd6o6+bl2g4OtIZw2k1cu9DLDYu9lBeNr/39xzwxCyEcwFuAPfHzV0spvyuEKAf+AHiBD4BbpRyi3MgEYM3Px33ppfjfXId/3ZuYc7KxFo5dmbPzSQhBcZ6d4rx8rl3opf5gkLq9fazb2sO6LT2UT3JQXZHB7BL3uLjSVUbPzEz9ArW2ayMQSLnkMtJWaai+nq7f/554RyfCaiFr5So8Vy4b9VnPi71LUua9OhP7jwR5ubYzuU3mtCIn96ycwrKqHFz28VlhbczHmIX+2+eWUvqFEFZgPXAv8E/Ac1LKPwghHgS2SCl/farX+mpFhfzZz342+kEbQEqJf906Qjt2YnK7yf7YRzF7PKd/Ypro8UfZst9P3f4+evpi2K2CuWUeamZkMCXPnnZLM5QxdugQfPGLp3/cGDvlWuFgkJ7VzxJ45x0ArMXF5H7mMym53/VYO3l3rU9fNQkhBC/VdrD7hG0yb1jsZdZU17j4fEjZyV9CCBd6Yv4i8BIwSUoZE0JcBHxPSnntqZ4/nhMzgIzH8T3/PNEjLVgKC8m+6SNjtuvPWNE0SVNbiM37+tjZFCAak+RlWamuyKBqmocMlxptUYaQool5OP2bN9P91B+I+3xgMZN1441krFiRspM7x9JQNY+PmZJv54bFXq5ekDtgm8zxIOUmfwkhzOjd1RXAL4H9QI+UycGjQ8CEv4wUZjMZ111Hz+rVxI4epW/dW2RctXxcXC0eYzIJyic5KZ/k5IYlcXY0Bqjb5+e1D7p4va6Liskuaio8zJziwmJWXd1Keol1dtKz+ln66+oAsE2fRu4tt2AtKjI4stTg74/x0EuHh0zK2R4LD321clx93o2UIYlZShkHqoUQ2cCfgMqRPlcIcSdwJ8Bn8vJGJ8AUYnY6ybz+enzPPUd4924s3tyU3nzkXNitZubPyGT+jEw6fBE27+tj834/ew8FcTpMVE3LoHq6h0m5qgylknr2XHoZ8Y6OwSesVjKWLyfr5pvwLBv9seRUFgzH2X4gwNaGPrY2+Nl/RF9WORSfPzZh3ytD+waklD1CiLXARUC2EMKSaDVPAQ4P85yHgIdA78oes2ANZM3LI+Oqq+j92ysENmzEnOvFXlpidFijKi/LxtULvFxZncv+ln427+vj3fpeNu70Mdlro7oigwvKPeN28oeSfoZMygDRKJO+992ULFAz2kIRvRdsa4OfLQ1+9h4OomlgMQsqp7r45JWFvPxuJz3+2KDn5mePr2G7M2HErOx8IJpIyk5gBfBjYC3wMfSZ2bcDfxnr2FKZffp0XIsWEXzvPfpefRXTzTdhzc83OqxRZzYLZk5xMXOKi0AozrYGfcLYy7Wd/O29LmaXuKipyKC8yGn43reKMpyJkpTDUY2dTfqyyC0NfvYcChKLS8wmmDXVzccvL6RquofZJW4cNn1oqjjPPmiM2W4V3H7NxO3uN6LFXAQ8mhhnNgFPSylfFELsBP4ghPg+UAc8YkBsKeXwN76B1ts7+ITZgrBayF61CnNm5tgHZhC3w8zSOVksnZPFkc4wm/f1se2Anx2NATLdFqqme6ienoE3U7/S3rJ/4AYoy0/YAEVRzpfIocP4np+Y7YhITKO+OcjWhj62NPipb9YTsUnAjGIXKy/Np2qahzmlbpzD9G4dq0anSsgeN+aJWUq5FRg0SCqlbAAWj3U8qWzIpAwQj6EFgvheeJGsVaswO1N767nRMNlrZ7LXzoqFuew5GKRuXx/rt/Xw9tYeSgod5GdZ2drgTxbb8AVivLhR72pUyVk5H6JtbfS++BLB996DNN7a+ExEYxp7DgWTXdO7mgJEYhIhoGKyk49cnEfVNA9zyzy4HSMfZlpekzuhE/HJ0nqv7A8Lkb7BK4py1oqB/zY6CEU5N6m1XOp8mfDrqRRlgmozOgBFGUVpnZjfX7CA8VT28WS7KmcPe252/S6iLS20/eSnaMEg7ssuJedTn5qwywtONlxZSofNxLQiJ81HQ/hDx0tjuR0mSgoclBQ4mJq4LSnQu8RVwY2JS0pJeM8e+l55ldDOnfpBixn3RReRsWJFSpdmPdnJu2vdfk0Ry6pyaGjtZ+t+vWt6+wE/wbAGwNR8OxdO81A1zcO8aR6y1b7259WpPqvTuit7vNVjPtnpEjNAeN8+2n/+c2Q0RsaKq8latUolZ4beTchuFXx55VSW1+QipaTbH6O5LUTz0RDNbSEOtodpbgsNWLpht5ooKbAPStqTcm1qFvg4pkUiBGvfxb92LdEjRwAQdjueyy8j46qrMGdnGxzhmRnq78EkwGoRyWOTvTbmTctIJuLcTJWIR1PK7fyljIw5L2/ItZHmEzZWsVdU4P3c5+h46H/oW/MawmIh66abxjLMlHS6mZ5CCHIzrORmWKk+aTJYbyBGc3sombQPtofZ0uDn9bru5GOsFr04R8kJreuSAn1CmtWidihLV7HubvxvriOwfj1aQC8tac7KxH355XiuWIbZ4zY4wlMLhOJ0+CK090Rp90Vp90Xo8EV5c0t3ciLkMZrU/w6+/vGpzJvuIT/LZlDUyslUi3mcCG6qo/Phh0HTyPzwh8i68UajQxp3AqE4B9tCHGwP0dwW1lva7SGOdkeSk3JNJij22gd0h5cU2JmS78B+QvWsoboV1axUY8h4nND27fjXrye0fUdyhrWttBTP8uW4FsxPiT2tw1GN9p4I7b7ogOTb4dOPtfdEkt3QxwgBuRlWOnsHD+uAXgP+5R9Vj0H0yslUi3kCcM2vgc/cQedvfkvvCy8izBYyrztlDRDlDLkdZipL3FSWDGw1hSIahzqOt66b2/TW9sZdPrTE56QQUJhjo6TAAVKyaZ+fWFxPAG09UX7xp4MAKjmPoVhnJ4F33iGw/n/14hIAFjOumho8V16Jrbz8jIeFzvaCKxrT6OyNJhNsh+94i7e9R0++vcH4oOdluS3kZ1kT3dAe8rOs5GfZyMvWb72ZVixmMeyci4m8u1YqUy3mcSawcSNdjz4GUpL98Y+RcdVVRoc0YUVjGkc6w3rrOpGsm9tCNLaGhny82QQzp7jIclsGfGWe9H2W25LcNUk5M1ooRH9dHYGNtYT37Em2ji0FBbgvuxT30qWYM85unftw8xruvnkKVdMz6OhJJNohkm+PPzZoKbTHaR6QaPMS95PHsqwjrmF+ujkXythTLeYJxL10KTIep/vx39PzzGqkppG5YoXRYU1IVouJ0kInpYXOAcdv+OZmhrocjmv6ZLOj3RH2HArSG4wnW9Uns1tNZLnNgxL20EndjNthHnHrL1W72YcrEmHOy2Pm+reHfZ6MxwntqidYW0v/5s3IqN5yFFYLzupq3Jdehn3mjCHfn1hcEo5qhCMaoYhGOKrfho4dix4/9vialkFVksJRyb8/c3DQ6zptpmSrtnxS5oBWbn6WnoSH2ynrbKjdtdKLSszjkOeSSyAep/vJp/A9+xyyv5/MD39YzdZOEfnZ1iG7FQuyrfzocxXJ76WUBMMaPn8MX+DUX81tIXyBOOGoNuh1QS8akOkyn7YlXn8wwBOvtRKJpV43+3BFIuIdHRztjiQTZziqEQrHiR4+BJvfx7KjDvy9aBpoUtKXX0pbWRWtRbMJChuhtzXCb+xNJthwVBKKxAlH5bAXRmfqnpunkJdlIz/bSn6W9YwulM4XtbtW+lCJeZzyXH45wmaj67HH6X35r2jBfrL/7hMqOaeA268pGtGm/UII3A69tTs5b2SlLkMRbUDC7h0mke89HMQXiBEIDZ3ITxSOSn76dDMP/PnQmf1Dz7MfnOLcHf+2E6QkJ9jBtM56yjt3kxU6Pou+15HD3vw5NBbOJZaRi12acLRL7LYIDpsZh81EtseC3WrCYTNht5oG3D/51m4bfOye/9pNu2/oC64bloz/ErXK+aMS8zjmXroUk8NBx8MP43/zTbT+fnJvvSUlZphOZKPZreiwmXDYbBTmjGzpSzSm0ReM4wvE6AnE+NYj+4d8nASuX+w95/jOyR+HP/WtSbtw7duGtbsNk1lgLhSYMgqxVdfgXrIEV8U0nDYzZvPoXZjece3ILrgU5XTUJ/Q456yuJv/uu+n49YMEa2uRoX68n/0swqbWLBopVboVrRYTuZmm5GYSBafoZv/8jcZugrvra8OfK9v1FgCmwmyc82twLViAfcYMhHns6nWrcVzlfFGJeQJwVFaSf++9dDzwAP1bttL+i1/g/cIXMHs8RoempJiRdrOnGvcll+BamEjGBvYIpcoFl5Le1JqLCcI+rZyCr/0T5uxswvv20/bjfyN69KjRYSkpZnlNLl9eOZWCbCsCvaVs5JKaaFsbvX/9K63f/wFYh15za/J6yb31FhyzZ6thGmVcUOuYJ5hYdzcdv/o10YMHMbmceO+6C8esWUaHpShJ0ZYW+uvqCNZtJnrw+FIjk8uJs6oK5/wFOGZXqiSspLVTrWNWiXkC0sJhun77W/o3bwGzmZxP/b2+xEpRDCClJHroEP2bNhGsqyPWerwnRzgcOKuqcC1cgKOyEjFMq1lR0o3aYEQZwGS3473rLnzP/Ym+NWvofvz3xFpbybr55jGdLKNMXFJKIgcOJFrGdcQ7OpPnTC4Xzqp5OOfPxzFrlpqoqEw4KjFPUEIIsj+6CkthId1PPUXfmteINDXj/ew/YM7KMjo8ZRySmkZ47z766+ro37yZeE9P8pwpMwNndTWumhrDJ3ApitHUb/8E57n0EiwF+XQ98gjhPXs4+sMfkfvZf8Axc6bRoSnjgIzFCNXv1pPx1q1ofX3Jc+acHH1pU00NtmnTECY1F1VRQI0xKwlxn4/Ohx8hvHcvmExk3XwTGStWqJ3ClDOmhUKEduygf8tWQtu3oQX7k+cs+fk458/HVVONtbRU/X4pE5YaY1ZOy5yVRf5X7sX3/Av0vfIKvuf+RKShgZxbbk354vCK8WLd3YS2btWT8Z7dEDteotA6eTLOmhqcNTVYiyerZKwop6ESs5IkzGayV96MfVo5XY8+Sv/mLUQONJJz6604L5hrdHhKCpFSEj18hP4tmwlt3Uakqen4SSGwV0zHUVWFc14V1sIC4wJVlDQ05l3ZQoipwGNAIfoWvA9JKX8uhMhF3w23DGgEPiGl7B7udUB1ZY+mWEcHXb/7HeF9+t7JnisuJ2vVKkz2kRVTUMYfGYsR3r+f/i1b6N+yhXhnV/KcsFpxzJmNs6oKx4UXnnVNY0WZKFJqHbMQoggoklJuEkJkAB8ANwN3AF1SyvuFEPcBOVLKb5zqtVRiHl1S0+h7dQ2+F1+AWBxLQQG5d9yBfVr5WdfGVVLbcP+vwuUiY9kytGAwecyUkYHzwgtxVlfpa4zVsiZFGbGUGmOWUrYALYn7fUKIXUAxcBOwLPGwR4E3gVMmZmV0CZOJzOuuxXHBXLp+81uiR47Q9pOfkHH11aesjaukr+H+/2QwiBYMYiks1HffqpqHrbxczaRWlFFg6BizEKIMqAFqgcJE0gZoRe/qVlKAbcoUCu/7Br4XXqDvtdfpW7PG6JCU80gLBgnV7ya0fdspHzfp/30Pa6H6s1SU0WZYYhZCeIBnga9IKXtPnKkppZRCiCH72IUQdwJ3ApSUlIxFqAogbDayP/pRXAsW0PXEk0aHo5wDKSWxlhb6t28ntH0H4f37IR4/7fNUUlaUsWFIYhZCWNGT8hNSyucSh48KIYqklC2Jcei2oZ4rpXwIeAj0MeYxCVhJspWVUXjfN+h+/HGjQ1HOQNzvJ1xfT2jnLkL19cS7jk/cwmTCPqMCx9wL8L/5pmExKoqiG/PELPSm8SPALinlf5xw6nmX2aauAAAKTklEQVTgduD+xO1fxjo2ZWROt5+2lFKtVTWYjEYJNzQQ2rmLcP0uIs0H4YSJnqaMDJwXzMVxwQU4KisxufW16oeNClhRlCQjWsyXALcC24QQmxPHvoWekJ8WQnwWaAI+YUBsygiZ8/KGnihktdJ2/4/J+ugqta3nMEZjRvuxdcXh+l16Mt67FxmNHn+AxYy9ogJH5Wwcc2ZjnTp1yIun4f5fzXl5ZxWXoihnTm3JqZwXUtMIbNhA7/MvEPf5AHDMu5CsG27AVlZmbHApZlfl7GHPza7fNeLXiXV3E969m9CuesL1u4j7egectxYX45gzG3tlJfYZMzCp5UyKkjJSarmUMj4JkwnPJZfgWriQvtdeo+/VNYS2biO0dRuOOXPIvOF67BUVRoeZ1uI9PYT27CG8ew/hPXuItbcPOG/OysI+u1JvFc+uVFXCFCVNqcSsnFcmu52sG2/Ec9ll9L32Ov516wjt3Elo507sM2aQef112GfPVmPQIxDv7SW8Zw+h3bsJ79lL7OjRAeeFw6F3T8+uxFFZiWWy2odaUcYDlZiVUWHOzCR71UoyrrkG/9o38K9dS3jvXtr37sVSNAnP5ZfjXrIEk8tldKgpJbhpk949vWcPsZbWAeeE3Y69ogL7zJnYZ87AVlJy2ol4iqKkHzXGrIwJLRjEv24d/jfXJceghd2Oa/EiPFcswzal2OAIx86pxpg9y5Yl7wurFVvFdByzZmGfOVNPxBZ1La0o44EaY1YMZ3K5yLz+ejJWrKB/61b8694ivHs3gbfXE3h7PdaSqbgWLsS1YAEWr9focM+7Y7OmI/v3IVwu5Al7TifZbNhnzcIxa6aeiMvKVCJWlAlItZgVw0RbWvC/9TaBjRuQ/aHkcdu0abgWLsRZU40lJ8fACM+eFgwSaWoi0tREeP9+Ivv3owX7BzzG5HJhmz4Ne8UM7DMqsE2dirBaDYpYUZSxlFLVpc4nlZjHBxmJENq5k+D779O/ZeuA9beWoknJtbf2mTNTsuykjESIHDpEpLGRSKOejE+eqAVgzsnBXjFdHyeuqFCTtRRlAlOJWUkbWjhMaOtWgh98QGhXPTIcPn7SYsZeVoa1tBTb1BJspSVYCgvHrMKR1DRi7R3EWo4QPXKEaEsL0SMtRFtbB+81bTFjmzIVW1kZtrIy7DMqxmUXvaIoZ0eNMStpw2S341q0CNeiRchYjMiBA4QSezxHGhsJ79tPeN/+5OOF3Y51SjGWvHwseV7MublY8vKw5OZicrsRDseIEreMRtECAeL+AFrAj9bbS6yzi1hnB/HOTmIdncS6OiE2RLEHIbAWF2MrLcVWVoqttBRrcbEaH1YU5ayoFrOSNrRAgPCBRqIHm4k0NRNpbh5YjGEYwmbD5HQg7A4wmyAWR2pxiGvIeBwZjSJDodO+Dujd0daiIqzFk/XbyZOxFBWlZBe7oiipS7WYlXHB5HbjvGAuzgvmJo/F+/qIHj5MrLNTb9l2dhHv7CDW2YUWDCLDYWQkQjwSAXpP8eImTB43Zo8Hk9uDyePB4s3FnOvFkp+HxevF7PWqBKwoyqhL6xazEKIdveDFRJAHDFE1QhlKpd1eZUYMuvCMI2P14fAWI2JKQ+p37uyp9+7sTKT3rVRKmT/UibROzBOJEOL94bo9lFNT793ZUe/b2VPv3dlR75tubKazKoqiKIoyIioxK4qiKEoKUYk5fTxkdABpTL13Z0e9b2dPvXdnR71vqDFmRVEURUkpqsWsKIqiKClEJeYUJ4SYKoRYK4TYKYTYIYS41+iY0okQwiyEqBNCvGh0LOlECJEthFgthKgXQuwSQlxkdEzpQAjx1cTf6XYhxFNCCIfRMaUqIcRvhBBtQojtJxzLFUKsEULsTdymZxWbc6QSc+qLAV+TUs4BlgJfEkLMMTimdHIvsMvoINLQz4G/SSkrgSrUe3haQohi4MvAQinlBYAZ+KSxUaW03wHXnXTsPuB1KeUM4PXE9xOOSswpTkrZIqXclLjfh/4BWWxsVOlBCDEFuBF42OhY0okQIgu4HHgEQEoZkVL2GBtV2rAATiGEBXABRwyOJ2VJKd8CTt5T9ybg0cT9R4GbxzSoFKEScxoRQpQBNUCtsZGkjf8E/i+gGR1ImikH2oHfJoYBHhZCuI0OKtVJKQ8DPwWagRbAJ6V81dio0k6hlLIlcb8VKDQyGKOoxJwmhBAe4FngK1LKU2z6rAAIIT4EtEkpPzA6ljRkAeYDv5ZS1gABJmiX4plIjIfehH5hMxlwCyFuMTaq9CX1JUMTctmQSsxpQAhhRU/KT0gpnzM6njRxCfARIUQj8AdguRDi98aGlDYOAYeklMd6ZlajJ2rl1K4GDkgp26WUUeA54GKDY0o3R4UQRQCJ2zaD4zGESswpTggh0Mf6dkkp/8PoeNKFlPKbUsopUsoy9Ak4b0gpVetlBKSUrcBBIcSsxKGrgJ0GhpQumoGlQghX4u/2KtSkuTP1PHB74v7twF8MjMUwKjGnvkuAW9FbfJsTXzcYHZQy7t0DPCGE2ApUAz80OJ6Ul+hhWA1sArahf76qnayGIYR4CtgAzBJCHBJCfBa4H1ghhNiL3gNxv5ExGkXt/KUoiqIoKUS1mBVFURQlhajErCiKoigpRCVmRVEURUkhKjEriqIoSgpRiVlRFEVRUohKzIoyTgghpggh/pKozNMghHhACGE/zz9jmRDi4hO+/4IQ4rbE/TuEEJPP589TlIlIJWZFGQcSG1o8B/w5UZlnBuAE/u08/6hlnLCblZTyQSnlY4lv70DfilJRlHOg1jEryjgghLgK+K6U8vITjmUCTcA/A5VSyrsTx18EfiqlfFMI8WtgEXoSXy2l/G7iMY3o1X0+DFiBjwMhYCMQRy9ycQ/67lZ+oBG9jN9hoB/4NvB5KeXNiddbAfyjlHLlqL0JijJOqBazoowPc4EBBTsSxU4a0YtSDOfbUsqFwDzgCiHEvBPOdUgp5wO/Br4upWwEHgR+JqWsllK+fcLPWg28D3xaSlkNvAxUCiHyEw/5DPCbc/j3KcqEoRKzokxsnxBCbALq0JP7nBPOHSuY8gFQdiYvmqgM9DhwixAiG7gI+Os5R6soE8CprqQVRUkfO4GPnXgg0ZU9CegEZp5wypE4Xw58HVgkpewWQvzu2LmEcOI2ztl9VvwWeAG9C/wZKWXsLF5DUSYc1WJWlPHhdcB1wgxpM/DvwAPAAaBaCGESQkwFFieek4lea9knhCgErh/Bz+kDMkZyTkp5BDgCfAc9SSuKMgIqMSvKOJDoOl4JfCxRmacT0KSUPwD+Fz057wR+gV79CCnlFvQu7HrgycTjTucFYGWiytllJ537HfBg4pwzcewJ4KCUUpU/VJQRUrOyFWUcSqw1fgpYKaXcZGAcDwB1UspHjIpBUdKNSsyKoowKIcQH6F3lK6SU4dM9XlEUnUrMiqIoipJC1BizoiiKoqQQlZgVRVEUJYWoxKwoiqIoKUQlZkVRFEVJISoxK4qiKEoKUYlZURRFUVLI/wfqd9O7dsHC2QAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAr4AAAIRCAYAAACszb5OAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAf+0lEQVR4nO3df2zV9b348Ret9lQzW/FyKT9uHVd3ndtUcCC91Rnj0rsmGnb542ZcXYBL/HHduMbR3DtBlM65Ua5XDcnEEZle98e8sBk1yyB4Xe/I4uwNGdDEXUHj0MFd1gp315aLG5X28/1jWfft+CGntAV8PR7J+YO37/f5vI9viU8/nn4YVxRFEQAA8AFXcao3AAAAY0H4AgCQgvAFACAF4QsAQArCFwCAFIQvAAApCF8AAFIQvgAApCB8AQBIQfgCAJBC2eH74x//OObMmRNTpkyJcePGxfPPP/++a7Zs2RKf/OQno1QqxUc+8pF46qmnhrFVAAAYvrLD9+DBgzF9+vRYs2bNCc1/880348Ybb4zrr78+Ojs740tf+lLceuut8cILL5S9WQAAGK5xRVEUw148blw899xzMXfu3GPOufvuu2Pjxo3xs5/9bHDsb//2b+Odd96JzZs3D/fSAABQlrNG+wIdHR3R1NQ0ZKy5uTm+9KUvHXPNoUOH4tChQ4O/HhgYiF//+tfxJ3/yJzFu3LjR2ioAAKeJoijiwIEDMWXKlKioGJkfSxv18O3q6oq6urohY3V1ddHb2xu/+c1v4pxzzjliTVtbW9x///2jvTUAAE5ze/fujT/7sz8bkfca9fAdjmXLlkVLS8vgr3t6euLCCy+MvXv3Rk1NzSncGQAAY6G3tzfq6+vjvPPOG7H3HPXwnTRpUnR3dw8Z6+7ujpqamqPe7Y2IKJVKUSqVjhivqakRvgAAiYzk11xH/Tm+jY2N0d7ePmTsxRdfjMbGxtG+NAAADCo7fP/v//4vOjs7o7OzMyJ+97iyzs7O2LNnT0T87msKCxYsGJx/xx13xO7du+PLX/5y7Nq1Kx577LH47ne/G0uWLBmZTwAAACeg7PD96U9/GldeeWVceeWVERHR0tISV155ZaxYsSIiIn71q18NRnBExJ//+Z/Hxo0b48UXX4zp06fHww8/HN/61reiubl5hD4CAAC8v5N6ju9Y6e3tjdra2ujp6fEdXwCABEaj/0b9O74AAHA6EL4AAKQgfAEASEH4AgCQgvAFACAF4QsAQArCFwCAFIQvAAApCF8AAFIQvgAApCB8AQBIQfgCAJCC8AUAIAXhCwBACsIXAIAUhC8AACkIXwAAUhC+AACkIHwBAEhB+AIAkILwBQAgBeELAEAKwhcAgBSELwAAKQhfAABSEL4AAKQgfAEASEH4AgCQgvAFACAF4QsAQArCFwCAFIQvAAApCF8AAFIQvgAApCB8AQBIQfgCAJCC8AUAIAXhCwBACsIXAIAUhC8AACkIXwAAUhC+AACkIHwBAEhB+AIAkILwBQAgBeELAEAKwhcAgBSELwAAKQhfAABSEL4AAKQgfAEASEH4AgCQgvAFACAF4QsAQArCFwCAFIQvAAApCF8AAFIQvgAApCB8AQBIQfgCAJCC8AUAIAXhCwBACsIXAIAUhC8AACkIXwAAUhC+AACkIHwBAEhB+AIAkILwBQAgBeELAEAKwhcAgBSELwAAKQhfAABSEL4AAKQgfAEASEH4AgCQgvAFACAF4QsAQArCFwCAFIQvAAApCF8AAFIQvgAApCB8AQBIQfgCAJCC8AUAIIVhhe+aNWti2rRpUV1dHQ0NDbF169bjzl+9enV89KMfjXPOOSfq6+tjyZIl8dvf/nZYGwYAgOEoO3w3bNgQLS0t0draGtu3b4/p06dHc3NzvP3220ed//TTT8fSpUujtbU1du7cGU888URs2LAh7rnnnpPePAAAnKiyw/eRRx6J2267LRYtWhQf//jHY+3atXHuuefGk08+edT5L7/8clxzzTVx8803x7Rp0+Izn/lM3HTTTe97lxgAAEZSWeHb19cX27Zti6ampj+8QUVFNDU1RUdHx1HXXH311bFt27bB0N29e3ds2rQpbrjhhmNe59ChQ9Hb2zvkBQAAJ+Oscibv378/+vv7o66ubsh4XV1d7Nq166hrbr755ti/f3986lOfiqIo4vDhw3HHHXcc96sObW1tcf/995ezNQAAOK5Rf6rDli1bYuXKlfHYY4/F9u3b49lnn42NGzfGAw88cMw1y5Yti56ensHX3r17R3ubAAB8wJV1x3fChAlRWVkZ3d3dQ8a7u7tj0qRJR11z3333xfz58+PWW2+NiIjLL788Dh48GLfffnssX748KiqObO9SqRSlUqmcrQEAwHGVdce3qqoqZs6cGe3t7YNjAwMD0d7eHo2NjUdd8+677x4Rt5WVlRERURRFufsFAIBhKeuOb0RES0tLLFy4MGbNmhWzZ8+O1atXx8GDB2PRokUREbFgwYKYOnVqtLW1RUTEnDlz4pFHHokrr7wyGhoa4o033oj77rsv5syZMxjAAAAw2soO33nz5sW+fftixYoV0dXVFTNmzIjNmzcP/sDbnj17htzhvffee2PcuHFx7733xi9/+cv40z/905gzZ058/etfH7lPAQAA72NccQZ836C3tzdqa2ujp6cnampqTvV2AAAYZaPRf6P+VAcAADgdCF8AAFIQvgAApCB8AQBIQfgCAJCC8AUAIAXhCwBACsIXAIAUhC8AACkIXwAAUhC+AACkIHwBAEhB+AIAkILwBQAgBeELAEAKwhcAgBSELwAAKQhfAABSEL4AAKQgfAEASEH4AgCQgvAFACAF4QsAQArCFwCAFIQvAAApCF8AAFIQvgAApCB8AQBIQfgCAJCC8AUAIAXhCwBACsIXAIAUhC8AACkIXwAAUhC+AACkIHwBAEhB+AIAkILwBQAgBeELAEAKwhcAgBSELwAAKQhfAABSEL4AAKQgfAEASEH4AgCQgvAFACAF4QsAQArCFwCAFIQvAAApCF8AAFIQvgAApCB8AQBIQfgCAJCC8AUAIAXhCwBACsIXAIAUhC8AACkIXwAAUhC+AACkIHwBAEhB+AIAkILwBQAgBeELAEAKwhcAgBSELwAAKQhfAABSEL4AAKQgfAEASEH4AgCQgvAFACAF4QsAQArCFwCAFIQvAAApCF8AAFIQvgAApCB8AQBIQfgCAJCC8AUAIAXhCwBACsIXAIAUhC8AACkIXwAAUhC+AACkIHwBAEhB+AIAkMKwwnfNmjUxbdq0qK6ujoaGhti6detx57/zzjuxePHimDx5cpRKpbjkkkti06ZNw9owAAAMx1nlLtiwYUO0tLTE2rVro6GhIVavXh3Nzc3x2muvxcSJE4+Y39fXF3/1V38VEydOjGeeeSamTp0av/jFL+L8888fif0DAMAJGVcURVHOgoaGhrjqqqvi0UcfjYiIgYGBqK+vjzvvvDOWLl16xPy1a9fGv/zLv8SuXbvi7LPPHtYme3t7o7a2Nnp6eqKmpmZY7wEAwJljNPqvrK869PX1xbZt26KpqekPb1BREU1NTdHR0XHUNd///vejsbExFi9eHHV1dXHZZZfFypUro7+//5jXOXToUPT29g55AQDAySgrfPfv3x/9/f1RV1c3ZLyuri66urqOumb37t3xzDPPRH9/f2zatCnuu+++ePjhh+NrX/vaMa/T1tYWtbW1g6/6+vpytgkAAEcY9ac6DAwMxMSJE+Pxxx+PmTNnxrx582L58uWxdu3aY65ZtmxZ9PT0DL727t072tsEAOADrqwfbpswYUJUVlZGd3f3kPHu7u6YNGnSUddMnjw5zj777KisrBwc+9jHPhZdXV3R19cXVVVVR6wplUpRKpXK2RoAABxXWXd8q6qqYubMmdHe3j44NjAwEO3t7dHY2HjUNddcc0288cYbMTAwMDj2+uuvx+TJk48avQAAMBrK/qpDS0tLrFu3Lr797W/Hzp074wtf+EIcPHgwFi1aFBERCxYsiGXLlg3O/8IXvhC//vWv46677orXX389Nm7cGCtXrozFixeP3KcAAID3UfZzfOfNmxf79u2LFStWRFdXV8yYMSM2b948+ANve/bsiYqKP/R0fX19vPDCC7FkyZK44oorYurUqXHXXXfF3XffPXKfAgAA3kfZz/E9FTzHFwAgl1P+HF8AADhTCV8AAFIQvgAApCB8AQBIQfgCAJCC8AUAIAXhCwBACsIXAIAUhC8AACkIXwAAUhC+AACkIHwBAEhB+AIAkILwBQAgBeELAEAKwhcAgBSELwAAKQhfAABSEL4AAKQgfAEASEH4AgCQgvAFACAF4QsAQArCFwCAFIQvAAApCF8AAFIQvgAApCB8AQBIQfgCAJCC8AUAIAXhCwBACsIXAIAUhC8AACkIXwAAUhC+AACkIHwBAEhB+AIAkILwBQAgBeELAEAKwhcAgBSELwAAKQhfAABSEL4AAKQgfAEASEH4AgCQgvAFACAF4QsAQArCFwCAFIQvAAApCF8AAFIQvgAApCB8AQBIQfgCAJCC8AUAIAXhCwBACsIXAIAUhC8AACkIXwAAUhC+AACkIHwBAEhB+AIAkILwBQAgBeELAEAKwhcAgBSELwAAKQhfAABSEL4AAKQgfAEASEH4AgCQgvAFACAF4QsAQArCFwCAFIQvAAApCF8AAFIQvgAApCB8AQBIQfgCAJCC8AUAIAXhCwBACsIXAIAUhC8AACkIXwAAUhC+AACkIHwBAEhB+AIAkMKwwnfNmjUxbdq0qK6ujoaGhti6desJrVu/fn2MGzcu5s6dO5zLAgDAsJUdvhs2bIiWlpZobW2N7du3x/Tp06O5uTnefvvt465766234h//8R/j2muvHfZmAQBguMoO30ceeSRuu+22WLRoUXz84x+PtWvXxrnnnhtPPvnkMdf09/fH5z//+bj//vvjoosuOqkNAwDAcJQVvn19fbFt27Zoamr6wxtUVERTU1N0dHQcc91Xv/rVmDhxYtxyyy0ndJ1Dhw5Fb2/vkBcAAJyMssJ3//790d/fH3V1dUPG6+rqoqur66hrXnrppXjiiSdi3bp1J3ydtra2qK2tHXzV19eXs00AADjCqD7V4cCBAzF//vxYt25dTJgw4YTXLVu2LHp6egZfe/fuHcVdAgCQwVnlTJ4wYUJUVlZGd3f3kPHu7u6YNGnSEfN//vOfx1tvvRVz5swZHBsYGPjdhc86K1577bW4+OKLj1hXKpWiVCqVszUAADiusu74VlVVxcyZM6O9vX1wbGBgINrb26OxsfGI+Zdeemm88sor0dnZOfj67Gc/G9dff310dnb6CgMAAGOmrDu+EREtLS2xcOHCmDVrVsyePTtWr14dBw8ejEWLFkVExIIFC2Lq1KnR1tYW1dXVcdlllw1Zf/7550dEHDEOAACjqezwnTdvXuzbty9WrFgRXV1dMWPGjNi8efPgD7zt2bMnKir8gXAAAJxexhVFUZzqTbyf3t7eqK2tjZ6enqipqTnV2wEAYJSNRv+5NQsAQArCFwCAFIQvAAApCF8AAFIQvgAApCB8AQBIQfgCAJCC8AUAIAXhCwBACsIXAIAUhC8AACkIXwAAUhC+AACkIHwBAEhB+AIAkILwBQAgBeELAEAKwhcAgBSELwAAKQhfAABSEL4AAKQgfAEASEH4AgCQgvAFACAF4QsAQArCFwCAFIQvAAApCF8AAFIQvgAApCB8AQBIQfgCAJCC8AUAIAXhCwBACsIXAIAUhC8AACkIXwAAUhC+AACkIHwBAEhB+AIAkILwBQAgBeELAEAKwhcAgBSELwAAKQhfAABSEL4AAKQgfAEASEH4AgCQgvAFACAF4QsAQArCFwCAFIQvAAApCF8AAFIQvgAApCB8AQBIQfgCAJCC8AUAIAXhCwBACsIXAIAUhC8AACkIXwAAUhC+AACkIHwBAEhB+AIAkILwBQAgBeELAEAKwhcAgBSELwAAKQhfAABSEL4AAKQgfAEASEH4AgCQgvAFACAF4QsAQArCFwCAFIQvAAApCF8AAFIQvgAApCB8AQBIQfgCAJCC8AUAIAXhCwBACsIXAIAUhC8AACkIXwAAUhC+AACkMKzwXbNmTUybNi2qq6ujoaEhtm7desy569ati2uvvTbGjx8f48ePj6ampuPOBwCA0VB2+G7YsCFaWlqitbU1tm/fHtOnT4/m5uZ4++23jzp/y5YtcdNNN8WPfvSj6OjoiPr6+vjMZz4Tv/zlL0968wAAcKLGFUVRlLOgoaEhrrrqqnj00UcjImJgYCDq6+vjzjvvjKVLl77v+v7+/hg/fnw8+uijsWDBghO6Zm9vb9TW1kZPT0/U1NSUs10AAM5Ao9F/Zd3x7evri23btkVTU9Mf3qCiIpqamqKjo+OE3uPdd9+N9957Ly644IJjzjl06FD09vYOeQEAwMkoK3z3798f/f39UVdXN2S8rq4uurq6Tug97r777pgyZcqQeP5jbW1tUVtbO/iqr68vZ5sAAHCEMX2qw6pVq2L9+vXx3HPPRXV19THnLVu2LHp6egZfe/fuHcNdAgDwQXRWOZMnTJgQlZWV0d3dPWS8u7s7Jk2adNy1Dz30UKxatSp++MMfxhVXXHHcuaVSKUqlUjlbAwCA4yrrjm9VVVXMnDkz2tvbB8cGBgaivb09Ghsbj7nuwQcfjAceeCA2b94cs2bNGv5uAQBgmMq64xsR0dLSEgsXLoxZs2bF7NmzY/Xq1XHw4MFYtGhRREQsWLAgpk6dGm1tbRER8c///M+xYsWKePrpp2PatGmD3wX+0Ic+FB/60IdG8KMAAMCxlR2+8+bNi3379sWKFSuiq6srZsyYEZs3bx78gbc9e/ZERcUfbiR/85vfjL6+vvibv/mbIe/T2toaX/nKV05u9wAAcILKfo7vqeA5vgAAuZzy5/gCAMCZSvgCAJCC8AUAIAXhCwBACsIXAIAUhC8AACkIXwAAUhC+AACkIHwBAEhB+AIAkILwBQAgBeELAEAKwhcAgBSELwAAKQhfAABSEL4AAKQgfAEASEH4AgCQgvAFACAF4QsAQArCFwCAFIQvAAApCF8AAFIQvgAApCB8AQBIQfgCAJCC8AUAIAXhCwBACsIXAIAUhC8AACkIXwAAUhC+AACkIHwBAEhB+AIAkILwBQAgBeELAEAKwhcAgBSELwAAKQhfAABSEL4AAKQgfAEASEH4AgCQgvAFACAF4QsAQArCFwCAFIQvAAApCF8AAFIQvgAApCB8AQBIQfgCAJCC8AUAIAXhCwBACsIXAIAUhC8AACkIXwAAUhC+AACkIHwBAEhB+AIAkILwBQAgBeELAEAKwhcAgBSELwAAKQhfAABSEL4AAKQgfAEASEH4AgCQgvAFACAF4QsAQArCFwCAFIQvAAApCF8AAFIQvgAApCB8AQBIQfgCAJCC8AUAIAXhCwBACsIXAIAUhC8AACkIXwAAUhC+AACkIHwBAEhB+AIAkILwBQAgBeELAEAKwhcAgBSGFb5r1qyJadOmRXV1dTQ0NMTWrVuPO/973/teXHrppVFdXR2XX355bNq0aVibBQCA4So7fDds2BAtLS3R2toa27dvj+nTp0dzc3O8/fbbR53/8ssvx0033RS33HJL7NixI+bOnRtz586Nn/3sZye9eQAAOFHjiqIoylnQ0NAQV111VTz66KMRETEwMBD19fVx5513xtKlS4+YP2/evDh48GD84Ac/GBz7y7/8y5gxY0asXbv2hK7Z29sbtbW10dPTEzU1NeVsFwCAM9Bo9N9Z5Uzu6+uLbdu2xbJlywbHKioqoqmpKTo6Oo66pqOjI1paWoaMNTc3x/PPP3/M6xw6dCgOHTo0+Ouenp6I+N3fAAAAPvh+331l3qM9rrLCd//+/dHf3x91dXVDxuvq6mLXrl1HXdPV1XXU+V1dXce8TltbW9x///1HjNfX15ezXQAAznD/8z//E7W1tSPyXmWF71hZtmzZkLvE77zzTnz4wx+OPXv2jNgH58zR29sb9fX1sXfvXl91Scj55+b8c3P+ufX09MSFF14YF1xwwYi9Z1nhO2HChKisrIzu7u4h493d3TFp0qSjrpk0aVJZ8yMiSqVSlEqlI8Zra2v9g59YTU2N80/M+efm/HNz/rlVVIzc03fLeqeqqqqYOXNmtLe3D44NDAxEe3t7NDY2HnVNY2PjkPkRES+++OIx5wMAwGgo+6sOLS0tsXDhwpg1a1bMnj07Vq9eHQcPHoxFixZFRMSCBQti6tSp0dbWFhERd911V1x33XXx8MMPx4033hjr16+Pn/70p/H444+P7CcBAIDjKDt8582bF/v27YsVK1ZEV1dXzJgxIzZv3jz4A2x79uwZckv66quvjqeffjruvffeuOeee+Iv/uIv4vnnn4/LLrvshK9ZKpWitbX1qF9/4IPP+efm/HNz/rk5/9xG4/zLfo4vAACciUbu28IAAHAaE74AAKQgfAEASEH4AgCQwmkTvmvWrIlp06ZFdXV1NDQ0xNatW487/3vf+15ceumlUV1dHZdffnls2rRpjHbKaCjn/NetWxfXXnttjB8/PsaPHx9NTU3v+88Lp7dyf///3vr162PcuHExd+7c0d0go6rc83/nnXdi8eLFMXny5CiVSnHJJZf4d8AZrNzzX716dXz0ox+Nc845J+rr62PJkiXx29/+dox2y0j58Y9/HHPmzIkpU6bEuHHj4vnnn3/fNVu2bIlPfvKTUSqV4iMf+Ug89dRT5V+4OA2sX7++qKqqKp588sniv/7rv4rbbrutOP/884vu7u6jzv/JT35SVFZWFg8++GDx6quvFvfee29x9tlnF6+88soY75yRUO7533zzzcWaNWuKHTt2FDt37iz+7u/+rqitrS3++7//e4x3zkgo9/x/78033yymTp1aXHvttcVf//Vfj81mGXHlnv+hQ4eKWbNmFTfccEPx0ksvFW+++WaxZcuWorOzc4x3zkgo9/y/853vFKVSqfjOd75TvPnmm8ULL7xQTJ48uViyZMkY75yTtWnTpmL58uXFs88+W0RE8dxzzx13/u7du4tzzz23aGlpKV599dXiG9/4RlFZWVls3ry5rOueFuE7e/bsYvHixYO/7u/vL6ZMmVK0tbUddf7nPve54sYbbxwy1tDQUPz93//9qO6T0VHu+f+xw4cPF+edd17x7W9/e7S2yCgazvkfPny4uPrqq4tvfetbxcKFC4XvGazc8//mN79ZXHTRRUVfX99YbZFRVO75L168uPj0pz89ZKylpaW45pprRnWfjK4TCd8vf/nLxSc+8YkhY/PmzSuam5vLutYp/6pDX19fbNu2LZqamgbHKioqoqmpKTo6Oo66pqOjY8j8iIjm5uZjzuf0NZzz/2PvvvtuvPfee3HBBReM1jYZJcM9/69+9asxceLEuOWWW8Zim4yS4Zz/97///WhsbIzFixdHXV1dXHbZZbFy5cro7+8fq20zQoZz/ldffXVs27Zt8OsQu3fvjk2bNsUNN9wwJnvm1Bmp9iv7T24bafv374/+/v7BP/nt9+rq6mLXrl1HXdPV1XXU+V1dXaO2T0bHcM7/j919990xZcqUI35DcPobzvm/9NJL8cQTT0RnZ+cY7JDRNJzz3717d/zHf/xHfP7zn49NmzbFG2+8EV/84hfjvffei9bW1rHYNiNkOOd/8803x/79++NTn/pUFEURhw8fjjvuuCPuueeesdgyp9Cx2q+3tzd+85vfxDnnnHNC73PK7/jCyVi1alWsX78+nnvuuaiurj7V22GUHThwIObPnx/r1q2LCRMmnOrtcAoMDAzExIkT4/HHH4+ZM2fGvHnzYvny5bF27dpTvTXGwJYtW2LlypXx2GOPxfbt2+PZZ5+NjRs3xgMPPHCqt8YZ4pTf8Z0wYUJUVlZGd3f3kPHu7u6YNGnSUddMmjSprPmcvoZz/r/30EMPxapVq+KHP/xhXHHFFaO5TUZJuef/85//PN56662YM2fO4NjAwEBERJx11lnx2muvxcUXXzy6m2bEDOf3/+TJk+Pss8+OysrKwbGPfexj0dXVFX19fVFVVTWqe2bkDOf877vvvpg/f37ceuutERFx+eWXx8GDB+P222+P5cuXR0WF+3kfVMdqv5qamhO+2xtxGtzxraqqipkzZ0Z7e/vg2MDAQLS3t0djY+NR1zQ2Ng6ZHxHx4osvHnM+p6/hnH9ExIMPPhgPPPBAbN68OWbNmjUWW2UUlHv+l156abzyyivR2dk5+PrsZz8b119/fXR2dkZ9ff1Ybp+TNJzf/9dcc0288cYbg//BExHx+uuvx+TJk0XvGWY45//uu+8eEbe//4+g3/2MFB9UI9Z+5f3c3ehYv359USqViqeeeqp49dVXi9tvv704//zzi66urqIoimL+/PnF0qVLB+f/5Cc/Kc4666zioYceKnbu3Fm0trZ6nNkZrNzzX7VqVVFVVVU888wzxa9+9avB14EDB07VR+AklHv+f8xTHc5s5Z7/nj17ivPOO6/4h3/4h+K1114rfvCDHxQTJ04svva1r52qj8BJKPf8W1tbi/POO6/4t3/7t2L37t3Fv//7vxcXX3xx8bnPfe5UfQSG6cCBA8WOHTuKHTt2FBFRPPLII8WOHTuKX/ziF0VRFMXSpUuL+fPnD87//ePM/umf/qnYuXNnsWbNmjP3cWZFURTf+MY3igsvvLCoqqoqZs+eXfznf/7n4F+77rrrioULFw6Z/93vfre45JJLiqqqquITn/hEsXHjxjHeMSOpnPP/8Ic/XETEEa/W1tax3zgjotzf//8/4XvmK/f8X3755aKhoaEolUrFRRddVHz9618vDh8+PMa7ZqSUc/7vvfde8ZWvfKW4+OKLi+rq6qK+vr744he/WPzv//7v2G+ck/KjH/3oqP8u//15L1y4sLjuuuuOWDNjxoyiqqqquOiii4p//dd/Lfu644rC/xsAAOCD75R/xxcAAMaC8AUAIAXhCwBACsIXAIAUhC8AACkIXwAAUhC+AACkIHwBAEhB+AIAkILwBQAgBeELAEAKwhcAgBT+HzgRrWHQVr4zAAAAAElFTkSuQmCC", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -506,26 +504,29 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 24, "metadata": {}, "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "Production at a profit\n" + "ename": "AttributeError", + "evalue": "module 'csaps' has no attribute 'UnivariateCubicSmoothingSpline'", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mAttributeError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[1;32mIn[24], line 1\u001b[0m\n\u001b[1;32m----> 1\u001b[0m \u001b[43mfirm_behaviour\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m36\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mindividual_firm_costs\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[1;32mc:\\Users\\lynnc\\OneDrive\\Documents\\GitHub\\textbook\\content\\02-supply\\utils.py:14\u001b[0m, in \u001b[0;36mfirm_behaviour\u001b[1;34m(price, individual_firm_costs)\u001b[0m\n\u001b[0;32m 12\u001b[0m output \u001b[38;5;241m=\u001b[39m individual_firm_costs\u001b[38;5;241m.\u001b[39mcolumn(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mOutput\u001b[39m\u001b[38;5;124m\"\u001b[39m)[\u001b[38;5;241m1\u001b[39m:]\n\u001b[0;32m 13\u001b[0m mc \u001b[38;5;241m=\u001b[39m individual_firm_costs\u001b[38;5;241m.\u001b[39mcolumn(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mMarginal Cost\u001b[39m\u001b[38;5;124m\"\u001b[39m)[\u001b[38;5;241m1\u001b[39m:]\n\u001b[1;32m---> 14\u001b[0m sp_mc \u001b[38;5;241m=\u001b[39m \u001b[43mcsaps\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mUnivariateCubicSmoothingSpline\u001b[49m(output, mc, smooth\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m0.85\u001b[39m)\n\u001b[0;32m 15\u001b[0m output_s \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39mlinspace(output\u001b[38;5;241m.\u001b[39mmin(), output\u001b[38;5;241m.\u001b[39mmax(), \u001b[38;5;241m150\u001b[39m)\n\u001b[0;32m 16\u001b[0m mc_s \u001b[38;5;241m=\u001b[39m sp_mc(output_s)\n", + "\u001b[1;31mAttributeError\u001b[0m: module 'csaps' has no attribute 'UnivariateCubicSmoothingSpline'" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeYAAAFdCAYAAADWns55AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdeVxWZf7/8dd13+z7Dbjv5i6yg5Za7po5Wpmpmem019Q4zdSUbTM/a5q2mWmq+bZaLlNmmpptlkualkuAuC+4oCioyL5v9/X7gxsGFBAQODfweT4ePuA+59znvEXww3Wd61yX0lojhBBCCPtgMjqAEEIIIf5HCrMQQghhR6QwCyGEEHZECrMQQghhR6QwCyGEEHZECrMQQghhR6QwC9EKKaVGKKXONNK5s5VSPRvj3EK0BlKYhbBjSql4pVSerdidV0otUkp5GJ2rjFJqs1Lq3orbtNYeWusTRmUSormTwiyE/fuN1toDCAXCgWcr7lSl5GdZiBZCfpiFaCa01meB74AAW0v1b0qpn4FcoKdSqqNSaq1SKlUpdUwpdV/Ze5VSrrbWdppS6iAQUfHcSimtlOpV4fUipdSLFV5PUUrFKqUylVLHlVITlFJ/A4YDb9ta9G9fei6llLdSaolSKlkpdUop9WzZLxFKqblKqW1KqddtuU4qpW5stC+gEM2Eg9EBhBC1o5TqAkwEVlFaEGcDNwJHAAVsBPYDHYF+wHql1HGt9SbgL8A1tj/ulBb42l43ElgC3Ga7RgfAU2u9Tik1FPiv1vrDat7+FuAN9AT8gB+AJGChbf9gYDHgD9wPLFRKddIyV7BoxaTFLIT9W6OUSge2AVuAl2zbF2mtD2iti4H2wFDgSa11vtY6FvgQuMt27O3A37TWqVrrBODNOlz/HuAjrfV6rbVVa31Wa334Sm9SSpmBGcB8rXWW1joe+Aelv1CUOaW1/kBrXUJpge4AtKtDNiFaHGkxC2H/btZab6i4QSkFkFBhU0cgVWudVWHbKUrvSZftT7hkX211Ab6tw/Fl/AHHS651CuhU4fW5sk+01rm2v5fdDG4TwgjSYhai+arY3ZsI+CqlPCts6wqctX2eRGmBrbivolzArcLr9hU+T6C0C/xKGS51ESgCulWTSQhRBSnMQrQAtu7pX4C/K6VclFKBlHZB/9d2yOfAfKWURSnVGXj0klPEAncopcxKqQnADRX2LQR+q5QarZQyKaU6KaX62fadp/T+cVWZSmzX/ZtSylMp1Q34Y4VMQogqSGEWouWYCXSntPW8GvhLhS7w/0dpN/JJSgdgLb3kvfOA3wDpwCxgTdkOrfUu4LfAv4AMSu9zl7WC/w3cZhtVXdV960eBHOAEpffIPwU+upq/pBAtnZLBj0IIIYT9kBazEEIIYUekMAshhBB2RAqzEEIIYUekMAshhBB2RAqzEEIIYUea9cxf/v7+unv37kbHEEIIIeokOjr6ota6TVX7mnVh7t69O1FRUUbHEEIIIepEKVXttLjSlS2EEELYESnMQgghhB2RwiyEEELYkWZ9j1mI+igqKuLMmTPk5+cbHUU0cy4uLnTu3BlHR0ejo4gWRAqzaHXOnDmDp6cn3bt3L1vXWIg601qTkpLCmTNn6NGjh9FxRAsiXdmi1cnPz8fPz0+KsrgqSin8/Pyk50U0OCnMolWSoiwagnwficYghVkIg6xZswalFIcPHzY6So1yc3Px8/MjMzOz0vabb76Z5cuX1/o8iYmJ3HbbbTUes3nzZiZNmlTlvu7du3Px4sVaX6+oqIinnnqK3r17ExoayrXXXst3331X6/eXWbRoEYmJiXV+nxD1JYVZiCvYtDuVOa8cYOL8WOa8coBNu1Mb5LzLli1j2LBhLFu2rEHOV1xc3CDnuZSbmxvjx49n9erV5dsyMjLYtm0bv/nNb2qdrWPHjqxcubJRMlblueeeIykpif379xMTE8OaNWvIysqq83mkMIumJoVZiBps2p3Km6sTuJBehAYupBfx5uqEqy7O2dnZbNu2jYULF/LZZ5+Vb58xYwbffPNN+eu5c+eycuVKSkpKeOKJJ4iIiCAwMJD33nsPKG1hDh8+nMmTJzNgwACgtCUbFhbGwIEDef/998vPtXDhQvr06UNkZCT33XcfjzzyCADJyclMnTqViIgIIiIi+Pnnny/LO3PmzEo5V69ezfjx43Fzc2PXrl1ce+21hISEcN1113HkyBGgtKBNnjyZUaNGMXr0aOLj4wkICAAgPj6e4cOHExoaSmhoKL/88kv5uTMzM7npppvo27cvDz74IFar9bI8//3vf4mMjCQ4OJgHHniAkpKSSvtzc3P54IMPeOutt3B2dgagXbt23H777UDpL0WDBg0iICCAJ598EoCSkhLmzp1LQEAAgwYN4l//+hcrV64kKiqKWbNmERwcTF5eXs3/sEI0gEYbla2U+giYBFzQWgfYtvkCy4HuQDxwu9Y6TZXeqPk3MBHIBeZqrWMaK5sQZd796gwnkqr/z/bw6VyKSnSlbQVFmje+SGDdrylVvqdnB1ce/E3nGq/75ZdfMmHCBPr06YOfnx/R0dGEhYUxffp0Pv/8c2666SYKCwvZuHEj77zzDgsXLsTb25tff/2VgoIChg4dyrhx4wCIiYlh//795SODP/roI3x9fcnLyyMiIoKpU6dSUFDACy+8QExMDJ6enowaNYqgoCAA5s2bx2OPPcawYcM4ffo048eP59ChQ5Xyjh8/nnvvvZeUlBT8/Pz47LPPygt7v3792Lp1Kw4ODmzYsIGnn36aL774ojzb3r178fX1JT4+vvx8bdu2Zf369bi4uBAXF8fMmTPLp9fdtWsXBw8epFu3bkyYMIFVq1ZV6gI/dOgQy5cv5+eff8bR0ZGHH36YTz75hLvuuqv8mGPHjtG1a1e8vLwu+9onJiby5JNPEh0djcViYdy4caxZs4YuXbpw9uxZ9u/fD0B6ejo+Pj68/fbbvP7664SHh9f4bypEQ2nMx6UWAW8DSypsewrYqLV+WSn1lO31k8CNQG/bn8HAO7aPTWJXyk7WJq4mrTAVi5MvkzveQqRfk11e2LFLi/KVttfWsmXLmDdvHlDaSl62bBlhYWHceOONzJs3j4KCAtatW8f111+Pq6srP/zwA3v37i3vCs7IyCAuLg4nJyciIyMrPa7z5ptvlnc7JyQkEBcXx7lz57jhhhvw9fUFYNq0aRw9ehSADRs2cPDgwfL3Z2Zmkp2djYeHR/k2JycnJk+ezMqVK5k6dSq7d+9m/Pjx5VnmzJlDXFwcSimKiorK3zd27Njya1b6+hUV8cgjjxAbG4vZbC7PAhAZGUnPnj2B0pb6tm3bKhXmjRs3Eh0dTUREBAB5eXm0bdu21l/7X3/9lREjRtCmTen6AbNmzeKnn37iueee48SJEzz66KPcdNNN5b/4CNHUGq0wa61/Ukp1v2TzFGCE7fPFwGZKC/MUYInWWgM7lFI+SqkOWuukxspXZlfKTj49tZQiXQhAWmEqn55aCiDFuRW4Ust2zisHuJBedNn2tj6OvHp/73pdMzU1lU2bNrFv3z6UUpSUlKCU4rXXXsPFxYURI0bw/fffs3z5cmbMmAGUPjP71ltvlRfDMps3b8bd3b3S6w0bNrB9+3bc3NwYMWLEFR/nsVqt7NixAxcXlxqPmzlzJi+88AJaa6ZMmVI+qcZzzz3HyJEjWb16NfHx8YwYMaL8PRWzVfSvf/2Ldu3asWfPHqxWa6VrXzrS+dLXWmvmzJnD3//+92qz9urVi9OnT5OZmVllq7kqFouFPXv28P333/Puu+/y+eef89FHH9XqvUI0pKa+x9yuQrE9B7Szfd4JSKhw3Bnbtka3NnF1eVEuU6QLWZu4upp3iNZkzrgOODtWLgzOjoo54zrU+5wrV65k9uzZnDp1ivj4eBISEujRowdbt24FYPr06Xz88cds3bqVCRMmAKVdye+88055a/To0aPk5ORcdu6MjAwsFgtubm4cPnyYHTt2ABAREcGWLVtIS0ujuLi4vKsZYNy4cbz11lvlr2NjY6vMPWLECOLi4vjPf/7DzJkzK12zU6fSH9dFixbV6muQkZFBhw4dMJlMLF26tNI94l27dnHy5EmsVivLly9n2LBhld47evRoVq5cyYULF4DSX3ROnaq8UI+bmxv33HMP8+bNo7Cw9Oc7OTmZFStWEBkZyZYtW7h48SIlJSUsW7aMG264gYsXL2K1Wpk6dSovvvgiMTGld9M8PT3rNWhMiPoybPCXrXVc5/5ApdT9SqkopVRUcnLyVedIK6x6EE9120XrMirEl9/f0oW2Po4oSlvKv7+lC6NCLu+era1ly5Zxyy23VNo2derU8tHZ48aNY8uWLYwZMwYnJycA7r33XgYMGEBoaCgBAQE88MADVY7CnjBhAsXFxfTv35+nnnqKIUOGANCpUyeefvppIiMjGTp0KN27d8fb2xso7fqOiooiMDCQAQMG8O6771aZ22Qycdttt5GSksINN9xQvv3Pf/4z8+fPJyQkpNYjwx9++GEWL15MUFAQhw8frtSyjoiI4JFHHqF///706NHjsq/VgAEDePHFFxk3bhyBgYGMHTuWpKTLO9defPFF2rRpw4ABAwgICGDSpEl4eXnRoUMHXn75ZUaOHElQUBBhYWFMmTKFs2fPMmLECIKDg7nzzjvLW+Rz587lwQcflMFfosmo0vrYSCcv7cr+usLgryPACK11klKqA7BZa91XKfWe7fNllx5X0/nDw8P11a7H/Oy+p6oswhYnX14c9PJVnVvYp0OHDtG/f3+jYzS5svvGxcXF3HLLLdx9992XFT1Rd631+0lcHaVUtNa6yhGFTd1iXgvMsX0+B/iywva7VKkhQEZT3F8GmNzxFhyVU6VtjsqJyR3lPyzRsvz1r38lODiYgIAAevTowc0332x0JCFEFRrzcalllA708ldKnQH+ArwMfK6Uugc4BdxuO/xbSh+VOkbp41K/baxclyob4FU2KttBOXBHt9ky8Eu0OK+//rrREYQQtdCYo7JnVrNrdBXHauB3jZXlSiL9BhPpN5jvkr7h68Qv6e1Zv9G2QgghxNWSmb8qCLOUdvfHpEUbnEQIIURrJYW5grYu7eji1pXo1F+NjiKEEKKVksJ8iTBLOKdy47lYcPWPYgkhhBB1JYX5EqHl3dlX9xiWEFfSXJZ9/P777wkODiY4OBgPDw/69u1LcHBwpbmpLxUTE8O6deuueO4NGzZUOzp8x44dDBs2jH79+hESEsL9999f5+eIT5w4UWnxDSGaAynMl/Bz9qeHe0+ipDtb2OxK2cmz+57id9H38+y+p9iVsrNBzttcln0cP348sbGxxMbGEh4ezieffEJsbCxLliyp9j21LczVSUpKYvr06fzzn//k8OHDxMTEMHr0aLKzs+t0HinMojmSwlyFUEs4Z/POcD7/nNFRhMHK5lIvm4SmbC71qy3OzW3Zx+rk5eUxZ84cBg0aRGhoKD/99BN5eXksWLCATz75hODgYFauXMmOHTvKl4YcOnQocXFxNZ73rbfe4p577iEyMhIonS97+vTptGnThosXLzJ58mQCAwO57rrryleD2rRpE0FBQQQHBxMaGkpOTg5PPfUUP/74I8HBwbz55pu1/nsJYaTGXF2q2Qq1hLHqzAqiU6OY2HGS0XFEI1qZsJwzuQnV7j+Zc4JiXbklWqQL+eTUYn65uLXK93R268JtXabXeN3mtuxjdd58802cnZ3Zt28fBw4cYOLEicTFxfH888+zf/9+3njjDaB0buyypSHXrVvHs88+y/Lly6s97/79+3nggQeq3Pfcc88xePBg1q5dyw8//MDcuXOJioritdde4/3332fw4MFkZ2fj4uLCyy+/zNtvv82aNWtq9fcRwh5IYa6Cj5OFnh69iE77lRs73HTZ6jai9bi0KF9pe201t2Ufq7Nt2zaeeOIJAAYOHEjHjh05duzYZcelp6dz1113cfz48fp8uS67Zlmvwrhx45g7dy45OTkMHTqUefPmMWvWLKZOnVqr/ELYIynM1Qi3RLA84VMS88/SybXmpQFF83Wllm1Nc6n/oe/j9bpmc1328Wo888wzjB8/nocffphjx46Vr5pVnYEDBxIdHc1NN91U62s8++yzTJ48mW+++YYhQ4awcePGq40thCHkHnM1gi2hKBQxqTI6uzVrjLnUm+uyj1UZPnw4n3zyCVC6mENSUhK9evW6bKnEui4N+eijj7Jw4ULKFqnRWrNixQqSk5MrXXPDhg106tQJd3d3jh8/TmBgIPPnzyc0NJQjR47Iko2iWZLCXA0vRy/6ePYlOi2KxlyBS9i3SL/B3NFtNhan0i5gi5PvVc+l3lyXfazKo48+Sl5eHoMGDWLWrFksWbIEJycnRo0axZ49ewgJCWHlypU8+eSTPPHEE4SGhtbq56ljx458+umnzJs3j379+jFgwAA2bdqEh4cHCxYsYPv27QQGBvL888/z8ccfA6VzgQcEBBAYGIiHhwfjxo0jJCSEkpISgoKCZPCXaDYaddnHxtYQyz7W5OfkrXx6eilP9n+Grm7dGu06omm11mX6ZNnHxtFav5/E1bGnZR+blSBLCCZMMkWnaBFk2UchmgcZ/FUDDwcP+nkNICYtmps7TZXR2aJZk2UfhWgepMV8BWG+4aQWphCfc9LoKEIIIVoBKcxXEOQTjINyIDpNurOFEEI0PinMV+BqdmOA10Bi0qKxaqvRcYQQQrRwUphrIcw3goyidI5nXz6jkRBCCNGQpDDXQoB3II7KUZaCFA1GKcWdd95Z/rq4uJg2bdowaVLDzc1+7733Vppqsy4WLVpUvsjFpb777jvCw8MZMGAAISEh/OlPf6rz+WNjY/n222/rlU2Ilk5GZdeCi9mFAJ9AYtKiua3LdMzKbHQk0USODhtOycWLl203+/vTZ1vVi1jUhru7O/v37ycvLw9XV1fWr19fPjNWbRUXF+PgUP2P8IcffljvfNXZv38/jzzyCN988w39+vWjpKSk0gpWtRUbG0tUVBQTJ05s8IxCNHfSYq6lMEs42cVZxGUdMTqKaEJVFeWattfFxIkTyxdjWLZsGTNnzizft2vXrvJlEq+77jqOHCn9vlu0aBGTJ09m1KhRjB49GqvVysMPP0y/fv0YO3YsEydOLF/oYsSIEeVTWnp4ePDMM88QFBTEkCFDOH/+PABfffUVgwcPJiQkhDFjxpRvr86rr77KM888Q79+/QAwm8089NBDAMTHxzNq1CgCAwMZPXo0p0+fBmDFihUEBAQQFBTE9ddfT2FhIc8//zzLly8nODi4xlWmhGiNpDDX0kDvQTibnImW7mzRQGbMmMFnn31Gfn4+e/fuZfDg/03z2a9fP7Zu3cru3btZsGABTz/9dPm+mJgYVq5cyZYtW1i1ahXx8fEcPHiQpUuXsn379iqvlZOTw5AhQ9izZw/XX389H3zwAQDDhg1jx44d7N69mxkzZvDqq6/WmHn//v2EhYVVue/RRx9lzpw57N27l1mzZvH73/8egAULFvD999+zZ88e1q5di5OTEwsWLGD69OnExsYyfXrNC4kI0dpIV3YtOZmcGOQTxJ603UzvcgcOJvnSiasTGBhIfHw8y5Ytu6xLNyMjgzlz5hAXF4dSqnzxCoCxY8eWL9+4bds2pk2bhslkon379owcObLKazk5OZXfvw4LC2P9+vUAnDlzhunTp5OUlERhYWGl5SPravv27axatQqA2bNn8+c//xmAoUOHMnfuXG6//XZuvfXWep9fiNbCkBazUmqeUmq/UuqAUuoPtm2+Sqn1Sqk420eLEdlqEm6JIKckh8NZtVtEXogrmTx5Mo8//nilbmyA5557jpEjR7J//36++uqrSks3VlzmsbYcHR3LZ64zm83lC2A8+uijPPLII+zbt4/33nvviktEli3HWBfvvvsuL774IgkJCYSFhZGSklLn/EK0Jk1emJVSAcB9QCQQBExSSvUCngI2aq17Axttr+1KP68BuJpdZSlI0WDuvvtu/vKXvzBo0KBK22u7TOLQoUP54osvsFqtnD9/ns2bN9fp+hWvs3jx4ise/8QTT/DSSy9x9OhRoHQt57LVqK677jo+++wzAD755BOGDx8OwPHjxxk8eDALFiygTZs2JCQkyHKMQtTAiBZzf2Cn1jpXa10MbAFuBaYAZf8zLAbsboZ9R5MjQT4h7EnfTZG16MpvEM2e2d+/TtvrqnPnzuX3Yiv685//zPz58wkJCalyeccyU6dOpXPnzgwYMIA777yT0NDQ8uUca+Ovf/0r06ZNIywsDP9a/J0CAwN54403mDlzJv379ycgIIATJ04A8NZbb/Hxxx8TGBjI0qVL+fe//w2UFvNBgwYREBDAddddR1BQECNHjuTgwYMy+EuIKjT5so9Kqf7Al8C1QB6lreMoYLbW2sd2jALSyl5Xp7GXfazKwYwD/OfYv7n/mocJ8glu0muLhtHSlukrW84xJSWFyMhIfv75Z9q3b290rFajpX0/iaZR07KPTT6CSWt9SCn1CvADkAPEAiWXHKOVUlX+xqCUuh+4H6Br166NnPZyfb364m52Jzr1VynMwi5MmjSJ9PR0CgsLee6556QoC9HMGTK0WGu9EFgIoJR6CTgDnFdKddBaJymlOgAXqnnv+8D7UNpibqLI5czKgWBLKL+m7qLQWoCTybmpIwhRSV3vKwsh7JtRo7Lb2j52pfT+8qfAWmCO7ZA5lHZ326UwSwSF1gL2Z+wzOooQQogWxqgJRr5QSh0EvgJ+p7VOB14Gxiql4oAxttd2qbdnHzwdvIhOlaUghRBCNCyjurKHV7EtBRhtQJw6MykToZYwfrm4jfySfFzMLkZHEkII0ULIlJz1FOobTpEuYm/6HqOjCCGEaEGkMNdTT/dr8HG0EJMm3dmi7sxmM8HBwQQEBDBt2jRyc3OrPG7ixImkp6c3cTohhJGkMNdTaXd2OAczD5BbnGN0HNHMuLq6Ehsby/79+3FyciqfPauM1hqr1cq3336Lj0+Nj/MLIVoYKcxXIcw3nBJdwp70WKOjiGZs+PDhHDt2jPj4ePr27ctdd91FQEAACQkJdO/enYu2JSaXLFlCYGAgQUFBzJ49G4Dk5GSmTp1KREQEERER/Pzzz0b+VYQQDUCWSLoK3dy64+fkT3RaFNf6DzU6jqiHsoUdGlptZ9QrLi7mu+++Y8KECQDExcWxePFihgwZUum4AwcO8OKLL/LLL7/g7+9PamoqAPPmzeOxxx5j2LBhnD59mvHjx3PokCyyIkRzJoX5KiilCPMNZ8O5H8guzsLDwdPoSKKZyMvLIzi4dOa44cOHc88995CYmEi3bt0uK8oAmzZtYtq0aeXzWZct+7hhwwYOHjxYflxmZmb5FJ1CiOZJCvNVCrVE8MO5dexOi2F4mxuMjiPqqKnnii9Tdo/5UnVd0tFqtbJjxw5cXOSRPSFaCrnHfJU6u3amrXM7YtJkKUjReEaNGsWKFSvK1zIu68oeN24cb731VvlxVRV7IUTzIi3mq1TWnb0u6VsyitLxdpQRtKLhDRw4kGeeeYYbbrgBs9lMSEgIixYt4s033+R3v/sdgYGBFBcXc/311182wlsIUT9Hhw2nxDb4siKzvz99tm1ttOs2+bKPDcmIZR+rkpSXyIsH/8q0LjMY0XaU0XHEFcgyfaIhyfdTy3WoX/X/rv0PX90gy5qWfZSu7AbQwbUjHV06ytzZQgghrpoU5gYS6hvBiZzjpBWmGh1FCCFEMyaFuYGEWUp7JGLSog1OIoQQojmTwtxA2rq0o4tbV+nObiaa89gKYT/k+0g0BinMDSjMEs6p3HguFiQbHUXUwMXFhZSUFPlPVVwVrTUpKSnyDHkLZrZN6FPb7Q1FHpdqQKGWcNacXUVMWhTj2t9odBxRjc6dO3PmzBmSk+UXKHF1XFxc6Ny5s9ExRCPps20rxSkpJD33PAAdXliAg59fo19XCnMD8nP2p4d7T6JTpTDbM0dHR3r06GF0DCFEM5C1YSNYrbgNHtwkRRmkK7vBhVrCOZOXwPn8c0ZHEUIIcRVKsrLI2bYNAM+xY5vsulKYG1ioJQyFIjrV+IlPhBBC1F/25s3ooiJcAgJw6typya4rhbmB+ThZ6OnRi+i0X2VwkRBCNFPWggKyN28BwGv8uCa9thTmRhBuieBcfhKJ+WeNjiKEEKIecrZtw5qTg1PPnjj16tWk15bC3AiCLaEoFDHSnS2EEM2OLi4uHfRFaWtZKdWk15fC3Ai8HL3o49mX6LQo6c4WQohmJjcqipK0NBw6tMclMLDJr29IYVZKPaaUOqCU2q+UWqaUclFK9VBK7VRKHVNKLVdKORmRraGE+UaQXHCBhLzTRkcRQghRS1prMr//HgCvcU3fWgYDCrNSqhPweyBcax0AmIEZwCvAv7TWvYA04J6mztaQgn1CMWGSKTqFEKIZyd+3j+Kkc5gtFtwiIgzJYFRXtgPgqpRyANyAJGAUsNK2fzFws0HZGoS7gzv9vAYQkxYt3dlCCNFMlLWWPceMRjkYMwdXkxdmrfVZ4HXgNKUFOQOIBtK11sW2w84ATffQWCMJ8w0ntTCF+JyTRkcRQghxBQXHjlF4/AQmNzfchw0zLIcRXdkWYArQA+gIuAMT6vD++5VSUUqpKHuf6zjIJxgH5UB0mnRnCyGEvStrLXuMuAGTs7NhOYzoyh4DnNRaJ2uti4BVwFDAx9a1DdAZqPIhYK31+1rrcK11eJs2bZomcT25mt0Y4DWQmLRorNpqdBwhhBDVKDp7lvx9+1GOjniMHGloFiMK82lgiFLKTZUOdxsNHAR+BG6zHTMH+NKAbA0uzDeCjKJ0jmcfMzqKEEKIamT+sB4A96HXYfb0NDSLEfeYd1I6yCsG2GfL8D7wJPBHpdQxwA9Y2NTZGkOAdyCOypGYNJlsRAgh7FFxSgq5UVFgMuE5ZozRcYxZ9lFr/RfgL5dsPgFEGhCnUbmYXQjwCWR3WjS3dZmOWZmNjiSEEKKCrA0boaQEt4hwHPz9jY4jM381hTBLOFnFWcRlHTE6ihBCiAoqLe04vtbjkBuVFOYmMNB7EM4mZ3c5ukMAACAASURBVKKlO1sIIexK9qZNpUs7DmrapR1rIoW5CTiZnAj0CWZP2m6KrcVXfoMQQohGZ83LI3uLbWnHCfbRWgYpzE0mzBJOTkkOh7MOGR1FCCEEkL11K9bcPJx798L5mmuMjlNOCnMT6ec1AFezqywFKYQQdkAXFpK9sXRpR3u5t1xGCnMTcTQ5EuQTwp703RRZi4yOI4QQrVrOzp2UZGTi2KULLgMHGB2nEinMTSjMEkG+NZ+DmQeMjiKEEK2WLikh64cfAPAab8zSjjWRwtyE+nr1xd3sLktBCiGEgfJiYihOvohDmza4hoYaHecyUpibkFk5EGwJZV/GXgqtBUbHEUKIVkdrTeY629KO48ahTPZXBu0vUQsXZomg0FrA/ox9RkcRQohWJ3//forOnsXs7Y37kMFGx6mSFOYm1tuzD54OXkTL6GwhhGhymevWAeAxZjTK0dHgNFWTwtzETMpEqCWMAxn7yC/JNzqOEEK0GgVxcRQeP4HJzQ2P4cONjlMtKcwGCPUNp0gXsTd9j9FRhBCi1Si7t+wxcgQmFxeD01RPCrMBerpfg4+jhZg0GZ0thBBNoTAhgfwDB1BOTniMHGl0nBpJYTZAaXd2OAczD5BbnGN0HCGEaPGyvi9tLbsPG4rZw8PgNDWTwmyQMN9wSnQJe9JjjY4ihBAtWtGFC+RGx4CDGc+xY42Oc0VSmA3Sza07fk7+shSkEEI0sqwf1oPWuEdG4mCxGB3niqQwG0QpRZhvOEcyD5FdnGV0HCGEaJFK0tPJ2bEdlMJz/Hij49SKFGYDhVoisGJld1qM0VGEEKJFytq4EYpLcA0OxrFdO6Pj1IoUZgN1du1MW+d2xEh3thBCNLiS7Byyf9oKgNeE5tFaBinMhirtzo4gLusoGUUZRscRQogWJXvLZnRBAc79++HUrZvRcWpNCrPBwizhaDS706KNjiKEEC2GtaCA7E0/AuA1YYLBaepGCrPBOrh2pKNLR1kKUgghGlD2Tz9hzcnBqUcPnPv0MTpOnTR5YVZK9VVKxVb4k6mU+oNSylcptV4pFWf7aP9j2htIqG8EJ3KOk1aYanQUIYRo9nRhIdkbNgDgNXEiSimDE9VNkxdmrfURrXWw1joYCANygdXAU8BGrXVvYKPtdasQZgkHIEa6s4UQ4qpl//wzJRmZOHbtgkvAQKPj1JnRXdmjgeNa61PAFGCxbfti4GbDUjWxti7t6OLWVbqzhRDiKuni4tIJRQCvG29sdq1lML4wzwCW2T5vp7VOsn1+DmgeD5w1kDBLOKdy47lYkGx0FCGEaLZytu+gJC0Nx44dcA0ONjpOvRhWmJVSTsBkYMWl+7TWGtDVvO9+pVSUUioqObnlFLHQ8u5seaZZCCHqQ5eUkPn9OqD5tpbB2BbzjUCM1vq87fV5pVQHANvHC1W9SWv9vtY6XGsd3qZNmyaK2vj8nP3p4d6T6FQpzEIIUR+5v0ZRcjEFh7ZtcQ0LMzpOvRlZmGfyv25sgLXAHNvnc4AvmzyRwUIt4ZzJS+B8/jmjowghRLOirVYyv/sOAK8bJ6BMRt+prT9Dkiul3IGxwKoKm18Gxiql4oAxttetSqglDIWSVrMQQtRR3u7dFJ8/j9nPF7eICKPjXBVDCrPWOkdr7ae1zqiwLUVrPVpr3VtrPUZr3eoe6vVxsnCNRy+i02R0thBC1JbWmsxvba3lCRNQDg4GJ7o6zbet30KFWSI4l59EYt5Zo6MIIUSzkL93L0Vnz2L29sZ9yBCj41w1Kcx2JtgSauvOllazEEJcScXWsuf4cShHR4MTXT0pzHbGy9GLPp59iU6LovSpMSGEENXJP3iQwlOnMHl64j5smNFxGoQUZjsU5htBcsEFEvJOGx1FCCHsVmlr+VsAPMeMweTkZHCihiGF2Q4F+4RiwiTd2UIIUYOCo3EUHj+Byd0djxuuNzpOg5HCbIfcHdzp5zWAmLRo6c4WQohqlLWWPUaNxOTiYnCahiOF2U6F+YaTWphCfM5Jo6MIIYTdKYiLo+DIEZSrC54jRxodp0FJYbZTQT7BOCgHeaZZCCGqkPH1NwB4jhqFyc3N4DQNSwqznXI1uzHAayAxadFYtdXoOEIIYTfyjx6l4MgRTG6ueI4ebXScBieF2Y6F+UaQUZTO8exjRkcRQgi7kWlrLXuMGt3iWssghdmuBXgH4qgcZSlIIYSwyT9ylIKjR0tby6Na1r3lMs17QtEWzsXsQkfXTmxN3sJPyZuxOPkyueMtRPoNNjqaEEI0Oa01mV9/DYDH6JbZWgZpMdu1XSk7OZN3Bk3pI1Nphal8emopu1J2GpxMCCGaXsHRoxTExWFyc8Nz1Cij4zQaKcx2bG3iakp0caVtRbqQtYmrDUokhBDG0FqT+dVXAHiOHYPJ1dXgRI1HCrMdSyuseuXL6rYLIURLVXD4MAXHjpfO8jVihNFxGpUUZjtmcfKt03YhhGiJtNZk2O4tt/TWMkhhtmuTO96Co7p8UvaRbVvuvRUhhLhUwaFD/5sTu4W3lkEKs12L9BvMHd1ml7eQvR29cVSO/HLxZ/JKcg1OJ4QQjU9rTcZXZa3lsS1qTuzq1OpxKaXUUq317CttEw0v0m9wpcejjmYd4a2j/2LhiQ94qNcjmJXZwHRCCNG48g8epPDkSUweHniMHGF0nCZR2xbzwIovlFJmIKzh44gr6ePZlxndZnEo8wCrz6w0Oo4QQjSa0ueWbXNijx2LydnZ4ERNo8bCrJSar5TKAgKVUpm2P1nABeDLJkkoLjPUfzij2o7hxwsb2Zq8xeg4QgjRKPIP2FrLnp54jLjB6DhNpsbCrLX+u9baE3hNa+1l++OptfbTWs9vooyiCrd0vo2BXgF8fnoZRzIPGx1HCCEaVKXnlse1ntYy1L4r+2ullDuAUupOpdQ/lVLdGjGXuAKTMvHbnvfR1qUdH554l/P5542OJIQQDSYvNpbCU6cweXnicf31RsdpUrUtzO8AuUqpIOBPwHFgSX0vqpTyUUqtVEodVkodUkpdq5TyVUqtV0rF2T5a6nv+1sLV7MpDvR7FpEy8e+xtcotzjI4khBBXTVutZKxdC4DXxImtqrUMtS/MxVprDUwB3tZa/wfwvIrr/htYp7XuBwQBh4CngI1a697ARttrcQX+zv7cd81DpBRe5MMT7102hacQQjQ3ubt+pTjpHGY/XzyGDTM6TpOrbWHOUkrNB2YD3yilTIBjfS6olPIGrgcWAmitC7XW6ZQW/cW2wxYDN9fn/K1RL4/ezOw6myNZh1mRsJzS36GEEKL50cXFZHxdem/Ze9IklEPrWwSxtoV5OlAA3K21Pgd0Bl6r5zV7AMnAx0qp3UqpD233r9tprZNsx5wD2tXz/K3Stf7XMbbdeLYmb2FL8o9GxxFCiHrJ+flnSi6m4NChPW6DW+cSt7UqzLZi/AngrZSaBORrret7j9kBCAXe0VqHADlc0m1t6zavstmnlLpfKRWllIpKTk6uZ4SWaXKnWxjkHcTKhOUcyjxgdBwhhKgTa2Ehmd9+C4D3byajTK1zcspa/a2VUrcDu4BpwO3ATqXUbfW85hngjNa6bFHhlZQW6vNKqQ6263Wg9Fnpy2it39dah2utw9u0aVPPCC2TSZmY2+MeOrp2YuGJ9zmXl3TlNwkhhJ3I/nEzJRmZOHXrimtIsNFxDFPbX0eeASK01nO01ncBkcBz9bmgrfWdoJTqa9s0GjgIrAXm2LbNQSYwqRcXswsP9vodDsqBd46/TXZxttGRhBDiiqy5uWR9/z0A3lOmoJQyOJFxVG0GCiml9mmtB1V4bQL2VNxWp4sqFQx8CDgBJ4DfUvpLwudAV+AUcLvWusaFh8PDw3VUVFR9IrR4J7KP8++j/6CHe08e6f0HHEytbwCFEML+HR02nJKLFy/bbvb3p8+2rQYkahpKqWitdXhV+2r7v/U6pdT3wDLb6+nAt/UNpLWOBaoKNLq+5xSV9fS4hlnd5rA4fiHLT3/KHd1mt+rfQIUQ9qmqolzT9tagxsKslOpF6WjpJ5RStwJlD5Rtp3QwmLBjkX6DOZ+fxLpz39LBtQOj2o01OpIQQogruFKL+Q1gPoDWehWwCkApNci27zeNmk5ctZs6TuZc/jlWnVlJW5d2BHgHGh1JCCFEDa40+Kud1nrfpRtt27o3SiLRoEzKxF3df0tnty58fOJDEvPOGh1JCCFEDa5UmH1q2OfakEFE43E2O/PANb/D2ezMu8feJqso0+hIQghBwYmTRkewS1cqzFFKqfsu3aiUuheIbpxIojFYnCw8cM3vyCzK5P3j71BkLTI6khCiFdNak7F6FThWPbuz2d+/iRPZjyvdY/4DsFopNYv/FeJwSh9zuqUxg4mG1829O7O7/5aPTr7PslP/ZXb3uTJSWwhhiPy9eymIO4bXuHF0eGEBJjc3oyPZjRoLs9b6PHCdUmokEGDb/I3WelOjJxONIsw3nHP5SXyb9BXtXTswrv0EoyMJIVoZXVJC+po1AHjddJMU5UvU6jlmrfWPgKyM0EJM7DCJ8/lJrD27mnYu7QjyCTE6khCiFcnZvoPipHM4tPHH4/rhRsexO61zhvBWTinFnd3n0tWtG4tOfkRCboLRkYQQrYS1oIDMr2zLOk6Z0iqXdbwSKcytlJPJiQd6PYyb2ZX3jr1NRlGG0ZGEEK1A1oYNlGRk4NStG65hYUbHsUtSmFsxb0cfHuz1CDklObx//P9kpLYQolEVp6WR9f0PAHhPvVUGn1ZDCnMr18WtK3O63018zkn+G7+Y2ixqIoQQ9ZHx5ZfowkJcQ0Jw6dPH6Dh2SwqzINgSym863kxU2i7Wnav32iRCCFGtwvh4cnfsBAczPrfK07Y1kbvuAoDx7W/kXH4SXyd+STuX9oRa5N6PEKJhaK1JW7ECAM9Ro3Fo08bgRPZNWswCKB2pPavbXfRw78mSkx9xOueU0ZGEEC1EXkwMhcdPYPL0xOtGmTvhSqQwi3KOJkfuv+ZhPBw9eff4f0gvTDM6khCimdOFhaSvWgWA9+TJmFxlmYUrkcIsKvFy9OKhax4hrySP947/H4XWAqMjCSGasayNGylJScWxUyfch15ndJxmQQqzuEwnt87c3eNeEnJPs+Tkx1i11ehIQohmqCQ9ncx13wPgc/s0lElKTm3IV0lUaZBPEDd3msru9Bi+Tfra6DhCiGYo48sv0QUFuAYF4tK3r9Fxmg0ZlS2qNbrdWJLyE/ku6Wvau7Qn3DfS6EhCiGai4MQJcrbvAAcz3rdONTpOsyItZlEtpRQzus7iGo/eLI1fxMmcE0ZHEkI0A9pqJW3ZZwB4jR2LY7u2BidqXqQwixo5mhy5r+eDeDv68N6x/yOtMNXoSEIIO5ezdStFCQmYLRY8J8jjUXUlhVlckaejJw/2eoQiayHvHHub/JJ8oyMJIexUSVYWGV9+CYDPtGmYnJ0NTtT8GFKYlVLxSql9SqlYpVSUbZuvUmq9UirO9tFiRDZRtY6uHbm7530k5p1lSfxHMlJbCFGljNVrsObm4dy/H64hwUbHaZaMHPw1Umt9scLrp4CNWuuXlVJP2V4/2dghjg4bTsnFi5dtN/v702fb1sa+fLMy0HsQUzvfzsozy/kqcQ1TOt1qdCQhhB0pOHGSnF9+AQczlhkzZPWoerKnruwpwGLb54uBm5violUV5Zq2t3Yj2o5iqP9wfji3jp0p242OI4SwE9pqJX156YAvz9FjcGzXzuBEzZdRLWYN/KCU0sB7Wuv3gXZa6yTb/nOA/KvaIaUU07vO5EL+eZbGL2L1mS/IKs7E4uTL5I63EOk32OiIQggD5Pz8M4WnTmO2WPCaeKPRcZo1owrzMK31WaVUW2C9UupwxZ1aa20r2pdRSt0P3A/QtWvXxk8qLmNWDoRZIojLPkpWcSYAaYWpfHpqKYAUZyFamZKsLDLW2AZ83TZVBnxdJUO6srXWZ20fLwCrgUjgvFKqA4Dt44Vq3vu+1jpcax3eRpYOM8z357+7bFuRLmRt4moD0gghjJS+YiXWnJzSAV+hoUbHafaavDArpdyVUp5lnwPjgP3AWmCO7bA5wJdNne1SmTnFRkewW9U9zyzPOQvRuuQdOEDurl0oR0csM2fKgK8GYESLuR2wTSm1B9gFfKO1Xge8DIxVSsUBY2yvG53Z37/K7VnO3vzpvTjOpxU2RYxmx+LkW+V2R5MTucW5TZxGCGEEa2EhacuWAeB10004tpUZvhpCkxdmrfUJrXWQ7c9ArfXfbNtTtNajtda9tdZjtNZN0vTqs20r3VeuxOs3v6HD3/9O/8OH6H/4EG5rNpCeVcwf3znKiaS8pojSrEzueAuOyqnSNrMyU2Qt5KVDCziWHWdQMiFEU8n85ltKLqbg2KkTnmNGGx2nxbCnx6UMY3Jzw5qdTdb69RSeOQtAQA8PXnugF0opnngvjj3HswxOaV8i/QZzR7fZ5S1ni5Mvd3aby+P9nsKMiTeOvM43iWsp0SUGJxVCNIbCM2fIWr8elMIyaxbKQdZEaihK6yoHPzcL4eHhOioqqkHOlfbZZ2Rv3oJTjx60feLx8nVDk9MLefbjEySmFPDE7V25PlAmJLuSvJI8Vpz+jJ2p2+npfg1ze9yDn3PVtwyEEM2Ptlq58OprFMbH4zHiBiwzZhgdqdlRSkVrrcOr2ictZhvvKVMwe3tTePIk2T/9VL69jY8Trz/Yi35d3Hj5s1Os+TnZwJTNg6vZlbt6/Ja5Pe4hMe8sfz/0AtGpvxodSwjRQLI3b6EwPh6zjw/eU6YYHafFkcJsY3J1xWf6dAAy1nxJcVpa+T5PVwdevPsarh3gzXtfn2Xhd4lYrc23p6GpRPgOZv6A52jv0oGPTn7A0vhFsgCGEM1ccWrq/xapmH47JldXgxO1PFKYK3ANCcY1KBCdn0/65ysq7XN2NPH0Hd2ZNMSflT9d4B8rTlNULAs5XIm/cxse6/s4N3a4iZ0p23n50Iucyok3OpYQoh601qQuXYouKMA1OAi3kBCjI7VIUpgrUErhM2MGytmZvN27yduzp9J+s0nx8ORO3DWuPZti0/jrkpPkFsjgpisxKwcmdZzCvD5/oshaxOuHX2b9uXWyQpUQzUzOtm0UHDqMyd0dy8yZRsdpsaQwX8LBYsF7ymQA0j5bjjW/cterUoqZI9vz2NQuxB7P4sn3j5GWVWRE1Gant2cfnh7wPIE+waw5u4q3494gvTDd6FhCiFooTkkhfeUXAFhmTMfs7W1wopZLCnMVPEaMwKlbN0rS0sj46qsqjxkX7sdfZvcgIbmAP74bR+LFgiZO2Ty5O7hzb88HuKPbbE7mnOClg/+PvemxRscSQtSgUhd2SAiu4VUOJhYNRApzFZTJhOXOWWAykb3pRwpPnaryuMh+3rxy3zXkFpTwx3fjOJIgM17VhlKKof7DebL/M1icfHnv+P+x/PSnFFplljUh7FHO1q0UHD6CycMDyx0y7WZjk8JcDacuXfAcPQq0JvW/n6BLqr6X3LeLO/94oDcuTiae/OAYUUcymzhp89XepQOP93uK0e3G8lPyZl499BJn884YHUsIUUHxxYukf7EKAMvMGZg9PQ1O1PJJYa6B16RJmH19KUpIIPvHH6s9rnMbF/75UG86t3Hmr0tOsD5aFnKoLUeTI7d2nsbves0juzibVw+9xOYLm2jOE98I0VKUdmH/t7QLOywUt7AwoyO1ClKYa2BydsYys3RGm4y1X1GcklLtsb6ejrxyXy8G9fDgnytPs3zzeSkudTDAeyDPDHievp79WJHwGe8e/w9ZRTINqhBGyv5xMwVHjmDy9JTZvZqQFOYrcB00CNewUHRhIWmffVZjsXV3MbNgbk9GBFlY9H0S73x1lhKZiKTWPB29eKjXo9zWZTqHMw/y0sH/x6HMg0bHEqJVKjxzlozVZV3YM6ULuwlJYa4Fy7RpmNxcyd+3n7yYmBqPdXQw8cTtXbl1eBu+2n6Rl5fFU1gkz+vWllKKkW1H8+d+T+Pm4M7bcW+w6sxKiq2yNrYQTUUXFpL60UJ0UTHuw4bhFioTiTQlKcy1YPbxwfvmmwFI//xzrLk1j742mRT3TezEfRM7sm1/Bs98fJzsPCksddHJrTNP9n+aYf43sPH8D7x+5GXO5583OpYQrUL6qlUUJSbh0K4dPtNuMzpOqyOFuZbchw/H6ZqelGRkkr5mTa3ec+vwtjw5vRuHT+fyxHvHuJghjwPVhZPJmZndZnH/NQ+RWpDCy4de4JeL2+TevRCNKG/fPrI3bwEHM3733I3J2dnoSK2OFOZaUkrhe8cdYDaT89NWCk6cqNX7RgRbWDC3J+fTC/njO3GcOi+LONRVkE8ITw94nu7uPfjk1BI+OvkBucU5RscSosUpSU8ndfESoHTFPaeuXQ1O1DpJYa4Dx06d8Bo3FoC0/36CLq5d93RIL09eu78XxVbN4+/FcSA+uzFjtkg+ThYe7f0YUzrdQmxaDC8deoFjWXFGxxKixdBak7J4MdbsbJz798NzzBijI7VaUpjryOvGG3Fo04aixESyNmyo9fuu6ejGPx/sjbe7A08vPM4vB2SO6LoyKRPj2t/In/o9iVmZeePo63yduJYSLQuJCHG1sjZsKF2gwsMDvzlzZHYvA0lhriPl5IRl1h0AZH7zLUUXLtT6ve19nfnHg73p0cGVv30Szzc7LzZWzBatu3sP5vd/jki/IXyX9DVvHHmdlAL5WgpRXwVxcWSsLh0743vXbMw+PgYnat2kMNeDS79+uA0ejC4qIm3ZsjoNRvJ2d+Dle68hvI8Xb685w5L1STKYqR5czC7c1f23/LbHvSTmneWlgwuISt1ldCwhmp2SjAxSPlwIViueY8fiGhhodKRWTwpzPfncNhWTuzsFhw6T88svdXqvi5OZ52f3YFy4L8s2neffqxIoKZHiXB/hvpHMH/A8HVw78vHJD1kS/zH5JTLAToja0CUlpHy4kJKMDJx798b75ilGRxKAg9EBmiuzpyc+t99O6scfk/HFF7gOHFin7h+zWfGHW7vg5+XIsk3nScsuZv7M7rg4ye9KdeXv7M9jfZ/gu6RvWJf0DSeyj/PbHvdyPv88axNXk1aYisXJl8kdbyHSb7DRcYWwGxlr1lAQF4fZ2xu/e+9Bmc1GRxIY2GJWSpmVUruVUl/bXvdQSu1USh1TSi1XSjkZla223CIjcBkUgDU3r85d2lD6CNZdYzvwyM2diTqSyfwPj5GRIxOR1IdZmZnUcTJ/6PM4xdYiXj38Ev89tYi0wtIFRdIKU/n01FJ2pew0OKkQ9iE3ZjdZ6zeA2Yzfffdi9vY2OpKwMbJ5Ng84VOH1K8C/tNa9gDTgHkNS1YFSCssdd6BcXcjbs5e8qKh6neemwf48M6s7J5Ly+NO7cZxPK2jgpK1HL8/ePD3geRyV42WjtYt0IWsTVxuUTAj7UXT+PKlLSp9X9rn1Fpx79TI4kajIkMKslOoM3AR8aHutgFHAStshi4GbjchWVw4WCz633gpA2vLPKcmq34pI1w304W/3XENGdjGPvRPH8cSap/0U1XNzcKdIF1W5r6wFLURrZc3LI+W999D5+biGheIxapTRkezarpSdPLvvKX4XfT/P7nuqSXrdjGoxvwH8GShb3cEPSNdal/XjngE6GRGsPtyHDcO5b1+s2dmkf/55vc8T0N2D1x/sjYNJ8cT7x4g9Lsse1pfFybfafa8ffpmfkjeTI7OHiVambLBXUWISDh3a4zt7tjyvXINdKTv59NTSJr8l1uSFWSk1CbigtY6u5/vvV0pFKaWikpOTGzhd/Sil8L1zFsrJidxfo8jbu7fe5+rWzoV/PNSbdj5OPPfxCf7zZQJzXjnAxPmxzHnlAJt2S4uvNiZ3vAXHS4YpOCpHwn0iKSjJZ/npT5m/93E+OP4Oe9JjZfUq0Sqkr/yC/AMHMLm74//QQ5hcXIyOZNfWJq6mSFde46ApbokZMSp7KDBZKTURcAG8gH8DPkopB1uruTNwtqo3a63fB94HCA8Pt5tnjBzatMF7ymTSV6wk7ZNPce7VC5ObW73O1cbbidce6MVj/3eUr3eklG+/kF7Em6sTABgVUn2LUFA++rqqUdlaa87knWFXyg5+Td1JbPpu3M3uhPlGMNjvWrq5dZdWhGhxsjZvJvvHH8HBjP9DD+LYtq3RkexaemFatbe+GvuWWJMXZq31fGA+gFJqBPC41nqWUmoFcBvwGTAH+LKps10tj5EjyY2OofDECdJXfoHvXbPrfy5XBwqKLv+9o6BIs/iHJCnMtRDpN7jKx6OUUnRx60IXty7c3PlWDmceZGfKDrZf/JmfkjfTzrkdkX7XEuk3GF8nPwOSC9Gw8g4cIP3zFQD43nmnDPaqRqG1gD3psexM2c7hzEPVHlfTrbKGYE/PMT8JfKaUehHYDSw0OE+dKZMJ39l3cu5vfyPnl19wiwjHpX//ep/vYkbVA5iS06veLurOrMwM9B7EQO9B5JXksjsthp0p2/kqcQ1fJa6ht0cfBvtdS7AlFFezq9FxhaizosRETs28A11Y2iWbvXlz+T6zvz99tm01KJl90FpzPPsYO1O2E5MWRb41H4uTL+PbT8TV7MrXiWsrdWc7Kicmd7ylUTOp5jwdZHh4uI6q5yNKjSnzu+/I+HItZj9f2j//fL3XM53zygEuVFOEZ4xsx63D2+Dpak+/W7UcFwsu8mvqDnam7CC54AKOypEgSwiDfa+ln1d/TEomghH2ryQjg/OvvkrGF6uqPab/4epbhi3ZxYJkdqZsZ2fKDlIKL+JkcibEEsoQv2vp5dGn/Gd8V8rORpmoSCkVrbUOr3KfFOaGp4uLOf/KqxQlJOAxciSW6bfX6zybdqfy5uqESl3aTg6KHu1dOHImDw8XM7de34Yp17XBzVlm7GkMWmvic06yM3U70am/kluSi7ejXsWmVgAAIABJREFUN+G+gxnsN4ROrp2NjihElay5uVz4xz8pOnu2Uiv5Uq2pMOeV5LE7LZodKds5nh2HQtHHsy+D/a4lyCcEF3PTDYaTwmyAwoQEzr/8CpSU0OaxP+DSt2+9zrNp9/9v787D47rqg49/z9zZZ7SOFtuyLXmXV1neHSeO48QJxNAsENrShIRCA5QEaIGylJa+z9vSQGh5oRTSNAGcQAJkYUkciJ3ETmJiy/EqL5LlVbJsyZJG++xz73n/mLFsWYtlx9Kdkc7nefTMzL13Zn4aae7vnr2VDZsaaG6PkZ9t4/5bx7O2PJcTDSGe3tzAjqpOMj0aH7mxkA+syMNhUyW54RIzYhzqOECFfzsHOw5gYDDRNYllvhUsyV1Glk3NnKSkBiMSofkHPyB6/ATWwkLaf/WrAY8d7YnZkAbVnVVUtG5nf9teYjJGgaOQ5Sb3I1GJ2SQdL2+k8+WXE1Xa3/gGFte1b6M8cjrAU5sb2XO0i9wMK39xUyG3LfVht6oEPZy6413san2Xnf4d1AZPYcFCaeYclvtWsCB7IXZLys8oq4xSMh6n5cePET50CC0nh4Ivf4mj160a8PjRmpgbQmep8G9nZ2sFHbF23Jq7Z+RFiXuK6SMvVGI2iYzHaXr0UaK1dXiuu+499dK+nAMnu3lqUwMHTwUoyLbx0bXjuGVRLpqmhv0Mt8ZwAzv9O9jp30FbrA2nxcminCUs8y1nmneGao9WRow0DFp/8hOCu3Zj8Xop+NIXsY0bR1XpwJ1QR1NiPn/BXOHfTl2wFgsW5mTNY7lvJfOzFmCz2MwOsYdKzCaKNTRw7lvfQsbi5H32b3HNnz9s7yWlZO+xRII+Uh9kgs/OvbeMZ/WCbDSLStDDzZAGx7prqPDvYG/bbiJGhFy7j2W5K1jmW0Ghs9DsEJVRTEpJ2zPPEHh7G8LppODvvoC9uBiAmutvQG9p6fOc0dArO27EOdR5oYlJlzoTXZNY7lvJktxlZNoyzQ6xXyoxm6xz82Y6XngRLSuTwn/6ZzSvZ1jfT0pJRVUnT21u4GRjmOJCJ/fdMo7r5maZXn0zVkT0xHjIna07qO48jEQyxTOVZb4VLM5ZyqGOg2pJSuWakVLS8cILdL32OsJmJe/hh3HOnGl2WMNGSkldsJYK/3Z2te4koAfIsGayNHc5K3wrKXKnfqdMlZhNJg2D5u99j8jRY7iXLMb3yU+OyPsahmTbwXaefq2R+uYI0ye4uG/deJbOylAJegS1R9vZ1bqTCv87nA2fRZD47CUXvns2Yeejxfep5KxcMSkl7b9+7sKsXg8+iGvBArPDGhbt0Xbebd3BDv92GsMNWIWVBdkLWe5byezMOWgifUanjNrELIRI3+AVRVGUsWzAxJzes1MsNjsARVGUfgSAarODUNJVWifmaYXT+N5/fs/sMIZMSknnxo1E6+qwTSwi64N/ZkqVckw32F3TxdsH2gmEdWYUublpYQ4TfFc3Q5lyZZ6u3UAg3ndJT5fFwzLfcs5FGmkKn6M12grJ6u5sazYFznEUuAopdIwj156bVtV2Y019Zz2fWfqZYXt9aRi0bniKYEUFwmYj77N/i7O0dNjebzidX1rx0lWcgAFn4xop/U3y5LAJPnfXpPe8XsFg5/60TszpRgiBd+1a2n/1K2L1Zwjt24e7vHzE47BpFlbMzmLRDC87q7v408F2Ht94htmTPawpy6YwRyXo4bQ8dwVvNm1B58JSkxpWVuZdx8yMWcxmDgBRI0pTuImmyDnOhRs5Haylpru65/h8ZwEFzkIKHYUUOsfhtXpN+X2UkSWjUfwbNhDavQfhcCSSchp29IoZMc6GzvDc6Wf7TcoezcP/nf8IDs2889GGTQ19FhMaiYWEVGIeYZrbjXftWjo3biRQUYFtYhG2fHOWX7NbNa6fl82SWRnsONzJ9sPtVJ0OMK/Ey01lOfgyU2fM32gyMyMxC1xF6w4C8S481gyW567o2X6e3WJnonsiE5M9TKWUdMW7ekrUTeFzHGyvpBIdSJzICpzjKEgm6nxnPjah/oajiREI0PLY/xA5ehThcpL/0EM4pk0zO6zLMqTBuXAjpwKnqAueojZwijOheuJy4HXQA3rAtKQcjOhs2dc24FoFw72QkErMJnAUF+Oav4DQgUq6Nr9G9j33YLGZdwJ12jTWlOWwrDSTdw61U1HVyaFT3SyclsGNC7LJ9qqT+7U2M2NWn0R8OUIIMm2ZZNoymeFNlJDiMo4/6udcOJGsz4UbORk4njgegc/uo8A5jkLnOAqdhWRas9SEJ2kq3tpK83/9F/GGRrTsbPIeegj7xCKzw+pDSklr1E9tMgHXBk5RF6wlYkQAcFqcTHJPZk3BWoo9U3j+9K/oiLX3eZ3hXlqxPycaQmzc0cKWfW2EogZWiyBu9O1jnJ89vOdElZhN4lm5nNiZeuKtrQS2bSPjppvMDgm3Q+OWRT5WzM5i28EO3q3ppPJEN4tmZHDD/Gwy3erfJdVYhTVRle0ohORU3SE9yLlkifpcpJGjXTUc7jwIgMPiIN9RSKEzUaoucBT2mbi/puvIZUvzysiKnj5Nyw//G72jA9uE8eQ9/DDWnByzwwKgK9bZKwnXBmvpTvahsAorRa6JLPetpNhTQol7CgXOwl4Xh3Ej3qeNeSSWVjwvEjN4q7KdVypaqD4dxG4V3FiWw/rlPs40h/nBb+v7tDHff+v4YY1JnWlNIqw2Mtato/2F5wlXVWGfPDllqqS8LivvW+pj5dxM3qpsZ3dNJ3uPdbG0NJNVc7PxOlWno1Tm0tyUeKZQ4pkCJKoR22JtiervZHv17rZdnO9YlmXNTiRpZyERI8ye1t097d+BeBdvNm0BUMnZJOGqKlr+53FkOIxj5kzyPv0pLG63ObHoYeqCtckkfJLaYC2tUT+QqKEZ5xzPvKz5FHtKKHaXUOSaiNUyeJo5P3Z/pCfcqW8O80qFn817WukO6UzKd/CpDxRx86KcnuV0Z03ygBD9LiQ0nNJ6HPP09dNlOvXK7k+ospLubduwOBxk//mfo3lTrwNPa3eMN/e3UXmiG6smWDE7i+vmZlFTH+SNvW10BOJkeaysLc+hbGqG2eEqQxA1ojRHmjiXrP5uCjcSMkIDHu+0uFg/4YO4rW5cFreqDr+Ma9ErW0pJ95attD//PBgG7qVLyP3YxxAj1OwVM2KcCdUnS8GJ0vC5cGPPxDg+e15PAi72FDPJXTyiyyZejVjcYEdVJxsrWth/PHE+u25uFuuX+5g/xTuio2RG7QQjoyExSynpfOUVorW12MaNI+uOOxBaapZImzuibN3fxqFTAawaGAZc3Pxi0wQfWJmnknMaOt+x7Jm6p4ZwtMBlceGxunFpHtxWN57krfuSW6sYm5Vy7zUxy2iU1meeIbijAoCM224j68473lPi2OmvGLBUakiDxnBjMgmf7OmcpctEx8IMawbFnik9SXiyu4QMW/p8z8+1RfnDTj+bdvlp645TkG3j9uV53Lo4l5wMc/rQDJaYx+a3JoUIIfDevJb2Xz9HrLGRQMUOvIMs0Wam/Cw796wuZPX8CP/7ylmMSy7qYrrkjb1tKjGnofMdyzzWjAHGWLu5If9GgkaQUDxAQA8SjAcI6kH8wRaCehDoe5Fvtzhwa27cVg8ezY3L6sGtufFcksTtwj6kpDMW2r/jra20PPYYsbrTCLud3I/dh3tJv+fvIbt0rHBbtJWf127g3dYKokaE08G6Xp2zJnuKWVtwS6JE7Ckhx5abdtP46oZk15FOXqnw825NJwJYWprJ+uV5LJqRkdIL+6jEnAI0p4vMW2+l/be/JbRvP7Zx43BMTY325v4U5jiI6/3XtHQE4uiGTOl/emVgA4+xXsVU78D/k4Y0CBthAvEAIT1AIB4kqAcIxoMEk0m8MdZIMB7s9doXv0ciSfdO4p7kY5fm5ly4ge0t76R0+/f5C4dzXY2ccdZecVtp+MgR/P/7BEZ3N9b8PHyf+vSAPa91GSekhwjr4eRtqOdxzzYjsa3Cv73PWGFdxjnceZASzxRW+K7rScIFjsK0bqpo7Yrx6i4/f9zpp6k9Rk6Glb9YU8j7lvkoyE6PddJVYk4RtnHj8K5cSfef/kTXG1vQfD6sWdlmhzWgLI+VjkD/YxC/93wdC6Z5WTgtI22+CErCUMdYX8oiLImkqrmB/AGPk1ISNaKJpK0nknfvJB6gLdrKGb2eaLIENxidOG82beFk4DiasKIJDauwolk0rCRuNaxYLVrPfk1oicdYsVou2iasWISGTVixWDQ0tCtKUDVdR3pd1LRFW3mm9mmAXsnZkAYR46LkqYcJxbqJvfY24tVt6Hqc0LRCGu+ZTiC+ifDxC4k3kXzDhPUQMXn5sbQWLLg0F1Gj7wQe53259GtD/h1TlZSSfce7eaWihe2HO9ANKJ/u5W/WF7FidhbWNFuXXiXmFOJcsIBYQwOREyfoenUT2XffhbCm5hjiteU5vLy9hdhFJWebJlgyK4O2Lp0dhzt451AHRT4H5TMymDfFg9OWmm3nSm9XM8Z6qIQQODQHDs1BDoP3bI3JGKF4KJm8A2w+98d+j9OJ0xFtJy51dKkTl/Ge2/6q16+EhfNJW0OzWLGiYbFYE4+FtWe7hkZt8FSf2oCYjPLz2g282vhKsiQbImyEex3j7IpRvrGe3PogAMeX5XHk+hjO0B6cEScuzYVTc+G1ZpDvyMeZfJzYntxvueRx8r5N2BBC8I0DX6Ut2trn9zNjrPC11BmI89qeVl7Z6edMS4QMl8Ydq/J5/1IfE/NTuyPaYNI6McccMeo7680O45qSS2fS6T+J0VpL09aX8CxbZnZI/fLlwYryKDsOd9IV0slwaayYk8msiYmTzuJ5GtWng1TXtfFcxWl++y5Mm+CidLKXiXkO0qy5SjGZAydGTBKMB/vsc1vdXJe/ut/nGRjoUscwDHTi6IaOntymyziGPH9fx5B6MrknnyPjyW3JY4zk8XGdKFF0I/EcHQPd0OmKd/a8r8vh6rmvyzjjnOMuSqYXEqj70GkcL7yBFh6PNiGLzPv+irXzF2K32K9pdfKfTbjL1LHC15KUkuq6IBsrWnjrQDuxuGROsYe/vKmQG+ZnY7elbzX8eWndKztd1mO+UtG6OpoefRQZi5P7wAN4VqTvGr1SSo6eCbFpl58397fTHdYpyLaxbnEu6xbnqnm5lSHrb7GDVFrHerBS6b/Of6TXNiMSof255wls2waAc948cu//GFrG8HWcHKxXdjoIRnTe2NvGKxUtnGwM43JYuLk8l9uX+Zgy3nX5F0gxKTVcSgjhBN4CHCRK7M9LKb8phJgC/BLwAbuB+6TsZ2bzi4zWxAzQ/fbbtP3iGYTNSsEXv4i9pMTskN6zaMzgncMdbNrVyr7jXUgJZVO93Lokl+vmZuO0p/+VrjK8Ujm5DPXCIVxdTevPf47e4kfYrGTddTfem9akXa/nkXL8bJBXKvw902ROHe9i/Qofa8pycDvSt3ks1RKzADxSym4hhA3YBnwe+HvgRSnlL4UQjwH7pZQ/Huy1RnNillLS9swzBN7ehpaVReHXvoqWnbqdwa5UU3uU1/e0sml3K42tUdwOC6sX5HDrklxKJ7nVSUpJS4OOFQ4GaX/+BQLvvAOAraiI3I9/PCXnux5pb+xt7TW71l/dPA4hBBsrWjhy0TSZty/zMWuUnB9SKjH3enMh3CQS82eAjcA4KWVcCLES+Bcp5W2DPX80J2YAGY/T/P3vEzl6DPuUKRT83RcQ9tHVy9kwJAdPBdi828/bBzqIxAwm5TtYtziXm8tzyVUrXCmjQGjfPtqe/SV6RwdYNbLWrydj3TqENa27+VwT/a15fN7EfAe3L/Nxy+LcnmkyR4uUS8xCCI1EdfV04L+BR4EdUsrpyf2TgD9IKecN9jqjPTED6F1dnHvkEXR/K+7ly8l94P5RcbXYn2BE5+3KdjbtbuVwbQCLBZbMzOTWxbksK83EZlVV3Up6ifv9tD//AqG9ewGwT5tK7r33Yhs/vIsgpIvuUJxP/kcVHQG9z75sr5Vnvj531J7vUm7mLymlDiwUQmQDvwFKh/pcIcSDwIMAkydPHp4AU4iWkUHeZz5D03ceJZhcvzlz3TqzwxoWbofGbUt93LbUR31zmM27W3ltTys7qzvJ9GisXZjLrYtz07KjhzL61Vx/A3pLS98dNhsZa9eSdecdeNeM7bbkYETn4MkAlSe6qDzRzfGzIfpZVRGAju74mP2sTO+VLYT4ZyAEfAVVlT2g4J69+B9/HIQg77OfxTVvrtkhjQhdl+w+2sXm3X52VHUS1yUzilysW5zLmrIcMtRSlEqKqCqdPeC+GdvfSZllGkdSOKpz6FSAyhPd7D/RzdEzQQwDrJqgdJKbBVO9vLLTT3t338mKCrJtbPjK6D3PpVSJWQiRD8SklO1CCBewDvg2sAX4MIme2fcDvxvp2FKZe1E5sfXr6dy4Ef8TT1Dwxb/HPmmS2WENO00TLCvNZFlpJh2BOFv3tbFpdys/+v0ZHt94luvmZnHr4lwWTk/tuW+VsW2sJOVIzOBwbYADyURcUx8krks0S2IJxXtWF1I2zcvsyZ6eURhFeY4+bcwjseZxKjOjuDEe2JBsZ7YAv5ZSviyEOAz8Ugjxr8Be4EkTYkspg1WNWRx2Cv7hH7D6fCMfmEmyPFbuWJXPHavyOXY2yOZdrWzZ18Zble3kZdm4ZVEu6xblMiEvMTb60p6eI7GOqjL2ROvP0PH7sVmOiMYNquuCVJ7oYv+JbqrrEonYImBGkZu7rs+nbKqXOcUeXAMMbTr/nVTf1QtMr8p+L0Z7VfZgVWPeNWuwFhZS8OUvo3k9IxhVaonGDSqqOtm0y8+eo10YEuaVeJhU4OCNvW19rsI/d9ekMf2FV66dWFMTnS9vJPjuuyAl3Vu3Dnjs7OqqkQtsGMXiBjX1wZ6q6araANG4RAiYPsHF/KleyqZ6mVvixeNM3zHGIyGlqrKVa8NWVETszBlafvQj8r/weSyjbBjVUNmtFm6Yn80N87Np6Yjy+t42Nu9q5eCpQJ9jIzHJhk0NKjEr70mssZGuV18lsPNd0HWwanhvWD1oYk5Xui6pOZNMxMe7OVwbIBIzAJg63snty/Mom+pl3hQP3lE2nMlMqsScwi7XmaTpO4+it7XhKluA78EHEZq6QoXE5Cy3f33/gPvnT/EwqcDJ5It+cjOsY7YHqDI00bo6Ov/4amLok5QgBJ4Vy8n8wAew+nwDNj1peXnM3Pa2CRFfOd2QHD8bSibiLg6dChCKJhJxcaGTBckS8fwpXjI9KhG/F6rEPApZc3LI/9zDND36XUL7K2n75S/J+ehHVXIhsYJRQbaNpva+y+I57RZ0A95Kztt9nsdp6UnSFyft/CwbFtWpbMySUhKpqaHr1U2EDx9ObLRqeFauJGPdOmwFBT3Hpnry7a/PxZqyHE40hqg8nqiaPniym2AkkYgn5Tu4qTyHsqleFkz1ku1Vk/2MFFViTmGDlZjPt1lFjh2j+fvfR8biZKy7hay771bJmf5nE7q4jVlKSVt3nLqmMHXnwtQ1hTndHKGuKdxr6IbDZmFygaNP0h6Xa1e9wEcxIxolWLGT7i1biJ09C4BwOPCuvoGMm29Ou+lx+/s+WATYrKJn2wSfnQVTM3oSsZp1b3ipEnOa0vLyBqwaO88xfTq+T36Slsf/l67NryGsVrLuuGMkw0xJl+vpKYQgN8NGboaNhdN6r+jTGYhT1xzuSdqnmyPsP9HN63vbeo6xWQVFeY5e1eGTCxxM8DnUDGVpLN7WRvfWNwls24YRSPRT0LIy8axejffGNSnf0TIQ1mnpiNLcHqO5I0ZzR5SWjhhb97cRi/cuhBky8T340j2TWDDNS37W2OynkopUiXmUCO7Zi/+JJ8AwyPzgB8hav97skEadQFjndFOY081h6poiiZJ2c5hzbVHOf40sFijyOS5pw3YwMd+J46J1YtVQrtQhdZ3wwYN0b9tG+OAhzv8x7cXFeNeuxb14UUrMaR2JGTS3R2nuiPVKvi0diW3N7dGeaujzhIDcDBv+zr7NOgACeOXfF45A9MqlVIl5DHAvKoePP4D/Jz+l86WXEZqVzPcNOnGacoU8To3SyR5KJ/cuNYWjBvUtF0rXdU2J0vaOqg6M5HlSCCjMsTO5wAlSsudYN3E9kQCa2mP84DenAVRyHkFxv5/AO+8Q2PanxOISAFYNd3k53ptuwj5lyhU3C13tBVcsbuDvjPUk2JaOCyXe5vZE8u0M9p1POstjJT/LlqyG9pKfZSM/y05eduLWl2nDqgnu//ahfvtc5Ger6upUpErMo0xgxw5aNzwFUpJ9z4fJuPlms0Mas2Jxg7P+SKJ0nUzWdU1hTjWG+z1es8DMiW6yPNZeP5mXPM7yWNXa1VfJCIcJ7d1LYEcFkZqantKxtaAAzw3X41mxAi0j4zKv0r+B+jU8dOdEyqZl0NKeTLT9JN/27jiXnoq9Lq1Xos1L3u/ZlmXDbhva/8Hl+lwoI0+VmMcQz4oVSF2n7emf0/7c80jDGLWLXqQ6m9VCcaGL4sLei27c/rV99Hc5rBuJzmbn2qLU1AfpDOo9pepLOWwWsjxan4Tdf1LX8Di1IZf+UrWa/WqHI0ldJ1xVTbCigtC+fchYouQobFZcCxfiuf4GHDNn9Pv5xHVJJGYQiRqEowaRWOI2fH5b7MK2pzc39Fm6MBKT/Mdzp/u8rstu6SnVThmX2auUm5+VSMIDzZR1NdTsWulFJeZRyLtqFeg6bc88S8cLLyJDITI/+EHVWztF5A8wlKsg28a/f3J6z2MpJcGIQUd3nI7A4D91TWE6AnrP5A+XsmqCTLd22ZJ49ekAv3itkWg89arZ+52eNrn9XFu0J3FGYgbhiE7sTD3s24X10F7o7sQwwJCSrvximkrKaBw/m6CwE37bIPLG0Z4EG4lJwlGdSEwOeGF0pR6+cyJ5WXbys23kZ9mu6ELpWllbnmv631AZGpWYRynv6tUIu53Wp56m85U/YARDZP/5R1RyTgH33zp+SJP2CyHwOBOl3fPzf19OOGr0StidAyTyo2eCdATiBML9J/KLRWKS7/66jh/+tv7KftFr7N8G2ffAdw6DlOQEW5jqr2aK/whZ4Qu96DudORzNn8OpwrnEM3JxSAvOZonDHsVp13DaLWR7rThsFpx2Cw6bpdf9S28d9r7bHv6vIzR39H/BdfvyvD7bFWUgKjGPYp4VK7A4nbQ88QTdW7dihELk3ndvSvQwHcuGs1rRabfgtNspzBna0JdY3KArqNMRiNMeiPP1J4/3e5wE3r/M5AVTfjXwrq+Pq8J97AC2tiYsmkArFFgyCrEvLMezfDnu6VNx2TU0bfguTB+4bWgXXIpyOeoMPcq5Fi4k/6GHaPnxYwQrKpDhEL5PfAIxRufWThWpUq1os1rIzbT0TCYx0IxpBdk2/mZ90UiH10vVFwfeV1L1FgCWwmxci8pxL16MY8aMEZ2mVrXjKteKSsxjgLO0lPzPf56WH/6Q0P5Kmn/wA3yf/jSa12t2aEqKGWo1e6rxrFqFe0kyGZtYI5QqF1xKelNjLsYIx9QpFHzx79Gys4kcO07Tt79D7Nw5s8NSUsza8lw+d9ckCrJtCBIlZTOH1MSamuj8wx9o/Nd/A1v/Y24tPh+5992Lc/Zs1UyjjApqHPMYE29ro+VHPyZ2+jQWtwvfpz6Fc9Yss8NSlB6xhgZCe/cS3LuP2OkLQ40sbheusjJcixbjnF2qkrCS1gYbx6wS8xhkRCK0/vSnhPbtB00j56N/mRhipSgmkFISq68ntGcPwb17iTdeqMkRTieusjLcSxbjLC1FDFBqVpR0oyYYUXqxOBz4PvUpOl78DV2bN9P29M+JNzaSdeedak1nZURIKYmePJksGe9Fb/H37LO43bjKFuBatAjnrFmqo6Iy5qjEPEYJIcj+0N1YCwtpe/ZZuja/RrS2Dt8n/hotK8vs8JRRSBoGkaPHCO3dS2jfPvT29p59lswMXAsX4i4vN70Dl6KYTf33j3He61dhLcin9cknidTUcO5b/07uJ/4a58yZZoemjAIyHidcfSSRjCsrMbq6evZpOTmJoU3l5dinTkVYVF9URQHVxqwk6R0d+J94ksjRo2CxkHXnHWSsW6dmClOumBEOEz50iND+SsIHD2AEQz37rPn5uBYtwl2+EFtxsfr/UsYs1casXJaWlUX+Fz5Px+9fouvVV+l48TdET5wg5977Un5xeMV88bY2wpWViWRccwTiF5YotE2YgKu8HFd5ObaiCSoZK8plqMSs9BCaRvZdd+KYOoXWDRsI7dtP9OQpcu67D9e8uWaHp6QQKSWxM2cJ7d9HuPIA0draCzuFwDF9Gs6yMlwLyrAVFpgXqKKkoRGvyhZCTAKeAgpJTMH7uJTy+0KIXBKz4ZYAp4CPSCnbBnodUFXZwyne0kLrz35G5Fhi7mTvjavJuvtuLI6hLaagjD4yHidy/Dih/fsJ7d+P7m/t2SdsNpxzZuMqK8M5f/5Vr2msKGNFSo1jFkKMB8ZLKfcIITKA3cCdwANAq5TyESHEV4EcKeVXBnstlZiHlzQMujZtpuPllyCuYy0oIPeBB3BMnXLVa+MqqW2gv6twu8lYswYjGOzZZsnIwDV/Pq6FZYkxxmpYk6IMWUq1MUspG4CG5P0uIUQVUATcAaxJHrYB2AoMmpiV4SUsFjLfdxvOeXNp/clPiZ09S9Ojj5Jxyy2Dro2rpK+B/n4yGMQIBrEWFiZm3ypbgH3KFNWTWlGGgaltzEKIEqAcqAAKk0kboJFEVbeSAuwTJ1L41a/Q8dJLdL32Ol2bN5sdknINGcEg4eojhA8eGPS4cf/nX7AVqq+logw30xKzEMILvAB8QUrZeXFPTSmlFEL0W8cuhHgQeBBg8uTJIxGqAgi7neyyEDrVAAAK50lEQVQPfQj34sW0/uIZs8NR3gMpJfGGBkIHDxI+eIjI8eOg65d9nkrKijIyTEnMQggbiaT8Cynli8nN54QQ46WUDcl26Kb+niulfBx4HBJtzCMSsNLDXlJC4Ve/QtvTT5sdinIF9O5uItXVhA9XEa6uRm+90HELiwXHjOk4586je+tW02JUFCVhxBOzSBSNnwSqpJT/edGu3wP3A48kb3830rEpQ3O5+bSllGqsqslkLEbkxAnCh6uIVFcRrTsNF3X0tGRk4Jo3F+e8eThLS7F4EmPVz5gVsKIoPcwoMa8C7gMOCCH2Jbd9nURC/rUQ4hNALfARE2JThkjLy+u/o5DNRtMj3ybrQ3eraT0HMBw92s+PK45UVyWS8dGjyFjswgFWDcf06ThLZ+OcMxvbpEn9XjwN9HfV8vKuKi5FUa6cmpJTuSakYRDYvp3O37+E3tEBgHPBfLJuvx17SYm5waWYqtLZA+6bXV015NeJt7UROXKEcFU1keoq9I7OXvttRUU458zGUVqKY8YMLGo4k6KkjJQaLqWMTsJiwbtqFe4lS+h67TW6Nm0mXHmAcOUBnHPmkHn7+3FMn252mGlNb28nXFND5EgNkZoa4s3NvfZrWVk4ZpcmSsWzS9UqYYqSplRiVq4pi8NB1vr1eG+4ga7XXqf7zTcJHz5M+PBhHDNmkPn+9+GYPVu1QQ+B3tlJpKaG8JEjRGqOEj93rtd+4XQmqqdnl+IsLcU6Qc1DrSijgUrMyrDQMjPJvvsuMm69le4tb9C9ZQuRo0dpPnoU6/hxeFevxrN8ORa32+xQU0pwz55E9XRNDfGGxl77hMOBY/p0HDNn4pg5A/vkyZftiKcoSvpRbczKiDCCQbrffJPurW/2tEELhwP3sqV4b1yDfWKRyRGOnMHamL1r1vTcFzYb9unTcM6ahWPmzEQitqpraUUZDVQbs2I6i9tN5vvfT8a6dYQqK+l+8y0iR44QeHsbgbe3YZs8CfeSJbgXL8bq85kd7jV3vtd09PgxhNuNvGjO6R52O45Zs3DOmplIxCUlKhEryhikSsyKaWINDXS/9TaBHduRoXDPdvvUqbiXLMFVvhBrTo6JEV49IxgkWltLtLaWyPHjRI8fxwiGeh1jcbuxT5uKY/oMHDOmY580CWGzmRSxoigjKaVWl7qWVGIeHWQ0SvjwYYK7dhHaX9lr/K11/LiesbeOmTNTctlJGY0Sra8neuoU0VOJZHxpRy0ALScHx/RpiXbi6dNVZy1FGcNUYlbShhGJEK6sJLh7N+GqamQkcmGnVcNRUoKtuBj7pMnYiydjLSwcsRWOpGEQb24h3nCW2NmzxBoaiJ1tINbY2HeuaauGfeIk7CUl2EtKcMyYPiqr6BVFuTqqjVlJGxaHA/fSpbiXLkXG40RPniScnOM5euoUkWPHiRw73nO8cDiwTSzCmpePNc+HlpuLNS8Pa24uFo8H4XQOKXHLWAwjEEDvDmAEujE6O4n7W4n7W9D9fuItfuKtfoj3s9iDENiKirAXF2MvKcZeXIytqEi1DyuKclVUiVlJG0YgQOTkKWKn64jW1hGtq+u9GMMAhN2OxeVEOJygWSCuIw0ddAOp68hYDBkOX/Z1IFEdbRs/HlvRhMTthAlYx49PySp2RVFSlyoxK6OCxePBNW8urnlze7bpXV3Ezpwh7vcnSrb+VnR/C3F/K0YwiIxEkNEoejQKdA7y4hYsXg+a14vF48Xi9WL15aLl+rDm52H1+dB8PpWAFUUZdmldYhZCNJNY8GIsyAP6WTVC6U+pw1GmIfpceOrIeHUkst+MmNKQ+p+7euqzuzpj6XMrllLm97cjrRPzWCKE2DVQtYcyOPXZXR31uV099dldHfW5JYxMd1ZFURRFUYZEJWZFURRFSSEqMaePx80OII2pz+7qqM/t6qnP7uqozw3VxqwoiqIoKUWVmBVFURQlhajEnOKEEJOEEFuEEIeFEIeEEJ83O6Z0IoTQhBB7hRAvmx1LOhFCZAshnhdCVAshqoQQK82OKR0IIf4u+T09KIR4VgjhNDumVCWE+IkQokkIcfCibblCiM1CiKPJ2/RcxeY9Uok59cWBL0op5wArgM8KIeaYHFM6+TxQZXYQaej7wB+llKVAGeozvCwhRBHwOWCJlHIeoAF/YW5UKe1nwPsu2fZV4HUp5Qzg9eTjMUcl5hQnpWyQUu5J3u8icYIsMjeq9CCEmAisB54wO5Z0IoTIAlYDTwJIKaNSynZzo0obVsAlhLACbuCsyfGkLCnlW8Clc+reAWxI3t8A3DmiQaUIlZjTiBCiBCgHKsyNJG38P+AfAMPsQNLMFKAZ+GmyGeAJIYTH7KBSnZTyDPBdoA5oADqklJvMjSrtFEopG5L3G4FCM4Mxi0rMaUII4QVeAL4gpRxk0mcFQAjxAaBJSrnb7FjSkBVYBPxYSlkOBBijVYpXItkeegeJC5sJgEcIca+5UaUvmRgyNCaHDanEnAaEEDYSSfkXUsoXzY4nTawC/kwIcQr4JbBWCPFzc0NKG/VAvZTyfM3M8yQStTK4W4CTUspmKWUMeBG4zuSY0s05IcR4gORtk8nxmEIl5hQnhBAk2vqqpJT/aXY86UJK+TUp5UQpZQmJDjhvSClV6WUIpJSNwGkhxKzkppuBwyaGlC7qgBVCCHfye3szqtPclfo9cH/y/v3A70yMxTQqMae+VcB9JEp8+5I/t5sdlDLqPQz8QghRCSwEvmVyPCkvWcPwPLAHOEDi/KpmshqAEOJZYDswSwhRL4T4BPAIsE4IcZREDcQjZsZoFjXzl6IoiqKkEFViVhRFUZQUohKzoiiKoqQQlZgVRVEUJYWoxKwoiqIoKUQlZkVRFEVJISoxK8ooIYSYKIT4XXJlnhNCiB8KIRzX+D3WCCGuu+jxp4UQH0vef0AIMeFavp+ijEUqMSvKKJCc0OJF4LfJlXlmAC7gO9f4rdZw0WxWUsrHpJRPJR8+QGIqSkVR3gM1jllRRgEhxM3AN6WUqy/algnUAv8ElEopH0pufxn4rpRyqxDix8BSEkn8eSnlN5PHnCKxus8HARtwDxAGdgA6iUUuHiYxu1U3cIrEMn5ngBDwj8DfSCnvTL7eOuBvpZR3DduHoCijhCoxK8roMBfotWBHcrGTUyQWpRjIP0oplwALgBuFEAsu2tcipVwE/Bj4kpTyFPAY8D0p5UIp5dsXvdfzwC7gr6SUC4FXgFIhRH7ykI8DP3kPv5+ijBkqMSvK2PYRIcQeYC+J5D7non3nF0zZDZRcyYsmVwZ6GrhXCJENrAT+8J6jVZQxYLAraUVR0sdh4MMXb0hWZY8D/MDMi3Y5k/unAF8Clkop24QQPzu/LymSvNW5unPFT4GXSFSBPyeljF/FayjKmKNKzIoyOrwOuC/qIa0B/wH8EDgJLBRCWIQQk4BlyedkklhruUMIUQi8fwjv0wVkDGWflPIscBb4BokkrSjKEKjErCijQLLq+C7gw8mVefyAIaX8N+BPJJLzYeAHJFY/Qkq5n0QVdjXwTPK4y3kJuCu5ytkNl+z7GfBYcp8rue0XwGkppVr+UFGGSPXKVpRRKDnW+FngLinlHhPj+CGwV0r5pFkxKEq6UYlZUZRhIYTYTaKqfJ2UMnK54xVFSVCJWVEURVFSiGpjVhRFUZQUohKzoiiKoqQQlZgVRVEUJYWoxKwoiqIoKUQlZkVRFEVJISoxK4qiKEoK+f8VnKp0AawYFgAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAr4AAAIRCAYAAACszb5OAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAf+0lEQVR4nO3df2zV9b348Ret9lQzW/FyKT9uHVd3ndtUcCC91Rnj0rsmGnb542ZcXYBL/HHduMbR3DtBlM65Ua5XDcnEEZle98e8sBk1yyB4Xe/I4uwNGdDEXUHj0MFd1gp315aLG5X28/1jWfft+CGntAV8PR7J+YO37/f5vI9viU8/nn4YVxRFEQAA8AFXcao3AAAAY0H4AgCQgvAFACAF4QsAQArCFwCAFIQvAAApCF8AAFIQvgAApCB8AQBIQfgCAJBC2eH74x//OObMmRNTpkyJcePGxfPPP/++a7Zs2RKf/OQno1QqxUc+8pF46qmnhrFVAAAYvrLD9+DBgzF9+vRYs2bNCc1/880348Ybb4zrr78+Ojs740tf+lLceuut8cILL5S9WQAAGK5xRVEUw148blw899xzMXfu3GPOufvuu2Pjxo3xs5/9bHDsb//2b+Odd96JzZs3D/fSAABQlrNG+wIdHR3R1NQ0ZKy5uTm+9KUvHXPNoUOH4tChQ4O/HhgYiF//+tfxJ3/yJzFu3LjR2ioAAKeJoijiwIEDMWXKlKioGJkfSxv18O3q6oq6urohY3V1ddHb2xu/+c1v4pxzzjliTVtbW9x///2jvTUAAE5ze/fujT/7sz8bkfca9fAdjmXLlkVLS8vgr3t6euLCCy+MvXv3Rk1NzSncGQAAY6G3tzfq6+vjvPPOG7H3HPXwnTRpUnR3dw8Z6+7ujpqamqPe7Y2IKJVKUSqVjhivqakRvgAAiYzk11xH/Tm+jY2N0d7ePmTsxRdfjMbGxtG+NAAADCo7fP/v//4vOjs7o7OzMyJ+97iyzs7O2LNnT0T87msKCxYsGJx/xx13xO7du+PLX/5y7Nq1Kx577LH47ne/G0uWLBmZTwAAACeg7PD96U9/GldeeWVceeWVERHR0tISV155ZaxYsSIiIn71q18NRnBExJ//+Z/Hxo0b48UXX4zp06fHww8/HN/61reiubl5hD4CAAC8v5N6ju9Y6e3tjdra2ujp6fEdXwCABEaj/0b9O74AAHA6EL4AAKQgfAEASEH4AgCQgvAFACAF4QsAQArCFwCAFIQvAAApCF8AAFIQvgAApCB8AQBIQfgCAJCC8AUAIAXhCwBACsIXAIAUhC8AACkIXwAAUhC+AACkIHwBAEhB+AIAkILwBQAgBeELAEAKwhcAgBSELwAAKQhfAABSEL4AAKQgfAEASEH4AgCQgvAFACAF4QsAQArCFwCAFIQvAAApCF8AAFIQvgAApCB8AQBIQfgCAJCC8AUAIAXhCwBACsIXAIAUhC8AACkIXwAAUhC+AACkIHwBAEhB+AIAkILwBQAgBeELAEAKwhcAgBSELwAAKQhfAABSEL4AAKQgfAEASEH4AgCQgvAFACAF4QsAQArCFwCAFIQvAAApCF8AAFIQvgAApCB8AQBIQfgCAJCC8AUAIAXhCwBACsIXAIAUhC8AACkIXwAAUhC+AACkIHwBAEhB+AIAkILwBQAgBeELAEAKwhcAgBSELwAAKQhfAABSEL4AAKQgfAEASEH4AgCQgvAFACAF4QsAQArCFwCAFIQvAAApCF8AAFIQvgAApCB8AQBIQfgCAJCC8AUAIIVhhe+aNWti2rRpUV1dHQ0NDbF169bjzl+9enV89KMfjXPOOSfq6+tjyZIl8dvf/nZYGwYAgOEoO3w3bNgQLS0t0draGtu3b4/p06dHc3NzvP3220ed//TTT8fSpUujtbU1du7cGU888URs2LAh7rnnnpPePAAAnKiyw/eRRx6J2267LRYtWhQf//jHY+3atXHuuefGk08+edT5L7/8clxzzTVx8803x7Rp0+Izn/lM3HTTTe97lxgAAEZSWeHb19cX27Zti6ampj+8QUVFNDU1RUdHx1HXXH311bFt27bB0N29e3ds2rQpbrjhhmNe59ChQ9Hb2zvkBQAAJ+Oscibv378/+vv7o66ubsh4XV1d7Nq166hrbr755ti/f3986lOfiqIo4vDhw3HHHXcc96sObW1tcf/995ezNQAAOK5Rf6rDli1bYuXKlfHYY4/F9u3b49lnn42NGzfGAw88cMw1y5Yti56ensHX3r17R3ubAAB8wJV1x3fChAlRWVkZ3d3dQ8a7u7tj0qRJR11z3333xfz58+PWW2+NiIjLL788Dh48GLfffnssX748KiqObO9SqRSlUqmcrQEAwHGVdce3qqoqZs6cGe3t7YNjAwMD0d7eHo2NjUdd8+677x4Rt5WVlRERURRFufsFAIBhKeuOb0RES0tLLFy4MGbNmhWzZ8+O1atXx8GDB2PRokUREbFgwYKYOnVqtLW1RUTEnDlz4pFHHokrr7wyGhoa4o033oj77rsv5syZMxjAAAAw2soO33nz5sW+fftixYoV0dXVFTNmzIjNmzcP/sDbnj17htzhvffee2PcuHFx7733xi9/+cv40z/905gzZ058/etfH7lPAQAA72NccQZ836C3tzdqa2ujp6cnampqTvV2AAAYZaPRf6P+VAcAADgdCF8AAFIQvgAApCB8AQBIQfgCAJCC8AUAIAXhCwBACsIXAIAUhC8AACkIXwAAUhC+AACkIHwBAEhB+AIAkILwBQAgBeELAEAKwhcAgBSELwAAKQhfAABSEL4AAKQgfAEASEH4AgCQgvAFACAF4QsAQArCFwCAFIQvAAApCF8AAFIQvgAApCB8AQBIQfgCAJCC8AUAIAXhCwBACsIXAIAUhC8AACkIXwAAUhC+AACkIHwBAEhB+AIAkILwBQAgBeELAEAKwhcAgBSELwAAKQhfAABSEL4AAKQgfAEASEH4AgCQgvAFACAF4QsAQArCFwCAFIQvAAApCF8AAFIQvgAApCB8AQBIQfgCAJCC8AUAIAXhCwBACsIXAIAUhC8AACkIXwAAUhC+AACkIHwBAEhB+AIAkILwBQAgBeELAEAKwhcAgBSELwAAKQhfAABSEL4AAKQgfAEASEH4AgCQgvAFACAF4QsAQArCFwCAFIQvAAApCF8AAFIQvgAApCB8AQBIQfgCAJCC8AUAIAXhCwBACsIXAIAUhC8AACkIXwAAUhC+AACkIHwBAEhB+AIAkMKwwnfNmjUxbdq0qK6ujoaGhti6detx57/zzjuxePHimDx5cpRKpbjkkkti06ZNw9owAAAMx1nlLtiwYUO0tLTE2rVro6GhIVavXh3Nzc3x2muvxcSJE4+Y39fXF3/1V38VEydOjGeeeSamTp0av/jFL+L8888fif0DAMAJGVcURVHOgoaGhrjqqqvi0UcfjYiIgYGBqK+vjzvvvDOWLl16xPy1a9fGv/zLv8SuXbvi7LPPHtYme3t7o7a2Nnp6eqKmpmZY7wEAwJljNPqvrK869PX1xbZt26KpqekPb1BREU1NTdHR0XHUNd///vejsbExFi9eHHV1dXHZZZfFypUro7+//5jXOXToUPT29g55AQDAySgrfPfv3x/9/f1RV1c3ZLyuri66urqOumb37t3xzDPPRH9/f2zatCnuu+++ePjhh+NrX/vaMa/T1tYWtbW1g6/6+vpytgkAAEcY9ac6DAwMxMSJE+Pxxx+PmTNnxrx582L58uWxdu3aY65ZtmxZ9PT0DL727t072tsEAOADrqwfbpswYUJUVlZGd3f3kPHu7u6YNGnSUddMnjw5zj777KisrBwc+9jHPhZdXV3R19cXVVVVR6wplUpRKpXK2RoAABxXWXd8q6qqYubMmdHe3j44NjAwEO3t7dHY2HjUNddcc0288cYbMTAwMDj2+uuvx+TJk48avQAAMBrK/qpDS0tLrFu3Lr797W/Hzp074wtf+EIcPHgwFi1aFBERCxYsiGXLlg3O/8IXvhC//vWv46677orXX389Nm7cGCtXrozFixeP3KcAAID3UfZzfOfNmxf79u2LFStWRFdXV8yYMSM2b948+ANve/bsiYqKP/R0fX19vPDCC7FkyZK44oorYurUqXHXXXfF3XffPXKfAgAA3kfZz/E9FTzHFwAgl1P+HF8AADhTCV8AAFIQvgAApCB8AQBIQfgCAJCC8AUAIAXhCwBACsIXAIAUhC8AACkIXwAAUhC+AACkIHwBAEhB+AIAkILwBQAgBeELAEAKwhcAgBSELwAAKQhfAABSEL4AAKQgfAEASEH4AgCQgvAFACAF4QsAQArCFwCAFIQvAAApCF8AAFIQvgAApCB8AQBIQfgCAJCC8AUAIAXhCwBACsIXAIAUhC8AACkIXwAAUhC+AACkIHwBAEhB+AIAkILwBQAgBeELAEAKwhcAgBSELwAAKQhfAABSEL4AAKQgfAEASEH4AgCQgvAFACAF4QsAQArCFwCAFIQvAAApCF8AAFIQvgAApCB8AQBIQfgCAJCC8AUAIAXhCwBACsIXAIAUhC8AACkIXwAAUhC+AACkIHwBAEhB+AIAkILwBQAgBeELAEAKwhcAgBSELwAAKQhfAABSEL4AAKQgfAEASEH4AgCQgvAFACAF4QsAQArCFwCAFIQvAAApCF8AAFIQvgAApCB8AQBIQfgCAJCC8AUAIAXhCwBACsIXAIAUhC8AACkIXwAAUhC+AACkIHwBAEhB+AIAkMKwwnfNmjUxbdq0qK6ujoaGhti6desJrVu/fn2MGzcu5s6dO5zLAgDAsJUdvhs2bIiWlpZobW2N7du3x/Tp06O5uTnefvvt465766234h//8R/j2muvHfZmAQBguMoO30ceeSRuu+22WLRoUXz84x+PtWvXxrnnnhtPPvnkMdf09/fH5z//+bj//vvjoosuOqkNAwDAcJQVvn19fbFt27Zoamr6wxtUVERTU1N0dHQcc91Xv/rVmDhxYtxyyy0ndJ1Dhw5Fb2/vkBcAAJyMssJ3//790d/fH3V1dUPG6+rqoqur66hrXnrppXjiiSdi3bp1J3ydtra2qK2tHXzV19eXs00AADjCqD7V4cCBAzF//vxYt25dTJgw4YTXLVu2LHp6egZfe/fuHcVdAgCQwVnlTJ4wYUJUVlZGd3f3kPHu7u6YNGnSEfN//vOfx1tvvRVz5swZHBsYGPjdhc86K1577bW4+OKLj1hXKpWiVCqVszUAADiusu74VlVVxcyZM6O9vX1wbGBgINrb26OxsfGI+Zdeemm88sor0dnZOfj67Gc/G9dff310dnb6CgMAAGOmrDu+EREtLS2xcOHCmDVrVsyePTtWr14dBw8ejEWLFkVExIIFC2Lq1KnR1tYW1dXVcdlllw1Zf/7550dEHDEOAACjqezwnTdvXuzbty9WrFgRXV1dMWPGjNi8efPgD7zt2bMnKir8gXAAAJxexhVFUZzqTbyf3t7eqK2tjZ6enqipqTnV2wEAYJSNRv+5NQsAQArCFwCAFIQvAAApCF8AAFIQvgAApCB8AQBIQfgCAJCC8AUAIAXhCwBACsIXAIAUhC8AACkIXwAAUhC+AACkIHwBAEhB+AIAkILwBQAgBeELAEAKwhcAgBSELwAAKQhfAABSEL4AAKQgfAEASEH4AgCQgvAFACAF4QsAQArCFwCAFIQvAAApCF8AAFIQvgAApCB8AQBIQfgCAJCC8AUAIAXhCwBACsIXAIAUhC8AACkIXwAAUhC+AACkIHwBAEhB+AIAkILwBQAgBeELAEAKwhcAgBSELwAAKQhfAABSEL4AAKQgfAEASEH4AgCQgvAFACAF4QsAQArCFwCAFIQvAAApCF8AAFIQvgAApCB8AQBIQfgCAJCC8AUAIAXhCwBACsIXAIAUhC8AACkIXwAAUhC+AACkIHwBAEhB+AIAkILwBQAgBeELAEAKwhcAgBSELwAAKQhfAABSEL4AAKQgfAEASEH4AgCQgvAFACAF4QsAQArCFwCAFIQvAAApCF8AAFIQvgAApCB8AQBIQfgCAJCC8AUAIAXhCwBACsIXAIAUhC8AACkIXwAAUhC+AACkMKzwXbNmTUybNi2qq6ujoaEhtm7desy569ati2uvvTbGjx8f48ePj6ampuPOBwCA0VB2+G7YsCFaWlqitbU1tm/fHtOnT4/m5uZ4++23jzp/y5YtcdNNN8WPfvSj6OjoiPr6+vjMZz4Tv/zlL0968wAAcKLGFUVRlLOgoaEhrrrqqnj00UcjImJgYCDq6+vjzjvvjKVLl77v+v7+/hg/fnw8+uijsWDBghO6Zm9vb9TW1kZPT0/U1NSUs10AAM5Ao9F/Zd3x7evri23btkVTU9Mf3qCiIpqamqKjo+OE3uPdd9+N9957Ly644IJjzjl06FD09vYOeQEAwMkoK3z3798f/f39UVdXN2S8rq4uurq6Tug97r777pgyZcqQeP5jbW1tUVtbO/iqr68vZ5sAAHCEMX2qw6pVq2L9+vXx3HPPRXV19THnLVu2LHp6egZfe/fuHcNdAgDwQXRWOZMnTJgQlZWV0d3dPWS8u7s7Jk2adNy1Dz30UKxatSp++MMfxhVXXHHcuaVSKUqlUjlbAwCA4yrrjm9VVVXMnDkz2tvbB8cGBgaivb09Ghsbj7nuwQcfjAceeCA2b94cs2bNGv5uAQBgmMq64xsR0dLSEgsXLoxZs2bF7NmzY/Xq1XHw4MFYtGhRREQsWLAgpk6dGm1tbRER8c///M+xYsWKePrpp2PatGmD3wX+0Ic+FB/60IdG8KMAAMCxlR2+8+bNi3379sWKFSuiq6srZsyYEZs3bx78gbc9e/ZERcUfbiR/85vfjL6+vvibv/mbIe/T2toaX/nKV05u9wAAcILKfo7vqeA5vgAAuZzy5/gCAMCZSvgCAJCC8AUAIAXhCwBACsIXAIAUhC8AACkIXwAAUhC+AACkIHwBAEhB+AIAkILwBQAgBeELAEAKwhcAgBSELwAAKQhfAABSEL4AAKQgfAEASEH4AgCQgvAFACAF4QsAQArCFwCAFIQvAAApCF8AAFIQvgAApCB8AQBIQfgCAJCC8AUAIAXhCwBACsIXAIAUhC8AACkIXwAAUhC+AACkIHwBAEhB+AIAkILwBQAgBeELAEAKwhcAgBSELwAAKQhfAABSEL4AAKQgfAEASEH4AgCQgvAFACAF4QsAQArCFwCAFIQvAAApCF8AAFIQvgAApCB8AQBIQfgCAJCC8AUAIAXhCwBACsIXAIAUhC8AACkIXwAAUhC+AACkIHwBAEhB+AIAkILwBQAgBeELAEAKwhcAgBSELwAAKQhfAABSEL4AAKQgfAEASEH4AgCQgvAFACAF4QsAQArCFwCAFIQvAAApCF8AAFIQvgAApCB8AQBIQfgCAJCC8AUAIAXhCwBACsIXAIAUhC8AACkIXwAAUhC+AACkIHwBAEhB+AIAkILwBQAgBeELAEAKwhcAgBSGFb5r1qyJadOmRXV1dTQ0NMTWrVuPO/973/teXHrppVFdXR2XX355bNq0aVibBQCA4So7fDds2BAtLS3R2toa27dvj+nTp0dzc3O8/fbbR53/8ssvx0033RS33HJL7NixI+bOnRtz586Nn/3sZye9eQAAOFHjiqIoylnQ0NAQV111VTz66KMRETEwMBD19fVx5513xtKlS4+YP2/evDh48GD84Ac/GBz7y7/8y5gxY0asXbv2hK7Z29sbtbW10dPTEzU1NeVsFwCAM9Bo9N9Z5Uzu6+uLbdu2xbJlywbHKioqoqmpKTo6Oo66pqOjI1paWoaMNTc3x/PPP3/M6xw6dCgOHTo0+Ouenp6I+N3fAAAAPvh+331l3qM9rrLCd//+/dHf3x91dXVDxuvq6mLXrl1HXdPV1XXU+V1dXce8TltbW9x///1HjNfX15ezXQAAznD/8z//E7W1tSPyXmWF71hZtmzZkLvE77zzTnz4wx+OPXv2jNgH58zR29sb9fX1sXfvXl91Scj55+b8c3P+ufX09MSFF14YF1xwwYi9Z1nhO2HChKisrIzu7u4h493d3TFp0qSjrpk0aVJZ8yMiSqVSlEqlI8Zra2v9g59YTU2N80/M+efm/HNz/rlVVIzc03fLeqeqqqqYOXNmtLe3D44NDAxEe3t7NDY2HnVNY2PjkPkRES+++OIx5wMAwGgo+6sOLS0tsXDhwpg1a1bMnj07Vq9eHQcPHoxFixZFRMSCBQti6tSp0dbWFhERd911V1x33XXx8MMPx4033hjr16+Pn/70p/H444+P7CcBAIDjKDt8582bF/v27YsVK1ZEV1dXzJgxIzZv3jz4A2x79uwZckv66quvjqeffjruvffeuOeee+Iv/uIv4vnnn4/LLrvshK9ZKpWitbX1qF9/4IPP+efm/HNz/rk5/9xG4/zLfo4vAACciUbu28IAAHAaE74AAKQgfAEASEH4AgCQwmkTvmvWrIlp06ZFdXV1NDQ0xNatW487/3vf+15ceumlUV1dHZdffnls2rRpjHbKaCjn/NetWxfXXnttjB8/PsaPHx9NTU3v+88Lp7dyf///3vr162PcuHExd+7c0d0go6rc83/nnXdi8eLFMXny5CiVSnHJJZf4d8AZrNzzX716dXz0ox+Nc845J+rr62PJkiXx29/+dox2y0j58Y9/HHPmzIkpU6bEuHHj4vnnn3/fNVu2bIlPfvKTUSqV4iMf+Ug89dRT5V+4OA2sX7++qKqqKp588sniv/7rv4rbbrutOP/884vu7u6jzv/JT35SVFZWFg8++GDx6quvFvfee29x9tlnF6+88soY75yRUO7533zzzcWaNWuKHTt2FDt37iz+7u/+rqitrS3++7//e4x3zkgo9/x/78033yymTp1aXHvttcVf//Vfj81mGXHlnv+hQ4eKWbNmFTfccEPx0ksvFW+++WaxZcuWorOzc4x3zkgo9/y/853vFKVSqfjOd75TvPnmm8ULL7xQTJ48uViyZMkY75yTtWnTpmL58uXFs88+W0RE8dxzzx13/u7du4tzzz23aGlpKV599dXiG9/4RlFZWVls3ry5rOueFuE7e/bsYvHixYO/7u/vL6ZMmVK0tbUddf7nPve54sYbbxwy1tDQUPz93//9qO6T0VHu+f+xw4cPF+edd17x7W9/e7S2yCgazvkfPny4uPrqq4tvfetbxcKFC4XvGazc8//mN79ZXHTRRUVfX99YbZFRVO75L168uPj0pz89ZKylpaW45pprRnWfjK4TCd8vf/nLxSc+8YkhY/PmzSuam5vLutYp/6pDX19fbNu2LZqamgbHKioqoqmpKTo6Oo66pqOjY8j8iIjm5uZjzuf0NZzz/2PvvvtuvPfee3HBBReM1jYZJcM9/69+9asxceLEuOWWW8Zim4yS4Zz/97///WhsbIzFixdHXV1dXHbZZbFy5cro7+8fq20zQoZz/ldffXVs27Zt8OsQu3fvjk2bNsUNN9wwJnvm1Bmp9iv7T24bafv374/+/v7BP/nt9+rq6mLXrl1HXdPV1XXU+V1dXaO2T0bHcM7/j919990xZcqUI35DcPobzvm/9NJL8cQTT0RnZ+cY7JDRNJzz3717d/zHf/xHfP7zn49NmzbFG2+8EV/84hfjvffei9bW1rHYNiNkOOd/8803x/79++NTn/pUFEURhw8fjjvuuCPuueeesdgyp9Cx2q+3tzd+85vfxDnnnHNC73PK7/jCyVi1alWsX78+nnvuuaiurj7V22GUHThwIObPnx/r1q2LCRMmnOrtcAoMDAzExIkT4/HHH4+ZM2fGvHnzYvny5bF27dpTvTXGwJYtW2LlypXx2GOPxfbt2+PZZ5+NjRs3xgMPPHCqt8YZ4pTf8Z0wYUJUVlZGd3f3kPHu7u6YNGnSUddMmjSprPmcvoZz/r/30EMPxapVq+KHP/xhXHHFFaO5TUZJuef/85//PN56662YM2fO4NjAwEBERJx11lnx2muvxcUXXzy6m2bEDOf3/+TJk+Pss8+OysrKwbGPfexj0dXVFX19fVFVVTWqe2bkDOf877vvvpg/f37ceuutERFx+eWXx8GDB+P222+P5cuXR0WF+3kfVMdqv5qamhO+2xtxGtzxraqqipkzZ0Z7e/vg2MDAQLS3t0djY+NR1zQ2Ng6ZHxHx4osvHnM+p6/hnH9ExIMPPhgPPPBAbN68OWbNmjUWW2UUlHv+l156abzyyivR2dk5+PrsZz8b119/fXR2dkZ9ff1Ybp+TNJzf/9dcc0288cYbg//BExHx+uuvx+TJk0XvGWY45//uu+8eEbe//4+g3/2MFB9UI9Z+5f3c3ehYv359USqViqeeeqp49dVXi9tvv704//zzi66urqIoimL+/PnF0qVLB+f/5Cc/Kc4666zioYceKnbu3Fm0trZ6nNkZrNzzX7VqVVFVVVU888wzxa9+9avB14EDB07VR+AklHv+f8xTHc5s5Z7/nj17ivPOO6/4h3/4h+K1114rfvCDHxQTJ04svva1r52qj8BJKPf8W1tbi/POO6/4t3/7t2L37t3Fv//7vxcXX3xx8bnPfe5UfQSG6cCBA8WOHTuKHTt2FBFRPPLII8WOHTuKX/ziF0VRFMXSpUuL+fPnD87//ePM/umf/qnYuXNnsWbNmjP3cWZFURTf+MY3igsvvLCoqqoqZs+eXfznf/7n4F+77rrrioULFw6Z/93vfre45JJLiqqqquITn/hEsXHjxjHeMSOpnPP/8Ic/XETEEa/W1tax3zgjotzf//8/4XvmK/f8X3755aKhoaEolUrFRRddVHz9618vDh8+PMa7ZqSUc/7vvfde8ZWvfKW4+OKLi+rq6qK+vr744he/WPzv//7v2G+ck/KjH/3oqP8u//15L1y4sLjuuuuOWDNjxoyiqqqquOiii4p//dd/Lfu644rC/xsAAOCD75R/xxcAAMaC8AUAIAXhCwBACsIXAIAUhC8AACkIXwAAUhC+AACkIHwBAEhB+AIAkILwBQAgBeELAEAKwhcAgBT+HzgRrWHQVr4zAAAAAElFTkSuQmCC", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -568,7 +569,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.3" + "version": "3.11.4" } }, "nbformat": 4, diff --git a/_sources/content/02-supply/04-market-equilibria.ipynb b/_sources/content/02-supply/04-market-equilibria.ipynb index 396adfd..73319d2 100644 --- a/_sources/content/02-supply/04-market-equilibria.ipynb +++ b/_sources/content/02-supply/04-market-equilibria.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 6, + "execution_count": 2, "metadata": { "tags": [ "remove_cell" @@ -16,7 +16,7 @@ "import matplotlib.pyplot as plt\n", "import matplotlib as mpl\n", "import matplotlib.patches as patches\n", - "plt.style.use('seaborn-muted')\n", + "# plt.style.use('seaborn-muted')\n", "mpl.rcParams['figure.dpi'] = 200\n", "%matplotlib inline\n", "\n", @@ -42,7 +42,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": null, "metadata": { "cell_id": "5a6c6746-bad6-466e-8c18-bc16f5fad344" }, @@ -154,7 +154,7 @@ }, { "cell_type": "code", - "execution_count": 52, + "execution_count": null, "metadata": { "cell_id": "b75d49b7-7c34-4c8a-a844-e16f26940df7" }, @@ -239,7 +239,7 @@ }, { "cell_type": "code", - "execution_count": 53, + "execution_count": null, "metadata": { "cell_id": "254b8839-cf4f-460b-a597-c267ad6ebb84" }, @@ -330,7 +330,7 @@ }, { "cell_type": "code", - "execution_count": 50, + "execution_count": null, "metadata": { "cell_id": "b7a2e982-d79e-4094-a295-d8edea5e3c12" }, @@ -375,7 +375,7 @@ }, { "cell_type": "code", - "execution_count": 34, + "execution_count": null, "metadata": { "cell_id": "42bf023c-0b5a-4f12-8158-dcf58f137185" }, @@ -415,7 +415,7 @@ }, { "cell_type": "code", - "execution_count": 35, + "execution_count": null, "metadata": { "cell_id": "d06b28f9-96eb-480c-8a10-3ba4981be472" }, @@ -455,7 +455,7 @@ }, { "cell_type": "code", - "execution_count": 36, + "execution_count": null, "metadata": { "cell_id": "f9654557-6972-4ba9-948b-f7ff7a48a61f" }, @@ -504,7 +504,7 @@ }, { "cell_type": "code", - "execution_count": 37, + "execution_count": null, "metadata": {}, "outputs": [ { @@ -548,7 +548,7 @@ }, { "cell_type": "code", - "execution_count": 38, + "execution_count": null, "metadata": { "cell_id": "6e28af89-0a83-465e-bb24-d7e66c9b978e" }, @@ -596,7 +596,7 @@ }, { "cell_type": "code", - "execution_count": 49, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -623,7 +623,7 @@ }, { "cell_type": "code", - "execution_count": 48, + "execution_count": null, "metadata": { "cell_id": "f5d296fd-a13d-4b0b-a22d-a22806cb498c", "tags": [ @@ -736,7 +736,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.5" + "version": "3.11.4" } }, "nbformat": 4, diff --git a/_sources/content/06-inequality/inequality.ipynb b/_sources/content/06-inequality/inequality.ipynb index 5fb1c9e..75faf85 100644 --- a/_sources/content/06-inequality/inequality.ipynb +++ b/_sources/content/06-inequality/inequality.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 2, + "execution_count": 5, "metadata": { "tags": [ "remove_cell" @@ -15,7 +15,7 @@ "import matplotlib.pyplot as plt\n", "from datascience import *\n", "%matplotlib inline\n", - "plt.style.use('seaborn-muted')" + "plt.style.use('seaborn-v0_8-muted')" ] }, { @@ -67,7 +67,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ @@ -83,7 +83,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 7, "metadata": {}, "outputs": [ { @@ -145,7 +145,7 @@ "... (1 rows omitted)" ] }, - "execution_count": 5, + "execution_count": 7, "metadata": {}, "output_type": "execute_result" } @@ -170,7 +170,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 8, "metadata": { "tags": [ "remove_input" @@ -179,14 +179,12 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqEAAAGuCAYAAACgHN8WAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzde5iN9f7/8efbyGGSQ0KpdN7NGAkplaKirfNBSfWrpGTWOEYioVKMw0iEISVkR2wJETnlUGScz0OOJTQOGWEGM/P5/THTd9u2wyyzZu6ZNa/Hdc01a933vWa9rn3tq159Pvfnc5tzDhERERGRnFTA6wAiIiIikv+ohIqIiIhIjlMJFREREZEcpxIqIiIiIjlOJVREREREclxBrwME2iWXXOKuvvpqr2OIiIiI5HvLli3b55wrc7pzQVdCr776apYuXep1DBEREZF8z8x2nOmcpuNFREREJMephIqIiIhIjlMJFREREZEcpxIqIiIiIjlOJVREREREcpxKqIiIiIjkOJVQEREREclxKqEiIiIikuNUQkVEREQkx6mEioiIiEiOUwkVERERkRynEioiIiIiOU4lVERERERyXI6WUDP73MwSzGztSccuNrOZZvZLxu9SGcfNzD42s81mttrMquVkVhEREZFgknjoML9s20niocNeRwFyfiR0BPDAKcfeAmY7524AZme8B3gQuCHjpykwOIcyioiIiASVeT+v4p/Pt+GZph15uPHbzF+82utIOVtCnXPzgQOnHH4cGJnxeiTwxEnHv3DpfgZKmtllOZNUREREJDj8efAQrzZry/KZo/h17XwKF7qAt3t/5vmIaG64J7Scc253xus9QLmM15cDv5103c6MY//DzJqa2VIzW7p3797sSyoiIiKSh6xdu5a6deuyZcUcipcqy0131CO0aBFSUtNI2H/Q02y5oYT+H+ecA9x5fG6oc666c656mTJlsiGZiIiISN5x9OhR3nrrLapWrcr2bVu4vlodbr7naS4qWYajSckUDClA2dIlPc2YG0roH39Ps2f8Tsg4/jtw5UnXXZFxTERERETOYOrUqURERNCrVy9eeOEFNm7cyLDYvhw/kcLeA4kcO36C6PZNKFG8mKc5C3r67ekmA42Anhm/J510vIWZfQXUABJPmrYXERERkZP8/vvvtG7dmq+//pqwsDDmzp1L7dq1Aah1ySVMHR5Nwv6DlC1d0vMCCjlcQs1sDHAPcImZ7QTeJb18jjOzV4EdwDMZl38HPARsBo4CjXMyq4iIiEhekJqaysCBA+ncuTMpKSl069aNdu3aUbhw4f+6rkTxYrmifP4tR0uoc+65M5yqc5prHdA8exOJiIiI5F1Lly4lMjKS5cuX889//pPY2Fiuu+46r2NlSm64J1RERERE/JCYmEjLli257bbb2LVrF1999RXTp0/PMwUUcsc9oSIiIiKSCc45xo8fT+vWrdmzZw9RUVF0796dkiW9Xel+PjQSKiIiIpIHbN26lYcffphnnnmGcuXK8fPPPzNo0KA8WUBBJVREREQkVzt+/Dg9evQgIiKC+fPn07dvX5YsWcJtt93mdbQs0XS8iIiISC61YMECfD4f69ev58knn6R///5ceeWV5/5gHqCRUBEREZFcZv/+/bz66qvUqlWLw4cPM3nyZCZMmBA0BRRUQkVERERyDeccI0aM4MYbb2TkyJG8+eabrF+/nkcffdTraAGn6XgRERGRXGDDhg1ERUUxb9487rjjDoYMGULlypW9jpVtNBIqIiIi4qGkpCS6dOnCzTffzKpVq/jkk0/48ccfg7qAgkZCRURERDwzY8YMmjVrxpYtW3jhhRfo06cP5cqV8zpWjtBIqIiIiEgO27NnD8899xz16tWjQIECzJo1i1GjRuWbAgoqoSIiIiI5JjU1ldjYWMLCwpgwYQLvvvsuq1evpk6dOl5Hy3GajhcRERHJAStXriQyMpK4uDjuu+8+Bg8ezD/+8Q+vY3lGI6EiIiIi2ejw4cO0bduWW265hW3btjFq1ChmzZqVrwsoaCRUREREJNtMnDiRli1bsnPnTpo2bUrPnj0pVaqU17FyBY2EioiIiATYjh07ePzxx3nyyScpVaoUP/30E5988okK6ElUQkVEREQC5MSJE/Tp04eKFSsya9YsevfuzbJly7jzzju9jpbraDpeREREJAAWLVqEz+dj9erVPPLIIwwcOJCrrrrK61i5lkZCRURERLLgzz//xOfzUbNmTfbv38+ECROYPHmyCug5qISKiIiInAfnHF9++SVhYWF8+umnvP7662zYsIEnn3wSM/M6Xq6n6XgRERERP/3yyy80a9aMWbNmceuttzJ9+nSqVq3qdaw8RSOhIiIiIpl07Ngxunbtyk033URcXByDBg1i0aJFKqDnQSOhIiIiIpkwZ84coqKi2LRpEw0bNuSjjz7isssu8zpWnqWRUBEREZGzSEhI4MUXX6ROnTqkpKQwffp0vvrqKxXQLFIJFRERETmNtLQ0Pv30U8LCwhg7diydOnVi7dq11KtXz+toQUHT8SIiIiKnWLNmDT6fj4ULF1KrVi0GDx5MxYoVvY4VVDQSKiIiIpLhyJEjdOjQgWrVqrFx40Y+//xz5s6dqwKaDTQSKiIiIgJMmTKFFi1asGPHDho3bkzv3r255JJLvI4VtDQSKiIiIvnazp07eeqpp3j00UcJDQ1l3rx5fP755yqg2UwlVERERPKllJQU+vXrR3h4ON999x3du3dn5cqV1KpVy+to+YKm40VERCTfWbJkCZGRkaxYsYJ69eoxaNAgrrvuOq9j5SsaCRUREZF8IzExkRYtWlCjRg12797N2LFjmTZtmgqoB1RCRUREJOg55xg3bhzh4eHExsbSvHlz4uPjeeaZZzAzr+PlS5qOFxERkaC2detWmjdvzvTp06latSqTJk3i1ltv9TpWvqeRUBEREQlKx48fJzo6moiICH788Uf69etHXFycCmguoZFQERERCToLFizA5/Oxfv166tevT//+/bniiiu8jiUn0UioiIiIBI19+/bxyiuvUKtWLY4cOcK3337L119/rQKaC6mEioiISJ7nnGPEiBGEhYUxatQo2rdvz7p163jkkUe8jiZnoOl4ERERydM2bNiAz+dj/vz53HnnnQwZMoSbbrrJ61hyDhoJFRERkTwpKSmJzp07c/PNN7NmzRqGDh3KggULVEDzCI2EioiISJ7z/fff06xZM7Zu3cqLL75Inz59KFu2rNexxA8aCRUREZE8Y/fu3Tz77LM88MADFCxYkNmzZ/PFF1+ogOZBKqEiIiKS66WmpjJo0CDCwsKYOHEiXbt2ZfXq1dx3331eR5PzpOl4ERERydVWrFhBZGQkS5YsoU6dOgwePJgbbrjB61iSRRoJFRERkVzpr7/+ok2bNlSvXp0dO3bw5ZdfMnPmTBXQIKGRUBEREclVnHNMnDiRVq1asXPnTiIjI+nRowelSpXyOpoEkEZCRUREJNfYsWMHjz32GPXr1+fiiy9m4cKFDBkyRAU0CKmEioiIiOdOnDhBTEwMFStWZM6cOcTExLB06VLuuOMOr6NJNtF0vIiIiHhq4cKF+Hw+1qxZw2OPPcaAAQOoUKGC17Ekm/lVQs2sEFANKA8UBfYBG51z2wMfTURERILZgQMH6NixI0OHDuWKK67gm2++4YknnvA6luSQc5ZQMwsBngSaALWBQoCddIkzs9+BMcCnzrnN2RFUREREgoNzji+//JK2bduyf/9+2rRpQ9euXbnooou8jiY56Kwl1MyeBnoAVwLfA52BFcBeIAm4GLgGqEF6UW1rZiOAzs65P7IvtoiIiORFmzZtIioqijlz5nDbbbfx/fffU7VqVa9jiQfONRL6MdAbGOGcO3iGa+KAsaQX0BpAB6Ap8EHAUoqIiEielpycTM+ePenRowdFihRh0KBBREZGEhIS4nU08ci5Sui1zrnkzP4x59xioL6ZFclaLBEREQkWs2fPJioqil9++YVnn32Wvn37ctlll3kdSzx21i2a/CmggficiIiIBI8//viDF154gbp165Kamsr06dMZM2aMCqgAWdiiyczuBR4gfZHS98652QFLJSIiInlWWloan332GR06dODIkSN07tyZt99+m6JFi3odTXKR89qs3sxaAJOA64DKwDQzaxPIYCIiIpL3rFmzhrvuuovIyEhuvvlmVq1axQcffKACKv/jrCXUzM50vg1wt3PuaefcA8DrQNtAhxMREZG84ciRI7Rv356qVauyadMmRowYwQ8//EB4eLjX0SSXOtdI6LKMFe+nuhD47aT3v5O+eb2IiIjkM1OmTCEiIoKYmBgaNWrExo0badSoEWZ27g9LvnWue0LHADPMbCzQwTn3Z8bxicB0MxtJeiH9e3peRERE8omdO3fSqlUrvvnmGypWrMj8+fO5++67vY4lecS5Vsf3BiJI35R+o5k1zjjVBpgJNAaeAUYDrbISxMzamNk6M1trZmPMrIiZXWNmi81ss5mNzXhsqIiIiHgoJSWFfv36ER4ezrRp04iOjmbFihUqoOIXc85l7kKzB0jfvD4B8Dnn1gYshNnlwI9ARedckpmNA74DHgImOOe+MrMhwCrn3OCz/a3q1au7pUuXBiqaiIiInCQuLg6fz8eKFSt48MEHGThwINdee63XsSSXMrNlzrnqpzuX6dXxzrnpQCVgBrDQzPqYWWiAMkL6rQFFzawgEArsBu4DxmecHwk8EcDvExERkUxKTEykRYsW3H777ezZs4dx48YxdepUFVA5b+csoWZ2nZlFmllroIpz7n2gChBG+hT9U1kN4Zz7HegD/Ep6+UwElgEHnXMpGZftBC4/Q8amZrbUzJbu3bs3q3FEREQkg3OOsWPHEhYWRmxsLC1atCA+Pp4GDRpo4ZFkybm2aHoGWA+0Bl4EfjKzHs65rc65R4CWwIdmNt3Mzvs/hcysFPA4cA1QnvTFTg9k9vPOuaHOuerOueplypQ53xgiIiJyki1btvDggw/y7LPPUr58eeLi4vj4448pXry419EkCJxrJDQa6Oqcq5gxn/8I0D6jNOKcmwiEAyuA5VnIURfY5pzb65w7AUwAagIlM6bnAa4gfSsoERERyUbHjx+ne/fuVKpUiYULF9K/f3/i4uKoXv20t/aJnJdzldBSwKqT3q8i/TGdJf8+4JxLcs51BE63n2hm/Qrcbmahlj62X4f0EdgfgKczrmmEtoESERHJVvPmzaNKlSp07tyZhx9+mA0bNtCqVStCQkK8jiZB5lwldCIwyMzamVlzYDKw2jm37dQLnXMbzzeEc24x6QuQlgNrMnINBToAbc1sM1AaGHa+3yEiIiJntm/fPho3bsw999xDUlISU6ZMYfz48Vx++WmXY4hk2Vm3aDKzokBH0u/PLAQsJn16flfOxPOftmgSERHJPOccw4cP58033+TQoUO88cYbvPPOO4SGBnIDHMmvzrZF01mfmOScSwLeyfgRERGRILJ+/Xp8Ph8LFiygZs2aDBkyhEqVKnkdS/KJTO8TKiIiIsHh6NGjdOrUiSpVqrB27Vo+/fRT5s+frwIqOepcWzRNNrOqmf1jGY/abGtmvqxHExERkUCbPn06lSpVIjo6mueee46NGzfSpEkTChTQuJTkrHP9P2478HPG89tbmVm1k7ZMAsDMypvZE2Y2jPSN5l8la9s1iYiISIDt2rWLhg0b8uCDD1KoUCHmzJnDyJEj0f7a4pWzllDnXCugIhAHvAcsAZLN7ICZ7TazJOA30vf1jABeByo75+KyNbWIiIhkSmpqKgMHDiQ8PJxJkybx/vvvs2rVKu69916vo0k+d9aFSQDOuS1ASzN7A7iD9P1AywNFgP1APDDfObcjO4OKiIiIf5YvX05kZCRLly6lbt26xMbGcsMNN3gdSwTIRAn9m3PuODAv40dERERyqb/++osuXbowYMAAypQpw+jRo3n22Wf1rHfJVTJdQkVERCR3c84xYcIEWrduza5du/D5fERHR1OyZMlzf1gkh2kpnIiISBDYvn07jz76KE8//TSlS5dm4cKFxMbGqoD6IfHQYX7ZtpPEQ4e9jpIvaCRUREQkDztx4gR9+/ala9eumBl9+vShdevWFCyof8X7Y97Pq+gUM4zU1DRCQgoQ3b4JtWpU9jpWUNNIqIiISB61cOFCqlWrxltvvcX999/Phg0beOONN1RA/ZR46DCdYoZRuNAFXHJxCQoXuoC3e3+mEdFsphIqIiKSxxw4cICmTZtSs2ZNEhMTmThxIpMmTaJChQpeR8uTEvYfJDU1jdCiRQAILVqElNQ0EvYf9DhZcFMJFRERySOcc4waNYqwsDA+//xz2rZty/r163n88ce9jpanlS1dkpCQAhxNSgbgaFIyBUMKULa07qfNTn6VUDOramYTzGyfmaWYWbWM49Fm9kD2RBQREZGNGzdSt25dXnrpJa699lqWLl3Khx9+SLFixbyOlueVKF6M6PZNOHb8BHsPJHLs+Ami2zehRHH9b5udMn3TiJndBcwCtgKjgRYnnU4DfMD0gKYTERHJ55KTk+nRowc9e/akaNGixMbG0rRpU0JCQryOFlRq1ajM1OHRJOw/SNnSJVVAc4A/dy73BL4HngBC+O8Suhx4KYC5RERE8r1Zs2bRrFkzfvnlF5577jn69u3LpZde6nWsoFWieDGVzxzkz3R8NWCwc84B7pRz+4AyAUslIiKSj/3xxx+88MIL3H///aSlpfH9998zevRoFVAJKv6U0GQg9AznLgMSsx5HREQk/0pLS+OTTz4hLCyMcePG0aVLF9asWcM///lPr6OJBJw/JfRH4HUzO/kmlL9HRF8F5gQslYiISD6zevVqatasic/no0qVKqxevZr333+fokWLeh1NJFv4U0K7kD4lvyrjtQMamdkPwO1A18DHExERCW5HjhzhzTffpFq1amzevJmRI0cyZ84cwsLCvI4mkq0yXUKdc6uAWsAfQCfA+M/ipNrOuY2BjyciIhK8Jk+eTMWKFenTpw+NGzcmPj6el156CTPzOppItvPruV7OueVAHTMrAlwMHHTOHc2WZCIiIkHqt99+o1WrVkycOJGIiAgWLFjAXXfd5XUskRyVqZFQMytkZgfM7DEA51yyc26XCqiIiEjmpaSk0LdvX8LDw/n+++/p2bMny5cvVwGVfClTI6HOueNmlkL6CnkRERHxU1xcHJGRkaxcuZKHHnqIgQMHcs0113gdS8Qz/ixMmgg8nV1BREREgtHBgwdp1qwZt99+OwkJCfz73/9mypQpKqCS7/lzT+g04GMzG096Id3NKZvWO+e0TZOIiAjgnGPs2LG0adOGhIQEWrZsyQcffEDx4sW9jiaSK/hTQr/O+F0/4+dvjvSV8o70x3mKiIjka5s3b6Z58+bMmDGDW265hSlTpnDLLbd4HUskV/GnhN6bbSlERESCwLFjx4iJiaFbt24UKlSIjz/+mGbNmhESojEakVNluoQ65+ZlZxAREZG8bO7cuURFRREfH0+DBg346KOPuPzyy72OJZJr+bMwSURERE6xd+9eXn75Ze69916Sk5OZOnUq48aNUwEVOQe/Nqs3swigCXAjUOSU0845VydQwURERHKztLQ0hg8fTvv27Tl06BAdO3akc+fOhIaGeh1NJE/IdAk1sxrAPGA7cAOwGigFVAB2ApuzIZ+IiEius27dOnw+Hz/++CN33XUXQ4YMISIiwutYInmKP9Px0cAEIIL01fCvOueuBuqSviq+W8DTiYiI5CJHjx6lY8eOVKlShfXr1zNs2DDmzZunAipyHvyZjq8MNOI/e4OGQPreoGbWDegB1AhsPBERkdxh2rRpNG/enG3bttGoUSNiYmIoU6aM17FE8ix/RkILAUecc2nAAeCyk85tBCoFMpiIiEhusGvXLho0aMBDDz1EoUKF+OGHHxgxYoQKqEgW+VNCNwN/L/VbDbxiZgXMrADQGNgT6HAiIiJeSU1NZcCAAYSFhfHtt9/ywQcfsGrVKu655x6vo4kEBX+m478F7gFGk35/6FTgEJAKFANaBTqciIiIF5YvX05kZCRLly7l/vvvJzY2luuvv97rWCJBxZ/N6t876fUsM7sdeAoIBaY752YEPp6IiEjOOXToEF26dGHgwIGUKVOGMWPG0LBhQ8zM62giQcevfUJP5pxbAawIYBYRERFPOOeYMGECrVq1Yvfu3fh8PqKjoylZsqTX0USClp6YJCIi+dr27dt55JFHePrppylTpgyLFi0iNjZWBVQkm2W6hJpZITN718zizeyomaWe8pOSnUFFREQC6cSJE/Tq1YuKFSsyb948PvzwQ5YuXUqNGtptUCQn+DMdHwM0B6aRvmn9sWxJJCIiks1++uknIiMjWbduHU888QT9+/enQoUKXscSyVf8KaFPA+8657pnVxgREZHsdODAATp06MBnn33GlVdeyaRJk3jssce8jiWSL/lzT2gxYFF2BREREckuzjm++OILbrzxRoYPH067du1Yv369CqiIh/wpod8CtbIriIiISHbYuHEjderUoVGjRlx//fUsW7aMmJgYihUr5nU0kXztrNPxZnbtSW8HAF+YWRrwHemP7vwvzrmtgY0nIiJyfpKTk4mOjqZXr16EhoYyZMgQXnvtNQoU0MYwIrnBue4J3Qy4k94b8B7w7hmuDwlAJhERkSyZOXMmzZo1Y/PmzTz//PP07duXcuXKeR1LRE5yrhLaOEdSiIiIBMCePXto27YtY8aM4frrr2fmzJnUrVvX61gichpnLaHOuZE5FUREROR8paWlMXToUN566y2SkpJ455136NixI0WKFPE6moicwXk/ttPMSgA3AHucczsDF0lERCTzVq1aRWRkJIsXL+bee+9l8ODB3HjjjV7HEpFzOOvd2WZWz8x6nub420ACsBjYYWajzey8C62IiIi/Dh8+TLt27bjlllvYunUrX3zxBbNnz1YBFckjzlUcffz3wiTM7H6gG7AG+AwIByKBZcCH2ZBRRETkv0yaNImWLVvy22+/8dprr9GzZ08uvvhir2OJiB/OVUKrAh+ccqwxkAzUc87tATAzgOdRCRURkWz066+/0qpVKyZNmkSlSpUYM2YMNWvW9DqWiJyHc22WVhbYcsqx+4Ef/y6gGaYC/whkMBERkb+lpKTw4YcfUrFiRWbMmEGvXr1Yvny5CqhIHnaukdC/gAv/fmNmNwClgZ9Pue4Q2iNURESywc8//4zP52PVqlU8/PDDDBw4kKuvvtrrWCKSRecaCY0HHj/p/eOk3yM645TrrgH+CGAuERHJ5w4ePEhUVBR33nkn+/bt4+uvv+bbb79VARUJEucaCf0ImGBmF5NeMl8mfUHST6dc9xCwKuDpREQk33HO8dVXX9GmTRv27t1Lq1at+OCDD7jooou8jiYiAXTWkVDn3ETgdeBW4CXSp+EbOOf+b8W8mV0K1CX9efIiIiLnbfPmzdSrV4/nn3+eK6+8kiVLltCvXz8VUJEgdM69PZ1zHwMfn+X8HuCSQIYSEZH85dixY/Tu3Zvu3btTqFAhBgwYQFRUFCEhWm4gEqy0wbyIiHhq7ty5+Hw+Nm7cyDPPPMNHH31E+fLlvY4lItnsXAuTcoyZlTSz8WYWb2YbzOwOM7vYzGaa2S8Zv0t5nVNERAJj7969NGrUiHvvvZfjx48zbdo0xo4dqwIqkk/kmhIK9AemO+fCgJuBDcBbwGzn3A3A7Iz3IiKSh6WlpTFs2DDCwsIYPXo0HTt2ZO3atTzwwANeRxORHJQrSqiZlQBqAcMAnHPHnXMHSd8SamTGZSOBJ7xJKCIigbBu3Tpq165NkyZNiIiIYOXKlURHRxMaGup1NBHJYbmihJK+z+heYLiZrTCzz8zsQqCcc253xjV7gHKn+7CZNTWzpWa2dO/evTkUWUREMuvo0aN07NiRKlWqsH79eoYNG8bcuXOJiIjwOpr4IfHQYX7ZtpPEQ4e9jiJBILcsTCoIVANaOucWm1l/Tpl6d845M3On+7BzbigwFKB69eqnvUZERLzx3Xff0bx5c7Zv387LL79MTEwMl1yiTVXymnk/r6JTzDBSU9MICSlAdPsm1KpR2etYkof5NRJqZlXNbIKZ7TOzFDOrlnE82syycjPPTmCnc25xxvvxpJfSP8zssozvuAxIyMJ3iIhIDvr9999p0KABDz/8MEWKFGHu3LkMHz5cBTQPSjx0mE4xwyhc6AIuubgEhQtdwNu9P9OIqGRJpkuomd0FLALCgNGnfDYN8J1viIy9Rn8zsxszDtUB1gOTgUYZxxoBk873O0REJGekpqby8ccfEx4ezpQpU+jWrRsrV66kdu3aXkeT85Sw/yCpqWmEFi0CQGjRIqSkppGw/6DHySQv82c6vifwPemLg0KAFiedW076E5WyoiXwpZkVArYCjUkvuuPM7FVgB/BMFr9DRESy0dKlS/H5fCxbtox//vOfxMbGct1113kdS7KobOmShIQU4GhSMqFFi3A0KZmCIQUoW7qk19EkD/NnOr4aMDjjkZ2n3ne5DyiTlSDOuZXOuerOucrOuSecc3865/Y75+o4525wztV1zh3IyneIiEj2OHToEK1ataJGjRr8/vvvfPXVV0yfPl0FNEiUKF6M6PZNOHb8BHsPJHLs+Ami2zehRPFiXkeTPMyfkdBk4Ex7aFwGJGY9joiI5CXOOcaPH0/r1q3Zs2cPUVFRdO/enZIlNUIWbGrVqMzU4dEk7D9I2dIlVUAly/wpoT8Cr5vZyfdl/j0i+iowJ2CpREQk19u2bRvNmzdn2rRpVKlShYkTJ3Lbbbd5HUuyUYnixVQ+JWD8mY7vQvqU/KqM1w5oZGY/ALcDXQMfT0REcpvjx4/Ts2dPIiIimD9/Pn379mXJkiUqoCLil0yXUOfcKtKfavQH0Akw/rM4qbZzbmPg44mISG7y448/Uq1aNTp27MgDDzzAhg0baNOmDQUL5pZtp0Ukr/Brn1Dn3HLnXB3gIuAKoLhz7l7n3IpsSSciIrnC/v37adKkCXfffTd//fUXkydPZsKECVx55ZVeRxORPOq8HtvpnEt2zu1yzh0NdCAREdiMtGUAACAASURBVMk9nHOMHDmSsLAwRowYwZtvvsn69et59NFHvY4mInmcX/MnZhYOPA1cCRQ55bRzzjX630+JiEheFB8fj8/nY968edxxxx0MGTKEypX1mEYRCYxMl1Azewn4nPQFSQnA8VMu0TPbRUSCQFJSEtHR0fTq1YsLL7yQTz75hCZNmlCgwHlNnomInJY/I6FdSH9s5qvOOT2nS0QkCM2YMYNmzZqxZcsWXnjhBfr06UO5cuW8jiUiQcif/6y9FIhVARURCT579uzhueeeo169ehQoUIBZs2YxatQoFVARyTb+lNCfgPDsCiIiIjkvNTWV2NhYwsLCmDBhAu+++y6rV6+mTp06XkcTkSDnz3R8C2CCme0HZgB/nnqBcy4tUMFERCR7rVy5ksjISOLi4rjvvvsYPHgw//jHP7yOJSL5hD8joTuBFcC/SF+YdOKUn1MXKomISC50+PBh3njjDapXr862bdsYNWoUs2bNUgEVkRzlz0jop0BDYCIQj0qniEieM3HiRFq2bMnOnTtp2rQpPXv2pFSpUl7HEpF8yJ8S+jjwpnOuf3aFERGR7PHrr7/SsmVLJk+ezE033cTYsWO58847vY4lIvmYP9PxR4D12RVEREQC78SJE/Tp04fw8HBmzZpF7969WbZsmQqoiHjOn5HQ4cDzwMxsyiIiIgH0888/ExkZyerVq3nkkUcYOHAgV111ldexREQA/0roDuA5M5sJTOf0q+M/D1QwERE5P3/++Sdvv/02n3zyCeXLl2fChAk88cQTmJnX0URE/o8/JXRwxu+rgNNtIOdIf6yniIh4wDnHmDFjaNOmDfv27aN169a8//77XHTRRV5HExH5H/6U0GuyLYWIiGTJL7/8QrNmzZg1axbVq1dn2rRpVKtWzetYIiJnlOkS6pzbkZ1BRETEf8eOHaNXr15ER0dTuHBhBg4ciM/nIyQkxOtoIiJn5c9IKABmVgmoDVwMHADmOufWBTqYiIic3Q8//IDP52PTpk00bNiQvn37Ur58ea9jiYhkSqZLqJkVBEYAzwEn393uzGw08LJzLjWw8URE5FQJCQm0a9eOUaNGce211zJt2jQeeOABr2OJiPjFn31C3wWeAd4h/f7Qohm/3yH9SUrvBDydiIj8n7S0ND799FPCwsL46quv6NSpE2vXrlUBFZE8yZ/p+BeAbs657icd2wF0N7MQoDHpRVVERAJs7dq1+Hw+fvrpJ2rVqsXgwYOpWLGi17FERM6bPyOh5YGFZzi3MOO8iIgE0JEjR+jQoQNVq1YlPj6ezz//nLlz56qAikie508J3QXUPMO5OzPOi4hIgEydOpWIiAh69+7Niy++SHx8PI0bN9am8yISFPyZjv8S6GRmaRmvdwOXAs8CnYBegY8nIpL/7Ny5k9atWzNhwgTCw8OZN28etWrV8jqWiEhA+VNC3wOuBbpmvP6bAWOA9wOWSkQkH0pJSWHQoEF07tyZlJQUunfvTrt27ShUqJDX0UREAs6fzepTgOfNrDtQi//sEzpf+4SKiGTNkiVL8Pl8LF++nHr16jFo0CCuu+46r2OJiGQbvzerzyicKp0iIgGQmJhI586dGTRoEOXKlWPs2LE0aNBA932KSNDL9MIkM2tsZu+d4dx7ZtYoYKlERIKcc45x48YRHh7OoEGDaN68OfHx8TzzzDMqoCKSL/izOr41sP8M5xKA17MeR0Qk+G3dupWHHnqIhg0bcumll7J48WIGDBhAiRIlvI4mIpJj/Cmh13PmafgNgG5eEhE5i+PHjxMdHU1ERAQ//vgj/fr1Iy4ujltvvdXraCIiOc6fe0JTgEvOcK5MALKIiAStBQsW4PP5WL9+PfXr16d///5cccUVXscSEfGMPyOhcYDvDOd8wJKsxxERCS779+/nlVdeoVatWhw5coRvv/2Wr7/+WgVURPI9f0ZCuwOzzGwx8BnwO3A50ASoBtwf+HgiInmTc46RI0fSrl07EhMTad++Pe+88w4XXnih19FERHIFf/YJnWdmTwP9gE9OOrUdeMo5Nzew0URE8qYNGzYQFRXFvHnzuPPOOxkyZAg33XST17FERHIVv/YJdc5NAiaZ2Y1AaWCfc25TtiQTEcljkpKS6N69O71796ZYsWIMHTqUV199lQIF/LnzSUQkf/B7s3oA59zGQAcREcnLZsyYQbNmzdiyZQsvvvgiffr0oWzZsl7HEhHJtfwqoWZWHHgIqAAUOeW0c859EKhgIiJ5we7du2nTpg1jx47lH//4B7Nnz+a+++7zOpaISK6X6RJqZjWBb4GSZ7jEASqhIpIvpKam8sknn9CxY0eOHTtG165d6dChA4ULF/Y6mohInuDPSGg/0hchvQascc4dz5ZEIiK53IoVK/D5fMTFxVGnTh0GDx7MDTfc4HUsEZE8xZ+75cOBzs65ZSqgIpIf/fXXX7Rt25bq1auzfft2vvzyS2bOnKkCKv8l8dBhftm2k8RDh72OIpKr+TMS+iugeSYRyXecc0ycOJFWrVqxc+dOIiMj6dGjB6VKlfI6muQy835eRaeYYaSmphESUoDo9k2oVaOy17FEciV/RkK7Am9lLE4SEckXduzYweOPP079+vUpVaoUCxcuZMiQISqg8j8SDx2mU8wwChe6gEsuLkHhQhfwdu/PNCIqcgb+jIQ+ApQDtpnZIuDAKeedc65RwJKJiHjoxIkT9OvXj/feew+AmJgYWrduzQUXXOBtMMm1EvYfJDU1jdCi6ZvHhBYtwpGkYyTsP0iJ4sU8TieS+/hTQu8ifQX8ISDiNOddQBKJiHhs0aJFREZGsmbNGh599FEGDBjAVVdd5XUsyeXKli5JSEgBjiYlE1q0CEeTkikYUoCypc+0qYxI/pbp6Xjn3DXn+Lk2O4OKiGS3P//8k8jISO68807+/PNPvvnmGyZNmqQCKplSongxots34djxE+w9kMix4yeIbt9Eo6AiZ3BeT0wSEQkmzjlGjx5N27Zt2bdvH23atKFr165cdNFFXkeTPKZWjcpMHR5Nwv6DlC1dUgVU5CzOWkLNzK8HHjvn0rIWR0QkZ23atIlmzZoxe/ZsbrvtNqZPn07VqlW9jiV5WInixVQ+RTLhXCUzBTiRyR/tHSoieUZycjJdu3blpptuYsmSJQwaNIiFCxeqgIqI5JBzTce/jxYciUiQmTNnDlFRUWzatIlnn32Wvn37ctlll3kdS0QkXzlrCXXOvZdDOUREsl1CQgJvvPEG//rXv7j22muZPn069erV8zqWiEi+5Nc9nyIieVFaWhpDhw7lxhtvZOzYsXTu3Jm1a9eqgIqIeEir40UkqK1Zs4bIyEgWLVpE7dq1GTx4MOHh4V7HEhHJ9zQSKiJB6ciRI7Rv356qVauyadMmRowYwQ8//KACKiKSS2gkVESCzpQpU2jRogU7duzglVdeoXfv3pQuXdrrWCIichKNhIpI0Ni5cyf169fn0Ucf5cILL2T+/PkMGzZMBVREJBdSCRWRPC8lJYV+/foRHh7OtGnTiI6OZsWKFdx9991eRxMRkTPwq4Sa2eVm1tfMlprZVjOrlHH8dTOrkdUwZhZiZivMbErG+2vMbLGZbTazsWZWKKvfISLBZcmSJdx22220adOGu+++m3Xr1tGxY0cKFdI/LkREcrNMl1AziwDWAC8Cu4CrgL//KX8V0DoAeVoDG0563wv4yDl3PfAn8GoAvkNEgkBiYiItWrSgRo0a7Nmzh3HjxjF16lSuvfZar6OJiEgm+DMS+iHpBfEaoD5gJ51bCNyelSBmdgXwMPBZxnsD7gPGZ1wyEngiK98hInmfc45x48YRHh5ObGwsLVq0ID4+ngYNGpD+jw0REckL/FkdfxfwnHPusJmFnHLuD+DSLGbpB7QHLsp4Xxo46JxLyXi/E7j8dB80s6ZAU4AKFSpkMYaI5FZbt26lefPmTJ8+nWrVqjF58mSqV6/udSwRETkP/oyEpp3l3CVA0vmGMLNHgATn3LLz+bxzbqhzrrpzrnqZMmXON4aI5FLHjx8nOjqaiIgIfvrpJ/r3709cXJwKqIhIHubPSGgc0Bj49jTnngF+ykKOmsBjZvYQUAQoDvQHSppZwYzR0CuA37PwHSKSB82fPx+fz8eGDRt46qmn6N+/P5dfftpJERERyUP8GQn9AHjUzGaQvjjJAXXNbCTwJND9fEM45zo6565wzl0NPAvMcc79P+AH4OmMyxoBk873O0Qkb9m3bx+vvPIKtWvXJikpiSlTpjB+/HgVUBGRIJHpEuqcm0f6wqBrgM9JX5jUE7gbeMI5tzgb8nUA2prZZtLvER2WDd8hIrmIc47hw4cTFhbGqFGj6NChA+vWrePhhx/2OpqIiASQX4/tdM5NBaaa2fVAWWC/c25jIAM55+YCczNebwVuC+TfF5Hca/369URFRTF//nxq1qzJkCFDqFSpktexREQkG/izT+jNf792zm12zi0MdAEVkfwpKSmJTp06UaVKFdasWcOnn37K/PnzVUBFRIKYPyOhK8xsDfAFMNo5tzubMolIPjJ9+nSaN2/O1q1beemll+jTpw/a5UJEJPj5szDpWWAH0AP41cy+N7P/Z2ah2RNNRILZ7t27adiwIQ8++CAFCxZkzpw5jBw5UgVURCSf8Gdh0jjn3GNAeaAtUBIYBewxs5FmVjebMopIEElNTWXQoEGEhYUxadIkunbtyurVq7n33nu9jiYiIjnIr4VJAM65fcAAYICZ3UD6dk1NgP93Pn9PRPKP5cuX4/P5WLJkCXXr1iU2NpYbbrjB61giIuIBf6bj/4uZFSV95fptpK+UTzn7J0Qkv/rrr79o06YNt956Kzt27ODLL79kxowZKqAiIvmYXyXU0t1vZl+Q/rz4UUAxoDlZf3a8iAQZ5xwTJkwgPDyc/v3707RpU+Lj43n++ecxM6/jiYiIhzI9fW5mfYDngMuALcCHwKiMvTxFRP7L9u3badmyJVOmTKFy5cqMHz+e22+/3etYIiKSS/hzD2djYBzpxXNhNuURkTzuxIkTfPTRR3Tt2hWAPn360Lp1awoW1C3jIiLyH/78W+Ey59zxbEsiInnewoULiYyMZO3atTz22GMMGDCAChUqeB1LRERyIX+2aFIBFZHTOnDgAE2bNqVmzZokJiYyceJEJk2apAIqIiJndNaRUDPbCjzpnFtlZtsAd5bLnXPuuoCmE5FczTnHv/71L9544w0OHDhA27Zt6dq1K8WKFfM6moiI5HLnmo6fBxw66fXZSqiI5CMbN26kWbNmzJkzhxo1ajBjxgyqVKnidSwREckjzlpCnXONT3r9cranEZFcLzk5mZ49e9KjRw+KFi1KbGwsTZs2JSQkxOtoIiKSh2T6nlAze8fMyp/h3GVm9k7gYolIbjR79mwqV65M165deeqpp4iPjycqKkoFVERE/ObPZvXvAlec4Vz5jPMiEoT++OMPXnjhBerWrUtaWhrff/89o0eP5tJL9YwK8V/iocP8sm0niYcOex1FRDzkzxZNZ3u8SSngWBaziEguk5aWxmeffUaHDh04cuQIXbp0oWPHjhQtWtTraJJHzft5FZ1ihpGamkZISAGi2zehVo3KXscSEQ+ca3X8PcB9Jx2KNLNHTrmsKPAwsC6w0UTES6tXr8bn87Fo0SLuueceBg8eTFhYmNexJA9LPHSYTjHDKFzoAkKLFuFoUjJv9/6MqcOjKVFcOyqI5DfnGgmtDXTOeO1If2rSqY4D64FWAcwlIh45cuQIXbt2pW/fvpQqVYqRI0fy4osv6lnvkmUJ+w+SmppGaNEiAIQWLcKRpGMk7D+oEiqSD531nlDnXFfnXAHnXAHSp+Nv//v9ST9FnHPVnHOLciayiGSXb7/9looVKxITE0Pjxo2Jj4/npZdeUgGVgChbuiQhIQU4mpQMwNGkZAqGFKBs6ZIeJxMRL/jzxKQCzrm47AwjIt747bffqF+/Po899hgXXXQRCxYs4NNPP6V06dJeR5MgUqJ4MaLbN+HY8RPsPZDIseMniG7fRKOgIvmUPwuT/o+ZlQWKnHrcOfdrlhOJSI5JSUlhwIABvPPOO6SmptKzZ0/atGlDoUKFvI4mQapWjcpMHR5Nwv6DlC1dUgVUJB/LdAk1swJANyASONPciTYLFMkj4uLiiIyMZOXKlTz00EMMHDiQa665xutYkg+UKF5M5VNE/Non9HWgOfAh6feHRpNeSrcBW4DXAp5ORAIuMTGR5s2bc/vtt5OQkMC///1vpkyZogIqIiI5yp8S2hh4H+iV8f4b59y7QDjwO1AhwNlEJICcc3z11VeEhYUxZMgQWrZsyYYNG3j66ae18EhERHKcPyX0WmCpcy4VSCF9f1CccyeAfsArgY8nIoGwZcsWHnjgAZ577jkuv/xy4uLi6N+/P8WLF/c6moiI5FP+lNBE/rMYaRdw40nnCgIXByqUiATGsWPH6NatG5UqVWLRokV8/PHHLF68mFtuucXraCIiks/5szp+BVAR+D7jp6uZJZE+KtodWB74eCJyvubNm4fP5yM+Pp4GDRrw0Ucfcfnll3sdS0REBPBvJLQfcDTj9bvAHuBLYCxwAdAisNFE5Hzs27ePl19+mXvuuYfk5GSmTp3KuHHjVEBFRCRXyfRIqHNu5kmv95jZbcB1QCiwIePeUBHxSFpaGiNGjODNN9/k0KFDvPXWW3Tp0oXQ0FCvo4mIiPyP89qsHsA554DNAcwiIudp3bp1REVFsWDBAmrWrMmQIUOoVKmS17FERETO6Kwl1Mxq+fPHnHPzsxZHRPxx9OhRunXrRkxMDMWLF+ezzz6jcePGFCjgz502IiIiOe9cI6FzAZeJv2MZ1+mJSSI5ZNq0aTRv3pxt27bRqFEjYmJiKFOmjNexREREMuVcJfTeHEkhIpm2a9cuXn/9df79739z44038sMPP3DPPfd4HUtERMQvZy2hzrl5ORVERM4uNTWV2NhYOnXqxPHjx/nggw948803KVy4sNfRRERE/HbeC5NEJOcsX76cyMhIli5dyv33309sbCzXX3+917FERETOW6ZLqJnNOcclzjlXJ4t5ROQkhw4dokuXLgwcOJAyZcowZswYGjZsqGe9i4hInufPSGgB/neRUmnSH9+5F9gUqFAi+Z1zjgkTJtCqVSt2796Nz+cjOjqakiVLeh1NREQkIPzZrP6e0x03s+uAiUB0gDKJ5Gvbt2+nRYsWTJ06lZtvvpkJEyZQo0YNr2OJiIgEVJY3E3TObQF6AjFZjyOSf504cYJevXpRsWJF5s6dy4cffsjSpUtVQEVEJCgFamHSXuAfAfpbIvnOTz/9hM/nY+3atTzxxBP079+fChUqeB1LREQk22R5JNTMSgNtgS1ZjyOSvxw4cIDXXnuNu+66i8TERCZNmsQ333yjAioiIkHPn9Xx2/jfhUmFgHIZr58KVCiRYOec41//+hdvvPEGBw4coF27drz77rsUK1bM62giIiI5wp/p+Hn8bwlNBnYA/864N1REzmHjxo1ERUXxww8/cPvttzNz5kxuvvlmr2OJiIjkKH9Wx7+cjTlEgl5ycjI9evSgZ8+ehIaGMmTIEF577TUKFMjyXTEiIiJ5jp6YJJIDZs2aRVRUFJs3b+b555+nb9++lCtX7twfFBERCVJ+lVAzCweeBq4Eipxy2jnnGgUqmEgw+OOPP2jbti2jR4/m+uuvZ+bMmdStW9frWCIiIp7zZ2HSS8DnpN8XmgAcP+WSU+8XFcm30tLSGDp0KG+99RZJSUm88847dOzYkSJFTv1vNxERkfzJn5HQLsAk4FXn3MFsyiOS561atQqfz8fPP//Mvffey+DBg7nxxhu9jiUiIpKr+LMi4lIgVgVU5PQOHz5Mu3btuOWWW9iyZQtffPEFs2fPVgEVERE5DX9K6E9AeHYFEcnLJk+eTMWKFfnwww955ZVXiI+P58UXX8TMvI4meVDiocP8sm0niYcOex1FRCTb+DMd3wKYYGb7gRnAn6de4JxLC1Qwkbzgt99+o2XLlkyaNIlKlSoxZswYatas6XUsycPm/byKTjHDSE1NIySkANHtm1CrRmWvY4mIBJw/I6E7gRXAv0hfmHTilJ9TFyqJBK2UlBT69u1LeHg4M2bMoFevXixfvlwFVLIk8dBhOsUMo3ChC7jk4hIULnQBb/f+TCOiIhKU/BkJ/RRoCEwE4lHplHxq8eLFREZGsmrVKh5++GEGDhzI1Vdf7XUsCQIJ+w+SmppGaNH0XRRCixbhSNIxEvYfpERxPdJVRIKLPyX0ceBN51z/7AojkpsdPHiQt99+myFDhlC+fHm+/vprnnzySd33KQFTtnRJQkIKcDQpmdCiRTialEzBkAKULV3S62giIgHnz3T8EWB9dgURya2cc4wZM4awsDA++eQTWrVqxYYNG6hfv74KqARUieLFiG7fhGPHT7D3QCLHjp8gun0TjYKKSFDyZyR0OPA8MDObsojkOps3b6ZZs2bMnDmT6tWrM3XqVG655RavY0kQq1WjMlOHR5Ow/yBlS5dUARWRoOVPCd0BPGdmM4HpnH51/OeBCibipWPHjtG7d2+6d+9OoUKFGDBgAFFRUYSEhHgdTfKBEsWLqXyKSNDzp4QOzvh9FVDnNOcd6Y/1FMnT5s6di8/nY+PGjTRo0IB+/fpRvnx5r2OJiIgEFX9K6DXZlkIkF9i7dy/t2rXjiy++4JprruG7777jwQcf9DqWiIhIUMp0CXXO7ciuEGZ2JfAFUI70EdWhzrn+ZnYxMBa4GtgOPOOc+5/bAESyIi0tjeHDh9O+fXsOHTpEx44d6dy5M6GhoV5HExERCVr+rI7PTinAG865isDtQHMzqwi8Bcx2zt0AzM54LxIw69ato3bt2jRp0oSIiAhWrlxJdHS0CqiIiEg2y/RIqJltI32U8oycc9eeTwjn3G5gd8brv8xsA3A56XuT3pNx2UhgLtDhfL5D5GRHjx7lgw8+oE+fPhQvXpxhw4bx8ssvU6BAbvnvMhERkeDmzz2h8/jfEloauBM4DMwJRCAzuxqoCiwGymUUVIA9pE/Xn+4zTYGmABUqVAhEDAli06ZNo3nz5mzbto2XX36ZmJgYLrnkEq9jiYiI5Cv+3BP68umOm1lJ0rdsmpXVMGZWDPgaeN05d+jkjcCdc87MTjsS65wbCgwFqF69+llHayX/2rVrF61bt2b8+PGEhYUxd+5cateu7XUsERGRfCnLc4/OuYNADPBOVv6OmV1AegH90jk3IePwH2Z2Wcb5y4CErHyH5E+pqakMGDCAsLAwpkyZQrdu3Vi5cqUKqIiIiIcCdQNcMnDF+X7Y0oc8hwEbnHN9Tzo1GWiU8boRMOm8E0q+tGzZMmrUqEGrVq244447WLt2LZ06daJw4cJeRxMREcnXslRCzaygmVUB3gPWZeFP1QReBO4zs5X/v707D7OivPY9/l00M4RBDBJFhTg1qDgRjHohBqJyosQhxmiiopEjDUJwSLgaPEqMgiISuKhEFMXpokYUiSARVBCIoIiIyBAU0EBEsJFG5qZ7nT/e6rjZ7B5ounftDb/P89Szqaq3qtau6qJXv0NVNP0UuBc4x8yWAz+J5kXKtWnTJvr160eHDh1Ys2YNzz33HFOmTOGoo46KOzQRERFh70bHF1P66PhNwPmVDcLdZwFWyupUb2cSScndGT9+PP369eOLL76gV69e3HPPPTRp0iTu0ERERCTB3oyOv4s9k9DthHfKv+buBVUWlUglrFy5kj59+jB58mROPvlkXn75ZTp06BB3WCIiIpLC3oyOH1iNcYhUWmFhIQ888AB33XUXNWrUYNiwYfTt25eaNffmbywRERFJpzJ/S5tZDUIz+0p3X1RKmROBVu7+t2qIT6RMs2bNIi8vj48//piLL76YESNGcPjhh8cdloiIiJSjvIFJVwLjgC1llPkGGGdmV1RZVCLlyM/Pp0ePHnTs2JFvvvmGiRMn8tJLLykBFRERyRIVSUKfcPeVpRVw91WExyt1L62MSFVxd5566ilyc3MZO3Ysv//971m8eDHdunWLOzQRERHZC+UloacCr1dgP9OA9vsejkjpli5dSufOnenevTvHHHMM8+fPZ8iQITRo0CDu0ERERGQvlZeEfgf4ugL7+ToqK1Lltm3bxh133EG7du1YsGABjzzyCLNmzaJdu3ZxhyYiIiKVVN7w4a+AI4FZ5ZQ7IiorUqWmTp1Kr169+PTTT7nyyisZOnQohxxySNxhiYiIyD4qryZ0FhXr63kN5SeqIhW2du1afvWrX3HuuedSo0YNpk2bxtNPP60EVEREZD9RXhI6HOhiZn82s9rJK82slpkNBzoDf66OAOXAUlxczKhRo8jNzWX8+PHceeedLFy4kC5d9OIs+VbBps0sX7magk2b4w5FREQqqczmeHd/x8xuAR4Afm1mrxPekAShmf4coBlwi7vPqdZIZb+3YMEC8vLymDt3Lp07d2bUqFEce+yxcYclGWbGnA8ZcP8YioqKycmpwaD+Peh0uvoHi4hkm/JqQnH34cCPgfeAi4HbouliYB7wY3cfUZ1Byv5t8+bN3HLLLbRv354VK1bw9NNPM23aNCWgsoeCTZsZcP8Y6tSuxcEHNaZO7Vr8YchjqhEVEclCFXqvobu/DbwdvUHp4GhxvrsXVVtkckCYMGECffv2ZfXq1Vx//fXce++9NG3aNO6wJEOty99IUVEx9evVBaB+vbps2baDdfkbadyoYczRiYjI3ii3JjSRuxe7+7poUgIqlfb5559z4YUXcvHFF9OkSRNmz57NI488ogRUytS8WRNycmqwddt2ALZu207NnBo0b9Yk5shERGRv7VUSKrKvCgsLGTp0KG3atGHq1Kncd999zJ8/nzPPPDPu0CQLNG7UkEH9e7BjZyHrNxSwY2chg/r3UC2oiEgWqlBzvEhVmDNnDj179mThGZWtJgAAGEhJREFUwoVccMEFjBw5klatWsUdlmSZTqe3Y9ITg1iXv5HmzZooARURyVKqCZVqt3HjRnr16sWZZ55Jfn4+48ePZ+LEiUpApdIaN2rIMa1bKgEVEcliSkKl2rg748aNIzc3l9GjR9OvXz+WLFnCJZdcgpnFHZ6IiIjESM3xUi0++eQTevfuzdSpU2nfvj2TJ0/m1FNPjTssERERyRCqCZUqtWPHDv70pz9xwgknMHfuXB588EHmzJmjBFRERER2o5pQqTJvvfUWvXr1YtmyZfzyl79k2LBhHHrooXGHJSIiIhlINaGyz9avX0/37t3p3LkzhYWFvPbaazz33HNKQEVERKRUSkKl0oqLi3nsscc47rjjGDduHAMGDGDRokV07do17tBEREQkw6k5Xipl0aJF5OXlMXv2bDp16sSoUaNo27Zt3GGJiIhIllBNqOyVrVu3cuutt3LKKaewdOlSHn/8caZPn64EVERERPaKakKlwiZNmkSfPn1YtWoV1157LUOGDOHggw+OOywRERHJQqoJlXKtWbOGSy+9lAsuuIB69eoxY8YMHn/8cSWgIiIiUmlKQqVURUVFjBgxgtzcXCZNmsQ999zDggUL6NSpU9yhiYiISJZTc7ykNG/ePHr27Mn8+fM577zzeOihhzjqqKPiDktERET2E6oJld0UFBTQt29fOnTowL///W+ef/55XnvtNSWgWaZg02aWr1xNwabNcYciIiKSkmpCBQB358UXX6Rfv36sXbuWG264gbvvvpvGjRvHHZrspRlzPmTA/WMoKiomJ6cGg/r3oNPp7eIOS0REZDeqCRVWrFjB+eefz2WXXUaLFi2YO3cuI0eOVAKahQo2bWbA/WOoU7sWBx/UmDq1a/GHIY+pRlRERDKOktAD2M6dOxk8eDDHH388M2fOZPjw4bz77rv84Ac/iDs0qaR1+RspKiqmfr26ANSvV5ddRcWsy98Yc2QiIiK7U3P8AWrmzJnk5eWxePFiLrnkEkaMGEHLli3jDkv2UfNmTcjJqcHWbdupX68uW7dtp2ZODZo3axJ3aCIiIrtRTegBJj8/n+uuu45OnTqxZcsW/va3vzF+/HgloPuJxo0aMqh/D3bsLGT9hgJ27CxkUP8eNG7UMO7QREREdmPuHncMVap9+/Y+b968uMPIOO7Ok08+ye9+9zsKCgq4+eabueOOO2jQoEHcoUk1KNi0mXX5G2nerIkSUBERiY2Zve/u7VOtU3P8AWDJkiX06tWLGTNmcOaZZ/KXv/yFE088Me6wpBo1btRQyaeIiGQ0Ncfvx7Zt28btt9/OSSedxMKFCxk9ejQzZ85UAioiIiKxU03ofur111+nd+/efPrpp1x11VUMHTqU5s2bxx2WiIiICKCa0P3O2rVrueKKKzjvvPPIycnhjTfe4KmnnlICKiIiIhlFSeh+oqioiIcffpjc3FxeeuklBg4cyIcffkjnzp3jDk1ERERkD2qO3w8sWLCAnj178u6779KlSxcefvhhjj322LjDEhERESmVakKz2ObNm7n55ps57bTTWLVqFc888wxTp05VAioiIiIZTzWhWWrChAn07duX1atX07NnTwYPHkzTpk3jDiur6FmaIiIi8VESmmU+++wzfvvb3zJx4kROPPFEXnjhBc4444y4w8o6M+Z8yID7x1BUVExOTg0G9e9Bp9PbxR2WiIjIAUPN8VmisLCQoUOH0rZtW6ZNm8b999/P+++/rwS0Ego2bWbA/WOoU7sWBx/UmDq1a/GHIY9RsGlz3KGJiIgcMFQTmgXeeecd8vLyWLhwId26dWPkyJEceeSRcYeVtdblb6SoqJj69eoCUL9eXbZs28G6/I1qlhcREUkT1YRmsK+//pq8vDzOOussNmzYwMsvv8wrr7yiBHQfNW/WhJycGmzdth2Ardu2UzOnBs2bNYk5MhERkQOHktAM5O48++yz5Obm8uijj3LjjTeyePFiLrroIsws7vCyXuNGDRnUvwc7dhayfkMBO3YWMqh/D9WCioiIpJGa4zPM8uXL6d27N9OmTaNDhw5MmTKFU045Je6w9judTm/HpCcGaXS8iIhITJSEZogdO3Zw7733MnjwYOrUqcNDDz1Ez549ycnJiTu0/VbjRg2VfIqIiMRESWgGePPNN+nVqxf//Oc/ufzyyxk2bBjf+9734g5LREREpNqoT2iM1q1bx1VXXUWXLl3YtWsXU6ZMYdy4cUpARUREZL+nJDQGxcXFPProo+Tm5vL8889z++23s2jRIs4777y4QxMRERFJCzXHp9lHH31EXl4e//jHP/jRj37EqFGjaNOmTdxhpaTXWoqIiEh1URKaJlu2bOGuu+5i2LBhNG7cmLFjx3L11Vdn7COX9FpLERERqU5qjk+DV199leOPP54hQ4Zw9dVXs2zZMrp3756xCaheaykiIiLVTUloNVq9ejU///nP6datGw0aNODtt99mzJgxNGvWLO7QypTqtZa7iopZl78x5shERERkf6EktBrs2rWL4cOH06ZNGyZPnsygQYP44IMP6NixY9yhVYheaykiIiLVTUloFXvvvffo0KEDN910Ex07duTjjz/mtttuo3bt2nGHVmF6raWIiIhUt4wfmGRmXYERQA7wmLvfG3NI/5E4ehwvYsCAATz88MO0aNGCF154gUsvvTRj+32WR6+1FBERkeqU0UmomeUADwHnAKuB98xsorsvjjeyb0eP79pVxMa1K/hqxftsyP+KPn36cPfdd9OoUaO4Q9xneq2liIiIVJeMTkKBDsAn7r4CwMyeAy4EYk1CS0aPF+/cwooPprN+zQoaNPkub745nbPP7hRnaCIiIiJZIdOT0MOAfyXMrwZOTy5kZtcD1wMcccQR1R7UuvyN7NpVxOLZr7Jt80aOP/0cGhxyNIcd+f1qP7aIiIjI/iDTk9AKcffRwGiA9u3be3Ufr3mzJtSsmUNuh3Np1LgpXqMWO3YWavS4iIiISAVl+uj4NcDhCfMto2WxKhk9XrtBUzbvKNbocREREZG9lOk1oe8Bx5hZa0LyeTnwq3hDCjR6XERERKTyMjoJdfddZtYH+DvhEU2Pu/vHMYf1Hxo9LiIiIlI5GZ2EArj7ZGBy3HGIiIiISNXJ9D6hIiIiIrIfUhIqIiIiImmnJFRERERE0k5JqIiIiIiknZJQEREREUk7JaEiIiIiknZKQkVEREQk7ZSEioiIiEjaKQkVERERkbRTEioiIiIiaackVERERETSTkmoiIiIiKSduXvcMVQpM1sPfJbGQx4MfJXG40nV0vXLXrp22U3XL3vp2mW3dF+/I939u6lW7HdJaLqZ2Tx3bx93HFI5un7ZS9cuu+n6ZS9du+yWSddPzfEiIiIiknZKQkVEREQk7ZSE7rvRcQcg+0TXL3vp2mU3Xb/spWuX3TLm+qlPqIiIiIiknWpCRURERCTtlISKiIiISNopCa0kM+tqZsvM7BMzuzXueKRsZna4mb1lZovN7GMz6xctP8jMpprZ8uizadyxSmpmlmNmH5jZq9F8azObG92Dz5tZ7bhjlNTMrImZvWhmS81siZmdoXsve5jZTdH/m4vMbJyZ1dX9l7nM7HEzW2dmixKWpbzfLPh/0XVcaGanpjNWJaGVYGY5wEPAfwFtgSvMrG28UUk5dgG3uHtb4IfADdE1uxV4w92PAd6I5iUz9QOWJMzfB/zZ3Y8GvgauiyUqqYgRwBR3zwVOIlxH3XtZwMwOA34LtHf3E4Ac4HJ0/2WysUDXpGWl3W//BRwTTdcDo9IUI6AktLI6AJ+4+wp33wk8B1wYc0xSBnf/wt3nR//+hvBL8DDCdXsyKvYkcFE8EUpZzKwlcD7wWDRvQGfgxaiIrl2GMrPGQCdgDIC773T3jejeyyY1gXpmVhOoD3yB7r+M5e5vAxuSFpd2v10IPOXBHKCJmX0vPZEqCa2sw4B/JcyvjpZJFjCzVsApwFzgEHf/Ilq1FjgkprCkbMOB/kBxNN8M2Ojuu6J53YOZqzWwHngi6k7xmJk1QPdeVnD3NcBQ4HNC8lkAvI/uv2xT2v0Waz6jJFQOKGbWEBgP3OjumxLXeXhemZ5ZlmHM7AJgnbu/H3csUik1gVOBUe5+CrCFpKZ33XuZK+o7eCHhj4lDgQbs2dQrWSST7jcloZWzBjg8Yb5ltEwymJnVIiSgz7r7S9HiL0uaHqLPdXHFJ6U6C/iZma0idH3pTOhj2CRqHgTdg5lsNbDa3edG8y8SklLde9nhJ8BKd1/v7oXAS4R7Uvdfdintfos1n1ESWjnvAcdEowNrEzppT4w5JilD1IdwDLDE3YclrJoIdI/+3R14Jd2xSdnc/TZ3b+nurQj32pvu/mvgLeDSqJiuXYZy97XAv8zsuGhRF2AxuveyxefAD82sfvT/aMn10/2XXUq73yYCV0ej5H8IFCQ021c7vTGpkszsp4R+ajnA4+5+T8whSRnM7P8AM4GP+LZf4R8I/UJfAI4APgMuc/fkDt2SIczsbOB37n6BmX2fUDN6EPABcKW774gzPknNzE4mDCqrDawAriVUgujeywJm9kfgl4SnjHwA9CD0G9T9l4HMbBxwNnAw8CVwJzCBFPdb9IfFg4QuFluBa919XtpiVRIqIiIiIumm5ngRERERSTsloSIiIiKSdkpCRURERCTtlISKiIiISNopCRURERGRtFMSKnKAMbNrzMwTpm/M7EMz65Pw8Ok44xsbPZh+b7c72cwGmtlBKda5mQ2sivj2Ip6zk87zNjNbbGZ3mFm9dMZS1co615nGzBqY2b/N7NKEZaeY2bvRz/40MzsyaZua0T3x+xT7u8jMvozeviYi+0BJqMiB6xfAGcDPgXeBkcAdsUa0b04mPA8vVWJ0BuE5lXH4bXT884G/EWJ8JKZYqkpZ5zrT3AJ8RXhbGtEfWi8CnwKXEJ71/GTSNn2j5X9Osb9XCO9Q3yNBFZG9E3uth4jEZoG7fxL9+3UzOxroR3Ynoim5+5wYD78k4fhvmllz4Bozu3FfHs4ePWS6lrvvrJIo90NmVoeQUA70bx+KfRzwfeAMd19nZpuAd8ysvrtvNbNDgYFAN3fflbxPd3czGw38ycwGu/v29Hwbkf2PakJFpMR7QKMoScLMapnZ3Wa2ysx2Rp93m1mtkg3MrFXU1NzbzIaZ2Toz22pmr5pZq8Sdp2oST9j+mrICM7M/mtl8M9tkZl+Z2ZvRK+ZK1l8DPBHNLk9oAm9VxrG7mtk7UTN5gZlNSHi1ZEmZ6WY2y8x+Eh1/q5ktMrOLyz2bpXsv+jw64TiXmNmcaP8bzeyvZnZEUiyrzOwZM/uNmS0FdhJqV0uanO81s0/NbIeZrTWz8WZ2SML2rc3sWTNbH5VZkPw9oiZ2N7NjzGySmW02s8+iLgQ1ojLXUPa57hOd1w3Rd5ljZucnnwQz+76ZTY6+8zoze8DMrk/cV0LZ66Pm8e3R9R9jFesKcBGhtvb5hGW1o89t0edWwIA60fww4GV3f7uM/b4ANCHUpIpIJSkJFZESrYEiYHM0/yRwK/AUcAEwFvi/7Nl0CXAbcAzhdYw3AKcRaldrpShbGYcRmkYvBK4B1gFvm9mJ0fpJwN3Rv0u6GZxBaDbdg5l1jbbZTHgdYS/gBGCWmR2WVPwoYAQhObkk2udfo5rjymgdfW6MYskjNBUvJryLu2cUywwz+07Stj8Gbgb+SHjN3kIzqw1MJdT4jSVcqz7ABqBpdIzDCa+oPQm4CfgZMB8Yb2Y/SxHjy8CbhCRuQnS8kvdOl3euWxG6PvyCcG7nAa9G55wonpKY2xHO/TXReRmQHIiZ3Qs8BEyL4v599N1fM7OcFLEn6kqoif4qYdkywrm/0cyaEmr//+nuX5tZF+Bcymlqj/a3JNq/iFSWu2vSpOkAmgi/8J3QLFmTkKj0JCSgE6IyJ0RlBiZte3u0vF003yqaXwzUSCh3VrT8uoRlqfZXsv01CcvGAqvKiD8ninsZMCLF9zo6xTa7HZuQGC0HaiYsaw0UAsMSlk2Plh2TsKx5dK7+UM55Pjs67rlRvI0ISeZm4IOoTEOgAHg8advWhJrOGxOWrSLU2rVIKvub6Dg/KyOWMcB6oFnS8qmEbhkl8wOjfV2bVO4j4PWKnOuk7WpE3/114JWE5ddH23dIWGbAh9HyVgk/H0XAHUn7Lfn5uqic4y8Bnk2x/JfRuXRCf9GOhBrSpUBeBe+jpwnJa+z3tCZN2TqpJlTkwLWUkGBtAB4GniUkNACdos9nkrYpmf9R0vIX3b24ZMbdZwOrCTVk+yxqDn/LzPKBXVHcxxIS6b3dVwPgVOB5T+jz5+4rgdns+d2Wu/vyhHLrCDWxR1Axf4/iLQD+CrxFqGGEcH4aAc9aGJFd08LAmX8Rrk+npH3Ncfe1ScvOBda6+8QyYugKTAYKko7zd+AkM2uUVH5S0vwiKvh9zey0qDvGl3x7rc5h92v1Q+Bzd3+3ZIG7O9HgoQTnEBLZ5PMzF/iGPc9PskMJyfdu3P154GCgDXCou88Efke4RqMtjP6fZWZfm9lsM2uXYt/ro/2LSCVpYJLIgetiQqL4DfCZ7z7AoqS/XXJz9tqk9SW+TLH/LwnN6PvEzE4lJFB/B66LYioiNPnWrcQumxJq3VI11a8Fjkxalmrw0I69OPYNhKcPbCPU8G5JWNc8+pxWyrZfJ82nirkZsKacGJoDV0dTKs2ATQnzyd+5Qt83avZ/g1Az3hf4nJCI/omQ8JX4HiGRT5b8c1Ryfj5JLpgQd1nqEmLfg7tvJST6WHhE062E2uscQneExwlJcH/gZTPLdffChF1so3I/fyISURIqcuBa5N+Ojk9WkoS0IDzKhoT5xPUlDmFPhwALEuZ38O2gkBLlJREQHiG1C7gkMQmI+vNtrMD2yb4mNMO2SLGuBamTzn3xT3efV8q6/OjzGuDjFOu/SZr3FGW+InSfKEs+MBO4r5T1/y5n+4rqCjQGLnP31SULzax+UrkvgLYptk/+OSo5P+eyZ0KeuL40+UT9YssxAnjS3edH/YxbAcPdfZuZDSN0UziW3a/RQRU4voiUQc3xIpJKycjgy5OW/zr6nJ60/NKS0dMAZnYW0BJ4J6HMZ+yZLO0xajqF+oSaz/8kYGbWmT2bh0tqvMp8EHxUE/k+8IvEgS1RbdiZ7PndqtM/CInm0e4+L8W0rAL7eB1oYWbdyigzhTAI6ONSjpOytrAMpZ3rkmQz8Y+FYwl9OBPNAY4wsw4J5YzwB0eiqUAxcEQpca8sJ86lhMcxlSoauX86ob9zogbRZ8lD6S1pfWtCv2QRqSTVhIrIHtx9kZmNAwZGffD+Qei/+D/AOHf/KGmT7wATzOwR4LvAYMLAn6cSyjwH3G5mAwhJSEfgigqEMwW4ERhrZk8QaqT+hz2boBdHnzeY2ZOERGihp36O5v8Q+j2+amYPExKNPxL6BD5QgZiqhLtvsvBWnofM7LvAa1EMhxH6pk539/9fzm6eAf4bGGdmgwn9Jb8DnEeozVtKePbru4QnCjxIGOTUlPBHwffd/TepdlyGlOea0K1gF/CUmT1AaHb/I6FZPrHSYyzhSQsvRT8P64EefFtrWQzg7p+a2X3AgxYenzUD2A4cTmgqf8zd3yojzrcJo+BrJPZZLmHhzVUjgVvcvSBavIzQJ3dk9PPci/AH1LKE7QzoQOhLLSKVFffIKE2aNKV3ouIjm2sTHsXzGSHJ+Cyar5VQplW0r96ERxitJ4w6ngS0TtpfXUKz5xeE2r/nCb/Iyx0dT+hfuJLQD+894CeEGsvpSeXuJCSnJTWnraLlqUbmdyXU1G4jJH6vAMcllZkOzEpxblYBY8s5f2dHx/1JBa7JTwkDljZF5285oU9i26RjPlPK9g2B+6NrtDM6xy8CzRPKtCT0o12TUGYqcGVCmYFRzDWT9p/qmpR2ri8j1EBuJzRfX17K9kcR+vpui35uRhASUwcaJ5W9ivCHyxbC0wWWAA8CLcs5r22i/f2olPV3AW+kWP4DQtK+Jfo8LWl9yej8E+K+nzVpyubJ3FN1MRIRKV/0UPGVwH+7e1yvxZT9hJm9CrRx96OqcJ/TgU/cvUcV7nMUIQHtWFX7FDkQqTleRETSzsxuJtRqLid0H/gFoY9wryo+1ABgmpnd6e7lPUWgXGbWgvDgfj2oXmQfKQkVEZE47CC8vekIwmORlgE93H1MVR7E3Web2U2ER2/tcxJK6IJyi5f9Wk8RqQA1x4uIiIhI2ukRTSIiIiKSdkpCRURERCTtlISKiIiISNopCRURERGRtFMSKiIiIiJp979z6w09Dhl8XQAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6YAAAJgCAYAAACZRH72AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAACdWUlEQVR4nOzdd1xW9f//8ecFioIKLkBRUTMHztxZapaaVn78pGlpy7JAUNzbUtMcudKcjEots9RcOTLLnKEGrlRw5UZREQUHm/P7o2/88pMDLsZhPO63G7dbnOtc5zz9fL8WT17ner8thmEYAgAAAADAJDZmBwAAAAAA5G8UUwAAAACAqSimAAAAAABTUUwBAAAAAKaimAIAAAAATEUxBQAAAACYimIKAAAAADAVxRQAAAAAYKoCZgfIyVJSUnTp0iUVK1ZMFovF7DgAAAAAkGsYhqFbt27Jzc1NNjYPn4lSTB/i0qVLqlChgtkxAAAAACDXunDhgsqXL//QcyimD1GsWDFJf/0P6ejoaHIaAAAAAMg9YmJiVKFChdRe9TAU04f4+/FdR0dHiikAAAAAWCEtH4tk8SMAAAAAgKkopgAAAAAAU1FMAQAAAACmopgCAAAAAExFMQUAAAAAmIpiCgAAAAAwFcUUAAAAAGAqiikAAAAAwFQUUwAAAACAqSimAAAAAABTUUwBAAAAAKaimAIAAAAATEUxBQAAAACYimIKAAAAADAVxRQAAAAAYCqKKQAAAADAVBRTAAAAAICpcmQx3bFjh/7zn//Izc1NFotFa9asued1wzA0ZswYlS1bVvb29mrTpo1Onjx5zzlRUVF644035OjoqOLFi+u9997T7du3s/FPAQAAAABZKzzimvYdPqFLVyLNjpIhObKY3rlzR/Xq1dO8efPu+/rUqVM1e/Zs+fn5ae/evSpSpIjatWunuLi41HPeeOMNHT16VD///LPWr1+vHTt2yMvLK7v+CAAAAACQZW7dvqvR0xeqc6+P9M7gKerkNVajpy/U7TuxZkezisUwDMPsEA9jsVi0evVqvfzyy5L+mpa6ublp8ODBGjJkiCQpOjparq6uWrRokbp166awsDDVrFlTwcHBatSokSRp06ZNevHFF3Xx4kW5ubml6d4xMTFycnJSdHS0HB0ds+TPBwAAAADpNXr6Qi3fsE0lixeTg10B3U1IUtTNW3r1pVb6eMi7ZseTlL4+lSMnpg9z5swZRUREqE2bNqnHnJyc1LRpU+3evVuStHv3bhUvXjy1lEpSmzZtZGNjo7179z7w2vHx8YqJibnnCwAAAABykvCIa9q8M0QlHIso5tJx7Vjtp4LJsSrpVEybd4bkysd6c10xjYiIkCS5urrec9zV1TX1tYiICLm4uNzzeoECBVSyZMnUc+5n8uTJcnJySv2qUKFCJqcHAAAAgIyJuHZD16+EK2zXKoX+/ouSEuN1/uRBORZ10N3YeF2+GmV2xHTLdcU0K40cOVLR0dGpXxcuXDA7EgAAAACkunPnjgLnz9Kfv/+gmKgrKmhXWHWfflG1n2ynmNt35WBfSGVdSpodM90KmB0gvcqUKSNJunLlisqWLZt6/MqVK3riiSdSz7l69eo970tKSlJUVFTq+++nUKFCKlSoUOaHBgAAAIAM+vHHH+Xj46Nz585Jkoo5V1LVBq1UurSzrt+IUVT0X58xdXMtbXLS9Mt1E9PKlSurTJky2rJlS+qxmJgY7d27V82aNZMkNWvWTDdv3tS+fftSz/n111+VkpKipk2bZntmAAAAALDWlStX9Prrr+vFF1/UuXPn5O7uru9XrlL/YWNUoJCDLl2NUoph6NWXWmm4Tzez41olR05Mb9++rVOnTqV+f+bMGR08eFAlS5aUu7u7BgwYoAkTJqhq1aqqXLmyRo8eLTc3t9SVez08PNS+fXt5enrKz89PiYmJ8vX1Vbdu3dK8Ii8AAAAAmMkwDH355ZcaOnSobty4IRsbGw0YMEDjxo1T0aJF9Yokn7f+o8tXo1TWpWSunJT+LUduF7Nt2zY9++yz/zreo0cPLVq0SIZhaOzYsQoICNDNmzfVvHlzzZ8/X9WqVUs9NyoqSr6+vlq3bp1sbGz0yiuvaPbs2SpatGiac7BdDAAAAAAzHD9+XL169dL27dslSfXr11dgYKAaNmxocrK0S0+fypHFNKegmAIAAADITgkJCZoyZYomTJighIQEOTg4aPz48erfv78KFMiRD7w+UHr6VO76kwEAAABAHvXbb7/Jy8tLoaGhkqT27dtr/vz5qly5ssnJsl6uW/wIAAAAAPKSmzdvysfHR82bN1doaKicnZ21dOlSbdy4MV+UUomJKQAAAACYwjAMrVq1Sn379tXly5clSe+9956mTp2qkiVz316kGUExBQAAAIBsduHCBfXp00fr1q2TJFWrVk3+/v5q1aqVucFMwqO8AAAAAJBNkpOTNXv2bNWsWVPr1q1TwYIFNXr0aB06dCjfllKJiSkAAAAAZItDhw7J09NTwcHBkqSnn35aAQEBqlmzpsnJzMfEFAAAAACy0N27dzVixAg1bNhQwcHBcnR0lJ+fn3bs2EEp/T9MTAEAAAAgi2zevFne3t46c+aMJKlLly767LPP5ObmZnKynIWJKQAAAABksmvXrumtt95Su3btdObMGZUvX15r167VihUrKKX3QTEFAAAAgExiGIYWL16sGjVqaMmSJbJYLOrXr59CQ0PVsWNHs+PlWDzKCwAAAACZ4OTJk/L29tavv/4qSapbt64CAwPVpEkTk5PlfExMAQAAACADEhMTNWnSJNWpU0e//vqrChcurClTpigkJIRSmkZMTAEAAADASnv27JGnp6eOHDkiSWrbtq0WLFigKlWqmJwsd2FiCgAAAADpFBMTI19fXz311FM6cuSISpcura+//lo//fQTpdQKTEwBAAAAIB3WrFkjX19fhYeHS5J69Oih6dOnq3Tp0iYny70opgAAAACQBuHh4erbt69Wr14tSXr88cfl5+en1q1bm5ws9+NRXgAAAAB4iOTkZM2bN08eHh5avXq1ChQooFGjRumPP/6glGYSJqYAAAAA8ACHDx+Wl5eX9uzZI0l68sknFRAQoDp16picLG9hYgoAAAAA/yM2NlYffPCBGjRooD179qhYsWKaO3eudu3aRSnNAkxMAQAAAOAftmzZIm9vb506dUqS9PLLL2vOnDkqX768ycnyLiamAAAAACApMjJS77zzjtq0aaNTp07Jzc1Nq1at0urVqymlWYxiCgAAACBfMwxDS5YskYeHhxYvXiyLxaI+ffooNDRUnTp1MjtevsCjvAAAAADyrdOnT8vb21s///yzJKl27doKCAhQs2bNTE6WvzAxBQAAAJDvJCYmaurUqapdu7Z+/vlnFSpUSBMnTtS+ffsopSZgYgoAAAAgXwkODpanp6cOHTokSXruuefk5+enqlWrmpws/2JiCgAAACBfuHXrlvr376+mTZvq0KFDKlmypBYtWqRffvmFUmoyJqYAAAAA8rx169apd+/eunjxoiTpzTff1KeffipnZ2eTk0GimAIAAADIwy5fvqx+/frp+++/lyQ99thj8vPzU9u2bU1Ohn/iUV4AAAAAeU5KSor8/Pzk4eGh77//Xra2tho+fLgOHz5MKc2BmJgCAAAAyFOOHj0qLy8vBQUFSZIaN26sgIAAPfHEE+YGwwMxMQUAAACQJ8TFxWnMmDGqX7++goKCVKRIEX322WfavXs3pTSHY2IKAAAAINfbvn27vLy8dOLECUlShw4dNG/ePLm7u5ucDGnBxBQAAABArhUVFaX3339frVq10okTJ1SmTBmtWLFCP/zwA6U0F6GYAgAAAMh1DMPQd999Jw8PD33xxReSJG9vb4WFhalLly6yWCwmJ0R68CgvAAAAgFzl7Nmz8vHx0aZNmyRJHh4eCggIUPPmzU1OBmsxMQUAAACQKyQlJWnGjBmqVauWNm3aJDs7O40fP14HDhyglOZyTEwBAAAA5Hj79u2Tp6enDhw4IEl65pln5O/vr+rVq5ucDJmBiSkAAACAHOv27dsaNGiQmjRpogMHDqhEiRL64osvtHXrVkppHsLEFAAAAECOtHHjRvn4+Oj8+fOSpO7du2vmzJlydXU1ORkyG8UUAAAAQI4SERGhAQMGaNmyZZKkihUrasGCBXrhhRdMToaswqO8AAAAAHKElJQUff755/Lw8NCyZctkY2OjwYMH6+jRo5TSPI6JKQAAAADTHTt2TL169dKOHTskSQ0aNFBgYKAaNGhgcjJkByamAAAAAEwTHx+v8ePHq169etqxY4ccHBz06aefau/evZTSfISJKQAAAABT7Ny5U15eXjp27Jgk6YUXXtD8+fNVqVIlc4Mh2zExBQAAAJCtbt68qV69eqlly5Y6duyYXFxc9N1332nDhg2U0nyKiSkAAACAbGEYhr7//nv169dPERERkiRPT09NmTJFJUqUMDkdzEQxBQAAAJDlzp8/rz59+mj9+vWSpOrVqysgIEAtW7Y0ORlyAh7lBQAAAJBlkpOTNWvWLNWsWVPr169XwYIFNXbsWB06dIhSilRMTAEAAABkiQMHDsjLy0shISGSpObNm8vf3181a9Y0ORlyGiamAAAAADLVnTt3NGzYMDVu3FghISFycnKSv7+/tm/fTinFfTExBQAAAJBpfvrpJ/n4+OjMmTOSpK5du+qzzz5T2bJlTU6GnIyJKQAAAIAMu3r1qt588021b99eZ86cUYUKFbRu3TotX76cUopHopgCAAAAsJphGFq4cKE8PDz0zTffyMbGRgMGDFBoaKg6dOhgdjzkEjzKCwAAAMAqJ06ckLe3t7Zu3SpJqlevngIDA9W4cWOTkyG3YWIKAAAAIF0SEhI0ceJE1a1bV1u3bpW9vb2mTp2q4OBgSimswsQUAAAAQJoFBQXJy8tLR48elSS1a9dOCxYsUOXKlU1OhtyMiSkAAACAR4qOjlbv3r3VvHlzHT16VM7Ozvrmm2/0448/UkqRYUxMAQAAADyQYRhavXq1fH19dfnyZUnSu+++q2nTpqlUqVImp0NeQTEFAAAAcF8XL16Ur6+v1q5dK0l6/PHH5e/vr+eee87kZMhreJQXAAAAwD2Sk5M1Z84ceXh4aO3atSpQoIA++OAD/fHHH5RSZAkmpgAAAABS/fHHH/L09NTvv/8uSWrWrJkCAgJUu3Ztk5MhL2NiCgAAAECxsbEaOXKkGjZsqN9//12Ojo6aP3++du3aRSlFlmNiCgAAAORzv/zyi7y9vfXnn39Kkjp37qzZs2erXLlyJidDfsHEFAAAAMinIiMj1aNHD7Vt21Z//vmnypUrpzVr1mjlypWUUmQriikAAACQzxiGoa+++ko1atTQV199JYvFor59+yo0NFT//e9/zY6HfIhHeQEAAIB85NSpU/L29taWLVskSXXq1FFgYKCaNm1qcjLkZ0xMAQAAgHwgMTFRn3zyierUqaMtW7aocOHCmjx5svbt20cphemYmAIAAAB53N69e+Xp6anDhw9Lklq3bi0/Pz89/vjjJicD/sLEFAAAAMijYmJi1LdvXzVr1kyHDx9WqVKltHjxYv3888+UUuQoTEwBAACAPGjt2rXq06ePwsPDJUlvv/22ZsyYodKlS5ucDPg3iikAAACQh1y6dEl9+/bVqlWrJEmPPfaY/P391aZNG5OTAQ/Go7wAAABAHpCSkqIFCxbIw8NDq1atkq2trUaMGKHDhw9TSpHjMTEFAAAAcrmjR4/Ky8tLQUFBkqQmTZooMDBQdevWNTkZkDZMTAEAAIBcKi4uTqNHj1b9+vUVFBSkokWLas6cOQoKCqKUIldhYgoAAADkQlu3blWvXr108uRJSVLHjh01d+5cVahQweRkQPpZVUxv3rypn376SVu2bNH+/ft15coV3bhxQyVKlJCrq6saNmyo5557Tu3atVPx4sUzOTIAAACQf12/fl1Dhw7VwoULJUlly5bV3Llz1alTJ1ksFpPTAdaxGIZhpPXkw4cP67PPPtO3336ruLg4PeytFotFhQsX1uuvv66+ffvmykcJYmJi5OTkpOjoaDk6OpodBwAAAPmYYRj69ttvNWDAAF27dk0Wi0U+Pj6aNGmSnJyczI4H/Et6+lSaiunVq1c1cuRILV68WCkpKSpdurRatWqlp556SrVq1VKpUqXk6Oio6OhoXb9+XUeOHFFQUJB27NihyMhI2djY6J133tGkSZPk4uKSaX/QrEYxBQAAQE5w+vRp+fj4aPPmzZKkWrVqKSAgQE899ZTJyYAHy/Ri6uTkpFu3bqlDhw5677339NJLL6lAgUc/BZyUlKR169bpyy+/1IYNG+Tk5KQbN26k/U9iMoopAAAAzJSUlKSZM2dq7Nixio2NVaFChTR69GgNHTpUdnZ2ZscDHio9fSpNnzFt0qSJPvnkEzVs2DBdQQoUKKBOnTqpU6dOCg4O1qhRo9L1fgAAACC/Cg4OlpeXlw4ePChJatWqlfz9/VWtWjVzgwFZIF2fMc1vmJgCAAAgu92+fVujR4/W7NmzlZKSohIlSmjGjBl65513WNwIuUqmT0wBAAAAZL0NGzaod+/eOn/+vCTp9ddf18yZM3PVOi2ANSimAAAAgMkiIiLUv39/LV++XJJUqVIl+fn5qV27diYnA7KHTWZdaMOGDWrevLmKFi2qYsWKqVWrVvrll18y6/IAAABAnpOSkqKAgADVqFFDy5cvl62trYYOHaojR45QSpGvZMrEdPny5erWrZscHBzk4eGhO3fuaMeOHWrfvr3Wr1+v9u3bZ8ZtAAAAgDwjLCxMXl5e2rVrlySpYcOGCgwMVP369U1OBmS/TJmYjh49Ws2bN9f58+cVHBys0NBQbdu2TYUKFdJHH32UGbcAAAAA8oT4+Hh99NFHqlevnnbt2qUiRYpo1qxZ2rt3L6UU+VaaimlQUNADX4uPj9fJkyc1ePBglSxZMvV4y5Yt9fzzz+vQoUMZTwkAAADkATt27FC9evU0btw4JSYm6qWXXlJoaKj69+8vW1tbs+MBpklTMW3RooX69OmjW7du/eu1ggULqmDBgrp06dK/Xrt06ZKKFCmS8ZT/Izk5WaNHj1blypVlb2+vKlWq6OOPP9Y/d74xDENjxoxR2bJlZW9vrzZt2ujkyZOZngUAAAB4lBs3bsjT01PPPPOMjh8/LldXVy1fvlzr1q2Tu7u72fEA06WpmA4YMEABAQHy8PDQmjVr7r2AjY3atm2rDz/8UF9++aXCwsIUEhIib29vhYSEZMnnS6dMmaIFCxZo7ty5CgsL05QpUzR16lTNmTMn9ZypU6dq9uzZ8vPz0969e1WkSBG1a9dOcXFxmZ4HAAAAuB/DMLRs2TJ5eHjo888/lyR5eXkpLCxMXbt2ZV9S4P9YjH+OGR9i//798vT01MGDB/Xyyy9rzpw5cnNzkySdPXtWrVq10oULF1LPNwxDjz/+uLZv366yZctmaugOHTrI1dVVX3zxReqxV155Rfb29lqyZIkMw5Cbm5sGDx6sIUOGSJKio6Pl6uqqRYsWqVu3bmm6T3o2hAUAAAD+6dy5c+rdu7c2btwoSapRo4YCAgLUokULk5MB2SM9fSrNix81aNBAwcHBmjZtmjZv3qyaNWvKz89P0l/7LB05ckTz589Xr1695O3trcDAQB08eDDTS6kkPfXUU9qyZYtOnDghSTp06JB27dqlF154QZJ05swZRUREqE2bNqnvcXJyUtOmTbV79+4HXjc+Pl4xMTH3fAEAAADpkZSUpJkzZ6pmzZrauHGj7Ozs9NFHH+ngwYOUUuAB0rVdjI2NjQYNGqRXXnlFvXv3Vu/evbVkyRIFBgbKw8NDvXr1yqqc9xgxYoRiYmJUo0YN2draKjk5WRMnTtQbb7wh6a8NiiXJ1dX1nve5urqmvnY/kydP1rhx47IuOAAAAPK0AwcOyNPTU/v27ZP011otf+9TCuDBrNoupmLFitqwYYOWLl2qP//8U/Xr19fYsWOVkJCQ2fnua/ny5frmm2+0dOlS7d+/X4sXL9b06dO1ePHiDF135MiRio6OTv3656PJAAAAwIPcuXNHQ4YMUePGjbVv3z4VL15cgYGB2rZtG6UUSIMM7WParVs3HTt2TG+99ZYmTJigJ554Qjt37sysbA80dOhQjRgxQt26dVOdOnX01ltvaeDAgZo8ebIkqUyZMpKkK1eu3PO+K1eupL52P4UKFZKjo+M9XwAAAMDD/Pjjj6pVq5ZmzJih5ORkvfbaawoLC9P7778vG5sM/bgN5Btp/psSExOjTz/9VF26dFH79u313nvv6YcffpCTk5MCAwO1detWGYahVq1aqVevXoqOjs6y0Hfv3v3XX3JbW1ulpKRIkipXrqwyZcpoy5Yt9+Tfu3evmjVrlmW5AAAAkH9cuXJFr7/+ul588UWdO3dO7u7u2rBhg7777ruHDkMA/FuaPmP6z1V3/7mI76JFi9S9e3ctWbJELVu21KFDhzRp0iR98sknWrdunWbPnq0uXbpkeuj//Oc/mjhxotzd3VWrVi0dOHBAn376qXr27ClJslgsGjBggCZMmKCqVauqcuXKGj16tNzc3PTyyy9neh4AAADkH4Zh6Msvv9TQoUN148YN2djYaMCAARo3bpyKFi1qdjwgV0rTxHTQoEE6f/68PvjgA128eFGxsbHat2+fWrZsqW+//TZ1b9N/rjj2+OOP67XXXlPHjh0zPfScOXPUpUsX9e7dWx4eHhoyZIh69eqljz/+OPWcYcOGqW/fvvLy8lLjxo11+/Ztbdq0SYULF870PAAAAMgfjh8/rmeffVbvv/++bty4ofr16+v333/XjBkzKKVABqRpH1MnJyc1btxYv/zyyz3HL1y4oIoVK6pv37767LPP/vW+gIAAjRgxQlFRUZmXOBuxjykAAAAkKSEhQVOmTNGECROUkJAgBwcHjR8/Xv3791eBAuna6ALIN9LTp9L0t8gwDFksln8d//vYg7qtl5cXj84CAAAgV/vtt9/k5eWl0NBQSVL79u01f/58Va5c2eRkQN6Rpkd5W7VqpV9//VUTJkxQRESEEhISdOjQIfXo0UMWi0WtWrV64HtdXFwyKysAAACQbW7evClvb281b95coaGhcnZ21tKlS7Vx40ZKKZDJ0vQo759//qlnn31WFy9evGdyahiGunXrpqVLl2ZpSLPwKC8AAED+YxiGVq5cqb59+yoiIkKS9N5772nq1KkqWbKkyemA3CPTH+WtUqWKTpw4IX9/f+3bt0/Xr19XpUqV9N///lfPP/98poQGAAAAzHbhwgX16dNH69atkyRVq1ZN/v7+D31CEEDGpWliml8xMQUAAMgfkpOTNW/ePH3wwQe6ffu2ChYsqBEjRmjUqFHs6gBYKdMnpgAAAEBedejQIXl6eio4OFiS9PTTTysgIEA1a9Y0ORmQf6Rp8aPY2NhMuVlmXQcAAADIqLt372rEiBFq2LChgoOD5ejoKD8/P+3YsYNSCmSzNBXTKlWqyM/PT8nJyVbdJCkpSfPmzVOVKlWsej8AAACQmTZv3qzatWtrypQpSk5OVpcuXRQWFqZevXrJxiZNPyIDyERp+lvn5uam3r17q1KlSvrwww918uTJNF38+PHjGjlypCpVqqS+ffuqXLlyGQoLAAAAZMS1a9f01ltvqV27djpz5ozKly+vtWvXasWKFXJzczM7HpBvpWnxI8Mw9Pnnn+vDDz/UtWvXZLFYVL58eTVr1kweHh4qVaqUHB0dFRMTo+vXrys0NFS7d+9WeHi4DMOQs7OzJk6cqPfee++e7WZyOhY/AgAAyBsMw9BXX32lQYMGKSoqShaLRX379tWECRNUrFgxs+MBeVJ6+lS6VuWNi4vT119/rblz5+rw4cN/XeA+RfPvS9atW1e+vr564403ZG9vn54/Q45AMQUAAMj9Tp48KW9vb/3666+S/voZNTAwUE2aNDE5GZC3ZVkx/aezZ8/q119/1YEDB3TlyhVFR0erePHicnFxUYMGDfTss8+qUqVK1lw6x6CYAgAA5F4JCQmaPn26xo8fr/j4eBUuXFjjxo3TwIEDVbBgQbPjAXlethTT/IBiCgAAkDvt2bNHnp6eOnLkiCSpbdu2WrBgAYtxAtkoPX2KJccAAACQZ8TExMjX11dPPfWUjhw5otKlS+vrr7/WTz/9RCkFcrACZgcAAAAAMsOaNWvk6+ur8PBwSVKPHj00ffp0lS5d2uRkSKvwiGuKuHZDZV1Kys2V/7vlJxRTAAAA5Grh4eHq27evVq9eLUl6/PHH5efnp9atW5ucDGl16/ZdTfVbps07Q3Q3Nk4O9oX1fItGGu7TTUWL5L5FVJF+PMoLAACAXCk5OVnz5s2Th4eHVq9erQIFCmjUqFH6448/KKW5zFS/ZVq+YZtsbCxycyklGxuLlm/YpikLvjM7GrIJxRQAAAC5zuHDh9W8eXP5+vrq1q1bevLJJ7V//35NnDgxV25TmJ+FR1zT5p0hKlm8mEqXcJKdXUGVLuGkkk7FtHlniC5diTQ7IrIBxRQAAAC5RmxsrD744AM1aNBAe/bsUbFixTR37lzt2rVLderUMTserBBx7YbuxsbJsYjDPccdizrobmy8Ll+NMikZshOfMQUAAECusGXLFnl7e+vUqVOSpJdffllz5sxR+fLlTU6GjCjjXEIO9oUVc+euSts5pR6PuX1XDvaFVNalpInpkF2YmAIAACBHi4yM1DvvvKM2bdro1KlTcnNz06pVq7R69WpKaR5Qroyznm/RSFE3bykyKloJCYmKjIpWVPQtPd+iEavz5hOZUkwTEhJ0+fJlRUUxZgcAAEDmMAxDS5YskYeHhxYvXiyLxaI+ffooNDRUnTp1MjseMtFwn2569aVWSjEMXboapRTD0KsvtdJwn25mR0M2sRiGYVj75iVLlmj27Nk6cOCAUlJS1KNHD3355ZeSpNWrV2vFihWaOHGiKleunGmBs1NMTIycnJwUHR0tR0dHs+MAAADkG6dPn5a3t7d+/vlnSVLt2rUVEBCgZs2amZwMWenSlUhdvhrFPqZ5RHr6lNUT0/fff189evRQSEiI7O3t9b/9tlq1avruu++0cuVKa28BAACAfCYxMVFTp05V7dq19fPPP6tQoUKaOHGi9u3bRynNB9xcS6thnWqU0nzIqmL6zTff6Msvv1Tt2rUVHBys6Ojof51Tq1YtlS9fXj/++GOGQwIAACDvCw4OVuPGjTV8+HDFxsbqueee0+HDhzVq1CjZ2dmZHQ9AFrKqmAYEBKho0aJav369GjZsKIvFct/z6tSpozNnzmQoIAAAAPK2W7duqX///mratKkOHTqkkiVLatGiRfrll19UtWpVs+MByAZWbRdz6NAhNW3aVBUqVHjoeSVLltSVK1esCgYAAIC8b926derdu7cuXrwoSXrzzTf16aefytnZ2eRkALKTVcU0Pj5eTk5Ojzzv2rVrsrW1teYWAAAAyMMuX76sfv366fvvv5ckPfbYY/Lz81Pbtm1NTgbADFY9yluuXDmFhYU99BzDMBQaGpprV+QFAABA5ktJSZGfn588PDz0/fffy9bWVsOHD9fhw4cppUA+ZlUxbd26tY4dO6a1a9c+8Jyvv/5aFy9e5F8wAAAAkCQdPXpULVq0kI+Pj6Kjo9W4cWOFhITok08+kYODg9nxAJjIqmI6ZMgQFSpUSK+//rpmzZqlS5cupb4WFRUlPz8/9e7dW0WKFFG/fv0yLSwAAAByn7i4OI0ZM0b169dXUFCQihQpos8++0y7d+/WE088YXY8ADmAxfjfDUjTaMWKFXr77beVkJBw39cLFiyob775Rq+88kqGApopPRvCAgAA4N+2b98uLy8vnThxQpLUoUMHzZs3T+7u7iYnA5DV0tOnrJqYSlLXrl0VHBysrl27qlixYjIMQ4ZhqHDhwvrPf/6j3bt35+pSCgAAAOtFRUXp/fffV6tWrXTixAmVKVNGK1as0A8//EApBfAvVk9M/8kwDF2/fl0pKSkqXbq0bGys7rs5ChNTAACA9DEMQ8uWLVP//v119epVSZK3t7cmT56s4sWLmxsOQLZKT5+yarsYGxsbPfHEE9q/f78kyWKxqHTp0tZcCgAAAHnE2bNn5ePjo02bNkmSPDw8FBAQoObNm5ucDEBOZ9Vos0iRIqpZs2ZmZwEAAEAulJSUpBkzZqhWrVratGmT7OzsNH78eB04cIBSCiBNrJqYVq1aNfXRDAAAAORf+/btk6enpw4cOCBJeuaZZ+Tv76/q1aubnAxAbmLVxPTNN9/Uzp079eeff2Z2HgAAAOQCt2/f1qBBg9SkSRMdOHBAJUqU0BdffKGtW7dSSgGkm1XFdMCAAWrXrp2ee+45LV26VHFxcZmdCwAAADnUxo0bVatWLc2cOVMpKSnq3r27wsLC1LNnT1ksFrPjAciFrFqV97HHHpNhGDp37lzqv3xcXFxkb2//7xtYLLl2ssqqvAAAAP9fRESEBgwYoGXLlkmSKlasqAULFuiFF14wORmAnCjLV+U9e/Zs6j//3WuvXLly33P5rRkAAEDulpKSoi+//FJDhw7VzZs3ZWNjo4EDB2rcuHEqUqSI2fEA5AFWFdMzZ85kdg4AAADkQMeOHVOvXr20Y8cOSVKDBg0UGBioBg0amJwMQF5iVTGtWLFiZucAAABADhIfH68pU6Zo4sSJSkhIkIODgyZMmKC+ffuqQAGrfoQEgAfi3yoAAAC4x86dO+Xl5aVjx45Jkl544QXNnz9flSpVMjcYgDzLqlV5AQAAkPfcvHlTvXr1UsuWLXXs2DG5uLjou+++04YNGyilALJUhiamK1eu1IoVK3T8+HHFxMTofgv85uZVeQEAAPIDwzD0/fffq1+/foqIiJAkeXp6asqUKSpRooTJ6QDkB1YVU8Mw9Oqrr2rVqlX3LaPSX4XUMAxW5QUAAMjBzp8/rz59+mj9+vWSpOrVqysgIEAtW7Y0ORmA/MSqR3kDAwO1cuVK1a1bVz/99JM6d+4si8Wi48ePa/369XrttdckSR9++KFOnz6dqYEBAACQccnJyZo1a5Zq1qyp9evXq2DBgho7dqwOHTpEKQWQ7ayamH799dcqVKiQfvzxR5UpU0ZLly6VJFWtWlVVq1bViy++qGeffVa9e/dWq1atWMUXAAAgBzlw4IC8vLwUEhIiSWrevLkCAgLk4eFhcjIA+ZVVE9MjR46oWbNmKlOmjCSlPq77z8d6vby8VK1aNU2bNi0TYgIAACCj7ty5o2HDhqlx48YKCQmRk5OT/P39tX37dkopAFNZNTGNjY1V2bJlU78vVKiQJCkmJkZOTk6px5944gn9/PPPGYwIAACAjPrpp5/k7e2ts2fPSpK6du2qzz777J6f6QDALFZNTF1dXXXt2rXU711cXCRJp06duue8qKgoxcXFZSAeAAAAMuLq1at644031L59e509e1YVKlTQunXrtHz5ckopgBzDqmL6+OOP37OoUePGjWUYhvz8/FKPhYWFadu2bapSpUrGUwIAACBdDMPQwoUL5eHhoaVLl8rGxkYDBgxQaGioOnToYHY8ALiHVcX0+eef15kzZxQaGpr6fYUKFfTll1+qcePGeuWVV9SsWTMlJibq7bffztTAAAAAeLgTJ06odevW6tmzp6KiolSvXj3t2bNHM2fOVNGiRc2OBwD/YtVnTLt3766kpCTFxsZKkuzs7LRs2TK9/PLL2rdvn/bt2ydJ+u9//6v+/ftnXloAAAA8UEJCgqZNm6aPP/5Y8fHxsre317hx4zRgwAAVLFjQ7HgA8EAW459L6WZQbGysduzYoaioKHl4eOiJJ57IrEub4u/FnKKjo+Xo6Gh2HAAAgAcKCgqSl5eXjh49Kklq166dFixYoMqVK5ucDEB+lZ4+ZdXE9EHs7e3Vrl27zLwkAAAAHiI6OlojR46Un5+fDMOQs7OzZs2ape7du6du6QcAOV2mFlMAAABkD8MwtHr1avn6+ury5cuSpHfffVfTpk1TqVKlTE4HAOmToWIaHx+vkJAQhYeHP3RbGBZAAgAAyDwXL16Ur6+v1q5dK+mvHRMCAgL07LPPmpwMAKxjdTGdPXu2PvroI0VHRz/yXIopAABAxiUnJ2v+/PkaNWqUbt++rQIFCmj48OH64IMPZG9vb3Y8ALCaVcX066+/1oABAyRJNWrUkIeHB4sDAQAAZKE//vhDnp6e+v333yVJzZo1U0BAgGrXrm1yMgDIOKuK6axZs2SxWLRw4UKmoQAAAFkoNjZW48eP1/Tp05WUlCRHR0d98skn6tWrl2xsrNqSHgByHKuKaVhYmJ588klKKQAAQBb65Zdf5O3trT///FOS1LlzZ82ePVvlypUzORkAZC6rfs1WuHBhVapUKZOjAAAAQJIiIyPVo0cPtW3bVn/++afKlSunNWvWaOXKlZRSAHmSVcW0UaNGOnnyZGZnAQAAyNcMw9BXX32lGjVq6KuvvpLFYlHfvn0VGhqq//73v2bHA4AsY1UxHTlypPbt26cff/wxs/MAAADkS6dOnVLbtm3Vo0cPXb9+XXXq1NHu3bs1e/ZsFpkEkOel6TOm58+fv+f7KlWq6MMPP1SnTp3Ur18/dejQQe7u7g/8AL67u3vGkwIAAORBiYmJmjFjhsaNG6e4uDgVLlxYY8eO1eDBg1WwYEGz4wFAtrAYhmE86iQbGxtZLJZ/HTcM477H77mBxaKkpCTrE5ooJiZGTk5Oio6O5jeVAAAg0+3du1eenp46fPiwJKlNmzby8/NTlSpVTE4GABmXnj6Vpompu7v7IwsoAAAA0iYmJkYffPCB5s2bJ8MwVKpUKc2cOVNvvvkmP3MByJfSVEzPnj2bxTEAAADyh7Vr16pPnz4KDw+XJL399tuaMWOGSpcubXIyADCPVfuYAgAAIH3Cw8PVr18/rVq1SpL02GOPyd/fX23atDE5GQCYz6pVeQEAAJA2KSkpWrBggWrWrKlVq1bJ1tZWI0aM0OHDhymlAPB/MmVimpSUpM8++0xr1qxRZGSkypcvr+7du6tnz56ZcXkAAIBc6ejRo/Ly8lJQUJAkqUmTJgoMDFTdunVNTgYAOUuaJqarVq2Si4uLPvjgg3+9lpKSopdeeknDhg3Tb7/9puPHj2vLli3y9PTUO++8k9l5AQAAcry4uDiNHj1a9evXV1BQkIoWLao5c+YoKCiIUgoA95GmYrp161Zdv35dXbp0+ddrgYGB+vnnn2UYhjp27Ki5c+dq2LBhsre319dff63NmzdnemgAAICcauvWrapbt64mTJigxMREdezYUaGhofL19ZWtra3Z8QAgR0rTo7x79+5V2bJlVb9+/X+95u/vL4vFom7duumbb75JPd6kSRN16dJFX3/9tZ5//vnMSwwAAJADXb9+XUOHDtXChQslSWXLltXcuXPVqVMntoABgEdI08T08uXLeuKJJ/51PDIyUgcPHpQkDR069J7XOnfurEqVKmnv3r0ZDgkAAJBTGYahpUuXysPDQwsXLpTFYlHv3r0VFhamzp07U0oBIA3SVEwjIyNVokSJfx0PDg6WJDk7O9+3uNasWVOXLl3KWEIAAIAc6vTp02rfvr3eeOMNXbt2TbVq1dKuXbs0b948OTk5mR0PAHKNNBVTW1tbXbt27V/H9+/fL0lq0KDBfd9XvHhxJSUlZSAeAABAzpOUlKRp06apdu3a2rx5swoVKqQJEyZo//79euqpp8yOBwC5Tpo+Y1qxYkXt379fCQkJsrOzSz2+ZcsWWSwWNW3a9L7vi4yMlKura+YkBQAAyAGCg4Pl5eWV+nGmVq1ayd/fX9WqVTM3GADkYmmamD777LO6fv26Ro8enXps69at2r59uyTppZdeuu/7Dhw4IDc3t0yICQAAYK7bt29r4MCBevLJJ3Xw4EGVKFFCX375pX799VdKKQBkUJqK6YABA2RnZ6fp06erQoUKatCggdq1aydJatq0qRo1avSv9+zevVvXrl174DQVAAAgt9iwYYNq1aqlWbNmKSUlRa+//rqOHTumd999l8WNACATpKmYPv744/rmm29UpEgRhYeH6+DBg0pKSpKbm5sWL1583/f4+/tLklq3bp15aQEAALJRRESEXnvtNXXo0EHnz59XpUqVtGnTJn3zzTdycXExOx4A5Blp+oyp9Nf2L82bN9f69et15coVubu76+WXX1aRIkXue36TJk1Uv359Pffcc5kWFgAAIDukpKTo888/17BhwxQdHS1bW1sNGjRIY8eOfeDPPgAA61kMwzDMDpFTxcTEyMnJSdHR0XJ0dDQ7DgAAyAZhYWHy8vLSrl27JEkNGzZUYGCg6tevb3IyAMhd0tOn0vQoLwAAQF4XHx+vjz76SPXq1dOuXbtUpEgRzZo1S3v37qWUAkAWS/OjvAAAAHnVjh075OXlpePHj0v6a8eB+fPny93d3eRkAJA/5NqJaXh4uN58802VKlVK9vb2qlOnjkJCQlJfNwxDY8aMUdmyZWVvb682bdro5MmTJiYGAAA5zY0bN+Tp6alnnnlGx48fl6urq5YvX65169ZRSgEgG+XKYnrjxg09/fTTKliwoH788UeFhoZqxowZKlGiROo5U6dO1ezZs+Xn56e9e/eqSJEiateuneLi4kxMDgAAcgLDMLRs2TJ5eHjo888/lyR5eXkpLCxMXbt2ZQsYAMhmuXLxoxEjRui3337Tzp077/u6YRhyc3PT4MGDNWTIEElSdHS0XF1dtWjRInXr1i1N92HxIwAA8p5z586pd+/e2rhxoySpRo0aCggIUIsWLUxOBgB5S55f/OiHH35Qo0aN1LVrV7m4uKh+/foKDAxMff3MmTOKiIhQmzZtUo85OTmpadOm2r179wOvGx8fr5iYmHu+AABA3pCUlKSZM2eqZs2a2rhxo+zs7PTRRx/p4MGDlFIAMFmuLKanT5/WggULVLVqVf3000/y8fFRv379tHjxYkl/bYYtSa6urve8z9XVNfW1+5k8ebKcnJxSvypUqJB1fwgAAJBtDhw4oCeffFKDBg3S3bt31aJFCx06dEhjx45VoUKFzI4HAPleriymKSkpatCggSZNmqT69evLy8tLnp6e8vPzy9B1R44cqejo6NSvCxcuZFJiAABghjt37mjIkCFq3Lix9u3bp+LFiyswMFDbtm1TjRo1zI6HPCw84pr2HT6hS1cizY4C5AoZ2i4mJiZGS5YsUVBQkK5du6bWrVtr2LBhkqQTJ07o7NmzatmypQoXLpwpYf9WtmxZ1axZ855jHh4eWrlypSSpTJkykqQrV66obNmyqedcuXJFTzzxxAOvW6hQIX5rCgBAHvHjjz/Kx8dH586dkyS99tprmjVrVurPCUBWuHX7rqb6LdPmnSG6GxsnB/vCer5FIw336aaiRezNjgfkWFZPTDdv3qzHHntMffv21dKlS/XLL7/o2LFjqa8fP35cL7zwgn744YdMCfpPTz/9dOo+Y387ceKEKlasKEmqXLmyypQpoy1btqS+HhMTo71796pZs2aZngcAAOQcV65c0euvv64XX3xR586dk7u7uzZs2KDvvvuOUoosN9VvmZZv2CYbG4vcXErJxsai5Ru2acqC78yOBuRoVhXTsLAwderUSdHR0fLx8dGyZcv0v4v7tmvXTg4ODlq7dm2mBP2ngQMHas+ePZo0aZJOnTqlpUuXKiAgQH369JEkWSwWDRgwQBMmTNAPP/ygw4cP6+2335abm5tefvnlTM8DAADMZxiGvvjiC3l4eOjbb7+VjY2NBg0apKNHj+rFF180Ox7ygfCIa9q8M0QlixdT6RJOsrMrqNIlnFTSqZg27wzhsV7gIax6lHfSpEmKi4vTihUr1LlzZ0l/PR7zT3Z2dnriiSd06NChjKf8H40bN9bq1as1cuRIjR8/XpUrV9asWbP0xhtvpJ4zbNgw3blzR15eXrp586aaN2+uTZs2ZfpjxQAAwHzHjx9Xr169tH37dklKXbG/YcOGJidDfhJx7YbuxsbJzaXUPccdizro0tUoXb4aJTfX0ialA3I2q4rp1q1bVa9evdRS+iDly5dXaGioVcEepUOHDurQocMDX7dYLBo/frzGjx+fJfcHAADmS0hI0JQpUzRhwgQlJCTIwcFB48ePV//+/VWgQIaW0gDSrYxzCTnYF1bMnbsqbeeUejzm9l052BdSWZeSJqYDcjarHuW9du2aqlWr9sjzkpKSdOfOHWtuAQAA8FC//fab6tevrzFjxighIUHt27fXkSNHNHjwYEopTFGujLOeb9FIUTdvKTIqWgkJiYqMilZU9C0936IR01LgIawqpk5OTgoPD3/keadPn5aLi4s1twAAALivmzdvytvbW82bN1doaKicnZ21dOlSbdy4UZUrVzY7HvK54T7d9OpLrZRiGLp0NUophqFXX2ql4T7dzI4G5GhW/TqxQYMG2rFjh86fPy93d/f7nnPkyBEdOnRInTp1ylBAAAAA6a/FjVauXKm+ffsqIiJCkvTee+9p6tSpKlmSRySRMxQtYq+Ph7wrn7f+o8tXo1TWpSSTUiANrJqYvv/++4qLi1P37t1T/8PwT5GRkXr//fdlGIbef//9DIcEAAD524ULF/Tf//5XXbt2VUREhKpVq6atW7fq888/p5QiR3JzLa2GdapRSoE0sqqYdunSRV27dtXu3btVpUoVPf/885L++qxHx44d9dhjj+n333/X66+/rnbt2mVqYAAAkH8kJydr9uzZqlmzptatW6eCBQtq9OjROnTokFq1amV2PABAJrEY/7sBaRolJydrzJgxmjVrlmJjY+95zc7OTn379tUnn3wiW1vbTAlqhpiYGDk5OSk6OlqOjo5mxwEAIF85dOiQPD09FRwcLEl6+umnFRAQoJo1a5qcDACQFunpU1YX07/duHFDW7du1enTp5WSkqIKFSqodevWeWLRI4opAADZ7+7duxo/frymT5+u5ORkOTo6aurUqfL09JSNjVUPewEATJCePpXhtdRLlCjxyP1MAQAA0mLz5s3y9vbWmTNnJP318aHPPvtMbm5uJicDAGQlfu0IAABMd+3aNb311ltq166dzpw5o/Lly2vt2rVasWIFpRQA8oEMTUzj4uIUEhKiS5cuKS4u7oHnvf322xm5DQAAyKMMw9BXX32lQYMGKSoqShaLRX379tWECRNUrFgxs+MBALKJ1cV02rRpmjRpkmJiYh55LsUUAAD8r5MnT8rb21u//vqrJKlu3boKDAxUkyZNTE4GAMhuVhXTuXPnavjw4ZKkOnXqqGrVqvxWEwAApElCQoKmT5+u8ePHKz4+XoULF9a4ceM0cOBAFSxY0Ox4AAATWF1MCxQooJUrV+o///lPZmcCAAB51J49e+Tp6akjR45Iktq2basFCxaoSpUqJicDAJjJqsWPzp49q5YtW1JKAQBAmsTExMjX11dPPfWUjhw5otKlS+vrr7/WTz/9RCkFAFg3MXVxcZGzs3NmZwEAAHnQmjVr5Ovrq/DwcElSjx49NH36dJUuXdrkZACAnMKqiekLL7yg3bt3KyUlJbPzAACAPCI8PFydO3dWp06dFB4erscff1y//PKLFi1aRCkFANzDqmI6duxYJSQkqF+/fkpISMjsTAAAIBdLTk7WvHnz5OHhodWrV6tAgQIaNWqU/vjjD7Vu3drseACAHMiqR3nd3Ny0a9cudezYUdWrV9ezzz4rd3d32dj8u+daLBaNHj06w0EBAEDOd/jwYXl5eWnPnj2SpCeffFIBAQGqU6eOyckAADmZxTAMI71vMgxDAwYM0Lx58x74OK/FYpFhGLJYLEpOTs5wUDPExMTIyclJ0dHRcnR0NDsOAAA5VmxsrCZMmKCpU6cqKSlJxYoV0yeffKJevXrJ1tbW7HgAABOkp09ZNTGdNm2a5syZowIFCqhDhw6qWrWqihYtalVYAACQu23ZskXe3t46deqUJOnll1/W3LlzVa5cOZOTAQByC6uK6eeffy4HBwft3LlT9evXz+xMAAAgF4iMjNSQIUO0ePFiSX991Gfu3Lnq1KmTyckAALmNVYsfXbhwQS1atKCUAgCQDxmGoSVLlsjDw0OLFy+WxWJRnz59FBoaSikFAFjFqolpmTJlVKxYsczOAgAAcrjTp0/L29tbP//8sySpdu3aCggIULNmzUxOBgDIzayamHbq1Ek7d+5UXFxcZucBAAA5UGJioqZOnaratWvr559/VqFChTRx4kTt27ePUgoAyDCriulHH32kkiVLqnv37oqMjMzsTAAAIAcJDg5W48aNNXz4cMXGxuq5557T4cOHNWrUKNnZ2ZkdDwCQB1j1KO+AAQNUvXp1rVmzRr/++qsaNmz40H1Mv/jiiwwHBQAA2evWrVv68MMPNWfOHBmGoZIlS+rTTz/V22+/LYvFYnY8AEAeYtU+pjY2Nqn7lD7yBuxjCgBArrNu3Tr17t1bFy9elCS9+eab+vTTT+Xs7GxyMgBAbpHl+5guXLjQqmAAACBnu3z5svr166fvv/9ekvTYY4/Jz89Pbdu2NTkZACAvs6qY9ujRI7NzAAAAE6WkpCggIEAjRoxQdHS0bG1tNWTIEI0ZM0YODg5mxwMA5HFWFVMAAJB3HD16VF5eXgoKCpIkNW7cWIGBgapXr57JyQAA+UWGi2lCQoL27dun8PBwSVK5cuXUsGFDVukDACCHi4uL06RJk/TJJ58oMTFRRYoU0aRJk9SnTx/Z2tqaHQ8AkI9YXUyTkpI0btw4zZkzR7du3brntWLFiqlfv34aM2aMChRgKAsAQE6zbds29erVSydOnJAkdejQQfPmzZO7u7vJyQAA+ZFVrTElJUUdO3bUTz/9JMMwVKJECVWuXFmSdObMGd24cSN10+1169bddxsZAACQ/aKiojRs2LDUrdzKlCmjOXPm6JVXXmELGACAaaxqjJ9//rk2bdqkihUr6vvvv9f169cVEhKikJAQXb9+XStXrlTFihW1adMm9jAFACAHMAxD3333nTw8PFL/2+zt7a2wsDB16dKFUgoAMJVV+5g2b95cBw4c0NGjR1WpUqX7nnPmzBnVqlVLDRo00K5duzKa0xTsYwoAyAvOnj0rHx8fbdq0SZLk4eGhgIAANW/e3ORkAIC8LD19yqqJ6ZEjR9SqVasHllJJqly5sp577jkdOXLEmlsAAIAMSkpK0owZM1SrVi1t2rRJdnZ2Gj9+vA4cOEApBQDkKFZ9xjQ+Pl5OTk6PPK9YsWKKj4+35hYAACAD9u3bJ09PTx04cECS9Mwzz8jf31/Vq1c3ORkAAP9m1cS0QoUK2r17t5KTkx94TnJysvbs2aPy5ctbHQ4AAKTP7du3NWjQIDVp0kQHDhxQiRIl9MUXX2jr1q2UUgBAjmVVMW3Xrp3Onz+v/v37KzEx8V+vJyQkqF+/fjp//rxeeOGFDIcEAACPtnHjRtWqVUszZ85USkqKunfvrrCwMPXs2ZPFjQAAOZpVix+Fh4erbt26unnzptzc3NStW7fU7WJOnz6tZcuW6dKlSypZsqQOHjyocuXKZXrw7MDiRwCA3CAiIkIDBgzQsmXLJEkVK1bUggUL+OUwAMBU6elTVhVTSQoODlbXrl11/vz5f/0W1jAMubu76/vvv1ejRo2suXyOQDEFAORkKSkp+vLLLzV06FDdvHlTNjY2GjhwoMaNG6ciRYqYHQ8AkM+lp09ZtfiRJDVu3FgnTpzQihUrtG3bNoWHh0uSypUrp1atWqlr166ys7Oz9vIAAOAhjh07Ji8vL+3cuVOS1KBBAwUGBqpBgwYmJwMAIP2snpjmB0xMAQA5TXx8vD755BNNmjRJCQkJcnBw0IQJE9S3b18VKGD175sBAMh02TIxBQAA2Wvnzp3y8vLSsWPHJEkvvPCC5s+f/9B9xQEAyA2sWpV39+7d6tmzp4KCgh54zm+//aaePXvq999/tzocAACQbt68qV69eqlly5Y6duyYXFxc9N1332nDhg2UUgBAnmBVMQ0ICNDSpUtVrVq1B55TrVo1ffPNN/r888+tDgcAQH5mGIZWrFghDw8PBQQESJI8PT117Ngxvfbaa2wBAwDIM6x6lDcoKEhPPPGESpcu/cBznJ2dVb9+/dRFGQAAQNqdP39effr00fr16yVJ1atXV0BAgFq2bGlyMgAAMp9VE9Pw8PA0PTpUsWJFXbp0yZpbAACQLyUnJ2vWrFmqWbOm1q9fr4IFC2rs2LE6dOgQpRQAkGdZNTG1sbFRQkLCI89LTExUUlKSNbcAACDfOXDggLy8vBQSEiJJat68uQICAuTh4WFyMgAAspZVE9NKlSpp9+7dDy2dSUlJ2r17typWrGh1OAAA8oM7d+5o2LBhaty4sUJCQuTk5CR/f39t376dUgoAyBesKqbt2rXT1atX9dFHHz3wnHHjxunq1atq3769tdkAAMjzfvrpJ9WuXVvTpk1TcnKyunbtqrCwMHl5ecnGxqr/TAMAkOtYDMMw0vumS5cuqXbt2oqOjlbHjh3l6empGjVqSJKOHTumwMBA/fDDDypWrJiOHDmi8uXLZ3rw7JCeDWEBAEiPq1evauDAgVq6dKkkqUKFCpo/f746dOhgcjIAADJHevqUVcVUkrZs2aJXXnlFMTEx/1qu3jAMFStWTN9//73atm1rzeVzBIopACCzGYahRYsWaciQIYqKipKNjY369eunjz/+WEWLFjU7HgAAmSY9fcqqxY8kqXXr1jpy5IhmzJihn376SefOnZMkubu7q3379ho0aJAqVKhg7eUBAMhzTpw4IW9vb23dulWSVK9ePQUGBqpx48YmJwMAwFxWT0zzAyamAIDMkJCQoGnTpunjjz9WfHy87O3tNW7cOA0YMEAFCxY0Ox4AAFkiWyamAADg0YKCguTl5aWjR49K+msBwQULFqhy5comJwMAIOdguT8AALJAdHS0evfurebNm+vo0aNydnbWN998ox9//JFSCgDA/7B6Ynrr1i3Nnz9fv/zyi8LDwxUXF3ff8ywWi/7880+rAwIAkJsYhqHVq1fL19dXly9fliS9++67mjZtmkqVKmVyOgAAciariumlS5fUvHlznTt3To/6iOr/rtgLAEBedfHiRfn6+mrt2rWSpMcff1wBAQF69tlnTU4GAEDOZlUxHTVqlM6ePasnnnhCI0aMkIeHB4sDAQDyreTkZM2fP1+jRo3S7du3VaBAAQ0fPlwffPCB7O3tzY4HAECOZ1Ux/emnn+Tq6qqtW7fKyckpszMBAJBr/PHHH/L09NTvv/8uSWrWrJkCAgJUu3Ztk5MBAJB7WLX40Y0bN9SsWTNKKQAg34qNjdXIkSPVsGFD/f7773J0dNT8+fO1a9cuSikAAOlk1cS0QoUKSklJyewsAADkCr/88ou8vb1TF/fr3LmzZs+erXLlypmcDACA3MmqiWmXLl20c+dO3blzJ7PzAACQY0VGRqpHjx5q27at/vzzT5UrV05r1qzRypUrKaXI08Ijrmnf4RO6dCXS7CgA8iiL8ahlde/j7t27euqpp1SuXDktXLhQLi4uWZHNdDExMXJyclJ0dDSLOwFAPmYYhr7++msNGjRI169fl8Vika+vryZMmMB/H5Cn3bp9V1P9lmnzzhDdjY2Tg31hPd+ikYb7dFPRIizsBeDh0tOnrHqU19fXV1WqVNHq1av1+OOPq1GjRnJ3d5eNzb8HsBaLRV988YU1twEAwHSnTp2St7e3tmzZIkmqU6eOAgMD1bRpU5OTAVlvqt8yLd+wTSWLF5ObSynF3Lmr5Ru2SZI+HvKuueEA5ClWTUxtbGxksVgeuYep9FcxTU5Otiqc2ZiYAkD+lZiYqBkzZmjcuHGKi4tT4cKFNXbsWA0ePFgFCxY0Ox6Q5cIjrqlzr49kY2NR6RL/f8HLyKhopRiGVgeMk5traRMTAsjpsnxiunDhQquCAQCQG+zdu1eenp46fPiwJKlNmzby8/NTlSpVTE4GZJ+Iazd0NzZObi6l7jnuWNRBl65G6fLVKIopgExjVTHt0aNHZucAAMB0MTEx+uCDDzRv3jwZhqFSpUpp5syZevPNN2WxWMyOB2SrMs4l5GBfWDF37qq03f+fmMbcvisH+0Iq61LSxHQA8hqrVuUFACCvWbt2rWrWrKm5c+fKMAy9/fbbOnbsmN566y1KKfKlcmWc9XyLRoq6eUuRUdFKSEhUZFS0oqJv6fkWjZiWAshUVk1MAQDIK8LDw9WvXz+tWrVKkvTYY4/J399fbdq0MTkZYL7hPt0kSZt3hujS1Sg52BfSqy+1Sj0OAJklTYsfjR8/PkM3GTNmTIbebxYWPwKAvCslJUX+/v4aMWKEYmJiZGtrq6FDh2r06NFycHAwOx6Qo1y6EqnLV6NU1qUkk1IAaZaePpWmYvr3KrzWYlVeAEBOcvToUXl5eSkoKEiS1KRJEwUGBqpu3bomJwMAIO/I9FV5W7ZsyedrAAC5XlxcnCZOnKgpU6YoMTFRRYsW1eTJk+Xj4yNbW1uz4wEAkG+lqZhu27Yti2MAAJC1tm7dql69eunkyZOSpI4dO2ru3LmqUKGCyckAAACr8gIA8rTr16+rZ8+eeu6553Ty5EmVLVtWK1eu1Jo1ayilAADkEBRTAECeZBiGli5dKg8PDy1cuFAWi0W9e/dWWFiYOnfuzEdUAADIQdguBgCQ55w+fVo+Pj7avHmzJKlWrVoKCAjQU089ZXIyAABwP0xMAQB5RlJSkqZNm6batWtr8+bNKlSokCZMmKD9+/dTSgEAyMGYmAIA8oTg4GB5eXnp4MGDkqRWrVrJ399f1apVMzcYAAB4JCamAIBc7fbt2xo4cKCefPJJHTx4UCVKlNCXX36pX3/9lVIKAEAuwcQUAJBrbdiwQT4+Prpw4YIk6fXXX9fMmTPl4uJicjIAAJAeFFMAQK4TERGh/v37a/ny5ZKkSpUqyc/PT+3atTM5GQAAsAaP8gIAco2UlBQFBASoRo0aWr58uWxtbTV06FAdOXKEUgoAQC6WoWL6559/atiwYWrevLmqV6+uYcOGpb62d+9eBQQEKDo6OsMhAQAICwvTM888o169eik6OloNGzZUcHCwpk6dqiJFipgdDwAAZIDVj/IuXrxY3t7eio+PlyRZLBZFRkamvn737l35+PjIzs5O77zzToaDAgDyp/j4eE2ePFmTJk1SYmKiihQpookTJ8rX11e2trZmxwMAAJnAqonpnj179P7778vOzk5Tp07V3r17ZRjGPec888wzcnJy0rp16zIlKAAg/9mxY4fq1auncePGKTExUS+99JJCQ0PVv39/SikAAHmIVcV06tSpMgxDGzZs0JAhQ9S4ceN/X9jGRk888YRCQ0MzHPJRPvnkE1ksFg0YMCD1WFxcnPr06aNSpUqpaNGieuWVV3TlypUszwIAyLgbN27I09NTzzzzjI4fPy5XV1ctX75c69atk7u7u9nxAABAJrOqmP72229q0qSJmjdv/tDzypQpo8uXL1sVLK2Cg4Pl7++vunXr3nN84MCBWrdunVasWKHt27fr0qVL6ty5c5ZmAQBkjGEYWrZsmTw8PPT5559Lkry8vBQWFqauXbvKYrGYnBAAAGQFq4rpzZs30/Qb69jYWCUkJFhzizS5ffu23njjDQUGBqpEiRKpx6Ojo/XFF1/o008/1XPPPaeGDRtq4cKFCgoK0p49e7IsDwDAeufOnVOHDh3UrVs3XblyRTVq1NCOHTvk7+9/z7/jAQBA3mNVMS1VqpTOnTv3yPNOnTqlMmXKWHOLNOnTp49eeukltWnT5p7j+/btU2Ji4j3Ha9SoIXd3d+3evfuB14uPj1dMTMw9XwCArJWUlKRPP/1UNWvW1MaNG2VnZ6ePPvpIBw8eVIsWLcyOBwAAsoFVxfTJJ59USEiIjh49+sBzfvvtNx09evSRj/ta67vvvtP+/fs1efLkf70WEREhOzs7FS9e/J7jrq6uioiIeOA1J0+eLCcnp9SvChUqZHZsAMA/7N+/X02bNtXgwYN19+5dtWjRQocOHdLYsWNVqFAhs+MBAIBsYlUx7dOnj5KTk/XKK6/o4MGD/3o9LCxMPXv2lMViUe/evTOa8V8uXLig/v3765tvvlHhwoUz7bojR45UdHR06teFCxcy7doAgP/vzp07GjJkiJo0aaL9+/erePHiCgwM1LZt21SjRg2z4wEAgGxmVTFt3bq1Bg0apBMnTqhhw4aqVq2aLBaLfvrpJ9WtW1d16tTRyZMnNXToUD355JOZnVn79u3T1atX1aBBAxUoUEAFChTQ9u3bNXv2bBUoUECurq5KSEjQzZs373nflStXHvpocaFCheTo6HjPFwAgc/3444+qVauWZsyYoeTkZL322msKCwvT+++/Lxsbq/6zBAAAcjmrfwKYPn26/P39VaZMGZ06dUqGYejy5cs6cuSISpYsqTlz5uiTTz7JzKypWrdurcOHD+vgwYOpX40aNdIbb7yR+s8FCxbUli1bUt9z/PhxnT9/Xs2aNcuSTACAh7ty5Ypef/11vfjiizp37pzc3d21YcMGfffdd1m6HgEAAMj5LIZhGBm5gGEYOnDggE6fPq2UlBRVqFBBjRs3VoECBTIrY5q0atVKTzzxhGbNmiVJ8vHx0caNG7Vo0SI5Ojqqb9++kqSgoKA0XzMmJkZOTk6Kjo5megoAVjIMQ19++aWGDh2qGzduyMbGRgMGDNC4ceNUtGhRs+MBAIAskp4+leH2aLFY1KBBAzVo0CCjl8pUM2fOlI2NjV555RXFx8erXbt2mj9/vtmxACBfOX78uHr16qXt27dLkurXr6/AwEA1bNjQ5GQAACAnsWpiOnjwYL333nuqWbNmVmTKMZiYAoB1EhISNGXKFE2YMEEJCQlycHDQ+PHj1b9//2x/ogYAAJgjPX3KqmJqY2Mji8WiRo0a6d1331X37t3l5ORkdeCcimIKAOn322+/ycvLS6GhoZKk9u3ba/78+apcubLJyQAAQHZKT5+yavGjQYMGycXFRcHBwerTp4/Kli2rN954Q7/88otVgQEAud/Nmzfl7e2t5s2bKzQ0VM7Ozlq6dKk2btxIKQUAAA9l9eJHycnJ2rBhgxYuXKiNGzcqMTFRFotF5cuX1zvvvKMePXrosccey+y82YqJKQA8mmEYWrlypfr27auIiAhJ0nvvvaepU6eqZMmSJqcDAABmyfJHef9XZGSkvv76ay1atEiHDx/+68IWi1q2bKmePXvqrbfeyugtTEExBYCHu3Dhgvr06aN169ZJkqpVqyZ/f3+1atXK3GAAAMB02V5M/2n//v1auHChvv32W0VFRcnGxkZJSUmZeYtsQzEFgPtLTk7WvHnz9MEHH+j27dsqWLCgRowYoVGjRqlw4cJmxwMAADlAtm4X878aNGig+Ph4RUdHa8mSJcrk3gsAMNmhQ4fk6emp4OBgSdLTTz+tgICAPL9SOwAAyDqZVkwvXbqkr776SosWLdLJkyclSba2tmrfvn1m3QIAYKK7d+9q/Pjxmj59upKTk+Xo6KipU6fK09NTNjZWraUHAAAgKYPFNCEhQatXr9aiRYv0yy+/KCUlRYZhqFq1anr33Xf19ttvq2zZspmVFQBgks2bN8vb21tnzpyRJHXp0kWfffaZ3NzcTE4GAADyAquK6e+//65FixZp2bJlunnzpgzDUNGiRfXqq6/q3Xff1dNPP53ZOQEAJrh27ZoGDRqkJUuWSJLKly+vefPmqWPHjiYnAwAAeYlVxfTJJ5+UxWKRYRhq0aKF3n33Xb366qtycHDI7HwAABMYhqGvvvpKgwYNUlRUlCwWi/r27asJEyaoWLFiZscDAAB5jFXF1M3NTT169NC7776rxx9/PLMzAQBMdPLkSXl7e+vXX3+VJNWtW1eBgYFq0qSJyckAAEBeZVUxPX/+PAtdAEAek5CQoOnTp2v8+PGKj49X4cKFNW7cOA0cOFAFCxY0Ox4AAMjDrCqmlFIAyFv27NkjT09PHTlyRJLUtm1bLViwQFWqVDE5GQAAyA/SVEzPnz8vSSpXrpxsbW1Tv08rd3f39CcDAGS5mJgYjRo1SvPnz5dhGCpdurRmzpypN954QxaLxex4AAAgn0hTMa1UqZJsbGwUGhqqatWqqVKlSmn+gcVisSgpKSlDIQEAmW/NmjXy9fVVeHi4JKlHjx6aPn26SpcubXIyAACQ36SpmLq7u8tisaR+xujv7wEAuU94eLj69u2r1atXS5Ief/xx+fn5qXXr1iYnAwAA+VWaiunZs2cf+j0AIOdLTk6Wn5+fRo4cqVu3bqlAgQIaNmyYPvzwQ9nb25sdDwAA5GNWLX4EAMhdDh8+LC8vL+3Zs0fSX/tRBwQEqE6dOiYnAwAAkKxaXnf8+PH64YcfHnneunXrNH78eGtuAQDIBLGxsfrggw/UoEED7dmzR8WKFdO8efO0a9cuSikAAMgxrCqmH330kdasWfPI83744QeNGzfOmlsAADJoy5Ytqlu3riZNmqSkpCS9/PLLCgsLU+/evWVra2t2PAAAgFRZuiFpSkoKiyQBQDaLjIzUO++8ozZt2ujUqVNyc3PTqlWrtHr1apUrV87seAAAAP+SpcX0woULKlq0aFbeAgDwfwzD0JIlS+Th4aHFixfLYrGoT58+Cg0NVadOncyOBwAA8EBpXvzoq6++uuf7U6dO/evY35KSknT06FFt3bpVzZo1y1hCAMAjnT59Wt7e3vr5558lSbVr11ZAQAD/DgYAALmCxTAMIy0n2tjYpD6WaxjGIx/RNQxDNjY2WrVqlTp27JjxpCaIiYmRk5OToqOj5ejoaHYcAPiXxMREzZw5Ux999JFiY2NVqFAhjRkzRkOGDJGdnZ3Z8QAAQD6Wnj6V5onp22+/nVpGFy9erCpVqujpp5++77l2dnYqX768Xn75ZVZ9BIAsEhwcLE9PTx06dEiS9Nxzz8nPz09Vq1Y1ORmQc4VHXFPEtRsq61JSbq6lzY4DAPg/aZ6Y/pONjY3eeecdffnll1mRKcdgYgogJ7p165Y+/PBDzZkzR4ZhqGTJkvr000/v+QUigHvdun1XU/2WafPOEN2NjZODfWE936KRhvt0U9Ei9mbHA4A8KUsmpv905swZFjUCABOsW7dOvXv31sWLFyVJb775pj799FM5OzubnAzI2ab6LdPyDdtUsngxubmUUsydu1q+YZsk6eMh75obDgBg3aq8FStWVKlSpTI7CwDgAS5fvqyuXbuqY8eOunjxoh577DFt3rxZX3/9NaUUeITwiGvavDNEJYsXU+kSTrKzK6jSJZxU0qmYNu8M0aUrkWZHBIB8z6qJ6T/duXNHp06dUkxMjB70VHDLli0zehsAyJdSUlIUEBCgESNGKDo6Wra2thoyZIjGjBkjBwcHs+MBuULEtRu6GxsnN5d7f6nuWNRBl65G6fLVKD5vCgAms7qYnj59Wv3799emTZuUkpLywPMsFouSkpKsvQ0A5FtHjx6Vl5eXgoKCJEmNGzdWYGCg6tWrZ3IyIHcp41xCDvaFFXPnrkrbOaUej7l9Vw72hVTWpaSJ6QAAkpWP8l6+fFnNmjXThg0b5OrqKmdnZxmGoSeffFKlSpVKnZw2a9ZMLVq0yNTAAJDXxcXFacyYMapfv76CgoJUpEgRffbZZ9q9ezelFLBCuTLOer5FI0XdvKXIqGglJCQqMipaUdG39HyLRkxLASAHsKqYfvLJJ7p27ZpGjRqlixcv6oUXXpDFYtFvv/2mq1ev6scff1TFihVlb2+futk7AODRtm3bpnr16unjjz9WYmKiOnTooNDQUPXr10+2trZmxwNyreE+3fTqS62UYhi6dDVKKYahV19qpeE+3cyOBgCQldvF1KhRQ3fu3NHZs2dla2urd999V1999ZWSk5NTzzl+/Ljq1q2r8ePHa/jw4ZkaOruwXQyA7BIVFaVhw4bpiy++kCSVKVNGc+bM0SuvvMIWMEAmunQlUpevRrGPKQBkg/T0KasmpufPn9cTTzyR+tt7G5u/LvPPz5JWr15dLVq00NKlS625BQDkC4Zh6LvvvpOHh0dqKfX29lZYWJi6dOlCKQUymZtraTWsU41SCgA5jFXFtGDBgipSpEjq93//c2Tkvcutu7i46PTp0xmIBwB519mzZ/Xiiy+qe/fuunr1qjw8PLRz504tWLBAxYsXNzseAABAtrGqmLq5uenChQup31euXFmSFBIScs95R48eZTsDAPgfSUlJmjFjhmrVqqVNmzbJzs5O48eP14EDB9S8eXOz4wEAAGQ7q7aLadiwoTZu3KikpCQVKFBArVu3lmEYGjFihCpXrix3d3fNmTNHhw8fVps2bTI7MwDkWvv27ZOnp6cOHDggSXrmmWfk7++v6tWrm5wMAADAPFZNTNu3b6+bN29q06ZNkqS6devq5ZdfVmhoqOrWravixYtr9OjRsrGx0dixYzM1MADkRrdv39agQYPUpEkTHThwQCVKlNAXX3yhrVu3UkoBAEC+Z1Ux7datmy5cuKBWrVqlHluyZIl8fX3l4uKiAgUKqE6dOlqxYoWefvrpzMoKALnSxo0bVatWLc2cOVMpKSnq3r27wsLC1LNnTxY3AgAAkJXbxeQXbBcDICMiIiI0YMAALVu2TJJUsWJFLViwQC+88ILJyQAAALJelm8XAwB4sJSUFH3++efy8PDQsmXLZGNjo8GDB+vo0aOUUgAAgPuwavEjAMD9HTt2TF5eXtq5c6ckqUGDBgoMDFSDBg1MTgYAAJBzpamYjh8/3uobWCwWjR492ur3A0BuEB8fr08++USTJk1SQkKCHBwcNGHCBPXt21cFCvA7QAAAgIdJ02dMbWxsZLFYlJ6Po/59vsViUXJycoZCmoXPmAJIi507d8rLy0vHjh2TJL3wwguaP3++KlWqZG4wAAAAE6WnT6Xp1/hs+QIA/3bz5k0NHz5cAQEBkiQXFxfNnj1br776KqvtAgAApAOr8j4EE1MA92MYhr7//nv169dPERERkiRPT09NmTJFJUqUMDkdAABAzpDpE1MAwF/Onz+vPn36aP369ZKk6tWrKyAgQC1btjQ5GQAAQO7FdjEAkAbJycmaNWuWatasqfXr16tgwYIaO3asDh06RCkFAADIIKsmpl999VW6zn/77betuQ0A5AgHDhyQl5eXQkJCJEnNmzdXQECAPDw8TE4GAACQN1j1GdO/V+l9FFblBZCb3blzR+PGjdOnn36q5ORkOTk5aerUqXr//fdlY8MDJwAAAA+T5Z8xffvtt+9bTFNSUnTu3Dnt379fd+7c0csvvywnJydrbgEApvrpp5/k7e2ts2fPSpK6du2qzz77TGXLljU3GAAAQB5kVTFdtGjRQ1+/cuWK3nrrLZ0+fVpBQUHW3AIATHH16lUNHDhQS5culSRVqFBB8+fPV4cOHUxOBgAAkHdlybNorq6u+uabb3Tu3Dl9/PHHWXELAMhUhmFo4cKFqlGjhpYuXSobGxsNGDBAoaGhlFIAAIAslmUfknJ2dlbjxo21YsWKrLoFAGSKEydOqHXr1urZs6du3LihevXqac+ePZo5c6aKFi1qdjwAAIA8L0tX7yhSpIjCw8Oz8hYAYLWEhARNnDhRdevW1datW2Vvb6+pU6cqODhYjRs3NjseAABAvmHVZ0zTIjo6Wrt371bx4sWz6hYAYLWgoCB5eXnp6NGjkqR27dppwYIFqly5ssnJAAAA8h+riun58+cf+NqtW7cUFhamKVOm6Nq1a+xhCiBHiY6O1siRI+Xn5yfDMOTs7KxZs2ape/fuadoGCwAAAJnPqmJaqVKlR/4AZxiGKlasqEmTJlkVDAAyk2EYWr16tXx9fXX58mVJ0rvvvqtp06apVKlSJqcDAADI36wqpu7u7g8spnZ2dipXrpzatGmjPn36sI8pANNdvHhRvr6+Wrt2rSSpatWq8vf317PPPmtyMgAAAEhWFtO/N5wHgJwsOTlZ8+fP16hRo3T79m0VKFBAI0aM0AcffKDChQubHQ8AAAD/J8sWPwIAM/3xxx/y9PTU77//Lklq1qyZAgICVLt2bZOTAQAA4H9l6XYxAJDdYmNjNXLkSDVs2FC///67HB0dNX/+fO3atYtSCgAAkENlaGIaFxenkJAQXbp0SXFxcQ88j5V5AWSHX375Rd7e3vrzzz8lSZ07d9bs2bNVrlw5k5MBAADgYawuptOmTdOkSZMUExPzyHMppgCyUmRkpAYPHqyvvvpKklSuXDnNmzdP//3vf01OBgAAgLSwqpjOnTtXw4cPlyTVqVNHVatWVbFixTI1GAA8imEY+vrrrzVo0CBdv35dFotFvr6+mjBhghwdHc2OBwAAgDSyupgWKFBAK1eu1H/+85/MzgQAj3Tq1Cl5e3try5Ytkv76JVlgYKCaNm1qcjIAAACkl1WLH509e1YtW7aklALIdomJifrkk09Up04dbdmyRYULF9bkyZO1b98+SikAAEAuZdXE1MXFRc7OzpmdBQAeau/evfL09NThw4clSW3atJGfn5+qVKlicjIAAABkhFUT0xdeeEG7d+9WSkpKZucBgH+JiYlR37591axZMx0+fFilSpXSV199pc2bN1NKAQAA8gCriunYsWOVkJCgfv36KSEhIbMzAUCqtWvXqmbNmpo7d64Mw9Dbb7+tY8eO6a233pLFYjE7HgAAADKBVY/yurm5adeuXerYsaOqV6+uZ599Vu7u7rKx+XfPtVgsGj16dIaDAshfwsPD1a9fP61atUqS9Nhjj8nf319t2rQxORkAAAAym8UwDCO9bzIMQwMGDNC8efMe+DivxWKRYRiyWCxKTk7OcFAzxMTEyMnJSdHR0Ww9AWSTlJQU+fn5aeTIkYqJiZGtra2GDh2q0aNHy8HBwex4AAAASKP09CmrJqbTpk3TnDlzVKBAAXXo0EFVq1ZV0aJFrQoLAH87evSoPD09tXv3bklSkyZNFBgYqLp165qcDAAAAFnJqmL6+eefy8HBQTt37lT9+vUzOxOAfCYuLk4TJ07UlClTlJiYqKJFi2ry5Mny8fGRra2t2fGAHCs84poirt1QWZeScnMtbXYcAACsZlUxvXDhglq1akUpBZBhW7duVa9evXTy5ElJUseOHTV37lxVqFDB5GRAznXr9l1N9VumzTtDdDc2Tg72hfV8i0Ya7tNNRYvYmx0PAIB0s2pV3jJlyqhYsWKZnQVAPnL9+nX17NlTzz33nE6ePKmyZctq5cqVWrNmDaUUeISpfsu0fMM22dhY5OZSSjY2Fi3fsE1TFnxndjQAAKxiVTHt1KmTdu7cqbi4uMzOAyCPMwxDS5culYeHhxYuXCiLxaLevXsrLCxMnTt3ZgsY4BHCI65p884QlSxeTKVLOMnOrqBKl3BSSadi2rwzRJeuRJodEQCAdLOqmH700UcqWbKkunfvrshI/gMIIG1Onz6t9u3b64033tC1a9dUq1Yt7dq1S/PmzZOTk5PZ8YBcIeLaDd2NjZNjkXtXqXYs6qC7sfG6fDXKpGQAAFjPqs+YDhgwQNWrV9eaNWv066+/qmHDhg/dx/SLL77IcFAAuVdSUpJmzpypsWPHKjY2VoUKFdLo0aM1dOhQ2dnZmR0PyFXKOJeQg31hxdy5q9J2//8XOjG378rBvpDKupQ0MR0AANaxah9TGxub1H1KH3kD9jEF8rXg4GB5eXnp4MGDkqRWrVrJ399f1apVMzcYkIuNnr5QyzdsU0mnYnIs6qCY23cVFX1Lr77USh8PedfseAAASMqGfUwXLlxoVTAA+cft27c1evRozZ49WykpKSpRooRmzJihd955h8+RAhk03KebJP31mdKrUXKwL6RXX2qVehwAgNzGqolpfsHEFLDOhg0b5OPjowsXLkiSXn/9dc2cOVMuLi4mJwPylktXInX5ahT7mAIAcqQsn5gCwP1ERESof//+Wr58uSSpUqVK8vPzU7t27UxOBuRNbq6lKaQAgDzBqlV5AeCfUlJSFBAQoBo1amj58uWytbXV0KFDdeTIEUopAAAAHsmqiWnPnj3TfC6r8gJ5W1hYmLy8vLRr1y5JUsOGDRUYGKj69eubnAwAAAC5hdWr8j70ov+3sIlhGKzKC+RR8fHxmjx5siZNmqTExEQVKVJEEydOlK+vr2xtbc2OBwAAAJOZtipvSkqKzp07p40bNyokJEQDBgxQvXr1rLkFgBxsx44d8vLy0vHjxyVJL730kubPny93d3eTkwEAACA3yrJVeYcNG6bAwEDt379flStXztRrT548WatWrdKxY8dkb2+vp556SlOmTFH16tVTz4mLi9PgwYP13XffKT4+Xu3atdP8+fPl6uqa5vswMQXudePGDQ0bNkyff/65JMnV1VVz5sxRly5d2AIGAAAA90hPn8qyxY8mTZqkYsWKacyYMZl+7e3bt6tPnz7as2ePfv75ZyUmJur555/XnTt3Us8ZOHCg1q1bpxUrVmj79u26dOmSOnfunOlZgPzAMAwtW7ZMHh4eqaXUy8tLYWFh6tq1K6UUAAAAGZKl+5i+/PLL2rt3ry5fvpxVt5AkXbt2TS4uLtq+fbtatmyp6OhoOTs7a+nSperSpYsk6dixY/Lw8NDu3bv15JNPpum6TEwB6dy5c+rdu7c2btwoSapRo4YCAgLUokULk5MBAAAgJ8sRE1NJio2N1Y0bN7LyFpKk6OhoSVLJkiUlSfv27VNiYqLatGmTek6NGjXk7u6u3bt3P/A68fHxiomJuecLyK+SkpL06aefqmbNmtq4caPs7Oz00Ucf6eDBg5RSAAAAZCqrFj9Ki7CwMO3atUsVKlTIqltI+mvBpQEDBujpp59W7dq1JUkRERGys7NT8eLF7znX1dVVERERD7zW5MmTNW7cuKyMC+QK+/fvl6enp/bv3y9JatGiReo+pQAAAEBms6qYfvXVVw987datWwoLC9PXX3+tuLg4vf7661aHS4s+ffroyJEjqXsoZsTIkSM1aNCg1O9jYmKyvFgDOcmdO3c0duxYzZo1S8nJySpevLimTZumnj17PnKbKAAAAMBaVhXTd95556GLnfz9sdX//ve/+vDDD61Llga+vr5av369duzYofLly6ceL1OmjBISEnTz5s17pqZXrlxRmTJlHni9QoUKqVChQlmWF8jJfvzxR/n4+OjcuXOSpNdee02zZs166N8ZAAAAIDNYVUzffvvtBxZTOzs7lStXTm3atNFTTz2VoXAPYhiG+vbtq9WrV2vbtm3/2o6mYcOGKliwoLZs2aJXXnlFknT8+HGdP39ezZo1y5JMQG515coVDRw4UN9++60kyd3dXQsWLNCLL75ocjIAAADkF1m6Km9W6d27t5YuXaq1a9fes3epk5OT7O3tJUk+Pj7auHGjFi1aJEdHR/Xt21eSFBQUlOb7sCov8jLDMPTll19q6NChunHjhmxsbDRgwACNGzdORYsWNTseAAAAcrn09KlcWUwfNK1duHCh3nnnHUlSXFycBg8erG+//Vbx8fFq166d5s+fn67HEimmyKuOHz+uXr16afv27ZKk+vXrKzAwUA0bNjQ5GQAAAPKKLCmmwcHBunz5sjw8PFS1atWHnnvixAkdO3ZMbm5uatSoUdqT5zAUU+Q1CQkJmjJliiZMmKCEhAQ5ODho/Pjx6t+/vwoUyLJFugEAAJAPpadPpekn0cjISLVu3VrFihXTwYMHH3l+iRIl1Lt3b929e1enT5/+17YtALLfb7/9Ji8vL4WGhkqS2rdvr/nz5//rM9oAAABAdkvT/g9LlizR7du3NW7cODk7Oz/yfGdnZ40fP143b97UkiVLMhwSgPVu3rwpb29vNW/eXKGhoXJ2dtbSpUu1ceNGSikAAAByhDQV040bN6pIkSLq0aNHmi/81ltvqWjRolq/fr3V4QBYzzAMff/99/Lw8JC/v78k6b333tOxY8fUvXv3h275BAAAAGSnND3Ke+TIETVt2lQFCxZM84ULFiyoJk2a6PDhw1aHA2CdCxcuqE+fPlq3bp0kqVq1avL391erVq3MDQYAAADcR5omplFRUelazfZvrq6uun79errfB8A6ycnJmj17tmrWrKl169apYMGCGj16tA4dOkQpBQAAQI6VpolpoUKFdOfOnXRf/O7duypUqFC63wcg/Q4dOiRPT08FBwdLkp5++mkFBASoZs2aJicDAAAAHi5NE9MyZcrojz/+SPfF//jjD6smrQDS7u7duxoxYoQaNmyo4OBgOTo6ys/PTzt27KCUAgAAIFdIUzF96qmndPbsWQUFBaX5wr/99pvOnDmjp556yupwAB5u8+bNql27tqZMmaLk5GR16dJFYWFh6tWrl2xs0vTXGwAAADBdmn5yfeONN2QYhry8vBQdHf3I82/evCkvLy9ZLBZ17949wyEB3OvatWt666231K5dO505c0bly5fX2rVrtWLFCrm5uZkdDwAAAEiXNBXTNm3aqHXr1goNDVXDhg31ww8/yDCMf51nGIbWrl2rRo0a6dixY2rVqpWef/75TA8N5FeGYWjx4sWqUaOGlixZIovFov79+ys0NFQdO3Y0Ox4AAABgFYtxv4Z5H9evX9fTTz+tEydOyGKxqHjx4mrQoIFcXFwkSVevXtX+/ft18+ZNGYahxx9/XEFBQSpdunSW/gGyUkxMjJycnBQdHS1HR0ez4yCfO3nypLy9vfXrr79KkurWravAwEA1adLE5GQAAADAv6WnT6W5mP59YV9fX3377bdKTk7+6wIWiySlTlBtbGzUvXt3zZkzR8WLF7fyj5AzUEyREyQkJGj69OkaP3684uPjVbhwYY0bN04DBw5M197CAAAAQHbKsmL6tzNnzmj9+vUKCQnRtWvXJEnOzs5q2LChOnTooMcee8y65DkMxRRm2717t7y8vHTkyBFJUtu2bbVgwQJVqVLF5GQAAADAw2V5Mc0vKKYwS0xMjEaNGqX58+fLMAyVLl1aM2fO1BtvvJH6lAIAAACQk6WnTxXIpkwA0mjNmjXy9fVVeHi4JKlHjx6aPn16rv68NvAo4RHXFHHthsq6lJSbK/+/DgBAfkMxBXKI8PBw9e3bV6tXr5YkPf744/Lz81Pr1q1NTgZknVu372qq3zJt3hmiu7FxcrAvrOdbNNJwn24qWsTe7HgAACCbpGm7GABZJzk5WfPmzZOHh4dWr16tAgUKaNSoUfrjjz8opcjzpvot0/IN22RjY5GbSynZ2Fi0fMM2TVnwndnRAABANqKYAiY6fPiwmjdvLl9fX926dUtPPvmk9u/fr4kTJ8renmkR8rbwiGvavDNEJYsXU+kSTrKzK6jSJZxU0qmYNu8M0aUrkWZHBAAA2YRiCpggNjZWH3zwgRo0aKA9e/aoWLFimjdvnnbt2qU6deqYHQ/IFhHXbuhubJwcizjcc9yxqIPuxsbr8tUok5IBAIDsxmdMgWy2ZcsWeXt769SpU5KkTp06ac6cOSpXrpzJyYDsVca5hBzsCyvmzl2VtnNKPR5z+64c7AuprEtJE9MBAIDsxMQUyCaRkZF655131KZNG506dUpubm5atWqVVq1aRSlFvlSujLOeb9FIUTdvKTIqWgkJiYqMilZU9C0936IRq/MCAJCPUEyBLGYYhpYsWSIPDw8tXrxYFotFffr0UWhoqDp16mR2PMBUw3266dWXWinFMHTpapRSDEOvvtRKw326mR0NAABkI4thGIbZIXKq9GwIC9zPn3/+KR8fH/3888+SpNq1aysgIEDNmjUzORmQs1y6EqnLV6PYxxQAgDwkPX2Kz5gCWSAxMVEzZ87URx99pNjYWBUqVEhjxozRkCFDZGdnZ3Y8IMdxcy1NIQUAIB+jmAKZLDg4WJ6enjp06JAk6bnnnpOfn5+qVq1qcjIAAAAgZ+IzpkAmuXXrlvr376+mTZvq0KFDKlmypBYtWqRffvmFUgoAAAA8BBNTIBOsW7dOvXv31sWLFyVJb775pj799FM5OzubnAwAAADI+SimQAZcvnxZ/fr10/fffy9Jeuyxx+Tn56e2bduanAwAAADIPXiUF7BCSkqK/Pz85OHhoe+//162trYaPny4Dh8+TCkFAAAA0omJKZBOR48elZeXl4KCgiRJjRs3VmBgoOrVq2dyMgAAACB3YmIKpFFcXJzGjBmj+vXrKygoSEWKFNFnn32m3bt3U0oBAACADGBiCqTBtm3b1KtXL504cUKS1KFDB82bN0/u7u4mJwMAAAByPyamwENERUXpvffe07PPPqsTJ06oTJkyWrFihX744QdKKQAAAJBJKKbAfRiGoW+//VYeHh768ssvJUne3t4KCwtTly5dZLFYTE4IAAAA5B08ygv8j7Nnz8rHx0ebNm2SJHl4eCggIEDNmzc3ORkAAACQNzExBf5PUlKSZsyYoVq1amnTpk2ys7PT+PHjdeDAAUopAAAAkIWYmAKS9u3bJ09PTx04cECS9Mwzz8jf31/Vq1c3ORkAAACQ9zExRb52+/ZtDRo0SE2aNNGBAwdUokQJffHFF9q6dSulFAAAAMgmTEyRb23cuFE+Pj46f/68JKl79+6aOXOmXF1dTU4GAAAA5C8UU+Q7ERERGjBggJYtWyZJqlixohYsWKAXXnjB5GQAAABA/sSjvMg3UlJS9Pnnn8vDw0PLli2TjY2NBg8erKNHj1JKAQAAABMxMUW+cOzYMXl5eWnnzp2SpAYNGigwMFANGjQwORkAAAAAJqbI0+Lj4zVu3DjVq1dPO3fulIODgz799FPt3buXUgoAAADkEExMkWft3LlTXl5eOnbsmCTphRde0Pz581WpUiVzgyHPC4+4pohrN1TWpaTcXEubHQcAACDHo5giz7l586aGDx+ugIAASZKLi4tmz56tV199VRaLxeR0yMtu3b6rqX7LtHlniO7GxsnBvrCeb9FIw326qWgRe7PjAQAA5Fg8yos8wzAMrVixQh4eHqml1NPTU8eOHdNrr71GKUWWm+q3TMs3bJONjUVuLqVkY2PR8g3bNGXBd2ZHAwAAyNEopsgTzp8/r44dO+rVV19VRESEqlevru3btysgIEAlSpQwOx7ygfCIa9q8M0QlixdT6RJOsrMrqNIlnFTSqZg27wzRpSuRZkcEAADIsSimyNWSk5M1a9Ys1axZU+vXr1fBggU1duxYHTp0SC1btjQ7HvKRiGs3dDc2To5FHO457ljUQXdj43X5apRJyQAAAHI+PmOKXOvAgQPy8vJSSEiIJKl58+YKCAiQh4eHycmQH5VxLiEH+8KKuXNXpe2cUo/H3L4rB/tCKutS0sR0AAAAORsTU+Q6d+7c0bBhw9S4cWOFhITIyclJ/v7+2r59O6UUpilXxlnPt2ikqJu3FBkVrYSEREVGRSsq+paeb9GI1XkBAAAegokpcpWffvpJ3t7eOnv2rCSpa9eu+uyzz1S2bFlzgwGShvt0k6S/PlN6NUoO9oX06kutUo8DAADg/iyGYRhmh8ipYmJi5OTkpOjoaDk6OpodJ1+7evWqBg4cqKVLl0qSKlSooPnz56tDhw4mJwP+7dKVSF2+GsU+pgAAIF9LT59iYooczTAMLVq0SIMHD9aNGzdkY2Ojfv366eOPP1bRokXNjgfcl5traQopAABAOlBMkWOdOHFC3t7e2rp1qySpXr16CgwMVOPGjU1OBgAAACAzsfgRcpyEhARNnDhRdevW1datW2Vvb6+pU6cqODiYUgoAAADkQUxMkaMEBQXJy8tLR48elSS1a9dOCxYsUOXKlU1OBgAAACCrMDFFjhAdHa3evXurefPmOnr0qJydnfXNN9/oxx9/pJQCAAAAeRwTU5jKMAytXr1avr6+unz5siTp3Xff1bRp01SqVCmT0wEAAADIDhRTmObixYvy9fXV2rVrJUlVq1aVv7+/nn32WZOTAQAAAMhOPMqLbJecnKw5c+bIw8NDa9euVYECBfThhx/qjz/+oJQCAAAA+RATU2SrP/74Q56envr9998lSc2aNVNAQIBq165tcjIAAAAAZmFiimwRGxurkSNHqmHDhvr999/l6Oio+fPna9euXZRSAAAAIJ9jYoos98svv8jb21t//vmnJKlz586aPXu2ypUrZ3IyAAAAADkBE1NkmcjISPXo0UNt27bVn3/+qXLlymnNmjVauXIlpTSXCI+4pn2HT+jSlUizowAAACAPY2KKTGcYhr7++msNGjRI169fl8Vika+vryZMmCBHR0ez4yENbt2+q6l+y7R5Z4juxsbJwb6wnm/RSMN9uqloEXuz4wEAACCPoZgiU506dUre3t7asmWLJKlOnToKDAxU06ZNTU6G9Jjqt0zLN2xTyeLF5OZSSjF37mr5hm2SpI+HvGtuOAAAAOQ5PMqLTJGYmKhPPvlEderU0ZYtW1S4cGFNnjxZ+/bto5TmMuER17R5Z4hKFi+m0iWcZGdXUKVLOKmkUzFt3hnCY70AAADIdExMkWF79+6Vp6enDh8+LElq06aN/Pz8VKVKFZOTwRoR127obmyc3FxK3XPcsaiDLl2N0uWrUXJzLW1SOgAAAORFTExhtZiYGPXt21fNmjXT4cOHVapUKX311VfavHkzpTQXK+NcQg72hRVz5+49x2Nu35WDfSGVdSlpUjIAAADkVRRTWGXt2rWqWbOm5s6dK8Mw9Pbbb+vYsWN66623ZLFYzI6HDChXxlnPt2ikqJu3FBkVrYSEREVGRSsq+paeb9GIaSkAAAAyHY/yIl3Cw8PVr18/rVq1SpL02GOPyd/fX23atDE5GTLTcJ9ukvTXZ0qvRsnBvpBefalV6nEAAAAgM1kMwzDMDpFTxcTEyMnJSdHR0fl+m5OUlBT5+flp5MiRiomJka2trYYOHarRo0fLwcHB7HjIIpeuROry1SiVdSnJpBQAAADpkp4+xcQUj3T06FF5enpq9+7dkqQmTZooMDBQdevWNTkZspqba2kKKQAAALIcnzHFA8XFxWn06NGqX7++du/eraJFi2rOnDkKCgqilAIAAADINExMcV9bt25Vr169dPLkSUlSx44dNXfuXFWoUMHkZAAAAADyGiamuMf169fVs2dPPffcczp58qTKli2rlStXas2aNZRSAAAAAFmCYgpJkmEYWrp0qTw8PLRw4UJZLBb17t1bYWFh6ty5M1vAAAAAAMgyPMoLnT59Wj4+Pv+vvTuPq6rO/wf+usDlXvZNARFJIhtTc0UQ0XQUUUP92mhumGgYjbk7uTXjkDOVZj8tTVwbJWc0w2+aS+6KmJkLqCUuxExabmwiguxy378//N47XrkXwYAD+Ho+Hjwe8fl8zjnvc86b5M25n/PB/v37AQCtW7fGmjVr0LVrV4Ujq1430jKRlnmHb5glIiIiIqpjWJg+xe7fv4+PP/4Y0dHRKCwshEajwbx58zBz5kxYW1srHV61ybtXgEWrvsT+bxNRUFgEWxstQrv7Y/aEEbC3s1E6PCIiIiKipx4L06fU6dOnERUVhXPnzgEAevbsidWrV+P5559XNrAasGjVl4j75ghcnR3g5e6G3PwCxH1zBADw97fHKRscERERERFxjunT5t69e5g+fTq6dOmCc+fOwcXFBevWrcPhw4cbZFF6Iy0T+79NhKuzAxq5OMHaWo1GLk5wdXLA/m8TcTM9S+kQiYiIiIieeixMnyK7du1Cq1at8Mknn0Cn02HUqFG4fPkyxo0b12BfbpSWeQcFhUVwtLM1ane0t0VBYTFuZWQrFBkREREREemxMH0K3Lp1C8OGDcPAgQNx7do1NG/eHHv37sXGjRvh7u6udHg1yrOxC2xttMjNLzBqz71XAFsbDZq4uyoUGRERERER6bEwbcB0Oh3WrFmDF154AVu2bIGlpSVmzpyJ5ORk9O3bV+nwakVTz8YI7e6P7Jw8ZGXfRUlJKbKy7yL7bh5Cu/vz7bxERERERHUAX37UQF26dAlRUVE4duwYAKBTp05Yu3YtOnTooHBktW/2hBEA8GBOaUY2bG00GBbW09BORERERETKUomIKB1EXZWbmwsnJyfcvXsXjo6OSodTKcXFxViwYAE++OADlJaWws7ODu+//z4mTZoES0tLpcNT1M30LNzKyOY6pkREREREtaAq9RSfmDYgR48eRVRUFFJSUgAAYWFhWLFiBXx8fBSOrG7w8mjEgpSIiIiIqA5q8HNMY2Ji0Lx5c2i1WgQGBuLUqVNKh/Sb3UjLRNL5nwxLndy5cwdvvPEGevTogZSUFHh4eCAuLg47d+5kUUpERERERHVeg35i+uWXX2LGjBlYtWoVAgMD8cknn6Bv375ISUmpl2+jzbtXgEWrvsT+bxNRUFgEG60G3o6C7w5sRUZGBgAgKioKCxcuhIuLi8LREhERERERVU6DnmMaGBiIzp07Y/ny5QAevKW2WbNmmDx5MubMmfPY7evaHNN5/2894r45AldnB6ilFOdP7ENO+i8AgJYtW2LNmjXo3r27wlESERERERFxjikAoKSkBElJSZg7d66hzcLCAiEhIfj+++9NblNcXIzi4mLD97m5uTUeZ2XdSMvE/m8T4eJkj9ybKUg5k4Cy+6VQWVjAq0Un7N63Db4+TZUOk4iIiIiIqMoa7BzTrKwslJWVwcPDw6jdw8MDaWlpJrdZsGABnJycDF/NmjWrjVArJS3zDgoKi+Bkb4eczBsou18KV49m6PryWLj4tEX23XylQyQiIiIiInoiDbYwfRJz587F3bt3DV/Xrl1TOiQDz8YusLXRIje/AK0C+qBt8MsI6j8aZZY2sLXRoIm7q9IhEhERERERPZEGW5g2atQIlpaWSE9PN2pPT0+Hp6enyW00Gg0cHR2NvuqKpp6NEdrdH9k5ebhXVAbP5q1x+04usu/mIbS7P5dBISIiIiKieqvBFqbW1tbo1KkTDh06ZGjT6XQ4dOgQgoKCFIzsyc2eMALDwnpCJ4KbGdnQiWBYWE/MnjBC6dCIiIiIiIieWIN+K++XX36JiIgIrF69GgEBAfjkk08QFxeHy5cvl5t7akpdeyuv3s30LNzKyEYTd1c+KSUiIiIiojqJb+X9P8OHD0dmZib++te/Ii0tDe3bt8fevXsrVZTWZV4ejViQEhERERFRg9Ggn5j+VnX1iSkREREREVFdV5V6qsHOMSUiIiIiIqL6gYUpERERERERKYqFKRERERERESmKhSkREREREREpioUpERERERERKYqFKRERERERESmKhSkREREREREpioUpERERERERKYqFKRERERERESmKhSkREREREREpioUpERERERERKYqFKRERERERESmKhSkREREREREpioUpERERERERKYqFKRERERERESmKhSkREREREREpioUpERERERERKcpK6QDqMhEBAOTm5iocCRERERERUf2ir6P0dVVFWJhWIC8vDwDQrFkzhSMhIiIiIiKqn/Ly8uDk5FThGJVUpnx9Sul0Oty8eRMODg5QqVRKh2OQm5uLZs2a4dq1a3B0dFQ6HGrAmGtUW5hrVFuYa1RbmGtUW+pyrokI8vLy4OXlBQuLimeR8olpBSwsLODt7a10GGY5OjrWueSjhom5RrWFuUa1hblGtYW5RrWlruba456U6vHlR0RERERERKQoFqZERERERESkKBam9ZBGo0F0dDQ0Go3SoVADx1yj2sJco9rCXKPawlyj2tJQco0vPyIiIiIiIiJF8YkpERERERERKYqFKRERERERESmKhSkREREREREpioUpERERERERKYqFaT0UExOD5s2bQ6vVIjAwEKdOnVI6JKrnFixYgM6dO8PBwQHu7u4YPHgwUlJSjMYUFRVh4sSJcHNzg729PYYMGYL09HSFIqaGYOHChVCpVJg2bZqhjXlG1enGjRsYPXo03NzcYGNjgxdffBGJiYmGfhHBX//6VzRp0gQ2NjYICQlBamqqghFTfVRWVoZ58+bB19cXNjY28PPzw9///nc8/H5R5ho9iaNHj2LgwIHw8vKCSqXC119/bdRfmbzKzs5GeHg4HB0d4ezsjMjISNy7d68Wz6LyWJjWM19++SVmzJiB6OhonDlzBu3atUPfvn2RkZGhdGhUjyUkJGDixIk4ceIEDhw4gNLSUoSGhiI/P98wZvr06di5cye2bNmChIQE3Lx5E3/4wx8UjJrqs9OnT2P16tVo27atUTvzjKrLnTt3EBwcDLVajT179uDixYtYvHgxXFxcDGMWLVqEZcuWYdWqVTh58iTs7OzQt29fFBUVKRg51TcffvghVq5cieXLl+PSpUv48MMPsWjRInz66aeGMcw1ehL5+flo164dYmJiTPZXJq/Cw8Nx4cIFHDhwALt27cLRo0cRFRVVW6dQNUL1SkBAgEycONHwfVlZmXh5ecmCBQsUjIoamoyMDAEgCQkJIiKSk5MjarVatmzZYhhz6dIlASDff/+9UmFSPZWXlyctWrSQAwcOSI8ePWTq1Kkiwjyj6jV79mzp1q2b2X6dTieenp7y0UcfGdpycnJEo9HIF198URshUgMRFhYmr7/+ulHbH/7wBwkPDxcR5hpVDwCybds2w/eVyauLFy8KADl9+rRhzJ49e0SlUsmNGzdqLfbK4hPTeqSkpARJSUkICQkxtFlYWCAkJATff/+9gpFRQ3P37l0AgKurKwAgKSkJpaWlRrnXsmVL+Pj4MPeoyiZOnIiwsDCjfAKYZ1S9duzYAX9/f7z66qtwd3dHhw4dsHbtWkP/lStXkJaWZpRvTk5OCAwMZL5RlXTt2hWHDh3CTz/9BAD44YcfcOzYMfTv3x8Ac41qRmXy6vvvv4ezszP8/f0NY0JCQmBhYYGTJ0/WesyPY6V0AFR5WVlZKCsrg4eHh1G7h4cHLl++rFBU1NDodDpMmzYNwcHBaNOmDQAgLS0N1tbWcHZ2Nhrr4eGBtLQ0BaKk+mrz5s04c+YMTp8+Xa6PeUbV6eeff8bKlSsxY8YMvPPOOzh9+jSmTJkCa2trREREGHLK1L+pzDeqijlz5iA3NxctW7aEpaUlysrK8P777yM8PBwAmGtUIyqTV2lpaXB3dzfqt7Kygqura53MPRamRGRk4sSJSE5OxrFjx5QOhRqYa9euYerUqThw4AC0Wq3S4VADp9Pp4O/vjw8++AAA0KFDByQnJ2PVqlWIiIhQODpqSOLi4rBx40Zs2rQJrVu3xrlz5zBt2jR4eXkx14iqgB/lrUcaNWoES0vLcm+oTE9Ph6enp0JRUUMyadIk7Nq1C/Hx8fD29ja0e3p6oqSkBDk5OUbjmXtUFUlJScjIyEDHjh1hZWUFKysrJCQkYNmyZbCysoKHhwfzjKpNkyZN0KpVK6O2F154Ab/++isAGHKK/6bSbzVz5kzMmTMHI0aMwIsvvojXXnsN06dPx4IFCwAw16hmVCavPD09y70g9f79+8jOzq6TucfCtB6xtrZGp06dcOjQIUObTqfDoUOHEBQUpGBkVN+JCCZNmoRt27bh8OHD8PX1Nerv1KkT1Gq1Ue6lpKTg119/Ze5RpfXu3Rvnz5/HuXPnDF/+/v4IDw83/DfzjKpLcHBwuWWvfvrpJzzzzDMAAF9fX3h6ehrlW25uLk6ePMl8oyopKCiAhYXxr9SWlpbQ6XQAmGtUMyqTV0FBQcjJyUFSUpJhzOHDh6HT6RAYGFjrMT+W0m9foqrZvHmzaDQaiY2NlYsXL0pUVJQ4OztLWlqa0qFRPTZhwgRxcnKSI0eOyK1btwxfBQUFhjF//OMfxcfHRw4fPiyJiYkSFBQkQUFBCkZNDcHDb+UVYZ5R9Tl16pRYWVnJ+++/L6mpqbJx40axtbWVf/3rX4YxCxcuFGdnZ9m+fbv8+OOP8j//8z/i6+srhYWFCkZO9U1ERIQ0bdpUdu3aJVeuXJGtW7dKo0aNZNasWYYxzDV6Enl5eXL27Fk5e/asAJAlS5bI2bNn5ZdffhGRyuVVv379pEOHDnLy5Ek5duyYtGjRQkaOHKnUKVWIhWk99Omnn4qPj49YW1tLQECAnDhxQumQqJ4DYPJr/fr1hjGFhYXy1ltviYuLi9ja2sorr7wit27dUi5oahAeLUyZZ1Sddu7cKW3atBGNRiMtW7aUNWvWGPXrdDqZN2+eeHh4iEajkd69e0tKSopC0VJ9lZubK1OnThUfHx/RarXy7LPPyp///GcpLi42jGGu0ZOIj483+ftZRESEiFQur27fvi0jR44Ue3t7cXR0lHHjxkleXp4CZ/N4KhERZZ7VEhEREREREXGOKRERERERESmMhSkREREREREpioUpERERERERKYqFKRERERERESmKhSkREREREREpioUpERERERERKYqFKRERERERESmKhSkRkUKaN28OlUpl9KXRaODj44Phw4fj22+/VTrEJxIbGwuVSoWxY8fW2jF79uwJlUqFI0eO1Noxq2rs2LHl7reVlRUaN26MPn36YMOGDeDS4k+nV155BTY2Nrh+/bpRe0ZGBkaPHg0XFxfY2tqid+/eOHfunNn9fPrpp1CpVNi0aZPZMePHj4eVlRXOnz9fXeETEVULFqZERAoLDg5GREQEIiIi0L9/f+h0OsTFxaFHjx5YsmSJ0uEp7t1334VKpcK7776rdCjVws/Pz3C/hw4dCg8PDxw8eNDwfVlZmdIhKk5fxMfGxiodSo07ePAgvv76a0yaNAne3t6GdhHBgAEDsHHjRvzud79Dz549kZCQgB49euDKlSvl9nP9+nX8+c9/Rr9+/TBq1Cizx3v33XehVqsxZcqUGjkfIqInxcKUiEhh48ePR2xsLGJjY/H111/j3//+N8aMGQMRwaxZs/DTTz8pHWKdt2HDBly6dAkBAQFKh/JY3bp1M9zvzZs3Izk5GStWrAAAbN26FZ9//rnCEVJtmj59OrRaLebMmWPUvmPHDpw+fRpjx47FiRMnsHv3bqxevRq5ublYvHhxuf1MmjQJOp0OK1eurPB43t7eGD9+PI4cOYIdO3ZU67kQEf0WLEyJiOoYrVaLmJgY2NnZoaysDFu3blU6pDrPx8cHLVu2hK2trdKhPJEJEyagR48eAIC4uDiFo6HacuDAASQnJ2Pw4MFwc3Mz6ktMTAQAvPHGG4a2sWPHQqPR4Pjx40Zjt27diu3bt2P+/Plo3rz5Y48bGRkJAPjkk09+2wkQEVUjFqZERHWQvb09fve73wEArl69atS3b98+DBgwAO7u7rC2toaXlxeGDx9u+EX2UQ/Pv0xISEBoaChcXV1ha2uLgIAA/POf/3zsdqY8yUdst27divHjx6NNmzZwcXGBVquFr68vXn/9daSkpJQbr1KpMH/+fADA/PnzjeZnPjyHtaJY79+/j1WrVqFr165wcnKCVqtFixYtMGXKFNy4ccNknPpjAMBXX32Fbt26wdHREXZ2dggODsbu3bsrfc6V1alTJwDl7/edO3cQHR2N9u3bw8HBAba2tnjxxRfx3nvvoaCgoNx+Hr4vv/76KyIjI9GsWTOo1WqjayYi2Lp1KwYMGABPT09YW1vD09MT3bp1w4cffojCwsJy+05KSkJ4eDh8fHyg0Wjg6uqKvn37mr0e+nnUV69eRXx8PEJDQ+Hi4gIbGxt07NgRGzZsMBp/9epVqFQqw1PjcePGGd3zh3Pt1KlTmDVrFgICAgzxe3h4YODAgTh48KDZ6ywiWLduHfz9/WFraws3Nzf0798fx48fx5EjR6BSqdCzZ0+T2968eRMzZszACy+8AFtbWzg4OKBz585Yvnw57t+/b/aY5ixfvhwATM7Hvn37NgDA1dXV0GZpaQlnZ2fcu3fP0Jabm4vJkyejY8eOmDZtWqWO2759e7Rr1w7x8fG4dOlSleMmIqoJLEyJiOqo3NxcAIBGozG0zZs3D/369cPu3bvx/PPPG+YoxsXFoUuXLli3bp3Z/W3btg29evXCjRs30LdvX3Tu3BlJSUkYM2YM/vSnP9X4+QDAsGHD8MUXX8DGxga9evVC3759YWFhgfXr16NTp07lngRFRESgXbt2AIB27doZ5mZGRESgW7dujz1ecXEx+vfvjwkTJuDs2bMIDg7G4MGDUVxcjE8//RTt27fHmTNnzG4fHR2NV199FQDw8ssvo0WLFjh+/DgGDBiAbdu2/YYrUZ6p+33x4kW0a9cOf/vb35CRkYFu3bohJCQEmZmZmDdvHoKDg3H37l2T+0tNTUWHDh2we/duBAYGYtCgQWjUqBEAoLS0FEOHDsWQIUOwZ88e+Pr6YujQoWjbti2uXr2KOXPmID093Wh/S5cuRUBAADZt2gQ3NzcMGjQIrVu3xpEjRxAWFoa//e1vZs9t3bp16N27N7Kzs9GvXz+0b98eZ8+eRUREhNFTO3t7e0RERMDPzw+A8fzriIgItG/f3jD2nXfeweLFi1FUVIROnTph8ODB8Pb2xq5du9CnTx8sXbrUZCwTJ05EZGQkzp49i4CAAISGhuLatWt46aWXsGvXLrPncPToUbRp0wYff/wxioqK0KdPHwQHB+M///kPJk+ejLCwMJSWlprd/lFFRUXYt28f1Go1XnrppXL9+iefDxeOt2/fRmZmJpo2bWpo09+rzz77DJaWlpU+fp8+fQAAX3/9daW3ISKqUUJERIp45plnBICsX7++XN8PP/wgFhYWAkDWrVsnIiJ79uwRAKLVamX//v1G4z/77DMBIGq1WpKTk436evToIQAEgHzwwQdGfUeOHBEbGxsBIHv37jW5XXx8vMn4o6OjBYBER0cbta9fv14ASERERLltNm/eLPfu3TNq0+l0EhMTIwCkdevWotPpKnWcysQ6e/ZsASB+fn5y5coVQ3tJSYlERkYKAPH19ZXi4mKj7fTXy9nZWU6cOGEynueff95sPKZERESYvS75+fni4+MjAGTMmDEiIlJQUCB+fn4CQP7yl78YxZifny8jR44UADJu3DiT8QGQ0aNHS1FRUbnjzZgxQwBI8+bN5dy5c0Z9Op1ODh48KDk5OYa2vXv3ikqlkkaNGklCQoLR+B9//FG8vb0FgBw5csSoT5/jarVadu7cadSnzxMnJycpKCgwea1M/Wzo7d69W27evFmu/fjx4+Lo6ChqtVquX79u1Ld9+3YBIPb29vLdd98Z9S1evNhw3Xr06GHUd+vWLXFzcxOVSiUrVqyQsrIyQ19WVpb06tVLAMj8+fPNxvuogwcPCgDp3Lmzyf4LFy6IpaWltGnTRi5fviwZGRkyYsQIASBLliwxnKtKpZK333670sfV27p1qwCQ3r17V3lbIqKawMKUiEghpgrTnJwc+eabbwwFiZeXl6GQ6927twCQGTNmmNzfgAEDBIC88cYbRu36oq1Dhw4mt/vTn/4kAKRPnz4mt6vOwrQiQUFBAkAuXLhQqeM8LtbCwkKxt7cXALJjx45y2+Tn54uHh4cAkI0bNxr16QuUZcuWlduuqKhInJycBID8+uuvlT4/U4VpYWGhJCYmSkhIiAAQS0tLOXXqlIiIrFy5UgDIgAEDTO4vLy9P3N3dxcrKSrKzsw3t+uvl6upqVFzqpaeni7W1tQCQxMTESsUeGBgoAOR///d/TfbHxcUJABkyZIhRuz7HzeVsy5YtBYAcPXrUqL0yhWlF5s6dKwAkJibGqF1fQM6dO9fkdp07dzZZmOr/wDFp0iST212/fl3UarU0bty43B9WzPnoo4+M/hBhiv64D3+99NJLUlxcLCUlJdKmTRvx9fWV/Px8wzY6na5coW9KSkqKABAXF5dKxUtEVNP4UV4iIoU9PI/O2dkZYWFh+M9//gM/Pz/s3r0bdnZ2uH//Pr777jsApuejAf99oUl8fLzJ/jFjxphsj4iIAAAcO3asVpYq+fe//43ly5dj2rRpiIyMxNixYzF27FjDR0dNzTV9EomJibh37x5cXV0xcODAcv22trYYMWIEAPPXzNR2Go0Gzz77LACYnaNakc8//9xwv21sbODv74+DBw/CwcEB//znP9G5c2cAwDfffAMAGD58uMn92Nvbw9/fH/fv38fp06fL9YeEhMDJyalce3x8PEpKStCpUyfDvNaKZGVl4dSpU7CxsTF5PQAY5mQ++lFsPXPbvfDCCwCe7DoCDz7aumHDBsyaNQtvvPGGIZcSEhIAGOfS/fv3DfGFh4eb3J+5ZVYedy+aNm2KFi1aIDMzE6mpqZWKXZ/vj7706GELFy7Evn37MHXqVPzxj3/E559/jkOHDsHa2hqLFi1CcnIyVq1aBVtbW2RlZWHUqFGws7ODra0tvL29DXNYTdEf986dOygpKalUzERENclK6QCIiJ52wcHBeO655wAA1tbWcHd3R5cuXdCvXz9YWT343/Tt27dRVFQEAPD19TW5H/28PHO/5JvbTt9eWFiI27dvw93d/clPpgJlZWWYNGkSVq9eDRExO04/1/K30l8Hc+cNPP6a+fj4mGx3dHQEAMM9qQo/Pz/D/Fj9y2zatWuHQYMGwdnZ2TDu559/BgC89tpreO211yrcZ2ZmZrk2c29n/eWXXwAALVu2rFS8V65cgYigsLDQaP5rZeMAauY6rl27FtOnT0d+fr7ZMQ/nUlZWluE45q6NuXb9vejevftj48rMzMTzzz//2HH6ucH6a2BOaGgoQkNDjdpSU1Px3nvvITw8HKGhodDpdOjfvz/Onz+P6OhotG7dGv/4xz8wefJkiAgmT55cbr8PHzcnJ6fGfu6JiCqLhSkRkcLGjx9v9ilobauoYHyUTqer0r6XLl2KVatWwdPTE0uWLEHXrl3h4eEBrVYL4MHTqi+++KJKMdQ0C4vq/2CRfh3Tx9Ff3379+sHDw6PCsc8880y5NhsbmyeKz1wc9vb2GDJkyBPto7qvY1JSEt58801YWlriww8/xMCBA+Hj4wNbW1uoVCqsWbMGb775ZpVzSf8m5kfpr8HQoUNhZ2dX4T4qegL6MP0fIZ7kDzFvvvkm7Ozs8PHHHwN4sOxMYmIi3nnnHcydOxfAg7x57rnnsHDhQpOF6cMvzXJxcalyDERE1Y2FKRFRPeDm5gaNRoPi4mL8/PPPaNu2bbkx+qc6D7+x82FXrlwx2a5fnkSr1Rr9Um1tbQ0AyMvLM7md/slbZenX51y9ejUGDRpUrr+yH4GsLP11MHfewOOvmZKaNWuGy5cvIzIyEkOHDq22/eqfXl6+fLnScQAPirZ169bVSLFeVVu2bDE8CZw1a1a5flO59PDP0C+//IJWrVqVG/PoUj16zZo1Q2pqKmbPng1/f//fHD8AwxNK/bIwlRUbG4v4+HjExsaicePGAIBz584BALp27WoYZ21tjYCAAHz11VfIyMgo90RUf1wXFxeo1eonPQ0iomqj/L8uRET0WFZWVoaPf5p72qZfKub3v/+9yf5//etfJtv1a0l269bN8NFh4L/Fmql1DgsKCszOyzQnOzsbgOmnexcuXDD8cv0ofYFc1XUi/f39YW9vj+zsbOzYsaNcf2FhITZv3gzA/DVTUv/+/QH8t6CvLr169YK1tTWSkpIqXCpHz8vLC23btkVeXh727t1brbGY87h7XlEuFRUV4auvvirXrlarERQUBADYtGmTyf1+8cUXJttr4l507NgRwIMlgSorMzMTb7/9NkJCQgxzw4H/Pul99GPN+u9NPQlOTk4GgErNMyYiqg0sTImI6gn9WqMrV67EoUOHjPpiY2OxY8cOqNVqTJ061eT2SUlJWLRokVHbsWPHEBMTAwCYPn26UV9ISAgAICYmxmgOZn5+PqKionDt2rUqxa9/0U1MTIzRx4Bv3bqFMWPGmC1CvL29ATwoXqtCq9Vi4sSJAB5cu4ef8JaWlmLq1KlIS0szrOFZ10RFReGZZ57Bli1bMHv2bJNPrtPS0rB27doq7dfd3R0TJkwAALz66quGAkVPRHD48GGjj3q+9957AB68qGvnzp3l9ikiOHnyJPbv31+lWMx53D3X59Lnn39udF2Kiorw1ltvmX1KPmXKFADAsmXLcOLECaO+pUuX4uTJkya3mzlzJpydnbFkyRIsXrzY5MuCrly5YvaPP6Z07doVGo0GP/zwAwoLCyu1zfTp01FQUIBVq1YZteuL3PXr1xteYJaamor4+Hh4e3sbnqw+TP8iqF69elU6ZiKiGqXY+4CJiJ5yFa1jas5f/vIXASAqlUq6desmo0aNko4dOxqWGvnHP/5Rbhv9UipTpkwRCwsLad26tYwcOVJ69OhhWCt16tSp5bYrKSkRf39/w1qTYWFh0r9/f2ncuLE0bdpUXn/99SotF3PixAnDMiXPPfecDBs2TPr16yc2NjbSunVreeWVV0xej7S0NLGzsxMAEhwcLGPHjpXIyEjD+q4Pn+OjS9sUFRUZltmxsbGRl19+WYYPH25YM9TNzc3kkin4v6U5zHncUjqmVLSOqTnJycnSvHlzw5qqL730kowaNUoGDx4srVq1EpVKJR4eHkbbVGZ5neLiYhk0aJAAEAsLCwkKCpJRo0ZJaGioNG3aVAAYrfsqIrJ06VKxsrIy3L+wsDAZNWqU9OnTR9zd3QWAzJ4922gbfY4/uq9Hr8mj91y/jq+FhYWEhITIuHHjJDIyUrZv3y4iInfu3DHs283NTQYPHixDhgwRd3d3cXBwkKlTp5q91lFRUYafl549e8rIkSOlTZs2YmlpKdOnTze5dJKISEJCgjRq1EgAiLu7u/Tq1UvCw8NlwIABhuWdAgMDzV5zU/T3YPfu3Y8du2/fPgEgCxcuLNen0+mka9euhrWAX3nlFXF2dhYAsnr1apP7a9u2rcnlmYiIlMLClIhIIU9SmIqI7NmzR15++WVxc3MTKysr8fT0lFdffVVOnjxpcvzDRdShQ4ekd+/e4uTkJDY2NuLv7y+xsbFmj3Xnzh2ZNGmSeHt7i1qtlqZNm0pUVJSkp6c/0TqmP/74owwaNEiaNGkiWq1WWrRoIbNmzZLc3NwK1648evSohISEiIuLi6GYfnj/FRWKpaWlsmLFCunSpYs4ODiItbW1+Pn5yeTJk+X69esmz7uuFKYiIrm5ubJo0SIJCgoSZ2dnUavV0qRJE+ncubPMnDlTjh8/bjS+MoWpyINiZtOmTRIaGipubm6iVqvF09NTunfvLh999JEUFhaW2+b8+fMSFRUlLVq0EK1WK7a2tvLss89K3759ZdmyZXLjxg2j8U9amIqIbNu2TYKDg8XBwUFUKlW5c8rMzJS33npL/Pz8RKPRiJeXl4wePVpSU1MrzEGdTidr166Vjh07ilarFWdnZwkNDZWjR4/Khg0bBICMHDnSZLzp6ekyb9486dixoyGXvL29pWvXrhIdHS0//vij2ettyv79+wWADBs2rMJxBQUF8uyzz0q7du2ktLTU5JicnBx58803xd3dXdRqtbRq1crs/1vOnDkjAOT3v/99leIlIqpJKpE69PpDIiKqdj179kRCQgLi4+MN600SUXmvv/461q9fj8WLF2PGjBk1fjwRQdu2bZGamorr16+jUaNGNX5MAJg8eTKWL1+O7du3m3wRGRGREjjHlIiIiJ4aFy5cKPeSIJ1Oh7Vr1yI2NhZarRYjR46slVhUKhWWLFmC4uJiLFy4sFaOee3aNXz22Wfo2bMni1IiqlO4XAwRERE9NT766CPExcWhQ4cOaNq0KfLz83Hx4kVcvXoVlpaWWLFiBZo0aVJr8fTp0weDBw9GTEwMpk2bZnjxU02ZP38+SktLsXTp0ho9DhFRVfGjvEREDRw/ykv0X3v27MHatWuRlJSErKws3L9/H+7u7ggODsa0adPQpUsXpUMkInoqsTAlIiIiIiIiRXGOKRERERERESmKhSkREREREREpioUpERERERERKYqFKRERERERESmKhSkREREREREpioUpERERERERKYqFKRERERERESmKhSkREREREREpioUpERERERERKer/A3dB1Zp19QvyAAAAAElFTkSuQmCC", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -215,7 +213,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 9, "metadata": {}, "outputs": [ { @@ -277,7 +275,7 @@ "... (1 rows omitted)" ] }, - "execution_count": 8, + "execution_count": 9, "metadata": {}, "output_type": "execute_result" } @@ -390,7 +388,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 11, "metadata": { "tags": [ "remove_input" @@ -399,14 +397,12 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAa4AAAGbCAYAAACcQnSEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdd3yOZxfA8d9tN6qqqig1XtVWVVWNDtWQBFF7ldp7q1E1arX2qpESxB6xRyNIkF201KhRtKVGQ9UoNYJInuv944rWCLkznpnz/Xx8IvfzXE9OvW+dXvd9rnMMpRRCCCGEs8hg7wCEEEKI5JDEJYQQwqlI4hJCCOFUJHEJIYRwKpK4hBBCOJVM9g4A4Pnnn1dFihSxdxhCCCEcyN69ey8ppfI8fN0hEleRIkXYs2ePvcMQQgjhQAzDOJ3YdblVKIQQwqlI4hJCCOFUJHEJIYRwKg7xjCsxd+/eJTo6mtu3b9s7FJeQLVs2ChYsSObMme0dihBCpIrDJq7o6Ghy5MhBkSJFMAzD3uE4NaUUly9fJjo6mqJFi9o7HCGESBWHvVV4+/ZtcufOLUkrDRiGQe7cuWX3KoRwCQ6buABJWmlI/iyFEK7CoROXEEII8TBJXE9w/vx5mjZtSrFixShbtiwfffQRv/76a5r+jIiICHbu3Jmqzzh27BjvvfceWbNmZdKkSWkUmRBCOCaXSVz+/lCkCGTIoL/6+6fu85RS1K9fn8qVK3PixAn27t3L2LFj+euvv9Ii3H89KXHFxcWZ+oznnnsOHx8f+vXrl5ahCSGEQ3KJxOXvD506wenToJT+2qlT6pJXeHg4mTNnpkuXLv9eK126NJUqVUIpxeeff84bb7xBqVKlWLlyJaCTUK1atf59f48ePVi4cCGg21oNHz6ct99+m1KlSnHs2DFOnTrFrFmzmDJlCm+99Rbfffcdbdq0oUuXLrzzzjv079+f4sWLc/HiRQAsFgsvv/zyv9/f88ILL1C+fHkpdRdCpAsOWw5/v9694aefHv/6Dz/AnTsPXouJgfbtYc6cxNe89RZMnfr4zzx8+DBly5ZN9LV169bx008/ceDAAS5dukT58uX58MMPk/ingOeff559+/bh6+vLpEmTmDt3Ll26dOHpp5/+d7c0b948oqOj2blzJxkzZiRnzpz4+/vTu3dvQkJCKF26NHnyPNJzUggh0o0kd1yGYcw3DOOCYRiH77v2nGEY2wzD+C3ha66E64ZhGD6GYRw3DOOgYRhvWzP4ex5OWkldT63t27fzySefkDFjRvLmzYu7uzs//vhjkusaNGgAQNmyZTl16tRj39e4cWMyZswIQLt27Vi8eDEA8+fPp23btqn/BxBCCCdmZse1EJgOLL7v2kAgVCk1zjCMgQnfDwBqAMUTfr0DzEz4mipP2hmBfqZ1OpEewoULQ0REyn5myZIlWbNmTbLWZMqUCYvF8u/3D5+bypo1KwAZM2Z84vOr7Nmz//v7l156ibx58xIWFsbu3bvxT+3DOyGEsJLt3fwp4jeYF+PPcC5jIU51Gs0Hvs3T/OckueNSSkUBfz90uS6wKOH3i4B6911frLQfgGcNw8ifVsE+zujR4Ob24DU3N309pTw8PLhz5w5+fn7/Xjt48CDfffcdlSpVYuXKlcTHx3Px4kWioqKoUKEChQsX5siRI9y5c4erV68SGhqa5M/JkSMH169ff+J7OnToQIsWLR7YiQkhhCPZ3s2fMjM7cTP+NJdQFIw/TZmZndjeLe3/YzulxRl5lVJ/Jvz+PJA34fcFgD/ue190wjWrat4c/Pz0Dssw9Fc/P309pQzDYP369YSEhFCsWDFKlizJoEGDyJcvH/Xr1+fNN9+kdOnSeHh4MGHCBPLly8dLL73Exx9/zBtvvMHHH39MmTJlkvw5tWvXZv369f8WZySmTp063Lhx47G3Cc+fP0/BggWZPHkyo0aNomDBgly7di3l//BCCJFMRfwGc5IYPgRaJFzLTgxF/Aan+c8ylFJJv8kwigAblVJvJHx/VSn17H2vX1FK5TIMYyMwTim1PeF6KDBAKfXIlEjDMDoBnQAKFSpU9vRD9/qOHj1KiRIlUvrP5VL27NlDnz59HpvYzJI/UyGEtewzDKoBWYEw4NWE6xYMMijL4xc+gWEYe5VS5R6+ntId11/3bgEmfL2QcP0s8NJ97yuYcO0RSik/pVQ5pVQ5qZJ7vHHjxtGwYUPGjh1r71CEECJRe/bswZMMuAGR/Je0AM5lLJTmPy+liWsD0Drh962BgPuut0qoLnwX+Oe+W4oiBQYOHMjp06f54IMP7B2KEEI84vvvv8fT05McmbMRBbx832s3ceNUp1QUGzyGmXL45cD3wKuGYUQbhtEeGAdUNQzjN8Ar4XuAzcDvwHFgDtAtzSMWQgjhEKKioqhWrRov5M5NuCWec7xLdMbCWDCIzliY/V39rFJVmGQ5vFLqk8e85JnIexXQPbVBCSGEcGxhYWHUrl2bQoUKsfXtcuQ9uZIx7kuZF1EM0M+JClrpZztF5wwhhBCOY8uWLdSrV4+XX36ZkFmzyPOhO9PpRv1+xWzy8yVxCSGEMG3jxo00bNiQ119/nW3btvF8587EGE+xqOAQdtewTQwu0WTXWpxlrIm/vz9vvvkmpUqV4v333+fAgQNpFJ0QQvxn/fr1NGjQgDfffJPQ0FCeP34c1q1jXPznNOz6Arbqj+A6iSuN55o401iTokWLEhkZyaFDhxg6dCidOnVKyxCFEIKVK1fSuHFjypUrR0hICM/lygX9+3PNLS/fZOpL+/Y2DEYpZfdfZcuWVQ87cuTII9cea+lSpdzclNJTTfQvNzd9PYVCQ0NVpUqVEn3NYrGofv36qZIlS6o33nhDrVixQimlVHh4uKpZs+a/7+vevbtasGCBUkqpwoULq2HDhqkyZcqoN954Qx09elSdPHlS5c2bV7344ouqdOnSKioqSrVu3Vp17txZVahQQfXp00e9/PLL6sKFC0oppeLj41WxYsX+/T4xf//9t3rxxRcTfS1Zf6ZCCJFgyZIlKkOGDKpSpUrq2rVr+mJgoFKg+j7lq5o0sc7PBfaoRHKGczzjssNcE2cdazJv3jxq1LDRjWYhhMubP38+HTp0oEqVKmzYsEE3AY+Ph4EDufbCy/hc6EBIV9vG5Bq3Cm0818RRx5qEh4czb948xo8fn4x/GiGESNysWbNo37491apVY+PGjf9NrliyBH7+mbE5xvDK65kx8d/taco5dlx2mGvibGNNDh48SIcOHQgKCiJ37tzJilsIIR7m4+NDr169qFWrFqtXryZbtmz6hVu3YOhQbpaswLifG+Hjo5ub25Jr7LisMNfEmcaanDlzhgYNGrBkyRJeeeWV5P/DCiHEfSZOnEivXr2oX78+a9eu/S9pAUyfDtHR+BYej5ubQatWto/PNRKXFeaaONNYkxEjRnD58mW6devGW2+9RblyjzRTFkIIU0aPHk3//v1p0qQJK1euJEuWLP+9eOUKjBnDXa8aDA+vTPPmkDOnHYJMrGLD1r9SXVXo4n788Uf1wQcfpPpz5M9UCPE4FotFDRs2TAGqZcuW6u7du4++6fPPlTIMtbT/AQVK7dtn3Zhw6qrCdGzcuHHMnDnzsc+2hBAitZRSDBo0iPHjx9OuXTv8/PwefSzxxx/g44Nq2ZJRG97knXfAxE0lq3CNW4UuTMaaCCGsSSlF3759GT9+PF26dGHOnDmJPktn+HBQiu+9R3DsGHS1cQn8/Rw6cSkT05mFOfJnKYR4mMVioUePHkydOpVPP/0UX19fMmRIJC0cPgyLFkHPnkxdX5hcueDjj20f7z0Om7iyZcvG5cuX5S/cNKCU4vLlyw9WBgkh0jWLxULnzp3x9fXl888/Z+rUqRiPq2sfNAhy5OB820GsXw9t28JTT9k23vs57DOuggULEh0dzcWLF+0dikvIli0bBQtaazqOEMKZxMfH0759exYtWsSQIUMYMWLE45NWVBRs3AhjxzJ3fW7i4qBLF9vG+zCHTVyZM2emaNGi9g5DCCFcSlxcHK1atWL58uWMGDGCoUOHPv7NSsGAAVCgAPHdP8WvJHh5QfHitos3MQ6buIQQQqSt2NhYmjVrxtq1axk3bhwDBgx48oL163Uv2Llz2RTuxh9/JN3IyBYkcQkhRDpw584dPv74YzZs2MDkyZPp06fPkxfExelnWyVKQOvW+NaCF1+EOnVsE++TSOISQggXd+vWLRo2bEhQUBAzZsygW7duSS+aPx9+/RW+/ZYTpzOxZQt8+SVkcoCs4QAhCCGEsJaYmBjq1q1LaGgoc+bMoUOHDkkvunlTn9uqWBHq1GH2AMiYEcwstQVJXEII4aJu3LhBrVq1+O6771i4cCGtzHbEnToVzp+HNWu4fcdg/nyoWxcKFLBuvGZJ4hJCCBd07do1atSowa5du1i6dCmffPKJuYWXLsH48TpTVazImqVw+bJ9O2U8TBKXEEK4mCtXruDt7c2+fftYuXIlDRs2NL941Ch9q3DsWABmztTl7x4eVgo2BSRxCSGEC7l8+TJVq1bl559/Zu3atdRJThngyZPg6wvt2kGJEhw8CDt3wtdfQ2KdoOxFEpcQQriICxcu4OXlxa+//kpAQADe3t7J+4ChQ3XZ4JdfAnq3lS0btGmT5qGmigPlUCGEECn1559/UrlyZY4fP87GjRuTn7T27wd/f+jdGwoU4No1WLIEmjSB556zTswpJTsuIYRwctHR0Xh4eHDu3DmCgoJwd3dP/ocMHKgzVP/+ACxdqh91mTnyZWuSuIQQwomdPn0aDw8PLl68yJYtW6hYsWLyPyQkBLZu1Q+znn0WpfRtwrffhvLl0z7m1JLEJYQQTur333+nSpUqXLt2jZCQECpUqJD8D7FY9G6rUKF/t1c7dugRXHPmwOOaxtuTJC4hhHBCv/76Kx4eHty6dYvQ0FDefvvtlH3QqlWwdy8sXqwrMdC7rZw5wezRL1uT4gwhhHAyR48exd3dndjYWMLDw1OetGJjYfBgePNNaNYMgIsXYc0aaNUKsmdPw6DTkOy4hBDCiRw6dAhPT08yZsxIREQEr7/+eso/zM8Pfv8dNm/WzQjRvXVjY+0/LPJJZMclhBBOYv/+/VSpUoUsWbIQGRmZuqR17RqMGAFVqkBC6bzFArNng7s7pOajrU0SlxBCOIHdu3fj4eFB9uzZiYyM5JVXXkndB379tb4vOH78vxUYW7bo5hmO1JcwMZK4hBDCwe3cuRMvLy9y5cpFVFQUxYoVS90Hnj+vE1fjxg/Uu/v6Qt68UL9+KgO2MklcQgjhwKKioqhWrRr58uUjKiqKwoULp/5DR46EO3dg9Oh/L50+DZs26ZlbWbKk/kdYkyQuIYRwUKGhoXh7e1OoUCEiIyMpWLBg6j/0t990UUanTrrtewI/P33HsFOn1P8Ia5PEJYQQDig4OJhatWrx8ssvExERQf78+dPmgwcPhqxZYdiwfy/FxsLcuVCzpj6H7OgkcQkhhIMJDAykbt26lChRgvDwcF544YW0+eDdu2H1aujXTz/MSrB+PVy44PhFGfdI4hJCCAeydu1aGjRoQOnSpQkNDSV37txp88FKwYABkCcPfPbZAy/NnAlFi0L16mnzo6xNEpcQQjiIFStW0KRJEypUqMC2bdvIlStX2n14cDBEROhbhDly/Hv5yBGIjITOnR1rWOSTOEmYQgjh2hYvXkzz5s2pWLEiwcHB5MyZM+0+PD5e77aKFXuk+mLWLF1F2K5d2v04a5OWT0IIYWfz5s2jY8eOeHh4EBAQQPa0bhLo7w+HDsGKFQ/Uut+8CYsWQaNG+g6is5AdlxBC2JGvry8dOnSgevXqBAYGpn3Sun0bhg6FsmX1geP7LFumOz85S1HGPbLjEkIIO5k6dSp9+vShdu3arF69mqxZs6b9D/H1hTNndPfc+x5i3RsWWaoUpGT2pD3JjksIIexgwoQJ9OnTh4YNG7JmzRrrJK2rV3V3jOrVwdPzgZd274b9+/VuyxGHRT6JJC4hhLCxkSNHMmDAAJo2bcqKFSvIYq0eS+PHw99/w7hxj7w0cyY8/TS0aGGdH21NkriEEMJGlFIMHTqUYcOG0bJlS5YuXUqmTFZ6YnP2LEydCs2bw1tvPfDS33/DypU6ad1XGe805BmXEELYgFKKAQMGMHHiRNq3b8/s2bPJmDC80Sq+/FIP2Bo16pGXFi7UNRvOVpRxj+y4hBDCypRS9OnTh4kTJ9K1a1f8/Pysm7SOHNHFGN26QZEiD7xkseizW++/D2++ab0QrEkSlxBCWJHFYqF79+5MmzaN3r17M2PGDDJYu0XFF19A9uy6oe5DwsJ0g3hn3W2BJC4hhLCa+Ph4OnXqxMyZMxkwYACTJ0/GsHYJ344dEBCgO2U8//wjL/v6Qu7c+tCxs5LEJYQQVhAXF0fbtm2ZN28eQ4cOZezYsdZPWkpB//6QPz/07v3Iy2fPwoYNur1TtmzWDcWapDhDCCHS2N27d2nVqhUrVqxg5MiRDBkyxDY/eMMG2LkTZs/WtwofMmeOfsbVubNtwrEWQyll7xgoV66c2rNnj73DEEKIVIuNjeWTTz5h3bp1TJgwgc8//9w2PzguTldbWCxw+DA8VGZ/966u03jzTQgKsk1IqWUYxl6lVLmHr8uOSwgh0sidO3do3LgxgYGBTJ06lV69etnuhy9aBEePwrp1jyQtgMBAOHdOHzx2dvKMSwgh0sCtW7eoW7cugYGBzJw50zZJy99fb6MyZND3/4oVg3r1En3rzJnw0ktQs6b1w7I2SVxCCJFKN2/epFatWmzdupV58+bRpUsX6/9Qf389W+v0aV2UER8P0dG65ftDfvsNQkL02615fMxWJHEJIUQqXL9+nRo1ahAREcGiRYtoZ6uJjIMHQ0zMg9fu3En07NasWfruYYcOtgnN2uQZlxBCpNA///xDjRo12L17N8uWLaNJkya2++Fnzpi6fusWLFgA9etDvnw2iMsGUrXjMgyjj2EYPxuGcdgwjOWGYWQzDKOoYRi7DMM4bhjGSsMwrNT2WAgh7OfKlStUrVqVPXv2sGrVKtsmLYBChUxdX7kSrlxx7k4ZD0tx4jIMowDwKVBOKfUGkBFoCowHpiilXgauAO3TIlAhhHAUly5dwsPDgwMHDrB27VoaNGhg+yCGD390kJabm56/dZ+ZM+G116ByZduFZm2pfcaVCXjKMIxMgBvwJ+ABrEl4fRGQeImLEEI4oQsXLlClShWOHTtGQEAAtWvXtk8gv/yiizJeeEEnsMKFwc9PjzFJsG+fHhjpjMMinyTFz7iUUmcNw5gEnAFuAVuBvcBVpVRcwtuigQKJrTcMoxPQCaDQ47a8QgjhQP788088PT05deoUGzduxPOhqcI2s28fTJoE7dvD3LmPfdvMmXoT1qqVDWOzgdTcKswF1AWKAi8C2QFvs+uVUn5KqXJKqXJ58uRJaRhCCGET0dHRuLu788cffxAcHGy/pBUXp8sD8+SBiRMf+7Z//tGV8Z98As8+a8P4bCA1VYVewEml1EUAwzDWARWBZw3DyJSw6yoInE19mEIIYT+nTp3Cw8ODy5cvs3XrVt577z37BTNlCuzfD2vWQK5cj33b4sW6Wt6VijLuSc0zrjPAu4ZhuBm65bEncAQIB+41zG8NBKQuRCGEsJ8TJ07g7u7OlStXCAkJsW/SOn4chg3T3TGeUBCilL5NWL48lC1rw/hsJMWJSym1C12EsQ84lPBZfsAAoK9hGMeB3MC8NIhTCCFs7pdffuHDDz/k5s2bhIWFUb58efsFo5Ru65QlC0yf/sRqi6go3bbQFXdbkMoDyEqp4cDwhy7/DlRIzecKIYS9HTlyBA8PD5RShIeHU6pUKfsGtGCBHl88axYUSLTm7V8zZ+rnWrY+WmYr0vJJCCEecvDgQSpXrkyGDBmIiIiwf9I6fx4++ww+/BA6dkzyrWvXQps2uqLQFUniEkKI++zbt48qVaqQNWtWIiMjKVGihL1Dgk8/1b2b/Px0J/gnmDdPFx7aos+vvUjiEkKIBLt27cLDw4McOXIQGRlJ8eLF7R0SBATA6tW6KOPVV5/41vh4nds8PJJ8q1OTxCWEEMCOHTuoWrUquXPnJjIykv/973/2DkkfxurWTY8tNjFJefNm3WO3WzcbxGZH0h1eCJHuRUREUKtWLQoUKEBYWBgFkih+sJmBA/VDq2+/hcyZk3z7zJmQPz/UqWOD2OxIdlxCiHQtJCSEjz76iMKFCxMZGek4Seu773QFYe/e+kBWEk6ehOBgXbthIsc5NUlcQoh0a/PmzdSqVYvixYsTERFBPkcZWHX7ts5ARYrAiBGmlsyeres2kig6dAlyq1AIkS4FBATQuHFjSpUqxdatW8mdO7e9Q/rPqFG6+/uWLZA9e5Jvv3NHVxPWrg0FC9ogPjuTHZcQIt1Zs2YNjRo1okyZMoSGhjpW0jp4EMaPh9atoVq1J77V319vyrJlg0uXXLuS8H6SuIQQ6cqyZcto2rQp77zzDtu2beNZR2qdHh+vO7/nygVff/3Et/r7Q6dOcPr0f9e++UZfd3WSuIQQ6caiRYto0aIFH3zwAcHBwTzzzDP2DulB33wDP/4IPj6QxC5w8GDd/f1+MTH6uquTxCWESBfmzJlD27Zt8fT0ZPPmzTz99NP2DulBJ0/qrFOzpqkmg2fOJO+6K5HEJYRweTNmzKBTp054e3sTGBiIm6M18VNK92jKkAF8fZ/Y+f2exw2OTw8D5SVxCSFc2pQpU+jRowd169Zl/fr1ZMuWzd4hPWrpUti6FcaNM515Pvvs0WtubjB6dBrH5oAkcQkhXNa4cePo27cvjRo1YvXq1WTNmtXeIT3qwgV9yPi990wP0FIKtm3TB41ffFFv0AoX1n0Kmze3crwOQM5xCSFcjlKKkSNHMnz4cJo1a8aiRYvIlMlB/7rr0weuX4e5c5Ps/H7PmjUQGAgTJ0K/flaOzwHJjksI4VKUUgwdOpThw4fTunVrFi9e7LhJa9MmWLZMF2W8/rqpJX//DT16QNmyeqOWHjno/5pCCJF8Sin69+/PpEmT6NixI7NmzSKDyV2MzV2/rm8NliwJgwaZXtavH1y+rJtqOGo+trZ0+o8thHA1Sil69+6Nj48P3bt3x8fHx3GTFuhdVnQ07NgBWbKYWhISAgsW6Kbxb71l5fgcmAP/ryqEEOZYLBa6du2Kj48Pffv25ZtvvnHspPX99zB9ur7n9957ppbExEDnzvDyy3qmZHomOy4hhFOLj4+nY8eOLFiwgIEDBzJmzBgME+eg7ObOHd3WqWDBZNWuf/kl/P47hIfDU09ZLzxnIIlLCOG04uLiaNOmDf7+/gwfPpzhw4c7dtICfVbryBE9rjhHDlNL9u7VrQs7doTKla0bnjOQxCWEcEp3796lRYsWrFq1itGjR/PFF1/YO6SkHTmid1nNmkGNGqaW3L2rN2gvvAATJlg5PichiUsI4XRiY2Np2rQp69evZ9KkSXyWWBsJR2Ox6Az0zDMwdarpZZMnw08/wdq14EiN7O1JEpcQwqncvn2bRo0asWnTJnx8fOjZs6e9QzLH11cXZSxeDHnymFry22/62Vb9+tCggXXDcyaSuIQQTuPWrVvUq1ePrVu3MmvWLDp37mzvkMw5c0af1apeHVq0MLVEKT1vK2tWXYAo/iOJSwjhFG7evEnt2rWJiIhg/vz5tG3b1t4hmaOUPmhsscCsWaY6vwPMmwcREbr/4IsvWjdEZyOJSwjh8K5fv07NmjXZsWMHixcvpoXJXYtDWLlSVxBOmQJFipha8uefukOGuzu0b2/d8JyRJC4hhEO7evUqNWrU4Mcff2T58uV8/PHH9g7JvMuX4dNPoUIFSMazuJ494fZtvdty5HPU9iKJSwjhsP7++2+qVavGwYMHWb16NfXr17d3SMnTty9cuQKhoZAxo6kl69frCsKxY+GVV6wcn5OSxCWEcEiXLl3Cy8uLo0ePsm7dOmrVqmXvkJJn61ZdQThkCJQqZWrJ1avQvTuULp34oEihSeISQjicv/76C09PT06cOEFgYCDVqlWzd0jJc/Ombiz46qu6ma5JAwbAX3/Bhg16SKRInCQuIYRDOXfuHJ6enpw5c4ZNmzbh4eFh75CSb+hQOHUKoqIgWzZTSyIj9TOtzz6DcuWsG56zk8QlhHAYf/zxBx4eHpw/f57g4GAqVapk75CSb/dumDYNunQBk/Hfvq37EP7vfzBihJXjcwGSuIQQDuHkyZN4eHjw999/s3XrVt4zOe7DodxrLJg/v26ma9KIEbpLxrZt4OZmxfhchCQuIYTdHT9+HA8PD27cuEFoaCjlnPVe2cSJcOgQBARAzpymlhw4oJvntmkDXl7WDc9VSOISQtjVsWPH8PT0JDY2lrCwMN5y1tG+v/yit06NG0OdOqaWxMXpDVru3HpsiTBHEpcQwm4OHz6MV8I2Izw8nDfeeMPOEaWQxaIfUrm5gY+P6WU+PrBnj26u8dxzVozPxUjiEkLYxYEDB/Dy8iJz5syEhYXx2muv2TuklJszB777DubPh3z5TC35/Xd9xKt2bb1JE+ZJMxEhhM3t3buXKlWqkC1bNiIjI507aZ09C/37g4eHflBlglL6mFemTHraiaMPbXY0suMSQtjUDz/8gLe3N7ly5SIsLIyiRYvaO6SUU0q3uoiN1YewTGagxYshJARmzICCBa0cowuSHZcQwma2b99O1apVef7554mMjHTupAW6qWBAgC7KKFbM1JK//oI+faBiRX3USySfJC4hhE2Eh4dTvXp1ChQoQFRUFIUKFbJ3SKlz5Qr06AFvv60zkUm9e+uOUHPmSOf3lJI/NiGE1W3dupWPPvqIokWLEhkZyYvOPBnR31/P1XruOb19atBAP6wyYeNGWLFCF2WUKGHdMF2ZJC4hhFVt2rSJ2rVr8+qrrxIeHk7evHntHVLK+ftDp05w+vR/18aM0deTcO2aHoT8xhu6ma5IOUlcQgir+fbbb6lfvz6lSpUiLCyMPHny2Duk1Bk8GGJiHrwWE2OqA/wXX+gCxLlzIUsWK8WXTkjiEkJYxerVq2ncuDFly4Yqe1UAACAASURBVJYlJCSE51zhhO2ZM8m7nmDHDl32/umn8M47VogrnZHEJYRIc/7+/jRt2pR3332XLVu28Oyzz9o7pLTxuB3jEwpN7tzRTTVeeglGjbJSXOmMnOMSQqSphQsX0q5dOypXrsyGDRt4+umn7R1S2rhyRZ/XMgx9fuseNzcYPfqxy8aMgaNHISgIXOWPwt5kxyWESDN+fn60bdsWLy8vNm7c6DpJC3Tp+40b+sxW4cI6gRUurA8eN2+e6JLDh2HsWGjRAry9bRyvC5MdlxAiTUyfPp2ePXtSs2ZN1qxZQzaTk3+dwpo1sGwZfPWVrmUfMiTJJfHxuvN7zpwwZYoNYkxHJHEJIVLt66+/pl+/ftSrV4+VK1eSxZXK5s6f1y0uypWDQYNML/P1hV27YOlSeP55K8aXDsmtQiFEqowZM4Z+/frRuHFjVq1a5VpJSyl9buvGDd1gMHNmU8tOn9Y5rkYNaNbMyjGmQ5K4hBApopTiyy+/ZPDgwTRv3pxly5aR2eRf7E5j4UIIDNQPqky2ulBKHzQGmDlTOr9bg9wqFEIkm1KKwYMHM3bsWNq0acPcuXPJmDGjvcNKW6dOQa9e4O6uv5q0fLmuIJw2TdduiLQniUsIkSxKKfr168fkyZPp3Lkzvr6+ZHC1brEWC7Rtq3+/cKHpbriXLukc9847etqJsA5JXEII0ywWC7169fq3gnDatGkYrngv7JtvICJC92cqUsT0sj594J9/9DJX24A6Ehf7zyQhhLVYLBa6dOnC9OnT+eyzz1w3aR07BgMHQs2a0K6d6WXBwbqCcNAg3UhXWI8kLiFEkuLj42nfvj1z5szhiy++YOLEia6ZtOLioFUr3Q1jzhzTlRU3buiK+dde0810hXXJrUIhxBPFxcXRunVrli1bxldffcXQoUNdM2mBrh788UdYtQry5ze9bOhQXQK/fTtkzWrF+ASQyh2XYRjPGoaxxjCMY4ZhHDUM4z3DMJ4zDGObYRi/JXzNlVbBCiFs6+7duzRr1oxly5YxduxYhg0b5rpJa98+3c7pk0+gcWPTy3bt0hWE3bpBxYpWjE/8K7W3CqcBwUqp14DSwFFgIBCqlCoOhCZ8L4RwMnfu3KFx48asXr2ar7/+moEDXfhf5du39S3CPHlg+nTTy2JjdVunAgX0Zk3YRopvFRqGkRP4EGgDoJSKBWINw6gLVE542yIgApB5n0I4kdu3b9OwYUM2b97MN998Q48ePewdknUNGwY//wybN0My5oZNmKAb6QYGwjPPWDE+8YDU7LiKAheBBYZh7DcMY65hGNmBvEqpPxPecx5IdE63YRidDMPYYxjGnosXL6YiDCFEWoqJiaFOnToEBQUxe/Zs109a27fDpEm6tVONGkm+3d9fV8hnyKCfbb37LtSqZf0wxX9Sk7gyAW8DM5VSZYCbPHRbUCmlAJXIWpRSfkqpckqpck4/zlsIF3Hjxg1q1qxJSEgI8+fPp1OnTvYOybpu3IDWraFoUfj66yTf7u+v89vp0/+N5DpwQF8XtpOaxBUNRCuldiV8vwadyP4yDCM/QMLXC6kLUQhhC9euXcPb25uoqCiWLl1KmzZt7B2S9fXrBydP6u4YJmaHDR4MMTEPXrt1S18XtpPixKWUOg/8YRjGqwmXPIEjwAagdcK11kBAqiIUQljd1atXqVatGrt27WLFihU0Sw8tzYODYfZs+OwzqFTJ1JIzZ5J3XVhHas9x9QT8DcPIAvwOtEUnw1WGYbQHTgMfp/JnCCGs6O+//6Zq1aocOnSINWvWULduXXuHZH1XrkD79lCyJIwcaXrZSy8lnqQKFUrD2ESSUpW4lFI/AeUSeckzNZ8rhLCNixcv4uXlxS+//MK3337LRx99ZO+QbKNHD7hwQZcDJmNSc4kSjyYuNzcYPTqN4xNPJC2fhEinzp8/T+XKlfntt98IDAxMP0lr9WpYtkyXwL/9tullGzbAli1QvboeV2IY+qufHzRvbsV4xSMMpRIt+rOpcuXKqT179tg7DCHSjbNnz+Lh4cHZs2fZuHEjlStXtndItnH+vO6A+7//wc6dkMncTafoaChdWieq77+Xtk62YhjGXqXUI3f1pFehEOnMmTNn8PDw4MKFCwQHB/PBBx/YOyTbUAo6doSbN2HxYtNJKz5e76hiY2HlSklajkASlxDpyMmTJ/Hw8ODKlSts27aNd955x94h2c6CBbBxI0yZotu4mzRqFERF6VxXvLgV4xOmSeISIp347bff8PDwICYmhtDQUMqWLWvvkGzn1Cno3RsqV4ZPPzW9LDJS991t1QpatrRadCKZJHEJkQ4cPXoUT09P7t69S1hYGKVLl7Z3SLZjscC9w9QLFuheTSZcvqxvERYrBjNmWC88kXySuIRwcYcPH8bT0xPDMIiIiKBkyZL2Dsm2fHz01mnePN1k0ASloG1buHgRfvjBVFMNYUNSDi+EC/vpp5+oXLkymTJlIjIyMv0lrWPHYNAg3QW3bVvTy775Rh/xmjgRypSxYnwiRSRxCeGi9uzZg4eHB25ubkRGRvLqq68mvciVxMXph1PZs8OcOfrglQn79sHnn0Pt2tCzp5VjFCkitwqFcEHff/893t7e5M6dm7CwMIqYvEXmUsaOhR9/hFWrIF8+U0uuX4emTfU8yQULTOc6YWOSuIRwMVFRUdSsWZN8+fIRFhbGSy+9ZO+QbG/vXl0O2KwZNG5selmPHnDiBISHQ+7cVoxPpIrcKhTChYSFhVGjRg0KFixIZGRk+kxat2/rW4QvvADTp5tetnix/jVsGHz4oRXjE6kmOy4hXMSWLVuoV68eL7/8MiEhIeTNm+jwcdc3dCgcOQJBQZArl6klv/4K3bqBuzsMGWLl+ESqyY5LCBewceNG6tSpw2uvvUZ4eHj6TVrffacnGXfuDN7eppbcuaOfa2XNCkuXQsaMVo5RpJrsuIRwcuvXr6dJkyaULl2aLVu28Nxzz9k7JPu4cUMfNC5aFCZNMr1swADYv193fy9Y0HrhibQjiUsIJ7Zy5UqaN29OhQoVCAoKImfOnPYOyX769YOTJ3VjQZMnhgMDYdo06NVLl78L5yC3CoVwUkuXLqVZs2a8//77bNmyJX0nraAgmD1bJy+T3e6jo/WZ5DJlYPx4K8cn0pQkLiGc0Pz582nVqhWVK1cmKCiIHDly2Dsk+/n7b2jfHkqW1CXwJtwbVXL7NqxYIaNKnI3cKhTCycyaNYuuXbtSvXp11q9fz1NPPWXvkOyrRw/dVHDTJsiWzdSS+0eVvPKKleMTaU52XEI4ER8fH7p27UqtWrX49ttvJWmtXg3Ll+vDVyabCsqoEudnKKXsHQPlypVTe/bssXcYQji0iRMn0r9/f+rXr8+KFSvIkiWLvUOyrz//hFKl9NyRHTtMTTS+fBlKlwY3N92TULq+OzbDMPYqpco9fF1uFQrhBEaPHs2QIUNo0qQJS5YsIXPmzPYOyb6Ugo4d4eZNWLTIVNK6f1TJ999L0nJmkriEcGBKKb788ktGjBhBy5YtmT9/PplM/CXt8ubP18+0pk6F114zteTeqJJp0+Dtt60cn7AquVUohINSSjFo0CDGjx9Pu3bt8PPzI6O0dYBTp/QtwvLlISTE1ETj/fvh3XehenUICJCu785CbhUK4USUUvTt25epU6fSpUsXZsyYQQaTI+ddmsWiu2MYhp47YuLP5Pp1aNJEjyqZP1+SliuQxCWEg7FYLPTs2RNfX18+/fRTpk6diiF/22o+ProscP58KFzY1JJ7o0rCwuD5560cn7AJ+U84IRyIxWKhc+fO+Pr68vnnn0vSAvD3hyJF9O6qTx9d9t6mjamlS5b8N6rE3d2qUQobksQlhIOIj4+nXbt2zJ07lyFDhjB+/HhJWv7+0KkTnD6tywIBjh2DZcuSXPrrr9C1q56tJaNKXIskLiEcQFxcHC1btmTRokWMGDGCkSNHStICGDwYYmIevHbrlr7+BPePKvH3l1ElrkaecQlhZ7GxsTRr1oy1a9cybtw4BgwYYO+QHMeZM8m7nkBGlbg22XEJYUd37tyhcePGrF27lsmTJ0vSeli+fIlfL1TosUvundX69FMZVeKqZMclhJ3cunWLhg0bEhQUxIwZM+jWrZu9Q3Is//zz33Ot+7m5wejRiS65f1TJhAlWjk/Yjey4hLCDmJgY6tSpQ3BwMHPmzJGk9TCLBVq3hkuXYOhQXfpuGPqrn5+eSfKQ+Hho0UJGlaQHsuMSwsZu3LhBrVq1+O6771i4cCGtWrWyd0iOZ+xY3eLi3j0/E3O2Ro/WR7xkVInrk8QlhA1du3aNGjVqsGvXLpYuXconn3xi75AcT1CQ3mU1bw49e5paEhUFX32lx5TIqBLXJ4lLCBu5cuUK3t7e7Nu3j5UrV9KwYUN7h+R4TpyAZs3gzTf1LUETRwIuX9ZLihWDGTNsEKOwO0lcQtjA5cuXqVq1Kj///DNr166lTp069g7J8cTEQIMGOlmtW6eLMJLw8KiSHDlsEKewO0lcQljZhQsX8PLy4tdffyUgIABvb297h+R47s3XOnQINm+G//3P1LLp03X5+9SpMqokPZHEJYQV/fnnn3h6enLq1Ck2btyIl5eXvUNyTN98o9s4jRoFJhP7/v3Qrx/UqqXrN0T6IYlLCCuJjo7Gw8ODc+fOERQUhLt0eU1cVBR89hnUrQuDBplacuPGf6NKFiyQUSXpjSQuIazg9OnTeHh4cPHiRbZs2ULFihXtHZJjOnsWPv5Y3xpctMjUfC2QUSXpnSQuIdLY77//TpUqVbh27RohISFUqFDB3iE5pjt3oFEjvX0KC4OcOU0tW7JE57jhw2VUSXoliUuINPTrr7/i4eHBrVu3CA0N5W2pGHi83r3hhx9g9Wp4/XVTS377TUaVCGn5JESaOXr0KO7u7sTGxhIeHi5J60nmz4dZs6B/f73reoL750iWLPnftUzyn93pliQuIdLAoUOH/i2+iIiI4M0337RzRA5szx7o1g28vB7bLPeeh+dI3r0LcXG6tZNIvyRxCZFK+/fvp0qVKmTJkoXIyEheN3nbK126eFEfMs6bF5YvT3LblNgcyTt3kpwjKVycbLaFSIXdu3dTvXp1nnnmGcLCwihWrJi9Q3JccXHwySdw4QLs2GGqHDCFcySFi5MdlxAptHPnTry8vMiVKxdRUVGStJIyeDCEhupnW2XLmlry4ouJX3/CHEmRDkjiEiIFoqKiqFatGvny5SMqKorChQvbOyTHtnq1nuzYtSu0aWNqybVriR8sfsIcSZFOSOISIplCQ0Px9vamUKFCREZGUrBgQXuH5Nh+/ll3wn33Xd1U0IS4ON0Z4/x53UzDxBxJkY7IMy4hkiE4OJj69etTvHhxQkJCeOGFF+wdkmP75x+oXx+efhrWrIEsWZJcopTuPRgcDHPmQIcOMGaMDWIVTkMSlxAmBQYG0qhRI0qWLMm2bdvInTu3vUNybBYLtGoFJ0/qzhgFCphaNnUqzJypj3h16GDlGIVTkluFQpiwdu1aGjRoQOnSpQkNDZWkZcaYMbBhA0yeDJUqmVoSEKD77TZsCGPHWjk+4bQkcQmRhBUrVtCkSRMqVKjAtm3byJUrl71DcnxBQTBsGLRooTvimrB3r55kXL48LF5sut+uSIfk/xpCPMHixYtp3rw5FStWJDg4mJwmG8GmaydO6Az05pswe7apmSN//AG1a+ujXQEBpoYfi3RMnnEJ8Rjz5s2jY8eOeHh4EBAQQPbs2e0dkuO7eVN3xjAMWLfOVAa6fl0Pg7x5U59LzpfPBnEKpyaJS4hE+Pr60r17d7y9vVm3bh1PPfWUvUNyfErpxoKHDsHmzXrGVhLi4qBpU10xv3kzvPGGDeIUTk9uFQrxkKlTp9K9e3dq167Nt99+K0nLLB8fWLYMRo4Eb29TS/r00QlrxgyoVs3K8QmXIYlLiPtMmDCBPn360LBhQ9asWUPWrFntHZJziIzU5YB16+oTwyb4+MD06XpZ585Wjk+4FElcQiQYOXIkAwYMoGnTpqxYsYIsJg7LCuDsWfj4YyhWTI8mNlEOuHGj3m3Vqwfjx9sgRuFSUp24DMPIaBjGfsMwNiZ8X9QwjF2GYRw3DGOlYRjyb79waEophg4dyrBhw2jZsiVLly4lk0wpNOfOHT0IMiYG1q8HE1WX+/fr51plysDSpZAxow3iFC4lLXZcvYCj930/HpiilHoZuAK0T4OfIYRVKKUYMGAAo0aNon379ixYsICM8jepeb17ww8/wMKFYGIO2dmzuoLwuecgMBCkUFOkRKoSl2EYBYGawNyE7w3AA1iT8JZFQL3U/AwhrEUpRZ8+fZg4cSJdu3bFz89PklZyzJ+vR5QMGKBbXSThxg19Vuv6dX2rMH9+G8QoXFJqd1xTgf6AJeH73MBVpVRcwvfRQKINygzD6GQYxh7DMPZcvHgxlWEIkTwWi4Xu3bszbdo0evfuzYwZM8ggrRrM+/FH6NYNvLxg1Kgk3x4fr88kHzgAK1fqs8lCpFSK/001DKMWcEEptTcl65VSfkqpckqpcnny5ElpGEIkW3x8PJ06dWLmzJkMGDCAyZMnY5jo7iASXLyod1h588Ly5WDieeBnn+lbg998AzVq2CBG4dJS8wS6IlDHMIyPgGzAM8A04FnDMDIl7LoKAmdTH6YQaSMuLo527dqxZMkShg4dyldffSVJKznunRi+cEG3uXj++SSXzJgB06bpx2HdutkgRuHyUrzjUkoNUkoVVEoVAZoCYUqp5kA40Cjhba2BgFRHKUQauHv3Li1btmTJkiWMHDmSESNGSNJKri++0CNKZs2CsmWTfPvmzXq2Vp06MGmSDeIT6YI1buoPAPoahnEc/cxrnhV+hhDJEhsb++/5rAkTJjBkyBB7h+R8Vq+GiROha1do0ybJtx84oKcYly4N/v5S9i7SjqGUsncMlCtXTu3Zs8feYQgXdefOHRo3bkxgYCBTp06lV69e9g7J+fz8M7zzjq6qiIhIcpLxuXP67UrBrl2mZ0gK8QDDMPYqpco9fF1OWQqXduvWLerXr8+WLVuYOXMmXbp0sXdIzueff6B+fXj6aVizJsmkdfOmLnu/cgW2b5ekJdKeJC7hsm7evEmdOnUIDw9n3rx5tGvXzt4hOR+LBVq2hJMn9bOtF1984tvj46F5c/jpJz38+K23bBSnSFfk4IpwSdevX6dGjRpERESwaNEiSVrJ5e8PRYroB1OBgfDJJ1CpUpLL+vfXgyCnToWaNa0fpkifJHEJl/PPP/9QvXp1du7cybJly2jZsqW9Q3Iu/v56rtbp0/9dW7tWX3+CWbNg8mTo2VP/EsJapDhDuJQrV65QvXp1fvrpJ1asWEGDBg3sHZLzKVLkwaR1T+HCcOpUoku2bNE7LG9vveOSCkKRFqQ4Q7i8S5cuUbVqVY4cOcLatWupXbu2vUNyTmfOJOv6oUPQuLGeXrx8uSQtYX2SuIRLuHDhAp6enhw/fpyAgAC8TU7gFQ/ZskXXsCemUKFHLp0/r7u958ihG+fmyGHl+IRAnnEJF/Dnn39SuXJlTpw4wcaNGyVppdTGjbrFRaFC8NRTD77m5gajRz9wKSZGv/3SJV2/UbCgDWMV6ZokLuHUoqOjcXd3548//iA4OBhPT097h+Sc1q+HBg30AeP9+2HOHP1MyzD0Vz8/Xeee4F6V/J49+vbg22/bMXaR7sitQuG0Tp06hYeHB5cvX2br1q2899579g7JOa1apWeOlC8PwcF6inHz5g8kqocNHAjr1sGUKXrXJYQtyY5LOKUTJ07g7u7OlStXCAkJkaSVUkuX6jNa778PW7fqpJWEOXN0y8Ju3UC6Zwl7kMQlnM4vv/zChx9+yM2bNwkLC6N8+fL2Dsk5LVgArVpB5coQFGSqsmLbNt1jt0YNPapEmusLe5DEJZzKkSNHcHd3Jy4ujvDwcMqUKWPvkJzT7NnQrh1UraqLMrJnT3LJzz9Do0bw+uuwYoWp+ZFCWIUkLuE0Dh48SOXKlcmQIQMRERGUKlXK3iE5p2++gS5d9InhgIBHKwgT8ddf+u1ubjrPPfOMDeIU4jEkcQmnsG/fPqpUqULWrFmJjIykRIkS9g7JOU2apCc71q+vqyuyZUtyya1bULeuHnocGJjocS4hbEoSl3B4u3btwsPDgxw5chAZGUnx4sXtHZJzGjMGPv9cT3dcufKJ40nu9djNkAGef17P1Fq2DMo90nxHCNuTu9TCoe3YsYMaNWqQJ08ewsLCKFy4sL1Dcj5KwVdf6V8tWuiijCc8oLrXYzcmRn8fEwOZM+s5W0I4AtlxCYcVERFB9erVyZ8/P1FRUZK0UkIp+OILnbTatoWFC5Osqhg8+L+kdc/du/q6EI5AEpdwSCEhIXz00UcULlyYyMhICsgY3eRTCj77DMaN08UYc+ea6oCbzB67QticJC7hcDZv3kytWrUoXrw4ERER5MuXz94hOR+LRQ/FmjJFF2P4+uoHViY891zi16UoQzgKSVzCoQQEBFCvXj1KlixJWFgYefLksXdIzsdi0TusGTOgXz89jtjkSeGZM+Hy5UdzXCI9doWwG0lcwmGsWbOGRo0aUaZMGUJDQ8mdO7e9Q3I+8fH6YPGcOfqh1IQJppPWtGm6jVPt2jB//hN77AphV1JVKBzCsmXLaNWqFe+++y6bN2/mGTnhmnxxcdC6ta5bHzEChg41vXTiROjfXzeIX75cV8q3bm3FWIVIBdlxCbtbtGgRLVq0oFKlSgQHB0vSSom7d3Wz3GXLdDFGMpLWqFE6aTVtqls5PeF4lxAOQRKXsKs5c+bQtm1bPD092bRpE08//bS9Q3I+d+5A48awZg1MngwDBphaphQMG6ZzXMuWulF85sxWjlWINCCJS9jNjBkz6NSpE97e3gQGBuLm5mbvkJzP7dv6/l5AAEyfDn36mFqmlJ6pNXIktG+vzySbqJQXwiFI4hJ2MWXKFHr06EHdunVZv3492Uz0zBMPiYnRlRRBQbp6ont3U8uU0vltwgQ9osTPT5KWcC6SuITNjRs3jr59+9KoUSNWr15N1qxZ7R2S87lxQ7drDwvT26WOHU0ts1h0fps2TQ+BnDHD9PEuIRyG/F9W2IxSihEjRjBo0CCaNWvG8uXLySwPVZLv2jXw9obvvtMPpkyW/1ks0LmzPqvVv78+myyDIIUzknJ4YRNKKYYOHcro0aNp3bo18+bNI6Pcn0q+q1d10tq7V5cANmpkatm9412LF+tijK++kqQlnJckLmF1Sin69+/PpEmT6NixI7NmzSKD3J9KvsuXoVo1OHRIVxDWrWtq2d270KqVznMjR8KQIVaOUwgrk8QlrEopRe/evfHx8aF79+74+PhI0kqJixfBywt++UVXENaoYWpZbCw0awZr1+pijM8/t3KcQtiAJC5hNRaLhW7dujF79mz69u3LpEmTMOT+VPKdPw+ennDyJGzcqBOYCfeOdwUG6naFvXpZOU4hbEQSl7CK+Ph4OnbsyIIFCxg4cCBjxoyRpJUSZ8+Ch4f+GhQE7u6mlt26pY93BQfrxvBdu1o5TiFsSBKXSHNxcXG0adMGf39/hg8fzvDhwyVppcSZMzppXbgAW7ZAxYqmlt28qR9/hYXpEVzt21s5TiFsTBKXSFN3796lRYsWrFq1itGjR/PFF1/YOyTndPIkVKmiqwi3bYN33jG17Pp1qFULtm+HRYt0KychXI08JRdpJjY2liZNmrBq1SomTZokSSs5/P2hSBF9GrhAAShbVmehsDDTSeuff6B6ddixQ/falaQlXJXsuESauH37No0aNWLTpk34+PjQs2dPe4fkPPz9oVMn3cIJ4Nw5/XXMGHj7bVMfceWKTlr798OqVfr5lhCuSnZcItViYmKoW7cumzZtYtasWZK0kmvw4P+S1v1mzza1/NIlXXR44ACsWydJS7g+2XGJVLl58ya1a9cmIiKC+fPn07ZtW3uH5HzOnEne9ftcuKCr43/7TR/v8vZO49iEcECSuESKXb9+nZo1a7Jjxw4WL15MixYt7B2S87l9G9zcdCngwwoVeuLSP//UO61Tp/TxLk9P64QohKORW4UiRa5evUq1atXYuXMny5cvl6SVEqdOwQcf6KT1cLNhNzcYPfqxS6Oj9ZGuP/7QZ7UkaYn0RBKXSLa///4bLy8v9u7dy+rVq/n444/tHZLzCQ7WlYPHj8OGDXo0SeHCuvNt4cJ6SFbz5okuPX1aJ62//tLHuz780MaxC2FncqtQJMulS5fw8vLi6NGjrFu3jlq1atk7JOdiseid1PDhUKqUbiL48sv6tcckqvudOKHPJF+7BiEhUL68leMVwgFJ4hKm/fXXX3h6enLixAkCAwOpVq2avUNyLleu6MNVmzbpr7Nm6VuCJv3yi74lePu2Pt5VpowVYxXCgUniEqacO3cOT09Pzpw5w6ZNm/Dw8LB3SM5l/35o2FA/nPL1hS5dkjUQ68gRnbQsFggP15s1IdIrecYlkvTHH3/g7u5OdHQ0wcHBkrSSa+FCeP99PRjru+90x9tkJK2DB6FyZf37iAhJWkJI4hJPdPLkST788EMuXLjA1q1bqVSpkr1Dch537uidVdu2OnHt22e6fdM9+/bploVZskBkJJQoYaVYhXAikrjEYx0/fhx3d3f++ecfQkNDee+99+wdkvM4cwYqVdLdLwYO1OV/efIk6yN279a3B3PkgKgoeOUVK8UqhJORZ1wiUceOHcPT05PY2FjCwsJ466237B2S8wgJgaZN9a3B9euhXr1kf8SOHXrIcZ48uhCjcGErxCmEk5Idl3jE4cOHqVy5MvHx8YSHh0vSMsti0Y1xq1eH/Plhzx7TSev+5vD58umS9/z59U5LkpYQD5Idl3jAgQMH8PLyInPmzISFhfHaa6/ZOyTncPUqtGoFgYHQrJk+QJw9u6mlDzeHQY0q6QAAG/9JREFU/+svXbvRq5eecCKEeJDsuMS/9u7dS5UqVciWLRuRkZGStMw6eBDKlYOgIPDxgaVLTSctSLw5vFIwYUIaxymEi5DEJQD44Ycf8PT0JGfOnERFRVG8eHF7h+Qcli6Fd9+FW7d02V/PnskqdYdUNYcXIl2SxCXYvn07VatW5fnnnycyMpKiRYvaOyTHFxsL3bvrDhgVKui69fffT/bHnD+vS90Tk0RzeCHSLUlc6Vx4eDjVq1enQIECREVFUUj+tkzavdbsvr7Qr5+uIsybN9kfs327HnBssTyavJJoDi9EuiaJKx3bunUrH330EUWLFiUyMpIXX3zR3iE5vrAwnW0OH4bVq2HiRMiUvBonpWDaNH2wOHt22LsX5s833RxeiHRPqgrTqU2bNtGgQQNKlCjBtm3byJPMw7HpjlI6SQ0aBK++CuvWQQqKV27cgA4dYOVKqFsXFi2CnDl1GydJVEKYIzuudOjbb7+lfv36lCpVirCwMElaSfnnH90gd8AAaNRIt7RIQdL65Rfd8Wn1ahg7Vue+nDmtEK8QLk52XOnM6tWradasGeXKlSMoKIhnn33W3iE5tsOHoUED+P13mDJFH65KZtUg6CTVpg1kzQpbt8rEYiFSI8U7LsMwXjIMI9wwjCOGYfxsGEavhOvPGYaxzTCM3xK+5kq7cEVq+Pv707RpU9599122bNkiSSspy5frLdL163qWSO/eyU5acXHQv7/esL3+ui4+lKQlROqk5lZhHPCZUup14F2gu2EYrwMDgVClVHEgNOF7YWcLFy6kZcuWuLu7ExQUxDPPPGPvkBxXbKzeWTVrpgsx9u3TDXOT6a+/oGpV/WisWzd9zOull6wQrxDpTIoTl1LqT6XUvoTfXweOAgWAusCihLctApLfYVSkKT8/P9q2bYuXlxcbN27k6aeftndIjuvcOV3u5+MDffroKsL8+ZP9Md9/r3PeDz/oAowZM/RtQiFE6qVJcYZhGEWAMsAuIK9S6s+El84DiR5wMQyjk2EYewzD2HPx4sW0CEMkYvr06XTu3JmaNWuyYcMG3JIxKj7diYzU2ebAAV32N3kyZM6crI9QCqZP18e8smXTiatVKyvFK0Q6lerEZRjG08BaoLdS6tr9rymlFKASW6eU8lNKlVNKlZOqNuv4+uuv6dmzJ/Xq1WPdunVky5bN3iE5lvtbsufKpXdazz6rqwY//jjZH3fzpm6k0bOnbhC/Zw+ULp32YQuR3qUqcRmGkRmdtPyVUusSLv9lGEb+hNfzAxdSF6JIiTFjxtCvXz8aN27MqlWryPK4vkLp1b2W7KdP623S1as6gfXrp6sokum333TLwmXLYORICAjQuVAIkfZSU1VoAPOAo0qpyfe9tAFonfD71kBAysMTyaWU4ssvv2Tw4ME0b96cZcuWkTmZt7vShcRassfHw6hRyf6ogADdHP7cOQgOhiFDdA4UQlhHav71qgi0BDwMw/gp4ddHwDigqmEYvwFeCd8LG1BKMXjwYL766ivatGnDokWLyJTMdkTpwi+/6J1WYpLRkj0+Hr74Qs+KfOUVXXxYrVoaxSiEeKwU/62mlNoOPO5Qi5xUsTGlFP369WPy5Ml07twZX19fMsh/9j/o2jV9H2/aNH0eSyXy+NVkk+GLF+GTTyA0VN9xnDZNF2MIIaxP/mZzARaLhU8//ZTJkyfTs2dPZs6cKUnrfhaLrkl/5RWYNElXUEyfrluw389kS/bdu3Xx4fbtujnu7NmStISwJbmP5OQsFgtdunRhzpw5fPbZZ0ycOBEjBS2JXNbu3brMb/duXT0RGAjly+vXcubUz7rOnNE7rdGjn9jpVimdpD79FAoUgJ07dQITQtiWJC4nFh8fT4cOHVi4cCFffPEFo0aNkqR1z/nz+gHUggWQL5/ecbVo8WDVRPPmpluyx8RA166weDF4e+uixOees1LsQognkvtJTiouLo5WrVqxcOFCvvrqK0la98TGwtdf69uCS5fqRoG//qpPAafw9umJE3q48ZIlMHw4bNokSUsIe5IdlxO6e/cuzZs3Z/Xq1YwdO/b/7d15fFTV2cDx3zGILIooWimiIMoiKntDVRRI4CVhkLWogIAKRlGq4lvFitqqTVXaUtQCFQNCDQUqSIwEiGQB4sYWtICpbAIGwfCyGEmALHPeP56hBMgoZGZyZ3m+n08+ydxM7j25XvJ4znnOc3j6aS0HCUgu+uOPS9agyyWVL1q08OmUixef7KilpUF8vJ/aqpSqMu1xhZjjx48zePBg3n33Xf7yl79o0ALYtg369pWo4nZLtFm82KegVV4Ozz0Hd9wBzZrJLsUatJQKDtrjCiHHjh1j0KBBLFmyhDfeeIOxY8c63SRnHTkiCRWTJkHNmjBxolR197FKyIEDUhj+ww/hvvukQG7t2n5qs1LKZxq4QkRxcTH9+/cnIyODN998k4SEBKeb5BxrJTti/HgpVzFypGwpXIUq7qdbt072ztq3D6ZPh9Gjq7RvpFIqgHSoMAQcOXIEl8tFRkYGM2fOjOygtX49dOkia7EaNZL9Q2bN8kvQSkqCW2+Vrz/6CB54QIOWUsFIA1eQKywsJC4ujlWrVpGcnMy9997rdJOcUVAgkeQXv5A5rZkzYfVqWZtVRRWLw194oZy+WzeJjSeWeimlgo8OFQaxw4cPExcXx/r165k3bx6DBw92uknVr7RUJpl+/3vZN2TcOHj+eVk87IMTxeFP1NktKpKtt+65By67zPdmK6UCR3tcQergwYPExsaSm5vLggULIjNoLV8uG1qNGyc9q40bZY2Wj0ELZG3y6cXhS0slk1ApFdw0cAWh/fv30717dzZv3kxKSgr9+vVzuknVa8cOGDBASq2XlEBqKixdCq1a+eX0S5Z4LwJ/DsXhlVIO0cAVZPbt20e3bt3YunUrH3zwAb1793a6SdWnqEg2s2rdWnpbL78MmzfLYio/ZEls2SLrkl0u8Lbby1kWh1dKOUgDVxDZs2cPXbt2ZdeuXSxZsoSePXs63aTqYS3Mmyc9qsREGDxYql88/TRccIHPp//hB8mcv/FGyMmRAvFJSVUuDq+UcpgmZwSJ3bt3ExMTQ0FBAcuWLaNLly5ON6l6fP65lFvPyZFS6/PmncxJ95HbLeUKx4+XdVn33Qd//KPU3AXpdZ1DcXilVJDQwBUEvv76a2JiYjh06BDLly+nc+fOTjcpMObMORkprrwSWraE7GypWPvWWxJZoqL8cqm1a2U3k9WroXNneP99iI4+9T3nUBxeKRVENHA5bOvWrcTExFBcXExmZiYdO3Z0ukmBcXr+eX6+fMTFwdy5UL++Xy7z3XeSMThzJlxxhaxNHj68yoXhlVJBSAOXg/Ly8oiNjaW0tJSsrCzatm3rdJMCZ8KEM/PPAfLy/BK0SkpkU+MXXoCjR+HJJyXPo149n0+tlAoyGrgcsmnTJmJjYzHGsGLFCm644QanmxQ4u3bJR2X8kH+eni67mfznP1LBffJkn3czUUoFMR1AccDnn39Ot27dqFGjBitXrgzfoFVcLBUvWrXyns7uQ/759u3Qr5+MNpaVyU4mS5Zo0FIq3Gngqmbr1q0jJiaGOnXqsHLlSlq2bOl0k/zPWnj3Xbj+ehm7699fukF+yj8/ckTmsVq3hsxMeOUV2LRJ1mcppcKfDhVWo08//ZS4uDgaNGhAVlYWTZs2dbpJ/rdxo6S3r1gh5ZreeQduv12+16CBT/nn1sI//wlPPSW7mQwfLkGrUaPA/CpKqeCkgauarFq1CpfLRcOGDcnKyuKqq65yukn+dfCgFL+dNk2SLaZNk3LrFdPbfcg/z82VePjxx9CxIyxYADff7Ke2K6VCig4VVoOsrCzi4+Np3LgxK1euDK+gVV4uQap5c/k8Zgxs3QoPPeSXNVn790sWfadOUrIpKQnWrNGgpVQk08AVYOnp6bhcLpo1a8aKFStoFE7jWqtWSffn4YehTRvYsEFy0i+91OdTl5bCa69JPHz7bcka3LIFRo3SNVlKRTr9ExBAixcvpm/fvrRq1Yrs7GyuuOIKp5vkH998A3ffDV27wqFDkoiRlSXByw8yMqBdOwlW0dHwxRcwaZLf1igrpUKcBq4AWbRoEQMHDqRNmzZkZmZyWTjsTnj0KLz0kpRqev99+N3vZAHxr37ll+rtX38NAwdCz55yqZQUWaPVurUf2q6UChuanBEA8+fPZ9iwYURHR7N06VIu9sPGh46yVqLIE0/Azp0SqP78Z2jSxC+nLyqCV1+FiRNlWiwxUS5Vq5ZfTq+UCjPa4/Kz5ORkhg4dyi233EJ6enroB60vv5QNHQcOhAsvlCHBd9+tUtCaMweaNpU5qqZN5fX8+bI++aWX5BJffSVrtDRoKaW80R6XH82cOZPRo0fTvXt3UlNTqVu3rtNNqrrDh6Xqxd/+JgX/3nhDMgW97cD4E06vsbtrF4wYIVuPtGsn67Nuu81/zVdKhS8NXH7y97//nTFjxtCrVy8WLVpE7dq1nW5S1ZSXS2n1Z56BAwfgwQelO+TjHF1lNXbdbklAXLfOb7uZKKUigA4V+sHrr7/OmDFj6NOnDykpKaEbtD7+WNL4EhKkXFNurqzN8jFolZR4r6V76JAGLaXUudHA5aM//elPPPbYYwwYMICFCxdSKxQnZ/bsgXvugS5dZEOruXNh5UoZw/NBXh785jfQuLHkd1TGhxq7SqkIpUOFPkhMTOTZZ5/lrrvu4p133uH88893uknn5vhxWSCVmCjl1SdMgN/+FnyYmysqktyNpCTpwNWoAX37QrNmMHXqqcOFVayxq5SKdNZaxz86duxoQ4nb7bbPP/+8Bezw4cNtaWmp0006N263tamp1l57rbVgbf/+1m7f7tPp1qyxNiHB2osuklO2aGHtxInW7tt38n3JydY2aWKtMfI5Odnn30QpFcaAdbaSmOF40LIhFrjcbrcdP368Bez9999vy8rKnG7Sjzs9WkycaG2vXvKf/vrrrf3wwyqf+sABa197zdo2beR0tWtbO3KktTk5EsyUUsoX3gKXDhWeA2stTzzxBJMnT+ahhx5iypQpnBfMhfMqy0F/6ilZJPXXv8Ijj8A5Dm+63bJjSVISvPeejDZ26iQ5HEOGQKgvW1NKBT8NXGfJ7Xbz61//mqlTp/Loo48yefJkjB/KHAVUZTnoIFmCjz9+TqfaswdmzYIZM6Q0U/36smvJqFE+53AopdQ50cB1FtxuNw8++CBJSUk8+eSTvPrqq8EdtKyVvT927ar8+3v2nNVpSkshLU2C1ZIl0tvq3h3+8AcYMABCNetfKRXaNHD9hPLyckaNGsXs2bN59tlnefHFF4M3aB04AMnJMo63aZMUvq0sD/0nctC3bpVgNWuWZMf//Ocwfjzcfz9cd11gmq6UUmdLA9ePKCsrY8SIEcydO5cXX3yR5557zukmncntlvqBSUmwaJGs9o2OhjfflKKAjz12VjnoxcWwcKGcZtUqWRTscsHo0RAfX+VKT0op5Xf658iLkpIShg4dysKFC3nllVcYP3680006VX6+7LA4c6ZUbL/kEqklOGrUqfti1a4tc127d0tPKzERhg3777dzc6V3NWcOfP89XHstvPwyjBwpPS2llAo2Grgqcfz4ce68805SU1OZNGkS48aNc7pJorQUFi+WbtGyZdLbio2VSNO/f6Ul1ecwjAkMYzdwNZAIuA5LUdukJNm0uFYtGDRIele33647DCulgpsGrtMcPXqUQYMGsXTpUqZMmcLDDz/sdJNkr48ZM2D2bCgogEaNpMLF/fdLSQovKsuGHzlSpr7KyqBtWyn+PnSodNiUUioUaOCqoLi4mH79+pGZmclbb73F6NGjnWyM1E6aMQNycmTS6Y47pFvUq9dZTTo988yZ2fDl5bKt1ooV0KGDXzYuVkqpaqWBy+PIkSP06dOHnJwcZs2axYgRI6q/EdbKpFNSkozlFRZC8+ayPfCIEdCw4U+e4sgRyMyUNHZvFdmLiqBjRz+3XSmlqokGLqCwsJD4+HhWr15NcnIyQ4YMqd4GHDok43pJSfDFFzLpNHiw9K5uu+0nu0Xbtsk6q7Q06UmVlMBFF0lextGjZ75fK7IrpUJZxAeuQ4cOERcXR25uLvPnz2fQoEHVc2G3W7YOmTEDFiyQ2kkdOkgJ9SFDpDSFFyUlMnqYliYfW7bI8ZYtYexYSWPv0kVGGivOcYFWZFdKhb6IDlwHDhygZ8+ebN68mYULF9K3b9/AX/TbbyXJYsYM2L5divuNHi1p7O3be/2xvXtP9qqWL5chwZo1pZLF2LHQu7eksld0Iuv9R7LhlVIq5BjrbYe/atSpUye7bt26ar1mQUEBPXr0YMuWLaSkpBAXF+efE8+Zc2akuOsuiTpJSfK5vBy6dpWANWhQpbWT3G5Yu/Zkryo3V443bixByuWSTHgfts5SSqmgZoxZb63tdMbxSAxce/fuJTY2lp07d5KamkqPHj38c+LT889Bsv/q1pXVvQ0bwr33Shp78+Zn/Pjhw5CeLoFq2TLYv1/WVN18swQqlwtuukkzAZVSkcFb4Iq4ocL8/HxiYmL49ttvWbp0KV27dvXfySurxl5WJpNSKSnSVaqwjYi1sHnzySHAjz+Wztill0qZpd69JfO9QQP/NVEppUJdRAWuXbt2ERMTw/79+0lPT+fWW2/1/aSlpfDJJxJ5vFVjP3YM+vUDJK5lZ8vblyw5+SNt20ohW5cLOneWZVtKKaXOFDGBa8eOHXTv3p3CwkIyMjKIjo6u+skKCmQsLy1Nxva+/156UrVqSZA6TVmjq3lzirw9O1veUrcu9OghnbT4eJm7Ukop9dMiInBt2bKFmJgYjh49SmZmJh06dDi3E7jdUtTvRKbE2rUyztewoSRXuFzQowcfPf0B7aclUJeTw4VF1OGBPYnMHStZfwkJ8vauXeGCC/z8iyqlVAQI+8CVl5dHTEwM5eXlZGdn06Zi5fQfU1goeedpabB0KezbJ1kR0dHwwgsSfdq144ei8/j8c8h9Gyb8Yxh9gT8ygavZzW6u5hkSWXbJML76DFq0COivqpRSESGsswo3btxIbGwsUVFRZGZm0rp1a+9vtlZW8p7oVeXkyPzVxRdLhoTLxcHoOHLzf0ZurqSnb9hwcvHvjzFGOm1KKaXOXsRlFW7YsIGePXtSq1YtsrKyaFFZd+fYMalecSJTYvt2OX7DDRx5YBwbm7jIOnoL67+oQe7zp+ZeNGkihS6GD5fP7dtL2npl+RlaYkkppfwnLAPXmjVr6NWrF/Xq1SMrK4trK5aUyM8/mX+ekQHFxbgvqEXBjbGsif9f3jvWm/S8JuybevJHWrSQoPTIIxKk2rWrPEU9MVFLLCmlVKAFJHAZY+KA14AoIMla+0ogrlOZTz75hLi4OC677DKys7Np0rixLJBKS8OmpWH+/W8ADtZrwkeX3suc81ykHunOsfW1iYqC1q1lZLB9ewlSbdtCvXpnd20tsaSUUoHn9zkuY0wUsAXoCeQDa4Eh1tovvf2Mr3NcHz08h6bTJ7CtfBcuDA3qXU7Oi89y8YefUXvlMi4oOkgZUXx6XhdS3S7ScLH9/Ou5qY2hQwf++3HTTZVWX1JKKeWA6pzjiga2WWt3eC48D+gHeA1cvvjo4Tm0n5bAZxRzB9AUS0ZhAY0ef5QCLieFO8is2ZuCdv9Di+j6tG8PwzpIz6pmzUC0SCmlVCAFInBdCXxT4XU+0DkA1wGg6fQJlFPMYOA6IAP4GbDPNCRz9h46dzqP4S20EoVSSoULx5IzjDEJQALA1T6k3TUq3815QApwA3AiZ+Jn9juGDT/P12YqpZQKMoH4y74HuKrC68aeY6ew1k631nay1na6/PLLq3yxb6Mk6N3OyaBV8bhSSqnwEojAtRZoboy5xhhTE7gbSA3AdQDYmZBIEXVOOVZEHXYmaA66UkqFI78HLmttGTAWSAfygH9Zazf7+zondJk6jA1jppMf1QQ3hvyoJmwYM50uUzUHXSmlwlFYl3xSSikVurylw2v2glJKqZCigUsppVRI0cCllFIqpGjgUkopFVI0cCmllAopGriUUkqFFA1cSimlQooGLqWUUiFFA5dSSqmQooFLKaVUSNHApZRSKqRo4FJKKRVSgqLIrjFmP7DLD6e6DPg/P5wnHOm98U7vjXd6b7zTe+Odv+5NE2vtGRs2BkXg8hdjzLrKKgkrvTc/Ru+Nd3pvvNN7412g740OFSqllAopGriUUkqFlHALXNOdbkAQ03vjnd4b7/TeeKf3xruA3puwmuNSSikV/sKtx6WUUirMaeBSSikVUsIicBlj4owxXxljthljnna6PU4yxlxljMk2xnxpjNlsjHnMc/xSY8xyY8xWz+dLnG6rU4wxUcaYDcaYxZ7X1xhjVnuen/nGmJpOt9EJxpj6xpgFxpj/GGPyjDE363MjjDHjPP+eNhlj5hpjakXyc2OMmWmMKTDGbKpwrNJnxYjXPffp38aYDr5eP+QDlzEmCpgCxAOtgSHGmNbOtspRZcD/WmtbA78EHvHcj6eBTGttcyDT8zpSPQbkVXj9KvBXa+11wCFglCOtct5rwDJrbSugLXKPIv65McZcCTwKdLLW3ghEAXcT2c/NLCDutGPenpV4oLnnIwGY5uvFQz5wAdHANmvtDmttCTAP6Odwmxxjrd1rrc31fP0D8sfnSuSezPa8bTbQ35kWOssY0xhwAUme1waIARZ43hKR98YYczFwOzADwFpbYq09jD43J9QAahtjagB1gL1E8HNjrV0FHDztsLdnpR/wDys+A+obY37uy/XDIXBdCXxT4XW+51jEM8Y0BdoDq4ErrLV7Pd/aB1zhULOcNhl4CnB7XjcADltryzyvI/X5uQbYD7ztGUZNMsbURZ8brLV7gD8Du5GA9T2wHn1uTuftWfH73+hwCFyqEsaYC4GFwOPW2sKK37OyBiLi1kEYY/oABdba9U63JQjVADoA06y17YEiThsWjODn5hKk13AN0Aioy5nDZKqCQD8r4RC49gBXVXjd2HMsYhljzkeC1hxr7Xuew9+d6J57Phc41T4H3Qr0NcbsRIaUY5B5nfqeISCI3OcnH8i31q72vF6ABDJ9bqAH8LW1dr+1thR4D3mW9Lk5lbdnxe9/o8MhcK0FmnsyfGoik6apDrfJMZ45mxlAnrV2UoVvpQIjPV+PBN6v7rY5zVr7W2ttY2ttU+Q5ybLWDgOygV953hap92Yf8I0xpqXnUCzwJfrcgAwR/tIYU8fz7+vEvYn45+Y03p6VVGCEJ7vwl8D3FYYUqyQsKmcYY3ojcxdRwExrbaLDTXKMMaYLkANs5OQ8zjPIPNe/gKuRLWTutNaePrkaMYwx3YDfWGv7GGOaIT2wS4ENwD3W2uNOts8Jxph2SNJKTWAHcB/yP7cR/9wYY14A7kKydjcAo5F5moh8bowxc4FuyPYl3wG/A1Ko5FnxBPu/IcOrxcB91tp1Pl0/HAKXUkqpyBEOQ4VKKaUiiAYupZRSIUUDl1JKqZCigUsppVRI0cCllFIqpGjgUkopFVI0cCmllAop/w+tatQv+Xys/gAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAJGCAYAAACZc8uEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAACVxUlEQVR4nOzdd1yV5f/H8Rfi3mnO3GVZpmbLrExwz9xp7p25R/nTb6k5cubee2suzK0hglmZqWVpmmlqLlBzgIoCHu7fH1eAKCocDhwOvJ+PBw9vzrm5zsf8lu/vdV3353KzLMtCREREROItlbMLEBEREUkuFKxEREREHETBSkRERMRBFKxEREREHETBSkRERMRBFKxEREREHETBSkRERMRBUju7AHuEh4dz8eJFsmTJgpubm7PLERERkWTOsixu3rxJ/vz5SZXq0fNSLhmsLl68SMGCBZ1dhoiIiKQw586do0CBAo983yWDVZYsWQDzm8uaNauTqxEREZHkLigoiIIFC0ZmkEdxyWAVsfyXNWtWBSsRERFJNE/agqTN6yIiIiIOomAlIiIi4iAKViIiIiIO4pJ7rGLLZrMRFhbm7DLEAdKkSYO7u7uzyxAREXmsZBmsLMsiICCAGzduOLsUcaDs2bOTN29e9S4TEZEkK1kGq4hQlTt3bjJmzKi/iF2cZVkEBwdz+fJlAPLly+fkikRERGKW7IKVzWaLDFU5c+Z0djniIBkyZADg8uXL5M6dW8uCIiKSJCW7zesRe6oyZszo5ErE0SL+TLVvTkREkqpkF6wiaPkv+dGfqYiIJHXJNliJiIiIJDYFKxEREREHUbB6BJsN/Pxg5Urzq82W8J8ZEBBAjx49KFasGOnSpaNgwYLUrVsXHx+fhP/wB7i5ufHNN98k2Phffvklb7/9NhkzZiR79uwJ9jkiIiKJKdk9FegIXl7QqxecPx/1WoECMHkyNGyYMJ955swZ3nnnHbJnz864ceMoVaoUYWFh7Nixg27duvHnn38mzAfHQ2hoKGnTprX7Z5s0aUL58uWZP3++gysTERFxDs1YPcDLCxo3jh6qAC5cMK97eSXM53bt2hU3Nzd+/vlnGjVqxPPPP0/JkiXp27cvP/30U+R9Z8+epV69emTOnJmsWbPywQcfcOnSpcj327ZtS/369aON3bt3bzw8PCK/9/DwoGfPnvTv358cOXKQN29evvjii8j3ixQpAkCDBg1wc3OL/P6LL77glVdeYd68eRQtWpT06dOzZMkScubMSUhISLTPrF+/Pq1atXrk73fo0KH06dOHUqVKxe0flIiISBKWIoKVZcHt20/+CgqCnj3N/TGNAWYmKygoduPFNE5Mrl27xvbt2+nWrRuZMmV66P2IpbLw8HDq1avHtWvX2L17N97e3pw6dYqmTZvG+Z/J4sWLyZQpE/v27WPs2LEMGzYMb29vAPbv3w/AwoUL8ff3j/we4OTJk6xbtw4vLy8OHTpEkyZNsNlsbNy4MfKey5cvs2XLFtq3bx/nukRERFxZilgKDA6GzJnjP45lmZmsbNlid/+tWxBDTnrIyZMnsSyLEiVKPPY+Hx8fDh8+zOnTpylYsCAAS5YsoWTJkuzfv5833ngjdoUBpUuXZsiQIQAUL16cadOm4ePjQ9WqVcmVKxcQdYTM/UJDQ1myZEnkPQDNmzdn4cKFNGnSBIBly5ZRqFChaLNkIiIiKUGKmLFK6qxYTm0dO3aMggULRoYqgJdeeons2bNz7NixOH1m6dKlo32fL1++yCNjHqdw4cLRQhVAp06d+Pbbb7lw4QIAixYtom3btuo7JSIiKU6KmLHKmNHMHj3Jd99BrVpPvm/rVnjvvdh9bmwUL14cNzc3h2xQT5Uq1UNBLaZO5WnSpIn2vZubG+Hh4U8cP6alyrJly1KmTBmWLFlCtWrV+OOPP9iyZUscKxcREYk7W6iNwzP2EPy3PxmfzUeprhVwT+u8Y8/iPGP13XffUbduXfLnzx/jI/mWZTF48GDy5ctHhgwZqFKlCidOnIh2z7Vr12jRogVZs2Yle/bsdOjQgVuxST52cnMzS3JP+qpWzTz996iJFjc3KFjQ3Beb8WI7YZMjRw6qV6/O9OnTuX379kPv37hxA4AXX3yRc+fOce7cucj3jh49yo0bN3jppZcAyJUrF/7+/tF+/tChQ7Er5D5p0qTBFoceEx07dmTRokUsXLiQKlWqRJtVExERSQg/9ffiUsYivNLHk7enNeeVPp5cyliEn/on0JNmsRDnYHX79m3KlCnD9OnTY3x/7NixTJkyhVmzZrFv3z4yZcpE9erVuXv3buQ9LVq04I8//sDb25vNmzfz3Xff0blzZ/t/Fw7i7m5aKsDDoSji+0mTzH2ONn36dGw2G2+++Sbr1q3jxIkTHDt2jClTplC+fHkAqlSpQqlSpWjRogW//PILP//8M61bt6ZixYq8/vrrAFSqVIkDBw6wZMkSTpw4wZAhQzhy5Eic6ylSpAg+Pj4EBARw/fr1J97fvHlzzp8/z9y5c2O1af3s2bMcOnSIs2fPYrPZOHToEIcOHUrQgC0iIsnHT/29eHNcY/Laoj/Gn9d2gTfHNXZeuLLiAbDWr18f+X14eLiVN29ea9y4cZGv3bhxw0qXLp21cuVKy7Is6+jRoxZg7d+/P/Kebdu2WW5ubtaFCxdi9bmBgYEWYAUGBj703p07d6yjR49ad+7csfN3ZVnr1llWgQKWZbarm6+CBc3rCenixYtWt27drMKFC1tp06a1nnnmGev999+3fH19I+/5559/rPfff9/KlCmTlSVLFqtJkyZWQEBAtHEGDx5s5cmTx8qWLZvVp08fq3v37lbFihUj369YsaLVq1evaD9Tr149q02bNpHfb9y40Xruuees1KlTW4ULF7Ysy7KGDBlilSlT5pH1t2rVysqRI4d19+7dJ/5e27RpYwEPfd3/e32QI/5sRUTE9d0LuWddcC9g2f77S3orWPvv+0vbhpt13r2gdS/knsM+83HZ435ulhXbpgAPc3NzY/369ZF9k06dOsWzzz7Lr7/+yiuvvBJ5X8WKFXnllVeYPHkyCxYsoF+/ftFmQe7du0f69OlZs2YNDRo0eOhzQkJCovVJCgoKomDBggQGBpI1a9Zo9969e5fTp09H9lmyl80Ge/aAvz/kywcVKiTMTFVyUrlyZUqWLMmUKVMSZHxH/dmKiIhrOzTJj1f6eAKwGWgEZAR+Al64/76JvrzS28MhnxkUFES2bNlizB73c+jm9YCAAADy5MkT7fU8efJEvhcQEEDu3LmjF5E6NTly5Ii850GjRo1i6NChjiz1idzdQd0CYuf69ev4+fnh5+fHjBkznF2OiIgkc8F/m73EmzChKgx4Hyj2iPsSk0u0Wxg4cCCBgYGRX/dv3hbnK1u2LG3btmXMmDG88MILT/4BERGReMj4bD42EhWqmgArgDQx3JfYHDpjFdFM8tKlS+TLF/WbuXTpUuTSYN68eR/ql3Tv3j2uXbv2UDPKCOnSpSNdunSOLFUc6MyZM84uQUREUpDTBa7TFBOqmgLLiB5ownHD370ApbpWSPTaHDpjVbRoUfLmzYuPj0/ka0FBQezbty/yybby5ctz48YNDh48GHnPrl27CA8Pp1y5co4sR0RERJKZ9evX88GHHxAGNAOW8nCoAjjXd5JT+lnFecbq1q1bnDx5MvL706dPc+jQIXLkyEGhQoXo3bs3I0aMoHjx4hQtWpRBgwaRP3/+yA3uL774IjVq1KBTp07MmjWLsLAwunfvTrNmzcifP7/DfmMiIiKSvHh5edG0aVPu3btH06dzs/Tfy9wlI2kIjrzH370A5/pO4q2xDZ1SY5yD1YEDB/D09Iz8vm/fvgC0adOGRYsW0b9/f27fvk3nzp25ceMG7777Ltu3b4/2FNfy5cvp3r07lStXJlWqVDRq1CjBniQTERER17du3TqaNm2KzWajRaVKLNq1CxtpaffaET5r+U+0zuvPOLHzerzaLTjL4x551CP5yZf+bEVEUqY1a9bw4YcfYrPZaNWyJQuO/EHqQ78ygT7kWTaBFi0SvobYtltwiacCRUREJGVavXp1ZKhq3bo1C2vXJvWhX7lJZmY/NZBGjZxdYXQp4hBmERERcT2rVq2iRYsW2Gw22rRpw/xZs3AvXRqAr/iEuu1zkdQWMBSsREREJMlZuXIlLVu2JDw8nHbt2jF37lzcFyyAEye4wtNMoC8HnX/M8EO0FPgoNhv4+cHKleZXmy3BPzIgIIAePXpQrFgx0qVLR8GCBalbt2609hWJxc3NjW+++SZBxj5z5gwdOnSgaNGiZMiQgWeffZYhQ4YQGhqaIJ8nIiKuZcWKFZGhqn379sybNw/30FD47xSWL/mMNzyz8PzzTi40BpqxiomXF/TqBefvOzG7QAGYPBkaJszjm2fOnOGdd94he/bsjBs3jlKlShEWFsaOHTvo1q0bf/75Z4J8bnyEhoaSNm3aOP/cn3/+SXh4OLNnz+a5557jyJEjdOrUidu3b/PVV18lQKUiIuIqli1bRps2bQgPD6djx47Mnj2bVKlSwfTpcOEC590LMcvWhcUfObvSR3DYsc+J6HEnTN+5c8c6evSodefOHfsGX7fOstzcIk/IjvxyczNf69bFs/qY1axZ03rmmWesW7duPfTe9evXI6//+ecf6/3337cyZcpkZcmSxWrSpIkVEBAQ+X6bNm2sevXqRfv5Xr16WRUrVoz8vmLFilaPHj2sTz/91HrqqaesPHnyWEOGDIl8v3DhwhYQ+VW4cGHLsixryJAhVpkyZay5c+daRYoUsdzc3KzFixdbOXLksO7evRvtM+vVq2e1bNky1r//sWPHWkWLFn3sPfH+sxURkSRtyZIlVqpUqSzA6tSpk2Wz2cwbN25YVo4clgVWWxZYuXJZVkhI4tb2uOxxv5SxFGhZcPv2k7+CgqBnT3N/TGOAmckKCordeLHsZHHt2jW2b99Ot27dyJQp00PvZ8+eHYDw8HDq1avHtWvX2L17N97e3pw6dYqmTZvG+R/J4sWLyZQpE/v27WPs2LEMGzYMb29vAPbv3w/AwoUL8ff3j/we4OTJk6xbtw4vLy8OHTpEkyZNsNlsbNy4MfKey5cvs2XLFtq3bx/regIDA8mRI0ecfx8iIpI8LF68OHKmqnPnzsyaNcvMVAF89RVcu8bZTC+ylFa0awd2LJgkipSxFBgcDJkzx38cyzLLg9myxe7+W7cghqD0oJMnT2JZFiVKlHjsfT4+Phw+fJjTp09TsGBBAJYsWULJkiXZv38/b7zxRuzqAkqXLs2QIUMAKF68ONOmTcPHx4eqVauSK1cuwAS6B89vDA0NZcmSJZH3ADRv3pyFCxfSpEkTwEzjFipUCA8Pj1jVcvLkSaZOnaplQBGRFGrRokW0b98ey7Lo0qUL06dPjwpVly7BhAkA9L79JTZS06mTE4t9gpQxY5XEWbGc2Tp27BgFCxaMDFUAL730EtmzZ+fYsWNx+szS/z2uGiFfvnwPHY4dk8KFC0cLVQCdOnXi22+/5cKFC4D5F6Rt27a4ubk9cbwLFy5Qo0YNmjRpQqek/G+KiIgkiIULF0aGqo8//pgZM2ZEhSqAESMgOJhz+d9kPfWpUgWee8559T5JypixypjRzB49yXffQa1aT75v61Z4773YfW4sFC9eHDc3N4dsUE+VKtVDQS0sLOyh+9KkSRPtezc3N8LDw584fkxLlWXLlqVMmTIsWbKEatWq8ccff7Bly5YnjnXx4kU8PT15++23mTNnzhPvFxGR5GX+/Pl06tQJy7Lo1q0bU6dOjf5/yk+fhtmzAehzZxTgxkdJddP6f1LGjJWbm1mSe9JXtWrm6b9HzbS4uUHBgua+2IwXixkbgBw5clC9enWmT5/O7du3H3r/xo0bgDnA+ty5c5w7dy7yvaNHj3Ljxg1eeuklAHLlyoW/v3+0nz906FCs6rhfmjRpsMWhxUTHjh1ZtGgRCxcupEqVKtFm1WJy4cIFPDw8eO2111i4cGH0/3ciIiLJ3rx58+jYsSOWZdGjR4+HQxXAkCEQFsal0lVZd70SefJAvXrOqTe29LfZ/dzdTUsFeDgURXw/aZK5z8GmT5+OzWbjzTffZN26dZw4cYJjx44xZcoUypcvD0CVKlUoVaoULVq04JdffuHnn3+mdevWVKxYkddffx2ASpUqceDAAZYsWcKJEycYMmQIR44ciXM9RYoUwcfHh4CAAK5fv/7E+5s3b8758+eZO3fuEzetR4SqQoUK8dVXX3HlyhUCAgIICAiIc50iIuJ65syZE7n9o2fPnkyePPnhUHXkCCxbBsCw9CMBaN8eHlhwSXIUrB7UsCGsXQvPPBP99QIFzOsJ1MeqWLFi/PLLL3h6etKvXz9efvllqlatio+PDzNnzgTMct2GDRt46qmneO+996hSpQrFihVj1apVkeNUr16dQYMG0b9/f9544w1u3rxJ69at41zP+PHj8fb2pmDBgpQtW/aJ92fLlo1GjRqROXNm6tev/9h7vb29OXnyJD4+PhQoUIB8+fJFfomISPI2e/ZsPvpvPa9Xr15MmjQp5j25n30GlsWtGo2Z8fPruLmRpDetR3CzYrtzOgl53AnTd+/e5fTp0xQtWpT08TlAyGaDPXvA3x/y5YMKFRJkpio5qVy5MiVLlmTKlCkJMr7D/mxFRMQpZs6cSdeuXQHo06cP48ePjzlU/fgjvPMOpErF+PZ/8Mm8ElSvDtu3J3LB93lc9rhfyti8bg93d4hlu4CU7vr16/j5+eHn58eMGTOcXY6IiCRBM2bMoFu3bgD069ePcePGxRyqLAsGDgTA1qYdYzaYVkRJfdN6BAUribeyZcty/fp1xowZwwsvvODsckREJImZNm0aPXr0AOCTTz5h7Nixj27Js2OHeUo/XTq2vDaEKwvNwlGdOolYcDwoWEm8nTlzxtkliIhIEjV16lR69uwJQP/+/Rk9evSjQ1V4OPzvf+a6WzcmrTNPmHfsmPQ3rUfQ5nURERFJEJMnT44MVQMGDHh8qAJYswZ+/RWyZOFkk4H4+kKqVCZYuYpkG6xccE++PIH+TEVEXMfEiRPp3bs3AAMHDmTkyJGPD1VhYfD55+b6k0+YtfZpAGrWhEKFErhYB0p2S4ERHcWDg4PJkCGDk6sRRwoODgYe7hovIiJJy4QJE+jXrx8An332GcOHD3/yMWcLF8LJk5ArF3c/7sOiF83LrrJpPUKyC1bu7u5kz5498ty7jBkzxurMOkm6LMsiODiYy5cvkz17dtzV9kJEJMkaP348n3zyCQCDBg1i6NChT/57+M4dGDrUXH/+OV7eWbh61bSQrFkzgQt2sGQXrADy5s0LEKtDhcV1ZM+ePfLPVkREkp5x48bRv39/AAYPHswXX3wRu8mNadPg4kUoXBg++ojZ1czLHTtCahdLKi5Wbuy4ubmRL18+cufOHeMBxOJ60qRJo5kqEZEkbMyYMQwYMACAL774giFDhsTuB2/cgFGjzPXQoRw7lY7vvjOb1jt0SJhaE1KyDFYR3N3d9ZexiIhIAhs9ejQD/2vqOXToUAYPHhz7Hx43Dq5fh5degpYtmWNWEalTxywFuppk+1SgiIiIJLyRI0dGhqphw4bFLVQFBMCkSeb6yy+5E+rO4sXmW1fbtB5BwUpERETsMmLECD777LPI60GDBsV1AAgOhnLloF491q41k1eFCkH16glQcCJI1kuBIiIikjCGDx8eOTt1/6xVrJ06BXPmmOtRo8DNjdmzzbedOpkje12RZqxEREQkTu7fRzVq1Ki4hyqAIUNMU9Bq1cDTkz/+gB9+MIGqfXsHF5yINGMlIiIisfbFF18w9L+eU2PGjIlsrxAnhw/D8uXmeuRIgMjZqvffh/z5HVGpcyhYiYiIyBNZlsUXX3zBsGHDANOzKqIRaJx99hlYFjRpAq+9RnAwLFli3nLVTesRFKxERETksSzLYvDgwYwYMQKAr776KvLImjj74QfYtMms+Q0fDsCqVRAYCEWLQtWqjqraORSsRERE5JEsy2LQoEF8+eWXgDkHsE+fPvYOBhH7sdq1gxdeAIi2aT2Vi+/+VrASERGRGFmWxWeffcao/zqjT5w4kd69e9s/4PbtsGcPpEtnNq8Dv/0G+/aZo2tcedN6BAUrEREReYhlWQwcOJAxY8YAMHnyZHr27Gn/gOHhUbNVPXpEtlWPmK1q0ADy5IlPxUmDgpWIiIhEY1kWAwYMYOzYsQBMnTqV7t27x2/Q1avN9FTWrPDfmYK3bsGyZeZtV9+0HkHBSkRERCJZlkX//v356quvAJg2bRrdunWL36BhYfD55+b6008hZ04Avv4abt6E554DT8/4fURSoWAlIiIigAlVn3zyCRMmTABg+vTpdO3aNf4Dz58Pf/8NuXPDfXu0IpYBO3d2/U3rERSsREREBMuy6NevHxMnTgRg5syZdOnSJf4DBwfDf72v+PxzyJwZgF9+gQMHIG1aaNs2/h+TVChYiYiIpHCWZdGnTx8mT54MwOzZs+ncubNjBp86Ffz9oUgRMzX1n4jZqoYNIVcux3xUUqBgJSIikoJZlkXv3r2ZMmUKAHPmzKFTp06OGfz6dRg92lwPHWraLGD2Va1YYV5OLpvWIyhYiYiIpFCWZdGzZ0+mTZuGm5sbc+fOpUOHDo77gHHj4MYNKFkSWrSIfHnFCvNE4AsvQMWKjvu4pEDBSkREJAWyLIvu3bszY8YM3NzcmDdvHu0d2aHT3x8mTTLXI0eaI2wwzdfv37Tu5ua4j0wKFKxERERSmPDwcLp3787MmTNxc3Nj/vz5tGvXzrEfMmIE3LkD5ctD3bqRLx84AL/+alYF27Rx7EcmBQpWIiIiKUh4eDjdunVj1qxZuLm5sXDhQto4OuH8/TfMmWOuR42KNi0VMVvVuHFkO6tkRcFKREQkhQgPD+fjjz9mzpw5uLm5sWjRIlq3bu34DxoyBO7dg+rVo22iCgyElSvNdXLbtB5BwUpERCQFCA8P56OPPmLevHmkSpWKxYsX07JlS8d/0G+/RT3yN3JktLeWLTNtrV58Ed591/EfnRQoWImIiCRz4eHhdO7cmfnz55MqVSqWLFlCi/ue0nOozz4zO9SbNoVXX418+f5N6x99lPw2rUdQsBIREUnGwsPD6dixIwsXLiRVqlQsXbqU5s2bJ8yHff89bNlingAcPjzaWz/9BIcPQ/r0kBCrj0mFgpWIiEgyZbPZ6NixI4sWLSJVqlQsX76cZs2aJcyHWRYMHGiuO3SA4sWjvR0xW9W0KTz1VMKUkBQoWImIiCRDNpuNDh06sHjxYtzd3Vm+fDlNmzZNuA/cts3MWKVPD4MHR3vr+nVYtcpcJ9dN6xEUrERERJIZm81Gu3btWLp0Ke7u7qxcuZImTZok3AeGh0fNVvXoAc88E+3tpUvh7l0oVQreeivhykgKFKxERESSEZvNRtu2bVm2bBnu7u58/fXXNG7cOGE/9Ouv4fffIVs2GDAg2lspZdN6BAUrERGRZOLevXu0adOGFStWkDp1ar7++msaNWqUsB8aGgqDBpnrTz+FHDmivf3DD3D0KGTMCAnR3SGpUbASERFJBu7du0fr1q1ZuXIlqVOnZvXq1TRo0CDhP3j+fDh1CvLkgV69Hno7YraqWTMzoZXcKViJiIi4uHv37tGqVSu+/vprUqdOzZo1a6hfv37Cf3BwMAwbZq4//xwyZ4729tWrsGaNuU7um9YjKFiJiIi4sHv37tGiRQtWr15NmjRpWLNmDfXq1UucD58yBQICoEgR6Nz5obeXLIGQEHjlFXjjjcQpydkUrERERFxUWFgYLVq0YM2aNaRJk4Z169ZRt27dxPnw69dhzBhzPXw4pE0b7e2Utmk9goKViIiICwoLC+PDDz9k3bp1pE2blnXr1lGnTp3EK2DsWLhxA15+GT788KG3v/sOjh+HTJkgoRq9J0UKViIiIi4mLCyMZs2a4eXlRdq0afHy8qJ27dqJV4C/P0yebK5HjjRH2DwgYraqeXPImjXxSnM2BSsREREXEhoaSrNmzVi/fj1p06Zl/fr11KpVK3GLGD4c7tyBt9+GGGbJ/v0X1q0z1yll03oEBSsREREXERoaygcffMCGDRtIly4d33zzDTVq1EjcIk6ehLlzzfWoUTFunlq0yLS3eu0185WSKFiJiIi4gNDQUJo0acLGjRtJly4dGzZsoHr16olfyODBcO8e1KwJ77330Nvh4dE3rac0qZxdgIiIiDxeSEgIjRs3ZuPGjaRPn56NGzc6J1QdOgQrV5rrL7+M8RZfXzOplSVLjHvakz3NWImIiCRhISEhNGrUiC1btkSGqqpVqzqnmM8+M782awZly8Z4S8RsVYsWD/ULTREUrERERJKou3fv0qhRI7Zu3UqGDBnYtGkTlStXdk4xe/bA1q2QOrXZvB6DS5dg/Xpz3aVLItaWhChYiYiIJEF3796lYcOGbNu2jQwZMrB582YqVarknGIsCwYONNcdOsBzz8V428KFZvtVuXJQpkwi1peEKFiJiIgkMXfv3qVBgwZs376dDBkysGXLFjw9PZ1X0JYt8MMPkD692bweg/DwqIcFU+Km9QgKViIiIknInTt3qF+/Pt9++y0ZM2Zky5YteHh4OK+g8HD43//Mdc+ekD9/jLft3AmnTkG2bNC0aSLWl8QoWImIiCQRd+7coV69enh7e5MxY0a2bt1KxYoVnVvUypVw+LBJTP/3f4+8LWLTeqtWkDFjItWWBKndgoiISBIQHBzM+++/j7e3N5kyZWLbtm3OD1WhoTBokLn+v/+DHDlivM3fHzZsMNcpeRkQNGMlIiLidBGhysfHh8yZM7Nt2zbeffddZ5cF8+bB6dOQJ49ZBnyEBQvAZjMn3Lz8ciLWlwQpWImIiDjR7du3qVu3Lr6+vmTOnJnt27fzzjvvOLssuH0bhg0z14MHQ6ZMMd5ms2nT+v0UrERERJzk9u3b1KlTBz8/P7JkycL27dt5++23nV2WMWWKaUxVrBh07PjI2779Fv75B556Cpo0ScT6kigFKxERESe4ffs2tWvXZvfu3WTJkoUdO3ZQvnx5Z5dlXLsGY8aY62HDIG3aR94asWm9dWvIkCERakvitHldREQkkd26dYtatWqxe/dusmbNyrfffpt0QhWYUBUYCKVLP/bAvwsXYPNmc61lQEMzViIiIokoIlTt2bMnMlSVK1fO2WVFuXDBLAOCOWg51aPnYObPN3usKlSAF19MpPqSOM1YiYiIJJKbN29Ss2ZN9uzZQ7Zs2fD29k5aoQrMOYB378I770Dt2o+87d49bVqPiWasREREEkFQUBA1a9bkxx9/jAxVb7zxhrPLiu7ECdNiAWD0aHBze+St27bB+fOQMyc0apRI9bkABSsREZEEFhQURI0aNdi7dy/Zs2fH29ub119/3dllPWzwYLO2V6sWPKGPVsSm9TZtzBGCYmgpUEREJAEFBgZSvXp19u7dy1NPPcXOnTuTZqj69Vf4+mtzPXLkY289e9bMWAF07pzAdbkYzViJiIgkkIhQtW/fvshQ9eqrrzq7rJh99pn59cMPoUyZx946b545m9nTE154IRFqcyEKViIiIgngxo0bVK9enZ9//pkcOXKwc+dOypYt6+yyorPZYM8e2LXLTEG5u0d1W3+Ee/fM04CgTesxUbASERFxsBs3blCtWjX2799Pjhw58PHx4ZVXXnF2WdF5eUGvXmYHeoT06eH33+G55x75Y5s3w8WLkCsXNGiQCHW6GO2xEhERcaDr169TtWpV9u/fT86cOdm1a1fSDFWNG0cPVQDBweZ1L69H/mjEpvV27R7bkD3FUrASERFxkIhQdeDAAZ5++ml27dpFmSfsV0p0NpuZqbKsh9+LeK13b3PfA86cgR07zHWnTglWoUtTsBIREXGAa9euUaVKFQ4ePBgZqkqXLu3ssh62Z8/DM1X3syw4d87c94C5c83bVao8drUwRdMeKxERkXi6evUqVapU4dChQ+TKlYtdu3bx8ssvO7usmPn723VfWBgsWGCutWn90Rw+Y2Wz2Rg0aBBFixYlQ4YMPPvsswwfPhzrvilHy7IYPHgw+fLlI0OGDFSpUoUTJ044uhQREZEEd3+oyp07N76+vkk3VAHky2fXfRs3QkAA5MkD9eolQF3JhMOD1ZgxY5g5cybTpk3j2LFjjBkzhrFjxzJ16tTIe8aOHcuUKVOYNWsW+/btI1OmTFSvXp27d+86uhwREZEE8++//1K5cmUOHTpEnjx58PX1pWTJks4u6/EqVICnn370+25uULCgue8+EZvW27eHNGkSsD4X5/ClwB9//JF69epR+7+DG4sUKcLKlSv5+eefATNbNWnSJD7//HPq/Rd5lyxZQp48efjmm29o1qyZo0sSERFxuCtXrlC5cmUOHz4cGapefPFFZ5f1ZKGhpl9VTCLOBpw0Kdo9f/8N3t7mbW1afzyHz1i9/fbb+Pj48NdffwHw22+/8f3331OzZk0ATp8+TUBAAFWqVIn8mWzZslGuXDn27t0b45ghISEEBQVF+xIREXGW+0NV3rx58fPzc41QBTBiBFy6BDlyQP780d8rUADWroWGDaO9PHeu+bVaNShaNJHqdFEOn7EaMGAAQUFBlChRAnd3d2w2G19++SUtWrQAICAgAIA8efJE+7k8efJEvvegUaNGMXToUEeXKiIiEmeXL1+mcuXKHDlyhHz58uHr68sLrnKuy5EjMHasuZ4/H+rWNU//+fubPVUVKjw0mxUaqk3rceHwYLV69WqWL1/OihUrKFmyJIcOHaJ3797kz5+fNm3a2DXmwIED6du3b+T3QUFBFCxY0FEli4iIxMqlS5eoVKkSR48eJX/+/Pj6+vL88887u6zYCQ83Jybfuwf165svAA+Px/7Y+vVw5YrJXXXqJHSRrs/hwerTTz9lwIABkXulSpUqxT///MOoUaNo06YNefPmBcz/OPPd98TBpUuXHtmZNl26dKRLl87RpYqIiMTa/aHqmWeewdfXl+LFizu7rNibPRv27oUsWeC+B8pi82MAHTpo03psOHyPVXBwMKlSRR/W3d2d8PBwAIoWLUrevHnx8fGJfD8oKIh9+/ZRvnx5R5cjIiISbwEBAXh6ekaGKj8/P9cKVRcvwoAB5vrLL81eqlj46y/w9TWb1jt2TMD6khGHz1jVrVuXL7/8kkKFClGyZEl+/fVXJkyYQPv27QFwc3Ojd+/ejBgxguLFi1O0aFEGDRpE/vz5qR8xLSkiIpJE+Pv7U6lSJf78808KFCiAr68vz7la2/FevSAoCN58E7p2jfWPzZljfq1ZEwoXTqDakhmHB6upU6cyaNAgunbtyuXLl8mfPz8fffQRgwcPjrynf//+3L59m86dO3Pjxg3effddtm/fTvr06R1djoiIiN38/f3x9PTk+PHjFCxYEF9fX5599llnlxU3mzebJ/3c3U1SelSrhQfcvQuLFpnrLl0Srrzkxs2yYjqFMWkLCgoiW7ZsBAYGkjVrVmeXIyIiydDFixfx9PTkr7/+olChQvj6+lKsWDFnlxU3t25ByZJw9ix8+mnUE4GxsGIFtGhhVg1Pn4bUKfwQvNhmDx3CLCIi8oALFy7g4eHBX3/9ReHChfHz83O9UAUweLAJVUWKwJAhcfrRiE3rHTsqVMWF/lGJiIjc5/z583h6enLy5MnIUFWkSBFnlxV3Bw/C5MnmeuZMyJQp1j967Bh89x2kSmWeBpTY04yViIjIf86dO4eHhwcnT56kSJEi7N692zVD1b17pmdVeDg0awY1asTpxyM2rdepE+sHCOU/ClYiIiLA2bNn8fDw4O+//6Zo0aL4+flR2FUfhZs6FX75BbJnN+f+xcGdO7B4sblWp/W401KgiIikeBGh6vTp0xQrVgxfX18KFSrk7LLsc/YsDBpkrseOhQeOkHuStWvh+nUoVAiqV0+A+pI5zViJiEiK9s8//0SGqmeffRY/Pz/XDVWWBd26we3b8O67dm2Qiti03qlTrDszyH00YyUiIinWmTNn8PT05MyZM5GhqoArbypat870rUqTxmyUShW3+ZM//oAffjCB6r++3hJHmrESEZEU6cyZM3h4eHDmzBmKFy/O7t27XTtUBQZCz57mesAAePHFOA8RMVv1/vuQP78Da0tBFKxERCTFOX36NBUrVuSff/6hePHi+Pr68swzzzi7rPgZOBD8/eH55+F//4vzjwcHw5Il5lqb1u2nYCUiIinKqVOnqFixImfPnuX555/Hz8/P9UPV3r0wa5a5njUL7DgibtUqM+lVtChUrerg+lIQBSsREUkx/v77bzw8PDh37hwvvPACfn5+5Hf1Na+wMNOzyrKgbVvw9LRrmPs3rcdxa5bcR//oREQkRTh58mRkqCpRogR+fn7ky5fP2WXF31dfwZEj8PTT5toOv/0G+/aZo2vatXNwfSmMgpWIiCR7J06cwMPDg/Pnz/Piiy/i6+tL3rx5nV1W/P39NwwbZq4nTICcOeP04zYb+PnBJ5+Y7+vVg+Twj8WZFKxERCRZiwhVFy5c4KWXXko+ocqyoEsXuHsXKleGli3j9ONeXuZsZk9P2LnTvLZ7t3ld7KdgJSIiydbx48epWLEiFy9epGTJkvj6+pInjp3Ik6zly00iSp/ebFh3c4v1j3p5QePGcP589NevXjWvK1zZT8FKRESSpePHj+Pp6Ym/vz8vv/wyu3btInfu3M4uyzGuXoU+fcz14MHw3HOx/lGbDXr1MhNeD4p4rXdvc5/EnYKViIgkO3/++SceHh74+/tTqlSp5BWqAD79FP79F15+OWqDVCzt2fPwTNX9LAvOnTP3SdwpWImISLJy7NgxPDw8CAgIoHTp0uzatYtcuXI5uyzH8fODhQvN0t+cOeb4mjjw93fsfRKdgpWIiCQbR48excPDg0uXLlGmTBl8fHx4+umnnV2W49y9G9UWvUsXKF8+zkPEtsNEcuhE4QwKViIikiz88ccfeHp6cvnyZV555ZXkF6oARo2Cv/4yqWfUKLuGqFDh8aHJzQ0KFjT3SdwpWImIiMs7cuRIZKgqW7YsPj4+5IxjT6ck79ixqDA1ZQpky2bXMO7uj97rHvFg4aRJ5j6JOwUrERFxaYcPH8bT05MrV67w6quvsnPnTnLkyOHsshwrPNwsAYaFQZ060KiR3UPt2GE2pru5wYP7+QsUgLVroWHDeNabgqV2dgEiIiL2+v3336lcuTL//vsvr732Gt7e3jz11FPOLsvxFiwwaShTJpg+PU49q+4XHAwff2yue/aE8ePNsP7+ZnmwQgXNVMWXgpWIiLik3377jcqVK3P16lVef/11vL29yZ49u7PLcryAANNeAWD4cChUyO6hhg2D06fNzNTw4SZEeXg4pkwxtBQoIiIu59ChQ1SqVImrV6/yxhtvJN9QBaYR6I0b8Oqr0KOH3cP8/nvUGc3Tp0OWLI4pT6JTsBIREZfy66+/UrlyZa5du0a5cuWSd6javh2+/hpSpYK5cyG1fQtNNht07mx+bdgQ3n/fwXVKJAUrERFxGb/88ktkqHrrrbfYsWMH2ex8Oi7Ju307akNUr15mxspOs2bBvn1mlmrKFAfVJzFSsBIREZdw8OBBKleuzPXr1ylfvnzyDlUAQ4fCmTNmT9WwYXYPc+ECDBxorkeNgmeecUx5EjMFKxERSfIOHDhAlSpVuHHjBm+//Tbbt28na9aszi4r4Rw6BBMmmOvp0yFzZruH6tkTbt6EcuVMs3ZJWApWIiKSpO3fvz8yVL3zzjvJP1TdvyGqcWPTt8pOGzeCl5fZmjVnjlopJAYFKxERSbJ+/vlnqlSpQmBgIO+++y7btm0jS3J/nG3GDNi/H7JmhcmT7R7m5k3o1s1c9+sHpUs7qD55LAUrERFJkvbt20fVqlUJCgqiQoUKKSNUnT8P//ufuR49GvLnt3uoQYPMcEWLwuDBDqpPnkjBSkREkpy9e/dGhqr33nuPrVu3kjke+4xcRo8ecOsWlC9vjrCx04EDMHWquZ41CzJmdFB98kQKViIikqT8+OOPVK9enZs3b+Lh4ZFyQtU335iviA1Rqez7K/rePejUyRwv2Lw5VKvm0CrlCRSsREQkyfjhhx8iQ5WnpyebN28mU6ZMzi4r4QUFQffu5vrTT+Hll+0eavJk81DhU0/BxImOKU9iT8FKRESShO+//54aNWpw69YtKlWqlHJCFcDnn5uGU88+azZH2enMmaj9VOPGQe7cjilPYk/BSkREnG7Pnj2Roapy5cps2rSJjCllY9DPP8O0aeZ61izIkMGuYSzLPAUYHAzvvQft2zuwRok1BSsREXGq7777jpo1a3L79m2qVq2askJVWJjpWWVZ0LIlVKli91Br1sDWrZA2LcyeDW5uDqxTYk3BSkREnGb37t2RoapatWps2LCBDHbO2LikSZPgt98gR46oTut2uHHDHCcI5viaEiUcUp3YQcFKREScws/Pj1q1ahEcHEz16tX55ptvUlaoOn0ahgwx1+PHQ65cdg81YAAEBMALL0SdCyjOoWAlIiKJbteuXZGhqkaNGikvVFkWdO0Kd+6Apye0aWP3UD/8YJb+wPyaLp2DahS7KFiJiEii8vHxoU6dOty5c4datWqxfv160qdP7+yyEteqVbB9u0lBs2bZvSEqNNRs0QKzWb1iRQfWKHZRsBIRkUSzc+fOyFBVu3ZtvLy8Ul6oun49akPUZ5/B88/bPdS4cXD0qFlFHDfOQfVJvChYiYhIovD29qZu3brcvXuXOnXqsG7dOtKlxHWr//s/uHwZXnzRXNvpxAkYPtxcT5xo9r+L8ylYiYhIgtuxY0dkqKpbty5r165NmaFqzx6YO9dcz5ljeiPYwbKgSxcICTFH1jRv7sAaJV4UrEREJEFt376devXqERISQr169VJuqAoJiTpYuVMnePddu4dauhR27YL06WHGDPWsSkoUrEREJMFs27aN+vXrExISQv369Vm9ejVp7ZylcXljx8KxY5AnD4wZY/cw//4Lffua6yFDzCk4knQoWImISILYunVrZKhq0KBByg5Vf/0FX35pridNMick2+mTT+DqVShVCvr1c0x54jgKViIi4nCbN2+mQYMGhIaG0qhRI1atWkWaNGmcXZZz3L8hqkYNaNrU7qF27YLFi83S35w5kFL/kSZlClYiIuJQmzZtomHDhoSGhtK4cWNWrlyZckMVmCTk62sOV47Hhqg7d6K2aHXtCm+95cAaxWEUrERExGE2btxIo0aNCAsLo0mTJqxYsSJlh6orV6LW64YOhaJF7R7qyy/h5EnInx9GjnRQfeJwClYiIuIQGzZsoHHjxoSFhdG0aVOFKjC7zK9dgzJloHdvu4f544+o/e5Tp0LWrI4pTxxPwUpEROJt/fr1kaGqWbNmLFu2jNSpUzu7LOfy9oZly+K9ISo83Bxbc+8evP8+NGjg4DrFoRSsREQkXry8vPjggw+4d+8ezZs3Z+nSpQpVd+7Axx+b6+7d4c037R5q7lz48UfInBmmTVPPqqROwUpEROy2bt26yFDVokULFi9erFAF5qyZv/+GZ56BESPsHsbfP+rUmxEjoGBBB9UnCUbBSkRE7LJmzRqaNm2KzWajVatWClURDh+OOhF52rR4bYjq3RsCA+H1183ElyR9ClYiIhJnq1ev5sMPP8Rms9G6dWsWLlyIu7u7s8tyvvBw0xPh3j2oX9982WnrVli9GtzdzRYt/eN1DQpWIiISJ6tWraJ58+bYbDbatGnDggULFKoizJ4Ne/dClizm8T073b5telWBmbUqW9Yx5UnCU7ASEZFYW7lyZWSoateuHfPnz1eoinDxIgwYYK6//BIKFLB7qCFD4J9/oHBh0/5KXIeClYiIxMqKFSto2bIl4eHhtG/fnnnz5ilU3a9XLwgKMk8ARkw32eHXX81xgmAatWfK5JjyJHEoWImIyBMtW7aMVq1aER4eTseOHZk7dy6pUumvkEibN8PatfHeEGWzmZ5VNht88AHUquXgOiXB6fENERF5rKVLl9K2bVvCw8Pp1KkTs2bNUqiy2WDPHtMPIXv2qBmqvn1Nl3U7TZsGBw5AtmwwebJjSpXEpWAlIiKPtHjxYtq1a4dlWXTu3JmZM2cqVHl5mWW/8+ejv54rl9kcZadz5+Dzz831mDGQN288ahSnSeH/doiIyKMsWrQoMlR16dJFoQpMqGrc+OFQBebA5R077BrWskyfqlu34J13oFOneNYpTpPC/w0REZGYLFy4kPbt22NZFh9//DEzZsxQqLLZzEyVZcX8vpub6Y1gs8V56PXrYeNGc5zg7NmQ0v9RuzL90YmISDTz58+nQ4cOWJZFt27dmD59Om46oM7sqYpppiqCZZn1vD174jRsYCD06GGu+/eHkiXjUaM4nYKViIhEmjdvHh07dsSyLHr06MHUqVMVqiL4+zv2vv989plpgfXcc+ZaXJuClYiIADBnzhw6/be5p2fPnkyePFmh6n758jn2PuCnn0yvKoBZsyBDBjvqkiRFwUpERJg9ezYfffQRAL169WLSpEkKVQ+qUOHx3dTd3KBgQXNfLISFmZ5VlgWtW0Plyg6qU5xKwUpEJIWbOXMmXbp0AaBPnz5MnDhRoSom7u5mE1RMIv55TZoU6+agEybA4cOQMyeMH++YEsX5FKxERFKwGTNm0PW/5pb9+vVj/PjxClWPYrPBihXmOl266O8VKGA6rzdsGKuhTp2KOgNw/Hh4+mkH1ilOpQahIiIp1LRp0+jx3+Non3zyCWPHjlWoepwJE8ymqKxZ4bff4MwZs1E9Xz6z/BfLmSrLgo8/hjt3oFIlswwoyYeClYhICjR16lR69uwJQP/+/Rk9erRC1eMcPQqDBpnrSZOgSBHzZYeVK+Hbb82k16xZUauIkjxoKVBEJIWZPHlyZKgaMGCAQtWT3LsHbdtCSIg5FbltW7uHunbN9BAFc3xN8eKOKFCSEgUrEZEUZOLEifT+72/2gQMHMnLkSIWqJ/nqK9i/3xy2PGdOvKaY+vc3J9+89NKj98GLa1OwEhFJISZMmEDfvn0B+Oyzz/jyyy8Vqp7kyJGog5UnT4ZnnrF7qO++g/nzzfXs2ZA2rQPqkyRHwUpEJAUYP348/fr1A2DQoEEMHz5coepJwsLMsl9oKNStC61a2T1USIjpWQXm13ffdUyJkvQoWImIJHPjxo3jk08+AWDw4MEMHTpUoSo2xoyBgwfhqafMFFM8/pmNHg3Hj0OePOZaki8FKxGRZGzMmDH0/28zzxdffKFQFVu//w7DhpnradPidEzNg/78E0aONNeTJ5ucJsmXgpWISDI1evRoBgwYAMDQoUMZErFXSB4vLAzatDG/1q8PH35o91CWBV26mNXEmjXhgw8cV6YkTQpWIiLJ0MiRIxk4cCAAw4YNY/DgwU6uyIWMHAmHDpmzZuLZaGrhQti9GzJmNIcta7Iw+VOwEhFJZkaMGMFnn30WeT0oorGlPNmvv8KIEeZ6+nSzKcpOly/Df1vbGDbM7n6i4mLUeV1EJBkZPnx45OzU/bNWEguhoWYJ8N49aNw43ut2ffvC9etQtiz06uWgGiXJ04yViEgyMXTo0MhQNWrUKIWquBo+HA4fhly54r1u5+0Ny5dDqlSmp2hqTWOkGPqjFhFJBiKe+IPoTwJKLB08CKNGmesZM0y4slNwsNmwDtCjB7z+ugPqE5ehYCUi4sIsy+KLL75g2H+tAe7vWSWxFBJilgBtNmja1CwDxsPw4XDqFBQoYK4lZVGwEhFxUZZlMXjwYEb8t9n6q6++iuyuLnEwdCj88Qfkzm16VsXD77/DuHHmevp0yJLFAfWJS0mQPVYXLlygZcuW5MyZkwwZMlCqVCkOHDgQ+X7Efwzy5ctHhgwZqFKlCidOnEiIUkREkiXLshg0aFBkqJowYYJClT1+/tl0WAfTWuHpp+0eymYzx9XYbNCwIbz/voNqFJfi8GB1/fp13nnnHdKkScO2bds4evQo48eP56n7Ws2OHTuWKVOmMGvWLPbt20emTJmoXr06d+/edXQ5IiLJjmVZkYcoA0ycOJE+ffo4uSoXdPeuOQswPByaN4cGDeI13KxZsG+fmaWaMsUxJYoLshzs//7v/6x33333ke+Hh4dbefPmtcaNGxf52o0bN6x06dJZK1eujNVnBAYGWoAVGBgY73pFRFxJeHi49X//938WYAHW5MmTnV2S6+rf37LAsvLmtax//43XUOfPW1aWLGa4adMcVJ8kKbHNHg6fsdq4cSOvv/46TZo0IXfu3JQtW5a5c+dGvn/69GkCAgKoUqVK5GvZsmWjXLly7N27N8YxQ0JCCAoKivYlIpLSWJbFgAEDGPPf0tXUqVPp2bOnk6tyUXv3wldfmevZs02X9Xjo2RNu3oRy5aKeCJSUyeHB6tSpU8ycOZPixYuzY8cOPv74Y3r27MnixYsBCAgIACDPA91s8+TJE/neg0aNGkW2bNkivwoWLOjoskVEkjTLsujfvz9jx44FYNq0aXTv3t3JVbmoO3eilgBbt7ZrM5TNBn5+sHIlfPkleHmZXlVz5oC7u8MrFhfi8KcCw8PDef311xn531HeZcuW5ciRI8yaNYs2bdrYNebAgQPp27dv5PdBQUEKVyKSYliWxSeffMKECRMAmD59Ol27dnVyVS7s88/hr78gf36YNCnOP+7lZTqpnz8f/fU6daB0aceUKK7L4TNW+fLl46WXXor22osvvsjZs2cByJs3LwCXLl2Kds+lS5ci33tQunTpyJo1a7QvEZGUwLIs+vXrFxmqZs6cqVAVHz/8ABMnmuu5c+G+B6tiw8vLtLl6MFQBbNhg3peUzeHB6p133uH48ePRXvvrr78oXLgwAEWLFiVv3rz4+PhEvh8UFMS+ffsoX768o8sREXFZlmXRp08fJv4XBGbPnk0XbeCxX3CwWQK0LGjXDmrVitOP22xmpsqyHn1P797mPkm5HB6s+vTpw08//cTIkSM5efIkK1asYM6cOXTr1g0ANzc3evfuzYgRI9i4cSOHDx+mdevW5M+fn/r16zu6HBERl2RZFr1792by5MkAzJkzh86dOzu5Khf3v//ByZOmJfp/M4BxsWdPzDNVESwLzp0z90nK5fA9Vm+88Qbr169n4MCBDBs2jKJFizJp0iRatGgReU///v25ffs2nTt35saNG7z77rts376d9OnTO7ocERGXY1kWPXv2ZNq0abi5uTF37lw6dOjg7LJc2+7d8F9IZd48yJ49zkP4+zv2Pkme3CzrcZOaSVNQUBDZsmUjMDBQ+61EJFmxLIvu3bszY8YM3NzcmDdvHu3bt3d2Wa7t9m2zq/zUKejY0eytsoOfH3h6Pvk+X1/w8LDrIyQJi232SJAjbUREJO7Cw8Pp1q1bZKiaP3++QpUjDBhgQlXBgjB+vN3DVKgA+fI9+n03N/MRFSrY/RGSDChYiYgkARGhaubMmbi5ubFw4ULatWvn7LJcn69v1MHKCxZAPFY53NwgV65Hvweme4P6WKVsClYiIk4WHh7Oxx9/zKxZs3Bzc2PRokV29/2T+9y8CREzfl26wH0nfthj4kT4/XdImxYe6HFNgQKwdq05fFlSNodvXhcRkdgLDw/no48+Yt68eaRKlYrFixfTsmVLZ5eVPPTvD2fOQJEi8F/Henv98gsMHGiup06FDh3M03/+/mZ5sEIFzVSJoWAlIuIk4eHhdO7cmfnz55MqVSqWLFkS7QlqiYedO2HWLHO9YAFkyWL3ULdvw4cfQlgYNGgAnTqZpT9tUJeYKFiJiDhBeHg4HTt2ZOHChaRKlYqlS5fSvHlzZ5eVPAQFmSklgG7dYvco32P07m1OwHnmGfNAYcR+KpGYKFiJiCQym81Gx44dWbRoEalSpWL58uU0a9bM2WUlH598AmfPQrFiMHp0vIZau9a0vXJzg6VLIWdOB9UoyZaClYhIIrLZbHTo0IHFixfj7u7O8uXLadq0qbPLSj527IjqU7VwIWTObPdQ586ZZT8wHRviOfElKYSClYhIIrHZbLRr146lS5fi7u7OypUradKkibPLSj4CA00DUICePeG99+weymaDli3hxg144w0YOtQxJUryp2AlIpIIbDYbbdu2ZdmyZbi7u/P111/TuHFjZ5eVvPTtaw7ze+45GDkyXkONHg3ffWcmvFasgDRpHFSjJHsKViIiCezevXu0adOGFStWkDp1ar7++msaNWrk7LKSl61bzdN/bm5mCTBTJruH+uknGDLEXE+fbnKaSGwpWImIJKB79+7RunVrVq5cSerUqVm9ejUNGjRwdlnJy/XrUZuh+vSBd9+1e6igIGje3CwFNm8OrVo5qEZJMRSsREQSyL1792jVqhVff/01qVOnZs2aNdSvX9/ZZSU/vXvDxYvw/PMwYkS8hurWDU6fNj1FZ8xQawWJOwUrEZEEcO/ePVq0aMHq1atJkyYNa9asoV69es4uK/nZtAmWLIFUqWDRIsiQwe6hli0zX+7uZl9VtmyOK1NSDgUrEREHCwsLo0WLFqxZs4Y0adKwbt066tat6+yykp9r16BzZ3Pdrx+UL2/3UKdOQdeu5nrIkHgNJSmcgpWIiAOFhYXx4Ycfsm7dOtKmTcu6deuoU6eOs8tKnnr2hIAAKFEChg2ze5iwMLOf6uZNc+bf//7nwBolxVGwEhFxkLCwMJo1a4aXlxdp06bFy8uL2rVrO7us5Gn9eli+3CwBLl4M6dPbPdTQobBvn1n6i1gKFLGXgpWIiAOEhobSrFkz1q9fT9q0aVm/fj21atVydlnJ07//Qpcu5rp/f3jzTbuH2r07quXVnDlQqJAD6pMUTcFKRCSeQkND+eCDD9iwYQPp0qXjm2++oUaNGs4uK/nq3h0uX4aSJeGLL+we5to1013dsqB9e/jgA8eVKCmXgpWISDyEhobSpEkTNm7cSLp06diwYQPVq1d3dlnJ19q1sGqVWa9btAjSpbNrGMsyra/On4fixWHyZMeWKSlXKmcXICLiqkJCQmjcuDEbN24kffr0bNy4UaEqIV2+DB9/bK4HDoTXX7d7qPnzwcvLHFWzcmW8zmoWiUYzViIidggJCaFRo0Zs2bIlMlRVrVrV2WUlX5Zl+iH8+y+ULg2DBtk91J9/Qq9e5vrLL+G11xxUowgKViIicXb37l0aNWrE1q1byZAhA5s2baJy5crOLit5W70a1q2D1KnNEmDatHYNExJiWisEB0Plyqb9lYgjKViJiMTB3bt3adiwIdu2bSNDhgxs3ryZSpUqObus5O3SJXPWDMBnn0HZsnYP9dln8OuvkDNnVMN2EUdSsBIRiaW7d+/SoEEDtm/fToYMGdiyZQuenp7OLit5syyzr+rqVXjllXh17/z2Wxg/3lwvWAD58zumRJH7KViJiMTCnTt3qF+/Pt9++y0ZM2Zky5YteHh4OLus5G/lStMMNE2aeC0BXr4MrVub665d4f33HVeiyP0UrEREnuDOnTvUq1cPb29vMmbMyNatW6lYsaKzy0r+/P1Nzyowm9XLlLFrmIg+VZcuwUsvwVdfObBGkQdodVlE5DGCg4N5//338fb2JlOmTGzbtk2hKjFYFnz0EVy/Dq++CgMG2D3U9OmwZYtpebVyJWTI4MA6RR6gGSsRkUeICFU+Pj5kzpyZbdu28e677zq7rJRh2TLYtMksAS5ebH61w+HD8Mkn5nrcONOpQSQhKViJiMTg9u3b1K1bF19fXzJnzsz27dt55513nF1WynDhAvTsaa6HDoWXX7ZrmDt34MMPTYuFWrWiVhVFEpKClYjIA27fvk2dOnXw8/MjS5YsbN++nbffftvZZaUMlgWdO8ONG/DGG/Dpp3YP9emn8McfkCcPLFwIbm6OK1PkURSsRETuc/v2bWrXrs3u3bvJkiULO3bsoHz58s4uK+VYtAi2bjVP/y1aZBqC2mHTJrO3CsxKYu7cDqtQ5LG0eV1E5D+3bt2iVq1a7N69m6xZs/Ltt98qVCWmc+egd29zPXy4eYTPDhcvQrt25rpvX9DxjZKYNGMlIkJUqNqzZ09kqCpXrpyzy0o5LAs6dYKgIHjrLbvPmgkPN/2qIvqJjhzp2DJFnkQzViKS4t28eZOaNWuyZ88esmXLhre3t0JVYps/H3bsgPTpzRKgu7tdw4wfDz4+pqXCypWmxYJIYtKMlYikaEFBQdSsWZMff/wxMlS98cYbzi4rZfnnH7NmBzBiBLzwgl3DHDgQdeLN5MlQooSD6hOJAwUrEUmxgoKCqFGjBnv37iV79ux4e3vz+uuvO7uslMWyoGNHuHkT3n47ao9VHN26Bc2bw7170LChGVLEGRSsRCRFCgwMpEaNGvz000889dRTeHt789prrzm7rJTBZoM9e8yRNfv3w86dZu1u4UK7lwB79YITJ6BAAZg7V60VxHkUrEQkxQkMDKR69ers27ePp556ip07d/Lqq686u6yUwcvLpKDz56O/3qwZPP+8XUOuXg0LFpgwtWwZ5MjhgDpF7KTN6yKSoty4cYNq1aqxb98+cuTIgY+Pj0JVYvHygsaNHw5VYDase3nFech//jH9RMHsr9IxjuJsClYikmJEhKqff/45MlSVLVvW2WWlDDabmamyrEff07u3uS8OQ7ZsCYGBUK4cDBkS/zJF4kvBSkRShOvXr1O1alX2799Pzpw52bVrF6+88oqzy0o59uyJeaYqgmWZBqF79sR6yJEj4fvvIUsWWLHC7nOaRRxKe6xEJNmLCFUHDx7k6aefxsfHh9KlSzu7rJTF39+h9/34ozmfGWDGDChWzM66RBxMwUpEkrVr165RtWpVfvnlF55++ml27dpFqVKlnF1WypMvn8PuCwyEFi3MUmCLFmY5UCSp0FKgiCRbV69epXLlyvzyyy/kypULX19fhSpnqVABsmV79PtublCwoLnvMSwLPv4YzpyBokWjDloWSSoUrEQkWbp69SpVqlTh0KFD5M6dG19fX15++WVnl5Vy/fijaQIak4imU5MmPbGP1bJl5qgad3dYvvzxWU3EGRSsRCTZ+ffff6lcuTKHDh0iT548+Pr6UrJkSWeXlXIFBMAHH5gTkitUMF0871egAKxda1qmP8bff0PXrub6iy+gfPmEKVckPrTHSkSSlStXrlC5cmUOHz4cGapefPFFZ5eVcoWFQdOmJlyVLAnbtpmDliM6r+fLZ8LWE2aqwsLMkTW3bpnbBw5MpPpF4kjBSkSSjftDVd68efH19aWETuJ1rv/9D777zvREWLcOMmUyr3t4xGmYL76An3+G7NnNcqCdJ9+IJDgtBYpIsnD58mUqVarE4cOHyZcvH35+fgpVzublBV99Za4XLoQXXrBrGD8/GDXKXM+dC4UKOaY8kYSgGSsRcXmXLl2iUqVKHD16lPz58+Pr68vzdp47Jw7y11/Qtq257tcPGjWya5irV007BcuCDh3MiTgiSZlmrETEpd0fqp555hn8/PwUqpzt9m0TpG7ehPfeg9Gj7RrGsqBTJ7hwwZzPPGmSY8sUSQiasRIRlxUQEEClSpU4duxYZKh67rnnnF1WymZZ8NFHcOQI5M0LX38Nqe37q2buXFi/3hxVs2IFZM7s4FpFEoBmrETEJfn7++Pp6cmxY8coUKCAQlVSMXOmaTDl7g6rVsW+4/oDjh0zZzKDORPwtdccV6JIQtKMlYi4nIhQdfz4cQoWLIivry/PPvuss8uSffui0tCYMWYZ0A4hIfDhh3DnDlSpAn37Oq5EkYSmGSsRcSkXL17Ew8OD48ePU6hQIfz8/BSqkoIrV8zO8rAws78qHmlo4ED47Td4+mlYsgRS6W8qcSH6n6uIuIwLFy7g4eHBX3/9ReHChfHz86NYsWLOLksiTkM+f97sMl+wIOqYmjjavh0mTjTXCxbYvZIo4jRaChQRl3D+/Hk8PT05efJkZKgqUqSIs8sSMN07vb0hY0bTBDRrVruGuXQJ2rQx1926Qd26jitRJLFoxkpEkrxz587h4eHByZMnKVKkCLt371aoSiq2bIERI8z1nDlg50HXlgXt2sHly+bkm3HjHFijSCJSsBKRJO3s2bN4eHjw999/U7RoUfz8/ChcuLCzyxKA06dN904wU0wtWtg91NSp5hjBdOlg5UrIkMFBNYokMi0FikiSFRGqTp8+TbFixfD19aWQzjNJGu7eNZvUb9yAcuVg/Hi7h/r9d/j0U3P91VdQqpRjShRxBgUrEUmS/vnnHzw9PTl9+jTPPvssvr6+FCxY0NllSYQePeDXX82je2vWmKmmWLLZYM8e8PeHp54yDxCGhkLt2mbiS8SVKViJSJJz5swZPD09OXPmDM8++yx+fn4UKFDA2WVJhAULYN488+TfypUQh8Dr5QW9epkHCO+XPbs5p9nOhwlFkgztsRKRJOXMmTN4eHhw5swZihcvzu7duxWqkpJff4WuXc318OGmg2cseXmZVlcPhiowK4p79jimRBFnUrASkSTj9OnTVKxYkX/++YfixYvj6+vLM8884+yyJML162ZfVUiIWbcbODDWP2qzmZkqy4r5fTc307TdZnNMqSLOomAlIknCqVOnqFixImfPnuX555/Hz89PoSopCQ+H1q3Nk4BFi8LSpXFqib5nT8wzVREsC86d06yVuD4FKxFxur///hsPDw/OnTvHCy+8gJ+fH/nz53d2WXK/0aNh82azSX3dOrPrPA78/R17n0hSpWAlIk518uTJyFBVokQJ/Pz8yKdzTJKWnTth0CBzPWMGlC0b5yFi+0eqP3pxdQpWIuI0J06cwMPDg/Pnz/Piiy/i6+tL3rx5nV2W3O/cOfjwQ7MU2KEDtG9v1zAVKpjODI/i5mYeLqxQwc46RZIItVsQEaeICFUXL17kpZdeYteuXeTJk8fZZcn9QkOhSRP4918zSzV1qt1DnTwJwcExvxfRYmHSJHB3t/sjRJIEzViJSKI7fvw4FStW5OLFi5QsWRJfX1+FqqSoXz/Yt880mVq71u5zZq5dMwcqBwfD88/Dg88kFChghm/YMP4lizibZqxEJFEdP34cT09P/P39efnll/Hx8SF37tzOLksetGIFTJtmrpcuhWLF7BomLMz0rjpxAgoVgu++M0uCEZ3X8+Uzy3+aqZLkQsFKRBLNn3/+iaenJwEBAZQqVQofHx9y5crl7LLkQUeOQKdO5vrzz6FOHbuGsSxzRI2vL2TODJs2QcTEpIeHY0oVSWq0FCgiieLYsWN4eHgQEBBA6dKl2bVrl0JVUhQUZJqABgebrupffGH3UJMnw9y5Zg/VihVQurTjyhRJqhSsRCTBHT16FA8PDy5dukSZMmXw8fHh6cc9IibOYVnmqb+//jIbn1assHuNbutWs0ULYNw4s8dKJCVQsBKRBPXHH3/g6enJ5cuXeeWVVxSqkrKJE03zzzRpYM0asHNG8cgRaNYsqkND374OrlMkCVOwEpEEc+TIkchQVbZsWXx8fMiZM6ezy5KY7NkD/fub64kT4a237Brm8mUzO3XzJlSsaPqJRrRTEEkJFKxEJEEcPnwYT09Prly5wquvvsrOnTvJkSOHs8uSmPj7wwcfmBOQW7SArl3tGiYkxLRMOHMGnn3WTH6lTevYUkWSOgUrEXG433//nUqVKvHvv//y2muvKVQlZWFh0LQpBARAyZIwe7ZdU0yWZR4k/OEHyJbNHCuoyUlJiRSsRMShfvvtt8hQ9frrr7Nz506eiuOBvZKI/vc/swyYJYuZYsqUya5hxowx7a7c3c32rBIlHFyniItQsBIRhzl06BCVKlXi6tWrvPHGG3h7e5M9e3ZnlyWP4uUFX31lrhcuhBdesGuY9eth4EBzPWUKVK3qoPpEXJCClYg4xK+//krlypW5du0a5cqVU6hK6v76C9q2Ndf9+pneVXb49Vdo2dJcd+tm9/YskWRDwUpE4u2XX36JDFVvvfUWO3bsIFu2bM4uSx7l9m0TpG7ehPfeg9Gj7Rrm4sWoMwCrVTOHKIukdApWIhIvBw8epHLlyly/fp3y5csrVCV1lgWdO5tmU3nzwtdfQ+q4n24WHAz16sGFC2Y/1apVdg0jkuwoWImI3Q4cOECVKlW4ceMGb7/9Ntu3bydr1qzOLkseZ+bMqI7qq1aZU5DjKDwc2rWDAwcgRw5zBqBWfUUMBSsRscv+/fsjQ9U777yjUOUK9u2D3r3N9ZgxZhnQDkOHwurVpkG7lxc895zjShRxdQpWIhJnP//8M1WqVCEwMJB3332Xbdu2kSVLFmeXJY9z5Qo0bmz6VjVqZPc5MytXwrBh5nrWLNNdXUSiJHiwGj16NG5ubvSO+H9JwN27d+nWrRs5c+Ykc+bMNGrUiEuXLiV0KSLiAPv27aNq1aoEBQVRoUIFhSpXYLNB8+Zw/jw8/zwsWGBXE9B9+8wSIMAnn5jzmkUkugQNVvv372f27NmULl062ut9+vRh06ZNrFmzht27d3Px4kUaNmyYkKWIiAPs3bs3MlS99957bN26lcyZMzu7LHmSL76AnTshY0bTBNSOJduzZ81m9ZAQqFPH7gcJRZK9BAtWt27dokWLFsydOzda1+XAwEDmz5/PhAkTqFSpEq+99hoLFy7kxx9/5KeffkqockQknn788UeqV6/OzZs38fDwUKhyFVu2wIgR5nrOHHj55TgPcesWvP8+XLoEpUtH7X0XkYclWLDq1q0btWvXpkqVKtFeP3jwIGFhYdFeL1GiBIUKFWLv3r0xjhUSEkJQUFC0LxFJPD/88ENkqPL09GTz5s1ksvPoE0lEp09H797ZokWchwgPNz/222+QOzds3GhOvxGRmCVI15Gvv/6aX375hf379z/0XkBAAGnTpn2oI3OePHkICAiIcbxRo0YxdOjQhChVRJ7g+++/p2bNmty6dYtKlSqxadMmMmbM6Oyy5Enu3jWb1G/cgHLlYPx4u4YZONCEqXTp4JtvoHBhh1Ypkuw4fMbq3Llz9OrVi+XLl5M+fXqHjDlw4EACAwMjv86dO+eQcUXk8fbs2UONGjW4desWlStXVqhyJd27m/Nmnn7anIqcLl2ch1i0CMaONdfz50P58o4tUSQ5cniwOnjwIJcvX+bVV18lderUpE6dmt27dzNlyhRSp05Nnjx5CA0N5caNG9F+7tKlS+TNmzfGMdOlS0fWrFmjfYlIwvruu++oWbMmt2/fpmrVqgpVrmT+fPPl5mb6IxQsGOch9uwxDdoBPv/crlVEkRTJ4UuBlStX5vDhw9Fea9euHSVKlOD//u//KFiwIGnSpMHHx4dG/x36efz4cc6ePUt5/d8hkSRh9+7d1KpVi+DgYKpVq8Y333xDhgwZnF2WxMavv5r9VADDh8MD+1xj49QpaNDAtLxq3Ng0BBWR2HF4sMqSJQsvP/DUSaZMmciZM2fk6x06dKBv377kyJGDrFmz0qNHD8qXL89bb73l6HJEJI78/PyoXbs2wcHBVK9enfXr1ytUuYrr182+qpAQqF3bbJCKo8BA007h6lV47TVYvBhSqZW0SKw55cjMiRMnkipVKho1akRISAjVq1dnxowZzihFRO6za9cu6tSpw507d6hRowbr16932F5JSWDh4dC6tXkSsGhRWLo0zono3j1o2hSOHYP8+WHDBtP6SkRiz82yLMvZRcRVUFAQ2bJlIzAwUPutRBzEx8eHunXrcufOHWrVqsW6desUqlzJl1+azVDp0sHevVC2bJyH6NULpkyBDBnMHqvXXkuAOkVcVGyzhyZ4RYSdO3dGzlTVrl0bLy8vhSpX4u0NgwaZ6xkz7ApVs2aZUAVmskuhSsQ+ClYiKZy3tzd169bl7t271KlTh3Xr1pHOjkfzxUnOnTPnAFoWdOhg1wF+O3ea7gxgmrT/91yRiNjBKXusRCRp2LFjB/Xq1SMkJIS6deuyZs0ahaqkzmYz63T+/qZH1eefw7//mlmqqVPjPNzx49CkiRm2ZUv43/8SoGaRFETBSiSF2r59O/Xr1yckJIR69eqxevVq0qZN6+yy5HG8vMxGqPPno7+eMSOsXWs2R8XBtWtQt65pzv722zB3rml9JSL201KgSAq0bdu2yFBVv359hSpX4OVlmko9GKoAgoPh0KE4DRfRo+rECShUCNavB22rE4k/BSuRFGbr1q2RoapBgwYKVa7AZjMzVY96iNvNDXr3NvfFgmWZHqK+vpA5M2zebA5YFpH4U7ASSUE2b95MgwYNCA0NpVGjRqxatYo0adI4uyx5kj17Yp6pimBZZhP7nj2xGm7y5Khlv5UroVQpB9UpIgpWIinFpk2baNiwIaGhoTRu3JiVK1cqVLkKf3+H3bd1K/TrZ66/+sp0WRcRx1GwEkkBNm7cSKNGjQgLC6NJkyasWLFCocqV5MvnkPuOHIFmzUyT9g4doE8fB9QmItEoWIkkcxs2bKBx48aEhYXRtGlThSpX9PLL8Lg/Mzc3KFgQKlR45C2XL5snAG/ehIoVTR9RPQEo4ngKViLJ2Pr16yNDVbNmzVi2bBmpU6vLiku5fh1q1DCP8cHDaSji+0mTwN09xiFCQqBhQzhzBp57DtatAz2vIJIwFKxEkikvLy8++OAD7t27R/PmzVm6dKlClau5dg2qVIGDB00z0AkT4Jlnot9ToIDpYdWwYYxDWBZ06gQ//ADZssGmTZAzZyLULpJC6b+yIsnQunXraNq0KTabjRYtWrBo0SKFKlcTEap+/RVy5YJdu8ySYM+eUZ3X8+Uzy3+PmKkCGD3anP3n7g5r1kCJEon4exBJgfRfWpFkZs2aNXz44YfYbDZatWrFwoULcX/MX7ySBF29akLVoUOmwdSuXVCypHnP3R08PGI1jJdX1BE1U6ZA1aoJUq2I3EdLgSLJyOrVqyNDVevWrRWqXNG//0LlyiZU5cljunhGhKo4+PVXaNXKXHfvDl27OrZMEYmZgpVIMrFq1SqaN2+OzWajTZs2LFiwQKHK1USEqt9+iwpVL70U52EuXjRPAAYHQ7VqMHFiAtQqIjFSsBJJBlauXBkZqtq1a8f8+fMVqlzNlStQqRL8/jvkzQt+fvDii3EeJjgY6tWDCxfMfqpVq0Db60QSj4KViItbsWIFLVu2JDw8nPbt2zNv3jyFKldz+bIJVYcPmw3pfn527TIPD4d27eDAAfPk3+bNkD27w6sVkcdQsBJxYcuWLaNVq1aEh4fTsWNH5s6dS6pU+tfapUSEqiNHTKjy9YUXXrBrqKFDYfVq00vUywuefdbBtYrIE+m/wCIuaunSpbRp04bw8HA6derE7NmzFapczaVL4OkJf/wB+fObmSo7Q9XKlTBsmLmeNQvee89xZYpI7Om/wiIuaPHixZGhqnPnzsyaNUuhytUEBJhQdfSoafrp5wfPP2/XUPv2mSVAgE8+gfbtHVemiMSN/kss4mIWLVpEu3btsCyLLl26MHPmTIUqV+Pvb0LVsWOmc7qfHxQvbtdQZ8+azeohIfD++6YhqIg4j54VEXEhCxcupEOHDliWxccff8z06dNx00m6riUiVB0/bg5O9vWN02Yomy2q8Xr27DBggFlRLF0ali17bBN2EUkEClYiLmL+/Pl06tQJy7Lo1q0bU6dOVahyNRcvmlD1119QqJAJVcWKxfrHvbygVy84fz7661mzwsaNkCWLg+sVkTjT+oGIC5g3bx4dO3bEsix69OihUOWKLlwwR9FEhCo/vziHqsaNHw5VAEFB5pxmEXE+BSuRJG7OnDl06tQJgJ49ezJ58mSFKldz4YKZqTpxAgoXNqGqaNFY/7jNZmaqLCvm993coHdvc5+IOJeClUgSNnv2bD766CMAevXqxaRJkxSqXM3582am6sQJKFIkzqEKzJ6qmGaqIlgWnDtn7hMR51KwEkmiZs6cSZcuXQDo06cPEydOVKhyNefOmVB18qQJU35+JlzFkb+/Y+8TkYSjYCWSBM2YMYOuXbsC0K9fP8aPH69Q5WrOnjWh6u+/o0JV4cJ2DZUvn2PvE5GEo2AlksRMmzaNbt26AfDJJ58wbtw4hSpX888/JlSdOmU2qO/ebTas2+nmzce/7+ZmOjdUqGD3R4iIgyhYiSQhU6dOpUePHgD079+fsWPHKlS5mjNnTKg6fdr0p9q926QeO23ZYp4GjPDg/xwivp80ST2sRJICBSuRJGLy5Mn07NkTgAEDBjB69GiFKlcTEarOnIHnnjPLfwUK2D3c5s3QsCGEhkKjRrBqlTn95n4FCsDateY+EXE+NQgVSQImTpxI3759ARg4cCBffvmlQpWrOX3atFT45x9zPI2v78MpKA42bTJhKizMzFitWAFp0pjXIjqv58tnlv80UyWSdChYiTjZhAkT6NevHwCfffYZw4cPV6hyNadOmVB19qw5SHnXrniFqg0boEkTE6o++MAcVZMmjXnP3d1MiolI0qSlQBEnGj9+fGSoGjRokEKVK/r7b5N0zp6FF16I90zVN99EhaqmTWH58qhQJSJJn4KViJOMGzeOTz75BIDBgwczdOhQhSpXExGqzp2DEiVMqMqf3+7h1q+PClXNmpmZqtRaVxBxKQpWIk4wZswY+vfvD8AXX3yhUOWKTp6EihVNS/SIUBWPRlLr1pllv3v3oHlzWLpUoUrEFSlYiSSy0aNHM2DAAACGDh3KkCFDnFyRxNmJEyZUXbgAL71knv7Lm9fu4dauNct+9+5BixawZIlClYirUrASSUQjR45k4MCBAAwbNozBgwc7uSKJs7/+Mst/Fy+aULVrF+TJY/dwa9aYZT+bDVq1gsWL9ZSfiCtTsBJJJCNGjOCzzz6LvB40aJCTK5I4O348KlSVLGmW/+IRqlatgg8/NKGqdWtYuFChSsTVKViJJILhw4dHBqmRI0dGBixxIX/+aUKVvz+UKmVCVe7cdg/39ddm2c9mg7ZtYcEChSqR5EDBSiSBDR06NHLJb9SoUZFLgeJCjh0zfaoCAkyo8vGBXLnsHm7FiqhQ1a4dzJunUCWSXGh7pEgCinjiD6I/CSgu5OhRqFQJLl2C0qVNqHr6abuHW77cLPuFh0OHDjBnDqTS/8UVSTYUrEQSgGVZfPHFFwwbNgyI3rNKXMjRo2am6vJleOUV2LkTcua0e7hly6BNGxOqOnaE2bMVqkSSGwUrEQezLIvBgwczYsQIAL766qvI7uriQo4cMTNVV65A2bLg7R2vULVkidlLZVnQqRPMmqVQJZIcKViJOJBlWQwaNIgvv/wSMOcA9unTx8lVSZw9GKp27oQcOewebvFis5fKsuCjj2DGDIUqkeRK/2qLOIhlWXz22WeRoWrixIkKVa7o8GGz/HflCrz2WrxD1aJFUaHq448VqkSSO81YiTiAZVkMHDiQMWPGADB58mR69uzp5Kokzn77DSpXhqtX4fXX4dtv4amn7B5uwQKzl8qyoGtXmDYNdHKRSPKmYCUST5ZlMWDAAMaOHQvA1KlT6d69u5Orkji7P1S98YYJVdmz2z3c/PkmVAF07w5TpihUiaQEClYi8WBZFv379+err74CYNq0aXTr1s3JVUmcHTpkQtW1a/Dmm7BjR7xC1dy50Lmzue7RAyZPVqgSSSkUrETsZFkWn3zyCRMmTABg+vTpdO3a1clVSZz98gtUqQLXr0O5ciZUZctm93Bz5pgN6gC9esHEiQpVIimJgpWIHSzLol+/fkycOBGAmTNn0qVLFydXJY9ls8GePeZImnz5oEIFs/wXEareegu2b49XqJo1y2xQB+jdGyZMUKgSSWkUrETiyLIs+vTpw+TJkwGYPXs2nSPWfSRp8vIy00fnz0e9ljs33LoFwcFQvrwJVVmz2v0RM2eaDeoAffrA+PEKVSIpkYKVSBxYlkXv3r2ZMmUKAHPmzKFTp05Orkoey8sLGjc2j+bd7/Jl8+sLL5jlvyxZ7P6I6dPNBnWAfv1g3DiFKpGUSsFKJJYsy6Jnz55MmzYNNzc35s6dS4cOHZxdljyOzWZmqh4MVfe7dQsyZrT7I6ZNMxvUAT79FMaMUagSScnUpk4kFizLonv37pGhat68eQpVrmDPnujLfzG5cMHcZ4cpU6JCVf/+ClUiomAl8kTh4eF069aNGTNm4Obmxvz582nfvr2zy5LY8Pd37H33mTTJTIYBDBgAo0crVImIlgJFHisiVM2aNQs3NzcWLlxImzZtnF2WxFa+fI697z8TJ0Lfvub6f/+DESMUqkTE0IyVyCOEh4fz8ccfR4aqRYsWKVS5mmefhbRpH/2+mxsULGhaL8TS+PFRoeqzzxSqRCQ6BSuRGISHh/PRRx8xZ84cUqVKxZIlS2jdurWzy5K4+P57czRNaGjM70ekoUmTwN09VkN+9RV88om5HjQIhg9XqBKR6BSsRB4QHh5O586dmTdvXmSoatmypbPLktiyLJgxAzw94dIlKFXKPLpXoED0+woUgLVroWHDWA07dqx56g9gyBAYNkyhSkQepj1WIvcJDw+nY8eOLFy4kFSpUrF06VKaN2/u7LIktu7eNa3PFy0y3zdtak5DzpQJunR5uPN6LGeqRo+GgQPN9RdfmGAlIhITBSuR/9hsNjp27MiiRYtIlSoVy5cvp1mzZs4uS2Lr7Flo1AgOHIBUqUzvg379oqaV3N3BwyPOw44aZTaoAwwdCoMHO65kEUl+FKxEMKGqQ4cOLF68GHd3d5YvX07Tpk2dXZbElq8vfPAB/Psv5MwJX39tzgCMpy+/hM8/N9fDh0ddi4g8ivZYSYpns9lo165dZKhauXKlQpWrsCzT+6BqVROqypY1M1YOCFX3B6kRIxSqRCR2NGMlKZrNZqNt27YsW7YMd3d3vv76axo3buzssiQ2goOhUydYscJ836oVzJ4NGTLEe+hhw6L2UY0cGbW/SkTkSRSsJMW6d+8ebdq0YcWKFaROnZqvv/6aRo0aObssiY3Tp6FBA/jtN7N3auJEcwqyAx7T++ILs5cKzKb1//u/eA8pIimIgpWkSPfu3aN169asXLmS1KlTs3r1aho0aODssiQ2vv0WPvwQrl2D3Llh9WqoWDHew1qWCVXDhpnvx4wx5/+JiMSF9lhJinPv3j1atWoVGarWrFmjUOUKLMuknZo1Tah68004eNBhoSqiNxXAuHEKVSJiH81YSYpy7949WrRowerVq0mTJg1r1qyhXr16zi5LnuTWLWjXzjT0BOjQwTT9TJ8+3kNblumi/uWX5vv7j6wREYkrBStJMcLCwmjRogVr1qwhTZo0rFu3jrp16zq7LHmSEyfMfqo//oA0aWDqVOjc2SH7qSzLnPc3apT5fsIE6NMn3sOKSAqmYCUpQlhYGB9++CHr1q0jbdq0rFu3jjp16ji7LHmSLVugRQsIDDTd0tetg/Ll7RrKZoveeP3dd81M1ejR5v1Jk6BXL8eVLiIpk4KVJHthYWE0a9YMLy8v0qZNi5eXF7Vr13Z2WfI44eGmedQXX5hppXfegTVrTCKyg5eXCU3nz0e9liUL3LxpridPhp4941+2iIiClSRroaGhNGvWjPXr15M2bVrWr19PrVq1nF2WPE5gILRuDRs3mu+7dTNrdGnT2jWclxc0bmzy2f0iQlWHDgpVIuI4ClaSbIWGhvLBBx+wYcMG0qVLxzfffEONGjWcXZY8zrFjZj/V8eOQLh3MmgVt29o9nM1mZqoeDFX3+/Zbc18sz2MWEXkstVuQZCk0NJQmTZpEhqoNGzYoVCV169ebFgrHj0PBgvD99/EKVWD2VN2//BeTc+fMfSIijqBgJclOSEgIjRs3ZuPGjaRPn56NGzdSvXp1Z5clj2KzmYP4GjY0bRU8PMx5f6+/Hu+h/f0de5+IyJNoKVCSlZCQEBo1asSWLVsiQ1XVqlWdXZY8yvXr5qm/bdvM9336wNixkNox/2mK7V53O/fEi4g8RMFKko27d+/SqFEjtm7dSoYMGdi0aROVK1d2dlnyKIcPm/1Uf/9tDk6eNw+aN3fY8JYFR48+/h43NyhQACpUcNjHikgKp2AlycLdu3dp2LAh27ZtI0OGDGzevJlKlSo5uyx5lFWroH17CA6GIkXM/qpXXnHY8HfvmocJFyyIes3NLfom9oj+opMmaeO6iDiO9liJy7t79y4NGjSIDFVbtmxRqEqq7t2DTz+FZs1MqKpa1eyncmCoOncO3nvPhKpUqUwD0LVr4Zlnot9XoIB5vWFDh320iIhmrMS13blzh/r16/Ptt9+SMWNGtmzZgoeHh7PLkpj8+68JVD4+5vsBA0wTUAdOF+3eDU2awJUr8NRT8PXXUK2aea9+/eid1ytU0EyViDiegpW4rDt37lCvXj28vb3JmDEjW7dupWLFis4uS2Lyyy9mauiffyBTJli0yHTtdBDLMkcI9u1rHjIsU8Y0Bi1WLOoed3fzwKGISELSUqC4pODgYN5//328vb3JlCkT27ZtU6hKqpYuNUfS/PMPFC8O+/Y5NFQFB5tG7b16mVDVvDn8+GP0UCUiklgUrMTlRISqnTt3kjlzZrZv3857773n7LLkQWFhJu20bm12k9euDT//DCVLOuwjzpwxhykvW2ZmpCZMMNcZMzrsI0RE4kRLgeJSbt++Td26dfH19Y0MVe+8846zy5IHXboEH3wA331nvh88GIYMMbvJHWTnTrNl6+pVePppWL0aPD0dNryIiF0UrMRl3L59mzp16uDn50eWLFnYvn07b7/9trPLkgf9/LPZT3XhAmTJYqaQ3n/fYcNbFnz1ldn7Hh4Or71m9lMVKuSwjxARsZvDlwJHjRrFG2+8QZYsWcidOzf169fn+PHj0e65e/cu3bp1I2fOnGTOnJlGjRpx6dIlR5ciycjt27epXbt2ZKjasWOHQlVSNH++edzuwgUoUQL273doqLp1y8xS9e9vQlXbtuZJP4UqEUkqHB6sdu/eTbdu3fjpp5/w9vYmLCyMatWqcfv27ch7+vTpw6ZNm1izZg27d+/m4sWLNFQzGXmEW7duUatWLXbv3k3WrFn59ttvKV++vLPLkvuFhECXLtCxI4SGmo7q+/bBCy847CNOnoTy5c2SX+rUMGOG6VWVIYPDPkJEJN7cLOv+XsSOd+XKFXLnzs3u3bt57733CAwMJFeuXKxYsYLG/z0Z9Oeff/Liiy+yd+9e3nrrrSeOGRQURLZs2QgMDCRr1qwJWb44WUSo2rNnT2SoKleunLPLkvtdvGie8tu717QzHzHCrNM5cD/V1q3mSMEbNyBvXlizxmxaFxFJLLHNHgn+VGBgYCAAOXLkAODgwYOEhYVRpUqVyHtKlChBoUKF2Lt3b4xjhISEEBQUFO1Lkr+bN29Ss2ZN9uzZQ7Zs2fD29laoSmp++MFsctq7F7Jnhy1b4H//c1ioCg83Oa1OHROqypeHgwcVqkQk6UrQYBUeHk7v3r155513ePnllwEICAggbdq0ZM+ePdq9efLkISAgIMZxRo0aRbZs2SK/ChYsmJBlSxIQFBREjRo1+P777yND1ZtvvunsslIumw38/GDlSvPrvXtmLc7DAwICoFQpczRNzZoO+8igIGjUCAYNMhvWP/oIfH0hf36HfYSIiMMl6FOB3bp148iRI3z//ffxGmfgwIH07ds38vugoCCFq2QsIlTt3buX7Nmz4+3tzeuvv+7sslIuLy/Tj+r8+ajXMmY0nTnB7CafN890VHeQP/8027T+/BPSpoXp0832LRGRpC7BglX37t3ZvHkz3333HQUKFIh8PW/evISGhnLjxo1os1aXLl0ib968MY6VLl060qVLl1ClShISGBhIjRo1+Omnn3jqqafw9vbmtddec3ZZKZeXl9k/9eBWzIhQ1aYNLFxo9lY5yIYN0KoV3LxpDk5etw60AiwirsLhS4GWZdG9e3fWr1/Prl27KFq0aLT3X3vtNdKkSYNPxEGswPHjxzl79qye9ErhAgMDqV69emSo2rlzp0KVM9lsZqbqcc+37NplNkI5QHi46SNav74JVRUqmP1UClUi4kocPmPVrVs3VqxYwYYNG8iSJUvkvqls2bKRIUMGsmXLRocOHejbty85cuQga9as9OjRg/Lly8fqiUBJnm7cuEH16tX5+eefyZEjBzt37qRs2bLOLitl27Mn+vJfTM6dM/fF83TjGzfMU39bt5rve/Y0TUDTpInXsCIiic7hwWrmzJkAeDzwH9qFCxfStm1bACZOnEiqVKlo1KgRISEhVK9enRkzZji6FHERN27coFq1auzfv58cOXLg4+PDK6+84uyy5EmhKoK/f7w+5sgRs5/q5ElInx7mzDFLgSIirijB+1glBPWxSj6uX79OtWrVOHDgADlz5sTHx4cyZco4uyz57juzf+rMmSff6+tr94zVmjXQrh3cvg2FC5stXa++atdQIiIJKsn0sRJ5lOvXr1O1alUOHDjA008/za5duxSqnO3iRbMmV7GiCVWP25Tu5gYFC5rNUHFks8H//Z85p/n2bahc2XRrUKgSEVenYCVOce3aNapUqcLBgwcjQ1Xp0qWdXVbKFRZmNjW98AKsWGFCU5cuUU/8PRiwIr6fNAnc3eP0UVevmnZXY8ea7z/9FLZvh6efjv9vQ0TE2RK0j5VITK5evUqVKlU4dOgQuXLlYteuXZENZMUJfHygRw84dsx8X66caRwV8URmliwP97EqUMCEqjie8XnokNlPdeaMaYW1YAE0beqI34SISNKgYCWJ6v5QlTt3bnbt2kXJkiWdXVbKdO4c9OtnNjoB5MoFY8aYvVX3H0nTsCHUq2ee/vP3h3z5zPJfHGeqli+HTp3gzh0oVgy++cY0bBcRSU4UrCTR/Pvvv1SpUoXffvuNPHnysGvXLl566SVnl5XyhITAhAnmEL7gYBOiunWDYcPMeX8xcXe3e4N6WBj0728muMAsAy5fDk89ZddwIiJJmoKVJIorV65QuXJlDh8+TJ48efD19eXFF190dlkpz/btpknUiRPm+3ffhWnTIIEeGrh82WxQ373bfP/ZZzB0aJwnu0REXIaClSS4+0NV3rx58fX1pUSJEs4uK2U5cwb69DHrbwB588K4ceYJQAceR3O//fvNKuL585A5MyxZYvZXiYgkZ3oqUBLU5cuXqVSpEocPHyZfvnz4+fkpVCWmu3fNEt+LL5pQ5e4OffvC8ePQsmWChaqFC802rPPnzYOGP/+sUCUiKYNmrCTBXLp0iUqVKnH06FHy58+Pr68vzz//vLPLSjk2bYLeveHUKfO9pydMnQoJ+LBAaKj5yP8OYOD9981MVbZsCfaRIiJJimasJEHcH6qeeeYZ/Pz8FKoSy99/Q506JtWcOgXPPANff23aKiRgqPL3N9lt5kwzETZsGKxfr1AlIimLZqzE4QICAqhUqRLHjh2LDFXPPfecs8tK/oKDYdQo03kzNNScYNy3L3z+udnklIB+/BEaNzbhKls289Rf7doJ+pEiIkmSgpU4lL+/P5UqVeLPP/+kQIEC+Pr6KlQlNMsyU0N9+sDZs+a1qlXNst8LLyT4R8+ebR40DAszE2Lr10Px4gn6sSIiSZaClTiMv78/np6eHD9+nIIFC+Lr68uzzz7r7LKSt+PHTar59lvzfaFCMHGi2SnuwI3pNtvD/UHDwkz7qwULzD2NG5tN6wk8OSYikqQpWIlDXLx4EU9PT/766y8KFSqEr68vxYoVc3ZZydetW6bB54QJJuGkTWu6cA4caM6KcSAvr4dPtMmXz3zM33+b/qKjRpkz/xLoIUMREZehYCXxduHCBTw9PTlx4gSFCxfG19eXokWLOrus5MmyYPVqcxTNhQvmtVq1YPJkSIAlVy8vMxNlWdFf9/c3v2bObO6pWtXhHy0i4pIUrCRezp8/j6enJydPnqRw4cL4+flRpEgRZ5eVPP3xhzks2dfXfF+0qAlUdeokyFSRzWZmqh4MVffLkgUqVXL4R4uIuCy1WxC7nTt3Dg8PD06ePEmRIkXYvXu3QlVCCAoyM1SvvGJCVfr05lyYP/6AunUTbP1tz57oy38x8fc394mIiKEZK7HL2bNn8fT05NSpUxQtWhRfX18KFy7s7LKSF8syfQs+/RQCAsxr9eubfVWJsNQasdznqPtERFICBSuJs7Nnz+Lh4cHp06cpVqwYvr6+FCpUyNllJS+//Qbdu8P335vvn3vOtE+oUSPRSrh8OXb35cuXsHWIiLgSLQVKnPzzzz+RoerZZ5/Fz89PocqRbtww7RNefdWEqowZYeRIOHIk0ULVxYvmGMHevR9/n5sbFCxoWi+IiIihYCWxdubMmYdCVcGCBZ1dVvIQHm6aQD3/vJmZCg83j+MdO2ZaKKRLl+AlhIXB+PGmp+jy5SY4Va1qfn1wG1fE95MmmXOdRUTEULCSWIkIVWfOnKF48eLs3r2bAgUKOLus5OHgQXjnHWjfHq5cgRIlwNsb1qwxDT8Twa5dUKYMfPKJaZFVrhzs32/6jq5da44bvF+BAub1hg0TpTwREZehPVbyRKdPn8bDw4OzZ89SvHhxfH19eebBv2nl0WJqW+7uDteuwWefmTNhLMs0hRoyxCwFpk2bKKWdO2fC1OrV5vtcuWDMGGjTxjT+BBOe6tWL+bcgIiLRKVjJY506dQoPDw/OnTvH888/j6+vL/nz53d2Wa4jprblBQqYE4rXroWrV81rH34I48Y9PDWUQEJCzMk3w4ebs5tTpYKuXWHYMHjqqYfvd3cHD49EKU1ExKUpWMkj/f3333h6enLu3DleeOEFfH19yadHwGLvUW3Lz583s1QAL78M06ZBxYqJVtaOHWZS7K+/zPfvvmtKKFMm0UoQEUm2FKwkRidPnsTT05Pz589TokQJfH19yZs3r7PLch2xaVuePbvZyJQ+faKUdOYM9OkD33xjvs+Tx0yStWypM/5ERBxFm9flISdOnMDDw4Pz58/z4osvKlTZIzZty2/cgJ9+SvBS7t41S34vvmhClbu7CVh//QWtWilUiYg4kmasJJqIUHXx4kVeeukldu3aRZ48eZxdlutJIm3LN282E2enTpnvPTzMsl/Jkgn6sSIiKZZmrCTS8ePHqVixIhcvXqRkyZL4+voqVNkjIAAWLYrdvQm0Z+3vv80xgnXrmlCVPz+sXGnaKihUiYgkHAUrAUyo8vT0xN/fn5dffpldu3aRO3duZ5flWu7dMx0zX3jBNIB6nARqWx4cDIMHm/C0eTOkTg39+8Px49CsmZb9REQSmoKV8Oeff+Lh4YG/vz+lSpVSqLLH7t1QtqzZvBQUBK+/DqNHJ1rbcsuC9evhpZfMfqqQEKhSBQ4fNn2pMmd2yMeIiMgTKFilcMeOHcPDw4OAgABKly7Nrl27yJUrl7PLch0XL0Lz5mbz0pEjkDMnzJljNqX/3/8lStvyv/6CmjXNcP/8YybC1q41k2YlSjjkI0REJJa0eT0FO3r0KJ6enly+fJkyZcqwc+dOnn76aWeX5RpCQ2HyZNNR89YtMwvVpYuZLsqZM+q+BGxbfvs2jBhhzvcLCzPN2j/91BwtmClTvIcXERE7KFilUH/88QeVKlXi8uXLvPLKK+zcuZOc9wcCebSdO6FHD/jzT/P9W2/B9Onw6qsx3+/gtuWWZY4R7NcvqqNDzZom5xUv7rCPERERO2gpMAU6cuRI5ExV2bJl8fHxUaiKjbNnoUkTqFrVhKpcuWDhQvjhh0eHKgc7etR8fNOmJlQVKQIbNsCWLQpVIiJJgYJVCnP48GE8PT25cuUKr776Kjt37iRHjhzOLitpCwmBkSNNh821a83BehFnwrRtG3VacQK6edMcllymDPj4mGbtX3xhgtb77+tpPxGRpEJLgSnI77//TuXKlfn333957bXX8Pb25qmYTtyVKNu2mRB18qT5vkIF02GzdOlE+XjLghUrzN6piF6i779vHigsWjRRShARkThQsEohfvvtNypXrszVq1d5/fXX8fb2Jnv27M4uK+k6fdq0TtiwwXyfNy989ZV5AjCRpocOH4bu3eG778z3zz1n9lHVqpUoHy8iInbQUmAKcOjQISpVqsTVq1d54403FKoe584dGDrUNITasMF02OzXz3TYbNEiUULVjRvmGJqyZU2oypABvvzSBC2FKhGRpE0zVsncr7/+SpUqVbh27RrlypVjx44dZMuWzdllJT2WBZs2Qe/eZrYKwNPTLPu99FKilBAeDkuXmk7ply+b1xo1ggkToFChRClBRETiScEqGfvll1+oUqUK169f56233mL79u0KVTE5edJMEW3dar5/5hmTZpo0SbRlv19/hW7dYO9e8/0LL8DUqeYJQBERcR1aCkymDh48SOXKlbl+/Trly5fXTFVMgoPh88/NwXpbt0KaNDBggGml8MEHiRKqrl2Drl3NCTh795rGnmPHwu+/K1SJiLgizVglQwcOHKBq1arcuHGDt99+m23btpE1a1Znl5V0WBZ4eUHfvqY3FUC1ajBlipkqcjCb7eHG625uMH++6ZJ+9aq5r1kzsz/+wRNwRETEdShYJTP79++natWqBAYG8s4777Bt2zayZMni7LKSjuPHTdd0b2/zfaFCpndB/foJMkPl5WVWGSM6pAPkzg1ZssDff5vvS5Y0W7kc2JxdREScRMEqGfn555+pWrUqQUFBvPvuu2zdulWhKsKtW+Ycv4kTow7W69/fTBllzJggH+nlBY0bmwmy+12+bL7Spzd9R7t3N6uQIiLi+hSskol9+/ZRrVo1goKCqFChAlu3biVz5szOLsv5LAtWrTJtyy9cMK/Vrm1mqZ57LsE+1mYzM1UPhqr75chheo864DxmERFJIrR5PRnYu3dv5EzVe++9p1AV4Y8/oHJl+PBDE6qKFTMtFTZvTtBQBWZP1f3LfzG5eNHcJyIiyYeClYv78ccfqV69Ojdv3sTDw0OhCiAoyGxML1MGfH3NmtuwYSZo1amToB8dHAyLFkHnzrG7P+KYGhERSR60FOjCfvjhB2rUqMGtW7fw9PRk06ZNZMqUydllOY9lwbJl5mC9S5fMa/Xrm31VRYok6Ef/9hvMnWs+PjAw9j+XL1/C1SQiIolPwcpFff/999SsWZNbt25RqVIlNm3aRMYE2oTtEn77zewC//57833x4qZ9Qo0aCfaRt26Z7Vtz5sDPP0e9XqwYdOhgnvQLCIh5n5WbGxQoYFoviIhI8qFg5YL27NlDzZo1uX37NpUrV2bjxo0pN1TduAGDBsGMGeZMmIwZzfd9+kC6dAnykb/8YsLUihVw86Z5LU0aaNDALAF6ekKqVFCihHkq0M0teriK6OowaZI2rouIJDcKVi7mu+++o1atWty+fZuqVauyYcMGMmTI4OyyEkZMnTUjkkh4uNnMNGAAXLliXvvgA9Nhs2BBh5dy8yasXGkC1cGDUa8XL27CVOvWpj/V/Ro2hLVrH+5jVaCACVUNGzq8TBERcTIFKxeye/duatWqRXBwMNWqVeObb75JvqEqps6aBQrA5MlQuLA5WG/fPvP6iy+ag/UqV3ZoCZYFBw6YMLVyJdy+bV5Pm9Ycjty5M1Ss+Pi+og0bQr16j86HIiKSvChYuQg/Pz9q165NcHAw1atXZ/369ck7VMXUWfPCBZNoImTODF98YTqpp03rsI8PDITly81m9EOHol4vUcKEqVat4OmnYz+eu7u6qouIpBQKVi5g165d1KlThzt37lCjRg3Wr19P+vTpnV1WwnhcZ837X2vWDMaPh/z5HfKxlgU//WTC1KpVpm0CmG1aTZqYQPXuu4lyLrOIiLgwBaskzsfHh7p163Lnzh1q1arFunXrkm+ogth11gT46COHhKrr102LhDlz4MiRqNdLljRhqmVL0yFdREQkNhSskrCdO3dSt25d7t69S+3atVm3bh3pEuhJtyQjth0z49FZ07Lghx9MmFqzBu7eNa9nyABNm0KnTlC+vGanREQk7hSskihvb2/ef/997t69S506dVi7dm3yDlX37sHWrab3VGzY0Vnz6lVYutQEqmPHol4vXdrMTrVoAdmzx3lYERGRSApWSdCOHTuoV68eISEh1K1blzVr1iTfUHXmDMyfDwsWmMPzniSOnTUtC777zoSpdesgJMS8njGjOUKwc2d44w3NTomIiGMoWCUx27dvp379+oSEhFCvXj1Wr15NWgc+8ZYkhIWZw5DnzoUdO6I2pT/9NLRrB4UKQc+e5jU7O2teuQKLF5uP+OuvqNfLljVhqnlzyJrVcb8lERERULBKUrZt20aDBg0ICQmhfv36rFq1KnmFqlOnYN48MzsVcZYfmP5TnTubhk8RM3P588e5s2Z4uDlzee5c07EhLMy8njmzCVKdO8NrryXMb01ERAQUrJKMrVu30qBBA0JDQ2nQoAGrVq0iTZo0zi4r/kJDYcMGsxa3c2fU67lzQ/v20LEjPPvswz/XsCG2OvU4PGMPwX/7k/HZfJTqWgH3tA/PVF26ZJqwz50Lf/8d9fobb5gw1ayZCVciIiIJTcEqCdi8eTONGjUiNDSURo0asXLlStcPVSdOmNmphQujjpxxc4Nq1cxjd3XrPrapp2m87s758x6RrxUYbxqvN2xoZqd27jR5bcMGs/cdzPJey5bmI155JeF+eyIiIjFRsHKyTZs20ahRI8LCwmjcuDErVqxw3VAVEgLr15u04+sb9Xq+fGZ2qkMHKFr0icM8rvF648ZmBuqnn+D06aj33nrLzE598AFkyuSg34+IiEgcKVg50caNG2ncuDFhYWE0adKE5cuXu2ao+vNPsw63eLHpaQBmdqpmTTN1VLs2xPL3FZvG6ytXml+zZTOHH3fqBKVKOeD3ISIiEk8KVk6yYcMGmjRpQlhYGE2bNmXZsmWkTu1Cfxx375r+BXPmmH4GEZ55xsxMtW9vDkuOo9g2Xh8wAAYNMm0TREREkgoX+ps8+Vi/fj0ffPAB9+7do1mzZixdutR1QtUff5jZqSVLzHkwAKlSmVmpzp2hRg2w8/dy7ZrphB4bpUsrVImISNLjIn+bJx9eXl40bdqUe/fu0bx5cxYvXpz0Q1VwMKxda2anfvgh6vVChaJmpwoUiPOwlmVWETdtgs2bzdDh4bH7WTsar4uIiCS4JP43evKybt06mjZtis1mo0WLFixatChph6rDh02YWroUAgPNa+7u5om+zp3NE35PaNT5oNBQ2L3bBKnNm01rq/uVLAlnz8LNmzH/fBwbr4uIiCSqJPy3evKyZs0aPvzwQ2w2G61atWLhwoW4xzGUJIrbt2HVKrPc99NPUa8XKWJ2ibdrF+fposuXzTGAmzfDt99GD01p04Knp8lqtWubj4l4KhDsbrwuIiLiFApWiWD16tU0b94cm81G69atWbBgQdILVYcOmdmp5cshKMi8ljo11K9vAlWVKmYvVSxYlpnsilji27cvekDKkwfq1DFfVao83LyzYUOz8hjHxusiIiJOp2CVwFatWkWLFi2w2Wy0adOG+fPnJ06ostnMI3b+/maGqUKFh6d5bt6Er782gerAgajXn33WhKm2bU0KioW7d03rqogwde5c9PfLljWzUnXqmGNlnpTRGjY0J9w86bcgIiKSlChYJaCVK1fSsmVLwsPDadeuHXPnzk2cUGXalj883RPRtvzgQROmVqyAW7fM+2nSmPc6dwYPj1jNTl28aJb4Nm0yXdCDg6Pey5DBzEbVqWOW+J55Ju6/DXd3U4qIiIirULBKICtWrKBVq1aEh4fTvn175s6dS6pYLqXFy+PaljdqZDqf39+y/PnnzexUmzaQK9djhw4Ph19/jZqVOngw+vsFCkQt8Xl6qh2CiIikPApWCWDZsmW0adOG8PBwOnbsyOzZsxMnVMWmbfnp02Z2qkkTMzv13ntRu8JjcPs2+PiYMLVli1mWu9+bb0Yt8ZUp89ihREREkj0FKwdbunQpbdu2JTw8nE6dOjFr1qzECVUQ+7bla9aYDUyPcPZsVDuEXbvMEYARMmc2XRbq1IFatWK9BUtERCRFULByoMWLF9OuXTssy6Jz587MnDkzcULV9euwfTtMnRq7++/fDIWZ6Nq/P2qJ7/ffo99epEjUrFTFipAunWPKFhERSW4UrBxk0aJFtG/fHsuy6NKlC9OnT0+4UGVZcPx49JblNlvsfz5fPoKCwNvbDLF1K1y5EvV2qlTw9ttR+6VeeklLfCIiIrGhYOUACxcupEOHDliWxccff8z06dNxc3QSCQ01S30RYervv6O///LLULs2d2cuIG3Qv6Ti4X1W4bhxPVMBmo+ogO93EBYW9V62bOaYvzp1zK9PP+3Y8kVERFICBat4mj9/Pp06dcKyLLp168bUqVMdF6quXIFt20yY2rHjiS3LbTboMe9NZtOYcNyihatwTE2dbk/iWx/T8qF48aglvnffNXvaRURExH4KVvEwb948OnXqBECPHj2YPHly/EKVZcGRI2ZGatMmc6RMLFuW37sHixfDvKsNucpaJtOLgkRtZD9PAXozifU05OOPoXdv02lBREREHEfByk5z5szho48+AqBnz55MmjTJvlB19y74+UU9hvfPP9Hfj6FleVgY/PGH6SP1yy/m199+M0MBrKchG6hHBfaQD3/8ycceKhCOmamqUEGhSkREJCEoWNlh9uzZdOnSBYBevXoxceLEuIUqf/+oluXe3tGf0kuf3sxG1a0LtWoRmrtAZIg6uMD8+vvv0VsgRMiQAe7cMdfhuLMbjxg/Po5nKIuIiEgsKVjF0cyZM+natSsAffr0Yfz48U8OVZZlWpZHLPHdfy4fmPNe6tQhrEZdDufy5MAfGc1s1FwTokJDHx4yWzZ49VUziRXxa9GiUKyYabIeU49QNzfTHb1CBTt/8yIiIvJYClZxMGPGDLp16wZAv379GDdu3KNDVXBw9JblFy9Gezv8jTfxf7UOe5+uy7eXynBwvxuHF0R/Ui9C9uxR4Sniq1ixmI/zmzzZnGjj5hY9XEWUOWmSDjIWERFJKApWsTRt2jR69OgBwCeffMLYsWMfDlXnzpkQtWmTaVkesekJsGXIxD/PV2N31josv1aL3b/m5d7+hz/nqaeiB6hXXzUhKrYrjQ0bwtq1MZ/BPGmSeV9EREQShptlxbRolLQFBQWRLVs2AgMDyZo1q8PHt4XaODxjD8F/+5Px2Xzstn6jd9/eAPTv35/Ro0ebUBUeblqWRyzx/fZbtHH+zVwY73R1WXq9Dj7hHoQSvWV5jhzRQ9Rrr5ku547o1mCzmbZX/v5mT1WFCpqpEhERsVdss4fTZqymT5/OuHHjCAgIoEyZMkydOpU333zTWeVE+qm/F4Um9OIVm5numQz0/u+9AQMGMHLgQNzWr4dNm7C2bMXtyuXIn7WRip8ozybqsIm6HL31EtwyKenppx8OUYUKJVxHc3d38PBImLFFREQkZk4JVqtWraJv377MmjWLcuXKMWnSJKpXr87x48fJnTu3M0oCTKh6c1xj+K+x5kSg73/vDQB6LtxC+LjxuNvMRig3IJCsbKcGm6nDNmpylafJndsEp4b3LecVLKhjYURERJI7pywFlitXjjfeeINp06YBEB4eTsGCBenRowcDBgx44s8nxFKgLdTGpYxFyGs7TypgAtDvv/c+A4YDEbnoBM+xibpspg5/5a5AmdfTRJuJeuYZhSgREZHkJMkuBYaGhnLw4EEGDhwY+VqqVKmoUqUKe/fujfFnQkJCCLmvcVNQUJDD6zo8Y0/k8t8cokLVIGAoUaFq6LOLsVq25rXXYNlrkD+/w0sRERERF5Xowerff//FZrORJ0+eaK/nyZOHP//8M8afGfX/7d1/TNT1Hwfw5/3gDkiPUxl3IqDo3KgkI0g6qfWHfDXnmkVr5a52szaXnhNkM62m1voaSqt9v5rT8o9y81faspLNNnYYjg0BESqD0JUTBhxUhneCpt3n9f3j+/UTp/iVtc/d5+Cej+02+HzeeK+9nxOe+3D3oaICb731VkTnGvqpV/14IYDpADwA3sRfpQoA/rE4AfPfjOgoRERENEaNcCek2PPaa6/h8uXL6qOrq0vz50ie9dftyGcAaEX4laqR1hERERENF/VilZqaCpPJhL6+vrDjfX19cDqdI36N1WqFzWYLe2gtd9Vj6DFlQPlflbLfcl6BAd2mTOSu4m3LiYiIaGRRL1YWiwX5+fnw+XzqMUVR4PP54HK5oj2OymQxobP83/+d55brVDc/7yr/F0wW3gyKiIiIRqbLrwLLy8uxZ88e7N27F+3t7Vi5ciUGBwexfPlyPcZRPVJZgsZ1n8FvmhZ2vNeUgcZ1n+GRSt62nIiIiO5Ml/tYPffcc/jll1+wadMm+P1+PPjgg/j6669ve0G7Hh6pLEHon0vROuzO67mrHsM0XqkiIiKiu+CftCEiIiK6i9F2jzHxrkAiIiKisYDFioiIiEgjLFZEREREGmGxIiIiItIIixURERGRRlisiIiIiDTCYkVERESkERYrIiIiIo2wWBERERFphMWKiIiISCMsVkREREQaYbEiIiIi0giLFREREZFGWKyIiIiINMJiRURERKQRFisiIiIijZj1HuDvEBEAQCAQ0HkSIiIiigc3O8fNDnInY7JYBYNBAEBmZqbOkxAREVE8CQaDSElJueN5g9ytesUgRVHQ09ODiRMnwmAwROQ5AoEAMjMz0dXVBZvNFpHnoLtjDrGDWcQOZhEbmEPsiEYWIoJgMIj09HQYjXd+JdWYvGJlNBqRkZERleey2Wz8DxMDmEPsYBaxg1nEBuYQOyKdxf+7UnUTX7xOREREpBEWKyIiIiKNsFjdgdVqxebNm2G1WvUeJa4xh9jBLGIHs4gNzCF2xFIWY/LF60RERESxiFesiIiIiDTCYkVERESkERYrIiIiIo2wWBERERFphMWKiIiISCMsViPYuXMnZsyYgcTERBQWFqKxsVHvkca9iooKPPzww5g4cSLS0tLw1FNPoaOjI2zNtWvX4PV6MWXKFEyYMAHPPPMM+vr6dJo4PmzduhUGgwFlZWXqMeYQPd3d3XjhhRcwZcoUJCUlITc3F6dPn1bPiwg2bdqEqVOnIikpCcXFxTh//ryOE48/oVAIGzduRHZ2NpKSkjBr1iy8/fbbYX+IlzlExsmTJ/Hkk08iPT0dBoMBX3zxRdj50ez7pUuX4Ha7YbPZYLfb8fLLL+PKlSsRnZvF6haffvopysvLsXnzZpw5cwZz587FokWL0N/fr/do41ptbS28Xi9OnTqF6upq3LhxAwsXLsTg4KC6Zu3atTh27BiOHDmC2tpa9PT0oKSkRMepx7empiZ8+OGHeOCBB8KOM4fo+P3331FUVISEhAQcP34cbW1teO+99zBp0iR1TWVlJbZv347du3ejoaEB99xzDxYtWoRr167pOPn4sm3bNuzatQsffPAB2tvbsW3bNlRWVmLHjh3qGuYQGYODg5g7dy527tw54vnR7Lvb7cYPP/yA6upqVFVV4eTJk1ixYkVkBxcKM2/ePPF6vernoVBI0tPTpaKiQsep4k9/f78AkNraWhERGRgYkISEBDly5Ii6pr29XQBIfX29XmOOW8FgUGbPni3V1dXy+OOPS2lpqYgwh2hav369PProo3c8ryiKOJ1Oeffdd9VjAwMDYrVa5eDBg9EYMS4sWbJEXnrppbBjJSUl4na7RYQ5RAsAOXr0qPr5aPa9ra1NAEhTU5O65vjx42IwGKS7uztis/KK1TDXr19Hc3MziouL1WNGoxHFxcWor6/XcbL4c/nyZQDA5MmTAQDNzc24ceNGWDY5OTnIyspiNhHg9XqxZMmSsP0GmEM0ffXVVygoKMCzzz6LtLQ05OXlYc+ePer5CxcuwO/3h2WRkpKCwsJCZqGh+fPnw+fz4dy5cwCAb7/9FnV1dVi8eDEA5qCX0ex7fX097HY7CgoK1DXFxcUwGo1oaGiI2GzmiP3LY9Cvv/6KUCgEh8MRdtzhcODHH3/Uaar4oygKysrKUFRUhDlz5gAA/H4/LBYL7HZ72FqHwwG/36/DlOPXoUOHcObMGTQ1Nd12jjlEz88//4xdu3ahvLwcr7/+OpqamrBmzRpYLBZ4PB51v0f6fsUstLNhwwYEAgHk5OTAZDIhFAphy5YtcLvdAMAcdDKafff7/UhLSws7bzabMXny5Ihmw2JFMcfr9eLs2bOoq6vTe5S409XVhdLSUlRXVyMxMVHvceKaoigoKCjAO++8AwDIy8vD2bNnsXv3bng8Hp2nix+HDx/G/v37ceDAAdx///1obW1FWVkZ0tPTmQONiL8KHCY1NRUmk+m2dzj19fXB6XTqNFV8Wb16NaqqqnDixAlkZGSox51OJ65fv46BgYGw9cxGW83Nzejv78dDDz0Es9kMs9mM2tpabN++HWazGQ6HgzlEydSpU3HfffeFHbv33nvR2dkJAOp+8/tVZK1btw4bNmzA888/j9zcXLz44otYu3YtKioqADAHvYxm351O521vPPvzzz9x6dKliGbDYjWMxWJBfn4+fD6fekxRFPh8PrhcLh0nG/9EBKtXr8bRo0dRU1OD7OzssPP5+flISEgIy6ajowOdnZ3MRkMLFizA999/j9bWVvVRUFAAt9utfswcoqOoqOi2W46cO3cO06dPBwBkZ2fD6XSGZREIBNDQ0MAsNDQ0NASjMfxHpclkgqIoAJiDXkaz7y6XCwMDA2hublbX1NTUQFEUFBYWRm64iL0sfow6dOiQWK1W+eSTT6StrU1WrFghdrtd/H6/3qONaytXrpSUlBT55ptvpLe3V30MDQ2pa1555RXJysqSmpoaOX36tLhcLnG5XDpOHR+GvytQhDlES2Njo5jNZtmyZYucP39e9u/fL8nJybJv3z51zdatW8Vut8uXX34p3333nSxdulSys7Pl6tWrOk4+vng8Hpk2bZpUVVXJhQsX5PPPP5fU1FR59dVX1TXMITKCwaC0tLRIS0uLAJD3339fWlpa5OLFiyIyun1/4oknJC8vTxoaGqSurk5mz54ty5Yti+jcLFYj2LFjh2RlZYnFYpF58+bJqVOn9B5p3AMw4uPjjz9W11y9elVWrVolkyZNkuTkZHn66aelt7dXv6HjxK3FijlEz7Fjx2TOnDlitVolJydHPvroo7DziqLIxo0bxeFwiNVqlQULFkhHR4dO045PgUBASktLJSsrSxITE2XmzJnyxhtvyB9//KGuYQ6RceLEiRF/Lng8HhEZ3b7/9ttvsmzZMpkwYYLYbDZZvny5BIPBiM5tEBl2+1giIiIi+tv4GisiIiIijbBYEREREWmExYqIiIhIIyxWRERERBphsSIiIiLSCIsVERERkUZYrIiIiIg0wmJFREREpBEWKyIiIiKNsFgRERERaYTFioiIiEgj/wHYcVYHmDmHgAAAAABJRU5ErkJggg==", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -436,7 +432,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 12, "metadata": {}, "outputs": [ { @@ -498,7 +494,7 @@ "... (1 rows omitted)" ] }, - "execution_count": 14, + "execution_count": 12, "metadata": {}, "output_type": "execute_result" } @@ -522,7 +518,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 13, "metadata": { "tags": [ "remove_input" @@ -531,14 +527,12 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAa4AAAGbCAYAAACcQnSEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdd3yNdxvH8c8tVoPWrtbuVrtUlxonQhB779mgeIyqrVq1qVVEY4/YRCR2dtFqba1qi6L2rhErye/54xetkRDJOec+5+R6v15ekvusi+dpvn73fd3Xz1BKIYQQQjiLNGYXIIQQQjwLCS4hhBBORYJLCCGEU5HgEkII4VQkuIQQQjiVtGYXAJAzZ05VqFAhs8sQQgjhQHbt2nVRKZXr0eMOEVyFChVi586dZpchhBDCgRiGcTyh43KqUAghhFOR4BJCCOFUJLiEEEI4FYe4xpWQe/fucfLkSW7fvm12KS4hY8aM5MuXj3Tp0pldihBCpIjDBtfJkyfJkiULhQoVwjAMs8txakopLl26xMmTJylcuLDZ5QghRIo47KnC27dvkyNHDgktKzAMgxw5csjqVQjhEhw2uAAJLSuSv0shhKtw6OASQgghHiXB9QRnz56ladOmvPrqq5QpU4YaNWrwxx9/WPUzIiIi2L59e4re49ChQ3zwwQdkyJCB8ePHW6kyIYRwTC4TXP7+UKgQpEmjf/f3T9n7KaWoV68elSpV4siRI+zatYtRo0Zx7tw5a5T7rycFV0xMTJLeI3v27EyZMoU+ffpYszQhhHBILhFc/v7g4wPHj4NS+ncfn5SFV3h4OOnSpaNz587/HitZsiQff/wxSik+//xzihUrRvHixVm2bBmgQ8jb2/vf53fr1o158+YBeqzV0KFDeeeddyhevDiHDh3i2LFjzJgxg4kTJ1KqVCm+//572rZtS+fOnXnvvffo27cvr7/+OhcuXAAgLi6O11577d/v78udOzfvvvuutLoLIVIFh22Hf1DPnrB3b+KP//gj3Lnz8LHoaOjQAWbOTPg1pUrBpEmJv+cvv/xCmTJlEnxs9erV7N27l3379nHx4kXeffddKlSo8JQ/BeTMmZPdu3czffp0xo8fz6xZs+jcuTOZM2f+d7U0e/ZsTp48yfbt23Fzc+OFF17A39+fnj17EhISQsmSJcmV67GZk0IIkWo8dcVlGMYcwzDOG4bxywPHshuGscUwjD/jf88Wf9wwDGOKYRiHDcPYbxjGO7Ys/r5HQ+tpx1Nq69atNGvWDDc3N1588UUqVqzIzz///NTX1a9fH4AyZcpw7NixRJ/XqFEj3NzcAGjfvj0LFiwAYM6cObRr1y7lfwAhhHBiSVlxzQOmAgseONYfCFVKjTYMo3/89/2A6sDr8b/eA3zjf0+RJ62MQF/TOp7ADOGCBSEiInmfWbRoUVauXPlMr0mbNi1xcXH/fv/ofVMZMmQAwM3N7YnXrzJlyvTv1/nz5+fFF18kLCyMn376Cf+UXrwTQggb2fqpP4X8BvFy7AlOuxXgmM8Iyk9vYfXPeeqKSykVBVx+5HAdYH781/OBug8cX6C0H4GshmG8ZK1iEzNiBLi7P3zM3V0fTy6LxcKdO3fw8/P799j+/fv5/vvv+fjjj1m2bBmxsbFcuHCBqKgoypUrR8GCBTl48CB37tzh6tWrhIaGPvVzsmTJwvXr15/4nI4dO9KyZcuHVmJCCOFItn7qT2lfH27GHuciinyxxynt68PWT63/j+3kNme8qJQ6E//1WeDF+K/zAn8/8LyT8cdsqkUL8PPTKyzD0L/7+enjyWUYBgEBAYSEhPDqq69StGhRBgwYQJ48eahXrx4lSpSgZMmSWCwWxo4dS548ecifPz+NGzemWLFiNG7cmNKlSz/1c2rVqkVAQMC/zRkJqV27Njdu3Ej0NOHZs2fJly8fEyZMYPjw4eTLl49r164l/w8vhBDPqJDfIP4imgpAy/hjmYimkN8gq3+WoZR6+pMMoxAQrJQqFv/9VaVU1gcev6KUymYYRjAwWim1Nf54KNBPKfXYLpGGYfgAPgAFChQoc/yRc32//fYbRYoUSe6fy6Xs3LmTXr16JRpsSSV/p0IIW9ltGFQFMgBhwJvxx+MwSKPiEn/hExiGsUspVfbR48ldcZ27fwow/vfz8cdPAfkfeF6++GOPUUr5KaXKKqXKSpdc4kaPHk2DBg0YNWqU2aUIIUSCdu7ciYU0uAOR/BdaAKfdClj985IbXGuBNvFftwECHzjeOr678H3gnwdOKYpk6N+/P8ePH6d8+fJmlyKEEI/54Ycf8PDw4LlM2YkEXnvgsZu4c8wnBc0GiUhKO/wS4AfgTcMwThqG0QEYDXgahvEnUCX+e4D1wFHgMDAT+NTqFQshhHAIUVFRVK1aldy5czPsw/4UBs6neZE4DE66FWRPFz+bdBU+tR1eKdUskYc8EniuArqmtCghhBCOLSwsjFq1alGgQAE2bgzlzBtNOZnpDfJdPwSGQT70tSJbcImRT0IIIexn06ZN1KxZk1deeYWIiAgOBd3k/bvfc71BO93abWMSXEIIIZIsODiY2rVr89ZbbxEeHs6LL77IxfHziCUNbwxvbZcaJLiewFm2NQkMDKREiRKUKlWKsmXLsnXrVitVJ4QQ/wkICKB+/fqUKFGC0NBQcubMye8HY6l4fD5/veGFW/6X7VKH6wSXlfc1caZtTTw8PNi3bx979+5lzpw5dOzY0ZolCiEEy5Yto1GjRpQtW5aQkBCyZ88OQPigEPJxipyf22+OqmsElw32NXGmbU0yZ86MEX9e+ebNm/9+LYQQ1rBo0SKaN2/Ohx9+yKZNm3jhhRcAvQtH7nVzuJ4+O1lb1bJbPU6xrYkZ+5o427YmAQEBDBgwgPPnz7Nu3bqn1iKEEElx/yxO5cqVWbt27UNDwANmX6bhvTVcaNCZLPFDxO3BNVZcdt7XxBG3NalXrx6HDh1izZo1DBky5Bn/REII8bgZM2bQoUMHqlatSnBw8EOhBXBq/BIycJe8g+y73ZJzrLhM2NfEWbc1qVChAkePHuXixYvkzJnzmeoXQoj7pkyZQo8ePfD29mbFihVkzJjxocd37QKPE3O4kLcUuUqXsmttrrHissG+Js60rcnhw4e5Pyx59+7d3Llzhxw5cjzjn1gIIbRx48bRo0cP6tWrx6pVqx4LLYCgEfspw24y/6+93etzjeCywb4mzrStyapVqyhWrBilSpWia9euLFu2TBo0hBDJMmLECPr27UuTJk1YtmwZ6dOnf+w5V65AjrVzuZcmPc91aG7/IpVSpv8qU6aMetTBgwcfO5Za/fzzz6p8+fIpfh/5OxVCJCYuLk598cUXClCtWrVS9+7dS/S5U8bfUefJqS5XaWjTmoCdKoHMcI5rXKnY6NGj8fX1feq1LSGESC6lFAMGDGDMmDG0b98ePz+/RHdbVwr+nBhMLi5Cb/ufJgRXOVXowmRbEyGELSml6N27N2PGjKFz587MnDkz0dAC3e/meWou0VlfhqpV7VfoAxw6uFQSdmcWSSN/l0KIR8XFxdGtWzcmTZrE//73P6ZPn06aNE+OhSUTzlCD9aTr2BqeEHC25LDBlTFjRi5duiQ/cK1AKcWlS5cS7AwSQqROcXFxdOrUienTp/P5558zadKkpzZ1nTkD2dcvxI040n1i33u3HuSw17jy5cvHyZMnHxtvJJInY8aM5Mtnq91xhBDOJDY2lg4dOjB//nwGDx7MsGHDktSJPHuWok3cXG698xHPvfGGHSpNmMMGV7p06ShcuLDZZQghhEuJiYmhdevWLFmyhGHDhiV50k5sLOyc+iODOQSfzrJxlU/msMElhBDCuu7evUvz5s1ZtWoVo0ePpl+/fkl+7bp1UOP8XGIyuJO2cWMbVvl0ElxCCJEK3Llzh8aNG7N27VomTJhAr169nun1s7+NZpGxlDSNG0GWLDaqMmkkuIQQwsXdunWLBg0asGHDBqZNm8ann376TK8/cgSeD1lFFq5DB/OaMu6T4BJCCBcWHR1NnTp1CA0NZebMmcnaaPa776A9c4kp+Appk7CFk605bDu8EEKIlLlx4wY1atQgLCyMefPmJSu0bt+GkJl/UZlw0nZsp+fBmkxWXEII4YKuXbtG9erV2bFjB4sWLaJZs2bJep+VK6HO1Xkow8Bo08bKVSaPBJcQQriYK1eu4OXlxe7du1m2bBkNGjRI9nvNmB7H0rTzoVIVyJ/filUmnwSXEEK4kEuXLuHp6cmvv/7KqlWrqF27drLfa/9+yPBDOPk4Dh1GW7HKlJHgEkIIF3H+/HmqVKnCH3/8QWBgIF5eXil6P19f+CTNHOKyZCVN3bpWqjLlpDlDCCFcwJkzZ6hUqRKHDx8mODg4xaF17RqsXXCV+sZq0jRvBg4061RWXEII4eROnjyJxWLh9OnTbNiwgYoVK6b4PRctAu/oZaTnNrQ3Z9+txEhwCSGEEzt+/DgWi4ULFy6wadMmPvrooxS/p1L6NOES9zmoV4phlCljhUqtR4JLCCGc1NGjR6lcuTLXrl0jJCSEcuXKWeV9t22D2F8OUoyfoN03DnHv1oMkuIQQwgn98ccfWCwWbt26RWhoKO+8847V3tvXFzqnn4uKS4vRsqXV3tdaJLiEEMLJ/Pbbb1gsFmJjYwkPD6dEiRJWe+8LF2DNinv4pl2AUcMbcue22ntbi3QVCiGEEzlw4MC/zRcRERFWDS2AOXPA494Gnr91HtqZP1A3IbLiEkIIJ7Fnzx48PT3JmDEjYWFhvGHlXYjj4vRA3fk55kLaF6F6dau+v7XIiksIIZzATz/9hMViIVOmTERGRlo9tAA2bYIbf53no6vB0KoVpEtn9c+wBgkuIYRwcNu3b6dKlSpky5aNqKgoXn31VZt8zvTp0CXzItLExjjsaUKQ4BJCCIcWFRVF1apVyZMnD1FRURQsWNAmn3P8OKwLVnz63Bx47z14+22bfI41SHAJIYSDCg0NxcvLiwIFChAZGUm+fPls9ll+fvCusZMXL/zq0KstkOASQgiHtHHjRry9vXnttdeIiIjgpZdestln3b0Ls2bB0AJz9UzCpk1t9lnWIMElhBAOJigoiDp16lCkSBHCw8PJbeN7qQIC4Nr5W3heWgINGsALL9j081JKgksIIRzIqlWrqF+/PiVLliQ0NJQcOXLY/DN9fcEn1xrS3bjq8KcJQYJLCCEcxtKlS2nSpAnlypVjy5YtZMuWzeafefAgREZCz6xzoWBBqFzZ5p+ZUhJcQgjhABYsWECLFi346KOP2LhxIy/Y6XTdjBnwaroTFDocAm3bQhrHjwXHr1AIIVzc7Nmzadu2LZUrV2b9+vVkyZLFLp978ybMnw+j3pqPoRS0aWOXz00pCS4hhDDR9OnT6dixI9WqVSMoKIhMmTLZ7bMXL4br1+LwvjRPnyIsXNhun50SElxCCGGSSZMm0bVrV2rVqsWaNWt47rnn7PbZ9zeLbFP4e547fdQpmjLuk+ASQggTjB07ll69etGgQQNWrlxJhgwZ7Pr5P/0Ee/ZAvxfnQpYsug3eSUhwCSGEnX399df069ePpk2bsnTpUtKnT2/3Gnx9IU+m67y5f4W+4djd3e41JJcElxBC2IlSiiFDhvDFF1/QqlUrFi1aRNq09t9d6vJlWLYMxpZdjhEd7VSnCUH24xJCCLtQStGvXz/GjRtHhw4d+O6773BzczOllnnz4PZtqP/PXHjrLXj/fVPqSC5ZcQkhhI0ppejVqxfjxo2jS5cu+Pn5mRZacXH63q2mpX8n095terVlGKbUklwSXEIIYUNxcXF07dqVyZMn07NnT6ZNm0YaE2/yDQuDP/+EQXnngZub3jDSyUhwCSGEjcTGxuLj44Ovry/9+vVjwoQJGCavbqZPh9zZYyi6awFUrw42nDpvKxJcQghhAzExMbRr147Zs2czZMgQRo0aZXponToFa9fCqMqbMc6cdrqmjPukOUMIIazs3r17tG7dmqVLl/L1118zePBgs0sCYOZMfY2r8c25kDMneHubXVKySHAJIYQV3b17l2bNmrF69WrGjh3L559/bnZJANy7p4OrUeWLZA4NhK5dwYT7x6xBThUKIYSV3Llzh4YNG7J69WomTZrkMKEFEBQEp0/D4FcW6xRz0tOEICsuIYSwilu3blGvXj02bdqEr68vnTt3Nrukh/j6Qv78UGznXHjnHShRwuySkk1WXEIIkUI3b97E29ubzZs3M3v2bIcLrT//hJAQGOK9B2PvXmjf3uySUkRWXEIIkQLXr1+nZs2abNu2jfnz59PKAe+LmjED0qaF5nfn6utazZqZXVKKSHAJIUQy/fPPP1SvXp2ffvqJxYsX06RJE7NLesytWzB3LjSqfYdMAf5Qty5kz252WSmSolOFhmH0MgzjV8MwfjEMY4lhGBkNwyhsGMYOwzAOG4axzDAM52xbEUKIJ7hy5Qqenp7s3LmT5cuXO2RogR6me+UKDCwepKfrOvlpQkhBcBmGkRf4H1BWKVUMcAOaAmOAiUqp14ArQAdrFCqEEI7i4sWLWCwW9u3bx6pVq6hfv77ZJSXK11fP0S360xzIlw+qVDG7pBRLaXNGWuA5wzDSAu7AGcACrIx/fD5QN4WfIYQQDuP8+fNUrlyZQ4cOERgYSK1atcwuKVG7d+sNI/s0O4WxaRO0bq3nEzq5ZAeXUuoUMB44gQ6sf4BdwFWlVEz8004CeRN6vWEYPoZh7DQMY+eFCxeSW4YQQtjNmTNnqFSpEkeOHCE4OBgvLy+zS3oiX1+9P2Tz2IV6ZIYT37v1oJScKswG1AEKAy8DmYAk/6+olPJTSpVVSpXNlStXcssQQgi7OHnyJBUrVuTvv/9m48aNeHh4mF3SE/3zDyxeDM2aKp5bMgc+/hhee83ssqwiJacKqwB/KaUuKKXuAauBj4Cs8acOAfIBp1JYoxBCmOrYsWNUqFCBc+fOsXnzZipUqGB2SU+1YAFER0OfD7frG7lcZLUFKQuuE8D7hmG4G3rksQdwEAgHGsY/pw0QmLIShRDCPEeOHKFixYpcuXKFkJAQPvjgA7NLeiql9GnCd9+Ft36YC5kyQaNGZpdlNSm5xrUD3YSxGzgQ/15+QD+gt2EYh4EcwGwr1CmEEHb3+++/U6FCBW7evElYWBjvvvuu2SUlSVQU/PYbdG9/U/fDN24MmTObXZbVpOgGZKXUUGDoI4ePAuVS8r5CCGG2gwcPYrFYUEoRHh5O8eLFzS4pyXx9IWtWaJxmJdy44VKnCUFmFQohxGP2799PpUqVSJMmDREREU4VWmfPwqpV0LYtZFg8VzdklC9vdllWJcElhBAP2L17N5UrVyZDhgxERkZSpEgRs0t6JrNnQ0wMdK9xBCIj9WrL5J2XrU2CSwgh4u3YsQOLxUKWLFmIjIzk9ddfN7ukZxIbC35+YLHAK1HzIE0afdOxi5HgEkIIYNu2bXh6epIjRw4iIyN55ZVXzC7pma1fDydOwKedYmH+fPD01GOeXIwElxAi1YuIiKBatWq89NJLREVFUbBgQbNLShZfX3jpJaiTORT+/tslBuomRIJLCJGqhYSEUKNGDQoWLEhkZCR58yY4pc7h/fUXbNwIn3wCaRfOhWzZoHZts8uyCQkuIUSqtX79ery9vXn99deJiIggT548ZpeUbN99py9p+TS6AgEB0Lw5ZMxodlk2IcElhEiVAgMDqVu3LkWLFiUsLAxnnpl6547uJqxVC/JGLdEHXPQ0IUhwCSFSoZUrV9KwYUNKly5NaGgoOXLkMLukZPH3h0KF9MLq4kV48030dsclSkDp0maXZzMpmpwhhBDOZvHixbRu3Zr333+f9evX8/zzz5tdUrL4+4OPjx6ke1/Y5ANweydMnOhy9249SFZcQohUY/78+bRs2ZLy5cuzceNGpw0tgEGDHg4tgKa353KXdNCihTlF2YkElxAiVZg5cybt2rXDw8OD9evXk9nJh86eOPHw92m5R0sWEUQtcOLrdUkhwSWEcHnTpk3Dx8cHLy8vgoKCcHd3N7ukFCtQ4OHva7KO3FxgXS7XGqibEAkuIYRLmzhxIt26daNOnToEBASQ0UVaxD/77OHv2zOHs+Shyvgkb0TvtCS4hBAua/To0fTu3ZuGDRuyYsUKMmTIYHZJVqEUbNkC6dLByy9DHs5Sg/Vc8m5N89au33MnwSWEcDlKKYYNG8aAAQNo3rw5S5YsIV26dGaXZTUrV0JQEKxu6M+pdIU4w0ukJZaiFXKaXZpdSHAJIVyKUoohQ4YwdOhQ2rRpw4IFC0ib1nVWIZcvQ7duMLCQPzUDfeD48f8e/PJL3Sfv4iS4hBAuQylF3759GTFiBJ988glz5szBzc3N7LKsqk8fuHQJht4ZhPFoP3x0tO6Td3ESXEIIl6CUomfPnowfP56uXbsyY8YM0qRxrR9xISF6MMbnn0P6sycSftKjffIuyLX+VxVCpEpxcXF06dKFKVOm0Lt3b7799luXC63oaOjUCV57Db74gsf74e9L7LgLca3/ZYUQqU5sbCwdO3bku+++o3///owfPx7DBccdffklHD0KM2fCc88Bw4c/PtbJ3R1GjDCjPLuS4BJCOK2YmBjatGnD3LlzGTp0KCNHjnTJ0Nq1C775Ru+1ValS/EE3N90XnyOHDrCCBcHPz+XHPQEYSimza6Bs2bJq586dZpchhHAi9+7do2XLlixfvpwRI0YwcOBAs0uyiXv3oFw5OHsWfvsNsmYF7t6Ft96C55+H3bv1RlwuyDCMXUqpso8ed50eUSFEqnH37l2aNm1KQEAA48eP57NHx0i4kAkTYO9eWLUqPrQAZsz4b8tjFw2tJ5HgEkI4ldu3b9OwYUPWrVvHlClT6N69u9kl2cyff+prW/XqQf368QevXYOvvwaLBapWNbM800hwCSGcxq1bt6hbty6bN29mxowZdOrUyeySbEYpvd9WhgwwdeoDD4wfr3eNHDPGpffcehIJLiGEU7h58ya1atUiIiKCOXPm0K6da09Bnz0bIiJ0v8XLL8cfPHNGd2k0aQJlH7v0k2pIcAkhHN7169epWbMm27ZtY8GCBbRs2dLskmzqzBk9IaNiRejQ4YEHhg3TjRnDh5tWmyOQ4BJCOLSrV69SvXp1fv75Z5YsWULjxo3NLsnmuneH27f1auvf3os//tA3cXXpou9CTsUkuIQQDuvy5ctUrVqV/fv3s2LFCurVq2d2STYXEKA7CEeNgjfeeOCBgQP1ncdDhphWm6NIfX2UQgincPHiRSwWCwcOHGD16tWpIrSuXoWuXaFkyUc2ivzxR51mffpA7tym1ecoZMUlhHA4586dw8PDgyNHjhAUFETVVNL23a8fnDsHa9fqTSIB3V7Yr58OrN69Ta3PUUhwCSEcyunTp/Hw8ODEiROsW7cOi8Vidkl2ERmpr2l99tkjDYMbNkBUFEybBlmymFafI5GRT0IIh/H3339jsVg4e/Ys69ev5+OPPza7JLu4fRtKlIDYWDhwQM/KBfSBUqX0Ew4efGAZljrIyCchhEP766+/sFgsXL58mc2bN/PBBx+YXZLdDBump2Rs2fJAaAEsWgS//ALLlqW60HoSCS4hhOkOHz6MxWLhxo0bhIaGUjYV3Vy7bx+MHQtt20KVKg88cPu27iB8911o1Mis8hySBJcQwlSHDh3Cw8ODu3fvEhYWRqlSpcwuyW5iYqBjR70zyTffPPLg1Knw998wf36qHe2UGAkuIYRpfvnlF6rELzPCw8MpVqyYyRXZ15QpsHOnPhOYPfsDD1y5AiNHgpcXVK5sWn2OSu7jEkKYYt++fVSuXJk0adIQERGR6kLr6FEYPBhq1UrgTOCYMfqmrtGjTanN0UlwCSHsbteuXVSuXJmMGTMSGRnJW2+9ZXZJdqUUdOoEadPC9OmPnAk8eRImT4aWLfWdyOIxcqpQCGFXP/74I15eXmTLlo2wsDAKFy5sdkl2t2ABhIToW7Py5XvkwaFDIS5OtxqKBMmKSwhhN1u3bsXT05OcOXMSGRmZKkPr3Dno1Qs++gg6d37kwV9/hXnz9NynQoVMqM45SHAJIewiPDycatWqkTdvXqKioihQoIDZJZmiZ0+4eVMPek/z6E/ggQMhc2YYNMiU2pyFBJcQwuY2b95MjRo1KFy4MJGRkbz8786IqUtwMCxdqpsyihR55MGtW/WQwv79dX+8SJSMfBJC2NS6deuoX78+RYoUYcuWLeTKlcvskkxx7RoULQpZs8KuXZA+/QMPKqXPHR4/rkdoPDQ+I/WSkU9CCLtbs2YNjRs3pkSJEmzevJnsD92slLoMHAinTsHKlY+EFkBgIPzwgz5/KKH1VHKqUAhhEytWrKBRo0aUKVOGkJCQVB1a27bptvf//Q/ee++RB2NiYMAAeOstPfdJPJWsuIQQVufv70/r1q358MMPWbduHc8//7zZJZnmzh345BPInx+GD0/gCXPnwqFDeuvjtPIjOSnkb0kIYVXz5s2jffv2VKpUibVr15I5c2azSzLVyJHw2296W63H/iqio/V9Wx9+CHXqmFKfM5LgEkJYjZ+fH506dcLT05M1a9bgnsqv1/zyC4wapYdgeHkl8ITJk+HMGVi+XAbpPgO5xiWEsIqpU6fSqVMnatasydq1a1N9aMXG6snvL7wAEycm8ISLF/Uswtq1oXx5u9fnzGTFJYRIsW+++YY+ffpQt25dli1bRvrH2uZSn+nTYccOvRdkzpwJPGHkSLhxQy/JxDORFZcQIkVGjhxJnz59aNSoEcuXL5fQQt+ONWAAVK8OzZsn8IRjx/Sgwnbt4O237V2e05PgEkIki1KKL7/8kkGDBtGiRQsWL15MOtleHqWgSxf9ta9vIpeuhgzR856+/NKepbkMOVUohHhmSikGDRrEqFGjaNu2LbNmzcLNzc3sshzCkiW6g3DyZChYMIEn7N0L/v7Qt28Co+FFUsjIJyHEM1FK0adPHyZMmECnTp2YPn06aR6bFps6XbyoZxC++qq+6TjBLK9eXV/8OnpUz38SiZKRT0KIFIuLi6NHjx5MnTqV7t27M3nyZAxp4/5Xr17wzz8wa1YioRUWBhs3wvjxElopIB2KgZEAACAASURBVP9MEkIkSVxcHJ07d2bq1Kl89tlnElqP2LhRdxAOGADFiiXwhLg46NcPChTQ+22JZJMVlxDiqWJjY+nYsSPz5s1j4MCBDB8+XELrATdu6E0h33pLD9NN0MqVsHMnzJ8PGTPatT5XI8ElhHiimJgY2rRpw+LFi/nqq68YMmSIhNYjhgzRLfBbt0KGDAk84d49nWjFi0OLFnavz9WkKLgMw8gKzAKKAQpoD/wOLAMKAceAxkqpKymqUghhinv37tGiRQtWrFjBqFGj6N+/v9klOZwdO3QH4aef6i21EuTnB0eOwLp1iVz8Es8iRV2FhmHMB75XSs0yDCM94A4MBC4rpUYbhtEfyKaU6vek95GuQiEcz507d2jSpAmBgYF888039O7d2+ySHM7du1CmDFy9Cr/+CgkOwb9+HV57TbcbhofLTMJnYPWuQsMwXgAqAG0BlFJ3gbuGYdQBKsU/bT4QATwxuIQQjuX27ds0aNCA9evX8+2339KtWzezS3JIY8fqQbpBQYmEFsCECXD+vH6ShJZVpKSrsDBwAZhrGMYewzBmGYaRCXhRKXUm/jlngRcTerFhGD6GYew0DGPnhQsXUlCGEMKaoqOjqV27Nhs2bOC7776T0HqEvz8UKqQHXwwZAu+/D97eiTz53DkYNw4aNoRy5exZpktLSXClBd4BfJVSpYGbwEMnwJU+D5nguUillJ9SqqxSqmyuXLlSUIYQwlpu3LhBzZo1CQkJYc6cOfj4+JhdkkPx9wcfH92Icf8qy759+niCvv4abt+GESPsVmNqkJLgOgmcVErtiP9+JTrIzhmG8RJA/O/nU1aiEMIerl27hpeXF1FRUSxatIi2so38YwYN0ns/PujWLX38MYcPw3ff6aR74w271JdaJDu4lFJngb8Nw3gz/pAHcBBYC7SJP9YGCExRhUIIm7t69SpVq1Zlx44dLF26lOYJjjQXJ048w/HBgyF9evjiC5vWlBql9D6u7oB/fEfhUaAdOgyXG4bRATgONE7hZwghbOjy5ct4enpy4MABVq5cSR3ZQj5R+fMnHFIFCjxy4OefYdkyfREsTx671JaapCi4lFJ7gcdaFdGrLyGEg7tw4QJVqlTh999/Z82aNdSoUcPskhxakSKPB5e7+yOXsJTSo51y5YI+fexaX2ohswqFSKXOnj1LpUqV+PPPPwkKCpLQeoq1a2HTJqhWTW9XYhj6dz+/R4ZhbN6s79caMuQJPfIiJWRbEyFSoVOnTmGxWDh16hTBwcFUqlTJ7JIc2smTULKkDqoffkhkrBPoQbrvvAPXrsGhQ/oal0g22dZECAHAiRMnsFgsnD9/no0bN1K+fHmzS3JosbF6RXX3rr5slWhoASxerPvjFy+W0LIhCS4hUpG//voLi8XClStX2LJlC++9957ZJTm84cMhKgoWLIDXX3/CE+/c0Z2E77wDTZrYrb7USIJLiFTizz//xGKxEB0dTWhoKGXKlDG7JIcXGQnDhkHr1tCq1VOe7Our70yeNUuP1RA2I9e4hEgFfvvtNzw8PLh37x4hISGULFnS7JIc3qVL+rqWuzvs3g2ZMz/hyf/8A6++qldbmzfbrUZXJ9e4hEilfvnlFzw8PDAMg4iICIoWLWp2SQ5PKWjXDi5cgB9/fEpogZ62e+kSjBljl/pSO1nPCuHC9u7dS6VKlUibNi2RkZESWkn07bd6mPu4cVC69FOefPo0TJwIzZsn4cnCGiS4hHBRO3fuxGKx4O7uTmRkJG+++ebTXyTYvRs+/xxq1YLu3ZPwgi+/hJgY3cUh7EKCSwgX9MMPP+Dh4UHWrFmJioritddeM7skp3D9OjRtqodezJ2bhO2zDh2C2bP19seFC9ulRiHXuIRwOVFRUdSsWZM8efIQFhZG/vz5zS7JaXTrBkeO6MEXOXIk4QUDB0KmTImMhxe2IisuIVxIWFgY1atXJ1++fERGRkpoPYMFC/SvL76AChWS8ILt2yEgAPr21Us0YTcSXEK4iE2bNlGzZk1eeeUVIiIiePnll80uyWn88Yc+21exor6H+In8/fXsp48+0vdryd+z3cmpQiFcQHBwMA0aNODtt99my5Yt5MyZ0+ySnMadO/q6VoYMsGgRuLk94cn3t0C+v5tkXJzu4MiQ4ZFJu8KWZMUlhJMLCAigfv36lChRgtDQUAmtZ9SvH+zZA/PmQb58T3lyQlsgR0fLNS47k+ASwoktW7aMRo0aUbZsWUJCQsiePbvZJTmVoCCYPBl69NDt70/1TFsgC1uR4BLCSS1atIjmzZvz4YcfsmnTJl544QWzS3IqJ0/q6RilSydx4IVSev5TQh7bAlnYkgSXEE5ozpw5tG7dmkqVKrFhwwayZMlidklO5f5WJbdvw9KlT9mq5L6RI+HmTUiX7uHjj22BLGxNgksIJzNjxgw6dOhA1apVCQ4OJlOmTGaX5HTub1Xi6wtvvJGEFyxbptsNW7bUdyY/cQtkYWsyHV4IJzJlyhR69OiBt7c3K1asIGPGjGaX5HQiI8Fi0Rk0f34SXrB9u37Bu+9CSEgSl2fCGhKbDi8rLiGcxLhx4+jRowf16tVj1apVElrJcOmSXhy9+ipMm5aEFxw9CnXq6HbDgAAJLQch93EJ4QRGjBjB4MGDadKkCQsXLiTdo9dZxFM9uFXJDz8kYauSK1egZk19QWz9epDbDByGBJcQDkwpxZdffsmwYcNo1aoVc+bMIW1a+c82Oe5vVTJ5st7v8Ynu3oWGDfXgwi1bknghTNiL/BcghINSSjFgwADGjBlD+/bt8fPzw+2JYx1EYvbseYatSpSCLl0gLExfBKtY0S41iqST4BLCASml6N27N5MmTaJz585MmzaNNGnkknRyXL8OTZroObhz5iRhq5IxY/QTBw+G1q3tUqN4NhJcQjiYuLg4unfvzvTp0/nf//7HpEmTMJ7601Yk5v5WJWFhSbhMtWIFDBighxcOG2aX+sSzk3/CCeFA4uLi6NSpE9OnT+fzzz+X0EqhhQv/26rkqWf8fvxRr7A+/DCJu0gKs0hwCeEgYmNjad++PbNmzWLw4MGMGTNGQisF/vhDX6qqUCEJW5UcO6bb3l9+GdasAbnVwKHJqUIhHEBMTAytW7dmyZIlDBs2jCFDhphdklN7cKsSf/+nbFXyzz+67f3uXVi3TjaFdAISXEKY7O7duzRv3pxVq1YxevRo+vXrZ3ZJTu/+ViVr1z5lq5J796BRI70827QJ3nrLbjWK5JPgEsJEd+7coXHjxqxdu5YJEybQq1cvs0tyevfv1frf/56yVYlSunNjyxbdRWix2K1GkTISXEKY5NatWzRo0IANGzYwbdo0Pv30U7NLcnoPblUyduxTnvzNN3pA7oAB+kXCaUhwCWGC6Oho6tSpQ2hoKDNnzqRjx45ml+T0YmP14NwkbVUSEAB9++rThMOH261GYR0SXELY2Y0bN/D29ub7779n3rx5tJabXK1ixAg9+X3BgqdMaPr5Zz1p97339GQMubHb6UhwCWFH165do3r16uzYsYNFixbRrFkzs0tyCVFR8NVX0KqV/pWoEyegdm148UUIDITnnrNbjcJ6JLiEsJMrV67g5eXF7t27WbZsGQ0aNDC7JJdw6RI0b56ErUquXdNt77duQWgo5M5ttxqFdUlwCWEHly5dwtPTk19//ZVVq1ZRu3Zts0tyCY9uVZIlSyJPjInRAwsPHYING+Dtt+1ap7AuCS4hbOz8+fNUqVKFP/74g8DAQLy8vMwuyWVMnarb3ydNesJWJUrp3viNG2HmTKhSxa41CuuT4BLChs6cOYOHhwfHjh0jODiYKvJD02r27IE+fcDbW+dSoiZNAl9f3UUo3ZsuQYJLCBs5efIkFouF06dPs2HDBirKvk5Wc+PGf1uVPHEebmAgfPYZNGgAo0bZtUZhOxJcQtjA8ePHsVgsXLhwgU2bNvHRRx+ZXZJLSdJWJbt26a6Nd9/VPfLS9u4yJLiEsLKjR49SuXJlrl27RkhICOXKlTO7JJeycKG+/Wro0CdsVfL333reU86cetXl7m7XGoVtSXAJYUV//PEHFouFW7duERoayjuJdgyI5PjzzyRsVXL9ur7wdfMmbNsGefLYtUZhe7J2FsJKfvvtNypWrMjdu3cJDw+X0LISf38oVEif6Sta9L9jaRP6Z3dMjN7P5Ndf9W7GxYrZs1RhJxJcQljBgQMH/m2+iIiIoESJEiZX5Br8/cHHB44f113t9+7pbIqMTOQFvXrB+vX6TuSqVe1aq7AfCS4hUmjPnj1UrlyZ9OnTExkZydtyc6vVDBoE0dEPH7tzRx9/zJQp+sauzz6DTp3sUp8whwSXECnw008/YbFYyJQpE5GRkbzxxOmu4lmdOJHE48HBerVVty6MGWPzuoS5JLiESKbt27dTpUoVsmXLRlRUFK+++qrZJbmcl19O+HiBAg98s2ePvq5VujQsWgRubnapTZhHgkuIZIiKiqJq1arkyZOHqKgoChYsaHZJLufatYRvLHZ311uYAHDqlO4gzJ5dz37KlMmuNQpzSHAJ8YxCQ0Px8vKiQIECREZGki9fPrNLcjn3Z+KePas3KC5YUIdYwYJ60+IWLdDjM2rV0u3vwcHw0ktmly3sRO7jEuIZbNy4kXr16vH6668TEhJCbtkaw+oenYnbsSOMHPnIk2Jj9VSMfft0aEkXZ6oiKy4hkigoKIg6depQpEgRwsPDJbRsJEkzcT/7TJ8a/PZbqF7drvUJ80lwCZEEq1aton79+pQsWZLQ0FBy5MhhdkkuKUkzcadNg8mToWdP+PRTu9YnHIMElxBPsXTpUpo0aUK5cuXYsmUL2bJlM7skl5ToTNwHR2fkzq0n7NauDePHm1muMJFc4xLiCRYsWEC7du0oX748wcHBZEl0i12REonOxL0/OuP+XcgXLugujTp1pO09FZMVlxCJmD17Nm3btqVy5cqsX79eQstGHpyJu27dIzNxExqdoRQMG2bXGoVjkeASIgHTp0+nY8eOVKtWjaCgIDLJ/UE28dSZuEkenSFSEwkuIR4xadIkunbtSq1atVizZg3PPfec2SW5rKfOxM2VK+EXPjQ6Q6Q2ElxCPGDs2LH06tWLBg0asHLlSjJkyGB2SS7rqTNx583775rWgx4anSFSIwkuIeJ9/fXX9OvXj6ZNm7J06VLSp09vdkku64kzcZWCr76Cdu2gShU9KiPB0RkitUpxV6FhGG7ATuCUUsrbMIzCwFIgB7ALaKWUupvSzxHCVpRSfPHFFwwfPpxWrVoxd+5c3KRjzWaeOBP33j29/Jo7F9q21SGVLt0T7kQWqZE1Vlw9gN8e+H4MMFEp9RpwBehghc8QwiaUUvTr14/hw4fToUMHCS0be+JM3GvXoGZNHVpDh8KcOTq0hHhEioLLMIx8QE1gVvz3BmABVsY/ZT5QNyWfIYStKKXo1asX48aNo0uXLvj5+Ulo2dATZ+KeOgUVKkB4uA6sL79MeDS8EKT8VOEkoC9w/waXHMBVpVRM/PcngbwJvdAwDB/AB6CAdAgJO4uLi6Nbt274+vrSs2dPJkyYgCE/KG3miTNxDxyAGjXg6lV9I1eC7YVC/CfZKy7DMLyB80qpXcl5vVLKTylVVilVNldiLa9C2EBsbCw+Pj74+vrSr18/CS07SHQmblgYlC8PcXHw/fcSWiJJUrLi+giobRhGDSAj8DwwGchqGEba+FVXPuBUyssUwjpiYmJo3749CxcuZMiQIXz11VcSWjaW6EzchQuhQwd48019M1f+/KbVKJxLsldcSqkBSql8SqlCQFMgTCnVAggHGsY/rQ0QmOIqhbCCe/fu0apVKxYuXMjXX3/NsGHDJLRsbP16vbfWQzNxldL3YbVuDR9/rFdaElriGdjiPq5+QG/DMA6jr3nNtsFnCPFM7t69++/9WWPHjmXw4MFml+Ty9u3TuxiXLKln5bq5odvdfXxg8GBo1Qo2bICsWc0uVTgZq0yHV0pFABHxXx8FylnjfYWwhjt37tCoUSOCgoKYNGkSPXr0MLskl3f6tG57f+EFfW0rc2Z0O2Hjxnpr48GD9aBcWfGKZJBtTYRLu3XrFvXq1WPTpk34+vrSuXNns0tyeTdv6rb3K1dg61bImxc4c0bfo7V/v76p+JNPzC5TODEJLuGybt68Se3atQkPD2f27Nm0b9/e7JJcXmysnsa0dy+sXQulSgEHD+pWwkuX9PLrobZCIZ6dBJdwSdevX6dmzZps27aN+fPn06pVK7NLShX69tUbQU6ZohdYRETogYTPPQdRUfDOO2aXKFyADNkVLueff/6hWrVqbN++ncWLF0to2cmMGTBhAnTvrn+xeDFUqwYvvww//iihJaxGgku4lCtXruDp6cnOnTtZvnw5TZo0MbukVGHTJujWTa+yJk5QMHq0Pmf4wQewbZue6i6ElcipQuEyLl68iKenJwcPHmTVqlXUqlXL7JJShQMHoFEjvXvxkoUxuHXvrpdfzZrpgbmyp5mwMgku4RLOnz+Ph4cHhw8fJjAwEC8vL7NLShXOntVt71mywLplN8jSqqmeN9i/v77JOI2c1BHWJ8ElnN6ZM2fw8PDg2LFjBAcH4+HhYXZJqUJ0tJ6IcfEi/BBwlrwtvPVmW76+ILcdCBuS4BJO7eTJk1gsFs6cOcPGjRupUKGC2SWlCnFxevDFzp0QMvUQJTpVh/PndUuht7fZ5QkXJ8ElnNaxY8ewWCxcunSJzZs388EHH5hdUqrRvz+sXg3Lun2PZXAdveFjZCSULWt2aSIVkBPQwikdOXKEihUrcuXKFUJCQiS07GjmTBg3DmZ5LqORXxXInVu3u0toCTuR4BJO5/fff6dChQrcvHmTsLAw3n33XbNLSjW2bIEunRUz3xxPhy1NMcqVg+3boXBhs0sTqYgEl3AqBw8epGLFisTExBAeHk7p0qXNLinV+PVXaNwgloVZu9Px98/1wNwtWyB7drNLE6mMBJdwGvv376dSpUqkSZOGiIgIihcvbnZJqca5c9CgejRL7tan2eVp0KcPLFkCGTOaXZpIhaQ5QziF3bt34+npibu7O2FhYbz++utml5Rq3LoFbWucZ+HJWpTlZ/j2Wz0mQwiTyIpLOLwdO3ZgsVjIkiULkZGRElp2sPVTf06mLUSckYYr7nmZt7sYpdMdwAgIkNASppMVl3Bo27Zto3r16uTKlYuwsDAKysw7m9v6qT+lfX3IRDQAL3MaBez3/pKSdeqYW5wQyIpLOLCIiAiqVavGSy+9RFRUlISWnRTyG/RvaN1nADkC55pTkBCPkOASDikkJIQaNWpQsGBBIiMjyZs3r9klpRovx554puNC2JsEl3A469evx9vbm9dff52IiAjy5Mljdkmpx/nz3CV9gg+dditg52KESJgEl3AogYGB1K1bl6JFixIWFkauXLnMLin12LGDG2+WIQ2x3HkkvG7izjGfESYVJsTDJLiEw1i5ciUNGzakdOnShIaGkiNHDrNLSh2UAl9fYj/6mPNX09G3wk/s8JnDSbeCxGFw0q0ge7r4UX56C7MrFQKQrkLhIBYvXkzr1q15//33Wb9+Pc8//7zZJaUO0dF6C5KFC9lIDZZ7L2TmquykT18avtNBlS/+lxCOQoJLmG7+/Pm0a9eOihUrEhQURObMmc0uKXU4cgTq10cdOMBQvuJwk8HMX5iGdOnMLkyIJ5PgEqaaOXMmnTp1wsPDg8DAQNzd3c0uKXUICkK1asWtO2mor9aTu5UXC+eCm5vZhQnxdHKNS5hm2rRp+Pj44OXlRVBQkISWPcTGwuDBULs2pzK+StHbu8jXwYu5ElrCiUhwCVNMnDiRbt26UadOHQICAsgow1pt7+JFqF4dRozgh6IdeO3cNqp3KYyfn4SWcC4SXMLuRo8eTe/evWnYsCErVqwgQ4YMZpfk+n7+GcqUQUVFsajiTD78dRade2Rk2jRIIz8FhJOR/8sKu1FKMWzYMAYMGEDz5s1ZsmQJ6aQTwLaUAj8/KF8eZRiM8NpKq8iO9O0LEyeCYZhdoBDPTpozhF0opRgyZAgjRoygTZs2zJ49Gzc5P2Vbt25B164wdy6qajW6ZvXHd3kOhgyBr76S0BLOS4JL2JxSir59+zJ+/Hg++eQTZsyYQRo5P2VbR49Cw4awZw+xA4fQ6vBQlix34+uvdW+GEM5MgkvYlFKKnj17MmXKFLp27cqUKVMktGxt/Xpo2RKU4t7qIJr5e7NqFYwdC59/bnZxQqSc/AQRNhMXF0eXLl2YMmUKvXv35ttvv5XQsqXYWBg6FLy9oUAB7mzfRYO5OrQmTZLQEq5DVlzCJmJjY/nkk0+YO3cu/fv3Z+TIkRhyUcV2Ll+GFi1g40Zo04Zb30ynfkt3Nm6E6dOhSxezCxTCeiS4hNXFxMTQtm1b/P39GTp0KEOHDpXQsqXdu6FBAzh9GmbM4GYLH+rUNQgLg1mzoEMHswsUwrokuIRV3bt3j5YtW7J8+XJGjBjBwIEDzS7Jtc2ZA59+Crlzw/ffc71IObxrwtatMH8+tGpldoFCWJ8El7Cau3fv0rRpUwICAhg/fjyfffaZ2SW5rtu3oXt3vaSqUgUWL+af9LmoXg1++gkWL4YmTcwuUgjbkCvlwipu375N/fr1CQgIYMqUKRJatnT8OJQvr0Nr4EDYuJEraXPh6akHZCxfLqElXJusuESKRUdHU69ePTZv3syMGTPo1KmT2SW5rk2boHlziImBNWugTh0uXoSqVeHXX2H1aqhVy+wihbAtWXGJFLl58ybe3t5s2bKFOXPmSGjZSlwcfP21HpKbNy/s3Al16nD+PFgs8NtvEBgooSVSB1lxiWS7fv06NWvWZNu2bSxYsICWLVuaXZJrunJFd1msW6dvLJ4xAzJl4swZ8PCAY8cgOFh/LURqIMElkuXq1atUr16dn3/+mSVLltC4cWOzS3JNe/fqVve//4apU3UHoWFw8qReaZ05o2/dqlDB7EKFsB8JLvHMLl++TNWqVdm/fz8rVqygXr16ZpfkmubPh86dIXt2iIyEDz4AdG+GxaK319q0CT780OQ6hbAzucYlnsnFixexWCwcOHCA1atXS2hZi78/FCqkN8cqWFC3uLdtC++/r28wjg+tI0f06uryZQgJkdASqZOsuESSnTt3Dg8PD44cOUJQUBBVq1Y1uyTX4O8PPj4QHa2/P3FC//L2hoAASKv/M/39d30d6/ZtCAuD0qVNrFkIE0lwiSQ5ffo0Hh4enDhxgnXr1mGxWMwuyXUMGvRfaD3owIF/Q+vgQR1acXEQHg7Fi9u5RiEciASXeKq///4bi8XC2bNn2bhxIx9//LHZJbmWEyeeeHz/fn3m0M0NIiKgSBH7lSaEI5JrXOKJ/vrrLypUqMD58+fZvHmzhJa1hYfr61oJKVCA3buhcmVIn173Z0hoCSHBJZ7g8OHDVKxYkX/++YfQ0FA+iG8QEFYQHQ09euj2wJw5IUOGhx93d+dw+xF4eECWLBAVBW+8YU6pQjgaCS6RoEOHDlGxYkVu3bpFWFgYZcuWNbsk1/Hjj7qzYsoUPSj36FGYPVt3ExoGFCzI7338eGd8i3874V95xeyihXAcElziMb/88guVKlUiNjaW8PBwSpUqZXZJruHuXd2I8dFHcOuW7mefMgXc3fGnBYU4RhriyHP7GCVGt+Cll/RKq2BBswsXwrFIc4Z4yL59+6hSpQrp0qUjLCyMt956y+ySXMO+fdC6te60aNcOJk6EF14AHu+GP3dOL7x69NBjCYUQD5MVl/jXrl27qFy5MhkzZiQyMlJCyxpiYmDkSHj3XZ1Ia9fqzR/jQwsS7oZXCsaOtXOtQjgJWXEJAH788Ue8vLzIli0bYWFhFC5c2OySnN/vv0ObNrBjBzRqBNOn60aMRzylG14I8QhZcQm2bt2Kp6cnOXPmJDIyUkIrpeLi9LWr0qXhjz9gyRK9u2MCoXX2rG51T0iBAjauUwgnJcGVyoWHh1OtWjXy5s1LVFQUBeSnZcocP67vFu7RQ9+A9csv0LRpgk/duhXeeUfn3KPh5e4OI0bYoV4hnJAEVyq2efNmatSoQeHChYmMjOTll182uyTnpZS+dlW8OPz8M8ycqTfJSuDvVCmYPFnnWqZMsGuXfukD3fD4+UGLFib8OYRwAnKNK5Vat24d9evXp0iRImzZsoVcuXKZXZLzOnNGtwUGB0PFijBvnp70noAbN6BjR1i2DOrU0TuXvPCCzjsJKiGSRlZcqdCaNWuoV68exYsXJywsTEIrJZYvh2LF9D1Zkybpse2JhNbvv8N778GKFTBqFKxe/VBzoRAiiWTFlcqsWLGC5s2bU7ZsWTZs2EDWrFnNLsk5XboEXbvqpVO5cnrp9ITbB1av1ttrZcgAmzfrSe9CiORJ9orLMIz8hmGEG4Zx0DCMXw3D6BF/PLthGFsMw/gz/vds1itXpIS/vz9Nmzbl/fffZ9OmTRJaybVunV5lrV4Nw4fDtm2JhlZMDPTtCw0awNtv6z0hJbSESJmUnCqMAT5TSr0NvA90NQzjbaA/EKqUeh0Ijf9emGzevHm0atWKihUrsmHDBp5//nmzS3I+167pC1Te3pArF/z0k757OG3CJy7OnQNPTxg3Dj79VM8czJ/fzjUL4YKSHVxKqTNKqd3xX18HfgPyAnWA+fFPmw/UTWmRImX8/Pxo164dVapUITg4mMyZM5tdkvMJD4cSJWDuXBgwQHcOPmGG4w8/6Fb3H3/UZxGnTXt8ALwQInms0pxhGEYhoDSwA3hRKXUm/qGzwIuJvMbHMIydhmHsvHDhgjXKEAmYOnUqnTp1ombNmqxduxZ3d3ezS3Iu0dHQs6fefiR9en3z1ciRiaaQUjB1qm4uzJhRB1fr1nauWQgXl+LgMgwjM7AK6KmUuvbgY0opBaiEXqeU8lNKlVVKlZWuNtv418zWLgAAGJ5JREFU5ptv6N69O3Xr1mX16tVkzJjR7JKcy44devrF5MnQrRvs2QNP2JPs5k1o1UrvVFKtGuzcCSVL2rFeIVKJFAWXYRjp0KHlr5RaHX/4nGEYL8U//hJwPmUliuQYOXIkffr0oVGjRixfvpz0ic0VEo+7v/3Ihx/+t/3It9/qu4UT8eef8P77sHgxfP01BAZCNmlLEsImUtJVaACzgd+UUhMeeGgt0Cb+6zZAYPLLE89KKcWXX37JoEGDaNGiBYsXLyZdunRml+U89u/X7e0jR+oBuQcOPLUNMDAQypaF06dh40YYPBjSyB2SQthMSv7z+ghoBVgMw9gb/6sGMBrwNAzjT6BK/PfCDpRSDBo0iK+++oq2bdsyf/580ibS8SbQG2EVKqRTpmBBaNxYJ9DZszqNHtl+5FGxsTBwINStC2+8oVvdq1a1X/lCpFbJ/qmmlNoKGIk8LHeq2JlSij59+jBhwgQ6derE9OnTSSP/7E/co7s3njihf5Urp+/TSmCS+4MuXIBmzSA0VL/N5Mm6GUMIYXvyz3EXEBcXR48ePZg6dSrdu3dn8uTJ6DO5IlEJ7d4IerX1lND66Sd9Q/GFC3pR1q6djWoUQiRI/knu5OLi4ujcuTNTp07ls88+k9BKqsR2afz770RfohTMmAHly+t7jrdvl9ASwgwSXE4sNjaWDh06MHPmTAYOHMi4ceMktJ7m+HG9G7FK8C6NRHdvjI7Wswa7dNG9Grt26RuMhRD2J8HlpGJiYmjdujXz5s3jq6++Yvjw4RJaTxIdDV9+qWcKrlsHDRvCc889/JxEdm88ckR3xi9cCEOH6pdnz26fsoUQj5PgckL37t2jefPmLF68mFGjRvHFF19IaCVGKb2PSJEi8NVXugXw99/1sZkzn7p7Y3AwlCmjzyyuW6ezT3pehDCX/CfoZO7cuUOjRo1YsWIF33zzDf37ywzjRB04oEc1NW6s7waOjIQlS/6bdNuiBRw7BnFx+vcHQis2FoYMgVq14JVX9KnB6tVN+VMIIR4hweVEbt++Tf369QkMDOTbb7+ld+/eZpfkmC5f1iOaSpXSNxT7+urkqVAhSS+/dAlq1NA7lrRrp3ctKVzYxjULIZJM2uGdRHR0NHXr1iUkJITvvvsOHx8fs0tyPLGx+vTf4MFw5YrupBg27JkuSO3cqVvdz57VZw47dtRnEoUQjkNWXE7gxo0b1KxZk5CQEObMmSOhlZCoKH0xqksXKF5cD8SdOvWZQmvWLPjoI/311q3wyScSWkI4IgkuB3ft2jW8/t/enYdXVZ17HP8ugkBAARmUIgpaCL2pEoI0OCCQSTJQELiKgAwKIqKCYC1epVqpOLX1Io+glwYEDVUKCI0GSCFBwIkpsWWIgihgmMJlioQp4az+8Z6UEHIggZzsM7yf5+HBHE72WWy3+bnWfve7EhJYtWoVqampDB061Okh+ZYff5QWFl27yixr3jzIypK9sy6idMenK6+UoOrWTVYVf/Urr49cKXWJdKnQhx05coSEhAQ2bNjAhx9+yL333uv0kHzHyZPwpz/BK69IccULL8Bvfysl7RVQtuNTYSFccQU88MBFG2copRymMy4fdejQIWJjY8nOzmb+/PkaWiWshYULITxcyv6SkuCbb6ROvRKbZD777Pkdn4qK5JBKKd+mweWDDhw4QHR0NJs3b2bRokX06tXL6SH5hi1bpP16nz6yN1ZWliwNtmxZqcMsXuy545On15VSvkODy8fs27ePbt26sW3bNj7++GOSkpKcHpLzjhyBJ5+U+1YbNsimjjk5EB1dqcNs3QrJyfLL024vHjo+KaV8iAaXD9m9ezddu3Zl586dLF68mPj4eKeH5KyS8vY2bWDKFKme2LpVntGqxD5jP/0E48fDzTfD6tVyaywl5fyVRQ8dn5RSPkaLM3zErl27iImJIT8/n6VLl9K5c2enh+Sszz+H0aNld8a77pLgat++UodwuSA1VUJr3z55mPjll6FZM/nzmjVld5Ndu2SmNWnSeR2flFI+SIPLB/zwww/ExMRw+PBhli1bRqdOnZweknP27JGkSU2F666TFk39+lX6gap16+CJJ2DNGujUSTY0joo69z0DB2pQKeWPdKnQYdu2baNLly4UFBSQmZkZvKF16hS8+iqEhUnBxYQJ0gz3/vsrFVr798OwYRJSO3bArFmyb1bZ0FJK+S+dcTkoNzeX2NhYioqKyMrKIiIiwukhVT9rpQX72LGyf0jv3nIT6qabKnWY06elUcaLL8KJE/D005J99et7adxKKcfojMshmzZtolu3brhcLj799NPgCK3SrSpatZKASkqCnj2hVi34xz/go48qHVoZGRARAU89JS2bNm2C11/X0FIqUOmMywFff/01cXFx1K5dm6ysLNq2bev0kLyvbKuKnTtlWhQaCpMnw6hR0rqiErZvh3HjIC0NWreWiVtyshfGrpTyKTrjqmbr168nJiaGunXrsnLlyuAILZDyvbKtKgAaN4YxYyoVWseOSeeL8HDIzJRbY5s2aWgpFSx0xlWNvvzySxISEmjcuDFZWVm0atXK6SFVj2PHZIZVnt27K3wYa+Gvf5WWhHv2wKBBElrNm1fROJVSfkFnXNVk1apV3H333VxzzTWsXLkyOELr6FF5cOpCf9cKtqooeZzrgQfgZz+TSsH33tPQUioYaXBVg6ysLBITE2nRogUrV67k+pKt4wPVoUPSrb1VK1kivO228pvgVqBVxYEDcmusY0dpmpGSAmvXwu23e230Sikfp0uFXpaRkcE999xD69atWb58Oddee63TQ/Ke/Hx44w2YOlWWB/v0kZr0yEj589atK9yqoqgIpk2T/CsslFaFzz8PDRtW499HKeWTNLi86JNPPqFv376Eh4ezbNkymgTqRk979khp+zvvyD5Z/fpJQN1887nvq2CriuXLpV5jyxaIj5eiw/BwL41dKeV3dKnQSxYuXEifPn1o164dmZmZgRlau3bBY4/Jc1dTpsB990FurrRpKhtaFfDDDzJJi4+Xh4gXLZJntDS0lFKl6YzLC+bOncvAgQOJiopiyZIlNGjQwOkhVa3t22Xn4dmzpR3T0KHwzDOVfnC4RGEhvPaaPDQcEiIriOPGQZ06VTtspVRg0BlXFUtNTWXAgAHccccdZGRkBFZoffMNDB4MbdtKE9yRIyXEpk+vUGiVbZwxZw7MnQu/+AX84Q8y2/r2W3lGS0NLKeWJzriq0MyZMxk+fDjR0dGkpaVRr149p4dUNTZuhJdekua3oaFSKfHUU1KXXkHlNc4YPFi2HmnfXp7PuusuL41fKRVQNLiqyDvvvMOjjz5K9+7dWbhwIaGhoU4P6fJt2CBTob//Ha66SpYDx46Fpk0rfajyGme4XNCoEaxfL0uESilVERpcVWDKlCmMGTOGHj16MG/ePOr4+zrXl19KYC1ZIvXnv/+9bOp49dWXdLjTp6WOozyHD2toKaUqR+9xXaY//vGPjBkzht69e7NgwQL/DS1r4dNPITYW7rhDdmJ85RVZ03vhhUsKrdxc+M1voEULOXx5Ktg4Qyml/kNnXJdh0qRJTJgwgX79+vH+++9zRSW7m/sEa2U7kZdegs8+k33t//xneOQRuIR7dIWFcissJQU+/xxq1pRdS266SR4oLr1cWIHGGUopdT5rreO/br31VutPXC6Xff755y1gBw0aZIuKipweUuW5XNampVkbFWUtWHv99da+9Za1x49f0qHWrrV2xAhrr7pKDhcWZu3rr1u7b9/Z96WmWtuypbXGyO+pqVX2t1FKBSBgvS0nMxwPLetnweVyuez48eMtYB966CFbXFzs9JAurGxavP++tfPmWRsRIf/6b7zR2unTrT11qtKHPnjQ2jfftLZdOzlUaKi1Q4ZYu3q1hJlSSl0OT8GlS4WVYK1l3LhxTJ48mZEjRzJ16lRq1PDh24SeatCthbAweYC4f/9K7YXlcsmtsJQU2az41ClpgPv223KoQHpsTSnlmzS4KsjlcvHEE08wbdo0Ro8ezeTJkzHGOD2sCyuvBt1aaNJEGgFWopxv926YNQtmzJDWTA0bwsMPw7Bh8hyWUkpVFw2uCnC5XDzyyCOkpKTw9NNP89prr/l2aFkre3942rzx4MEKhVZREaSnS1gtXiyzrehoqePo3VueRVZKqeqmwXURZ86cYdiwYcyePZsJEyYwceJE3w2tgwelFVNKiuxlb0z5degXqUHftk3CatYs2L9fGmSMHw8PPSQ7kyillJM0uC6guLiYwYMH88EHHzBx4kR+97vfOT2k87lckJUlYbVwoTztGxUl/QONkf1BKlCDfvw4LFggh1m1SiZkyckwfDgkJkpZu1JK+QL9ceTB6dOnGTBgAAsWLODVV19l/PjxTg/pXHl58O67MHMm7NghvZNGjpSbTu3anX1faOgFN2/MzpbZ1Zw5cPQo/Pzn8tzxkCGVakWolFLVRoOrHKdOneK+++4jLS2NN954g7Fjxzo9JFFUBJ98ItOipUtlthUbK0lzzz3ltlSfw0CeYyC7gBuASUDyEWlqm5ICOTnybX37yuyqSxfp3q6UUr5Kg6uMEydO0LdvX5YsWcLUqVMZNWqU00OSvT5mzJDy9fx8aN5c9v548MELbidSXjX8kCGyglhcDBER8NZbMGDAJbchVEqpaqfBVcrx48fp1asXmZmZ/OUvf2H48OFODkZ6J82YAatXy02mHj1kWtS9e4VuOj377PnV8GfOwJVXyrNYHTpIiCmllD/R4HI7duwYPXr0YPXq1cyaNYvBgwdX/yCslZtOKSmylldQAG3ayPbAgwdLH8GLOHYMMjOljN1TR/bCQrj11ioeu1JKVRMNLqCgoIDExETWrFlDamoq/fv3r94BHD4s63opKfDPf0pBxb33SqHFXXdddFr03XfynFV6usykTp+W7bNCQ+HEifPfrx3ZlVL+LOiD6/DhwyQkJJCdnc3cuXPp27dv9XywywUrV8pS4Pz50jupQwdpod6/v7Sm8OD0aVk9TE+XX1u3yutt28Ljj0sZe+fOstJY+h4XaEd2pZT/C+rgOnjwIPHx8WzevJkFCxbQs2dP73/onj1SZDFjBmzfLs39hg+X2VVkpMdv27v37Kxq2TJZEqxVSzpZPP44JCVJKXtpJVXvF6iGV0opv2Ospx3+qlHHjh3t+vXrq/Uz8/PziYuLY+vWrSxatIiEhISqOfCcOecnRb9+kjopKfL7mTPQtasEVt++5fZOcrlkL8eSWVV2trzeooWEVHKyVMJfwpZZSinlF4wxG6y1Hc97PRiDa+/evcTGxrJjxw7S0tKIi4urmgOXrT8Hqf6rV0+e7m3WDIYOld5Jbdqc9+1HjkBGhgTV0qVw4IA8U3X77RJUyclwyy1aCaiUCg6egivolgrz8vKIiYlhz549LFmyhK5du1bdwcvrxl5cLDelFi2SqVKpLUSshc2bzy4Bfv65TMYaNZI2S0lJUvneuHHVDVEppfxdUAXXzp07iYmJ4cCBA2RkZHDnnXde/kGLiuCLLyR5PHVjP3kSevUCJNdWrJC3L1589lsiIqSRbXIydOpUqR1HlFIqqARNcH3//fdER0dTUFDA8uXLiYqKuvSD5efLWl56uqztHT0qM6k6dSSkyihufgP/N1XevmKFvKVePYiLk0laYqLcu1JKKXVxQRFcW7duJSYmhhMnTpCZmUmHDh0qdwCXS5r6lVRKrFsn63zNmklxRXIyxMXx2TMfE/n2COpxdrmwkLo8vHsSHzwuVX8jRsjbu3aF2rWr+C+qlFJBIOCDKzc3l5iYGM6cOcOKFStoV7pz+oUUFEjdeXo6LFkC+/ZJVURUFLz4oqRP+/b8VFiDr7+G7HfhufcG0hN4mee4gV3s4gaeZRJLrx7It19BWJhX/6pKKRUUArqqcOPGjcTGxhISEkJmZibh4eGe32ytPMlbMqtavVruXzVoIBUSyckcikogO+8asrOlPD0n5+zDvxdijEzalFJKVVzQVRXm5OQQHx9PnTp1yMrKIqy86c7Jk9K9oqRSYvt2ef2Xv+TYw2PZ2DKZrBN3sOGfNcl+/tzai5YtpdHFoEHye2SklK2XV5+hLZaUUqrqBGRwrV27lu7du1O/fn2ysrL4eemWEnl5Z+vPly+H48dx1a5D/s2xrE18io9OJpGR25J9085+S1iYhNJjj0lItW9ffon6pEnaYkkppbzNK8FljEkA3gRCgBRr7ave+JzyfPHFFyQkJNCkSRNWrFhByxYt5AGp9HRsejrmX/8C4FD9lnzWaChzaiSTdiyakxtCCQmB8HBZGYyMlJCKiID69Sv22dpiSSmlvK/K73EZY0KArUA8kAesA/pba7d4+p7Lvcf12ag5tJr+HN+d2Ukyhsb1m7J64gQa/OMrQlcupXbhIYoJ4csanUlzJZNOMtuv+C9uaWfo0IH//LrllnK7LymllHJAdd7jigK+s9Z+7/7gD4FegMfguhyfjZpD5Nsj+Irj/BpohWV5QT7NnxxNPk1ZxK/JrJVEfvu7CYtqSGQkDOwgM6tatbwxIqWUUt7kjeC6Dvix1Nd5QCcvfA4AraY/xxmOcy/QGlgOXAPsM83InL2bTh1rMChMO1EopVSgcKw4wxgzAhgBcMNllN01P7OLGsAi4JdASc3ENXY/AwfVuNxhKqWU8jHe+Mm+G7i+1Nct3K+dw1o73Vrb0VrbsWnTppf8YXtCJPS6cDa0Sr+ulFIqsHgjuNYBbYwxNxpjagH3A2le+BwAdoyYRCF1z3mtkLrsGKE16EopFYiqPListcXA40AGkAv8zVq7uao/p0TnaQPJeXQ6eSEtcWHIC2lJzqPT6TxNa9CVUioQBXTLJ6WUUv7LUzm8Vi8opZTyKxpcSiml/IoGl1JKKb+iwaWUUsqvaHAppZTyKxpcSiml/IoGl1JKKb+iwaWUUsqvaHAppZTyKxpcSiml/IoGl1JKKb+iwaWUUsqv+ESTXWPMAWBnFRyqCfD/VXCcQKTnxjM9N57pufFMz41nVXVuWlprz9uw0SeCq6oYY9aX10lY6bm5ED03num58UzPjWfePje6VKiUUsqvaHAppZTyK4EWXNOdHoAP03PjmZ4bz/TceKbnxjOvnpuAusellFIq8AXajEsppVSA0+BSSinlVwIiuIwxCcaYb40x3xljnnF6PE4yxlxvjFlhjNlijNlsjBnjfr2RMWaZMWab+/ernR6rU4wxIcaYHGPMJ+6vbzTGrHFfP3ONMbWcHqMTjDENjTHzjTHfGGNyjTG363UjjDFj3f89bTLGfGCMqRPM140xZqYxJt8Ys6nUa+VeK0ZMcZ+nfxljOlzu5/t9cBljQoCpQCIQDvQ3xoQ7OypHFQNPWWvDgduAx9zn4xkg01rbBsh0fx2sxgC5pb5+Dfhfa21r4DAwzJFROe9NYKm19hdABHKOgv66McZcB4wGOlprbwZCgPsJ7utmFpBQ5jVP10oi0Mb9awTw9uV+uN8HFxAFfGet/d5aexr4EOjl8JgcY63da63Ndv/zT8gPn+uQczLb/bbZwD3OjNBZxpgWQDKQ4v7aADHAfPdbgvLcGGMaAF2AGQDW2tPW2iPodVOiJhBqjKkJ1AX2EsTXjbV2FXCozMuerpVewHtWfAU0NMb87HI+PxCC6zrgx1Jf57lfC3rGmFZAJLAGuNZau9f9R/uAax0altMmA78FXO6vGwNHrLXF7q+D9fq5ETgAvOteRk0xxtRDrxustbuBPwG7kMA6CmxAr5uyPF0rVf4zOhCCS5XDGHMlsAB40lpbUPrPrDwDEXTPQRhjegD51toNTo/FB9UEOgBvW2sjgULKLAsG8XVzNTJruBFoDtTj/GUyVYq3r5VACK7dwPWlvm7hfi1oGWOuQEJrjrX2I/fL+0um5+7f850an4PuBHoaY3YgS8oxyH2dhu4lIAje6ycPyLPWrnF/PR8JMr1uIA74wVp7wFpbBHyEXEt63ZzL07VS5T+jAyG41gFt3BU+tZCbpmkOj8kx7ns2M4Bca+0bpf4oDRji/uchwN+re2xOs9b+j7W2hbW2FXKdZFlrBwIrgP92vy1Yz80+4EdjTFv3S7HAFvS6AVkivM0YU9f931fJuQn666YMT9dKGjDYXV14G3C01JLiJQmIzhnGmCTk3kUIMNNaO8nhITnGGNMZWA1s5Ox9nGeR+1x/A25AtpC5z1pb9uZq0DDGdAN+Y63tYYy5CZmBNQJygAestaecHJ8TjDHtkaKVWsD3wIPI/9wG/XVjjHkR6IdU7eYAw5H7NEF53RhjPgC6IduX7AdeABZRzrXiDvu3kOXV48CD1tr1l/X5gRBcSimlgkcgLBUqpZQKIhpcSiml/IoGl1JKKb+iwaWUUsqvaHAppZTyKxpcSiml/IoGl1JKKb/yb8J8hetQ2uQqAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAJGCAYAAACZc8uEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAACS40lEQVR4nOzdZ3RU1duG8SsJvUvvVVREUFREVCQhdOlFkN5VepMX9A+CIiiIgPQmvZMgHYGQIDZEEAVBFKUTirQAIW3mvB82mRAIkMAkk2Tu31pZmTlz5swTELjde59ne1iWZSEiIiIij8zT1QWIiIiIpBYKViIiIiJOomAlIiIi4iQKViIiIiJOomAlIiIi4iQKViIiIiJOomAlIiIi4iRpXF3Aw7Db7Zw5c4asWbPi4eHh6nJEREQklbMsi2vXrlGwYEE8Pe89LpUig9WZM2coUqSIq8sQERERN3Py5EkKFy58z9dTZLDKmjUrYH64bNmyubgaERERSe1CQkIoUqSII4PcS4oMVtHTf9myZVOwEhERkSTzoCVIWrwuIiIi4iQKViIiIiJOomAlIiIi4iQpco1VfNlsNiIjI11dhjhB2rRp8fLycnUZIiIi95Uqg5VlWZw9e5YrV664uhRxohw5cpA/f371LhMRkWQrVQar6FCVN29eMmXKpH+IUzjLsggNDeX8+fMAFChQwMUViYiIxC3VBSubzeYIVbly5XJ1OeIkGTNmBOD8+fPkzZtX04IiIpIspbrF69FrqjJlyuTiSsTZon9PtW5ORESSq1QXrKJp+i/10e+piIgkd6k2WImIiIgkNQUrERERESdRsLoHmw2CgmDpUvPdZkv8zzx79iy9evWiZMmSpE+fniJFilC/fn0CAgIS/8Pv4OHhwddff51o1//kk0945ZVXyJQpEzly5Ei0zxEREUlKqe6uQGfw94c+feDUqZhjhQvDxInQpEnifOaxY8d49dVXyZEjB2PHjqVcuXJERkbyzTff0KNHD/7888/E+eBHEBERQbp06R76vc2bN6dy5crMmTPHyZWJiIi4hkas7uDvD82axQ5VAKdPm+P+/onzud27d8fDw4Off/6Zpk2b8sQTT1C2bFn69+/PTz/95DjvxIkTNGzYkCxZspAtWzbefPNNzp0753i9Q4cONGrUKNa1+/bti7e3t+O5t7c3vXv3ZtCgQeTMmZP8+fMzfPhwx+vFixcHoHHjxnh4eDieDx8+nOeee47Zs2dTokQJMmTIwIIFC8iVKxfh4eGxPrNRo0a0bdv2nj/viBEj6NevH+XKlUvYL5SIiEgy5hbByrLgxo0Hf4WEQO/e5vy4rgFmJCskJH7Xi+s6cbl06RKbN2+mR48eZM6c+a7Xo6fK7HY7DRs25NKlS+zYsYOtW7fy77//0qJFiwT/msyfP5/MmTOza9cuxowZw0cffcTWrVsB2L17NwBz584lODjY8RzgyJEj+Pn54e/vz759+2jevDk2m421a9c6zjl//jwbNmygU6dOCa5LREQkJXOLqcDQUMiS5dGvY1lmJCt79vidf/06xJGT7nLkyBEsy+Kpp56673kBAQHs37+fo0ePUqRIEQAWLFhA2bJl2b17NxUrVoxfYUD58uX58MMPAShdujSTJ08mICCAGjVqkCdPHiBmC5nbRUREsGDBAsc5AK1atWLu3Lk0b94cgEWLFlG0aNFYo2QiIiLuwC1GrJI7K55DW4cOHaJIkSKOUAXw9NNPkyNHDg4dOpSgzyxfvnys5wUKFHBsGXM/xYoVixWqALp27cqWLVs4ffo0APPmzaNDhw7qOyUiIm7HLUasMmUyo0cP8u23ULfug8/buBFefz1+nxsfpUuXxsPDwykL1D09Pe8KanF1Kk+bNm2s5x4eHtjt9gdeP66pygoVKvDss8+yYMECatasyR9//MGGDRsSWLmIiEjC2SJs7J+6k9B/gslUqgDlulfBK53rtj1L8IjVt99+S/369SlYsGCct+RblsWwYcMoUKAAGTNmpHr16vz999+xzrl06RKtW7cmW7Zs5MiRg86dO3M9PsnnIXl4mCm5B33VrGnu/rvXQIuHBxQpYs6Lz/XiO2CTM2dOatWqxZQpU7hx48Zdr1+5cgWAMmXKcPLkSU6ePOl47eDBg1y5coWnn34agDx58hAcHBzr/fv27YtfIbdJmzYttgT0mOjSpQvz5s1j7ty5VK9ePdaomoiISGL4aZA/5zIV57l+PrwyuRXP9fPhXKbi/DQoke40i4cEB6sbN27w7LPPMmXKlDhfHzNmDF9++SXTp09n165dZM6cmVq1ahEWFuY4p3Xr1vzxxx9s3bqV9evX8+2339KtW7eH/ymcxMvLtFSAu0NR9PMJE8x5zjZlyhRsNhsvvfQSfn5+/P333xw6dIgvv/ySypUrA1C9enXKlStH69at2bt3Lz///DPt2rWjatWqvPjiiwBUq1aNX375hQULFvD333/z4YcfcuDAgQTXU7x4cQICAjh79iyXL19+4PmtWrXi1KlTzJo1K16L1k+cOMG+ffs4ceIENpuNffv2sW/fvkQN2CIiknr8NMifl8Y2I78t9m38+W2neWlsM9eFK+sRANbq1asdz+12u5U/f35r7NixjmNXrlyx0qdPby1dutSyLMs6ePCgBVi7d+92nLNp0ybLw8PDOn36dLw+9+rVqxZgXb169a7Xbt68aR08eNC6efPmQ/5UluXnZ1mFC1uWWa5uvooUMccT05kzZ6wePXpYxYoVs9KlS2cVKlTIatCggRUYGOg45/jx41aDBg2szJkzW1mzZrWaN29unT17NtZ1hg0bZuXLl8/Knj271a9fP6tnz55W1apVHa9XrVrV6tOnT6z3NGzY0Grfvr3j+dq1a63HH3/cSpMmjVWsWDHLsizrww8/tJ599tl71t+2bVsrZ86cVlhY2AN/1vbt21vAXV+3/6x3csbvrYiIpHxR4VHWaa/Clu3WP9Ibwdp92z/aNjysU15FrKjwKKd95v2yx+08LCu+TQHu5uHhwerVqx19k/79919KlSrFr7/+ynPPPec4r2rVqjz33HNMnDiRr776igEDBsQaBYmKiiJDhgysXLmSxo0b3/U54eHhsfokhYSEUKRIEa5evUq2bNlinRsWFsbRo0cdfZYels0GO3dCcDAUKABVqiTOSFVq4uvrS9myZfnyyy8T5frO+r0VEZGUbd+EIJ7r5wPAeqApkAn4CXjy9vPGB/JcX2+nfGZISAjZs2ePM3vczqmL18+ePQtAvnz5Yh3Ply+f47WzZ8+SN2/e2EWkSUPOnDkd59xp9OjRjBgxwpmlPpCXF6hbQPxcvnyZoKAggoKCmDp1qqvLERGRVC70H7OWeB0mVEUCDYCS9zgvKaWIdgtDhgzh6tWrjq/bF2+L61WoUIEOHTrw2Wef8eSTTz74DSIiIo8gU6kCrCUmVDUHlgBp4zgvqTl1xCq6meS5c+coUCDmhzl37pxjajB//vx39UuKiori0qVLdzWjjJY+fXrSp0/vzFLFiY4dO+bqEkRExI0cLXyZFphQ1QJYROxAY8eDYK/ClOteJclrc+qIVYkSJcifPz8BAQGOYyEhIezatctxZ1vlypW5cuUKe/bscZyzfft27HY7lSpVcmY5IiIiksqsXr2aN996k0igJXGHKoCT/Se4pJ9Vgkesrl+/zpEjRxzPjx49yr59+8iZMydFixalb9++jBw5ktKlS1OiRAmGDh1KwYIFHQvcy5QpQ+3atenatSvTp08nMjKSnj170rJlSwoWLOi0H0xERERSF39/f1q0aEFUVBSNGrRk8tr1pCF2m55gr8Kc7D+Bl8c0cUmNCQ5Wv/zyCz4+Po7n/fv3B6B9+/bMmzePQYMGcePGDbp168aVK1d47bXX2Lx5c6y7uBYvXkzPnj3x9fXF09OTpk2bJtqdZCIiIpLy+fn50aJFC2w2G61bt6ZuZGNysYyLafJx8tPFhB477+i8XsiFndcfqd2Cq9zvlkfdkp966fdWRMQ9rVy5krfeegubzUbbtm2ZNWsugTmaUTvsaw7WHcjTG8Ymeg3xbbeQIu4KFBEREfe0YsUKR6hq164dc+fOJWjlJXzD1gNQ6qP2Lq4wNgUrERERSZaWL19Oq1atsNlstG/fnq+++govLy+OjV5KWqI4me8F0r/wjKvLjEXBSkRERJKdpUuXOkJVx44dmTNnDl5eXpw4AS8enA9A+m4dXFtkHBSs7sVmg6AgWLrUfLfZEv0jz549S69evShZsiTp06enSJEi1K9fP1b7iqTi4eHB119/nWjXb9CgAUWLFiVDhgwUKFCAtm3bcubMmUT7PBERSTmWLFlCmzZtsNvtdOrUidmzZ+N1a1+5tZ/s5wX2EumRlrx93nJxpXdTsIqLvz8ULw4+PtCqlflevLg5nkiOHTvGCy+8wPbt2xk7diz79+9n8+bN+Pj40KNHj0T73EcRERHx0O/18fFhxYoVHD58GD8/P/755x+aNWvmxOpERCQlWrRoEW3btsVut9OlSxdmzZqFp6eJK1FRkGaxGa0692I9yJXLlaXGzWnbPieh++0wffPmTevgwYPWzZs3H+7ifn6W5eHh2CHb8eXhYb78/B6x+rjVqVPHKlSokHX9+vW7Xrt8+bLj8fHjx60GDRpYmTNntrJmzWo1b97cOnv2rOP19u3bWw0bNoz1/j59+lhVq1Z1PK9atarVq1cv67333rMee+wxK1++fNaHH37oeL1YsWIW4PgqVqyYZVmW9eGHH1rPPvusNWvWLKt48eKWh4eHNX/+fCtnzpxWWFhYrM9s2LCh1aZNm3j//GvWrLE8PDysiIiIe57zyL+3IiKSrC1YsMDy9PS0AKtr166WzWaL9frXqyKtYPJZFlgRq9YkaW33yx63c48RK8uCGzce/BUSAr17m/PjugZAnz7mvPhcL56dLC5dusTmzZvp0aMHmTNnvuv1HDlyAGC322nYsCGXLl1ix44dbN26lX///ZcWLVok+Jdk/vz5ZM6cmV27djFmzBg++ugjtm7dCsDu3bsBmDt3LsHBwY7nAEeOHMHPzw9/f3/27dtH8+bNsdlsrF271nHO+fPn2bBhA506dYr3z7948WJeeeUV0qa9c6cnERFxB/Pnz6d9+/bY7Xa6devG9OnTHSNV0faM+ob8nON6pjykbVDHRZXen1P3Cky2QkMhS5ZHv45lwalTkD17/M6/fh3iCEp3OnLkCJZl8dRTT933vICAAPbv38/Ro0cpUqQIAAsWLKBs2bLs3r2bihUrxq8uoHz58nz44YcAlC5dmsmTJxMQEECNGjXIkycPYALdnfs3RkREsGDBAsc5AK1atWLu3Lk0b94cMMO4RYsWxdvb+741/N///R+TJ08mNDSUl19+mfXr18e7fhERST3mzZtHp06dsCyLd955hylTptwVqo4dg3J75wEQ9WZrSKb/I+4eI1bJnBXPka1Dhw5RpEgRR6gCePrpp8mRIweHDh1K0GeWL18+1vMCBQrctTl2XIoVKxYrVAF07dqVLVu2cPr0acD8AenQoQMeHh73vdZ7773Hr7/+ypYtW/Dy8qJdu3bx/rUQEZHUYe7cuY5Q9e677zJ16tS7QhXAoi8v0QAzO5KjT/LqXXU79xixypTJjB49yLffQt26Dz5v40Z4/fX4fW48lC5dGg8PD/788894nX8/np6ed4WTyMjIu867c8rNw8MDu93+wOvHNVVZoUIFnn32WRYsWEDNmjX5448/2LBhwwOvlTt3bnLnzs0TTzxBmTJlKFKkCD/99JNjw24REUnd5syZQ9euXbEsix49ejBp0qQ4/6c8MhKuzVlOeiK4Uqw8OZ57LumLjSf3GLHy8DBTcg/6qlkTChc259/rOkWKmPPic70HjNhEy5kzJ7Vq1WLKlCncuHHjrtevXLkCmA2sT548ycmTJx2vHTx4kCtXrvD0008DkCdPHoKDg2O9f9++ffGq43Zp06bFloAWE126dGHevHnMnTuX6tWrxxpVi4/oUBceHp6g94mISMo0e/ZsunTpgmVZ9OrV656hCmDtWmgSMg+ArD07JF2RD8E9glV8eXnBxInm8Z2/udHPJ0ww5znZlClTsNlsvPTSS/j5+fH3339z6NAhvvzyS8cITvXq1SlXrhytW7dm7969/Pzzz7Rr146qVavy4osvAlCtWjV++eUXFixYwN9//82HH37IgQMHElxP8eLFCQgI4OzZs1y+fPmB57dq1YpTp04xa9asBy5a37VrF5MnT2bfvn0cP36c7du389Zbb1GqVCmNVomIuIGZM2fStWtXAHr37s3EiRPvu3xk47hDVOJnbB5eeLVtlVRlPhQFqzs1aQKrVkGhQrGPFy5sjjdpkigfW7JkSfbu3YuPjw8DBgzgmWeeoUaNGgQEBDBt2jTATNetWbOGxx57jNdff53q1atTsmRJli9f7rhOrVq1GDp0KIMGDaJixYpcu3aNdu3aJbiecePGsXXrVooUKUKFChUeeH727Nlp2rQpWbJkoVGjRvc9N1OmTPj7++Pr68uTTz5J586dKV++PDt27CB9+vQJrlVERFKOGTNm8PbbbwPQp08fJkyYcN9Q9c8/UPpH07sqrFpdyJcvSep8WB5WClwtfL8dpsPCwjh69CglSpQgQ4YMD/8hNhvs3AnBwVCgAFSpkigjVamJr68vZcuW5csvv0yU6zvt91ZERFxi2rRpdO/eHYB+/foxbty4B97oNGSQjZ5ji1KIM2aAo2nTpCj1LvfLHrdzj8XrD8PLCx7QLkCMy5cvExQURFBQEFOnTnV1OSIikgxNnTrVsZPIgAEDGDt27ANDVUQE/DtzG4U4Q0SWnKSrVy8pSn0kClbyyCpUqMDly5f57LPPePLJJ11djoiIJDOTJ0+mV69eAAwcOJAxY8Y8MFQBrF4NDa+aaUCvtm9BClguomAlj+zYsWOuLkFERJKpSZMm0bt3bwAGDRrEp59+Gq9QBbBoylVWsBoAr47Jt3fV7bR4XURERBLFxIkTHaFq8ODBCQpVf/0F+XeuICNhRJR+Gm7d/Z7cpdpglQLX5MsD6PdURCTlGD9+PH379gVgyJAhjBo1Kt6hCmDmTGiPmQZM16V9vHtDulqqC1bRHcVDQ0NdXIk4W/TvqTZqFhFJ3r744gv69+8PwAcffMAnn3ySoFAVFgbfzvmb1/gey9MT2rRJrFKdLtWtsfLy8iJHjhyOfe8yZcqUoN9MSX4syyI0NJTz58+TI0cOvNT2QkQk2Ro3bhwDBw4EYOjQoYwYMSLB/w77+0P9KwsAsGrUxKNgQafXmVhSXbACyJ8/P0C8NhWWlCNHjhyO31sREUl+xo4dy6BBgwAYNmwYw4cPf6jBjZnT7czHBCvPjh2cWWKiS5XBysPDgwIFCpA3b944NyCWlCdt2rQaqRIRScY+++wzBg8eDMDw4cP58MMPH+o6hw6B584ginECe7bseDZs6MQqE1+qDFbRvLy89I+xiIhIIvv0008ZMmQIACNGjGDYsGEPfa3bF617tmwBKWynjVS3eF1ERESSzqhRoxyh6qOPPnqkUHXzJvjNu0YzVpkDHTo4ocKkpWAlIiIiD2XkyJF88MEHjsdDhw59pOutWgXVrviRmVCs0qXh5ZedUWaSUrASERGRBPv4448dQWrUqFGOgPUoZsyADswDwKNDhxTTu+p2ClYiIiKSILevoxo9erRjKvBR/PEHnP7+KN7swPLwgLZtH/marpCqF6+LiIiIcw0fPpwRI0YA5k7A6PYKj2rGDGh3q8WCh68vFCnilOsmNQUrEREReSDLshg+fDgfffQRYHpWRTcCfVShobBgvsWeW8GK9iljw+W4KFiJiIjIfVmWxbBhwxg5ciQAn3/+OQMGDHDa9Zcvh3Ih31GKf7GyZMGjcWOnXTupKViJiIjIPVmWxdChQ/nkk08Asw9gv379nPoZM2ZA1+hF62++CZkzO/X6SUnBSkREROJkWRYffPABo0ePBmD8+PH07dvXqZ/x22+wf9cNmrPSHEjB04CgYCUiIiJxsCyLIUOG8NlnnwEwceJEevfu7fTPmTEDGrOabFyDkiXhtdec/hlJScFKREREYrEsi8GDBzNmzBgAJk2aRM+ePZ3+Odevw6JF4HdrCxvatQPPlN0JSsFKREREHCzLYtCgQXz++ecATJ48mR49eiTKZy1bBtmvncSXAHOgXbtE+ZykpGAlIiIigAlVAwcO5IsvvgBgypQpdO/ePdE+b8YMaMtCPLGgalUoUSLRPiupKFiJiIgIlmUxYMAAxo8fD8C0adN45513Eu3z9u6FX36xWBw9DZjCF61HU7ASERFxc5Zl0a9fPyZOnAjAjBkz6NatW6J+5owZ8DI/8QR/QaZM0KxZon5eUknZK8RERETkkViWRd++fR2haubMmYkeqq5dgyVLoH30aFXTppA1a6J+ZlLRiJWIiIibsiyL3r17M3nyZDw8PJg1axadO3dO9M9dsgSirt+klecysAMdOiT6ZyYVBSsRERE3ZFkWPXv2ZOrUqXh4eDB79mw6deqUBJ9rpgEbsJZs9qtQtCh4eyf65yYVTQWKiIi4GbvdTo8ePRyhas6cOUkSqgB++QV+/RU6ecwzB1JB76rbacRKRETEjUSHqunTp+Ph4cHcuXNpn4R35M2YAQU4Qw22mAOpoHfV7VJPRBQREZH7stvtvPvuu45QNW/evCQNVVevwtKl0JrFeFp2eOUVKF06yT4/KWjESkRExA3Y7XbefvttZs+ejaenJ/Pnz6dNmzZJWsOiRRAaavF2unkQQapatB5NwUpERCSVs9vtdOvWjTlz5uDp6cmCBQto3bp1ktYQvWj9BfbweMRByJAB3nwzSWtICgpWIiIiqZjdbqdLly7MnTsXT09PFi5cSKtWrZK8jp9+gv37YZrXPLABjRtD9uxJXkdiU7ASERFJpWw2G126dGHevHl4enqyePFiWrZs6ZJaZsyAdITTJs1SE6xSyRY2d1KwEhERSYVsNhudO3dm/vz5eHl5sXjxYlq0aOGSWi5fhuXLoR7ryRJ+CQoWhOrVXVJLYtNdgSIiIqmMzWajY8eOjlC1dOlSl4UqgIULISwMemW9tYVN27bg5eWyehKTRqxERERSEZvNRocOHVi0aBFeXl4sW7aMZi7c4Dh60XpezvH6jY3mYCqdBgSNWImIiKQaUVFRtGvXjkWLFpEmTRqWL1/u0lAF8P33cPAgdEi7BE+7DV56CcqUcWlNiUnBSkREJBWIDlVLliwhTZo0rFixgqZNm7q6LGbMMN97RE8DpuLRKtBUoIiISIoXFRVF27ZtWbZsGWnSpGHlypU0atTI1WVx8SKsXAnPso+il36DdOnARXclJhWNWImIiKRgUVFRtG7dmmXLlpE2bVpWrVqVLEIVwIIFEB4OA/PcGq1q0ABy5nRtUYlMI1YiIiIpVGRkJK1bt2blypWkTZsWPz8/6tev7+qygJhF62mIpOnNxeZgKp8GBAUrERGRFCkyMpK33noLPz8/0qVLh5+fH/Xq1XN1WQ7ffguHD0Pz9JvIeP0C5MsHtWq5uqxEp6lAERGRFCYyMpKWLVs6QpW/v3+yClUQs2h9cIFb04CtW0PatK4rKIloxEpERCQFiYiIoGXLlqxevZp06dKxevVq6tat6+qyYvnvP/Dzg5xc5LlT68xBN5gGBI1YiYiIpBgRERG8+eabrF69mvTp07NmzZpkF6oA5s2DiAj4vyJL8YyKhAoVoHx5V5eVJDRiJSIikgJERETQvHlz1q5d6whVtZLhmiW7PWYasKPnPPOgQwdXlZPkNGIlIiKSzIWHh9OsWTPWrl1LhgwZWLt2bbIMVQCBgXDkCLyU6QB5ju+BNGngrbdcXVaSUbASERFJxsLDw2natCnr1q1zhKqaNWu6uqx7ih6tGln61qL1N96APHlcV1AS01SgiIhIMhUWFkbTpk3ZuHEjGTNmZN26dfj6+rq6rHs6dw5WrwYvovA+vcgcdKNpQNCIlYiISLIUFhZGkyZNHKFq/fr1yTpUAcydC1FR0OvJraT97yzkygXJcHF9YtKIlYiISDITFhZG48aN2bx5MxkzZmTDhg34+Pi4uqz7stth1izzuHe2eeZB69Zmf0A3omAlIiKSjNy8eZNGjRqxZcsWMmXKxIYNG/D29nZ1WQ+0bRv8+y8UzXaZ4r+vMQfdpHfV7TQVKCIikkzcvHmThg0bOkLVxo0bU0SogphF6589vxyP8HAoV870r3IzClYiIiLJQGhoKA0aNGDr1q1kzpyZTZs2UbVqVVeXFS/BwbDm1iBVg0u37gZs3x48PFxXlItoKlBERMTFokNVQEAAWbJkYdOmTbz22muuLivevvoKbDZoWeEwmX79Cby8zPoqN6QRKxERERe6ceMG9erVc4SqzZs3p6hQZbPFLFp/v9Ct0aratSF/ftcV5UIasRIREXGR6FAVFBRE1qxZ2bx5M6+88oqry0qQLVvg+HHIlcNG2V8XmoNuuGg9mkasREREXODGjRu88cYbjlD1zTffpLhQBTGL1j/y3o7n6VPw2GNQv75ri3IhBSsREZEkdv36derWrcuOHTvIli0bW7ZsoXLlyq4uK8FOn4b1683j1lG3pgFbtoQMGVxXlItpKlBERCQJRYeqnTt3OkJVpUqVXF3WQ5kzx6yxqlU5hOwB/uagm21hcyeNWImIiCSRa9euUadOHXbu3En27NnZunVrig1VUVExi9aHl10JN2/CU09BxYquLczFNGIlIiKSBEJCQqhTpw4//PCDI1RVTMEhZNMmOHXKbAf40sF55qCb9q66nUasREREEllISAi1a9fmhx9+IEeOHGzbti1FhyqIWbTev+E/eP7wHXh6Qtu2ri0qGVCwEhERSURXr16lVq1a/Pjjjzz22GNs27aNF1980dVlPZITJ8yIFUC3DAvMg+rVoVAh1xWVTGgqUEREJJFEh6pdu3Y5QtXzzz/v6rIe2ezZYLdDNW87uTfcuhvQzRetR9OIlYiISCK4cuUKNWvWZNeuXeTMmZOAgIBUEaqioszdgAAfVPnWdAfNlg0aNXJpXcmFRqxEREScLDpU7d692xGqnnvuOVeX5RTr18OZM5AnD1Q9Ns8cbNECMmZ0aV3JhUasREREnOjy5cvUqFGD3bt3kytXLrZv355qQhXELFp/u/V1vPxXmSduvIXNnTRiJSIi4iTRoWrPnj3kzp2bgIAAypcv7+qynObYMfjmG/O4ZwE/uHEDHn8cUuBWPIlFwUpERMQJLl26RI0aNdi7dy+5c+dm+/btlCtXztVlOdWsWWBZ5gbAfJtvLVpX76pYNBUoIiLyiC5evIivry979+4lT548BAYGprpQFRkJX31lHvdrchwCA80T9a6KxenBymazMXToUEqUKEHGjBkpVaoUH3/8MZZlOc6xLIthw4ZRoEABMmbMSPXq1fn777+dXYqIiEiiu3jxItWrV2ffvn3kzZuXwMBAnnnmGVeX5XRr18LZs5AvH9Q6d6t3VbVqUKyYawtLZpwerD777DOmTZvG5MmTOXToEJ999hljxoxh0qRJjnPGjBnDl19+yfTp09m1axeZM2emVq1ahIWFObscERGRRPPff//h6+vLvn37yJcvH4GBgZQtW9bVZSWK6EXrnTpaeC26bRpQYvGwbh9KcoJ69eqRL18+5kQ3uQCaNm1KxowZWbRoEZZlUbBgQQYMGMDAgQMB00AtX758zJs3j5YtWz7wM0JCQsiePTtXr14lW7ZszixfREQkXi5cuICvry/79+93hKoyZcq4uqxE8c8/Zo26hwecWvYdBVtUgSxZzBBW5syuLi9JxDd7OH3E6pVXXiEgIIC//voLgN9++43vvvuOOnXqAHD06FHOnj1L9erVHe/Jnj07lSpV4scff4zzmuHh4YSEhMT6EhERcZXbQ1X+/PkJCgpKtaEKzKJ1gJo1oeDWW6NVzZq5TahKCKffFTh48GBCQkJ46qmn8PLywmaz8cknn9C6dWsAzp49C0C+fPlivS9fvnyO1+40evRoRowY4exSRUREEuz8+fP4+vpy4MABChQoQGBgIE8++aSry0o0ERExi9a7dwiFbsvNE00DxsnpI1YrVqxg8eLFLFmyhL179zJ//nw+//xz5s+f/9DXHDJkCFevXnV8nTx50okVi4iIxM+5c+fw8fHhwIEDFCxYkKCgoFQdqgBWr4YLF6BAAagb8TVcuwbFi8Prr7u6tGTJ6SNW7733HoMHD3aslSpXrhzHjx9n9OjRtG/fnvz58wPmP84CBQo43nfu3Ll7dqZNnz496dOnd3apIiIi8Xbu3DmqVavGwYMHKVSoEIGBgZQuXdrVZSW66EXrnTtDmsW3BknatQNPdWyKi9N/VUJDQ/G84xfby8sLu90OQIkSJcifPz8BAQGO10NCQti1axeVK1d2djkiIiKP7OzZs/j4+DhCVVBQkFuEqr/+Mu2qPDzg7TdOwdat5oV27VxbWDLm9BGr+vXr88knn1C0aFHKli3Lr7/+yhdffEGnTp0A8PDwoG/fvowcOZLSpUtTokQJhg4dSsGCBWmknbFFRCSZCQ4Oplq1avz5558ULlyYwMBAHn/8cVeXlSRmzjTf69SBwkGLTNv1KlWgVCnXFpaMOT1YTZo0iaFDh9K9e3fOnz9PwYIFefvttxk2bJjjnEGDBnHjxg26devGlStXeO2119i8eTMZMmRwdjkiIiIPLTg4GB8fHw4fPkyRIkUIDAyklJuEirAwmDfPPH7nbQsG3XqiRev35fQ+VklBfaxERCSxnTlzBh8fH/766y+KFi1KYGAgJUuWdHVZSWbJEmjdGgoXhqPLdpHmtZchY0bTu8oN/+11WR8rERGRlO706dN4e3vz119/UaxYMYKCgtwqVEHMovUuXSDNonnmSZMmbhmqEsLpU4EiIiIp2alTp/Dx8eHIkSOOUFW8eHFXl5WkDh2Cb781N/51bh0GFZeZFzp0cGldKYFGrERERG45efIk3t7eHDlyhOLFi7Njxw63C1UQs2i9Xj0o/Os6uHLFzAn6+Li0rpRAwUpERAQ4ceIE3t7e/PPPP5QoUYKgoCCKFSvm6rKS3M2bEN3T++23iVnB3q4deHm5qqwUQ1OBIiLi9qJD1dGjRylZsiSBgYEULVrU1WW5xKpVcPkyFC0KtcoHwzffmBfUuypeNGIlIiJu7fjx445QVapUKYKCgtw2VEHMovWuXcFr2WKw2eDllyGVb93jLBqxEhERt3Xs2DF8fHw4duyYI1QVLlzY1WW5zB9/wPffmxm/Th0tqH1rTlCL1uNNI1YiIuKWjh07hre3N8eOHaN06dLs2LHDrUMVxIxWNWgABc/9CgcOQPr00KKFawtLQRSsRETE7Rw9epSqVaty/PhxSpcuTWBgIIUKFXJ1WS4VGgoLFpjHsRatN2oEOXK4pqgUSMFKRETcyr///kvVqlU5ceIETzzxBEFBQW4fqgCWL4erV6FECahRNcK0XgdtYZNAClYiIuI2/vnnH7y9vTl58iRPPvkkQUFBFCxY0NVlJQu3L1r33LQBLl6EAgWgRg3XFpbCKFiJiIhbOHLkiCNUPfXUUwQFBVGgQAFXl5Us/PYb7NoFadJAx47ENLJq08YclHhTsBIRkVTv77//xtvbm1OnTlGmTBkCAwPJnz+/q8tyOZsNgoJg4EDzvGFDyO91ATZsMAc0DZhgiqEiIpKqRYeqM2fO8PTTT7N9+3by5cvn6rJczt8f+vSBU6diju3YAb/93xKejYqCF1+EsmVdV2AKpWAlIiKp1uHDh/Hx8SE4OJiyZcuyfft28ubN6+qyXM7fH5o1A8uKffziRbDNvTUNqNGqh6KpQBERSZVuD1XPPPOMQtUtNpsZqbozVAE8Y/3O8/xKBGmxvflW0heXCihYiYhIqvPnn3/i7e1NcHAw5cqVU6i6zc6dsaf/btceM1q1jvrsPJgrCatKPRSsREQkVTl06BDe3t6cPXuW8uXLs337dvLkyePqspKN4OC4j6chkjYsAmAeHe55ntyfgpWIiKQaBw8exNvbm3PnzvHss88SEBBA7ty5XV1WsnKvDhO1+IZ8nOc8edhM7XueJ/enYCUiIqnCH3/8gY+PD+fPn+e5555TqLqHKlXiDlcdmAfAElpToEhaqlRJ2rpSCwUrERFJ8Q4cOOAIVRUqVCAgIIBcubRGKC5eXvD447GPPcYl6rMOMNOAEyaY8yThFKxERCRF279/Pz4+Ply4cIHnn3+ebdu2kTNnTleXlWx9841ZwO7hAdHr+VuyjPRE8EfaZxnm9yxNmri2xpRMwUpERFKs33//nWrVqvHff//xwgsvKFQ9QGgovPuuedy7N5w5aePX8UF8lnccAGVGtVOoekRqECoiIinSb7/9hq+vLxcvXuTFF19k69at5MiRw9VlJWsffQRHj0LhwjC6oj9epfrw3G29Fzy/+BxKFkfp6uFpxEpERFKcffv2Ua1aNS5evEjFihUVquLh99/h88/NY/82/mRs2+zuhlZnz5qW7P7+SV9gKqFgJSIiKcqvv/6Kr68vly5dolKlSgpV8WCzQbdu5nuzxjYqLrpH6/XoY337mpMlwRSsREQkxdi7d68jVL388st88803ZM+e3dVlJXvTp8OuXZA1K0x96z6t18GEq5MnzQp3STAFKxERSRH27NmDr68vly9fpnLlygpV8XT6NAwZYh6PHg15ouLZUl2t1x+KgpWIiCR7v/zyC9WrV+fKlSu88sorbN68mWzZsrm6rBShd2+4dg0qVYJ33uHerdfvpNbrD0XBSkREkrXdu3c7QtWrr76qUJUAa9eadehp0sDMmbeaflapYm4LvBcPDyhSBLVefzgKViIikmz9/PPPVK9enatXr/Laa6+xadMmsmbN6uqyUoRr16BHD/N4wAAoX/7WC15e0LBh3G/y8DDf1Xr9oSlYiYhIsrRr1y5q1KhBSEgIVapUUahKoKFDzRr1EiVg2LDbXggPh3Vm+xruXKNWuDCsWqU+Vo9ADUJFRCTZ+fHHH6lVqxbXrl3j9ddfZ8OGDWTJksXVZaUYv/wCkyaZx9OnQ6ZMt704fTqcOAGFCsGff5qTg4PNmqoqVTRS9YgUrEREJFn54YcfqF27NteuXcPb25v169eTOXNmV5eVYkRFQdeuYLdDq1ZQs+ZtL167BiNHmscffghZsoC3tyvKTLU0FSgiIsnG999/7xip8vHxUah6CBMnwr598NhjMH78HS+OHw///QdPPAEdO7qivFRPwUpERJKF7777jtq1a3P9+nWqVaumUPUQjh2LWU81dizkzXvbixcuxOxp8/HH5lZBcToFKxERcbmdO3c6QpWvry/r1q0jU6yFQfIglmXuAgwNhddfh06d7jhh9GgzFfj882Y/QEkUClYiIuJS3377LXXq1OHGjRvUqFFDoeohrVwJGzdCunQwY0ZM5wTALFafOtU8HjUKPPXPf2LRr6yIiLjMjh07HKGqZs2arFmzhowZM7q6rBTnyhXo08c8HjIEnnrqjhNGjDBtFry971jNLs6mYCUiIi4RFBRE3bp1CQ0NpVatWnz99dcKVQ9p8GA4exaefDJmX0CHP/+EefPM49Gj7xjKEmdTsBIRkSS3fft2R6iqXbu2QtUj+P57M/UH5nv69Hec8L//md4LDRvCyy8neX3uRsFKRESSVEBAAPXq1ePmzZvUrVuX1atXkyFDBleXlSJFREC3buZxp05QteodJ+zeDX5+ZpTqk0+SvD53pGAlIiJJZtu2bY5Q9cYbb+Dv769Q9QjGjoWDByFPHvP4Lu+/b763bQtlyyZpbe5KwUpERJLE1q1bqV+/PmFhYdSrVw8/Pz/S3zVvJfH199+mHRWYvp85c95xQkAAbNsGadOaxeuSJBSsREQk0X3zzTeOUFW/fn1WrVqlUPUILAveecfc6Fezptm65q4Tolexv/suFC+e1CW6LQUrERFJVJs3b6Zhw4aEh4fTsGFDhSonWLgQtm+HDBlMe6q7bvRbvdqsr8qcGT74wCU1uisFKxERSTSbNm2iUaNGhIeH06hRI1asWEG6dOlcXVaK9t9/0L+/efzhh1Cq1B0nREXFhKn+/e/Y10YSm4KViIgkio0bNzpCVePGjRWqnGTgQLh4EcqVgwED4jhh4ULTuypXrnucIIlJwUpERJxu/fr1NG7cmIiICJo2bcry5ctJmzatq8tK8bZvh/nzzdTfzJlmXXosYWFmGAvMGqvs2ZO8RnenYCUiIk61bt06mjRpQkREBM2aNWPp0qUKVU5w8ya8/bZ53L37PXp9TpsGJ09C4cLmJElyClYiIuI0a9eupWnTpkRGRtK8eXOWLFmiUOUkn3wCR45AwYJmH+W7hITEvPDhh6BO9i6hYCUiIk6xZs0amjVrRmRkJC1atFCocqI//oDPPjOPJ02CbNniOOmLL8zK9ieegA4dkrI8uY2ClYiIPLLVq1c7QlXLli1ZtGgRadKkcXVZqYLdbratiYqCBg2gceM4TrpwAcaNM48/+QT0a+8yClYiIvJI/P39efPNN4mKiqJVq1YsXLhQocqJZs2CH36ALFlg8uQ4elaBmQK8fh1eeAGaNk3yGiWGgpWIiDw0Pz8/R6hq3bo18+fPV6hyouBg+L//M49HjoQiReI46fhx0yUUYPToeyQvSSoKViIi8lBWrlxJixYtsNlstG3bVqEqEfTtC1evwosvQs+e9zhpxAiIiAAfH6hePSnLkzgoWImISIKtWLGCt956C5vNRrt27Zg7dy5eXl6uLitV2bgRVqwALy/TsyrOX96DB01jK9BoVTKhYCUiIgmyfPlyWrVqhc1mo3379nz11VcKVU5240ZMG6q+faFChXucOHSoWd3euDFUqpRU5cl9KFiJiEi8LV261BGqOnbsyJw5cxSqEsGHH5qlU8WKmZm+OP38M/j7g6enWYAlyYKClYiIxMuSJUto06YNdrudTp06MXv2bIWqRPDrrzBhgnk8dSpkznyPE4cMMd/btYOnn06K0iQeFKxEROSBFi1aRNu2bbHb7XTp0oVZs2bh6al/QpzNZjM9q2w2ePNNqFv3Hidu22Y2DkyXDoYPT8oS5QH0p0JERO5r4cKFtG/fHrvdTteuXZkxY4ZCVSKZPBl++cXsnTxx4j1OsqyY0ap33zXzhZJs6E+GiIjc0/z58x2hqlu3bkyfPl2hKpGcPAn/+595/NlnkD//PU709zfpK0sWeP/9JKtP4kd/OkREJE7z5s2jY8eOWJbFO++8w7Rp0xSqEollmT5V16/Dq69C1673ODEqCj74wDzu3x/y5k2yGiV+9CdERETuMnfuXDp16oRlWbz77rtMnTpVoSoRrV4Na9dC2rQwY4a50S9O8+fD4cOQKxcMGJCkNUr86E+JiIjEMmfOHDp37oxlWfTo0YMpU6bgocaTiebqVejVyzweNAjKlr3HiWFhMQvV338fsmVLivIkgRSsRETEYfbs2XTp0gXLsujVqxeTJk1SqEpkH3wAZ87A44/HzPLFaepUOHUKCheO6R4qyY6ClYiIADBz5ky63lrc07t3byZOnKhQlch++ilm/+Tp0yFjxnucGBICo0aZxyNGQIYMSVKfJJyClYiIMGPGDN5++20A+vTpw4QJExSqEllkpOlZZVmmx6ev731OHjcOLl6Ep54yJ0uypWAlIuLmpk2bxjvvvANAv379GD9+vEJVEvjiC9i/36xDHzfuPieePx9zwsiRkCZNktQnD0fBSkTEjU2dOpXut9brDBgwgHHjxilUJYF//43ZA3DcOMid+z4njxpldmV+8UVo0iRJ6pOHp2AlIuKmJk+eTI8ePQAYOHAgY8eOVahKApZlGqbfvAnVqj1gZu/4cZg2zTwePRr0+5PsKViJiLihSZMm0evWPf6DBg1izJgxClVJZOlS2LIF0qc3C9bv+8s+fDhERJgFWNWrJ1WJ8ggUrERE3MzEiRPp3bs3AIMHD+bTTz9VqEoily5B377m8f/+B6VL3+fkP/6ABQvM4+g7AiXZU7ASEXEj48ePp++tf9mHDBnCqFGjFKqS0KBBcOECPP20eXxf//sf2O1mXdVLLyVJffLoFKxERNzEF198Qf/+/QH44IMP+OSTTxSqktC338KcOebxjBmQLt19Tt61C77+2uxtM3JkUpQnTqJgJSLiBsaNG8eAW3vLDR06lI8//lihKgmFh5ueVWC+v/bafU62LBg82Dxu3x7KlEn0+sR5FKxERFK5sWPHMnDgQACGDRvGiBEjFKqS2Kefmr2T8+Uzj+9r61YICjJDWtF7A0qKoWAlIpKKffbZZwy6tZhn+PDhClUu8OefMWvPJ06Exx67z8l2u9lgGcx+gEWLJnp94lwKViIiqdSnn37K4FtTSiNGjODDDz90cUXux7LgnXdMx4Q6deDNNx/wBj8/2LMHsmSJCViSoihYiYikQqNGjWLIkCEAfPTRRwwbNszFFbmnuXNhxw7IlMlstnzfwcKoKHMnIMDAgZAnT5LUKM6lYCUiksqMHDmSDz74wPF46NChLq7IPZ0/b/IRwEcfQfHiD3jDvHnw119mf5tbd29KyqOdHEVEUpGPP/7YMTp1+6iVJL3+/eHyZahQAfr0ecDJN2/GLFT/4APImjWxy5NEohErEZFUYsSIEY5QNXr0aIUqF9q6FRYvNm2oZs6ENA8axpg6FU6fhiJFzKIsSbE0YiUikgpE3/EHse8ElKQXGhqTjXr1ghdffMAbrl6NuW1wxAjIkCFR65PEpWAlIpKCWZbF8OHD+eijj4DYPavENT7+GP79FwoXNo8faNw4s4lgmTLQtm2i1yeJS8FKRCSFsiyLYcOGMfLWlieff/65o7u6uMbvv8PYsebxlCnxWCp17hx88YV5PHJkPOYMJblLlDVWp0+fpk2bNuTKlYuMGTNSrlw5fvnlF8fr0X8ZFChQgIwZM1K9enX+/vvvxChFRCRVsiyLoUOHOkLVF198oVDlYjab2a7GZjP7JjdoEI83ffIJ3LgBFStC48aJXqMkPqcHq8uXL/Pqq6+SNm1aNm3axMGDBxk3bhyP3dZqdsyYMXz55ZdMnz6dXbt2kTlzZmrVqkVYWJizyxERSXUsy3Jsogwwfvx4+vXr5+KqZPp0s3dy1qzw5ZfxeMOxY+ZNYPa5UUf81MFysv/7v/+zXnvttXu+brfbrfz581tjx451HLty5YqVPn16a+nSpfH6jKtXr1qAdfXq1UeuV0QkJbHb7db//d//WYAFWBMnTnR1SWJZ1qlTlpU1q2WBZU2eHM83tWtn3lC9eqLWJs4R3+zh9BGrtWvX8uKLL9K8eXPy5s1LhQoVmDVrluP1o0ePcvbsWapXr+44lj17dipVqsSPP/4Y5zXDw8MJCQmJ9SUi4m4sy2Lw4MF89tlnAEyaNInevXu7uCoB6N0brl2DSpXi2S3hwAFYuNA8jr4jUFIFpwerf//9l2nTplG6dGm++eYb3n33XXr37s38+fMBOHv2LAD58uWL9b58+fI5XrvT6NGjyZ49u+OrSJEizi5bRCRZsyyLQYMGMWbMGAAmT55Mz549XVyV+7LZICgIli41y6T8/c2685kzwcsrHhf43//MRoJNm5r1VZJqOP32A7vdzosvvsioWwm8QoUKHDhwgOnTp9O+ffuHuuaQIUPof1t7/5CQEIUrEXEblmUxcOBAvrh199iUKVPo3r27i6tyX/7+ppP6qVOxj9erB+XLx+MCP/4Ia9aY7qG3bj6Q1MPpI1YFChTg6aefjnWsTJkynDhxAoD8+fMDcO7cuVjnnDt3zvHandKnT0+2bNlifYmIuAPLshgwYIAjVE2bNk2hyoX8/aFZs7tDFZis5O//gAtYFkR3xO/YEZ56yuk1ims5PVi9+uqrHD58ONaxv/76i2LFigFQokQJ8ufPT0BAgOP1kJAQdu3aReXKlZ1djohIimVZFv369WP8+PEAzJgxg3e03YnL2GxmpMqy7n1O377mvHvasgV27ID06eHDD51doiQDTg9W/fr146effmLUqFEcOXKEJUuWMHPmTHr06AGAh4cHffv2ZeTIkaxdu5b9+/fTrl07ChYsSKNGjZxdjohIimRZFn379mXixIkAzJw5k27durm4Kve2c2fcI1XRLAtOnjTnxcluh/ffN4979DD7Akqq4/Q1VhUrVmT16tUMGTKEjz76iBIlSjBhwgRat27tOGfQoEHcuHGDbt26ceXKFV577TU2b95MBu2PJCKCZVn07t2byZMn4+HhwaxZs+jcubOry3J7wcGPeN6qVbB3r2l0pQ2yUy0Py7rfoGbyFBISQvbs2bl69arWW4lIqmJZFj179mTq1Kl4eHgwe/ZsOnXq5OqyBHMXoI/Pg88LDARv7zsORkZC2bLw999mo+VhwxKhQklM8c0eibKljYiIJJzdbqdHjx6OUDVnzhyFqmSkShUoUODer3t4mNm9KlXieHHePBOq8uQBdclP1RSsRESSgehQNW3aNDw8PJg7dy4dO3Z0dVlyGw8Pk4vu9RrAhAlx9LG6eROGDzePP/ggHjszS0qmYCUi4mJ2u513332X6dOn4+Hhwbx58x66758knvHj4fffIV06uKPHNYULmyVUTZrE8cYpU+DMGShaNJ5t2SUlc/ridRERiT+73c7bb7/N7Nmz8fT0ZP78+bRp08bVZckd9u6NWW8+aRJ07mzu/gsONtODVarco+P6lSsxW9aMGGHaLEiqpmAlIuIidrudbt26MWfOHDw9PVmwYEGsO6glebhxA956y6w/b9wYunY1U393LVCPy+efw+XL8PTT0LZtYpcqyYCClYiIC9jtdrp06cLcuXPx9PRk4cKFtGrVytVlSRz69oW//oJChWDWrJj1VA907pyZPwSzoWC8NhGUlE7BSkQkidlsNrp06cK8efPw9PRk8eLFtGzZ0tVlSRxWrYLZs02YWrgQcuVKwJtHjoTQUKhUCRo2TLQaJXlRsBIRSUI2m43OnTszf/58vLy8WLx4MS1atHB1WRKHkyfNtB/A4MHx62HlcPQozJhhHo8enYBhLknpFKxERJKIzWajY8eOLFy4EC8vL5YuXUrz5s1dXZbEwWaDNm3M2vOKFc268wT58EOzKKtmzQQmMknpFKxERJKAzWajQ4cOLFq0CC8vL5YtW0azZs1cXZbcw6efwrffQpYssGQJpE2bgDfv3w+LFpnH0XcEittQsBIRSWRRUVG0b9+eJUuWkCZNGpYtW0bTpk1dXZbcw08/mQEnMC2oHn88gRf43//MjszNm8MLLzi9PkneFKxERBJRVFQU7dq1Y+nSpaRJk4YVK1bQuHFjV5cl9xASAq1amanAVq0eokPCDz/A2rXmDsCPP06UGiV5U7ASEUkkUVFRtG3blmXLlpEmTRpWrlxJo0aNXF2W3EePHmbdefHiMHVqAtecW1ZMF9GOHeHJJxOjREnmFKxERBJBVFQUrVu3ZsWKFaRNm5aVK1fSULfcJ2uLFpkvLy+zrip79gRe4JtvzMKs9Olj5hLF7ShYiYg4WWRkJK1bt2blypWkTZsWPz8/6tev7+qy5D7+/Re6dzePP/wQKldO4AXs9pjRqp49zeaB4pYUrEREnCgyMpK33noLPz8/0qVLh5+fH/Xq1XN1WXIfkZFmPdW1a2bPv/fff4iLrFwJ+/ZBtmwxAUvckoKViIiTREZG0rJlS/z9/UmXLh3+/v688cYbri5LHmDECNi1y0z9RU8FJkhkpLkTEGDgwAS2Z5fURsFKRMQJIiIiaNmyJatXryZdunSsXr2aunXruroseYAdO2JaTc2cCUWLxvONNhvs3AnBwbB7Nxw5AnnyQL9+iVarpAwKViIijygiIoI333yTNWvWkD59er7++mtq167t6rLkAS5dMt3VLQs6dYI334znG/39oU8fOHUq9vEGDUxHUXFrnq4uQEQkJYuIiKB58+aOULVmzRqFqhTAssw+gKdOQenSMHFiPN/o7w/Nmt0dqgC++sq8Lm5NwUpE5CGFh4fTrFkz1q5dS4YMGVi7di21atVydVkSD3PmmAyUNi0sXRrPgSabzYxUWda9z+nb15wnbkvBSkTkIYSHh9O0aVPWrVvnCFU1a9Z0dVkSD3/+afIRwCefJGDXmZ074x6pimZZcPKkOU/cltZYiYgkUFhYGE2bNmXjxo1kzJiRdevW4evr6+qyJB7Cw01rhdBQ8PWFAQMS8ObgYOeeJ6mSgpWISAKEhYXRpEkTNm3aRMaMGVm/fj3VqlVzdVkSTx98AL/+ajoiLFgAngmZtylQwLnnSaqkqUARkXgKCwujcePGjlC1YcMGhaoUZMsWGDfOPP7qKyhYMIEXqFLl/qHJwwOKFDHnidvSiJWISDzcvHmTRo0asWXLFjJlysSGDRvw9vZ2dVkST+fPQ7t25nH37qYzQoKFhUGGDHG/Fr1b84QJD9FhVFITjViJiDzAzZs3adiwoSNUbdy4UaEqBYnuU3XuHDz9NHz++UNcxG6Htm3h6FGzbU3+/LFfL1wYVq2CJk2cUrOkXBqxEhG5j9DQUBo2bMi2bdvInDkzGzdu5PXXX3d1WZIAU6bAhg2QPr1prZAx40Nc5H//g9WrIV062LgRXn45pvN6gQJm+k8jVYKClYjIPYWGhtKgQQMCAgLIkiULmzZt4rXXXnN1WZIA+/eb7fsAxo6F8uUf4iILFsDo0ebxnDnw6qvmsUYtJQ4KViIicbhx4wb169cnMDCQLFmysHnzZl6N/gdVUoSbN+Gtt0yLhbp1oWfPh7jId9+ZFu0A779v9sARuQ8FKxGRO9y4cYN69eoRFBRE1qxZ2bx5M6+88oqry5IEeu89+OMPyJcP5s6NWV8eb8eOQePGEBFh1k59/HFilCmpjIKViMhtbty4wRtvvMGOHTvImjUr33zzDZUrV3Z1WZJA69aZtVUA8+dD3rwJvEBICNSrB//9B88//xBNr8Rd6b8SEZFbrl+/Tt26ddmxYwfZsmVjy5YtClUp0Jkz0LGjedy/PyR4+0abzcwh/vGHWZi+Zg1kzuz0OiV10oiViAgxoWrnzp2OUFWpUiVXlyUJZLebflUXL8Jzz8GoUQ9xkffeM3f+ZchgQlXhws4uU1IxjViJiNu7du0aderUYefOnWTPnp2tW7cqVKVQ48ZBQIBpqbB0qWmxkCCzZsH48ebxggVQsaLTa5TUTSNWIuLWQkJCqFOnDj/88IMjVFXUP6Yp0i+/mBv3ACZOhKeeSuAFAgNNW3aAjz6C5s2dWp+4BwUrEXFbISEh1K5dmx9//JEcOXKwdetWXnzxRVeXJQ/h+nVo1QqioswNfF26JPACf/0FTZuaC7z1lmkIKvIQNBUoIm7p6tWr1KpVix9//JHHHnuMbdu2KVSlYH36wN9/m+VQs2YlsLXC5ctQv775XqmSaQKa4N4MIoZGrETE7USHql27djlC1fPPP+/qsuQhrVgBX31lstCiRZAzZwLeHBlppvz++guKFIGvv37IPW9EDI1YiYhbuXLlCjVr1mTXrl3kzJmTgIAAhaoU7Phx6NbNPH7/fahaNQFvtizo3dusds+cGdavv3tzZZEE0oiViLiN6FC1e/duR6h67rnnXF2WPCSbzewwc/WqmcH78MMEXmDSJJg+3Qx1LVnykBsJisSmESsRcQuXL1+mRo0a7N69m1y5crF9+3aFqhRu1CizlV/WrCYXpU2bgDdv3gz9+pnHn30GDRokSo3ifjRiJSKpXnSo2rNnD7lz5yYgIIDyGp1I0X74AUaMMI+nToWSJRPw5oMHoUUL0020Y0cYODBRahT3pGAlIqnapUuXqFGjBnv37iV37txs376dcuXKuboseQRXr0Lr1mYqsHVrMx0YbxcumD0AQ0Lg9ddjpgJFnETBSkRSrYsXL1K9enX27dtHnjx52L59O88884yry5JHYFnw7rtw7BiUKBGz0XK8hIebJldHj5ohLj8/SJcusUoVN6U1ViKSKt0eqvLmzUtgYKBCVSqwaJHZqsbLCxYvhuzZ4/lGy4J33jGLsrJlg3XrIHfuRK1V3JOClYikOv/99x++vr7s27ePfPnyERgYSNmyZV1dljyif/6J2XFm+HCoXDkBbx47FubNA09P0/jq6acToUIRTQWKSCpz4cIFfH192b9/vyNUlSlTxtVlySOKjDRb1ly/DlWqwJAhCXjz11/D4MHm8cSJUKtWYpQoAmjESkRSkdtDVf78+QkKClKoSiWGD4eff4YcOcx0oJdXPN+4b59Z3R69OKtHj8QrUgQFKxFJJc6fP0+1atXYv38/BQoUICgoiKeeesrVZYkTBAXB6NHm8axZULRoPN949qzpT3XjBlSvbkardAegJDJNBYpIinfu3DmqVavGwYMHKViwIIGBgTzxxBOuLkuc4OLFmAGnzp2hWbN4vvHmTWjYEE6ehCefhJUrE9hBVOThaMRKRFK020NVoUKFCAoKUqhKJSwLunaF06fhiSdgwoQEvLFTJzN3+NhjZg/AHDkSsVKRGBqxEpEU6+zZs1SrVo1Dhw45QtXjjz/u6rLESWbNgtWrzUDTkiWQJUs83/jxx7BsGaRJA/7+oP8mJAlpxEpEUqTg4GB8fHw4dOgQhQsXVqhKZQ4dgr59zeNRo+CFF+L5xhUrYnZjnjYNvL0ToTqRe9OIlYikONGh6vDhwxQpUoTAwEBKlSrl6rLEScLD4a23zDKp6tWhf/94vvHnn6F9e/O4f3/o0iXRahS5F41YiUiKcubMGby9vTl8+DBFixYlKChIoSqVGTIEfvvNNEZfsMD09HygU6fMYvWwMHjjDRgzJtHrFImLgpWIpBinT5/G29ubv/76i2LFihEUFETJkiVdXZY40ebNMH68efzVV1CgQDzedOOGaatw9iw884xZkBXvRlcizqWpQBFJEU6dOoWPjw9HjhxxhKrixYu7uixxonPnYmbyevSA+vXj8Sa73fRj+PVXyJPH7AGYLVui1ilyPxqxEpFk7+TJk3h7e3PkyBGKFy/Ojh07FKpSGcuCjh3h/HkoW9Zs7RcvH3xgtqxJl858138X4mIKViKSrJ04cQJvb2/++ecfSpQoQVBQEMWKFXN1WeJkkybBpk2QPj0sXQoZM8bjTQsWwKefmsdz5sArryRqjSLxoalAEUm2okPV0aNHKVmyJIGBgRSN934mklL8/ju89555/PnnUK5cPN703XemeyjA+++b6UCRZEDBSkSSpePHj+Pj48PRo0cpVaoUgYGBFClSxNVliRPYbLBzJwQHm8bo/ftDRIS5mS9eeyQfPQqNG5s3NWliGoKKJBMKViKS7Bw7dgwfHx+OHTtGqVKlCAoKonDhwq4uS5zA3x/69DHdEW6XIwfMnRuPPZJDQsyq9v/+g+efT0A/BpGkof8aRSRZOXbsGN7e3hw7dozSpUuzY8cOhapUwt/fbKJ8Z6gCuHLFjGLdl81mOof+8Yfpw7B2LWTOnBilijw0BSsRSTaOHj1K1apVOX78OKVLlyYwMJBChQq5uixxApvNjFRZVtyve3iYLWxstvtcZOBA2LjRrGxfuxb034YkQwpWIpIs/Pvvv1StWpUTJ07wxBNPEBQUpFCViuzcGfdIVTTLgpMn7zNqNXMmTJhgHs+fDy++6OwSRZxCwUpEXO6ff/7B29ubkydP8uSTTxIUFETBggVdXZY4UXDwI5y3fXvMqvaPPoLmzZ1Wl4izKViJiEsdOXLEEaqeeuopgoKCKBCvfUwkJYnvb+ld5/31l1mYFRUFrVrB//7n9NpEnEnBSkRc5u+//8bb25tTp05RpkwZAgMDyZ8/v6vLkkRQpYrZVPlePDygSBFznsPly+YOwMuX4eWXTRPQB942KOJaarcgIi4RHarOnDnD008/zfbt28mXL5+ry5JEcuQIhIbG/Vp0Vpow4ba9kyMjzUjVX3+ZxPX115AhQxJUKvJoNGIlIknu8OHDVK1alTNnzlC2bFkCAwMVqlKxS5fMwFNoKDzxxN038xUuDKtWmV6fgFnJ3quXWVuVOTOsXw/670NSCI1YiUiSOnz4MD4+PgQHB/PMM88QEBBA3rx5XV2WJJLogae//4aiReHbb82UYHTn9QIFzPSfY6QKzMaBM2aYoaylS6F8eZfVL5JQClYikmT+/PNPfHx8OHv2LOXKlSMgIIA8efK4uixJJJZlbuYLDIQsWWDdupiBJ2/ve7xp0ybo1888HjPGDHWJpCCaChSRJHHo0CG8vb05e/Ys5cuXZ/v27QpVqdzEiTBrlhl4WrIkHgNPf/wBLVqA3Q4dO8KAAUlSp4gzKViJSKI7ePAg3t7enDt3jmeffZaAgABy3+8WMUnxNm6MyUVjx8Zj4OnCBXPStWvw+uswfbruAJQUScFKRBLVH3/8gY+PD+fPn+e5555TqHIDBw5Ay5Zm4KlzZ+jf/wFvCA83K9ePHoWSJcHPD9KlS5JaRZxNa6xEJNEcOHCAatWqceHCBSpUqMC2bdvImTOnq8uSRHT+fMzAU9WqMHVqHANPNlvM6vX8+WHuXPjuO8iWzdwBqOAtKZiClYgkiv3791OtWjX+++8/nn/+ebZu3apQlcpFDzwdOwalSt1j4Mnf3+zGfOfGgR4esGIFlCmTVOWKJAoFKxFxut9//x1fX1/+++8/XnjhBbZu3cpjjz3m6rIkEVkWdO0K338P2bObgadcue44yd/f9F6wrLgvcONGktQqkpi0xkpEnOq3335zjFS9+OKLbNu2TaHKDXz2GSxcaPpRrVwJTz11xwk2mxmpiitUgRmx6tvXnCeSgilYiYjT7Nu3j2rVqnHx4kUqVqzI1q1byZEjh6vLkkS2ejUMGWIef/kl1KgRx0k7d949/Xc7y4KTJ815IimYgpWIOMWvv/6Kr68vly5dolKlSgpVbuLXX6FNG/O4Rw/o3v0eJwYHx++C8T1PJJlSsBKRR7Z3715HqHr55Zf55ptvyJ49u6vLkkR25kzMHoA1a5pNlO+pQIH4XTS+54kkU1q8LiKPZM+ePVSvXp0rV65QuXJlNm/eTLZs2VxdliSy0FBo2BBOnzbrqZYvhzT3+xdl//77X9DDw+zGXKWKU+sUSWoasRKRh/bLL784QtUrr7yiUOUmonec+eUXyJnT7AF4z1lfy4IPPoDevWOO3dnYKvr5hAl37MYskvIoWInIQ9m9e7cjVL366qsKVW5kxAjTciptWtNB4fHH73FiZKRJYKNGmecffQSrVkGhQrHPK1zYHG/SJFHrFkkKmgoUkQT7+eefqVGjBiEhIbz22mts3LiRrFmzurosSQJLl5p8BGY7v6pV73Hi9evQvDls3mxGoaZPhy5dzGuNGsV0Xi9QwEz/aaRKUolEH7H69NNP8fDwoG/fvo5jYWFh9OjRg1y5cpElSxaaNm3KuXPnErsUEXGCXbt2OUJVlSpV2LRpk0KVm9i1ywxAAQwcCJ063ePE8+fBx8eEqowZ4euvY0IVmBDl7Q1vvWW+K1RJKpKowWr37t3MmDGD8uXLxzrer18/1q1bx8qVK9mxYwdnzpyhiYaARZK9H3/80RGqXn/9dTZu3EiWLFlcXZYkgRMnzGL18HCoVw8+/fQeJx45Aq+8YhZg5coFgYHmDSJuItGC1fXr12ndujWzZs2K1XX56tWrzJkzhy+++IJq1arxwgsvMHfuXH744Qd++umnxCpHRB7RDz/8QK1atbh27Rre3t4KVW7k+nVo0ADOnYPy5WHJknsMMv3yiwlV//wDxYvDDz9ApUpJXa6ISyVasOrRowdvvPEG1atXj3V8z549REZGxjr+1FNPUbRoUX788cc4rxUeHk5ISEisLxFJOt9//70jVPn4+LB+/XoyZ87s6rIkCdjt0Lo1/PYb5M0La9dCnDO/mzebab0LF6BCBfjxR3jiiaQuV8TlEiVYLVu2jL179zJ69Oi7Xjt79izp0qW7qyNzvnz5OHv2bJzXGz16NNmzZ3d8FSlSJDHKFpE4fPfdd9SuXZvr169TrVo1hSo3M2SICVPp05ulUsWKxXHS/PmmU+iNG2Y/mx07IH/+pC5VJFlwerA6efIkffr0YfHixWTIkMEp1xwyZAhXr151fJ08edIp1xWR+9u5c6cjVPn6+rJu3ToyZcrk6rIkicybB2PGmMdz5kDlynecYFkwejR06ABRUWZoa/36ewxpibgHpwerPXv2cP78eZ5//nnSpElDmjRp2LFjB19++SVp0qQhX758REREcOXKlVjvO3fuHPnv8X846dOnJ1u2bLG+RCRxffvtt9SpU4cbN25Qo0YNhSo3s3MndOtmHv/vfyYzxWKzQc+e8P775vmgQbBgAaRLl6R1iiQ3Tu9j5evry/47ti7o2LEjTz31FP/3f/9HkSJFSJs2LQEBATRt2hSAw4cPc+LECSrf9b9DIuIKO3bsoG7duoSGhlKzZk2+/vprMmbM6OqyJIn8+y80bmz6ezZrZhqCxhIWZpKWv7/pmj5hQuzO6iJuzOnBKmvWrDzzzDOxjmXOnJlcuXI5jnfu3Jn+/fuTM2dOsmXLRq9evahcuTIvv/yys8sRkQQKCgrijTfeIDQ0lFq1arF69WqFKjdy9arpjnDxIrzwglk+5Xn73Mbly6bvws6dZnRq4UJ4802X1SuS3Lik8/r48ePx9PSkadOmhIeHU6tWLaZOneqKUkTkNtu3b6devXrcvHmT2rVrs3r1aqetlZTkLyoKWrSAQ4egYEFYswZizf6ePAm1a8PBg5A9u1nN7u3tompFkicPy7IsVxeRUCEhIWTPnp2rV69qvZWIkwQEBFC/fn1u3rxJ3bp18fPzU6hyM336wJdfmmbpO3eaESuHAwdMqDp92qSuzZuhXDmX1SqS1OKbPbQJs4iwbds2x0jVG2+8gb+/v0KVm5k+3YQqMLN7sULVjh3w2msmVJUpY3pUKVSJxEnBSsTNbd26lfr16xMWFka9evXw8/Mjffr0ri5LktC2beYGP4CRI+HWfUXGypVQs6ZZfPXqq/Ddd1C0qEvqFEkJFKxE3Ng333zjCFX169dn1apVClVu5vBhaN7cdE9o0yamewIAkyaZRVcREeY2wa1bIWdOl9UqkhIoWIm4qc2bN9OwYUPCw8Np2LChQpUbunTJNEy/csVs8TdrlumegGXB4MGmhYJlQffuZuRKd4eKPJBL7goUEdfatGkTjRs3Jjw8nEaNGrF8+XLSqbGjW4nuUfX332Zmb/VqyJABMzrVpYtZaAVmbvD9928lLhF5EAUrETezceNGGjduTEREBI0bN2b58uWkTZvW1WVJErIs6NEDAgMhSxazC03evMC1ayZtbdkCXl4we7bZrkZE4k3BSsSNrF+/nqZNmxIREUHTpk1ZunSpQpUbmjgxZtpv6dJbN/idOwd168LevaZ51apVUKeOq0sVSXEUrETcxLp162jatCmRkZE0a9aMJUuWKFS5oY0bYcAA8/jzz02Xdf7+G2rVgqNHIU8e2LABKlZ0aZ0iKZUWr4u4gbVr1zpCVfPmzRWq3NSBA9CyJdjt0Lkz9OsH/PyzWbl+9CiULAk//KBQJfIIFKxEUrk1a9bQrFkzIiMjadGihUKVmzp/3twBeO0aVK0KU6eCx6aN4OMD//1nOoL+8AM8/rirSxVJ0RSsRFKx1atXO0JVy5YtWbRoEWnSaAWAuwkPhyZN4Ngxk5v8/CDdoq+gQQMIDTXTgEFBkC+fq0sVSfEUrERSKX9/f958802ioqJo1aoVCxcuVKhyQ5YFXbvC99+bfZPXrbXINW2kmQu02aBdO1i3ztweKCKPTMFKJBXy8/NzhKrWrVszf/58hSo39emnpiWVlxesXGbjqS+7w9Ch5sUhQ2DePNDUsIjT6G9akVRm5cqVvPXWW9hsNtq2bcvcuXPx8vJydVniAv7+MVvUTPn8JjVmtIKvvzZ9Fr78MmaDQBFxGgUrkVRkxYoVtGrVCpvNRrt27fjqq68UqtzUr79C27bm8aAul3h7ZX2zOD19eli0yDQCFRGnU7ASSSWWL19O69atsdlstG/fnjlz5ihUuakzZ8wdgKGh0KbKcT79rjb8+SfkyAFr1sDrr7u6RJFUS8FKJBVYunQpbdq0wW6307FjR2bNmqVQ5aZCQ6FhQzh9GhoU/535R+rgEXwGCheGzZuhbFlXlyiSqmnxukgKt2TJEkeo6tSpE7Nnz1aoclN2O3TsCL/8Ag2zBeL/XxU8g8+YMPXDDwpVIklAwUokBVu0aBFt27bFbrfTpUsXZs2ahaen/li7qxEjYMUKaOW1HP+btfG6HmKm/XbuhCJFXF2eiFvQ38AiKdTChQtp3749drudrl27MmPGDIUqN7Z0KXz0EfRhAottLfGMjICmTeGbb+Cxx1xdnojb0N/CIinQ/PnzHaGqW7duTJ8+XaHKje3aBZ062BnDe0ygnznYsycsXw4ZMri2OBE3o8XrIinMvHnz6NSpE5Zl8c477zBlyhSFKjd24gQ0axDBrIhOtGGxOTh6NPzf/5l+VSKSpBSsRFKQuXPn0rlzZyzL4t1332XKlCl46B9Pt2KLsLF/6k5C/wnGq3ABBix4lq/Ov0kNtmGlSYPHnDlmmxoRcQkFK5EUYs6cOXTt2hXLsujRoweTJk1SqHIzPw3yp+gXfXjOdspxbDtpSUck9kyZ8fT3Mxsqi4jLKFiJpACzZ8+ma9euAPTq1YuJEycqVLmZnwb589LYZoAV63g6IrGAP5oOo5xClYjLaWGGSDI3c+ZMR6jq3bu3QpUbskXYKPpFH8CK8y9tCw9yLpmMLcKW1KWJyB0UrESSsRkzZvD2228D0KdPHyZMmKBQ5Yb2T91JQdupe/6F7YlFIdtJ9k/dmaR1icjdFKxEkqlp06bxzjvvANCvXz/Gjx+vUOWmQv8Jdup5IpJ4FKxEkqGpU6fSvXt3AAYMGMC4ceMUqtxY1nyZ4nVeplIFErkSEXkQBSuRZGby5Mn06NEDgIEDBzJ27FiFKnf266+U+rIPcOey9Rh2PDjtVYRy3askXV0iEicFK5FkZNKkSfTq1QuAQYMGMWbMGIUqd7ZoEbaXXyHTheMEkw8LD+zE/u8h+vnJ/hPwSqfNt0VcTcFKJJmYOHEivXv3BmDw4MF8+umnClXuKjIS+vaFtm3xighjI3UYXP8QP/ZfxVmvQrFODfYqzM/vreLlMU1cU6uIxKI+ViLJwPjx4+nfvz8AQ4YM4ZNPPlGoclfnz8Obb8KOHQB8zP840HQ4i5Z6kTZtE2yjG7LvVuf1TKUKUK57FQpppEok2VCwEnGxL774ggEDBgDwwQcf8PHHHytUuavdu6FJEzh1ihCy0o4FpH+zEYsWQdq05hSvdF4819fbpWWKyL1pKlDEhcaNG+cIVUOHDlWocmdffQVVqsCpUxzmSSqxiwwtGrF4cUyoEpHkT8FKxEXGjh3LwIEDARg2bBgjRoxQqHJHERHw7rvQuTOEh7PGoyEV+ZnnWpZh0SJIo3kFkRRFwUrEBT777DMGDRoEwPDhwxWq3NWZM+DjA9OnY3l4MMzzYxpb/tRvlY2FCxWqRFIi/bEVSWKffvopQ4YMAWDEiBEMGzbMxRWJS3z/PTRrBmfPEpEpO03DlrDeXpfWrWH+fPDSenSRFEkjViJJaNSoUY5Q9dFHHylUuSPLgmnTzEjV2bNcLfIM5cJ+Yb29Lm3bKlSJpHQKViJJZOTIkXzwwQeOx0OHDnVxRZLkwsKgSxfo3h0iIznxcnOKnv6Rv+yP064dzJ2rUCWS0ilYiSSBjz/+2BGkRo0a5QhY4kZOnoTXXzd3/3l6sq/VGEr+vJwQexY6dDCHFapEUj4FK5FEdvs6qtGjRzumAsWN7NgBL7xg+lTlzMn2QZt5Ydl72OwedOwIs2crVImkFgpWIolo+PDhDB8+HDB3Ag4ePNi1BUnSsiyYOBF8feHCBXjuOb7+3y/UGFMDu910WFCoEklddFegSCKwLIvhw4fz0UcfAbF7VombCA2Fbt1g8WLzvHVrlvrMpE23TNjtZqnVjBngqf+9FUlVFKxEnMyyLIYNG8bIkSMB+Pzzzx3d1cVNHDsGjRvDvn1mOGrcOBbk6E2Hjh5YFnTtCtOnK1SJpEb6Yy3iRJZlMXToUEeoun0fQHETW7ea9VT79kGePLBtG/Nz9HGEqrffVqgSSc30R1vESSzL4oMPPuCTTz4BYPz48fTr18/FVUmSsSwYMwZq14ZLl+DFF2HPHuYd86ZjR/Pyu+/C1KkKVSKpmf54iziBZVkMGTKE0aNHAzBx4kT69u3r2qIk6Vy/Di1bwv/9H9jt0LEj7NzJV1uL0KmTCVXdu8OUKQpVIqmd1liJPCLLshg8eDBjxowBYNKkSfTs2dPFVUmSOXLErKc6cADSpjV3Ab7zDnO+8qBLF3NKz57w5Zeg7SBFUj8FK5FHYFkWgwYN4vPPPwdg8uTJ9OjRw8VVSZLZuBFat4YrVyB/fvDzg1deYdYsc0MgQK9eJmspVIm4Bw1Kizwky7IYOHCgI1RNmTJFocpd2O0wciTUq2dC1SuvwN698MorzJwZE6r69FGoEnE3GrESeQiWZTFgwADGjx8PwLRp03jnnXdcXJUkiZAQaNcO1qwxz999FyZMgHTpmD7dPAXo2xe++EKhSsTdKFiJJJBlWfTr14+JEycCMGPGDLpFD1FI6vbnn9CoERw+DOnSwbRp0KkTYB52725O69cPxo1TqBJxRwpWIglgWRZ9+/blyy+/BGDmzJl07drVxVVJkvj6azNSde0aFC5s1lO99BJg7vaLvl9hwAAYO1ahSsRdaY2VSDxZlkXv3r358ssv8fDwYPbs2QpV7sBmg6FDzZ1/165B1aqwZ48jVE2eHBOq3ntPoUrE3WnESiQeLMuiZ8+eTJ061RGqOt2aApJU7PJlc9ffpk3meZ8+JjmlTQuYFgp9+piXBg2CTz9VqBJxdwpWIg9gt9vp2bMn06ZNw8PDgzlz5tCxY0dXlyWJ7cABs57qn38gQwaYNQvatHG8PGGCWUsFMHgwjBqlUCUiClYi92W32+nRowfTp0/Hw8ODuXPn0r59e1eXJYltxQrTPT00FIoVg9WroUIFx8vjx0P//ubx+++bzgsKVSICWmMlck92u513333XEarmzZunUJXaRUWZbWlatDChqnp1+OWXWKFq3LiYUPXBBwpVIhKbRqxE4mC323n77beZPXs2np6ezJ8/nza3TQNJKnTxotnvb9s283zQIPjkE0gT89fk55+bBepg1rOPGKFQJSKxKViJ3MFut9OtWzfmzJmDp6cnCxYsoHXr1q4uSxLTr79CkyZw7BhkzgxffQVvvhnrlDFjzGAWwIcfwvDhSV6liKQAClYit7Hb7XTp0oW5c+fi6enJwoULadWqlavLEmew2WDnTggOhgIFoEoV8PKCRYuga1cIC4NSpUy/qmeeifXWTz+FIUPM4+HDTbASEYmLgpXILTabjS5dujBv3jw8PT1ZvHgxLVu2dHVZ4gz+/qYvwqlTMccKFYLnnoMNG8zzunVNyHrssVhvHT3aLFAHM/U3bFjSlCwiKZOClQgmVHXu3Jn58+fj5eXF4sWLadGihavLEmfw94dmzcCyYh8/fdp8gVkwNXw4eMa+n+eTT+B//zOPP/445rGIyL0oWInbs9lsdOzYkYULF+Ll5cXSpUtp3ry5q8sSZ7DZzEjVnaHqdrlzm7m9O0LVxx/HjE6NHGnuABQReRC1WxC3ZrPZ6NChgyNULVu2TKEqNdm5M/b0X1z++8+cd5uPPooJVaNGKVSJSPxpxErcVlRUFO3bt2fJkiWkSZOGZcuW0bRpU1eXJc4UHJzg84YPN2upwCxaj74TUEQkPhSsxC1FRUXRrl07li5dSpo0aVixYgWNGzd2dVnibAUKxPs8yzKh6qOPzKHPPjOtrEREEkLBStxOVFQUbdu2ZdmyZaRJk4aVK1fSqFEjV5clzhYSAnPn3v8cDw8oXBjrtSp8+KFZVwVmn+WBAxO/RBFJfRSsxK1ERUXRunVrVqxYQdq0aVm5ciUNGzZ0dVnibN9+C+3awfHjJjxZVsz3aLdaplvjJzB0uBeffGIO375ljYhIQmnxuriNyMhIWrVq5QhVfn5+ClWpTXi4WRTl7W1CVYkSJmT5+Zm+VbcrXBhr5So+2NPEEaq++EKhSkQejUasxC1ERkby1ltv4efnR7p06fDz86NevXquLkucaf9+aNMGfv/dPO/cGcaPh6xZAbDVa8j+qTsJ/SeYTKUK8My7VRg63ItPPzWnT5hgOjOIiDwKBStJ9SIjI2nZsiX+/v6kS5cOf39/3njjDVeXJc5it5sA9f77EBEBefLArFlw22ikabzuxalT3o5jWYfBtWvm8cSJ0Lt3EtctIqmSgpWkahEREbRs2ZLVq1eTLl06Vq9eTd26dV1dljjL8ePQoQMEBZnn9erB7NmQL5/jlHs1Xo8OVZ07K1SJiPNojZWkWhEREbz55pusXr2a9OnTs2bNGoWq1MKyYOFCKF/ehKrMmc0o1dq1sUJVfBqvb9lizhMRcQYFK0mVIiIiaN68OWvWrHGEqtq1a7u6LHGGixfhzTfNXX8hIVC5Mvz2G3Tp4rjTL1p8Gq+fPHlX43URkYemYCWpTnh4OM2aNWPt2rVkyJCBtWvXUqtWLVeXJc6weTOUKwerVkGaNGaX5G+/hVKl4jz9IRqvi4g8Eq2xklQlPDycpk2bsmHDBkeoqlGjhqvLkkcVGgrvvQdTp5rnZcrAokXw/PP3fVsCGq+LiDiFRqwk1QgLC6NJkyZs2LCBjBkzsn79eoWq1ODnn6FChZhQ1acP7NnzwFBlWXDw4P0v7eEBRYpAlSpOqlVE3J5GrCRViA5VmzZtcoSqatWquboseRRRUTBqlNm8z2YzDT7nzYPq1R/41rAw6NEDvvoq5tg9Gq8zYQJ4eTm1chFxYxqxkhQvLCyMxo0bO0LVhg0bFKpSur/+gldfhQ8/NKGqZUvTADQeoerkSXj9dROqPD3h00/Nkqw4Gq+zahU0aZJIP4OIuCWNWEmKdvPmTRo1asSWLVvIlCkTGzZswNvb29VlycOyLJgxAwYMMOuqcuQwU4BvvRWvt+/YAc2bw4UL8NhjsGwZ1KxpXmvUyNz9Fxxs1lRVqaKRKhFxPgUrSbFu3rxJw4YN2bp1K5kyZWLjxo1UrVrV1WXJwwoONt06N20yz319Ye5cswjqASwLJk0y+/zZbPDss6YxaMmSMed4eZktBEVEEpOmAiVFCg0NpUGDBmzdupXMmTOzadMmhaqUzM/PtFHYtAnSpzcLn7ZsiVeoCg01La369DGhqlUr+OGH2KFKRCSpaMRKUpzoUBUQEECWLFnYtGkTr732mqvLkodx9arZT2bBAvO8QgXTRuHpp+P19mPHzBqpX381I1Jjx0Lfvnf1CRURSTIKVpKi3Lhxg/r16xMYGEiWLFnYvHkzr776qqvLkoexYwe0b2/2+/P0hMGDzWL1dOni9fZt28ya9osXIXduWLECfHwSuWYRkQfQVKCkGDdu3KBevXoEBgaSNWtWvvnmG4WqlCg8HAYNMino+HEzZ/ftt6aLejxClWWZkalatUyoeuEF09ZKoUpEkgOnB6vRo0dTsWJFsmbNSt68eWnUqBGHDx+OdU5YWBg9evQgV65cZMmShaZNm3Lu3DlnlyKpyI0bN3jjjTcICgpyhKpXXnnF1WVJQv3+O1SsaJKRZZn9/fbtM60V4uH6dTNKNWgQ2O3QoYO5069o0UStWkQk3pwerHbs2EGPHj346aef2Lp1K5GRkdSsWZMbN244zunXrx/r1q1j5cqV7NixgzNnztBEzWTkHq5fv07dunXZsWMH2bJlY8uWLVSuXNnVZUlC2Gzw+ecmVO3fD3nywJo1MGsWZM0ar0scOWL2W16xwmwTOHWq6VWVMWMi1y4ikgAelnV7L2Lnu3DhAnnz5mXHjh28/vrrXL16lTx58rBkyRKaNWsGwJ9//kmZMmX48ccfefnllx94zZCQELJnz87Vq1fJli1bYpYvLhYdqnbu3OkIVZUqVXJ1WZIQx4+btVQ7dpjnDRqYQJU3b7wvsXEjtG4NV65A/vywciXofgURSUrxzR6Jvsbq6tWrAOTMmROAPXv2EBkZSfXbOig/9dRTFC1alB9//DHOa4SHhxMSEhLrS1K/a9euUadOHXbu3En27NnZunWrQlVKYlnmbr/y5U2oypwZZs+Gr7+Od6iy22HkSKhXz4SqypXNeiqFKhFJrhI1WNntdvr27curr77KM888A8DZs2dJly4dOXLkiHVuvnz5OHv2bJzXGT16NNmzZ3d8FYlHbxtJ2UJCQqhduzbfffedI1S99NJLri5L4uu//0wL9PbtISQEXnkFfvvNNACNZy+EkBBo2hSGDjUZ7e23ITAQChZM5NpFRB5BogarHj16cODAAZYtW/ZI1xkyZAhXr151fJ08edJJFUpyFB2qfvjhB3LkyMG2bduoWLGiq8uS+Nq82TT79PMzi6FGjTJ3/ZUqFe9L/PknVKpkBrfSpTMzh9Onm96hIiLJWaL1serZsyfr16/n22+/pXDhwo7j+fPnJyIigitXrsQatTp37hz58+eP81rp06cnvf5GdQtXr16ldu3a/PTTTzz22GNs3bqVF154wdVlSXzcuGFu15s61TwvU8Y0+3z++QRdZs0aaNsWrl0zGyf7+ZmQJSKSEjh9xMqyLHr27Mnq1avZvn07JUqUiPX6Cy+8QNq0aQkICHAcO3z4MCdOnNCdXm7u6tWr1KpVyxGqtm3bplCVUvz8swlQ0aGqTx+zGCoBocpuh2HDzGbJ166ZTZL37FGoEpGUxekjVj169GDJkiWsWbOGrFmzOtZNZc+enYwZM5I9e3Y6d+5M//79yZkzJ9myZaNXr15Urlw5XncESup05coVatWqxc8//0zOnDnZtm0bFSpUcHVZ8iCRkWaq7+OPTUuFQoVg3jy47eaU+Lhyxdz1t3Gjed67t+nOkDat0ysWEUlUTm+34HGPhalz586lQ4cOgGkQOmDAAJYuXUp4eDi1atVi6tSp95wKvJPaLaQuV65coWbNmuzevZucOXMSEBDAc8895+qy5HY2m+nEGRwMBQqY4aR//jFzdj//bM556y2YMgUeeyxBlz5wABo3Nn2qMmSAmTPNZUVEkpP4Zo9E72OVGBSsUo/Lly9Ts2ZNfvnlF3LlykVAQADPPvusq8uS2/n7m6m9U6dijuXIAaGhEBFhHk+daoJVAq1cCR07muVZxYqZj0rgkiwRkSQR3+yhTZjFZS5fvkyNGjXYs2cPuXPnJiAggPLly7u6LLmdvz80a2b6HdzuyhXzvXx52LABbrtBJT5sNnj/fRgzxjz39YVly8xmyiIiKZmClbjEpUuXqFGjBnv37iV37txs376dcuXKubosuZ3NZkaq7jeoffmymRpMgIsXzeDW1q3m+XvvmWVaafS3kYikAoneeV3kThcvXsTX15e9e/eSJ08eAgMDFaqSo507Y0//xeXkSXNePO3bBy++aEJVpkxmlGrMGIUqEUk9FKwkSV28eJHq1auzb98+8ubNS2BgoKMrvyQzR4/G77zg4HidtnixacB+7BiULAk//QQtWjx8eSIiyZGClSSZ//77D19fX/bt20e+fPkIDAykbNmyri5L7mRZsHy5afYZHw+YCoyMhH79oE0buHkT6tSBX34xzdlFRFIbBStJEhcuXKBatWr89ttvjlD19NNPu7osudMff5iV5C1bmv3+vLzufa6HBxQpYlov3MP581CjBkyYYJ5/8AGsW5fgjgwiIimGgpUkugsXLuDr68v+/fvJnz8/QUFBlClTxtVlye1CQqB/f3j2WbPTcYYM8NFHZksaD4+7N06Ofj5hwj3D1+7d8MILsGMHZMlibjAcOfL+WU1EJKXTklFJVOfPn8fX15cDBw5QoEABAgMDefLJJ11dlkSzLLP46b334NYuCTRuDF98AcWLm+fp0t3dx6pwYROqmjSJ87Jz58K770J4ODz5JKxebbYOFBFJ7RSsJNGcO3eOatWqcfDgQQoWLEhgYCBPPPGEq8uSaL/9Bj17wnffmeelS8OkSVCrVuzzmjSBhg3v7rwex9BTRAT07QvTppnnDRrAggWQPXvi/igiIsmFgpUkittDVaFChQgMDKR06dKuLkvANPccOtR0S7fbTd+DoUPNCvP06eN+j5cXeHvf97LBwaaX6A8/mJnCESPMmipPLTgQETeiYCVOd/bsWapVq8ahQ4coVKgQQUFBPP74464uS+x2s0Hy4MFw4YI59uabZrfjIkUe6dI//GBCVXCwGZ1avBjeeOPRSxYRSWkUrMSpgoODqVatGn/++SeFCxcmMDBQoSo52LPHTPv99JN5XqaMmfbz9X2ky1oWzJgBvXubtgply5r1VBqcFBF3pWAlThMcHIyPjw+HDx+mSJEiBAYGUqpUKVeX5d4uXjTzcTNnmhSUJQsMHw69eplF6fFks929xCoyEnr0gK++Muc0a2YWrWfJkjg/iohISqBgJU5x5swZfHx8+OuvvyhatCiBgYGULFnS1WW5L5sNZs82Ox1fumSOtWoFY8dCwYIJupS//903BRYoYJZm/fOPWUM1erS5sfDOrgwiIu5GwUoe2enTp/Hx8eHvv/+mWLFiBAYGUqJECVeX5b527TJDSXv2mOflysHkyfD66wm+lL+/GYm6cx/m6F1sovtT1ajxiDWLiKQSul9HHsmpU6fw9vZ2hKqgoCCFKle5cAE6d4aXXzahKls2mDgR9u59qFBls5mRqjtD1e2yZoVq1R6hZhGRVEbBSh7ayZMn8fb25siRIxQvXpwdO3ZQPLqppCSdqCgzIvXEEzELntq3h7/+MqvK0zzcwPTOnbGn/+ISHGzOExERQ1OB8lBOnDiBj48P//77LyVKlCAwMJBixYq5uiz38/33Ztrvt9/M8woVTMh65ZVHvnT0dJ+zzhMRcQcasZIEO3HiBN7e3vz777+ULFmSoKAghaqkdvYstGsHr71mQlWOHDBlitmgzwmhCswGyvFRoIBTPk5EJFVQsJIEOX78ON7e3hw9epRSpUoRFBRE0aJFXV2W+4iMNHv0PfkkLFxobsPr2tVM+3Xv7pQdjs+cgTZtzNY09+PhYfqKVqnyyB8pIpJqKFhJvB07duyuUFXkETt2SwIEBcHzz5utZ0JCoGJF0/Bz5kzIk+eRLx8ZCePGmcy2eLEJTjVqmO93tlGIfj5hglOynIhIqqFgJfESHaqOHTtG6dKl2bFjB4ULF3Z1We7h9Gl46y3w8YEDByBXLhOmfvoJXnrJKR+xfTs8+ywMHAjXr0OlSmZWccsWWLUKChWKfX7hwuZ4kyZO+XgRkVRDi9flgY4ePYq3tzcnTpygdOnSBAYGUujOf2nF+SIiTLuEjz4yacfDA955B0aOhJw5nfIRJ0+aMLVihXmeJw989pm5qTB68+QmTaBhw7s7r2ukSkTkbgpWcl///vsv3t7enDx5kieeeILAwEAKJrBztzyEbdvMtjN//mmeV65s7vZ7/nmnXD48HMaPh48/htBQE6K6dzcZ7rHH7j7fywu8vZ3y0SIiqZqCldzTP//8g4+PDydPnuTJJ58kMDCQAroFLHGdOAH9+4Ofn3meN68ZQmrXLmYI6RF9841pb/XXX+b5a6+ZzPbss065vIiIW9MaK4nTkSNHHCNVTz31FEFBQQpViSk8HD75BJ56yoQqT0+Tfg4fhg4dnBKqjh2Dxo2hdm0TqvLlgwUL4NtvFapERJxFI1Zyl7///hsfHx9Onz5NmTJl2L59O/nz53d1WanXpk0mRB05Yp5XqWKGkMqXd8rlw8LM3sujRpnHXl7m44YPN7veiIiI8yhYSSx///033t7enDlzhqeffprt27eTL18+V5eVstlsca/8PnrUNItau9aclz8/fP45tGp1d3+Dh7R+vdnv799/zXNvb5PZypZ1yuVFROQOClbicPjwYXx8fAgODqZs2bJs376dvHnzurqslM3f3ySb2zfdK1QIXn3VBKqwMLOXX58+MGyY04aQ/vnHZLb1683zggVNj6oWLZyW2UREJA4KVgLEDlXPPPMMAQEBClWPyt8fmjUDy4p9/PTpmP4G1arBpEnw9NNO+cjQUPj0UxgzxizbSpPGrIUfOhSyZHHKR4iIyH0oWAl//vknPj4+nD17lnLlyhEQEEAeJ3Tydms2mxmFujNU3S5XLnOLXppH/2NoWfD116Yp+/Hj5lj16iazPfXUI19eRETiSXcFurlDhw7h7e3N2bNnKV++PNu3b1eocoadO2NP/8Xl4kX47rtH/qi//oI6dUwjz+PHzf59q1aZrukKVSIiSUvByo0dPHgQb29vzp07x7PPPktAQAC5c+d2dVmpw++/x++84OCH/ogbN2DIEHjmGTPwlS4dfPABHDoETZtqLZWIiCtoKtBN/fHHH1SrVo3z58/z3HPPsW3bNnLlyuXqslK+Y8dMX4Ovvorf+Q/RG8yyYOVKGDAgZlCsTh2z+03p0gm+nIiIOJGClRs6cOAA1apV48KFC1SoUIFt27aR00l7z7mto0dNoJo3D6KizLH06c0K8rh4eJidjKtUSdDHHDxoelAFBJjnxYubQFW/vkaoRESSA00Fupn9+/fj4+PDhQsXeP755xWqHtW//0LnzvDEEzB7tglV1aubNVZLlpi0c2fiiX4+YUK8dzK+ds1slvzssyZUZchgGnwePAgNGihUiYgkFxqxciO///47vr6+/Pfff7zwwgts3bqVx+LacVce7MgRswXNwoXmDkCAmjXhww/hlVdizlu16u4+VoULm1DVpMkDP8ayTD57772Y5VgNGpi3lyjhtJ9GREScRMHKTfz222/4+vpy8eJFXnzxRbZu3UqOHDlcXVbK8/ffJlAtWhQTqGrVMoGqcuW7z2/SBBo2jLvz+gPs3w89e5q9/AAef9xM+9Wt68SfR0REnErByg3s27cPX19fLl26RMWKFdmyZYtCVUL99ReMHAmLF4Pdbo7VqWMCVaVK93+vl5fZSyaerlwxl50yxWS3jBnhf/8zjT4zZHjon0BERJKAglUq9+uvv1K9enUuXbpEpUqV+Oabb8iePbury0o5/vzTBKqlS2MC1RtvmO1nXnrJqR9lt5uZxUGD4Px5c6xpU/jiCyha1KkfJSIiiUTBKhXbu3cv1atX5/Lly7z88sts3rxZoSq+Dh2KCVTR3dPr1zeB6sUXnf5xv/4KPXrAjz+a508+abqm16jh9I8SEZFEpLsCU6k9e/bg6+vL5cuXqVy5skaq4uvgQXjrLShb1qwatyyzWvyXX8ymyU4OVZcuQffu5rI//giZM5t9/n7/XaFKRCQl0ohVKvTLL79Qo0YNrly5wiuvvMKmTZvIli2bq8tK3g4cgI8/Np03o0eoGjUyI1QVKjzSpW22u9eue3jAnDmmc/rFi+a8li3h88+hUKFH+1FERMR1FKxSmd27d1OjRg2uXr3Kq6++yqZNm8iaNaury0q+9u+PCVTRmjSBoUPhuece+fL+/nd3W8ibF7JmhX/+Mc/LloXJkxO0vl1ERJIpBatU5Oeff6ZGjRqEhITw2muvsXHjRoWqe/n9d/joI/DziznWtKkZoSpf3ikf4e8PzZrFDIBFO3/efGXIYJq19+wJadM65SNFRMTFFKxSiV27dlGzZk1CQkKoUqUKGzduJEuWLK4uK/n57TcTqPz9zXMPD5N+hg6FcuWc9jE2mxmpujNU3S5nTrM9TTybr4uISAqgxeupwI8//ugYqXr99dcVquLy66/QuLGZ3vP3N4GqRQszFbhihVNDFZg1VbdP/8XlzBlznoiIpB4KVincDz/8QK1atbh27Rre3t4KVXfau9d0Pn/+efj6axOoWrY0i9WXLTMLnJwoNNTsw9ytW/zOj96mRkREUgdNBaZg33//PbVr1+b69ev4+Piwbt06MmfO7Oqykoc9e2DECFi3zjz39DSB6n//gzJlnP5xv/0Gs2aZnW6uXo3/+woUcHopIiLiQgpWKdR3331HnTp1uH79OtWqVWPdunVkypTJ1WW53u7dJlBt2GCee3pCq1YmUD35pFM/6vp1WL4cZs6En3+OOV6yJHTubO70O3s27nVWHh5mL+YqVZxakoiIuJiCVQq0c+dO6tSpw40bN/D19WXt2rUKVbt2mUC1aZN57ukJrVubQPXEE079qL17TZhasgSuXTPH0qY1S7i6dQMfH/PxTz1l1sV7eMQOVx4e5vuECVq4LiKS2ihYpTDffvstdevW5caNG9SoUYM1a9aQMWNGV5eVOOLqrHlnEvnpJxOoNm82z728oE0b+OADKF3aaaVcu2Z2t5k508wyRitd2oSpdu1Mf6rbNWkCq1bd3ceqcGETqpo0cVp5IiKSTChYpSA7duygbt26hIaGUrNmTb7++uvUG6ri6qxZuDBMnGgSyQ8/mEC1ZYt5zcvLpJv334fHH3dKCZZldrKZOdOEqhs3zPF06UzLq27doGrVmBGouDRpYtbOPygfiohI6qBglUIEBQXxxhtvEBoaSq1atVi9enXqDlVxddY8fdokmvLlTYNPgDRpoH17E6hKlnTKx1+9CosXm8Xo+/bFHH/qKROm2raF3Lnjfz0vL3VVFxFxFwpWKcD27dupV68eN2/epHbt2qxevZoMGTK4uqzEcb/OmtHHfv/dpJWOHU2gKlHikT/Wssys4qxZZkF6aKg5nj49NG9uAtVrr91/dEpERETBKpkLCAigfv363Lx5k7p16+Ln55d6QxXEr7MmmL4GLVs+8sddvmwuNXOmaW0VrWxZE6batDEd0kVEROJDwSoZ27ZtG/Xr1ycsLIw33ngDPz8/0qdP7+qyEld8O2beb6+YeLz1++9NmFq5EsLCzPGMGU0z9q5doXJljU6JiEjCKVglU1u3bqVBgwaEhYVRr149Vq1albpDVVSUaZXw5ZfxO/8hOmtevAgLF5pAdehQzPHy5c3oVOvWkCNHgi8rIiLioGCVDH3zzTc0bNiQ8PBw6tevz8qVK1NvqDp+HObMMV9nzjz4/AR21rQs+PZbE6b8/CA83BzPlAneessEqooVNTolIiLOoWCVzGzevJlGjRoRHh5Ow4YNWbFiBenSpXN1Wc4VGQnr15uV4ps3x0zr5c5tFqQXLQq9e5tjD9lZ88IFmD/ffMRff8Ucr1DBhKlWrSBbNuf9SCIiIqBglaxs2rSJxo0bEx4eTqNGjVi+fHnqClVHj8Ls2fDVV2avl2i+vibtNGxobsMDKFgwwZ017XYIDDRhyt/f5DeALFlMkOrWDV54IXF+NBEREVCwSjY2btxI48aNiYiIoHHjxixfvpy0adO6uqxHFxEBa9eaubitW2OO580LnTpBly5QqtTd72vSBFu9huyfupPQf4LJVKoA5bpXwSvd3SNV587BvHkmUP3zT8zxihVNmGrZ0oQrERGRxKZglQysX7+epk2bEhERQdOmTVm6dGnKD1VHjpikM28enD9vjnl4QM2a5ra7+vVNC/N7MI3XvTh1yttxrPC4mMbrdjts22by2po1Zu07mOm9Nm3MRzz3XKL9dCIiInFSsHKxdevW0bRpUyIjI2nWrBlLlixJuaEqPBy+/tqkne3bY44XKGBGpzp3jlczz/s1Xm/WzIxA/fSTmVmM9vLLZnTqzTchc2bn/DgiIiIJpWDlQmvXrqVZs2ZERkbSvHlzFi9enDJD1eHDZnRq/nz47z9zzMMD6tQxQ0dvvAHx/Lni03h96VLzPXt2sz1g165QrpwTfg4REZFHpGDlImvWrKF58+ZERkbSokULFi1aRJo0Kei3IyzM9C+YNQt27Ig5XqiQGZnq1AmKFUvwZePbeH3wYBg61LRNEBERSS5S0L/kqcfq1at58803iYqKomXLlixcuDDlhKqDB02YWrAALl0yxzw9zahUt25Qu7bZGPkhXLpkOqHHR/nyClUiIpL8pJB/zVMPf39/WrRoQVRUFK1atWL+/PnJP1TdvGkSz8yZZi+YaEWLmrv6OnY0rRASyLLgzz9h3TrT1ur7782i9Ph4iMbrIiIiiS6Z/4ueuvj5+dGiRQtsNhutW7dm3rx5yTtU7d9vwtSiRXDlijnm5WXu6OvWzdzh94BGnXeKiDAzh+vXm69//439etmycOIEXLsW9/sT2HhdREQkSSXjf9VTl5UrV/LWW29hs9lo27Ytc+fOxSuBoSRJ3LgBK1aYQPXTTzHHixc3q8Q7dkzwcNH587BxowlSW7bEDk3p0oGPj8lqb7xhPib6rkB46MbrIiIiLqFglQRWrFhBq1atsNlstGvXjq+++ir5hap9+0yYWrwYQkLMsTRpoFEjE6iqVzdrqeLBssxgV/QU365dsQNSvnxQr575ql797uadTZrAqlUJbrwuIiLicgpWiWz58uW0bt0am81G+/btmTNnTtKEKpvN3GIXHGxGmKpUuXuY59o1WLbMLEbfvTvmeKlSJkx16GBSUDyEhZntZKLD1MmTsV+vUMGMStWrZ7aVeVBGa9LE7HDzoB9BREQkOVGwSkRLly6lTZs22O12OnbsyKxZs5ImVJm25XcP90S3Ld+zx4xOLVkC16+b19OmNa916wbe3vEanTpzxkzxrVtnuqCHhsa8ljGjGY2qV89M8RUqlPAfw8vLlCIiIpJSKFglkiVLltC2bVvsdjudOnVi1qxZeMZzKu2R3K9tedOmpvP57S3Ln3jCjE61bw958tz30nY7/PprzKjUnj2xXy9cOGaKz8dH7RBERMT9KFglgkWLFtG+fXvsdjtdunRhxowZSROq4tO2/OhRMzrVvLkZnXr99ZhV4XG4cQMCAkyY2rDBTMvd7qWXYqb4nn32vpcSERFJ9RSsnGzhwoV06NABu91O165dmT59etKEKoh/2/KVK80Cpns4cSKmHcL27WYLwGhZspguC/XqQd268V6CJSIi4hYUrJxo/vz5dOzYEcuy6NatG9OmTUuaUHX5MmzeDJMmxe/82xdDYQa6du+OmeL7/ffYpxcvHjMqVbUqpE/vnLJFRERSGwUrJ5k3bx6dOnXCsizeeecdpkyZknihyrLMxse3tyy32eL//gIFCAmBrVvNJTZuhAsXYl729IRXXolZL/X005riExERiQ8FKyeYO3cunTt3xrIs3n33XaZMmYKHs5NIRISZ6osOU//8E/v1Z56BN94gbNpXpAv5D0/uXmdlx4PLmQvTamQVAr+FyMiY17JnN9v81atnvufO7dzyRURE3IGC1SOaM2cOXbt2xbIsevTowaRJk5wXqi5cgE2bTJj65psHtiy32aDX7JeYQTPseMQKV3ZMTV1vTGBLgGn5ULp0zBTfa6+ZNe0iIiLy8BSsHsHs2bPp2rUrAL169WLixImPFqosCw4cMCNS69aZLWXi2bI8Kgrmz4fZF5twkVVMpA9FiFnIforC9GUCq2nCu+9C376m04KIiIg4j4LVQ5o5cyZvv/02AL1792bChAkPF6rCwiAoKOY2vOPHY78eR8vyyEj44w/TR2rvXvP9t9/MpQBW04Q1NKQKOylAMMEUYCdVsGNGqqpUUagSERFJDApWD2HGjBm88847APTp04fx48cnLFQFB8e0LN+6NfZdehkymNGo+vWhbl0i8hZ2hKg9X5nvv/8euwVCtIwZ4eZN89iOFzvwjvPjE7iHsoiIiMSTglUCTZs2je7duwPQr18/xo0b9+BQZVmmZXn0FN8vv8R+vVAhqFePyNr12Z/Hh1/+yGRGo2aZEBURcfcls2eH5583g1jR30uUgJIlTZP1uHqEeniY7uhVqjzkDy8iIiL3pWCVAFOnTqVHjx4ADBgwgLFjx947VIWGxm5ZfuZMrJftFV8i+Pl6/Ji7PlvOPcue3R7s/yr2nXrRcuSICU/RXyVLxr2d38SJZkcbD4/Y4Sq6zAkTtJGxiIhIYlGwiqfJkyfTq1cvAAYOHMiYMWPuDlUnT5oQtW6daVkevegJsGXMzPEnarIjWz0WX6rLjl/zE7X77s957LHYAer5502Iiu9MY5MmsGpV3HswT5hgXhcREZHE4WFZcU0aJW8hISFkz56dq1evki1bNqdf3xZhY//UnYT+E0ymUgXYYf1G3/59ARg0aBCffvqpCVV2u2lZHj3F99tvsa7zX5ZibE1fn4WX6xFg9yaC2C3Lc+aMHaJeeMF0OXdGtwabzbS9Cg42a6qqVNFIlYiIyMOKb/Zw2YjVlClTGDt2LGfPnuXZZ59l0qRJvPTSS64qx+GnQf4U/aIPz9nMcM9EoO+t1wYPHsyoIUPwWL0a1q3D2rARjwvnHe+14clPVGYd9VhHfQ5efxqum5SUO/fdIapo0cTraO7lBd7eiXNtERERiZtLgtXy5cvp378/06dPp1KlSkyYMIFatWpx+PBh8ubN64qSABOqXhrbDG411hwP9L/12mCg99wN2MeOw8tmFkJ5AFfJxmZqs556bKIOF8lN3rwmODW5bTqvSBFtCyMiIpLauWQqsFKlSlSsWJHJkycDYLfbKVKkCL169WLw4MEPfH9iTAXaImycy1Sc/LZTeAJfAANuvfYB8DEQnYv+5nHWUZ/11OOvvFV49sW0sUaiChVSiBIREUlNku1UYEREBHv27GHIkCGOY56enlSvXp0ff/wxzveEh4cTflvjppCQEKfXtX/qTsf030xiQtVQYAQxoWpEqflYbdrxwguw6AUoWNDppYiIiEgKleTB6r///sNms5EvX75Yx/Ply8eff/4Z53tGjx7NiBEjErWu0H+CHY9rAsWA9sBwYkIVQI06aXlleKKWIiIiIilUHJ2Qkp8hQ4Zw9epVx9fJkyed/hmZSsW0Iy8O7CP2SFVc54mIiIjcLsmDVe7cufHy8uLcuXOxjp87d478+fPH+Z706dOTLVu2WF/OVq57Fc54FcZ+K0rluON1Ox6c9ipCue5qWy4iIiJxS/JglS5dOl544QUCAgIcx+x2OwEBAVSuXDmpy3HwSufFif4TTT13jFNFPz/ZfwJe6dQMSkREROLmkqnA/v37M2vWLObPn8+hQ4d49913uXHjBh07/n979x9TVf3HcfwFXLhgCtcf415RKWpuVJqRJBF91x+yrLlm0Vq5W2PW5srrAt0sV1P/6Gsorf7QnFZ/1B9Zli0r2WxjYDg2BESoDEO3XDr1SmV0b/5I476/f3XnTf3K2rmcKzwf293knM+8731eE147nntY5MY4cffUV6ljxacKZ0xJOH4yY6o6Vnyqe+p5bDkAALg6V55j9cQTT+jnn3/W6tWrFQ6Hdeedd+qrr7667IZ2N9xTX6XB/y5QzyVPXp+55D+awpUqAABwDfxKGwAAgGsYave4Lj4VCAAAcD2gWAEAADiEYgUAAOAQihUAAIBDKFYAAAAOoVgBAAA4hGIFAADgEIoVAACAQyhWAAAADqFYAQAAOIRiBQAA4BCKFQAAgEMoVgAAAA6hWAEAADiEYgUAAOAQihUAAIBDPG4P8G+YmSQpEom4PAkAABgN/u4cf3eQq7kui1U0GpUkTZs2zeVJAADAaBKNRpWXl3fV82l2reqVgmKxmE6cOKFx48YpLS0tKe8RiUQ0bdo0HTt2TLm5uUl5D1wbOaQOskgdZJEayCF1DEcWZqZoNKqCggKlp1/9Tqrr8opVenq6pk6dOizvlZubyz+YFEAOqYMsUgdZpAZySB3JzuL/Xan6GzevAwAAOIRiBQAA4BCK1VV4vV6tWbNGXq/X7VFGNXJIHWSROsgiNZBD6kilLK7Lm9cBAABSEVesAAAAHEKxAgAAcAjFCgAAwCEUKwAAAIdQrAAAABxCsbqCTZs26aabblJ2drbKysrU0dHh9kgjXl1dne6++26NGzdO+fn5euSRR9TX15ew5vz58wqFQpo4caLGjh2rxx57TKdOnXJp4tFh3bp1SktLU21tbfwYOQyf48eP66mnntLEiROVk5OjmTNnat++ffHzZqbVq1dr8uTJysnJUWVlpQ4fPuzixCPP4OCgVq1apaKiIuXk5OiWW27Rq6++mvCLeMkhOfbs2aOHH35YBQUFSktL0+eff55wfij7fvr0aQWDQeXm5srn8+nZZ5/VH3/8kdS5KVb/8PHHH2v58uVas2aN9u/fr1mzZmnevHnq7+93e7QRraWlRaFQSHv37lVjY6MuXryoBx54QGfOnImvWbZsmXbu3Knt27erpaVFJ06cUFVVlYtTj2ydnZ16++23dccddyQcJ4fh8dtvv6miokKZmZnatWuXent79cYbb2j8+PHxNfX19dqwYYO2bNmi9vZ23XDDDZo3b57Onz/v4uQjy/r167V582a99dZbOnjwoNavX6/6+npt3LgxvoYckuPMmTOaNWuWNm3adMXzQ9n3YDCo77//Xo2NjWpoaNCePXu0ePHi5A5uSDBnzhwLhULxrwcHB62goMDq6upcnGr06e/vN0nW0tJiZmYDAwOWmZlp27dvj685ePCgSbK2tja3xhyxotGoTZ8+3RobG+3++++3mpoaMyOH4fTSSy/Zfffdd9XzsVjMAoGAvf766/FjAwMD5vV67aOPPhqOEUeF+fPn2zPPPJNwrKqqyoLBoJmRw3CRZDt27Ih/PZR97+3tNUnW2dkZX7Nr1y5LS0uz48ePJ21Wrlhd4sKFC+rq6lJlZWX8WHp6uiorK9XW1ubiZKPP77//LkmaMGGCJKmrq0sXL15MyKa4uFiFhYVkkwShUEjz589P2G+JHIbTl19+qdLSUj3++OPKz89XSUmJ3n333fj5I0eOKBwOJ2SRl5ensrIysnDQvffeq6amJh06dEiS9M0336i1tVUPPfSQJHJwy1D2va2tTT6fT6WlpfE1lZWVSk9PV3t7e9Jm8yTtb74O/fLLLxocHJTf70847vf79cMPP7g01egTi8VUW1uriooKzZgxQ5IUDoeVlZUln8+XsNbv9yscDrsw5ci1bds27d+/X52dnZedI4fh8+OPP2rz5s1avny5Xn75ZXV2duqFF15QVlaWqqur4/t9pe9XZOGclStXKhKJqLi4WBkZGRocHNTatWsVDAYliRxcMpR9D4fDys/PTzjv8Xg0YcKEpGZDsULKCYVCOnDggFpbW90eZdQ5duyYampq1NjYqOzsbLfHGdVisZhKS0v12muvSZJKSkp04MABbdmyRdXV1S5PN3p88skn2rp1qz788EPdfvvt6unpUW1trQoKCsgBV8R/BV5i0qRJysjIuOwTTqdOnVIgEHBpqtFl6dKlamho0O7duzV16tT48UAgoAsXLmhgYCBhPdk4q6urS/39/brrrrvk8Xjk8XjU0tKiDRs2yOPxyO/3k8MwmTx5sm677baEY7feequOHj0qSfH95vtVcq1YsUIrV67Uk08+qZkzZ+rpp5/WsmXLVFdXJ4kc3DKUfQ8EApd98Oyvv/7S6dOnk5oNxeoSWVlZmj17tpqamuLHYrGYmpqaVF5e7uJkI5+ZaenSpdqxY4eam5tVVFSUcH727NnKzMxMyKavr09Hjx4lGwfNnTtX3333nXp6euKv0tJSBYPB+J/JYXhUVFRc9siRQ4cO6cYbb5QkFRUVKRAIJGQRiUTU3t5OFg46e/as0tMTf1RmZGQoFotJIge3DGXfy8vLNTAwoK6urvia5uZmxWIxlZWVJW+4pN0Wf53atm2beb1ee//99623t9cWL15sPp/PwuGw26ONaM8//7zl5eXZ119/bSdPnoy/zp49G1/z3HPPWWFhoTU3N9u+ffusvLzcysvLXZx6dLj0U4Fm5DBcOjo6zOPx2Nq1a+3w4cO2detWGzNmjH3wwQfxNevWrTOfz2dffPGFffvtt7ZgwQIrKiqyc+fOuTj5yFJdXW1TpkyxhoYGO3LkiH322Wc2adIke/HFF+NryCE5otGodXd3W3d3t0myN99807q7u+2nn34ys6Ht+4MPPmglJSXW3t5ura2tNn36dFu4cGFS56ZYXcHGjRutsLDQsrKybM6cObZ37163RxrxJF3x9d5778XXnDt3zpYsWWLjx4+3MWPG2KOPPmonT550b+hR4p/FihyGz86dO23GjBnm9XqtuLjY3nnnnYTzsVjMVq1aZX6/37xer82dO9f6+vpcmnZkikQiVlNTY4WFhZadnW0333yzvfLKK/bnn3/G15BDcuzevfuKPxeqq6vNbGj7/uuvv9rChQtt7Nixlpuba4sWLbJoNJrUudPMLnl8LAAAAP417rECAABwCMUKAADAIRQrAAAAh1CsAAAAHEKxAgAAcAjFCgAAwCEUKwAAAIdQrAAAABxCsQIAAHAIxQoAAMAhFCsAAACH/A+8oJZWHWCJ4AAAAABJRU5ErkJggg==", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -624,7 +618,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 14, "metadata": {}, "outputs": [], "source": [ @@ -649,16 +643,16 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "0.518628912071535" + "0.51862891207153505" ] }, - "execution_count": 17, + "execution_count": 15, "metadata": {}, "output_type": "execute_result" } @@ -670,7 +664,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 16, "metadata": {}, "outputs": [ { @@ -679,7 +673,7 @@ "0.48756218905472637" ] }, - "execution_count": 18, + "execution_count": 16, "metadata": {}, "output_type": "execute_result" } @@ -691,7 +685,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 17, "metadata": {}, "outputs": [ { @@ -700,7 +694,7 @@ "0.4934357195937577" ] }, - "execution_count": 19, + "execution_count": 17, "metadata": {}, "output_type": "execute_result" } @@ -774,7 +768,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.5" + "version": "3.11.4" }, "varInspector": { "cols": { diff --git a/content/01-demand/01-demand.html b/content/01-demand/01-demand.html index 89adf7f..453e931 100644 --- a/content/01-demand/01-demand.html +++ b/content/01-demand/01-demand.html @@ -488,19 +488,7 @@

Contents

-
-
-
print(plt.style.available)
-
-
-
-
-
['Solarize_Light2', '_classic_test_patch', '_mpl-gallery', '_mpl-gallery-nogrid', 'bmh', 'classic', 'dark_background', 'fast', 'fivethirtyeight', 'ggplot', 'grayscale', 'seaborn-v0_8', 'seaborn-v0_8-bright', 'seaborn-v0_8-colorblind', 'seaborn-v0_8-dark', 'seaborn-v0_8-dark-palette', 'seaborn-v0_8-darkgrid', 'seaborn-v0_8-deep', 'seaborn-v0_8-muted', 'seaborn-v0_8-notebook', 'seaborn-v0_8-paper', 'seaborn-v0_8-pastel', 'seaborn-v0_8-poster', 'seaborn-v0_8-talk', 'seaborn-v0_8-ticks', 'seaborn-v0_8-white', 'seaborn-v0_8-whitegrid', 'tableau-colorblind10']
-
-
-
-
-
+

Demand Curves#

In this chapter, we will explore one of the most foundational yet important concepts in economics: demand curves. The demand curve shows the graphical relationship between the price of a good or service and the quantity demanded for it over a given period of time. In other words, it shows the quantity of goods or services consumers are willing to buy at each market price. diff --git a/content/02-supply/01-supply.html b/content/02-supply/01-supply.html index 7399ae3..460af73 100644 --- a/content/02-supply/01-supply.html +++ b/content/02-supply/01-supply.html @@ -524,7 +524,7 @@

The Supply Curve
-../../_images/73cc2bbca3ab3652ab32c018356db6c31e652390b420a564e8c924ed7559554a.png +../../_images/b77d7abf459122761dd893433a39a14e4efa6906d218be1b124c4dfa5d13de0a.png

Market behavior relating to supply is based on the behavior of the individual firms that comprise it. Now, how does an individual firm make its decision about production? It does so based on the costs associated with production. If the price of a good is enough to recover the costs, the firm produces. Generally, costs increase with the quantity of production. So, to induce producers to increase the quantity supplied, the market prices need to be high enough to compensate for the increased costs.

@@ -610,14 +610,14 @@

Costs#<

[Following image is a graph of Total, Fixed and Variable Costs]

-../../_images/92c24dbff8c946c9c2a11e41d9005a36540c827017a774d3e5cd938f6da8d1cf.png +../../_images/90bb8ea0b89e32711ccaefe2dc6dbfa1d9a2cb81d48ea21a4017c9257b53dc3e.png

There are two important things to notice about the graph above. First, the total fixed cost is flat. This is because the fixed cost does not change regardless of quantity produced. Second, the vertical difference between the total variable cost and total cost is the TFC. This is because \(\text{TC} = \text{TVC} + \text{TFC}\).

[Following image is a graph of Average Total, Fixed, and Variable Costs]

-../../_images/6d30858ce6369b066fa37f034b94995a9fc3c9974b73e634a14cd8751c03efb3.png +../../_images/2e872448aa5af2b9b46d6c894813dc2b6d981f25491447195f1f159046559a88.png

From the graph above, note that:

@@ -629,7 +629,7 @@

Costs#<

[Following image is a graph of Average Total and Variable Cost and Marginal Cost]

-../../_images/523ec66c753cfc951ea0d47a6a5ef29351bca88df21e8e6602481c103bcbe2f0.png +../../_images/76e99aa55472869055d7a051c054d513b186bc2fd27e05d0100c01380379c5ff.png

Notice that the MC curve intersects the ATC and AVC curves at their minima. This is because when MC is below the AVC and ATC, it brings down the average since it costs less to produce an additional unit. But as MC begins to increase and surpasses the ATC and AVC cost curves, it will surpass the intersection, and pulls up the AVC and ATC curves. Therefore, it intersects at the minima.

@@ -651,10 +651,22 @@

Production and Firm Behavior -
No production
+
---------------------------------------------------------------------------
+AttributeError                            Traceback (most recent call last)
+Cell In[20], line 1
+----> 1 firm_behaviour(24, individual_firm_costs)
+
+File c:\Users\lynnc\OneDrive\Documents\GitHub\textbook\content\02-supply\utils.py:14, in firm_behaviour(price, individual_firm_costs)
+     12 output = individual_firm_costs.column("Output")[1:]
+     13 mc = individual_firm_costs.column("Marginal Cost")[1:]
+---> 14 sp_mc = csaps.UnivariateCubicSmoothingSpline(output, mc, smooth=0.85)
+     15 output_s = np.linspace(output.min(), output.max(), 150)
+     16 mc_s = sp_mc(output_s)
+
+AttributeError: module 'csaps' has no attribute 'UnivariateCubicSmoothingSpline'
 
-../../_images/6d6fcafc092c9bfa1a5e4ee9c7bf870184beb377fa64074e94b2abc6553cf3c9.png +../../_images/30bd87965de4bad26b9480db5e70c7544c1d9fe5bf87e8d88319c886d2aa0f2f.png

For any price that lies above the AVC curve but below the ATC curve, the firm will produce at a loss-minimising quantity. This is because for some levels of production, they will make revenue that is more than the total variable cost of production but is still less than the total cost, which includes the fixed cost. While they still lose money, they have offset some of the losses they would have incurred from the fixed cost. In our example, we see this for prices between 25 and 31. The red patch in the plot shows the loss.

@@ -666,10 +678,22 @@

Production and Firm Behavior -
Production at loss minimising quantity
+
---------------------------------------------------------------------------
+AttributeError                            Traceback (most recent call last)
+Cell In[21], line 1
+----> 1 firm_behaviour(28, individual_firm_costs)
+
+File c:\Users\lynnc\OneDrive\Documents\GitHub\textbook\content\02-supply\utils.py:14, in firm_behaviour(price, individual_firm_costs)
+     12 output = individual_firm_costs.column("Output")[1:]
+     13 mc = individual_firm_costs.column("Marginal Cost")[1:]
+---> 14 sp_mc = csaps.UnivariateCubicSmoothingSpline(output, mc, smooth=0.85)
+     15 output_s = np.linspace(output.min(), output.max(), 150)
+     16 mc_s = sp_mc(output_s)
+
+AttributeError: module 'csaps' has no attribute 'UnivariateCubicSmoothingSpline'
 
-../../_images/d70dcb74fe5ae5359850cff59fee5108b6f6bfb2bed70f49f770da0e3656c282.png +../../_images/30bd87965de4bad26b9480db5e70c7544c1d9fe5bf87e8d88319c886d2aa0f2f.png

If the price is above the ATC curve, the firm produces at a profit. In this example, it is at prices 32 and above. The green patch shows the profit.

@@ -681,10 +705,22 @@

Production and Firm Behavior -
Production at a profit
+
---------------------------------------------------------------------------
+AttributeError                            Traceback (most recent call last)
+Cell In[24], line 1
+----> 1 firm_behaviour(36, individual_firm_costs)
+
+File c:\Users\lynnc\OneDrive\Documents\GitHub\textbook\content\02-supply\utils.py:14, in firm_behaviour(price, individual_firm_costs)
+     12 output = individual_firm_costs.column("Output")[1:]
+     13 mc = individual_firm_costs.column("Marginal Cost")[1:]
+---> 14 sp_mc = csaps.UnivariateCubicSmoothingSpline(output, mc, smooth=0.85)
+     15 output_s = np.linspace(output.min(), output.max(), 150)
+     16 mc_s = sp_mc(output_s)
+
+AttributeError: module 'csaps' has no attribute 'UnivariateCubicSmoothingSpline'
 
-../../_images/a8b504857651cb2b8a8d7a5d8af67a38698f83492491547c0164c745fb65e995.png +../../_images/30bd87965de4bad26b9480db5e70c7544c1d9fe5bf87e8d88319c886d2aa0f2f.png

So, we have seen that a firm produces if the price is above the AVC. The question now is: what is the level of production?

diff --git a/content/06-inequality/inequality.html b/content/06-inequality/inequality.html index 6841590..b631ac8 100644 --- a/content/06-inequality/inequality.html +++ b/content/06-inequality/inequality.html @@ -585,7 +585,7 @@

A Toy Example
-../../_images/d4b379ef0daabc4bcdd19c541bf99da90a3afb3c6ae90144fbd5df2715b97199.png +../../_images/2d725d26585822d8d455ff135535d3e47a1274b7dd8ad1dbc95375be5981ffeb.png

@@ -718,7 +718,7 @@

Comparing Lorenz Curves[Following image has 2 Lorenz Curves for different countries in population share vs income share]

-../../_images/1011d1973a79dbd2dade27d8d5fe6eff4a9d84e938c26b7fd7632c5de25de944.png +../../_images/1d0aa85c356d83ba20e1a8b90814cf6783579312a39154052e9dac2ef3cff1c1.png

In this case, we can see that country 2’s Lorenz curve is closer to the line of equality than that of country 1, which intuitively would suggest that country 2 is more equal. If we were to look at the numbers, we see that the bottom percentiles own a higher % of total national income in country 2 than in country 1, while top percentiles own less in country 2 than in country 1. This would suggest that country 2 is more equal in income than country 1, so that country 1 has a higher level of income inequality.

@@ -787,7 +787,7 @@

Comparing Lorenz Curves
-../../_images/66b4510dddd50b65436767d0eb364d2a72454ca17e604f07ff4f215113d75a40.png +../../_images/6827ce62b098c3b33c06146581b750b0b065988d3cc2929ef27e9eba59a429f3.png

Now, ambiguity arises; while bottom income percentiles earn a larger share of national income in country 3, top income percentiles also have a larger share. We can visualize this phenomenon by the ‘crossing’ of Lorenz curves on the plot. As a result, we do cannot easily tell which country has a higher level of income inequality.

@@ -839,7 +839,7 @@

The Gini Coefficient
-
0.518628912071535
+
0.51862891207153505
 
diff --git a/searchindex.js b/searchindex.js index aee270d..cc6ddce 100644 --- a/searchindex.js +++ b/searchindex.js @@ -1 +1 @@ -Search.setIndex({"alltitles": {"
Data 88E: Economic Models ": [[51, null]], "A Toy Example": [[24, "a-toy-example"], [70, "a-toy-example"], [106, "a-toy-example"]], "A brief discourse on utility": [[1, "a-brief-discourse-on-utility"], [53, "a-brief-discourse-on-utility"], [89, "a-brief-discourse-on-utility"]], "Acknowledgements": [[51, "acknowledgements"]], "An Afterword": [[1, "an-afterword"], [53, "an-afterword"], [89, "an-afterword"]], "An Empirical Demand Curve": [[3, null], [55, null], [91, null]], "An Empirical Example from EEP 147": [[8, null], [59, null], [95, null]], "An Example": [[15, "an-example"], [64, "an-example"], [100, "an-example"]], "Analyzing Shifts in A and \\alpha": [[18, null], [66, null], [102, null]], "Applying Bertrand": [[25, "applying-bertrand"], [71, "applying-bertrand"], [107, "applying-bertrand"]], "Applying Cournot": [[26, "applying-cournot"], [72, "applying-cournot"], [108, "applying-cournot"]], "Assertions": [[30, "assertions"], [75, "assertions"], [111, "assertions"]], "BRICS": [[46, "brics"], [47, "brics"], [87, "brics"], [123, "brics"]], "Back to the Government": [[48, "back-to-the-government"], [88, "back-to-the-government"], [124, "back-to-the-government"]], "Bertrand Competition": [[25, null], [71, null], [107, null]], "Bertrand Equilibrium": [[25, "bertrand-equilibrium"], [71, "bertrand-equilibrium"], [107, "bertrand-equilibrium"]], "Best Response Functions": [[26, "best-response-functions"], [72, "best-response-functions"], [108, "best-response-functions"]], "Bibliography": [[52, null]], "Black-Scholes": [[39, "black-scholes"], [81, "black-scholes"], [117, "black-scholes"]], "Budget Constraints and Utility Maximization": [[19, null], [67, null], [103, null]], "Building our own Environmental Kuznets Curve": [[46, "building-our-own-environmental-kuznets-curve"], [47, "building-our-own-environmental-kuznets-curve"], [87, "building-our-own-environmental-kuznets-curve"], [123, "building-our-own-environmental-kuznets-curve"]], "Calculating Returns Using an API": [[39, "calculating-returns-using-an-api"], [81, "calculating-returns-using-an-api"], [117, "calculating-returns-using-an-api"]], "Calculating Taxes Algebraically": [[15, "calculating-taxes-algebraically"], [64, "calculating-taxes-algebraically"], [100, "calculating-taxes-algebraically"]], "Calls": [[39, "calls"], [81, "calls"], [117, "calls"]], "Capital": [[17, "capital"], [65, "capital"], [101, "capital"]], "Central Banks": [[32, null], [76, null], [112, null]], "China": [[46, "china"], [47, "china"], [87, "china"], [123, "china"]], "Class Representations": [[30, "class-representations"], [75, "class-representations"], [111, "class-representations"]], "Classical Phillips Curve": [[37, "classical-phillips-curve"], [80, "classical-phillips-curve"], [116, "classical-phillips-curve"]], "Classical vs Keynesian View": [[34, "classical-vs-keynesian-view"], [78, "classical-vs-keynesian-view"], [114, "classical-vs-keynesian-view"]], "Cobb-Douglas Utility Function": [[21, "cobb-douglas-utility-function"], [68, "cobb-douglas-utility-function"], [104, "cobb-douglas-utility-function"]], "Colinearity and Dummy Variables": [[42, "colinearity-and-dummy-variables"], [83, "colinearity-and-dummy-variables"], [119, "colinearity-and-dummy-variables"]], "Comparing Lorenz Curves": [[24, "comparing-lorenz-curves"], [70, "comparing-lorenz-curves"], [106, "comparing-lorenz-curves"]], "Conclusion": [[48, "conclusion"], [88, "conclusion"], [124, "conclusion"]], "Constructing a MAC for Methane Gas Abatement": [[48, "constructing-a-mac-for-methane-gas-abatement"], [88, "constructing-a-mac-for-methane-gas-abatement"], [124, "constructing-a-mac-for-methane-gas-abatement"]], "Consumer Surplus": [[14, "consumer-surplus"], [63, "consumer-surplus"], [99, "consumer-surplus"]], "Costs": [[7, "costs"], [58, "costs"], [94, "costs"]], "Cournot Competition": [[26, null], [72, null], [108, null]], "Cournot Equilibrium": [[26, "cournot-equilibrium"], [72, "cournot-equilibrium"], [108, "cournot-equilibrium"]], "Cournot Profit Functions": [[26, "cournot-profit-functions"], [72, "cournot-profit-functions"], [108, "cournot-profit-functions"]], "Course Description": [[51, "course-description"]], "Create the Demand Curve": [[10, "create-the-demand-curve"], [61, "create-the-demand-curve"], [97, "create-the-demand-curve"]], "Create the Supply Curve": [[10, "create-the-supply-curve"], [61, "create-the-supply-curve"], [97, "create-the-supply-curve"]], "Creating Instances": [[30, "creating-instances"], [75, "creating-instances"], [111, "creating-instances"]], "Criticism of the Environmental Kuznets Curve Hypothesis": [[46, "criticism-of-the-environmental-kuznets-curve-hypothesis"], [47, "criticism-of-the-environmental-kuznets-curve-hypothesis"], [87, "criticism-of-the-environmental-kuznets-curve-hypothesis"], [123, "criticism-of-the-environmental-kuznets-curve-hypothesis"]], "Data Collection": [[1, "data-collection"], [53, "data-collection"], [89, "data-collection"]], "Data Preprocessing": [[10, "data-preprocessing"], [61, "data-preprocessing"], [97, "data-preprocessing"]], "Deadweight Loss": [[15, "deadweight-loss"], [64, "deadweight-loss"], [100, "deadweight-loss"]], "Definition": [[7, null], [7, null], [10, null], [24, null], [27, null], [28, null], [40, null], [58, null], [58, null], [61, null], [70, null], [73, null], [74, null], [82, null], [94, null], [94, null], [97, null], [106, null], [109, null], [110, null], [118, null]], "Demand Curves": [[2, null], [54, null], [90, null]], "Demand and Elasticities": [[6, null]], "Demand with Price as a Function of Quantity": [[3, "demand-with-price-as-a-function-of-quantity"], [55, "demand-with-price-as-a-function-of-quantity"], [91, "demand-with-price-as-a-function-of-quantity"]], "Demand with Quantity as a Function of Price": [[3, "demand-with-quantity-as-a-function-of-price"], [55, "demand-with-quantity-as-a-function-of-price"], [91, "demand-with-quantity-as-a-function-of-price"]], "Development": [[31, null]], "Disclaimer": [[39, null], [81, null], [117, null]], "Dynamics of Keynesian Cross and Derivation of IS Curve": [[36, "dynamics-of-keynesian-cross-and-derivation-of-is-curve"], [79, "dynamics-of-keynesian-cross-and-derivation-of-is-curve"], [115, "dynamics-of-keynesian-cross-and-derivation-of-is-curve"]], "Econometric Single Variable Regression": [[44, "econometric-single-variable-regression"], [85, "econometric-single-variable-regression"], [121, "econometric-single-variable-regression"]], "Econometrics": [[41, null]], "Effects of Subsidies": [[15, "effects-of-subsidies"], [64, "effects-of-subsidies"], [100, "effects-of-subsidies"]], "Effects of Taxation": [[15, "effects-of-taxation"], [64, "effects-of-taxation"], [100, "effects-of-taxation"]], "Elasticity": [[5, null], [57, null], [93, null]], "Elasticity and Revenue": [[5, "elasticity-and-revenue"], [57, "elasticity-and-revenue"], [93, "elasticity-and-revenue"]], "Environmental Economics": [[49, null]], "Environmental Kuznets Curve Hypothesis": [[46, null], [47, null], [87, null], [123, null]], "Equilibria & Oligopolies": [[27, null], [73, null], [109, null]], "Equilibrium": [[27, "equilibrium"], [73, "equilibrium"], [109, "equilibrium"]], "Examining the Effects of Taxes": [[15, "examining-the-effects-of-taxes"], [64, "examining-the-effects-of-taxes"], [100, "examining-the-effects-of-taxes"]], "Examining the Utility Function": [[21, "examining-the-utility-function"], [68, "examining-the-utility-function"], [104, "examining-the-utility-function"]], "Example": [[14, "example"], [63, "example"], [99, "example"]], "Expectation-Augmented Phillips Curve": [[37, "expectation-augmented-phillips-curve"], [80, "expectation-augmented-phillips-curve"], [116, "expectation-augmented-phillips-curve"]], "Expected Utility": [[28, "expected-utility"], [74, "expected-utility"], [110, "expected-utility"]], "Expected Utility Theory": [[28, null], [74, null], [110, null]], "Expressing Quantity as a Function of Price": [[15, "expressing-quantity-as-a-function-of-price"], [64, "expressing-quantity-as-a-function-of-price"], [100, "expressing-quantity-as-a-function-of-price"]], "Factors that Affect Income Inequality": [[22, "factors-that-affect-income-inequality"], [69, "factors-that-affect-income-inequality"], [105, "factors-that-affect-income-inequality"]], "Finance": [[38, null]], "Find the Price Equilibrium": [[10, "find-the-price-equilibrium"], [61, "find-the-price-equilibrium"], [97, "find-the-price-equilibrium"]], "Find the Quantity Equilibrium": [[10, "find-the-quantity-equilibrium"], [61, "find-the-quantity-equilibrium"], [97, "find-the-quantity-equilibrium"]], "Finding the Equilibrium": [[10, "finding-the-equilibrium"], [61, "finding-the-equilibrium"], [97, "finding-the-equilibrium"]], "Fiscal Policy": [[34, null], [78, null], [114, null]], "Fit a Polynomial": [[10, "fit-a-polynomial"], [61, "fit-a-polynomial"], [97, "fit-a-polynomial"]], "Fitting a Linear Demand Curve": [[3, "fitting-a-linear-demand-curve"], [55, "fitting-a-linear-demand-curve"], [91, "fitting-a-linear-demand-curve"]], "Further recommended readings": [[46, "further-recommended-readings"], [47, "further-recommended-readings"], [48, "further-recommended-readings"], [87, "further-recommended-readings"], [88, "further-recommended-readings"], [123, "further-recommended-readings"], [124, "further-recommended-readings"]], "Game Theory": [[29, null]], "Generalization and Causal Inference": [[1, "generalization-and-causal-inference"], [53, "generalization-and-causal-inference"], [89, "generalization-and-causal-inference"]], "Government Intervention": [[48, "government-intervention"], [88, "government-intervention"], [124, "government-intervention"]], "Gross Domestic Product (\ud835\udc4c)": [[33, "gross-domestic-product"], [77, "gross-domestic-product"], [113, "gross-domestic-product"]], "IS-Curve": [[36, null], [79, null], [115, null]], "Implication for Cross-Country Comparisons": [[17, "implication-for-cross-country-comparisons"], [65, "implication-for-cross-country-comparisons"], [101, "implication-for-cross-country-comparisons"]], "Implication of IS Curve": [[36, "implication-of-is-curve"], [79, "implication-of-is-curve"], [115, "implication-of-is-curve"]], "Implications": [[25, "implications"], [26, "implications"], [71, "implications"], [72, "implications"], [107, "implications"], [108, "implications"]], "Incidence": [[15, "incidence"], [64, "incidence"], [100, "incidence"]], "Income Inequality Historically": [[22, null], [69, null], [105, null]], "Income Inequality for the Rest of the World": [[22, "income-inequality-for-the-rest-of-the-world"], [69, "income-inequality-for-the-rest-of-the-world"], [105, "income-inequality-for-the-rest-of-the-world"]], "Income and Substitution Effect": [[2, "income-and-substitution-effect"], [54, "income-and-substitution-effect"], [90, "income-and-substitution-effect"]], "Incomes Over Time: Computer Science vs Economics": [[1, "incomes-over-time-computer-science-vs-economics"], [53, "incomes-over-time-computer-science-vs-economics"], [89, "incomes-over-time-computer-science-vs-economics"]], "India": [[46, "india"], [47, "india"], [87, "india"], [123, "india"]], "Indifference Curves": [[21, "indifference-curves"], [68, "indifference-curves"], [104, "indifference-curves"]], "Individual country graphs": [[46, "individual-country-graphs"], [47, "individual-country-graphs"], [87, "individual-country-graphs"], [123, "individual-country-graphs"]], "Inequality": [[23, null]], "Inflation Rate (\ud835\udf0b)": [[33, "inflation-rate"], [77, "inflation-rate"], [113, "inflation-rate"]], "Instance Methods": [[30, "instance-methods"], [75, "instance-methods"], [111, "instance-methods"]], "Interest": [[40, "interest"], [82, "interest"], [118, "interest"]], "Intertemporal Effects": [[1, "intertemporal-effects"], [53, "intertemporal-effects"], [89, "intertemporal-effects"]], "Introduction": [[1, null], [53, null], [89, null]], "Keynesian Cross": [[36, "keynesian-cross"], [79, "keynesian-cross"], [115, "keynesian-cross"]], "Labor": [[17, "labor"], [65, "labor"], [101, "labor"]], "License": [[51, "license"]], "License for this book": [[50, null]], "Limitation 1: Introducing Capital Intensity": [[48, "limitation-1-introducing-capital-intensity"], [88, "limitation-1-introducing-capital-intensity"], [124, "limitation-1-introducing-capital-intensity"]], "Limitation 2: Lack of Dynamic Cost Assessment": [[48, "limitation-2-lack-of-dynamic-cost-assessment"], [88, "limitation-2-lack-of-dynamic-cost-assessment"], [124, "limitation-2-lack-of-dynamic-cost-assessment"]], "Line of Perfect Equality": [[24, "line-of-perfect-equality"], [70, "line-of-perfect-equality"], [106, "line-of-perfect-equality"]], "Log-log": [[4, "log-log"], [56, "log-log"], [92, "log-log"]], "Log-log Demand Curves": [[4, "log-log-demand-curves"], [56, "log-log-demand-curves"], [92, "log-log-demand-curves"]], "Log-log and Semi-log Demand Curves": [[4, null], [56, null], [92, null]], "Low Income Countries": [[46, "low-income-countries"], [47, "low-income-countries"], [87, "low-income-countries"], [123, "low-income-countries"]], "Macroeconomic Indicators": [[33, null], [77, null], [113, null]], "Macroeconomic Policy": [[35, null]], "Marginal Abatement Cost Curves": [[48, null], [88, null], [124, null]], "Marginal Cost": [[48, "marginal-cost"], [88, "marginal-cost"], [124, "marginal-cost"]], "Marginal Utility and the Law of Diminishing Returns": [[21, "marginal-utility-and-the-law-of-diminishing-returns"], [68, "marginal-utility-and-the-law-of-diminishing-returns"], [104, "marginal-utility-and-the-law-of-diminishing-returns"]], "Market Equilibria": [[10, null], [61, null], [97, null]], "Mean vs Median": [[1, "mean-vs-median"], [53, "mean-vs-median"], [89, "mean-vs-median"]], "Measurements of Inequality": [[24, null], [70, null], [106, null]], "Movement and the Demand Curve": [[2, "movement-and-the-demand-curve"], [54, "movement-and-the-demand-curve"], [90, "movement-and-the-demand-curve"]], "Movements Away from Equilibrium": [[10, "movements-away-from-equilibrium"], [61, "movements-away-from-equilibrium"], [97, "movements-away-from-equilibrium"]], "Movements along the Demand Curve": [[2, "movements-along-the-demand-curve"], [54, "movements-along-the-demand-curve"], [90, "movements-along-the-demand-curve"]], "Multivariable Regression": [[42, "multivariable-regression"], [83, "multivariable-regression"], [119, "multivariable-regression"]], "Multivariable Regression and Bias": [[42, null], [83, null], [119, null]], "Nash equilibria in payoff matrices": [[27, null], [73, null], [109, null]], "Non-negative Marginal Utility": [[21, "non-negative-marginal-utility"], [68, "non-negative-marginal-utility"], [104, "non-negative-marginal-utility"]], "Norway": [[87, "norway"], [123, "norway"]], "Note on the Demand and Supply Curves": [[14, "note-on-the-demand-and-supply-curves"], [63, "note-on-the-demand-and-supply-curves"], [99, "note-on-the-demand-and-supply-curves"]], "Oligopolies": [[27, "oligopolies"], [73, "oligopolies"], [109, "oligopolies"]], "Operators": [[30, "operators"], [75, "operators"], [111, "operators"]], "Optional: World Trade vs. Autarky": [[12, "optional-world-trade-vs-autarky"], [62, "optional-world-trade-vs-autarky"], [98, "optional-world-trade-vs-autarky"]], "Options": [[39, null], [81, null], [117, null]], "Other Elasticities": [[5, "other-elasticities"], [57, "other-elasticities"], [93, "other-elasticities"]], "Other Forms of Government Intervention": [[12, null], [62, null], [98, null]], "Other Forms of Measurement": [[24, "other-forms-of-measurement"], [70, "other-forms-of-measurement"], [106, "other-forms-of-measurement"]], "Payoff Diagrams": [[39, "payoff-diagrams"], [81, "payoff-diagrams"], [117, "payoff-diagrams"]], "Phillips Curve": [[37, null], [80, null], [116, null]], "Population growth": [[22, "population-growth"], [69, "population-growth"], [105, "population-growth"]], "Present Value, Future Value, and Interest Rates": [[40, null], [82, null], [118, null]], "Present Value, Future Value, and the Discount Factor": [[40, "present-value-future-value-and-the-discount-factor"], [82, "present-value-future-value-and-the-discount-factor"], [118, "present-value-future-value-and-the-discount-factor"]], "Price Controls": [[12, "price-controls"], [62, "price-controls"], [98, "price-controls"]], "Pricing Options": [[39, "pricing-options"], [81, "pricing-options"], [117, "pricing-options"]], "Producer Surplus": [[14, "producer-surplus"], [63, "producer-surplus"], [99, "producer-surplus"]], "Production": [[16, null]], "Production and Cobb-Douglas Functions": [[17, null], [65, null], [101, null]], "Production and Firm Behavior": [[7, "production-and-firm-behavior"], [58, "production-and-firm-behavior"], [94, "production-and-firm-behavior"]], "Production in the Economy": [[17, "production-in-the-economy"], [65, "production-in-the-economy"], [101, "production-in-the-economy"]], "Public Economics": [[13, null]], "Puts": [[39, "puts"], [81, "puts"], [117, "puts"]], "Python Classes": [[30, null], [75, null], [111, null]], "Reading Economics Papers": [[43, null], [84, null], [120, null]], "Reading a payoff matrix": [[28, null], [74, null], [110, null]], "Real Interest Rate (\ud835\udc5f)": [[33, "real-interest-rate-r"], [77, "real-interest-rate-r"], [113, "real-interest-rate-r"]], "Reassignment Operators": [[30, "reassignment-operators"], [75, "reassignment-operators"], [111, "reassignment-operators"]], "Regression with a Binary Variable": [[44, "regression-with-a-binary-variable"], [85, "regression-with-a-binary-variable"], [121, "regression-with-a-binary-variable"]], "Relative Elasticity": [[5, "relative-elasticity"], [57, "relative-elasticity"], [93, "relative-elasticity"]], "Returns": [[39, "returns"], [81, "returns"], [117, "returns"]], "Returns to Scale": [[18, "returns-to-scale"], [66, "returns-to-scale"], [102, "returns-to-scale"]], "Revisiting Avocados": [[4, "revisiting-avocados"], [56, "revisiting-avocados"], [92, "revisiting-avocados"]], "Risk": [[1, "risk"], [53, "risk"], [89, "risk"]], "Root-Mean-Squared Error": [[44, "root-mean-squared-error"], [85, "root-mean-squared-error"], [121, "root-mean-squared-error"]], "Salience": [[15, "salience"], [64, "salience"], [100, "salience"]], "Semi-log": [[4, "semi-log"], [56, "semi-log"], [92, "semi-log"]], "Semi-log Demand Curves": [[4, "semi-log-demand-curves"], [56, "semi-log-demand-curves"], [92, "semi-log-demand-curves"]], "Shifts in A and their Effect on Output": [[18, "shifts-in-a-and-their-effect-on-output"], [66, "shifts-in-a-and-their-effect-on-output"], [102, "shifts-in-a-and-their-effect-on-output"]], "Shifts in \\alpha and their Effect on Output": [[18, "shifts-in-alpha-and-their-effect-on-output"], [66, "shifts-in-alpha-and-their-effect-on-output"], [102, "shifts-in-alpha-and-their-effect-on-output"]], "Shifts in the Demand Curve": [[2, "shifts-in-the-demand-curve"], [54, "shifts-in-the-demand-curve"], [90, "shifts-in-the-demand-curve"]], "Single Variable Regression": [[44, null], [85, null], [121, null]], "Solution": [[15, null], [15, null], [15, null], [15, null], [64, null], [64, null], [64, null], [64, null], [100, null], [100, null], [100, null], [100, null]], "Solving for the new quantity and price equilibria": [[15, "solving-for-the-new-quantity-and-price-equilibria"], [64, "solving-for-the-new-quantity-and-price-equilibria"], [100, "solving-for-the-new-quantity-and-price-equilibria"]], "Strategies": [[28, "strategies"], [74, "strategies"], [110, "strategies"]], "Student Learning Outcomes:": [[35, "student-learning-outcomes"]], "Supply and Market Equilibrium": [[11, null]], "Surplus": [[14, null], [63, null], [99, null]], "SymPy": [[9, null], [60, null], [96, null]], "Taxes and Subsidies": [[15, null], [64, null], [100, null]], "The Cobb-Douglas Production Function": [[17, "the-cobb-douglas-production-function"], [65, "the-cobb-douglas-production-function"], [101, "the-cobb-douglas-production-function"]], "The Elephant Graph": [[22, "the-elephant-graph"], [69, "the-elephant-graph"], [105, "the-elephant-graph"]], "The Financial Benefits of Your Major": [[1, "the-financial-benefits-of-your-major"], [53, "the-financial-benefits-of-your-major"], [89, "the-financial-benefits-of-your-major"]], "The Firm\u2019s Reaction": [[48, "the-firms-reaction"], [88, "the-firms-reaction"], [124, "the-firms-reaction"]], "The Gini Coefficient": [[24, "the-gini-coefficient"], [70, "the-gini-coefficient"], [106, "the-gini-coefficient"]], "The Lorenz Curve": [[24, "the-lorenz-curve"], [70, "the-lorenz-curve"], [106, "the-lorenz-curve"]], "The MAC curve\u2019s important limitations": [[48, "the-mac-curve-s-important-limitations"], [88, "the-mac-curve-s-important-limitations"], [124, "the-mac-curve-s-important-limitations"]], "The McKinsey Marginal Abatement Cost Curve (MAC)": [[48, "the-mckinsey-marginal-abatement-cost-curve-mac"], [88, "the-mckinsey-marginal-abatement-cost-curve-mac"], [124, "the-mckinsey-marginal-abatement-cost-curve-mac"]], "The Supply Curve": [[7, null], [58, null], [94, null]], "The Time Value of Money": [[40, "the-time-value-of-money"], [82, "the-time-value-of-money"], [118, "the-time-value-of-money"]], "The United States": [[22, "the-united-states"], [69, "the-united-states"], [105, "the-united-states"]], "The most lucrative major": [[1, "the-most-lucrative-major"], [53, "the-most-lucrative-major"], [89, "the-most-lucrative-major"]], "Top marginal tax rates": [[22, "top-marginal-tax-rates"], [69, "top-marginal-tax-rates"], [105, "top-marginal-tax-rates"]], "Total Factor Productivity": [[17, "total-factor-productivity"], [65, "total-factor-productivity"], [101, "total-factor-productivity"]], "Trading Options": [[39, "trading-options"], [81, "trading-options"], [117, "trading-options"]], "USA": [[87, "usa"], [123, "usa"]], "Uncertainty in \\hat{\\beta}": [[44, "uncertainty-in-hat-beta"], [85, "uncertainty-in-hat-beta"], [121, "uncertainty-in-hat-beta"]], "Unemployment Rate (\ud835\udc48)": [[33, "unemployment-rate"], [77, "unemployment-rate"], [113, "unemployment-rate"]], "Unemployment rates": [[22, "unemployment-rates"], [69, "unemployment-rates"], [105, "unemployment-rates"]], "United States": [[46, "united-states"], [47, "united-states"]], "Using Logarithms for Proportional Changes": [[4, "using-logarithms-for-proportional-changes"], [56, "using-logarithms-for-proportional-changes"], [92, "using-logarithms-for-proportional-changes"]], "Using statsmodels for Regression": [[45, null], [86, null], [122, null]], "Utility": [[20, null]], "Utility Functions": [[21, "utility-functions"], [68, "utility-functions"], [104, "utility-functions"]], "Utility Functions and Indifference Curves": [[21, null], [68, null], [104, null]], "Visualize the Relationship": [[10, "visualize-the-relationship"], [61, "visualize-the-relationship"], [97, "visualize-the-relationship"]], "Visualize the Market Equilibrium": [[10, "visualize-the-market-equilibrium"], [61, "visualize-the-market-equilibrium"], [97, "visualize-the-market-equilibrium"]], "Visualizing Multivariable Regression": [[42, "visualizing-multivariable-regression"], [83, "visualizing-multivariable-regression"], [119, "visualizing-multivariable-regression"]], "Visualizing the Relationship between Price and Quantity": [[3, "visualizing-the-relationship-between-price-and-quantity"], [55, "visualizing-the-relationship-between-price-and-quantity"], [91, "visualizing-the-relationship-between-price-and-quantity"]], "Visualizing the log-log relationship": [[4, "visualizing-the-log-log-relationship"], [56, "visualizing-the-log-log-relationship"], [92, "visualizing-the-log-log-relationship"]], "Visualizing the semi-log relationship": [[4, "visualizing-the-semi-log-relationship"], [56, "visualizing-the-semi-log-relationship"], [92, "visualizing-the-semi-log-relationship"]], "What is Utility?": [[21, "what-is-utility"], [68, "what-is-utility"], [104, "what-is-utility"]], "What\u2019s next?": [[46, "what-s-next"], [47, "what-s-next"], [48, "what-s-next"], [87, "what-s-next"], [88, "what-s-next"], [123, "what-s-next"], [124, "what-s-next"]], "Why Tax or Subsidize?": [[15, "why-tax-or-subsidize"], [64, "why-tax-or-subsidize"], [100, "why-tax-or-subsidize"]], "Why are some costs negative?": [[48, "why-are-some-costs-negative"], [88, "why-are-some-costs-negative"], [124, "why-are-some-costs-negative"]], "Years of Schooling and Earnings": [[44, "years-of-schooling-and-earnings"], [85, "years-of-schooling-and-earnings"], [121, "years-of-schooling-and-earnings"]], "textbook": [[0, null]]}, "docnames": ["README", "content/00-intro/index", "content/01-demand/01-demand", "content/01-demand/02-example", "content/01-demand/03-log-log", "content/01-demand/04-elasticity", "content/01-demand/index", "content/02-supply/01-supply", "content/02-supply/02-eep147-example", "content/02-supply/03-sympy", "content/02-supply/04-market-equilibria", "content/02-supply/index", "content/03-public/govt-intervention", "content/03-public/index", "content/03-public/surplus", "content/03-public/taxes-subsidies", "content/04-production/index", "content/04-production/production", "content/04-production/shifts", "content/05-utility/budget-constraints", "content/05-utility/index", "content/05-utility/utility", "content/06-inequality/historical-inequality", "content/06-inequality/index", "content/06-inequality/inequality", "content/07-game-theory/bertrand", "content/07-game-theory/cournot", "content/07-game-theory/equilibria-oligopolies", "content/07-game-theory/expected-utility", "content/07-game-theory/index", "content/07-game-theory/python-classes", "content/08-development/index", "content/09-macro/CentralBanks", "content/09-macro/Indicators", "content/09-macro/fiscal_policy", "content/09-macro/index", "content/09-macro/is_curve", "content/09-macro/phillips_curve", "content/10-finance/index", "content/10-finance/options", "content/10-finance/value-interest", "content/11-econometrics/index", "content/11-econometrics/multivariable", "content/11-econometrics/reading-econ-papers", "content/11-econometrics/single-variable", "content/11-econometrics/statsmodels", "content/12-environmental/KuznetsHypothesis", "content/12-environmental/KuznetsHypothesis-Copy1", "content/12-environmental/MAC", "content/12-environmental/index", "content/LICENSE", "content/intro", "content/references", "docs/jupyter_execute/content/00-intro/index", "docs/jupyter_execute/content/01-demand/01-demand", "docs/jupyter_execute/content/01-demand/02-example", "docs/jupyter_execute/content/01-demand/03-log-log", "docs/jupyter_execute/content/01-demand/04-elasticity", "docs/jupyter_execute/content/02-supply/01-supply", "docs/jupyter_execute/content/02-supply/02-eep147-example", "docs/jupyter_execute/content/02-supply/03-sympy", "docs/jupyter_execute/content/02-supply/04-market-equilibria", "docs/jupyter_execute/content/03-public/govt-intervention", "docs/jupyter_execute/content/03-public/surplus", "docs/jupyter_execute/content/03-public/taxes-subsidies", "docs/jupyter_execute/content/04-production/production", "docs/jupyter_execute/content/04-production/shifts", "docs/jupyter_execute/content/05-utility/budget-constraints", "docs/jupyter_execute/content/05-utility/utility", "docs/jupyter_execute/content/06-inequality/historical-inequality", "docs/jupyter_execute/content/06-inequality/inequality", "docs/jupyter_execute/content/07-game-theory/bertrand", "docs/jupyter_execute/content/07-game-theory/cournot", "docs/jupyter_execute/content/07-game-theory/equilibria-oligopolies", "docs/jupyter_execute/content/07-game-theory/expected-utility", "docs/jupyter_execute/content/07-game-theory/python-classes", "docs/jupyter_execute/content/09-macro/CentralBanks", "docs/jupyter_execute/content/09-macro/Indicators", "docs/jupyter_execute/content/09-macro/fiscal_policy", "docs/jupyter_execute/content/09-macro/is_curve", "docs/jupyter_execute/content/09-macro/phillips_curve", "docs/jupyter_execute/content/10-finance/options", "docs/jupyter_execute/content/10-finance/value-interest", "docs/jupyter_execute/content/11-econometrics/multivariable", "docs/jupyter_execute/content/11-econometrics/reading-econ-papers", "docs/jupyter_execute/content/11-econometrics/single-variable", "docs/jupyter_execute/content/11-econometrics/statsmodels", "docs/jupyter_execute/content/12-environmental/KuznetsHypothesis-Copy1", "docs/jupyter_execute/content/12-environmental/textbook1", "docs/jupyter_execute/docs/jupyter_execute/content/00-intro/index", "docs/jupyter_execute/docs/jupyter_execute/content/01-demand/01-demand", "docs/jupyter_execute/docs/jupyter_execute/content/01-demand/02-example", "docs/jupyter_execute/docs/jupyter_execute/content/01-demand/03-log-log", "docs/jupyter_execute/docs/jupyter_execute/content/01-demand/04-elasticity", "docs/jupyter_execute/docs/jupyter_execute/content/02-supply/01-supply", "docs/jupyter_execute/docs/jupyter_execute/content/02-supply/02-eep147-example", "docs/jupyter_execute/docs/jupyter_execute/content/02-supply/03-sympy", "docs/jupyter_execute/docs/jupyter_execute/content/02-supply/04-market-equilibria", "docs/jupyter_execute/docs/jupyter_execute/content/03-public/govt-intervention", "docs/jupyter_execute/docs/jupyter_execute/content/03-public/surplus", "docs/jupyter_execute/docs/jupyter_execute/content/03-public/taxes-subsidies", "docs/jupyter_execute/docs/jupyter_execute/content/04-production/production", "docs/jupyter_execute/docs/jupyter_execute/content/04-production/shifts", "docs/jupyter_execute/docs/jupyter_execute/content/05-utility/budget-constraints", "docs/jupyter_execute/docs/jupyter_execute/content/05-utility/utility", "docs/jupyter_execute/docs/jupyter_execute/content/06-inequality/historical-inequality", "docs/jupyter_execute/docs/jupyter_execute/content/06-inequality/inequality", "docs/jupyter_execute/docs/jupyter_execute/content/07-game-theory/bertrand", "docs/jupyter_execute/docs/jupyter_execute/content/07-game-theory/cournot", "docs/jupyter_execute/docs/jupyter_execute/content/07-game-theory/equilibria-oligopolies", "docs/jupyter_execute/docs/jupyter_execute/content/07-game-theory/expected-utility", "docs/jupyter_execute/docs/jupyter_execute/content/07-game-theory/python-classes", "docs/jupyter_execute/docs/jupyter_execute/content/09-macro/CentralBanks", "docs/jupyter_execute/docs/jupyter_execute/content/09-macro/Indicators", "docs/jupyter_execute/docs/jupyter_execute/content/09-macro/fiscal_policy", "docs/jupyter_execute/docs/jupyter_execute/content/09-macro/is_curve", "docs/jupyter_execute/docs/jupyter_execute/content/09-macro/phillips_curve", "docs/jupyter_execute/docs/jupyter_execute/content/10-finance/options", "docs/jupyter_execute/docs/jupyter_execute/content/10-finance/value-interest", "docs/jupyter_execute/docs/jupyter_execute/content/11-econometrics/multivariable", "docs/jupyter_execute/docs/jupyter_execute/content/11-econometrics/reading-econ-papers", "docs/jupyter_execute/docs/jupyter_execute/content/11-econometrics/single-variable", "docs/jupyter_execute/docs/jupyter_execute/content/11-econometrics/statsmodels", "docs/jupyter_execute/docs/jupyter_execute/content/12-environmental/KuznetsHypothesis-Copy1", "docs/jupyter_execute/docs/jupyter_execute/content/12-environmental/textbook1"], "envversion": {"sphinx": 62, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.intersphinx": 1, "sphinxcontrib.bibtex": 9}, "filenames": ["README.md", "content/00-intro/index.ipynb", "content/01-demand/01-demand.ipynb", "content/01-demand/02-example.ipynb", "content/01-demand/03-log-log.ipynb", "content/01-demand/04-elasticity.ipynb", "content/01-demand/index.md", "content/02-supply/01-supply.ipynb", "content/02-supply/02-eep147-example.ipynb", "content/02-supply/03-sympy.ipynb", "content/02-supply/04-market-equilibria.ipynb", "content/02-supply/index.md", "content/03-public/govt-intervention.ipynb", "content/03-public/index.md", "content/03-public/surplus.ipynb", "content/03-public/taxes-subsidies.ipynb", "content/04-production/index.md", "content/04-production/production.ipynb", "content/04-production/shifts.ipynb", "content/05-utility/budget-constraints.ipynb", "content/05-utility/index.md", "content/05-utility/utility.ipynb", "content/06-inequality/historical-inequality.ipynb", "content/06-inequality/index.md", "content/06-inequality/inequality.ipynb", "content/07-game-theory/bertrand.ipynb", "content/07-game-theory/cournot.ipynb", "content/07-game-theory/equilibria-oligopolies.ipynb", "content/07-game-theory/expected-utility.ipynb", "content/07-game-theory/index.md", "content/07-game-theory/python-classes.ipynb", "content/08-development/index.md", "content/09-macro/CentralBanks.ipynb", "content/09-macro/Indicators.ipynb", "content/09-macro/fiscal_policy.ipynb", "content/09-macro/index.md", "content/09-macro/is_curve.ipynb", "content/09-macro/phillips_curve.ipynb", "content/10-finance/index.md", "content/10-finance/options.ipynb", "content/10-finance/value-interest.ipynb", "content/11-econometrics/index.md", "content/11-econometrics/multivariable.ipynb", "content/11-econometrics/reading-econ-papers.ipynb", "content/11-econometrics/single-variable.ipynb", "content/11-econometrics/statsmodels.ipynb", "content/12-environmental/KuznetsHypothesis.ipynb", "content/12-environmental/KuznetsHypothesis-Copy1.ipynb", "content/12-environmental/MAC.ipynb", "content/12-environmental/index.md", "content/LICENSE.md", "content/intro.md", "content/references.md", "docs/jupyter_execute/content/00-intro/index.ipynb", "docs/jupyter_execute/content/01-demand/01-demand.ipynb", "docs/jupyter_execute/content/01-demand/02-example.ipynb", "docs/jupyter_execute/content/01-demand/03-log-log.ipynb", "docs/jupyter_execute/content/01-demand/04-elasticity.ipynb", "docs/jupyter_execute/content/02-supply/01-supply.ipynb", "docs/jupyter_execute/content/02-supply/02-eep147-example.ipynb", "docs/jupyter_execute/content/02-supply/03-sympy.ipynb", "docs/jupyter_execute/content/02-supply/04-market-equilibria.ipynb", "docs/jupyter_execute/content/03-public/govt-intervention.ipynb", "docs/jupyter_execute/content/03-public/surplus.ipynb", "docs/jupyter_execute/content/03-public/taxes-subsidies.ipynb", "docs/jupyter_execute/content/04-production/production.ipynb", "docs/jupyter_execute/content/04-production/shifts.ipynb", "docs/jupyter_execute/content/05-utility/budget-constraints.ipynb", "docs/jupyter_execute/content/05-utility/utility.ipynb", "docs/jupyter_execute/content/06-inequality/historical-inequality.ipynb", "docs/jupyter_execute/content/06-inequality/inequality.ipynb", "docs/jupyter_execute/content/07-game-theory/bertrand.ipynb", "docs/jupyter_execute/content/07-game-theory/cournot.ipynb", "docs/jupyter_execute/content/07-game-theory/equilibria-oligopolies.ipynb", "docs/jupyter_execute/content/07-game-theory/expected-utility.ipynb", "docs/jupyter_execute/content/07-game-theory/python-classes.ipynb", "docs/jupyter_execute/content/09-macro/CentralBanks.ipynb", "docs/jupyter_execute/content/09-macro/Indicators.ipynb", "docs/jupyter_execute/content/09-macro/fiscal_policy.ipynb", "docs/jupyter_execute/content/09-macro/is_curve.ipynb", "docs/jupyter_execute/content/09-macro/phillips_curve.ipynb", "docs/jupyter_execute/content/10-finance/options.ipynb", "docs/jupyter_execute/content/10-finance/value-interest.ipynb", "docs/jupyter_execute/content/11-econometrics/multivariable.ipynb", "docs/jupyter_execute/content/11-econometrics/reading-econ-papers.ipynb", "docs/jupyter_execute/content/11-econometrics/single-variable.ipynb", "docs/jupyter_execute/content/11-econometrics/statsmodels.ipynb", "docs/jupyter_execute/content/12-environmental/KuznetsHypothesis-Copy1.ipynb", "docs/jupyter_execute/content/12-environmental/textbook1.ipynb", "docs/jupyter_execute/docs/jupyter_execute/content/00-intro/index.ipynb", "docs/jupyter_execute/docs/jupyter_execute/content/01-demand/01-demand.ipynb", "docs/jupyter_execute/docs/jupyter_execute/content/01-demand/02-example.ipynb", "docs/jupyter_execute/docs/jupyter_execute/content/01-demand/03-log-log.ipynb", "docs/jupyter_execute/docs/jupyter_execute/content/01-demand/04-elasticity.ipynb", "docs/jupyter_execute/docs/jupyter_execute/content/02-supply/01-supply.ipynb", "docs/jupyter_execute/docs/jupyter_execute/content/02-supply/02-eep147-example.ipynb", "docs/jupyter_execute/docs/jupyter_execute/content/02-supply/03-sympy.ipynb", "docs/jupyter_execute/docs/jupyter_execute/content/02-supply/04-market-equilibria.ipynb", "docs/jupyter_execute/docs/jupyter_execute/content/03-public/govt-intervention.ipynb", "docs/jupyter_execute/docs/jupyter_execute/content/03-public/surplus.ipynb", "docs/jupyter_execute/docs/jupyter_execute/content/03-public/taxes-subsidies.ipynb", "docs/jupyter_execute/docs/jupyter_execute/content/04-production/production.ipynb", "docs/jupyter_execute/docs/jupyter_execute/content/04-production/shifts.ipynb", "docs/jupyter_execute/docs/jupyter_execute/content/05-utility/budget-constraints.ipynb", "docs/jupyter_execute/docs/jupyter_execute/content/05-utility/utility.ipynb", "docs/jupyter_execute/docs/jupyter_execute/content/06-inequality/historical-inequality.ipynb", "docs/jupyter_execute/docs/jupyter_execute/content/06-inequality/inequality.ipynb", "docs/jupyter_execute/docs/jupyter_execute/content/07-game-theory/bertrand.ipynb", "docs/jupyter_execute/docs/jupyter_execute/content/07-game-theory/cournot.ipynb", "docs/jupyter_execute/docs/jupyter_execute/content/07-game-theory/equilibria-oligopolies.ipynb", "docs/jupyter_execute/docs/jupyter_execute/content/07-game-theory/expected-utility.ipynb", "docs/jupyter_execute/docs/jupyter_execute/content/07-game-theory/python-classes.ipynb", "docs/jupyter_execute/docs/jupyter_execute/content/09-macro/CentralBanks.ipynb", "docs/jupyter_execute/docs/jupyter_execute/content/09-macro/Indicators.ipynb", "docs/jupyter_execute/docs/jupyter_execute/content/09-macro/fiscal_policy.ipynb", "docs/jupyter_execute/docs/jupyter_execute/content/09-macro/is_curve.ipynb", "docs/jupyter_execute/docs/jupyter_execute/content/09-macro/phillips_curve.ipynb", "docs/jupyter_execute/docs/jupyter_execute/content/10-finance/options.ipynb", "docs/jupyter_execute/docs/jupyter_execute/content/10-finance/value-interest.ipynb", "docs/jupyter_execute/docs/jupyter_execute/content/11-econometrics/multivariable.ipynb", "docs/jupyter_execute/docs/jupyter_execute/content/11-econometrics/reading-econ-papers.ipynb", "docs/jupyter_execute/docs/jupyter_execute/content/11-econometrics/single-variable.ipynb", "docs/jupyter_execute/docs/jupyter_execute/content/11-econometrics/statsmodels.ipynb", "docs/jupyter_execute/docs/jupyter_execute/content/12-environmental/KuznetsHypothesis-Copy1.ipynb", "docs/jupyter_execute/docs/jupyter_execute/content/12-environmental/textbook1.ipynb"], "indexentries": {}, "objects": {}, "objnames": {}, "objtypes": {}, "terms": {"": [1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 14, 15, 17, 18, 19, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 36, 37, 39, 40, 41, 42, 43, 44, 45, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 115, 116, 117, 118, 119, 120, 121, 122], "0": [1, 3, 4, 5, 7, 8, 9, 10, 14, 15, 17, 18, 19, 21, 22, 24, 25, 26, 28, 30, 32, 33, 36, 39, 40, 42, 43, 44, 45, 46, 47, 48, 50, 53, 55, 56, 57, 58, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 115, 117, 118, 119, 120, 121, 122, 123, 124], "00": [42, 45, 83, 86, 119, 122], "000": [1, 22, 31, 42, 45, 46, 47, 48, 53, 69, 83, 86, 87, 88, 89, 105, 119, 122, 123, 124], "0000000000000": [25, 71, 107], "00000000000000": [5, 57, 93], "00000109": [3, 55, 91], "00000109q": [3, 55, 91], "001": [42, 43, 45, 83, 84, 86, 119, 120, 122], "00144": [44, 85, 121], "00159": [44, 85, 121], "00159484193178": 44, "0015948419317821812": [85, 121], "00191237": [46, 47, 87, 123], "0027228592": 44, "002722859240283": [85, 121], "005": [42, 83, 119], "007": [42, 83, 119], "008": [42, 83, 119], "0084": [42, 83, 119], "009": [42, 83, 119], "01": [3, 4, 22, 39, 42, 48, 55, 56, 69, 81, 83, 88, 91, 92, 105, 117, 119, 124], "010010": [39, 81, 117], "010871": [46, 47, 87, 123], "0115423": [46, 47, 87, 123], "0116837": [46, 47, 87, 123], "0130359": [46, 47, 87, 123], "0132159": [46, 47, 87, 123], "0183805": [1, 53, 89], "0186057": [46, 47, 87, 123], "01m": [4, 56, 92], "01p": [4, 56, 92], "02": [24, 48, 70, 88, 106, 124], "021": [44, 45, 85, 86, 121, 122], "0211674": [1, 53, 89], "0218121": [46, 47, 87, 123], "022": [44, 85, 121], "0240964": [1, 53, 89], "025": [42, 45, 83, 86, 119, 122], "03": [10, 22, 24, 42, 61, 69, 70, 83, 97, 105, 106, 119], "030029": [39, 81, 117], "0343433": [46, 47, 87, 123], "037": [42, 83, 119], "04": [3, 4, 10, 22, 39, 42, 45, 55, 56, 61, 69, 81, 83, 86, 91, 92, 97, 105, 117, 119, 122], "040039": [39, 81, 117], "0481": [44, 85, 121], "04879016416943127": [4, 56, 92], "049988": [39, 81, 117], "05": [3, 4, 24, 25, 39, 40, 55, 56, 70, 71, 81, 82, 91, 92, 106, 107, 117, 118], "0501253": [1, 53, 89], "0573423": [1, 53, 89], "0591738": [1, 53, 89], "06": [3, 4, 10, 39, 55, 56, 61, 81, 91, 92, 97, 117], "060059": [39, 81, 117], "0610977": [1, 53, 89], "0625": [40, 82, 118], "07": [24, 39, 70, 81, 83, 106, 117, 119], "070068": [39, 81, 117], "08": [3, 4, 39, 55, 56, 81, 91, 92, 117], "083": [42, 83, 119], "09": [10, 24, 52, 61, 70, 97, 106], "0909269659806726e": [3, 55, 91], "0956522": [1, 53, 89], "0th": [24, 70, 106], "0x10848c358": [30, 75, 111], "1": [1, 2, 3, 4, 5, 7, 8, 9, 10, 14, 15, 17, 18, 21, 22, 24, 25, 26, 28, 29, 30, 31, 33, 36, 37, 39, 40, 42, 43, 44, 45, 53, 54, 55, 56, 57, 58, 59, 60, 61, 63, 64, 65, 66, 68, 69, 70, 71, 72, 74, 75, 77, 79, 80, 81, 82, 83, 84, 85, 86, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 104, 105, 106, 107, 108, 110, 111, 113, 115, 116, 117, 118, 119, 120, 121, 122], "10": [1, 3, 4, 5, 7, 9, 10, 14, 17, 22, 24, 25, 30, 36, 39, 40, 42, 43, 44, 45, 48, 53, 55, 56, 57, 58, 60, 61, 63, 65, 69, 70, 71, 75, 81, 82, 83, 84, 85, 86, 88, 89, 91, 92, 93, 94, 96, 97, 99, 101, 105, 106, 107, 111, 117, 118, 119, 120, 121, 122, 124], "100": [4, 7, 10, 15, 17, 22, 24, 26, 28, 30, 33, 39, 40, 43, 44, 48, 56, 58, 61, 64, 65, 69, 70, 72, 74, 75, 77, 81, 82, 84, 85, 88, 92, 94, 97, 100, 101, 105, 106, 108, 110, 111, 113, 117, 118, 120, 121, 124], "1000": [5, 8, 39, 57, 59, 81, 93, 95, 117], "10000": [1, 53, 89], "100000": [1, 44, 45, 53, 85, 86, 89, 121, 122], "100859": [1, 53, 89], "100p": [15, 64, 100], "100p_c": [15, 64, 100], "100p_p": [15, 64, 100], "100th": [24, 70, 106], "101852": [1, 53, 89], "102": [1, 40, 53, 82, 89, 118], "102000": [1, 53, 89], "102361": [1, 53, 89], "10280": [1, 53, 89], "1029": [1, 53, 89], "103": [1, 53, 89], "103000": [1, 53, 89], "103616": [1, 53, 89], "103e": [45, 86, 122], "104193": [1, 53, 89], "1045603129388414": [85, 121], "10456031293885952": 44, "105": [22, 40, 45, 69, 82, 86, 105, 118, 122], "105000": [1, 53, 89], "105601": [1, 53, 89], "105e": [45, 86, 122], "10600": [1, 53, 89], "106500": [1, 53, 89], "106548": [1, 53, 89], "1069": [1, 53, 89], "107": [40, 82, 118], "107000": [1, 53, 89], "107022": [1, 53, 89], "107205": [1, 53, 89], "107313": [1, 53, 89], "1078": [45, 86, 122], "10781133924799272": [85, 121], "107811339248": 44, "108000": [1, 53, 89], "1085": [1, 53, 89], "10874": [1, 53, 89], "109000": [1, 53, 89], "10907": [1, 53, 89], "10931": [44, 45, 85, 86, 121, 122], "10th": [1, 48, 53, 88, 89, 124], "11": [3, 4, 7, 8, 14, 22, 24, 32, 42, 44, 45, 55, 56, 58, 59, 63, 69, 70, 76, 83, 85, 86, 91, 92, 94, 95, 99, 105, 106, 112, 119, 121, 122], "110": [39, 40, 81, 82, 117, 118], "110000": [1, 53, 89], "11021": [1, 53, 89], "11063": [10, 61, 97], "11093735589830463": 44, "1109373558983047": [85, 121], "111": [45, 86, 122], "111111111111111": [5, 57, 93], "111220": [1, 53, 89], "111500": [1, 53, 89], "112": [7, 58, 94], "1123": [1, 53, 89], "1142": [1, 53, 89], "114465": [1, 53, 89], "115000": [1, 53, 89], "1154": [44, 45, 85, 86, 121, 122], "115540": [1, 53, 89], "1156": [46, 47, 87, 123], "1167": [15, 64, 100], "1170": [46, 47, 87, 123], "117187": [1, 53, 89], "117241": [1, 53, 89], "118115": [1, 53, 89], "118886": [1, 53, 89], "1189": [46, 47, 87, 123], "119559": [1, 53, 89], "12": [1, 3, 4, 7, 22, 24, 25, 27, 32, 39, 44, 45, 46, 47, 48, 53, 55, 56, 58, 69, 70, 71, 73, 76, 81, 85, 86, 88, 89, 91, 92, 94, 105, 106, 107, 109, 112, 117, 121, 122, 124], "120": [39, 81, 117], "120000": [1, 53, 89], "120117": [39, 81, 117], "120564": [1, 53, 89], "1207": [1, 53, 89], "121146": [1, 53, 89], "121250": [1, 53, 89], "123456": [30, 75, 111], "123457": [1, 53, 89], "1240": [46, 47, 87, 123], "1245": [46, 47, 87, 123], "1246": [46, 47, 87, 123], "125": [42, 83, 119], "125000": [1, 53, 89], "125092": [1, 53, 89], "12520": [1, 53, 89], "1253": [46, 47, 87, 123], "1258": [1, 53, 89], "126": [42, 83, 119], "126626": [1, 53, 89], "12695": [1, 53, 89], "127454": [1, 53, 89], "1278": [46, 47, 87, 123], "128": [7, 58, 94], "128178": [1, 53, 89], "1282": [44, 85, 121], "12821": [44, 45, 85, 86, 121, 122], "129407": [1, 53, 89], "12e": [42, 83, 119], "13": [1, 3, 4, 10, 22, 24, 42, 44, 45, 53, 55, 56, 61, 69, 70, 85, 86, 89, 91, 92, 97, 105, 106, 121, 122], "130": [7, 58, 94], "1300": [15, 64, 100], "13071": [10, 61, 97], "131": [1, 53, 89], "13101": [1, 53, 89], "131773": [1, 53, 89], "132357": [1, 53, 89], "132967": [1, 53, 89], "133": [1, 15, 53, 64, 89, 100], "135": [1, 53, 89], "135302": [1, 53, 89], "135852": [1, 53, 89], "136": 38, "13600": [1, 53, 89], "137090": [1, 53, 89], "13900": [1, 53, 89], "14": [4, 7, 10, 22, 42, 44, 45, 48, 56, 58, 61, 69, 83, 85, 86, 92, 94, 97, 105, 119, 121, 122], "140982": [1, 53, 89], "141214": [1, 53, 89], "14286": [7, 58, 94], "1429": [7, 58, 94], "1446951": [3, 55, 91], "1446952": [3, 55, 91], "1449": [1, 53, 89], "144967": [1, 53, 89], "145446": [46, 47, 87, 123], "148": [7, 26, 58, 72, 94, 108], "148817": [1, 53, 89], "15": [1, 3, 4, 10, 14, 22, 24, 39, 53, 55, 56, 61, 63, 69, 70, 81, 89, 91, 92, 97, 99, 105, 106, 117], "150": [1, 7, 8, 53, 58, 59, 89, 94, 95], "15000": [1, 53, 89], "151641": [1, 53, 89], "1526": [1, 53, 89], "153037": [1, 53, 89], "1534": [1, 53, 89], "153648": [1, 53, 89], "154232": [1, 53, 89], "15426": [10, 61, 97], "155": [42, 83, 119], "157764": [1, 53, 89], "158": [42, 83, 119], "159": [3, 4, 55, 56, 91, 92], "16": [1, 3, 5, 7, 10, 22, 42, 44, 45, 53, 55, 57, 58, 61, 69, 83, 85, 86, 89, 91, 93, 94, 97, 105, 119, 121, 122], "160000": [1, 53, 89], "16016": [1, 53, 89], "162": [7, 58, 94], "163": [1, 53, 89], "16384": [1, 53, 89], "165109": [1, 53, 89], "1667": [1, 53, 89], "16697": [1, 53, 89], "166973": [1, 53, 89], "1672": [1, 53, 89], "168052": [1, 53, 89], "17": [1, 22, 39, 44, 45, 53, 69, 81, 85, 86, 89, 105, 117, 121, 122], "170": [1, 53, 89], "170013": [39, 81, 117], "17082": [10, 61, 97], "172": 31, "172378": [1, 53, 89], "17293": [10, 61, 97], "1739": [44, 45, 85, 86, 121, 122], "175": [7, 58, 94], "175559": [1, 53, 89], "175940": [1, 53, 89], "176": [1, 53, 89], "1763": [22, 69, 105], "176418": [1, 53, 89], "176659": [1, 53, 89], "1768": [1, 53, 89], "177226": [1, 53, 89], "177747": [1, 53, 89], "1792": [1, 53, 89], "18": [7, 22, 24, 30, 42, 44, 45, 46, 47, 48, 58, 69, 70, 75, 85, 86, 88, 94, 105, 106, 111, 121, 122, 124], "180": [7, 58, 94], "1800": [46, 47, 87, 123], "18000": [44, 45, 85, 86, 121, 122], "180283": [1, 53, 89], "181": [22, 69, 105], "18314": [1, 53, 89], "18380": [1, 53, 89], "184": [22, 69, 105], "18489": [10, 61, 97], "1849": [1, 53, 89], "1857": [1, 53, 89], "1861": [37, 80, 116], "18650": [8, 59, 95], "187": [22, 69, 105], "1870": [22, 52, 69, 105], "18766": [10, 61, 97], "187899": [1, 53, 89], "1884": [22, 69, 105], "1885090000": [39, 81, 117], "189": [44, 85, 121], "1895": [22, 69, 105], "189941": [39, 81, 117], "18b8ef0eb9ac": [30, 75, 111], "19": [10, 22, 24, 27, 31, 45, 61, 69, 70, 73, 83, 86, 97, 105, 106, 109, 119, 122], "1900": [8, 15, 59, 64, 95, 100], "1910": [22, 69, 105], "1913": [22, 32, 69, 76, 105, 112], "1914": [22, 69, 105], "1915": [22, 48, 69, 88, 105, 124], "1916": [22, 69, 105], "1917": [22, 69, 105], "1918": [22, 69, 105], "1919": [22, 69, 105], "1920": [10, 22, 61, 69, 97, 105], "1921": [22, 69, 105], "1922": [22, 69, 105], "1924": [10, 61, 97], "1925": [10, 61, 97], "19255": [10, 61, 97], "1926": [10, 61, 97], "1927": [10, 61, 97], "192756": [1, 53, 89], "1928": [10, 61, 97], "1929": [10, 61, 97], "193": [1, 53, 89], "1930": [10, 61, 97], "193007": [1, 53, 89], "1931": [10, 61, 97], "1932": [10, 61, 97], "1933": [10, 22, 61, 69, 97, 105], "19371": [48, 88, 124], "1938": [10, 61, 97], "1940": [22, 69, 105], "19401": [22, 69, 105], "1941": 52, "1944": [22, 69, 105], "1949": [46, 47, 87, 123], "1950": [27, 46, 47, 73, 87, 109, 123], "19501": [22, 69, 105], "1951": [46, 47, 87, 123], "1952": [46, 47, 87, 123], "1953": [46, 47, 87, 123], "1954": [46, 47, 87, 123], "1955": [46, 47, 87, 123], "1956": [46, 47, 87, 123], "1957": [37, 46, 47, 80, 87, 116, 123], "1958": [37, 80, 116], "1960": [37, 46, 47, 87, 123], "1962": [32, 76, 112], "19645": [1, 53, 89], "1965": [22, 69, 105], "1970": [22, 37, 69, 80, 105, 116], "1976": [1, 48, 53, 88, 89, 124], "1979": [32, 76, 112], "1980": [22, 37, 69, 105], "1981": [22, 69, 105], "1982": [22, 69, 105], "1983": [22, 69, 105], "1984": [22, 69, 105], "1985": [22, 69, 105], "1986": [22, 69, 105], "1987": [22, 32, 69, 76, 105, 112], "1988": [22, 69, 105], "1989": [22, 69, 105], "1990": 37, "1991": [22, 69, 105], "1992": [22, 69, 105], "1993": [22, 32, 39, 69, 76, 81, 105, 112, 117], "1994": [22, 69, 105], "1995": [22, 69, 105], "1996": [22, 69, 105], "1997": [22, 69, 105], "1998": [22, 69, 105], "1999": [22, 52, 69, 105], "199951": [39, 81, 117], "1f9f7f": [48, 88, 124], "2": [1, 2, 3, 4, 5, 7, 8, 9, 10, 14, 15, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 36, 39, 40, 42, 43, 44, 45, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 81, 82, 83, 84, 85, 86, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 117, 118, 119, 120, 121, 122], "20": [3, 4, 5, 7, 9, 14, 17, 22, 24, 25, 30, 39, 48, 55, 56, 57, 58, 60, 63, 65, 69, 70, 71, 75, 81, 88, 91, 92, 93, 94, 96, 99, 101, 105, 106, 107, 111, 117, 124], "200": [7, 15, 44, 48, 58, 64, 85, 88, 94, 100, 121, 124], "2000": [1, 5, 15, 22, 46, 47, 52, 53, 57, 64, 69, 87, 89, 93, 100, 105, 123], "20000": [1, 53, 89], "2000x1500": [87, 123], "2003": [46, 47, 87, 123], "2004": [46, 47, 87, 123], "2005": [22, 69, 105], "2006": [32, 76, 112], "2007": [22, 69, 105], "2008": [2, 54, 90], "2009": [15, 48, 49, 64, 88, 100, 124], "200p_p": [15, 64, 100], "201": [45, 86, 122], "2010": [1, 37, 53, 89], "2011": [22, 52, 69, 105], "2012": [1, 44, 48, 53, 85, 88, 89, 121, 124], "201210000": [39, 81, 117], "2013": [22, 69, 105], "2014": [22, 31, 32, 69, 76, 105, 112], "2015": [3, 4, 46, 47, 48, 55, 56, 87, 88, 91, 92, 123, 124], "2016": [22, 40, 52, 69, 82, 105, 118], "2017": [39, 40, 81, 82, 117, 118], "2018": [3, 4, 30, 32, 40, 46, 47, 48, 55, 56, 75, 76, 82, 87, 88, 91, 92, 111, 112, 118, 123, 124], "2019": [1, 10, 22, 31, 48, 53, 61, 69, 88, 89, 97, 105, 124], "2020": [27, 31, 37, 39, 45, 73, 81, 83, 86, 109, 117, 119, 122], "2021": [32, 37, 39, 76, 80, 81, 112, 116, 117], "2022": [32, 37, 76, 80, 112, 116], "2024": 42, "203522": [1, 53, 89], "2038": [1, 53, 89], "204": [7, 45, 58, 86, 94, 122], "20513": [45, 86, 122], "2057": [1, 53, 89], "2064": [22, 69, 105], "20708": [10, 61, 97], "207451": [1, 53, 89], "2093": [44, 45, 85, 86, 121, 122], "209961": [39, 81, 117], "20th": [1, 53, 89], "21": [1, 10, 14, 22, 30, 39, 53, 61, 63, 69, 75, 81, 89, 97, 99, 105, 111, 117], "2100": [15, 64, 100], "21000": [1, 53, 89], "2101": [22, 69, 105], "2102": [22, 69, 105], "2110": [1, 53, 89], "212274": [1, 53, 89], "21239": [1, 53, 89], "21258": [10, 61, 97], "2150": [1, 53, 89], "21897": [44, 45, 85, 86, 121, 122], "21905": [45, 86, 122], "21907": [45, 86, 122], "21919": [10, 61, 97], "22": [1, 3, 4, 10, 22, 30, 53, 55, 56, 61, 69, 75, 89, 91, 92, 97, 105, 111], "220": [1, 53, 89], "2200": [1, 53, 89], "22000": [1, 53, 89], "22068": [10, 61, 97], "222420": [1, 53, 89], "22300": [1, 53, 89], "2237": [22, 69, 105], "2238": [22, 69, 105], "225": [7, 58, 94], "22766": [10, 61, 97], "23": [1, 10, 22, 24, 30, 52, 53, 61, 69, 70, 75, 89, 97, 105, 106, 111], "23000": [1, 53, 89], "23170": [1, 53, 89], "232527": [1, 53, 89], "2339": [1, 53, 89], "234567": [30, 75, 111], "235170": [1, 53, 89], "23718": [10, 61, 97], "2372": [22, 69, 105], "24": [1, 7, 22, 30, 39, 53, 58, 69, 75, 81, 89, 94, 105, 111, 117], "24000": [1, 53, 89], "240350000": [39, 81, 117], "2405": [1, 53, 89], "2408": [1, 53, 89], "2414": [1, 53, 89], "2415": [1, 53, 89], "2416": [1, 53, 89], "2417": [1, 53, 89], "2418": [1, 53, 89], "2419": [1, 53, 89], "242": [7, 58, 94], "244": [1, 53, 89], "24762": [10, 61, 97], "2482": [1, 53, 89], "2495": [3, 55, 91], "2495304122570334": [3, 55, 91], "25": [1, 3, 4, 5, 7, 22, 24, 25, 28, 30, 32, 39, 40, 48, 53, 55, 56, 57, 58, 69, 70, 71, 74, 75, 76, 81, 82, 88, 89, 91, 92, 93, 94, 105, 106, 107, 110, 111, 112, 117, 118, 124], "250": [8, 22, 46, 47, 59, 69, 87, 95, 105, 123], "25000": [1, 44, 45, 53, 85, 86, 89, 121, 122], "250000000000000": [5, 57, 93], "252461": [1, 53, 89], "254": [7, 58, 94], "254526": [1, 53, 89], "25694": [1, 53, 89], "257": [1, 53, 89], "2573": [1, 53, 89], "259": [1, 53, 89], "259180": [1, 53, 89], "259311": [44, 85, 121], "25th": [1, 53, 89], "26": [1, 7, 10, 22, 39, 53, 58, 61, 69, 81, 89, 94, 97, 105, 117], "26000": [1, 44, 45, 53, 85, 86, 89, 121, 122], "261114": [1, 53, 89], "261653": [1, 53, 89], "263470000": [39, 81, 117], "264": [1, 53, 89], "26700": [1, 53, 89], "27": [1, 3, 4, 10, 22, 24, 39, 44, 45, 53, 55, 56, 61, 69, 70, 81, 85, 86, 89, 91, 92, 97, 105, 106, 117, 121, 122], "270": [1, 53, 89], "270020": [39, 81, 117], "2713": [44, 85, 121], "2724": [22, 69, 105], "276090": [1, 53, 89], "27642": [10, 61, 97], "2768": [22, 69, 105], "27883": [44, 85, 121], "2788317347": 44, "278831734712744": [85, 121], "279246": [1, 53, 89], "28": [1, 7, 10, 14, 22, 39, 53, 58, 61, 63, 69, 81, 89, 94, 97, 99, 105, 117], "280": 31, "2800": [8, 59, 95], "28000": [1, 53, 89], "2802": [45, 86, 122], "2809": [22, 69, 105], "2819": [22, 69, 105], "282": [1, 53, 89], "2823": [22, 69, 105], "283": [22, 44, 69, 85, 105, 121], "2845": [22, 69, 105], "2846": [22, 69, 105], "28600": [1, 53, 89], "2867": [22, 69, 105], "2871": [22, 69, 105], "289": [1, 53, 89], "2898": [42, 83, 119], "2899": [22, 69, 105], "29": [1, 3, 4, 7, 10, 22, 39, 53, 55, 56, 58, 61, 69, 81, 89, 91, 92, 94, 97, 105, 117], "29000": [1, 53, 89], "2912": [1, 53, 89], "292": [7, 58, 94], "2924": [1, 53, 89], "29328": [10, 61, 97], "29364": [1, 53, 89], "2942": [22, 69, 105], "2952": [22, 69, 105], "295240000": [39, 81, 117], "296": [1, 53, 89], "29680": [10, 61, 97], "2974": [22, 69, 105], "2987": [22, 69, 105], "2991": [22, 69, 105], "299140": [1, 53, 89], "29966": [10, 61, 97], "2a8506": [48, 88, 124], "2d": [21, 68, 104], "2m": [26, 72, 108], "2mq_1": [26, 72, 108], "2mq_2": [26, 72, 108], "2q": [9, 60, 96], "3": [1, 2, 3, 5, 7, 8, 9, 10, 14, 15, 19, 21, 22, 24, 26, 28, 30, 32, 37, 39, 44, 45, 48, 51, 53, 54, 55, 57, 58, 59, 60, 61, 63, 64, 67, 68, 69, 70, 72, 74, 75, 76, 81, 85, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97, 99, 100, 103, 104, 105, 106, 108, 110, 111, 112, 117, 121, 122, 124], "30": [1, 4, 7, 8, 14, 19, 22, 24, 31, 39, 53, 56, 58, 59, 63, 67, 69, 70, 81, 89, 92, 94, 95, 99, 103, 105, 106, 117], "300": [7, 8, 15, 58, 59, 64, 94, 95, 100], "30000": [1, 53, 89], "3005": [22, 69, 105], "300p_p": [15, 64, 100], "301": [22, 69, 105], "30179178e": [42, 83, 119], "30226": [44, 45, 85, 86, 121, 122], "3024": [22, 69, 105], "30259": [44, 45, 85, 86, 121, 122], "304850000": [39, 81, 117], "30500": [1, 53, 89], "3067": [22, 69, 105], "307": [42, 83, 119], "3071": [22, 69, 105], "308": [1, 53, 89], "31": [1, 7, 39, 53, 58, 81, 89, 94, 117], "31000": [1, 53, 89], "310059": [39, 81, 117], "313": [44, 85, 121], "314": [1, 53, 89], "314279": [1, 53, 89], "3145200000": [39, 81, 117], "315": [22, 69, 105], "31500": [1, 53, 89], "31609070915": 44, "3160907091507876": [85, 121], "3170": [1, 53, 89], "3172510000": [39, 81, 117], "32": [1, 7, 8, 19, 22, 53, 58, 59, 67, 69, 89, 94, 95, 103, 105], "320007": [39, 81, 117], "320068": [39, 81, 117], "32260": [1, 53, 89], "32500": [10, 61, 97], "3253": [1, 53, 89], "32721": [44, 85, 121], "33": [1, 7, 9, 15, 22, 24, 48, 53, 58, 60, 64, 69, 70, 88, 89, 94, 96, 100, 105, 106, 124], "33280": [1, 53, 89], "3333": [7, 58, 94], "33333": [7, 58, 94], "33333333333333": [5, 57, 93], "3338": [22, 69, 105], "33400": [1, 53, 89], "3387030000": [39, 81, 117], "339996": [39, 81, 117], "34": [8, 10, 22, 59, 61, 69, 95, 97, 105], "340": [1, 53, 89], "34000": [1, 53, 89], "341631": [1, 53, 89], "34192": [42, 83, 119], "3424": [22, 69, 105], "3432": [10, 61, 97], "3433": [10, 61, 97], "3447": [22, 69, 105], "3472": [22, 69, 105], "3479": [22, 69, 105], "349": [22, 69, 105], "35": [1, 4, 7, 10, 22, 53, 56, 58, 61, 69, 89, 92, 94, 97, 105], "350": [1, 7, 8, 53, 58, 59, 89, 94, 95], "3500": [8, 59, 95], "35000": [1, 53, 89], "35004": [1, 53, 89], "3504": [10, 61, 97], "3507": [22, 69, 105], "35250": [1, 53, 89], "352506861683818": [4, 56, 92], "3527460000": [39, 81, 117], "3528": [22, 69, 105], "35360": [1, 53, 89], "3538": [22, 69, 105], "3541": [22, 69, 105], "3542": [22, 69, 105], "355": [42, 83, 119], "35520": [1, 53, 89], "35560": [10, 61, 97], "35600": [44, 45, 85, 86, 121, 122], "35702": [10, 61, 97], "358": [42, 83, 119], "35862": [44, 85, 121], "36": [1, 7, 8, 10, 14, 22, 53, 58, 59, 61, 63, 69, 89, 94, 95, 97, 99, 105], "360107": [39, 81, 117], "364": [1, 53, 89], "3647": [22, 69, 105], "36500": [1, 53, 89], "36540": [10, 61, 97], "3666": [22, 69, 105], "3689": [39, 81, 117], "3694": [39, 81, 117], "36990": [10, 61, 97], "37": [1, 8, 22, 24, 44, 45, 53, 59, 69, 70, 85, 86, 89, 95, 105, 106, 121, 122], "37000": [1, 53, 89], "3703": [39, 81, 117], "37220": [1, 53, 89], "3723": [39, 81, 117], "3726": [39, 81, 117], "3727": [39, 81, 117], "373": [1, 53, 89], "3730": [39, 81, 117], "3732": [39, 81, 117], "3733": [39, 81, 117], "3735": [39, 81, 117], "3736": [39, 81, 117], "3740": [39, 81, 117], "37400": [1, 53, 89], "3744": [39, 81, 117], "3750": [39, 81, 117], "3756": [39, 81, 117], "37569589e": [42, 83, 119], "37580": [1, 53, 89], "3760": [39, 81, 117], "3761": [22, 69, 105], "3777": [1, 53, 89], "37900": [1, 53, 89], "38": [7, 21, 22, 40, 42, 44, 45, 58, 68, 69, 82, 85, 86, 94, 104, 105, 118, 121, 122], "38000": [1, 53, 89], "380005": [39, 81, 117], "385": [7, 58, 94], "38553": [10, 61, 97], "38629": [44, 45, 85, 86, 121, 122], "38640": [1, 53, 89], "3867": [22, 69, 105], "38772": [10, 61, 97], "388": [1, 42, 53, 83, 89, 119], "3895": [1, 22, 53, 69, 89, 105], "39": [1, 7, 22, 44, 45, 53, 58, 69, 85, 86, 89, 94, 105, 121, 122], "39000": [1, 53, 89], "39263": [10, 61, 97], "393": [44, 85, 121], "3958": [44, 85, 121], "399994": [39, 81, 117], "399996707216": [88, 124], "39999671": 48, "3d": [17, 18, 19, 21, 42, 65, 66, 67, 68, 83, 101, 102, 103, 104, 119], "3m": [26, 72, 108], "3mq_1": [26, 72, 108], "4": [1, 3, 4, 5, 7, 8, 10, 14, 15, 17, 18, 19, 21, 22, 27, 30, 32, 35, 39, 42, 44, 45, 48, 50, 53, 55, 56, 57, 58, 59, 61, 63, 64, 65, 66, 67, 68, 69, 73, 75, 76, 81, 83, 85, 86, 88, 89, 91, 92, 93, 94, 95, 97, 99, 100, 101, 102, 103, 104, 105, 109, 111, 112, 117, 119, 121, 122, 124], "40": [1, 7, 8, 24, 31, 46, 47, 53, 58, 59, 70, 87, 89, 94, 95, 106, 123], "400": [1, 53, 89], "40000": [1, 53, 89], "401": [42, 83, 119], "41": [1, 8, 10, 22, 53, 59, 61, 69, 89, 95, 97, 105], "41000": [1, 53, 89], "412": [44, 85, 121], "41200": [1, 53, 89], "41300": [1, 53, 89], "41413": [1, 53, 89], "415": [42, 83, 119], "41600": [1, 53, 89], "41880": [10, 61, 97], "42": [22, 24, 44, 69, 70, 85, 105, 106, 121], "42000": [1, 53, 89], "421": 52, "4219": [22, 69, 105], "4231": [22, 69, 105], "426": [39, 81, 117], "428571428571429": [5, 57, 93], "429": [39, 81, 117], "4295": [22, 69, 105], "43": [1, 22, 42, 44, 45, 53, 69, 83, 85, 86, 89, 105, 119, 121, 122], "430": [39, 42, 81, 83, 117, 119], "43000": [1, 53, 89], "4301": [42, 83, 119], "432": [39, 45, 81, 86, 117, 122], "433": [39, 52, 81, 117], "434": [39, 81, 117], "4344": [22, 69, 105], "4348": [10, 61, 97], "4348p": [10, 61, 97], "435": [7, 39, 58, 81, 94, 117], "4364": [22, 69, 105], "43680": [1, 53, 89], "437": [39, 81, 117], "44": [10, 27, 44, 45, 61, 73, 85, 86, 97, 109, 121, 122], "44000": [1, 53, 89], "441356": [1, 53, 89], "4439": [22, 69, 105], "4440": [1, 53, 89], "4444": [7, 58, 94], "444444444444445": [30, 75, 111], "449": [22, 69, 105], "45": [14, 21, 22, 24, 36, 48, 63, 68, 69, 70, 79, 99, 104, 105, 106, 115], "4500": [44, 45, 85, 86, 121, 122], "45000": [1, 53, 89], "4500x3000": [46, 47], "4543": [22, 69, 105], "4554": [22, 69, 105], "456": [1, 53, 89], "45600": [1, 53, 89], "45760": [1, 53, 89], "4579": [48, 88, 124], "45829": [1, 53, 89], "459991": [39, 81, 117], "46": 42, "46000": [1, 53, 89], "4615": [44, 45, 85, 86, 121, 122], "4632": [22, 69, 105], "4650": [1, 53, 89], "46516": [10, 61, 97], "4653": [22, 69, 105], "4658": [44, 85, 121], "46820": [10, 61, 97], "47": [44, 85, 121], "4702": [22, 69, 105], "472287673006932": [85, 121], "47228767301": 44, "4723": [45, 86, 122], "476412": [3, 55, 91], "476413": [3, 55, 91], "476413p": [3, 55, 91], "48": [1, 25, 26, 53, 71, 72, 89, 107, 108], "48000": [1, 53, 89], "480011": [39, 81, 117], "4815": [22, 69, 105], "483": [45, 86, 122], "485e": [42, 83, 119], "4875": [44, 85, 121], "48756218905472637": [24, 70, 106], "487e": [42, 83, 119], "4888": [22, 69, 105], "48880": [1, 53, 89], "4893": [22, 69, 105], "4898": [22, 69, 105], "49": [7, 58, 83, 94, 119], "4916": [22, 69, 105], "4934357195937577": [24, 70, 106], "4971": [22, 69, 105], "49736": [44, 85, 121], "49900": [1, 53, 89], "49920": [1, 53, 89], "49980": [1, 53, 89], "5": [1, 4, 5, 7, 8, 9, 10, 14, 17, 18, 19, 21, 22, 24, 25, 27, 28, 30, 31, 32, 36, 39, 40, 42, 44, 45, 48, 53, 56, 57, 58, 59, 60, 61, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 81, 82, 83, 85, 86, 88, 89, 92, 93, 94, 95, 96, 97, 99, 101, 102, 103, 104, 105, 106, 107, 109, 110, 111, 112, 117, 118, 119, 121, 122, 124], "50": [1, 4, 7, 8, 22, 24, 40, 44, 53, 56, 58, 59, 69, 70, 82, 85, 89, 92, 94, 95, 105, 106, 118, 121], "500": [1, 39, 53, 89], "5000": [1, 53, 89], "50000": [1, 53, 89], "50000000000000": [5, 57, 93], "5001": [1, 53, 89], "5008": [22, 69, 105], "502": [42, 83, 119], "5043": [22, 69, 105], "5078": [22, 69, 105], "50800": [1, 53, 89], "50940": [10, 61, 97], "50th": [1, 53, 89], "51": [1, 22, 53, 69, 89, 105], "51000": [1, 53, 89], "510010": [39, 81, 117], "51060": [1, 53, 89], "5108": [22, 69, 105], "513": [45, 86, 122], "5180": [1, 53, 89], "518628912071535": [24, 70, 106], "519989": [39, 81, 117], "52": [44, 85, 121], "520": [42, 83, 119], "52000": [1, 44, 45, 53, 85, 86, 89, 121, 122], "52210": [1, 53, 89], "52354": [44, 85, 121], "52844": [1, 53, 89], "529": [1, 53, 89], "53000": [1, 53, 89], "53427": [46, 47, 87, 123], "535714": [1, 53, 89], "53625": [10, 61, 97], "53626": [10, 61, 97], "54": [24, 70, 106], "5403": [44, 85, 121], "5410": [42, 83, 119], "5413": [42, 83, 119], "54545": [7, 58, 94], "5455": [7, 58, 94], "54639": [1, 53, 89], "54996": [1, 53, 89], "54997": [1, 53, 89], "549988": [39, 81, 117], "55": [3, 4, 22, 55, 56, 69, 91, 92, 105], "55000": [1, 53, 89], "5526": [10, 61, 97], "553": [1, 53, 89], "55450": [1, 53, 89], "55556": [7, 58, 94], "556": [1, 53, 89], "558": [1, 53, 89], "5590151265266388": [85, 121], "55901512653": 44, "56": [8, 59, 95], "5600": [45, 86, 122], "561342": [3, 4, 55, 56, 91, 92], "56160": [1, 53, 89], "5638": [10, 61, 97], "56390": [1, 53, 89], "57": [4, 10, 48, 56, 61, 88, 92, 97, 124], "57000": [1, 53, 89], "57020": [1, 53, 89], "57100": [1, 53, 89], "5721131095": [10, 61, 97], "5742": [10, 61, 97], "5758": [10, 61, 97], "57625": [1, 53, 89], "5792670374517227": [4, 56, 92], "58": [7, 22, 48, 58, 69, 88, 94, 105, 124], "58000": [1, 53, 89], "59": [24, 44, 48, 70, 85, 88, 106, 121, 124], "599884": [3, 4, 55, 56, 91, 92], "5c_": [32, 76, 112], "5f": [44, 85, 121], "5fb3b3": [48, 88, 124], "6": [1, 5, 7, 8, 10, 14, 15, 21, 22, 28, 32, 39, 44, 48, 53, 57, 58, 59, 61, 63, 64, 68, 69, 74, 76, 81, 85, 87, 88, 89, 93, 94, 95, 97, 99, 100, 104, 105, 110, 112, 117, 121, 123, 124], "60": [24, 70, 88, 106, 124], "6000": [10, 61, 97], "60000": [1, 53, 89], "61": [8, 22, 59, 69, 95, 105], "61000": [1, 53, 89], "616016": [3, 4, 55, 56, 91, 92], "61928": [1, 53, 89], "61a": [30, 75, 111], "62": [1, 48, 53, 88, 89, 124], "6200": [1, 53, 89], "62000": [1, 53, 89], "6202": [1, 53, 89], "62257495590827": [26, 72, 108], "62257495590830": [26, 72, 108], "62719": [1, 53, 89], "62825": [44, 85, 121], "62850": [1, 53, 89], "629": [79, 115], "629883": [39, 81, 117], "63": [10, 22, 61, 69, 97, 105], "63000": [1, 53, 89], "631": [1, 53, 89], "63476": [44, 45, 85, 86, 121, 122], "637091": [3, 4, 55, 56, 91, 92], "639972971752": [88, 124], "639973": 48, "64": [7, 22, 39, 58, 69, 81, 94, 105, 117], "640": [1, 53, 89], "6408050181": [3, 55, 91], "648": [1, 53, 89], "64966": [44, 45, 85, 86, 121, 122], "65": [22, 24, 25, 69, 70, 71, 105, 106, 107], "650": [8, 59, 95], "65000": [1, 53, 89], "65000000000000": [25, 71, 107], "651639": [3, 4, 55, 56, 91, 92], "65250": [1, 53, 89], "65511": [1, 53, 89], "657": [1, 53, 89], "6582": [10, 61, 97], "66": [8, 22, 59, 69, 95, 105], "6600": [1, 53, 89], "665": [8, 59, 95], "666666666666667": [5, 57, 93], "6667": [7, 44, 45, 58, 85, 86, 94, 121, 122], "669": [44, 85, 121], "6699cc": [48, 88, 124], "67": [5, 10, 15, 22, 44, 57, 61, 64, 69, 85, 93, 97, 100, 105, 121], "67000": [1, 53, 89], "679": [1, 53, 89], "68": [10, 22, 37, 61, 69, 80, 97, 105, 116], "68000": [1, 53, 89], "68060": [44, 85, 121], "683": [44, 85, 121], "69": [22, 40, 69, 82, 105, 118], "692": [1, 53, 89], "69207": [1, 53, 89], "692206": [3, 4, 55, 56, 91, 92], "694982": [3, 4, 55, 56, 91, 92], "69737": [1, 53, 89], "7": [1, 3, 5, 7, 8, 10, 14, 15, 22, 24, 28, 30, 37, 39, 44, 53, 55, 57, 58, 59, 61, 63, 64, 69, 70, 74, 75, 80, 81, 85, 89, 91, 93, 94, 95, 97, 99, 100, 105, 106, 110, 111, 116, 117, 121], "70": [1, 7, 22, 24, 25, 32, 39, 42, 44, 45, 53, 58, 69, 70, 71, 76, 81, 83, 85, 86, 89, 94, 105, 106, 107, 112, 117, 119, 121, 122], "70000": [1, 53, 89], "700012": [39, 81, 117], "70200": [1, 53, 89], "7052": [39, 81, 117], "706": [45, 86, 122], "709444": [3, 4, 55, 56, 91, 92], "71": [10, 22, 45, 61, 69, 86, 97, 105, 122], "71000": [1, 53, 89], "71298": [1, 53, 89], "7189820772": [3, 55, 91], "72": [8, 22, 42, 44, 59, 69, 83, 85, 95, 105, 119, 121], "72000": [1, 53, 89], "72250": [1, 53, 89], "72389": [44, 85, 121], "7238911245275386": [85, 121], "72389112452754": [85, 121], "723891124528": 44, "725": [1, 53, 89], "72700": [1, 53, 89], "73": [8, 22, 24, 59, 69, 70, 95, 105, 106], "73000": [1, 53, 89], "730011": [39, 81, 117], "731": [42, 83, 119], "73513640760529786": 44, "7351364076052979": [85, 121], "7364": [10, 61, 97], "74": [45, 86, 122], "74000": [1, 53, 89], "74010": [1, 53, 89], "7421": [42, 83, 119], "74364": [1, 53, 89], "75": [1, 7, 24, 32, 48, 53, 58, 70, 76, 88, 89, 94, 106, 112, 124], "750": [8, 59, 95], "75000": [1, 53, 89], "75553": [1, 53, 89], "756": [1, 53, 89], "758": [1, 53, 89], "75th": [1, 53, 89], "76": [22, 69, 105], "76000": [1, 53, 89], "760010": [39, 81, 117], "76442": [1, 53, 89], "765": [45, 86, 122], "76929": [1, 53, 89], "77": [1, 22, 53, 69, 89, 105], "77182": [1, 53, 89], "775849": [3, 4, 55, 56, 91, 92], "78": [7, 10, 22, 26, 58, 61, 69, 72, 94, 97, 105, 108], "78531": [44, 85, 121], "78950": [22, 69, 105], "78q_1": [26, 72, 108], "78q_2": [26, 72, 108], "79": [22, 27, 28, 69, 73, 74, 105, 109, 110], "79617": [1, 53, 89], "798": [44, 85, 121], "798460905495737": [4, 56, 92], "7998": [10, 61, 97], "8": [1, 5, 7, 8, 10, 14, 15, 17, 18, 22, 26, 27, 30, 32, 39, 42, 43, 44, 45, 51, 53, 57, 58, 59, 61, 63, 64, 65, 66, 69, 72, 73, 75, 76, 81, 83, 84, 85, 86, 87, 89, 93, 94, 95, 97, 99, 100, 101, 102, 105, 108, 109, 111, 112, 117, 119, 120, 121, 122, 123], "80": [24, 28, 30, 32, 70, 74, 75, 76, 106, 110, 111, 112], "800": [8, 59, 95], "8000": [44, 45, 85, 86, 121, 122], "80000": [1, 22, 53, 69, 89, 105], "80004": [1, 53, 89], "80320": [1, 53, 89], "806": [42, 83, 119], "80675": [1, 53, 89], "81": [10, 22, 24, 61, 69, 70, 97, 105, 106], "81341": [44, 45, 85, 86, 121, 122], "8136": [10, 61, 97], "81425": [1, 53, 89], "8145": [44, 85, 121], "81527": [1, 53, 89], "8157285894758461": [4, 56, 92], "816": [4, 56, 92], "82": [22, 69, 105], "82000": [1, 53, 89], "820068": [39, 81, 117], "82523": [1, 53, 89], "827": [1, 53, 89], "83": [21, 22, 68, 69, 104, 105], "831": [45, 86, 122], "832": [1, 53, 89], "83998": [44, 45, 85, 86, 121, 122], "84": [22, 48, 69, 88, 105, 124], "84000": [1, 53, 89], "846": [10, 61, 97], "84670093": [10, 61, 97], "85": [1, 7, 22, 53, 58, 69, 89, 94, 105], "85000": [1, 53, 89], "856": [1, 53, 89], "85e827": [48, 88, 124], "86": [10, 61, 97], "86250": [1, 53, 89], "86500": [1, 53, 89], "8658": [44, 85, 121], "869927": [3, 4, 55, 56, 91, 92], "87": [10, 22, 37, 61, 69, 80, 97, 105, 116], "873": [45, 86, 122], "8748401": [10, 61, 97], "87500": [1, 53, 89], "87689": [1, 53, 89], "879883": [39, 81, 117], "88": [22, 30, 69, 75, 105, 111], "880005": [39, 81, 117], "8887": [48, 88, 124], "8889": [7, 58, 94], "88e": [0, 1, 53, 89], "89": [10, 26, 44, 61, 72, 85, 97, 108, 121], "89037": [44, 45, 85, 86, 121, 122], "89203590457901": [10, 61, 97], "89q": [26, 72, 108], "89q_1": [26, 72, 108], "89q_1q_2": [26, 72, 108], "89q_2": [26, 72, 108], "8ae22d6f2de2": [30, 75, 111], "8th": [7, 21, 58, 68, 94, 104], "9": [1, 5, 7, 9, 10, 14, 22, 24, 39, 42, 44, 45, 53, 57, 58, 60, 61, 63, 69, 70, 81, 83, 85, 86, 88, 89, 93, 94, 96, 97, 99, 105, 106, 117, 119, 121, 122, 124], "90": [7, 22, 24, 25, 30, 39, 58, 69, 70, 71, 75, 81, 94, 105, 106, 107, 111, 117], "9000": [1, 53, 89], "90000": [1, 53, 89], "900000000000000": [25, 71, 107], "90009": [1, 53, 89], "90069": [1, 53, 89], "90303": [1, 53, 89], "908": [42, 83, 119], "9086": [22, 69, 105], "90th": [1, 53, 89], "91": [10, 48, 61, 88, 97, 124], "91227": [1, 53, 89], "92": [22, 69, 105], "92054": [1, 53, 89], "923": [42, 83, 119], "93": [22, 69, 105], "93089": [1, 53, 89], "9317": [22, 69, 105], "94": [8, 22, 59, 69, 95, 105], "945cf8": [48, 88, 124], "95": [22, 39, 42, 43, 44, 45, 69, 81, 83, 84, 85, 86, 105, 117, 119, 120, 121, 122], "950": [8, 59, 95], "95000": [1, 53, 89], "95595982e": [42, 83, 119], "956": [42, 83, 119], "9563": [42, 83, 119], "96": [10, 61, 97], "960": [1, 53, 89], "967": [10, 61, 97], "97": [3, 4, 10, 44, 55, 56, 61, 85, 91, 92, 97, 121], "972": [1, 45, 53, 86, 89, 122], "97294": [1, 53, 89], "975": [42, 45, 83, 86, 119, 122], "977": [44, 85, 121], "9780674737136": 52, "98": [7, 10, 44, 58, 61, 85, 94, 97, 121], "989": [45, 86, 122], "99": [3, 4, 24, 44, 55, 56, 70, 85, 91, 92, 106, 121], "99c794": [48, 88, 124], "9th": [7, 58, 94], "A": [4, 5, 7, 10, 12, 14, 15, 17, 21, 22, 27, 28, 29, 30, 31, 36, 37, 39, 40, 42, 44, 46, 47, 48, 49, 52, 56, 57, 58, 61, 62, 63, 64, 65, 68, 69, 73, 74, 75, 79, 80, 81, 82, 83, 85, 87, 88, 92, 93, 94, 97, 98, 99, 100, 101, 104, 105, 109, 110, 111, 115, 116, 117, 118, 119, 121, 123, 124], "AND": [1, 53, 89], "AS": [34, 78, 114], "And": [31, 32, 39, 44, 48, 76, 81, 85, 88, 112, 117, 121, 124], "As": [1, 2, 3, 4, 5, 7, 10, 12, 14, 15, 18, 19, 21, 22, 24, 26, 27, 33, 44, 46, 47, 48, 49, 51, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 68, 69, 70, 72, 73, 77, 85, 87, 88, 89, 90, 91, 92, 93, 94, 97, 98, 99, 100, 102, 103, 104, 105, 106, 108, 109, 113, 121, 123, 124], "At": [1, 4, 7, 8, 10, 12, 14, 15, 17, 32, 42, 48, 53, 56, 58, 59, 61, 62, 63, 64, 65, 76, 83, 88, 89, 92, 94, 95, 97, 98, 99, 100, 101, 112, 119, 124], "BY": 50, "Being": [8, 59, 95], "But": [1, 5, 7, 19, 24, 30, 32, 37, 39, 40, 41, 42, 44, 53, 57, 58, 67, 70, 75, 76, 80, 81, 82, 83, 85, 89, 93, 94, 103, 106, 111, 112, 116, 117, 118, 119, 121], "By": [1, 4, 15, 27, 28, 32, 33, 39, 41, 44, 48, 53, 56, 64, 73, 74, 76, 77, 81, 85, 88, 89, 92, 100, 109, 110, 112, 113, 117, 121, 124], "For": [1, 2, 4, 5, 7, 8, 10, 12, 14, 15, 17, 22, 24, 25, 26, 28, 30, 31, 32, 39, 43, 44, 48, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 69, 70, 71, 72, 74, 75, 76, 81, 84, 85, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 101, 105, 106, 107, 108, 110, 111, 112, 117, 120, 121, 124], "If": [1, 2, 3, 4, 5, 7, 15, 17, 18, 21, 24, 25, 26, 27, 28, 29, 30, 32, 33, 37, 39, 40, 42, 44, 46, 47, 48, 53, 54, 55, 56, 57, 58, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 80, 81, 82, 83, 85, 87, 88, 89, 90, 91, 92, 93, 94, 100, 101, 102, 104, 106, 107, 108, 109, 110, 111, 112, 113, 116, 117, 118, 119, 121, 123, 124], "In": [1, 2, 3, 4, 5, 7, 9, 10, 12, 14, 15, 17, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 39, 40, 42, 43, 44, 45, 46, 47, 48, 49, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124], "It": [1, 3, 5, 7, 8, 9, 10, 12, 13, 15, 17, 21, 25, 27, 29, 30, 32, 33, 39, 40, 42, 43, 44, 45, 46, 47, 48, 49, 51, 53, 55, 57, 58, 59, 60, 61, 62, 64, 65, 68, 71, 73, 75, 76, 77, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 93, 94, 95, 96, 97, 98, 100, 101, 104, 107, 109, 111, 112, 113, 117, 118, 119, 120, 121, 122, 123, 124], "Near": [5, 57, 93], "No": [7, 8, 42, 45, 48, 58, 59, 74, 83, 86, 88, 94, 95, 110, 119, 122, 124], "Not": [42, 83, 119], "Of": [5, 39, 44, 57, 81, 85, 93, 117, 121], "On": [2, 14, 17, 22, 24, 33, 34, 54, 63, 65, 69, 70, 77, 78, 90, 99, 101, 105, 106, 113, 114], "One": [3, 4, 15, 17, 21, 25, 26, 27, 28, 31, 32, 39, 41, 44, 48, 49, 55, 56, 64, 65, 68, 71, 72, 73, 74, 76, 81, 85, 88, 91, 92, 100, 101, 104, 107, 108, 109, 110, 112, 117, 121, 124], "Or": [21, 30, 44, 68, 75, 85, 104, 111, 121], "That": [1, 5, 10, 15, 30, 32, 39, 42, 53, 57, 61, 64, 75, 76, 81, 83, 89, 93, 97, 100, 111, 112, 117, 119], "The": [2, 3, 4, 5, 8, 9, 10, 12, 14, 15, 18, 19, 21, 25, 26, 27, 28, 30, 31, 32, 33, 36, 37, 39, 41, 42, 43, 44, 45, 46, 47, 49, 51, 52, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 66, 67, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 83, 84, 85, 86, 87, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 102, 103, 104, 107, 108, 109, 110, 111, 112, 113, 115, 116, 117, 119, 120, 121, 122, 123], "Their": [12, 22, 62, 69, 98, 105], "Then": [9, 25, 28, 30, 39, 44, 60, 71, 74, 75, 81, 85, 96, 107, 110, 111, 117, 121], "There": [1, 4, 5, 7, 10, 12, 15, 17, 21, 22, 27, 28, 29, 32, 33, 34, 40, 42, 53, 56, 57, 58, 61, 62, 64, 65, 68, 69, 73, 74, 76, 77, 78, 82, 83, 89, 92, 93, 94, 97, 98, 100, 101, 104, 105, 109, 110, 112, 113, 114, 118, 119], "These": [1, 5, 8, 15, 17, 18, 22, 24, 25, 27, 31, 33, 34, 38, 39, 42, 44, 46, 47, 48, 49, 53, 57, 59, 64, 65, 66, 69, 70, 71, 73, 77, 78, 81, 83, 85, 87, 88, 89, 93, 95, 100, 101, 102, 105, 106, 107, 109, 113, 114, 117, 119, 121, 123, 124], "To": [0, 1, 3, 4, 5, 7, 9, 10, 15, 21, 24, 25, 26, 27, 28, 33, 34, 42, 44, 45, 53, 55, 56, 57, 58, 60, 61, 64, 68, 70, 71, 72, 73, 74, 77, 78, 83, 85, 86, 89, 91, 92, 93, 94, 96, 97, 100, 104, 106, 107, 108, 109, 110, 113, 114, 119, 121, 122], "With": [2, 9, 10, 15, 21, 22, 46, 47, 48, 54, 60, 61, 64, 68, 69, 87, 88, 90, 96, 97, 100, 104, 105, 123, 124], "_": [2, 5, 9, 54, 57, 60, 90, 93, 96], "_1": [25, 42, 71, 83, 107, 119], "_2": [24, 25, 42, 70, 71, 83, 106, 107, 119], "__eq__": [30, 75, 111], "__getattr__": [30, 75, 111], "__getitem__": [30, 75, 111], "__gt__": [30, 75, 111], "__gte__": [30, 75, 111], "__hash__": [30, 75, 111], "__init__": [14, 30, 63, 75, 99, 111], "__len__": [30, 75, 111], "__lt__": [30, 75, 111], "__lte__": [30, 75, 111], "__main__": [30, 75, 111], "__repr__": [30, 75, 111], "__setattr__": [30, 75, 111], "__setitem__": [30, 75, 111], "__str__": [30, 75, 111], "_build": 0, "_classic_test_patch": 2, "_i": [43, 44, 84, 85, 120, 121], "_mpl": 2, "_toc": 0, "_x": [44, 85, 121], "_y": [44, 85, 121], "aalborg": [46, 47, 48, 87, 88, 123, 124], "ab": [5, 57, 93], "abat": [46, 47, 49, 87, 123], "abatement_colors_dict": [48, 88, 124], "abatement_data": [48, 88, 124], "abatement_t": [48, 88, 124], "abatement_technologi": [48, 88, 124], "abid": [27, 73, 109], "abil": [14, 34, 40, 42, 44, 63, 78, 82, 83, 85, 99, 114, 118, 119, 121], "abkhazia": [46, 47, 87, 123], "abl": [1, 10, 12, 14, 15, 17, 19, 24, 25, 29, 31, 33, 39, 40, 48, 53, 61, 62, 63, 64, 65, 67, 70, 71, 77, 81, 82, 88, 89, 97, 98, 99, 100, 101, 103, 106, 107, 113, 117, 118, 124], "about": [1, 4, 5, 7, 10, 14, 15, 17, 19, 22, 24, 25, 26, 27, 30, 31, 32, 35, 37, 39, 41, 42, 44, 46, 47, 48, 53, 56, 57, 58, 61, 63, 64, 65, 67, 69, 70, 71, 72, 73, 75, 76, 80, 81, 83, 85, 87, 88, 89, 92, 93, 94, 97, 99, 100, 101, 103, 105, 106, 107, 108, 109, 111, 112, 116, 117, 119, 121, 123, 124], "abov": [1, 2, 3, 4, 5, 7, 8, 12, 14, 15, 17, 18, 19, 21, 22, 24, 25, 27, 28, 30, 32, 33, 37, 39, 40, 41, 42, 43, 44, 45, 48, 53, 54, 55, 56, 57, 58, 59, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 80, 81, 82, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 94, 95, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 109, 110, 111, 112, 113, 116, 117, 118, 119, 120, 121, 122, 124], "above_or_equal_to": [46, 47, 87, 123], "absente": 31, "absolut": [1, 4, 5, 22, 46, 47, 53, 56, 57, 69, 87, 89, 92, 93, 105, 123], "abstract": [1, 30, 42, 53, 75, 83, 89, 111, 119], "ac": [1, 53, 89], "academ": [42, 83, 119], "accept": [37, 80, 116], "access": [30, 39, 75, 81, 111, 117], "accompani": [45, 86, 122], "accomplish": [39, 81, 117], "accord": [8, 22, 27, 28, 32, 59, 69, 73, 74, 76, 95, 105, 109, 110, 112], "accordingli": [1, 53, 89], "account": [1, 15, 17, 25, 30, 33, 37, 39, 40, 53, 64, 65, 71, 75, 77, 80, 81, 82, 89, 100, 101, 107, 111, 113, 116, 117, 118], "account1": [30, 75, 111], "account2": [30, 75, 111], "accumul": [1, 22, 53, 69, 89, 105], "accur": [4, 42, 56, 83, 92, 119], "achiev": [1, 10, 14, 19, 32, 39, 44, 53, 61, 63, 67, 76, 81, 85, 89, 97, 99, 103, 112, 117, 121], "acquir": [22, 69, 105], "across": [1, 7, 17, 18, 21, 22, 23, 27, 32, 33, 48, 49, 53, 58, 65, 66, 68, 69, 73, 76, 77, 88, 89, 94, 101, 102, 104, 105, 109, 112, 113, 124], "act": [12, 15, 21, 32, 46, 47, 62, 64, 68, 76, 87, 98, 100, 104, 112, 123], "action": [17, 26, 29, 32, 65, 72, 76, 101, 108, 112], "activ": [27, 39, 48, 73, 81, 88, 109, 117, 124], "actor": [15, 49, 64, 100], "actual": [1, 3, 4, 14, 15, 22, 25, 31, 37, 39, 42, 43, 44, 48, 53, 55, 56, 63, 64, 69, 71, 80, 81, 83, 84, 85, 88, 89, 91, 92, 99, 100, 105, 107, 116, 117, 119, 120, 121, 124], "actuari": [1, 53, 89], "ad": [15, 17, 18, 34, 39, 40, 42, 44, 48, 64, 65, 66, 78, 81, 82, 83, 85, 88, 100, 101, 102, 114, 117, 118, 119, 121, 124], "adapt": [17, 65, 101], "add": [15, 17, 30, 33, 45, 64, 65, 75, 77, 86, 100, 101, 111, 113, 122], "add_const": [42, 44, 45, 83, 85, 86, 119, 121, 122], "addit": [1, 2, 3, 7, 9, 10, 15, 17, 18, 21, 31, 36, 48, 53, 54, 55, 58, 60, 61, 64, 65, 66, 68, 79, 88, 89, 90, 91, 94, 96, 97, 100, 101, 102, 104, 115, 124], "addition": [22, 39, 44, 69, 81, 85, 105, 117, 121], "address": [15, 37, 40, 49, 64, 80, 82, 100, 116, 118], "adher": [19, 67, 103], "adj": [39, 42, 45, 81, 83, 86, 117, 119, 122], "adjust": [5, 7, 14, 15, 18, 19, 32, 33, 34, 57, 58, 63, 64, 66, 67, 76, 77, 78, 93, 94, 99, 100, 102, 103, 112, 113, 114], "administr": [1, 53, 89], "adult": [22, 69, 105], "advanc": [14, 51, 63, 99], "advantag": [48, 88, 124], "advert": [15, 64, 100], "advis": [27, 73, 109], "advisor": 31, "afc": [7, 58, 94], "affect": [1, 2, 5, 13, 16, 18, 20, 26, 34, 36, 37, 39, 41, 42, 53, 54, 57, 66, 72, 78, 79, 80, 81, 83, 89, 90, 93, 102, 108, 114, 115, 116, 117, 119], "afford": [5, 39, 57, 81, 93, 117], "afghanistan": [46, 47, 87, 123], "aforement": [32, 76, 112], "afqt": [42, 44, 83, 85, 119, 121], "africa": [31, 46, 47, 87, 123], "african": [22, 69, 105], "after": [1, 2, 4, 15, 17, 22, 27, 29, 31, 32, 38, 39, 40, 45, 46, 47, 53, 54, 56, 64, 65, 69, 73, 76, 81, 82, 86, 87, 89, 90, 92, 100, 101, 105, 109, 112, 117, 118, 122, 123], "afteral": [1, 53, 89], "afterward": [22, 69, 105], "ag": [1, 31, 44, 45, 46, 47, 48, 52, 53, 85, 86, 87, 88, 89, 121, 122, 123, 124], "again": [1, 4, 5, 14, 17, 18, 39, 45, 46, 47, 53, 56, 57, 63, 65, 66, 81, 86, 87, 89, 92, 93, 99, 101, 102, 117, 122, 123], "against": [27, 31, 73, 109], "agenc": [48, 88, 124], "aggreg": [17, 22, 34, 36, 65, 69, 78, 79, 101, 105, 114, 115], "agre": [27, 73, 109], "agreement": 29, "agricultur": [1, 31, 53, 89], "ahead": [48, 87, 88, 123, 124], "aic": [42, 45, 83, 86, 119, 122], "aim": [15, 17, 31, 48, 49, 64, 65, 88, 100, 101, 124], "air": [46, 47, 48, 87, 88, 123, 124], "airbu": [26, 72, 108], "airlin": [26, 27, 72, 73, 108, 109], "aj": [46, 47, 48, 87, 88, 123, 124], "akhil": 51, "al": [48, 88, 124], "alamito": [8, 59, 95], "alan": [32, 51, 76, 112], "alexandra": [22, 52, 69, 105], "algebra": [26, 72, 108], "alic": [28, 74, 110], "align": [3, 4, 5, 15, 17, 18, 21, 22, 26, 28, 39, 40, 42, 55, 56, 57, 64, 65, 66, 68, 69, 72, 74, 81, 82, 83, 91, 92, 93, 100, 101, 102, 104, 105, 108, 110, 117, 118, 119], "all": [1, 2, 3, 5, 7, 8, 12, 14, 15, 17, 18, 19, 21, 22, 25, 27, 28, 29, 30, 32, 33, 36, 39, 40, 42, 44, 45, 46, 47, 48, 50, 53, 54, 55, 57, 58, 59, 62, 63, 64, 65, 66, 67, 68, 69, 71, 73, 74, 75, 76, 77, 79, 81, 82, 83, 85, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 100, 101, 102, 103, 104, 105, 107, 109, 110, 111, 112, 113, 115, 117, 118, 119, 121, 122, 123, 124], "all_arrai": [46, 47, 87, 123], "all_tabl": [46, 47, 87, 123], "alll": [1, 53, 89], "alloc": [14, 18, 63, 66, 99, 102], "allow": [4, 9, 12, 17, 22, 27, 30, 31, 32, 39, 40, 56, 60, 62, 65, 69, 73, 75, 76, 81, 82, 92, 96, 98, 101, 105, 109, 111, 112, 117, 118], "almost": [5, 42, 44, 48, 57, 83, 85, 87, 88, 93, 119, 121, 123, 124], "alon": [31, 46, 47, 87, 123], "along": [3, 6, 10, 15, 19, 25, 27, 29, 37, 42, 55, 61, 64, 67, 71, 73, 80, 83, 91, 97, 100, 103, 107, 109, 116, 119], "alpha": [17, 19, 21, 42, 43, 44, 45, 65, 67, 68, 83, 84, 85, 86, 101, 103, 104, 119, 120, 121, 122], "alreadi": [1, 5, 14, 28, 30, 39, 40, 44, 53, 57, 63, 74, 75, 81, 82, 85, 89, 93, 99, 110, 111, 117, 118, 121], "also": [1, 2, 4, 5, 8, 9, 10, 14, 15, 17, 18, 19, 21, 22, 24, 25, 26, 29, 30, 31, 32, 33, 36, 37, 39, 40, 42, 44, 45, 46, 47, 48, 49, 51, 53, 54, 56, 57, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 75, 76, 77, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 92, 93, 95, 96, 97, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 111, 112, 113, 115, 116, 117, 118, 119, 121, 122, 123, 124], "alter": [5, 15, 49, 57, 64, 93, 100], "altern": [2, 3, 5, 10, 15, 18, 24, 48, 54, 55, 57, 61, 64, 66, 70, 88, 90, 91, 93, 97, 100, 102, 106, 124], "although": [14, 21, 22, 25, 63, 68, 69, 71, 99, 104, 105, 107], "alumni": [1, 53, 89], "alwai": [1, 4, 14, 19, 21, 24, 25, 28, 42, 44, 53, 56, 63, 67, 68, 70, 71, 74, 83, 85, 89, 92, 99, 103, 104, 106, 107, 110, 119, 121], "am": [39, 81, 117], "amal": 51, "ambigu": [1, 4, 24, 42, 53, 56, 70, 83, 89, 92, 106, 119], "amen": 49, "american": [1, 32, 39, 53, 76, 81, 89, 112, 117], "among": [3, 14, 22, 27, 29, 46, 47, 55, 63, 69, 73, 87, 91, 99, 105, 109, 123], "amount": [1, 2, 4, 5, 7, 10, 12, 15, 17, 19, 21, 24, 25, 31, 36, 39, 40, 46, 47, 48, 49, 53, 54, 56, 57, 58, 61, 62, 64, 65, 67, 68, 70, 71, 79, 81, 82, 87, 88, 89, 90, 92, 93, 94, 97, 98, 100, 101, 103, 104, 106, 107, 115, 117, 118, 123, 124], "an": [2, 4, 5, 7, 9, 10, 14, 17, 18, 19, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 52, 54, 56, 57, 58, 60, 61, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 92, 93, 94, 96, 97, 99, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 118, 119, 120, 121, 122, 123, 124], "anaconda3": [39, 81, 117], "analog": [44, 85, 121], "analysi": [1, 24, 32, 48, 53, 70, 76, 88, 89, 106, 112, 124], "analyst": [1, 53, 89], "analyt": 31, "analyz": [1, 22, 26, 32, 36, 45, 53, 69, 72, 76, 79, 86, 89, 105, 108, 112, 115, 122], "anchor": [32, 37, 76, 80, 112, 116], "andrei": 51, "angl": [42, 83, 119], "ani": [1, 2, 3, 4, 5, 7, 8, 12, 14, 15, 17, 18, 19, 21, 22, 24, 25, 27, 28, 30, 31, 33, 34, 36, 39, 41, 42, 44, 48, 50, 53, 54, 55, 56, 57, 58, 59, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 83, 85, 88, 89, 90, 91, 92, 93, 94, 95, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 109, 110, 111, 113, 114, 115, 117, 119, 121, 124], "ann": [21, 68, 104], "anniversari": [48, 88, 124], "annot": [46, 47, 87, 123], "announc": [27, 73, 109], "annual": [32, 40, 43, 76, 82, 84, 112, 118, 120], "anoth": [1, 2, 4, 7, 9, 14, 15, 17, 21, 22, 24, 25, 26, 27, 28, 30, 31, 32, 33, 35, 37, 39, 42, 44, 46, 47, 53, 54, 56, 58, 60, 63, 64, 65, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 80, 81, 83, 85, 87, 89, 90, 92, 94, 96, 99, 100, 101, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 116, 117, 119, 121, 123], "answer": [1, 4, 5, 7, 41, 46, 47, 53, 56, 57, 58, 87, 89, 92, 93, 94, 123], "anthropogen": [46, 47, 87, 123], "anthropologi": [1, 53, 89], "anti": 31, "antivenom": [5, 57, 93], "anymor": [5, 39, 57, 81, 93, 117], "anyon": [1, 33, 53, 77, 89, 113], "anyth": [1, 5, 17, 39, 53, 57, 65, 81, 89, 93, 101, 117], "aontoin": [26, 72, 108], "apart": [4, 5, 41, 42, 56, 57, 83, 92, 93, 119], "apparaju": 51, "appeal": [1, 53, 89], "appear": [32, 37, 39, 44, 46, 47, 76, 80, 81, 85, 87, 112, 116, 117, 121, 123], "append": [44, 46, 47, 48, 85, 87, 88, 121, 123, 124], "appl": [1, 21, 53, 68, 89, 104], "appli": [1, 14, 17, 22, 46, 47, 48, 49, 51, 53, 63, 65, 69, 87, 88, 89, 99, 101, 105, 123, 124], "applic": [27, 29, 31, 46, 47, 48, 49, 73, 87, 88, 109, 123, 124], "approach": [4, 17, 26, 33, 48, 52, 56, 65, 72, 77, 88, 92, 101, 108, 113, 124], "appropri": [36, 79, 115], "approx": [4, 5, 21, 56, 57, 68, 92, 93, 104], "approx2": [21, 68, 104], "approxim": [4, 17, 32, 43, 44, 56, 65, 76, 84, 85, 92, 101, 112, 120, 121], "april": [32, 76, 112], "ar": [1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 14, 15, 17, 18, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 44, 45, 46, 47, 49, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 86, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 121, 122, 123], "arabia": [27, 73, 109], "arang": [14, 22, 24, 44, 63, 69, 70, 85, 99, 105, 106, 121], "arbitrari": [44, 85, 121], "arbitrarili": [44, 85, 121], "arbritari": [48, 88, 124], "architectur": [1, 53, 89], "area": [15, 17, 24, 33, 46, 47, 48, 64, 65, 70, 77, 87, 88, 100, 101, 106, 113, 123, 124], "aren": [14, 30, 39, 41, 42, 63, 75, 81, 83, 99, 111, 117, 119], "argmax": [26, 72, 108], "argu": [31, 37, 46, 47, 80, 87, 116, 123], "argument": [9, 30, 60, 75, 96, 111], "aris": [24, 34, 70, 78, 106, 114], "arm": [17, 31, 32, 44, 65, 76, 85, 101, 112, 121], "around": [1, 3, 4, 5, 15, 22, 32, 46, 47, 51, 53, 55, 56, 57, 64, 69, 76, 87, 89, 91, 92, 93, 100, 105, 112, 123], "arrai": [3, 10, 14, 24, 30, 42, 44, 45, 55, 61, 63, 70, 75, 83, 85, 86, 91, 97, 99, 106, 111, 119, 121, 122], "arrang": [48, 88, 124], "array1": [44, 85, 121], "array2": [44, 85, 121], "arriv": [14, 48, 63, 88, 99, 124], "art": [1, 53, 89], "arthur": [32, 76, 112], "articl": [1, 31, 32, 46, 47, 48, 53, 87, 88, 89, 123, 124], "artist": [1, 53, 89], "ascend": [1, 53, 89], "asia": [46, 47, 48, 87, 88, 123, 124], "asian": [44, 45, 85, 86, 121, 122], "asid": [44, 85, 121], "ask": [1, 39, 40, 46, 47, 53, 81, 82, 87, 89, 117, 118, 123], "aspect": [29, 31, 33, 77, 113], "assembl": [17, 65, 101], "assertionerror": [30, 75, 111], "assess": [46, 47, 87, 123], "asset": [17, 22, 36, 39, 40, 65, 69, 79, 81, 82, 101, 105, 115, 117, 118], "assign": [9, 10, 31, 41, 42, 60, 61, 83, 96, 97, 119], "assist": [22, 69, 105], "associ": [1, 7, 15, 39, 42, 44, 46, 47, 53, 58, 64, 81, 83, 85, 87, 89, 94, 100, 117, 119, 121, 123], "assum": [2, 4, 5, 10, 12, 14, 15, 17, 18, 19, 21, 25, 26, 27, 39, 42, 44, 45, 48, 54, 56, 57, 61, 62, 63, 64, 65, 66, 67, 68, 71, 72, 73, 81, 83, 85, 86, 88, 90, 92, 93, 97, 98, 99, 100, 101, 102, 103, 104, 107, 108, 109, 117, 119, 121, 122, 124], "assumpt": [1, 5, 14, 15, 18, 21, 25, 26, 44, 45, 53, 57, 63, 64, 66, 68, 71, 72, 85, 86, 89, 93, 99, 100, 102, 104, 107, 108, 121, 122], "astronomi": [1, 53, 89], "astrophys": [1, 53, 89], "asymmetr": [29, 39, 81, 117], "asymptot": [17, 65, 101], "atc": [7, 58, 94], "atmospher": 49, "attack": [22, 69, 105], "attain": [1, 19, 53, 67, 89, 103], "attempt": [21, 24, 27, 68, 70, 73, 104, 106, 109], "attend": [1, 28, 31, 42, 53, 74, 83, 89, 110, 119], "attr": [30, 75, 111], "attract": [37, 80, 116], "attribut": [27, 29, 30, 39, 41, 42, 50, 73, 75, 81, 83, 109, 111, 117, 119], "author": [37, 80, 116], "automat": [26, 72, 108], "avail": [2, 24, 28, 70, 74, 106, 110], "avc": [7, 8, 58, 59, 94, 95], "averag": [1, 3, 4, 5, 7, 8, 17, 28, 33, 41, 42, 44, 53, 55, 56, 57, 58, 59, 65, 74, 77, 83, 85, 89, 91, 92, 93, 94, 95, 101, 110, 113, 119, 121], "avg": [44, 85, 121], "avg_logearn_col": [44, 85, 121], "avg_logearn_nocol": [44, 85, 121], "avocado": [3, 55, 91], "avoid": [22, 42, 48, 69, 83, 88, 105, 119, 124], "awai": [1, 2, 5, 15, 39, 45, 53, 54, 57, 64, 81, 86, 89, 90, 93, 100, 117, 122], "awar": [15, 29, 64, 100], "ax": [3, 4, 9, 15, 18, 36, 44, 46, 47, 55, 56, 60, 64, 66, 79, 85, 87, 91, 92, 96, 100, 102, 115, 121, 123], "axhlin": [48, 88, 124], "axi": [3, 4, 9, 15, 17, 18, 21, 24, 36, 37, 39, 46, 47, 48, 55, 56, 60, 64, 65, 66, 68, 70, 79, 87, 88, 91, 92, 96, 100, 101, 102, 104, 106, 115, 123, 124], "b": [2, 3, 4, 5, 7, 21, 24, 26, 27, 31, 32, 36, 54, 55, 56, 57, 58, 68, 70, 72, 73, 76, 90, 91, 92, 93, 94, 104, 106, 108, 109, 112], "back": [1, 5, 14, 37, 39, 42, 53, 57, 63, 80, 81, 83, 87, 89, 93, 99, 116, 117, 119, 123], "backbon": [44, 85, 121], "bad": [1, 53, 89], "bai": [8, 59, 95], "bake": [17, 65, 101], "balanc": [30, 31, 32, 75, 76, 111, 112], "bang": [48, 88, 124], "bank": [1, 22, 30, 33, 35, 37, 40, 53, 69, 75, 77, 80, 82, 89, 105, 111, 113, 116, 118], "banker": [1, 32, 53, 76, 89, 112], "bar": [1, 8, 17, 30, 48, 53, 59, 65, 75, 88, 89, 95, 101, 111, 124], "barclai": [32, 76, 112], "barrel": [27, 73, 109], "barrier": [30, 75, 111], "base": [1, 2, 5, 7, 10, 14, 15, 25, 28, 32, 33, 40, 46, 47, 48, 49, 53, 54, 57, 58, 61, 63, 64, 71, 74, 76, 77, 82, 87, 88, 89, 90, 93, 94, 97, 99, 100, 107, 110, 112, 113, 118, 123, 124], "baselin": [4, 31, 56, 92], "basi": [34, 40, 48, 78, 82, 88, 114, 118, 124], "basic": [1, 6, 20, 39, 41, 53, 81, 89, 117], "basket": [33, 77, 113], "basket_0": [33, 77, 113], "basket_t": [33, 77, 113], "bat": [1, 53, 89], "battl": [46, 47, 87, 123], "bau": [48, 88, 124], "bdp": 52, "beach": [8, 59, 95], "bear": [5, 15, 39, 57, 64, 81, 93, 100, 117], "beauti": [27, 73, 109], "becaus": [1, 2, 3, 5, 7, 10, 14, 15, 18, 19, 22, 24, 25, 26, 27, 28, 30, 32, 33, 36, 39, 40, 41, 42, 44, 53, 54, 55, 57, 58, 61, 63, 64, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 81, 82, 83, 85, 89, 90, 91, 93, 94, 97, 99, 100, 102, 103, 105, 106, 107, 108, 109, 110, 111, 112, 113, 115, 117, 118, 119, 121], "becom": [1, 14, 17, 20, 22, 24, 26, 39, 42, 48, 53, 63, 65, 69, 70, 72, 81, 83, 88, 89, 99, 101, 105, 106, 108, 117, 119, 124], "bednet": 31, "been": [5, 8, 12, 22, 25, 27, 28, 31, 32, 33, 37, 39, 42, 44, 46, 47, 57, 59, 62, 69, 71, 73, 74, 76, 77, 80, 81, 83, 85, 87, 93, 95, 98, 105, 107, 109, 110, 112, 113, 116, 117, 119, 121, 123], "befor": [1, 4, 5, 10, 14, 15, 17, 22, 26, 27, 30, 31, 32, 33, 39, 40, 44, 48, 53, 56, 57, 61, 63, 64, 65, 69, 72, 73, 75, 76, 77, 81, 82, 85, 88, 89, 92, 93, 97, 99, 100, 101, 105, 108, 109, 111, 112, 113, 117, 118, 121, 124], "began": [27, 46, 47, 73, 87, 109, 123], "begin": [1, 4, 5, 7, 13, 15, 17, 18, 21, 22, 25, 26, 28, 31, 32, 38, 39, 40, 42, 53, 56, 57, 58, 64, 65, 66, 68, 69, 71, 72, 74, 76, 81, 82, 83, 89, 92, 93, 94, 100, 101, 102, 104, 105, 107, 108, 110, 112, 117, 118, 119], "behav": [4, 14, 39, 44, 56, 63, 81, 85, 92, 99, 117, 121], "behavior": [8, 33, 49, 59, 77, 95, 113], "behind": [8, 17, 26, 31, 32, 44, 59, 65, 72, 76, 85, 95, 101, 108, 112, 121], "being": [1, 4, 5, 14, 22, 25, 27, 29, 30, 31, 32, 39, 42, 53, 56, 57, 63, 69, 71, 73, 75, 76, 81, 83, 89, 92, 93, 99, 105, 107, 109, 111, 112, 117, 119], "belfort": [1, 53, 89], "belief": [25, 71, 107], "believ": [1, 22, 25, 42, 44, 53, 69, 71, 83, 85, 89, 105, 107, 119, 121], "below": [1, 2, 5, 7, 8, 15, 18, 22, 24, 25, 26, 27, 30, 32, 34, 36, 39, 40, 42, 43, 44, 46, 47, 48, 53, 54, 57, 58, 59, 64, 66, 69, 70, 71, 72, 73, 75, 76, 78, 79, 81, 82, 83, 84, 85, 87, 88, 89, 90, 93, 94, 95, 100, 102, 105, 106, 107, 108, 109, 111, 112, 114, 115, 117, 118, 119, 120, 121, 123, 124], "below_or_equal_to": [48, 88, 124], "ben": [32, 76, 112], "benefit": [8, 14, 15, 42, 48, 49, 59, 63, 64, 83, 88, 95, 99, 100, 119, 124], "bera": [42, 45, 83, 86, 119, 122], "berkelei": [0, 1, 12, 22, 31, 32, 43, 49, 51, 53, 62, 69, 76, 84, 89, 98, 105, 112, 120], "bernank": [32, 76, 112], "besid": [31, 46, 47, 48, 87, 88, 123, 124], "best": [4, 25, 27, 32, 37, 48, 56, 71, 73, 76, 80, 88, 92, 107, 109, 112, 116, 124], "bet": [25, 38, 71, 107], "beta": [17, 18, 42, 43, 45, 65, 66, 83, 84, 86, 101, 102, 119, 120, 122], "beta_1": [42, 83, 119], "beta_2": [42, 83, 119], "betrai": [27, 73, 109], "better": [1, 3, 4, 14, 17, 21, 22, 24, 25, 27, 28, 33, 39, 42, 44, 46, 47, 53, 55, 56, 63, 65, 68, 69, 70, 71, 73, 74, 77, 81, 83, 85, 87, 89, 91, 92, 99, 101, 104, 105, 106, 107, 109, 110, 113, 117, 119, 121, 123], "between": [1, 2, 4, 5, 7, 10, 12, 14, 15, 17, 18, 21, 22, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 36, 37, 40, 42, 43, 44, 46, 47, 48, 49, 52, 53, 54, 56, 57, 58, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 76, 77, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 97, 98, 99, 100, 101, 102, 104, 105, 106, 107, 109, 110, 112, 113, 114, 115, 116, 118, 119, 120, 121, 123, 124], "beverag": [10, 61, 97], "beyond": [32, 44, 76, 85, 112, 121], "bhatnagar": 51, "bia": [22, 40, 69, 82, 105, 118], "bias": [42, 83, 119], "bic": [42, 45, 83, 86, 119, 122], "bid": [26, 27, 39, 72, 73, 81, 108, 109, 117], "big": [1, 4, 8, 25, 48, 53, 56, 59, 71, 88, 89, 92, 95, 107, 124], "bigr": [5, 57, 93], "bill": [48, 88, 124], "billion": 31, "binari": [14, 63, 99], "bioengin": [1, 53, 89], "biologi": [1, 29, 53, 89], "birth": [22, 69, 105], "bit": [32, 39, 44, 76, 81, 85, 112, 117, 121], "bite": [5, 57, 93], "black": [44, 45, 48, 79, 85, 86, 88, 115, 121, 122, 124], "blind": 41, "block": [17, 65, 101], "blowdown": [48, 88, 124], "blue": [1, 18, 30, 36, 53, 66, 75, 79, 89, 102, 111, 115], "bmh": 2, "board": [32, 76, 112], "bob": [21, 68, 104], "bodi": [32, 76, 112], "boe": [26, 72, 108], "boggl": [1, 53, 89], "bolhui": [22, 52, 69, 105], "bond": [39, 40, 81, 82, 117, 118], "book": 0, "boolean": [30, 75, 111], "boom": [46, 47, 87, 123], "boost": [32, 76, 112], "bootstrap": [44, 45, 85, 86, 121, 122], "bore": [28, 74, 110], "born": [22, 31, 42, 69, 83, 105, 119], "borrow": [32, 33, 34, 36, 39, 40, 76, 77, 78, 79, 81, 82, 112, 113, 114, 115, 117, 118], "both": [1, 4, 5, 9, 15, 17, 18, 19, 21, 24, 25, 26, 27, 28, 29, 32, 36, 37, 42, 44, 46, 47, 48, 53, 56, 57, 60, 64, 65, 66, 67, 68, 70, 71, 72, 73, 74, 76, 79, 80, 83, 85, 87, 88, 89, 92, 93, 96, 100, 101, 102, 103, 104, 106, 107, 108, 109, 110, 112, 115, 116, 119, 121, 123, 124], "bottom": [1, 22, 24, 28, 48, 53, 69, 70, 74, 88, 89, 105, 106, 110, 124], "bottom_50_u": [22, 69, 105], "bottom_50_world": [22, 69, 105], "bought": [39, 81, 117], "bp": [4, 56, 92], "bq_1": [26, 72, 108], "bq_2": [26, 72, 108], "br_q_1": [26, 72, 108], "br_q_2": [26, 72, 108], "bracket": [22, 69, 105], "branch": [29, 32, 76, 112], "branko": 52, "brazil": [22, 46, 47, 69, 87, 105, 123], "breviti": [10, 61, 97], "brics_arrai": [46, 47, 87, 123], "brics_tabl": [46, 47, 87, 123], "briefli": [5, 33, 39, 57, 77, 81, 93, 113, 117], "bright": 2, "brina": 52, "bring": [1, 7, 19, 21, 22, 31, 53, 58, 67, 68, 69, 89, 94, 103, 104, 105], "broad": [34, 49, 78, 114], "broader": 31, "broadli": [15, 64, 100], "broadwai": [1, 53, 89], "broker": [39, 81, 117], "brook": [22, 69, 105], "bsd": 51, "buck": [48, 88, 124], "budget": 20, "bui": [2, 3, 5, 10, 12, 14, 19, 21, 25, 39, 48, 54, 55, 57, 61, 62, 63, 67, 68, 71, 81, 88, 90, 91, 93, 97, 98, 99, 103, 104, 107, 117, 124], "build": [0, 14, 45, 48, 49, 63, 86, 88, 99, 122, 124], "built": [9, 30, 60, 75, 96, 111], "bulb": [48, 88, 124], "bun": [5, 57, 93], "bundl": [19, 21, 67, 68, 103, 104], "burden": [15, 31, 64, 100], "busi": [1, 5, 14, 15, 18, 48, 53, 57, 63, 64, 66, 88, 89, 93, 99, 100, 102, 124], "butter": [5, 57, 93], "button": 31, "buyer": [2, 39, 54, 81, 90, 117], "c": [1, 9, 10, 17, 18, 25, 26, 27, 30, 34, 36, 39, 53, 60, 61, 65, 66, 71, 72, 73, 75, 78, 81, 89, 96, 97, 101, 102, 107, 108, 109, 111, 114, 117], "c02": [46, 47, 87, 123], "c594c5": [48, 88, 124], "c_": [32, 76, 112], "c_1": [26, 72, 108], "c_2": [26, 72, 108], "cal": [1, 53, 89], "cal_incom": [1, 53, 89], "cal_vs_al": [1, 53, 89], "calcul": [5, 6, 7, 9, 11, 17, 23, 24, 26, 28, 33, 40, 44, 45, 48, 57, 58, 60, 65, 70, 72, 74, 77, 82, 85, 86, 88, 93, 94, 96, 101, 106, 108, 110, 113, 118, 121, 122, 124], "calculu": [21, 24, 44, 68, 70, 85, 104, 106, 121], "calibr": 31, "california": [1, 8, 53, 59, 89, 95], "call": [1, 2, 3, 5, 9, 15, 17, 18, 21, 24, 26, 28, 30, 31, 32, 37, 40, 41, 42, 44, 45, 48, 53, 54, 55, 57, 60, 64, 65, 66, 68, 70, 72, 74, 75, 76, 80, 82, 83, 85, 86, 88, 89, 90, 91, 93, 96, 100, 101, 102, 104, 106, 108, 110, 111, 112, 116, 118, 119, 121, 122, 124], "came": [31, 32, 76, 112], "campu": [1, 5, 53, 57, 89, 93], "can": [0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 14, 15, 17, 18, 19, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124], "canada": [46, 47, 87, 123], "cannot": [5, 7, 17, 24, 26, 27, 29, 37, 39, 42, 44, 57, 58, 65, 70, 72, 73, 80, 81, 83, 85, 93, 94, 101, 106, 108, 109, 116, 117, 119, 121], "canyon": [8, 59, 95], "cap": 49, "capabl": [8, 42, 59, 83, 95, 119], "capac": [8, 17, 25, 59, 65, 71, 95, 101, 107], "capacity_mw": [8, 59, 95], "capit": [7, 14, 16, 18, 31, 49, 58, 63, 66, 94, 99, 102], "capita": [46, 47, 87, 123], "caprau": 51, "captur": [4, 10, 14, 27, 32, 33, 42, 43, 48, 56, 61, 63, 73, 76, 77, 83, 84, 88, 92, 97, 99, 109, 112, 113, 119, 120, 124], "car": [2, 5, 17, 30, 48, 54, 57, 65, 75, 88, 90, 93, 101, 111, 124], "car99": 52, "car_1": [30, 75, 111], "car_2": [30, 75, 111], "carbon": [46, 47, 48, 49, 87, 88, 123, 124], "carbonom": [46, 47, 48, 87, 88, 123, 124], "card": [33, 43, 52, 77, 84, 113, 120], "care": [15, 32, 44, 64, 76, 85, 100, 112, 121], "career": [1, 53, 89], "carefulli": 31, "carri": [1, 31, 32, 49, 53, 76, 89, 112], "cartel": [26, 27, 72, 73, 108, 109], "cartoon": 32, "case": [1, 2, 3, 4, 7, 8, 10, 12, 14, 15, 17, 18, 21, 24, 25, 26, 27, 28, 29, 31, 36, 39, 40, 42, 44, 46, 47, 48, 53, 54, 55, 56, 58, 59, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 81, 82, 83, 85, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 99, 100, 101, 102, 104, 106, 107, 108, 109, 110, 117, 118, 119, 121, 123, 124], "cash": [1, 39, 53, 81, 89, 117], "categori": [1, 7, 53, 58, 89, 94], "caus": [2, 4, 5, 15, 18, 22, 26, 30, 31, 37, 42, 48, 54, 56, 57, 64, 66, 69, 72, 75, 80, 83, 88, 90, 92, 93, 100, 102, 105, 108, 111, 116, 119, 124], "causal": [44, 52, 85, 121], "causat": [3, 31, 44, 55, 85, 91, 121], "caveat": [1, 4, 53, 56, 89, 92], "cc": [48, 50, 88, 124], "cdf": [39, 81, 117], "cdot": [2, 3, 4, 9, 15, 17, 18, 28, 37, 39, 40, 42, 43, 44, 54, 55, 56, 60, 64, 65, 66, 74, 80, 81, 82, 83, 84, 85, 90, 91, 92, 96, 100, 101, 102, 110, 116, 117, 118, 119, 120, 121], "ceil": [1, 12, 53, 62, 89, 98], "cell": [1, 27, 28, 53, 73, 74, 89, 109, 110], "censu": [22, 24, 69, 70, 105, 106], "cent": [14, 63, 99], "center": [45, 86, 122], "central": [33, 35, 37, 77, 80, 113, 116], "centuri": [32, 76, 112], "certain": [1, 4, 5, 12, 14, 17, 22, 26, 31, 33, 38, 39, 40, 44, 45, 46, 47, 53, 56, 57, 62, 63, 65, 69, 72, 77, 81, 82, 85, 86, 87, 89, 92, 93, 98, 99, 101, 105, 108, 113, 117, 118, 121, 122, 123], "certainli": [14, 42, 63, 83, 87, 99, 119, 123], "certainti": [48, 88, 124], "certifi": [39, 81, 117], "ceteri": [2, 54, 90], "chain": [5, 57, 93], "chair": [32, 76, 112], "chairman": [32, 76, 112], "challeng": [24, 42, 70, 83, 106, 119], "chanc": [15, 33, 39, 64, 77, 81, 100, 113, 117], "chang": [0, 1, 2, 3, 5, 7, 12, 13, 14, 15, 16, 18, 21, 22, 25, 26, 27, 29, 30, 31, 32, 33, 34, 37, 39, 40, 44, 46, 47, 48, 53, 54, 55, 57, 58, 62, 63, 64, 66, 68, 69, 71, 72, 73, 75, 76, 77, 78, 80, 81, 82, 85, 87, 88, 89, 90, 91, 93, 94, 98, 99, 100, 102, 104, 105, 107, 108, 109, 111, 112, 113, 114, 116, 117, 118, 121, 123, 124], "chapter": [2, 13, 23, 26, 29, 32, 33, 36, 48, 54, 72, 76, 77, 88, 90, 108, 112, 113, 124], "charact": [27, 73, 109], "character": [36, 37, 79, 80, 115, 116], "characterist": [14, 63, 99], "chardet": [39, 81, 117], "charg": [5, 12, 15, 25, 33, 39, 40, 57, 62, 64, 71, 77, 81, 82, 93, 98, 100, 107, 113, 117, 118], "chart": [1, 22, 24, 36, 52, 53, 69, 70, 79, 89, 105, 106, 115], "cheaper": [2, 5, 8, 54, 57, 59, 90, 93, 95], "cheapest": [48, 88, 124], "check": [1, 21, 30, 53, 68, 75, 89, 104, 111], "chemic": [1, 53, 89], "chemistri": [1, 53, 89], "chetti": [15, 64, 100], "child": 31, "childhood": 31, "children": [22, 31, 69, 105], "china": [22, 69, 105], "choic": [1, 10, 25, 27, 28, 36, 48, 53, 61, 71, 73, 74, 79, 88, 89, 97, 107, 109, 110, 115, 124], "choos": [1, 19, 21, 26, 28, 42, 48, 53, 67, 68, 72, 74, 83, 88, 89, 103, 104, 108, 110, 119, 124], "chose": [1, 42, 48, 53, 83, 88, 89, 119, 124], "chosen": [1, 27, 28, 53, 73, 74, 89, 109, 110], "christoph": 51, "ci": [48, 88, 124], "cigarett": [15, 64, 100], "circul": [32, 76, 112], "civic": [30, 75, 111], "claim": [22, 34, 37, 39, 42, 44, 69, 78, 80, 81, 83, 85, 105, 114, 116, 117, 119, 121], "class": [1, 9, 12, 14, 22, 26, 28, 46, 47, 48, 51, 53, 60, 62, 63, 69, 72, 74, 87, 88, 89, 96, 98, 99, 105, 108, 110, 123, 124], "classic": [2, 27, 44, 48, 73, 85, 88, 109, 121, 124], "classifi": [17, 65, 101], "claus": 51, "clean": [15, 22, 31, 46, 47, 64, 69, 87, 100, 105, 123], "clear": [4, 10, 46, 47, 56, 61, 87, 92, 97, 123], "clearli": [14, 32, 39, 42, 63, 76, 81, 83, 99, 112, 117, 119], "climat": [46, 47, 48, 87, 88, 123, 124], "clinic": 31, "cliometr": [1, 53, 89], "close": [5, 32, 39, 44, 57, 76, 81, 85, 93, 112, 117, 121], "closer": [5, 24, 32, 44, 57, 70, 76, 85, 93, 106, 112, 121], "closest": [41, 44, 85, 121], "co": [22, 69, 105], "co2": [46, 47, 48, 49, 87, 88, 123, 124], "co2_tabl": [46, 47, 87, 123], "co_2": [48, 88, 124], "coal": [8, 14, 48, 49, 59, 63, 88, 95, 99, 124], "cobb": [16, 18, 20, 66, 102], "code": [1, 24, 26, 39, 44, 45, 46, 47, 53, 70, 72, 81, 85, 86, 87, 89, 106, 108, 117, 121, 122, 123], "coef": [42, 45, 83, 86, 119, 122], "coefficeint": [24, 70, 106], "coeffici": [22, 23, 32, 42, 43, 44, 69, 76, 83, 84, 85, 105, 112, 119, 120, 121], "cognit": [1, 53, 89], "cogniz": [1, 53, 89], "coincid": [14, 44, 63, 85, 99, 121], "coke": [25, 71, 107], "cold": 29, "cole": 51, "coll": [44, 85, 121], "coll_standard": [44, 85, 121], "collater": [39, 81, 117], "collect": [22, 41, 46, 47, 48, 69, 87, 88, 105, 123, 124], "colleg": [1, 42, 44, 53, 83, 85, 89, 119, 121], "college_job": [1, 53, 89], "collud": [26, 72, 108], "collus": [26, 72, 108], "color": [8, 10, 15, 30, 31, 39, 48, 59, 61, 64, 75, 81, 88, 95, 97, 100, 111, 117, 124], "colorblind": 2, "colorblind10": 2, "colors_map": [48, 88, 124], "columbia": [46, 47, 48, 87, 88, 123, 124], "column": [1, 3, 4, 10, 14, 22, 27, 28, 39, 42, 43, 44, 45, 46, 47, 48, 53, 55, 56, 61, 63, 69, 73, 74, 81, 83, 84, 85, 86, 87, 88, 89, 91, 92, 97, 99, 105, 109, 110, 117, 119, 120, 121, 122, 123, 124], "com": [46, 47, 48, 79, 87, 88, 115, 123, 124], "combat": [32, 76, 112], "combin": [1, 9, 14, 21, 22, 27, 28, 30, 31, 39, 42, 53, 60, 63, 68, 69, 73, 74, 75, 81, 83, 89, 96, 99, 104, 105, 109, 110, 111, 117, 119], "combust": 49, "come": [1, 5, 8, 15, 23, 25, 26, 33, 37, 39, 53, 57, 59, 64, 71, 72, 77, 80, 81, 89, 93, 95, 100, 107, 108, 113, 116, 117], "command": 49, "commerci": [14, 32, 63, 76, 99, 112], "commit": [29, 32, 76, 112], "committe": [32, 76, 112], "commod": [7, 58, 94], "common": [17, 18, 22, 24, 27, 29, 31, 32, 33, 44, 50, 65, 66, 69, 70, 73, 76, 77, 85, 101, 102, 105, 106, 109, 112, 113, 121], "commonli": [48, 88, 124], "commun": [1, 15, 53, 64, 89, 100], "comp": [1, 53, 89], "compani": [7, 17, 18, 31, 37, 39, 58, 65, 66, 80, 81, 94, 101, 102, 116, 117], "compar": [1, 4, 5, 14, 15, 16, 17, 18, 21, 23, 30, 31, 32, 33, 37, 39, 41, 42, 49, 53, 56, 57, 63, 64, 65, 66, 68, 75, 77, 80, 81, 83, 89, 92, 93, 99, 100, 101, 102, 104, 111, 113, 116, 117, 119], "comparion": [1, 53, 89], "comparison": [1, 18, 30, 31, 34, 53, 66, 75, 78, 89, 102, 111, 114], "compens": [1, 7, 22, 40, 53, 58, 69, 82, 89, 94, 105, 118], "compet": [5, 13, 25, 26, 27, 37, 57, 71, 72, 73, 80, 93, 107, 108, 109, 116], "competit": [5, 10, 14, 27, 57, 61, 63, 73, 93, 97, 99, 109], "competitor": [25, 26, 29, 71, 72, 107, 108], "compil": [1, 53, 89], "complain": [42, 83, 119], "complement": [5, 57, 93], "complementar": 52, "complementari": [5, 57, 93], "complet": [1, 5, 27, 31, 39, 42, 44, 46, 47, 53, 57, 73, 81, 83, 85, 87, 89, 93, 109, 117, 119, 121, 123], "complex": [21, 30, 42, 68, 75, 83, 104, 111, 119], "complic": [1, 17, 39, 42, 53, 65, 81, 83, 89, 101, 117, 119], "compon": [10, 39, 61, 81, 97, 117], "compos": [30, 75, 111], "compound": [40, 82, 118], "comprehens": [1, 24, 36, 53, 70, 79, 89, 106, 115], "compress": [22, 69, 105], "compressor": [48, 88, 124], "compris": [7, 22, 32, 58, 69, 76, 94, 105, 112], "comput": [14, 42, 63, 83, 99, 119], "comsum": [14, 63, 99], "concav": [17, 65, 101], "conceiv": [28, 29, 74, 110], "concentr": [8, 34, 59, 78, 95, 114], "concept": [1, 2, 5, 10, 13, 14, 16, 19, 27, 33, 40, 44, 45, 48, 49, 51, 53, 54, 57, 61, 63, 67, 73, 77, 82, 85, 86, 88, 89, 90, 93, 97, 99, 103, 109, 113, 118, 121, 122, 124], "conceptu": [28, 74, 110], "concern": [1, 17, 29, 40, 53, 65, 82, 89, 101, 118], "concious": 41, "conclud": [4, 12, 22, 24, 44, 46, 47, 56, 62, 69, 70, 85, 87, 92, 98, 105, 106, 121, 123], "conclus": [14, 63, 99], "concret": [37, 80, 116], "cond": [42, 45, 83, 86, 119, 122], "condit": [21, 31, 32, 39, 42, 44, 48, 68, 76, 81, 83, 85, 88, 104, 112, 117, 119, 121, 124], "conduct": [1, 4, 15, 24, 32, 33, 43, 53, 56, 64, 70, 76, 77, 84, 89, 92, 100, 106, 112, 113, 120], "confid": [41, 42, 43, 44, 45, 83, 84, 85, 86, 119, 120, 121, 122], "confirm": [24, 70, 106], "confound": [1, 27, 31, 53, 73, 89, 109], "confus": [32, 76, 112], "congress": [22, 69, 105], "congression": [32, 76, 112], "connect": [22, 31, 51, 69, 105], "connector": 51, "consequ": [4, 12, 15, 22, 24, 48, 49, 56, 62, 64, 69, 70, 88, 92, 98, 100, 105, 106, 124], "conserv": [1, 53, 89], "consid": [1, 2, 4, 5, 7, 14, 15, 21, 24, 25, 26, 27, 28, 30, 32, 33, 36, 42, 43, 44, 48, 49, 53, 54, 56, 57, 58, 63, 64, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 83, 84, 85, 88, 89, 90, 92, 93, 94, 99, 100, 104, 106, 107, 108, 109, 110, 111, 112, 113, 115, 119, 120, 121, 124], "consider": [4, 56, 92], "consist": [1, 10, 27, 33, 39, 53, 61, 73, 77, 81, 89, 97, 109, 113, 117], "consolid": [3, 55, 91], "conspir": [27, 73, 109], "const": [42, 45, 83, 86, 119, 122], "constant": [2, 4, 17, 18, 21, 24, 25, 26, 37, 42, 45, 46, 47, 54, 56, 65, 66, 68, 70, 71, 72, 80, 83, 86, 87, 90, 92, 101, 102, 104, 106, 107, 108, 116, 119, 122, 123], "constantli": 31, "constitut": [27, 49, 73, 109], "constraint": [20, 25, 71, 107], "construct": [3, 9, 25, 28, 31, 37, 43, 44, 45, 55, 60, 71, 74, 80, 84, 85, 86, 91, 96, 107, 110, 116, 120, 121, 122], "constructor": [30, 75, 111], "consult": [1, 53, 89], "consum": [1, 2, 3, 4, 5, 9, 10, 12, 13, 15, 19, 21, 25, 33, 36, 37, 49, 53, 54, 55, 56, 57, 60, 61, 62, 64, 67, 68, 71, 77, 79, 80, 89, 90, 91, 92, 93, 96, 97, 98, 100, 103, 104, 107, 113, 115, 116], "consumpt": [5, 15, 19, 21, 36, 48, 57, 64, 67, 68, 79, 88, 93, 100, 103, 104, 115, 124], "contact": [27, 73, 109], "contain": [24, 42, 44, 45, 49, 70, 83, 85, 86, 106, 119, 121, 122], "contained_in": [46, 47, 87, 123], "content": [0, 50, 51], "context": [5, 14, 42, 48, 57, 63, 83, 88, 93, 99, 119, 124], "contin": [46, 47, 87, 123], "continu": [1, 4, 5, 14, 18, 22, 31, 39, 40, 48, 53, 56, 57, 63, 66, 69, 81, 82, 88, 89, 92, 93, 99, 102, 105, 117, 118, 124], "contour": [21, 68, 104], "contra": [8, 59, 95], "contract": [36, 38, 39, 81, 117], "contrast": [5, 14, 17, 57, 63, 65, 93, 99, 101], "contrat": 36, "contribut": [22, 32, 39, 69, 76, 81, 105, 112, 117], "control": [13, 14, 27, 31, 37, 41, 42, 49, 63, 73, 80, 83, 99, 109, 116, 119], "controversi": [46, 47, 87, 123], "convent": [27, 32, 48, 73, 76, 88, 109, 112, 124], "converg": [10, 14, 17, 61, 63, 65, 97, 99, 101], "convers": [2, 8, 40, 49, 54, 59, 82, 90, 95, 118], "convert": [4, 44, 56, 85, 92, 121], "convex": [17, 19, 21, 65, 67, 68, 101, 103, 104], "cook": [5, 31, 57, 93], "cooki": [1, 30, 53, 75, 89, 111], "cool": [21, 32, 34, 68, 76, 78, 87, 104, 112, 114, 123], "coolwat": [8, 59, 95], "cooper": [22, 25, 27, 29, 69, 71, 73, 105, 107, 109], "coordin": [3, 55, 91], "cop26": [46, 47, 87, 123], "copi": [0, 30, 39, 75, 81, 111, 117], "core": [17, 65, 101], "corner": [8, 59, 95], "coronaviru": [32, 76, 112], "corpor": [22, 69, 105], "correct": [4, 15, 31, 44, 56, 64, 85, 92, 100, 121], "correctli": [42, 45, 83, 86, 119, 122], "correl": [1, 3, 22, 31, 33, 43, 44, 53, 55, 69, 77, 84, 85, 89, 91, 105, 113, 120, 121], "correspond": [1, 3, 4, 7, 10, 28, 34, 39, 43, 44, 45, 53, 55, 56, 58, 61, 74, 78, 81, 84, 85, 86, 89, 91, 92, 94, 97, 110, 114, 117, 120, 121, 122], "corrobor": [22, 69, 105], "cost": [2, 5, 8, 10, 12, 14, 15, 17, 18, 21, 25, 26, 31, 32, 33, 36, 37, 39, 46, 47, 49, 54, 57, 59, 61, 62, 63, 64, 65, 66, 68, 71, 72, 76, 77, 79, 80, 81, 87, 90, 93, 95, 97, 98, 99, 100, 101, 102, 104, 107, 108, 112, 113, 115, 116, 117, 123], "costa": [8, 59, 95], "costli": [26, 72, 108], "could": [1, 2, 5, 15, 18, 26, 28, 31, 33, 37, 39, 42, 44, 46, 47, 48, 49, 53, 54, 57, 64, 66, 72, 74, 77, 80, 81, 83, 85, 87, 88, 89, 90, 93, 100, 102, 108, 110, 113, 116, 117, 119, 121, 123, 124], "count": [28, 33, 48, 74, 77, 88, 110, 113, 124], "counter": [4, 56, 92], "counterpart": [1, 53, 89], "countless": [5, 57, 93], "countri": [4, 12, 16, 18, 22, 23, 24, 27, 32, 33, 48, 49, 56, 62, 66, 69, 70, 73, 76, 77, 88, 92, 98, 102, 105, 106, 109, 112, 113, 124], "country1": [24, 70, 106], "country2": [24, 70, 106], "country3": [24, 70, 106], "coupl": [22, 69, 105], "coupon": [39, 81, 117], "cournot": [25, 71, 107], "cours": [1, 3, 5, 15, 26, 31, 32, 39, 43, 53, 55, 57, 64, 72, 76, 81, 84, 89, 91, 93, 100, 108, 112, 117, 120], "coursework": 51, "courtesi": [10, 61, 97], "covari": [42, 45, 83, 86, 119, 122], "cover": [1, 7, 13, 38, 39, 45, 51, 53, 58, 81, 86, 89, 94, 117, 122], "covid": [27, 31, 73, 109], "cp": [44, 45, 85, 86, 121, 122], "cpi": [33, 77, 113], "cpi_": [33, 77, 113], "cpi_t": [33, 77, 113], "cq_1": [26, 72, 108], "cq_2": [26, 72, 108], "crack": [30, 75, 111], "creat": [1, 3, 6, 7, 8, 9, 12, 14, 17, 22, 24, 26, 31, 33, 44, 45, 48, 53, 55, 58, 59, 60, 62, 63, 65, 69, 70, 72, 77, 85, 86, 88, 89, 91, 94, 95, 96, 98, 99, 101, 105, 106, 108, 113, 121, 122, 124], "creation": [22, 69, 105], "creativ": 50, "credit": [33, 77, 113], "creek": [8, 59, 95], "crise": [18, 66, 102], "critic": [33, 77, 113], "crop": [31, 46, 47, 48, 87, 88, 123, 124], "cross": [5, 24, 52, 57, 70, 93, 106], "crow": [27, 73, 109], "crowd": [17, 65, 101], "crucial": [48, 88, 124], "crude": [27, 73, 109], "crypto": [14, 63, 99], "cryptocurr": [14, 63, 99], "cs_econ_by_ag": [1, 53, 89], "cs_vs_econ": [1, 53, 89], "csv": [1, 3, 4, 7, 8, 10, 22, 44, 46, 47, 48, 53, 55, 56, 58, 59, 61, 69, 85, 87, 88, 89, 91, 92, 94, 95, 97, 105, 121, 123, 124], "cumsum": [48, 88, 124], "cumul": [24, 48, 70, 88, 106, 124], "cumulative_width": [48, 88, 124], "currenc": [33, 77, 113], "current": [2, 5, 7, 21, 22, 30, 31, 32, 33, 39, 44, 48, 54, 57, 58, 68, 69, 75, 76, 77, 81, 85, 88, 90, 93, 94, 104, 105, 111, 112, 113, 117, 121, 124], "curtain": [32, 76, 112], "curv": [5, 6, 8, 9, 11, 12, 15, 17, 19, 20, 22, 23, 25, 26, 34, 49, 57, 59, 60, 62, 64, 65, 67, 69, 71, 72, 78, 93, 95, 96, 98, 100, 101, 103, 105, 107, 108, 114], "custom": [5, 9, 10, 12, 30, 57, 60, 61, 62, 75, 93, 96, 97, 98, 111], "cut": [14, 15, 63, 64, 99, 100], "cutter": [30, 75, 111], "d": [1, 2, 3, 4, 9, 10, 15, 24, 27, 36, 53, 54, 55, 56, 60, 61, 64, 70, 73, 89, 90, 91, 92, 96, 97, 100, 106, 109], "d_1": [39, 81, 117], "d_2": [39, 81, 117], "dai": [4, 42, 51, 56, 83, 92, 119], "daili": [27, 73, 109], "dalmia": 51, "dark": 2, "dark_background": 2, "darkgrid": 2, "dashboard": [1, 53, 89], "data": [0, 3, 4, 6, 17, 22, 24, 26, 30, 31, 32, 37, 39, 42, 43, 44, 45, 46, 47, 48, 49, 55, 56, 65, 69, 70, 72, 75, 76, 80, 81, 84, 85, 86, 87, 88, 91, 92, 101, 105, 106, 108, 111, 112, 116, 117, 120, 121, 122, 123, 124], "databas": [1, 22, 53, 69, 89, 105], "datapoint": [3, 55, 91], "datasci": [46, 87, 88, 123, 124], "dataset": [1, 3, 4, 8, 22, 42, 44, 45, 46, 47, 48, 51, 53, 55, 56, 59, 69, 83, 85, 86, 87, 88, 89, 91, 92, 95, 105, 119, 121, 122, 123, 124], "date": [3, 4, 39, 42, 45, 55, 56, 81, 83, 86, 91, 92, 117, 119, 122], "dateutil": [39, 81, 117], "david": [43, 52, 84, 120], "de": [22, 52, 69, 105], "dead": [5, 57, 93], "deal": [1, 13, 15, 22, 39, 53, 64, 69, 81, 89, 100, 105, 117], "debat": [22, 37, 69, 80, 105, 116], "debt": [34, 78, 114], "decad": [22, 32, 37, 69, 76, 105, 112], "decai": [4, 56, 92], "decid": [1, 5, 7, 11, 14, 15, 19, 21, 28, 33, 36, 37, 48, 49, 53, 57, 58, 63, 64, 67, 68, 74, 77, 79, 80, 88, 89, 93, 94, 99, 100, 103, 104, 110, 113, 115, 116, 124], "decim": [40, 82, 118], "decis": [7, 10, 15, 21, 26, 27, 29, 33, 37, 42, 48, 51, 58, 61, 64, 68, 72, 73, 77, 80, 83, 88, 94, 97, 100, 104, 108, 109, 113, 116, 119, 124], "declin": [5, 21, 46, 47, 57, 68, 87, 93, 104, 123], "decreas": [2, 3, 4, 5, 7, 10, 12, 14, 15, 17, 18, 19, 21, 22, 27, 34, 36, 37, 39, 46, 47, 48, 54, 55, 56, 57, 58, 61, 62, 63, 64, 65, 66, 67, 68, 69, 73, 78, 79, 80, 81, 87, 88, 90, 91, 92, 93, 94, 97, 98, 99, 100, 101, 102, 103, 104, 105, 109, 114, 115, 116, 117, 123, 124], "deep": 2, "deeper": [32, 48, 76, 88, 112, 124], "def": [5, 9, 10, 14, 24, 30, 42, 44, 48, 57, 60, 61, 63, 70, 75, 83, 85, 88, 93, 96, 97, 99, 106, 111, 119, 121, 124], "default": [30, 40, 46, 47, 48, 75, 82, 87, 88, 111, 118, 123, 124], "defect": [27, 73, 109], "defector": [27, 73, 109], "defin": [5, 9, 21, 27, 28, 30, 33, 39, 42, 44, 48, 57, 60, 68, 73, 74, 75, 77, 81, 83, 85, 88, 93, 96, 104, 109, 110, 111, 113, 117, 119, 121, 124], "definit": [5, 18, 30, 33, 39, 57, 66, 75, 77, 81, 93, 102, 111, 113, 117], "deforest": [46, 47, 87, 123], "degrad": [46, 47, 49, 87, 123], "degre": [1, 3, 24, 49, 53, 55, 70, 89, 91, 106], "delai": [40, 82, 118], "deliber": [42, 83, 119], "delic": [32, 76, 112], "delin": [46, 47, 87, 123], "deliv": 31, "delta": [5, 48, 57, 88, 93, 124], "delv": [48, 88, 124], "demand": [1, 5, 9, 11, 12, 13, 15, 25, 26, 27, 32, 33, 34, 36, 37, 46, 47, 53, 57, 60, 62, 64, 71, 72, 73, 76, 77, 78, 79, 80, 87, 89, 93, 96, 98, 100, 107, 108, 109, 112, 113, 114, 115, 116, 123], "demand_equ": [5, 57, 93], "demo": [1, 53, 89], "demograph": [1, 22, 53, 69, 89, 105], "demonstr": [25, 26, 30, 44, 71, 72, 75, 85, 107, 108, 111, 121], "denot": [2, 5, 9, 10, 15, 25, 33, 54, 57, 60, 61, 64, 71, 77, 90, 93, 96, 97, 100, 107, 113], "dep": [42, 45, 83, 86, 119, 122], "depart": [10, 61, 97], "depend": [1, 3, 4, 5, 8, 15, 25, 29, 33, 39, 40, 44, 53, 55, 56, 57, 59, 64, 71, 77, 81, 82, 85, 89, 91, 92, 93, 95, 100, 107, 113, 117, 118, 121], "depict": [5, 14, 15, 22, 23, 57, 63, 64, 69, 93, 99, 100, 105], "deploi": [17, 31, 65, 101], "deposit": [39, 40, 81, 82, 117, 118], "depress": [22, 69, 105], "depth": [39, 81, 117], "deregul": [22, 69, 105], "deriv": [1, 16, 17, 21, 24, 25, 26, 39, 53, 65, 68, 70, 71, 72, 81, 89, 101, 104, 106, 107, 108, 117], "descend": [1, 8, 53, 59, 89, 95], "describ": [1, 2, 26, 27, 32, 36, 37, 46, 47, 48, 49, 53, 54, 72, 73, 76, 79, 80, 87, 88, 89, 90, 108, 109, 112, 115, 116, 123, 124], "descript": [30, 75, 111], "design": [31, 32, 44, 76, 85, 112, 121], "desir": [10, 14, 31, 39, 61, 63, 81, 97, 99, 117], "destin": [1, 53, 89], "detail": [15, 22, 31, 33, 44, 64, 69, 77, 85, 100, 105, 113, 121], "deterior": [46, 47, 87, 123], "determin": [9, 12, 15, 21, 24, 26, 28, 30, 34, 36, 39, 40, 42, 44, 60, 62, 64, 68, 70, 72, 74, 75, 78, 79, 81, 82, 83, 85, 96, 98, 100, 104, 106, 108, 110, 111, 114, 115, 117, 118, 119, 121], "dev": [44, 85, 121], "develop": [1, 16, 17, 22, 46, 47, 51, 52, 53, 65, 69, 87, 89, 101, 105, 123], "deviat": [26, 43, 44, 45, 72, 84, 85, 86, 108, 120, 121, 122], "devot": [36, 49, 79, 115], "deworm": 31, "df": [40, 42, 45, 82, 83, 86, 118, 119, 122], "dfrac": [2, 15, 17, 40, 44, 54, 64, 65, 82, 85, 90, 100, 101, 118, 121], "diablo": [8, 59, 95], "diagon": [14, 63, 99], "diagram": [10, 12, 15, 34, 36, 48, 61, 62, 64, 78, 79, 97, 98, 100, 114, 115], "diarrhea": 31, "did": [1, 5, 15, 24, 26, 31, 42, 44, 53, 57, 64, 70, 72, 83, 85, 89, 93, 100, 106, 108, 119, 121], "didn": [1, 27, 31, 39, 44, 53, 73, 81, 85, 89, 109, 117, 121], "diesel": 49, "differ": [1, 3, 4, 5, 6, 7, 10, 12, 13, 14, 15, 17, 18, 21, 22, 24, 27, 28, 29, 31, 32, 33, 36, 37, 39, 40, 41, 42, 43, 44, 46, 47, 48, 53, 55, 56, 57, 58, 61, 62, 63, 64, 65, 66, 68, 69, 70, 73, 74, 76, 77, 81, 82, 83, 84, 85, 87, 88, 89, 91, 92, 93, 94, 97, 98, 99, 100, 101, 102, 104, 105, 106, 109, 110, 112, 113, 117, 118, 119, 120, 121, 123, 124], "differenti": [22, 48, 69, 88, 105, 124], "difficult": [22, 39, 42, 69, 81, 83, 105, 117, 119], "digit": [1, 53, 89], "dilemma": [27, 29, 73, 109], "dimens": [40, 82, 118], "dimension": [36, 79, 115], "diminish": [1, 17, 53, 65, 89, 101], "dioxid": 49, "dip": [46, 47, 87, 123], "dire": [32, 76, 112], "direct": [1, 17, 22, 27, 36, 53, 65, 69, 73, 79, 89, 101, 105, 109, 115], "directli": [12, 15, 22, 32, 62, 64, 69, 76, 98, 100, 105, 112], "director": [22, 69, 105], "disadvantag": [39, 81, 117], "discard": [1, 53, 89], "discern": [5, 7, 57, 58, 93, 94], "disciplin": [1, 29, 51, 53, 89], "discount": [27, 39, 73, 81, 109, 117], "discourag": [5, 33, 57, 77, 93, 113], "discret": [14, 63, 99], "discuss": [3, 5, 13, 14, 15, 24, 27, 29, 32, 33, 36, 38, 39, 40, 42, 45, 46, 47, 49, 55, 57, 63, 64, 70, 73, 76, 77, 79, 81, 82, 83, 86, 87, 91, 93, 99, 100, 106, 109, 112, 113, 115, 117, 118, 119, 122, 123], "diseas": [15, 31, 64, 100], "disequilibrium": [12, 15, 62, 64, 98, 100], "dispar": [22, 69, 105], "displai": [1, 14, 15, 24, 45, 53, 63, 64, 70, 86, 89, 99, 100, 106, 122], "displaystyl": [10, 61, 97], "dispos": [2, 5, 54, 57, 90, 93], "disput": [48, 88, 124], "disrupt": [15, 64, 100], "dissolut": [22, 69, 105], "dissuad": [2, 14, 54, 63, 90, 99], "distanc": [15, 25, 44, 64, 71, 85, 100, 107, 121], "distast": [18, 66, 102], "distribut": [1, 22, 23, 24, 28, 39, 44, 45, 52, 53, 69, 70, 74, 81, 85, 86, 89, 105, 106, 110, 117, 121, 122], "disuad": [5, 57, 93], "disutil": [1, 53, 89], "dive": [4, 32, 33, 56, 76, 77, 92, 112, 113], "diverg": [4, 56, 92], "divers": 31, "divid": [7, 29, 31, 33, 58, 77, 94, 113], "dividend": [39, 81, 117], "divis": [1, 42, 43, 51, 53, 83, 84, 89, 119, 120], "do": [1, 3, 4, 7, 10, 14, 15, 17, 18, 24, 26, 28, 30, 32, 33, 36, 37, 39, 41, 42, 44, 45, 46, 47, 48, 53, 55, 56, 58, 61, 63, 64, 65, 66, 70, 72, 74, 75, 76, 77, 79, 80, 81, 83, 85, 86, 87, 88, 89, 91, 92, 94, 97, 99, 100, 101, 102, 106, 108, 110, 111, 112, 113, 115, 116, 117, 119, 121, 122, 123, 124], "doc": 0, "document": 31, "doe": [1, 4, 5, 7, 12, 14, 15, 18, 19, 21, 24, 25, 27, 30, 31, 39, 42, 43, 44, 45, 46, 47, 48, 53, 56, 57, 58, 62, 63, 64, 66, 67, 68, 70, 71, 73, 75, 81, 83, 84, 85, 86, 87, 88, 89, 92, 93, 94, 98, 99, 100, 102, 103, 104, 106, 107, 109, 111, 117, 119, 120, 121, 122, 123, 124], "doesn": [1, 5, 14, 21, 28, 37, 39, 53, 57, 63, 68, 74, 80, 81, 89, 93, 99, 104, 110, 116, 117], "dog": [5, 57, 93], "dollar": [3, 4, 5, 10, 15, 21, 22, 25, 26, 33, 36, 39, 40, 55, 56, 57, 61, 64, 68, 69, 71, 72, 77, 79, 81, 82, 91, 92, 93, 97, 100, 104, 105, 107, 108, 113, 115, 117, 118], "domain": [4, 56, 92], "domest": [12, 17, 32, 62, 65, 76, 98, 101, 112], "don": [1, 5, 14, 24, 30, 33, 39, 41, 42, 44, 53, 57, 63, 70, 74, 75, 77, 81, 83, 85, 89, 93, 99, 106, 110, 111, 113, 117, 119, 121], "done": [17, 22, 26, 41, 65, 69, 72, 101, 105, 108], "dont": [48, 88, 124], "dot": [30, 46, 47, 75, 87, 111, 123], "doubl": [5, 30, 33, 41, 57, 75, 77, 93, 111, 113], "doubt": [40, 82, 118], "dougla": [16, 18, 20, 66, 102], "dove": [1, 32, 53, 76, 89, 112], "down": [1, 5, 7, 12, 14, 19, 25, 27, 34, 37, 39, 46, 47, 53, 57, 58, 62, 63, 67, 71, 73, 78, 80, 81, 87, 89, 93, 94, 98, 99, 103, 107, 109, 114, 116, 117, 123], "download": [10, 39, 61, 81, 97, 117], "downsid": [39, 81, 117], "downstream": [48, 88, 124], "downward": [2, 3, 4, 5, 9, 10, 14, 17, 18, 26, 36, 37, 39, 46, 47, 54, 55, 56, 57, 60, 61, 63, 65, 66, 79, 87, 90, 91, 92, 93, 96, 97, 99, 101, 102, 115, 123], "dp": [5, 57, 93], "dpi": [46, 47, 87, 123], "dq": [5, 57, 93], "drastic": [22, 69, 105], "draw": [1, 3, 14, 45, 46, 47, 48, 53, 55, 63, 86, 87, 88, 89, 91, 99, 122, 123, 124], "drawback": [14, 48, 63, 88, 99, 124], "drawn": [10, 12, 15, 37, 61, 62, 64, 80, 97, 98, 100, 116], "dread": [1, 53, 89], "dresher": [27, 73, 109], "drink": [25, 27, 31, 71, 73, 107, 109], "drive": [30, 75, 111], "driven": [30, 46, 47, 75, 87, 111, 123], "driver": [32, 46, 47, 76, 87, 112, 123], "drop": [1, 5, 14, 22, 27, 46, 47, 48, 53, 57, 63, 69, 73, 87, 88, 89, 93, 99, 105, 109, 123, 124], "drug": 31, "dual": [10, 32, 61, 76, 97, 112], "due": [1, 5, 7, 10, 14, 15, 17, 22, 27, 31, 41, 44, 53, 57, 58, 61, 63, 64, 65, 69, 73, 85, 89, 93, 94, 97, 99, 100, 101, 105, 109, 121], "duli": [1, 53, 89], "dummi": [44, 85, 121], "dunder": [30, 75, 111], "duopoli": [25, 26, 71, 72, 107, 108], "durbin": [42, 45, 83, 86, 119, 122], "dure": [2, 17, 22, 29, 33, 37, 54, 65, 69, 77, 80, 90, 101, 105, 113, 116], "dusen": 51, "dy": [15, 64, 100], "dynam": [46, 47, 49, 87, 123], "e": [4, 7, 15, 19, 21, 22, 24, 25, 26, 28, 30, 37, 39, 42, 46, 47, 48, 49, 56, 58, 64, 67, 68, 69, 70, 71, 72, 74, 75, 80, 81, 83, 87, 88, 92, 94, 100, 103, 104, 105, 106, 107, 108, 110, 111, 116, 117, 119, 123, 124], "e4c645b85ba9": [30, 75, 111], "each": [1, 2, 4, 5, 7, 9, 14, 15, 17, 18, 21, 22, 24, 26, 27, 28, 30, 31, 33, 34, 36, 39, 40, 41, 44, 46, 47, 48, 49, 53, 54, 56, 57, 58, 60, 63, 64, 65, 66, 68, 69, 70, 72, 73, 74, 75, 77, 78, 79, 81, 82, 85, 87, 88, 89, 90, 92, 93, 94, 96, 99, 100, 101, 102, 104, 105, 106, 108, 109, 110, 111, 113, 114, 115, 117, 118, 121, 123, 124], "earli": [27, 31, 32, 73, 76, 87, 109, 112, 123], "earlier": [1, 5, 10, 14, 26, 29, 32, 33, 39, 42, 44, 45, 48, 53, 57, 61, 63, 72, 76, 77, 81, 83, 85, 86, 88, 89, 93, 97, 99, 108, 112, 113, 117, 119, 121, 122, 124], "earn": [1, 9, 15, 22, 24, 33, 40, 41, 42, 43, 52, 53, 60, 64, 69, 70, 77, 82, 83, 84, 89, 96, 100, 105, 106, 113, 118, 119, 120], "easi": [24, 27, 30, 42, 70, 73, 75, 83, 106, 109, 111, 119], "easier": [24, 70, 106], "easili": [5, 24, 27, 57, 70, 73, 93, 106, 109], "east": [8, 59, 95], "eat": [1, 5, 21, 53, 57, 68, 89, 93, 104], "ec5f67": [48, 88, 124], "econ": [1, 31, 38, 53, 89], "econm": [10, 61, 97], "econom": [0, 2, 9, 12, 14, 15, 21, 22, 27, 29, 31, 32, 33, 34, 36, 37, 38, 40, 41, 44, 46, 47, 48, 52, 54, 60, 62, 63, 64, 68, 69, 73, 76, 77, 78, 79, 80, 82, 85, 87, 88, 90, 96, 98, 99, 100, 104, 105, 109, 112, 113, 114, 115, 116, 118, 121, 123, 124], "econometr": [42, 51, 83, 119], "econometrician": [42, 44, 83, 85, 119, 121], "economi": [8, 12, 14, 15, 22, 32, 33, 34, 36, 37, 46, 47, 49, 59, 62, 63, 64, 69, 76, 77, 78, 79, 80, 87, 95, 98, 99, 100, 105, 112, 113, 114, 115, 116, 123], "economist": [1, 12, 17, 18, 21, 22, 24, 31, 32, 37, 41, 44, 46, 47, 49, 53, 62, 65, 66, 68, 69, 70, 76, 80, 85, 87, 89, 98, 101, 102, 104, 105, 106, 112, 116, 121, 123], "edgecolor": [48, 88, 124], "edu": [46, 47, 48, 87, 88, 123, 124], "educ": [31, 43, 44, 45, 52, 84, 85, 86, 120, 121, 122], "educ_logwag": [44, 85, 121], "educ_logwage_sampl": [44, 85, 121], "educ_standard": [44, 85, 121], "edward": 31, "edwin": [48, 88, 124], "eec": [1, 53, 89], "effect": [3, 4, 10, 12, 13, 17, 22, 27, 31, 34, 37, 39, 40, 41, 42, 43, 44, 46, 47, 48, 52, 55, 56, 61, 62, 65, 69, 73, 78, 80, 81, 82, 83, 84, 85, 87, 88, 91, 92, 97, 98, 101, 105, 109, 114, 116, 117, 118, 119, 120, 121, 123, 124], "effici": [2, 7, 13, 14, 17, 48, 54, 58, 63, 65, 88, 90, 94, 99, 101, 124], "egyptian": [22, 69, 105], "either": [1, 2, 4, 10, 14, 15, 17, 18, 33, 41, 42, 48, 53, 54, 56, 61, 63, 64, 65, 66, 77, 83, 88, 89, 90, 92, 97, 99, 100, 101, 102, 113, 119, 124], "el": [8, 59, 95], "elabor": 31, "elast": [4, 11, 15, 18, 56, 64, 66, 92, 100, 102], "elasticti": [5, 57, 93], "electr": [1, 2, 8, 14, 48, 53, 54, 59, 63, 88, 89, 90, 95, 99, 124], "element": [3, 10, 28, 30, 42, 55, 61, 74, 75, 83, 91, 97, 110, 111, 119], "eleph": 52, "elimin": [21, 68, 104], "els": [1, 4, 5, 14, 18, 21, 39, 41, 42, 48, 53, 56, 57, 63, 66, 68, 81, 83, 88, 89, 92, 93, 99, 102, 104, 117, 119, 124], "emanuel": [22, 69, 105], "emerg": [22, 32, 69, 76, 105, 112], "emiss": [46, 47, 48, 49, 87, 88, 123, 124], "emit": [46, 47, 48, 49, 87, 88, 123, 124], "emitt": 49, "emphasi": [34, 78, 114], "empir": [1, 17, 32, 34, 37, 43, 44, 45, 53, 65, 76, 78, 80, 84, 85, 86, 89, 101, 112, 114, 116, 120, 121, 122], "emploi": [1, 31, 33, 53, 77, 89, 113], "employ": [32, 76, 112], "employe": [14, 17, 63, 65, 99, 101], "empti": [30, 75, 111], "encina": [8, 59, 95], "encompass": [32, 76, 112], "encount": [1, 22, 53, 69, 89, 105], "encourag": [2, 54, 90], "end": [1, 4, 5, 8, 15, 17, 18, 21, 25, 26, 28, 33, 39, 40, 42, 46, 47, 53, 56, 57, 59, 64, 65, 66, 68, 71, 72, 74, 77, 81, 82, 83, 87, 89, 92, 93, 95, 100, 101, 102, 104, 107, 108, 110, 113, 117, 118, 119, 123], "endogen": [2, 54, 90], "energi": [8, 18, 46, 47, 48, 59, 66, 87, 88, 95, 102, 123, 124], "energypolici": [46, 47, 48, 87, 88, 123, 124], "enforc": [15, 29, 64, 100], "eng": [1, 53, 89], "engag": 31, "engin": [1, 31, 53, 89], "english": [26, 32, 72, 76, 108, 112], "enjoi": [1, 14, 53, 63, 89, 99], "enjoy": 49, "enorm": [45, 86, 122], "enough": [7, 25, 30, 37, 39, 58, 71, 75, 80, 81, 94, 107, 111, 116, 117], "ensur": [30, 46, 47, 75, 87, 111, 123], "entail": [48, 88, 124], "enter": [1, 14, 15, 53, 63, 64, 89, 99, 100], "entic": [8, 59, 95], "entir": [1, 15, 22, 24, 25, 44, 49, 53, 64, 69, 70, 71, 85, 89, 100, 105, 106, 107, 121], "entiti": [14, 46, 47, 63, 87, 99, 123], "environ": [8, 14, 18, 46, 47, 48, 49, 59, 63, 66, 87, 88, 95, 99, 102, 123, 124], "environment": [48, 51, 88, 124], "epa": [46, 47, 48, 87, 88, 123, 124], "eplanoptmac": [46, 47, 48, 87, 88, 123, 124], "epsilon": [42, 83, 119], "epsilon_": [15, 64, 100], "epsilon_d": [15, 64, 100], "eq1": [9, 10, 26, 60, 61, 72, 96, 97, 108], "eq2": [9, 10, 60, 61, 96, 97], "equal": [1, 4, 5, 7, 8, 9, 14, 15, 19, 21, 22, 25, 26, 30, 36, 39, 42, 43, 48, 53, 56, 57, 58, 59, 60, 63, 64, 67, 68, 69, 71, 72, 75, 79, 81, 83, 84, 88, 89, 92, 93, 94, 95, 96, 99, 100, 103, 104, 105, 107, 108, 111, 115, 117, 119, 120, 124], "equal_to": [8, 59, 95], "equat": [2, 9, 10, 11, 15, 17, 24, 26, 32, 33, 54, 60, 61, 64, 65, 70, 72, 76, 77, 90, 96, 97, 100, 101, 106, 108, 112, 113], "equilbrium": [10, 61, 97], "equilibria": [13, 26, 29, 36, 72, 79, 108, 115], "equilibrium": [9, 12, 13, 15, 32, 36, 48, 49, 60, 62, 64, 76, 79, 88, 96, 98, 100, 112, 115, 124], "equip": [7, 8, 58, 59, 94, 95], "equiti": 13, "equival": [1, 2, 4, 10, 14, 53, 54, 56, 61, 63, 89, 90, 92, 97, 99], "era": [22, 69, 105], "eric": 51, "err": [42, 45, 83, 86, 119, 122], "error": [1, 26, 30, 42, 43, 45, 53, 72, 75, 83, 84, 86, 89, 108, 111, 119, 120, 122], "esg_tabl": [8, 59, 95], "esgporfolios_forcsv": [8, 59, 95], "especi": [1, 17, 22, 33, 34, 36, 53, 65, 69, 77, 78, 79, 89, 101, 105, 113, 114, 115], "essenc": [37, 80, 116], "essenti": [1, 5, 14, 15, 18, 22, 27, 39, 40, 43, 45, 53, 57, 63, 64, 66, 69, 73, 81, 82, 84, 86, 89, 93, 99, 100, 102, 105, 109, 117, 118, 120, 122], "establish": [32, 76, 112], "estim": [24, 42, 44, 45, 70, 83, 85, 86, 106, 119, 121, 122], "et": [48, 88, 124], "etc": [1, 7, 53, 58, 89, 94], "ethic": [14, 63, 99], "ethnic": [1, 31, 53, 89], "etiwanda": [8, 59, 95], "europ": [22, 52, 69, 105], "european": [39, 81, 117], "evalu": [9, 31, 49, 60, 96], "even": [1, 5, 15, 17, 18, 21, 25, 30, 31, 33, 36, 37, 39, 40, 44, 46, 47, 48, 49, 53, 57, 64, 65, 66, 68, 71, 75, 77, 79, 80, 81, 82, 85, 87, 88, 89, 93, 100, 101, 102, 104, 107, 111, 113, 115, 116, 117, 118, 121, 123, 124], "evenli": [25, 71, 107], "event": [2, 12, 39, 54, 62, 81, 90, 98, 117], "eventu": [10, 31, 37, 61, 80, 97, 116], "ever": [32, 33, 39, 76, 77, 81, 112, 113, 117], "everi": [1, 2, 4, 10, 15, 17, 26, 30, 31, 36, 39, 42, 43, 46, 47, 48, 51, 53, 54, 56, 61, 64, 65, 72, 75, 79, 81, 83, 84, 87, 88, 89, 90, 92, 97, 100, 101, 108, 111, 115, 117, 119, 120, 123, 124], "everyon": [1, 22, 24, 53, 69, 70, 89, 105, 106], "everyth": [5, 25, 42, 57, 71, 83, 93, 107, 119], "evid": [31, 37, 45, 46, 47, 52, 80, 86, 87, 116, 122, 123], "evolut": 29, "ex": [9, 10, 60, 61, 96, 97], "exact": [14, 17, 21, 24, 30, 46, 47, 63, 65, 68, 70, 75, 87, 99, 101, 104, 106, 111, 123], "exactli": [1, 3, 4, 14, 17, 18, 24, 39, 44, 53, 55, 56, 63, 65, 66, 70, 81, 85, 89, 91, 92, 99, 101, 102, 106, 117, 121], "examin": [1, 2, 3, 4, 6, 10, 17, 18, 19, 22, 28, 29, 37, 39, 41, 46, 47, 53, 54, 55, 56, 61, 65, 66, 67, 69, 74, 80, 81, 89, 90, 91, 92, 97, 101, 102, 103, 105, 110, 116, 117], "exampl": [1, 2, 4, 5, 7, 9, 10, 12, 17, 18, 21, 22, 25, 26, 27, 28, 30, 31, 32, 39, 40, 42, 44, 46, 47, 48, 49, 51, 53, 54, 56, 57, 58, 60, 61, 62, 65, 66, 68, 69, 71, 72, 73, 74, 75, 76, 81, 82, 83, 85, 87, 88, 89, 90, 92, 93, 94, 96, 97, 98, 101, 102, 104, 105, 107, 108, 109, 110, 111, 112, 117, 118, 119, 121, 123, 124], "exce": [10, 25, 39, 61, 71, 81, 97, 107, 117], "exceed": [25, 71, 107], "except": [14, 42, 44, 63, 83, 85, 99, 119, 121], "excerpt": [32, 76, 112], "excess": [10, 61, 97], "exchang": [39, 81, 117], "excis": [15, 64, 100], "exclud": [17, 22, 42, 65, 69, 83, 101, 105, 119], "exclus": [42, 83, 119], "execut": [1, 53, 89], "exercis": [1, 5, 10, 14, 39, 51, 53, 57, 61, 63, 81, 89, 93, 97, 99, 117], "exhaust": [42, 83, 119], "exhibit": [4, 5, 18, 56, 57, 66, 92, 93, 102], "exist": [12, 14, 24, 32, 39, 43, 44, 48, 62, 63, 70, 76, 81, 84, 85, 88, 98, 99, 106, 112, 117, 120, 121, 124], "exit": [14, 63, 99], "exogen": [2, 10, 54, 61, 90, 97], "expand": 29, "expans": [31, 36], "expect": [1, 2, 3, 4, 5, 10, 32, 33, 36, 40, 42, 44, 48, 53, 54, 55, 56, 57, 61, 76, 77, 79, 82, 83, 85, 88, 89, 90, 91, 92, 93, 97, 112, 113, 115, 118, 119, 121, 124], "expenditur": [33, 36, 77, 79, 113, 115], "expens": [2, 5, 14, 18, 39, 42, 48, 54, 57, 63, 66, 81, 83, 88, 90, 93, 99, 102, 117, 119, 124], "experi": [1, 14, 27, 31, 37, 41, 42, 44, 53, 63, 73, 80, 83, 85, 89, 99, 109, 116, 119, 121], "experienc": [27, 32, 46, 47, 73, 76, 87, 109, 112, 123], "experiment": 31, "expir": [39, 81, 117], "expiri": [17, 65, 101], "explain": [1, 2, 21, 22, 24, 29, 32, 36, 37, 53, 54, 68, 69, 70, 79, 80, 89, 90, 104, 105, 106, 115, 116], "explanatori": [42, 83, 119], "explor": [1, 2, 10, 14, 17, 44, 49, 51, 53, 54, 61, 63, 65, 85, 89, 90, 97, 99, 101, 121], "expon": [17, 18, 65, 66, 101, 102], "exponenti": [4, 18, 44, 56, 66, 85, 92, 102, 121], "export": [12, 27, 46, 47, 62, 73, 87, 98, 109, 123], "expos": [39, 81, 117], "exposur": [39, 81, 117], "express": [3, 5, 9, 10, 24, 30, 33, 39, 44, 55, 57, 60, 61, 70, 75, 77, 81, 85, 91, 93, 96, 97, 106, 111, 113, 117, 121], "extend": [45, 48, 86, 88, 122, 124], "extens": [17, 48, 65, 88, 101, 124], "extent": [24, 34, 46, 47, 70, 78, 87, 106, 114, 123], "extern": [15, 29, 48, 49, 64, 88, 100, 124], "extra": [7, 17, 31, 40, 48, 58, 65, 82, 88, 94, 101, 118, 124], "extrem": [5, 37, 57, 80, 93, 116], "f": [2, 17, 30, 42, 45, 48, 51, 54, 65, 75, 83, 86, 88, 90, 101, 111, 119, 122, 124], "f165fd": [48, 88, 124], "f29056": [48, 88, 124], "f9c863": [48, 88, 124], "face": [5, 14, 15, 19, 21, 32, 36, 46, 47, 48, 57, 63, 64, 67, 68, 76, 79, 87, 88, 93, 99, 100, 103, 104, 112, 115, 123, 124], "fact": [1, 4, 14, 19, 25, 33, 39, 42, 44, 45, 46, 47, 53, 56, 63, 67, 71, 77, 81, 83, 85, 86, 87, 89, 92, 99, 103, 107, 113, 117, 119, 121, 122, 123], "factor": [1, 2, 4, 7, 10, 15, 16, 18, 25, 31, 39, 42, 53, 54, 56, 58, 61, 64, 66, 71, 81, 83, 89, 90, 92, 94, 97, 100, 102, 107, 117, 119], "factori": [7, 10, 14, 15, 17, 48, 58, 61, 63, 64, 65, 88, 94, 97, 99, 100, 101, 124], "fail": [22, 37, 45, 69, 80, 86, 105, 116, 122], "failur": [15, 49, 64, 100], "fair": [1, 39, 40, 42, 53, 81, 82, 83, 89, 117, 118, 119], "fair_area": [24, 70, 106], "fairli": [1, 3, 22, 24, 26, 39, 41, 53, 55, 69, 70, 72, 81, 89, 91, 105, 106, 108, 117], "fall": [4, 15, 22, 30, 36, 56, 64, 69, 75, 79, 92, 100, 105, 111, 115], "fallen": [22, 37, 69, 80, 105, 116], "fals": [8, 30, 59, 75, 95, 111], "familar": [21, 68, 104], "famili": [1, 22, 42, 53, 69, 83, 89, 105, 119], "familiar": [14, 20, 30, 31, 32, 40, 43, 48, 63, 75, 76, 82, 84, 88, 99, 111, 112, 118, 120, 124], "famou": 49, "famous": [32, 76, 112], "fantast": [1, 53, 89], "far": [1, 4, 5, 12, 15, 17, 18, 30, 32, 37, 39, 42, 44, 53, 56, 57, 62, 64, 65, 66, 75, 76, 80, 81, 83, 85, 89, 92, 93, 98, 100, 101, 102, 111, 112, 116, 117, 119, 121], "fargo": [32, 76, 112], "farm": [14, 52, 63, 99], "farther": [39, 81, 117], "fascin": [46, 47, 48, 87, 88, 123, 124], "fast": [2, 5, 57, 93], "faster": [18, 66, 102], "fatal": 31, "father_colleg": [44, 85, 121], "faulti": [22, 69, 105], "favor": [18, 32, 39, 66, 76, 81, 102, 112, 117], "feasibl": [7, 58, 94], "featur": [1, 4, 22, 32, 42, 44, 45, 53, 56, 69, 76, 83, 85, 86, 89, 92, 105, 112, 119, 121, 122], "februari": [37, 80, 116], "fed": [32, 76, 112], "feder": [32, 76, 112], "fedwkr": [44, 45, 85, 86, 121, 122], "feel": [1, 53, 89], "femal": [44, 45, 85, 86, 121, 122], "fertil": 31, "few": [1, 5, 14, 15, 22, 27, 29, 30, 45, 46, 47, 48, 49, 53, 57, 63, 64, 69, 73, 75, 86, 87, 88, 89, 93, 99, 100, 105, 109, 111, 122, 123, 124], "fewer": [2, 3, 10, 22, 27, 54, 55, 61, 69, 73, 90, 91, 97, 105, 109], "ff3a1d": [48, 88, 124], "field": [1, 31, 37, 41, 46, 47, 48, 49, 53, 80, 87, 88, 89, 116, 123, 124], "fifth": [43, 84, 120], "fig": 2, "figsiz": [5, 39, 46, 47, 48, 57, 81, 87, 88, 93, 117, 123, 124], "figur": [1, 5, 15, 32, 36, 37, 39, 44, 46, 47, 48, 53, 57, 64, 85, 87, 88, 89, 93, 100, 121, 123, 124], "file": [0, 46, 47, 48, 50, 87, 88, 123, 124], "fill": [30, 75, 111], "fill_tank": [30, 75, 111], "final": [1, 4, 5, 15, 25, 33, 46, 47, 48, 53, 56, 57, 64, 71, 77, 87, 88, 89, 92, 93, 100, 107, 113, 123, 124], "financ": [40, 52, 82, 118], "financi": [15, 18, 32, 38, 40, 64, 66, 76, 82, 100, 102, 112, 118], "find": [1, 3, 5, 7, 9, 12, 14, 15, 17, 21, 22, 25, 26, 27, 33, 39, 42, 44, 46, 47, 48, 53, 55, 57, 58, 60, 62, 63, 64, 65, 68, 69, 71, 72, 73, 77, 81, 83, 85, 87, 88, 89, 91, 93, 94, 96, 98, 99, 100, 101, 104, 105, 107, 108, 109, 113, 117, 119, 121, 123, 124], "find_x_po": [48, 88, 124], "fine": [5, 57, 93], "finish": [39, 81, 117], "finit": [44, 85, 121], "fire": [22, 69, 105], "firm": [5, 8, 11, 14, 15, 25, 26, 27, 37, 57, 59, 63, 64, 71, 72, 73, 80, 93, 95, 99, 100, 107, 108, 109, 116], "firm_behaviour": [7, 58, 94], "first": [1, 3, 4, 5, 7, 8, 9, 10, 12, 14, 17, 18, 21, 22, 24, 26, 27, 28, 30, 32, 33, 34, 36, 39, 40, 42, 43, 44, 48, 49, 53, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 72, 73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 84, 85, 88, 89, 91, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 104, 105, 106, 108, 109, 110, 111, 112, 113, 114, 115, 117, 118, 119, 120, 121, 124], "fiscal": [35, 36, 79, 115], "fisher": [32, 33, 76, 77, 112, 113], "fit": [42, 44, 45, 83, 85, 86, 119, 121, 122], "fit_lin": [3, 55, 91], "fivethirtyeight": [1, 2, 53, 89], "fix": [4, 7, 8, 12, 15, 26, 40, 42, 48, 49, 56, 58, 59, 62, 64, 72, 82, 83, 88, 92, 94, 95, 98, 100, 108, 118, 119, 124], "flare": [48, 88, 124], "flat": [7, 15, 17, 39, 58, 64, 65, 94, 100, 101], "flatten": [18, 66, 102], "flaw": [1, 26, 53, 72, 89, 108], "flexibl": [17, 32, 65, 76, 101, 112], "flip": [3, 33, 55, 77, 91, 113], "flood": [27, 73, 109], "floor": [12, 62, 98], "flordia": [10, 61, 97], "flow": [5, 31, 39, 57, 81, 93, 117], "fluctuat": [14, 34, 36, 40, 63, 78, 79, 82, 87, 99, 114, 115, 118, 123], "focu": [1, 17, 31, 33, 41, 43, 48, 53, 65, 77, 84, 88, 89, 101, 113, 120, 124], "focus": 31, "folder": [0, 50], "follow": [1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15, 17, 18, 19, 21, 22, 24, 25, 26, 30, 32, 33, 37, 39, 40, 42, 43, 44, 45, 46, 47, 48, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 75, 76, 77, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 108, 111, 112, 113, 116, 117, 118, 119, 120, 121, 122, 123, 124], "follw": [22, 69, 105], "fomc": [32, 76, 112], "fontsiz": [3, 10, 22, 48, 55, 61, 69, 91, 97, 105], "foo": [30, 75, 111], "food": [5, 14, 15, 57, 63, 64, 93, 99, 100], "forb": [27, 73, 109], "forc": [12, 13, 14, 33, 41, 44, 62, 63, 77, 85, 98, 99, 113, 121], "forecast": [22, 27, 32, 69, 73, 76, 105, 109, 112], "forestri": [1, 53, 89], "forget": [30, 75, 111], "forgot": [1, 53, 89], "form": [9, 11, 15, 25, 26, 29, 31, 33, 37, 39, 40, 44, 60, 64, 71, 72, 77, 80, 81, 82, 85, 96, 100, 107, 108, 113, 116, 117, 118, 121], "formal": [21, 26, 28, 68, 72, 74, 104, 108, 110], "format": [15, 28, 44, 64, 74, 85, 100, 110, 121], "former": [10, 17, 22, 61, 65, 69, 97, 101, 105], "formula": [5, 9, 15, 25, 39, 44, 48, 57, 60, 64, 71, 81, 85, 88, 93, 96, 100, 107, 117, 121, 124], "fortun": [5, 57, 93], "forward": [1, 44, 53, 85, 89, 121], "fossil": [8, 59, 95], "found": [3, 15, 17, 22, 25, 30, 31, 33, 44, 46, 47, 55, 64, 65, 69, 71, 75, 77, 85, 87, 91, 100, 101, 105, 107, 111, 113, 121, 123], "foundat": [2, 29, 37, 45, 54, 80, 86, 90, 116, 122], "four": [8, 27, 30, 32, 33, 36, 59, 73, 75, 76, 77, 95, 109, 111, 112, 113], "fourth": [33, 77, 113], "frac": [2, 4, 5, 9, 15, 17, 18, 21, 22, 24, 26, 28, 32, 33, 39, 40, 44, 48, 54, 56, 57, 60, 64, 65, 66, 68, 69, 70, 72, 74, 76, 77, 81, 82, 85, 88, 90, 92, 93, 96, 100, 101, 102, 104, 105, 106, 108, 110, 112, 113, 117, 118, 121, 124], "fraction": [5, 57, 93], "frame": [39, 81, 117], "framework": [16, 48, 88, 124], "francisco": [3, 4, 55, 56, 91, 92], "francoi": [25, 71, 107], "free": [1, 15, 17, 27, 39, 53, 64, 65, 73, 81, 89, 100, 101, 109, 117], "free_symbol": [9, 10, 60, 61, 96, 97], "frequent": [5, 14, 40, 57, 63, 82, 93, 99, 118], "fresh": [1, 52, 53, 89], "freshman": [1, 53, 89], "friendli": [48, 88, 124], "from": [0, 1, 2, 3, 4, 5, 6, 7, 12, 14, 15, 17, 18, 21, 22, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 53, 54, 55, 56, 57, 58, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 98, 99, 100, 101, 102, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124], "frozen": [5, 57, 93], "fruit": [48, 52, 88, 124], "fruitpric": [10, 61, 97], "fuel": [48, 52, 88, 124], "fulfil": [12, 25, 62, 71, 98, 107], "full": [8, 25, 32, 48, 59, 71, 76, 87, 88, 95, 107, 112, 123, 124], "full_tim": [1, 53, 89], "full_time_year_round": [1, 53, 89], "fulli": [12, 15, 48, 62, 64, 88, 98, 100, 124], "function": [2, 5, 9, 10, 14, 16, 18, 19, 20, 24, 25, 27, 30, 32, 39, 42, 44, 45, 48, 54, 57, 60, 61, 63, 66, 67, 70, 71, 73, 75, 76, 81, 83, 85, 86, 88, 90, 93, 96, 97, 99, 102, 103, 106, 107, 109, 111, 112, 117, 119, 121, 122, 124], "fund": [17, 32, 65, 76, 101, 112], "fundament": [1, 21, 25, 31, 51, 53, 68, 71, 89, 104, 107], "further": [1, 5, 14, 17, 22, 53, 57, 63, 65, 69, 89, 93, 99, 101, 105], "furthermor": [5, 42, 44, 57, 83, 85, 93, 119, 121], "futur": [2, 26, 31, 33, 39, 41, 42, 46, 47, 48, 54, 72, 77, 81, 83, 87, 88, 90, 108, 113, 117, 119, 123, 124], "fv": [40, 82, 118], "g": [15, 25, 30, 34, 46, 47, 48, 49, 64, 71, 75, 78, 87, 88, 100, 107, 111, 114, 123, 124], "ga": [2, 14, 30, 46, 47, 49, 54, 63, 75, 87, 90, 99, 111, 123], "gabriel": [22, 69, 105], "gain": [4, 12, 14, 15, 17, 19, 36, 56, 62, 63, 64, 65, 67, 79, 92, 98, 99, 100, 101, 103, 115], "galleri": 2, "gallon": [30, 75, 111], "gambl": [28, 74, 110], "game": [26, 27, 28, 72, 73, 74, 108, 109, 110], "gap": [22, 32, 37, 69, 76, 80, 105, 112, 116], "gapmind": [46, 47, 87, 123], "gase": 49, "gasolin": [5, 49, 57, 93], "gather": [1, 53, 89], "gave": [39, 81, 117], "gdp": [4, 17, 32, 33, 36, 46, 47, 56, 65, 76, 77, 79, 87, 92, 101, 112, 113, 115, 123], "gender": [1, 53, 89], "gener": [3, 4, 5, 7, 8, 18, 21, 22, 31, 33, 36, 39, 40, 42, 44, 45, 48, 51, 55, 56, 57, 58, 59, 66, 68, 69, 77, 79, 81, 82, 83, 85, 86, 88, 91, 92, 93, 94, 95, 102, 104, 105, 113, 115, 117, 118, 119, 121, 122, 124], "generaliz": [1, 53, 89], "geograph": [33, 46, 47, 48, 77, 87, 88, 113, 123, 124], "geographi": [1, 53, 89], "geq": [19, 21, 67, 68, 103, 104], "germani": [46, 47, 87, 123], "get": [1, 3, 4, 5, 7, 9, 14, 15, 18, 19, 22, 24, 26, 27, 28, 30, 31, 32, 39, 41, 42, 44, 46, 47, 48, 53, 55, 56, 57, 58, 60, 63, 64, 66, 67, 69, 70, 72, 73, 74, 75, 76, 81, 83, 85, 87, 88, 89, 91, 92, 93, 94, 96, 99, 100, 102, 103, 105, 106, 108, 109, 110, 111, 112, 117, 119, 121, 123, 124], "getter": [30, 75, 111], "ggmacc": [46, 47, 48, 87, 88, 123, 124], "ggplot": 2, "ghg": [48, 49, 88, 124], "gi": [46, 47, 48, 87, 88, 123, 124], "gillingham": [46, 47, 48, 87, 88, 123, 124], "gillingham_stock_cost_080218_post": [46, 47, 48, 87, 88, 123, 124], "gini": [22, 23, 69, 105], "gini_coefficient_country1": [24, 70, 106], "gini_coefficient_country2": [24, 70, 106], "gini_coefficient_country3": [24, 70, 106], "ginter": 51, "girl": 31, "github": [0, 46, 47, 48, 87, 88, 123, 124], "give": [1, 7, 10, 17, 18, 26, 31, 33, 34, 39, 40, 45, 48, 51, 53, 58, 61, 65, 66, 72, 77, 78, 81, 82, 86, 88, 89, 94, 97, 101, 102, 108, 113, 114, 117, 118, 122, 124], "given": [1, 2, 5, 7, 9, 10, 14, 15, 17, 18, 19, 25, 26, 28, 32, 33, 37, 39, 40, 42, 44, 46, 47, 48, 53, 54, 57, 58, 60, 61, 63, 64, 65, 66, 67, 71, 72, 74, 76, 77, 80, 81, 82, 83, 85, 87, 88, 89, 90, 93, 94, 96, 97, 99, 100, 101, 102, 103, 107, 108, 110, 112, 113, 116, 117, 118, 119, 121, 123, 124], "glanc": [32, 76, 112], "global": [12, 22, 46, 47, 49, 52, 62, 69, 87, 98, 105, 123], "go": [1, 4, 5, 17, 18, 21, 22, 23, 25, 30, 31, 32, 33, 39, 42, 44, 53, 56, 57, 65, 66, 68, 69, 71, 75, 76, 77, 81, 83, 85, 87, 89, 92, 93, 101, 102, 104, 105, 107, 111, 112, 113, 117, 119, 121, 123], "goal": [14, 27, 32, 33, 48, 49, 63, 73, 76, 77, 88, 99, 109, 112, 113, 124], "goe": [1, 4, 15, 27, 28, 31, 32, 39, 44, 49, 53, 56, 64, 73, 74, 76, 81, 85, 89, 92, 100, 109, 110, 112, 117, 121], "goer": [42, 83, 119], "goldman": [46, 47, 48, 87, 88, 123, 124], "goldmansach": [46, 47, 48, 87, 88, 123, 124], "gone": [1, 46, 47, 53, 87, 89, 123], "good": [1, 2, 5, 7, 9, 10, 11, 12, 14, 15, 17, 19, 21, 22, 25, 26, 27, 33, 36, 42, 53, 54, 57, 58, 60, 61, 62, 63, 64, 65, 67, 68, 69, 71, 72, 73, 77, 79, 83, 89, 90, 93, 94, 96, 97, 98, 99, 100, 101, 103, 104, 105, 107, 108, 109, 113, 115, 119], "googl": 31, "got": [31, 32, 76, 112], "gotten": 31, "gov": [46, 47, 48, 87, 88, 123, 124], "govern": [10, 13, 15, 17, 22, 32, 34, 37, 49, 61, 64, 65, 69, 76, 78, 80, 97, 100, 101, 105, 112, 114, 116], "governor": [32, 76, 112], "grad": [1, 53, 89], "graduat": [1, 42, 53, 83, 89, 119], "grain": [4, 56, 92], "grant": [15, 64, 100], "graph": [1, 2, 3, 4, 7, 8, 9, 10, 12, 14, 15, 17, 18, 19, 21, 24, 25, 26, 32, 39, 48, 53, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 70, 71, 72, 76, 81, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 106, 107, 108, 112, 117, 124], "graphic": [2, 9, 13, 15, 21, 26, 32, 35, 54, 60, 64, 68, 72, 76, 90, 96, 100, 104, 108, 112], "grasp": [5, 57, 93], "grayscal": 2, "great": [1, 15, 17, 22, 32, 46, 47, 48, 53, 64, 65, 69, 76, 87, 88, 89, 100, 101, 105, 112, 123, 124], "greater": [5, 7, 10, 12, 15, 17, 18, 22, 26, 30, 36, 57, 58, 61, 62, 64, 65, 66, 69, 72, 75, 79, 93, 94, 97, 98, 100, 101, 102, 105, 108, 111, 115], "greatest": [24, 38, 49, 70, 106], "greatli": [1, 17, 53, 65, 89, 101], "green": [7, 10, 26, 58, 61, 72, 94, 97, 108], "greenhous": [46, 47, 48, 49, 87, 88, 123, 124], "greenspan": [32, 76, 112], "grew": [42, 83, 119], "grind": 51, "gross": [17, 65, 101], "grossman": [46, 47, 87, 123], "ground": [5, 57, 93], "group": [8, 22, 27, 31, 41, 42, 46, 47, 48, 59, 69, 73, 83, 87, 88, 95, 105, 109, 119, 123, 124], "group_num": [8, 59, 95], "group_plot": [48, 88, 124], "grow": [4, 5, 32, 33, 40, 46, 47, 48, 56, 57, 76, 77, 82, 87, 88, 92, 93, 112, 113, 118, 123, 124], "grown": [22, 69, 105], "growth": [4, 18, 32, 34, 37, 46, 47, 52, 56, 66, 76, 78, 80, 87, 92, 102, 112, 114, 116, 123], "gspc": [39, 81, 117], "gtco2": [48, 88, 124], "guarante": [1, 28, 39, 48, 53, 74, 81, 88, 89, 110, 117, 124], "guard": 31, "guess": [42, 83, 119], "guid": [1, 32, 33, 53, 76, 77, 89, 112, 113], "h": [17, 25, 37, 46, 47, 48, 65, 71, 80, 87, 88, 101, 107, 116, 123, 124], "ha": [1, 2, 3, 5, 9, 14, 15, 17, 18, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 37, 39, 40, 42, 44, 45, 46, 47, 48, 49, 53, 54, 55, 57, 60, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 91, 93, 96, 99, 100, 101, 102, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 116, 117, 118, 119, 121, 122, 123, 124], "habit": [46, 47, 87, 123], "had": [1, 3, 14, 22, 24, 25, 27, 28, 31, 37, 39, 40, 44, 48, 53, 55, 63, 69, 70, 71, 73, 74, 80, 81, 82, 85, 88, 89, 91, 99, 105, 106, 107, 109, 110, 116, 117, 118, 121, 124], "haiti": [46, 47, 87, 123], "half": [22, 25, 40, 69, 71, 82, 105, 107, 118], "half_width": [48, 88, 124], "hanan": [22, 52, 69, 105], "hand": [2, 3, 9, 10, 12, 15, 22, 24, 32, 34, 54, 55, 60, 61, 62, 64, 69, 70, 76, 78, 90, 91, 96, 97, 98, 100, 105, 106, 112, 114], "handbook": 52, "hang": [48, 88, 124], "hansen": [36, 79, 115], "happen": [4, 5, 10, 15, 18, 26, 30, 31, 36, 37, 39, 42, 44, 46, 47, 48, 52, 56, 57, 61, 64, 66, 72, 75, 79, 80, 81, 83, 85, 87, 88, 92, 93, 97, 100, 102, 108, 111, 115, 116, 117, 119, 121, 123, 124], "happi": [1, 14, 53, 63, 89, 99], "harberg": [15, 64, 100], "hard": [1, 17, 24, 31, 46, 47, 48, 53, 65, 70, 87, 88, 89, 101, 106, 123, 124], "harm": [1, 53, 89], "harvard": [31, 46, 47, 48, 52, 87, 88, 123, 124], "hash": [30, 75, 111], "hat": [42, 45, 83, 86, 119, 122], "have": [1, 2, 3, 4, 5, 7, 8, 10, 12, 14, 15, 17, 19, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 97, 98, 99, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124], "hawk": [32, 76, 112], "hawkish": [32, 76, 112], "he": [1, 28, 32, 53, 74, 76, 89, 110, 112], "head": [87, 123], "heal": [46, 47, 87, 123], "health": [1, 31, 32, 33, 53, 76, 77, 89, 112, 113], "healthi": [32, 76, 112], "hear": [32, 76, 112], "heard": [32, 76, 112], "heart": [1, 40, 53, 82, 89, 118], "height": [3, 10, 21, 22, 24, 32, 48, 55, 61, 68, 69, 70, 88, 91, 97, 104, 105, 106, 124], "height_group": [48, 88, 124], "held": [2, 17, 54, 65, 90, 101], "helm": [8, 59, 95], "helminth": 31, "help": [1, 2, 3, 9, 14, 17, 21, 22, 31, 32, 33, 39, 44, 46, 47, 48, 53, 54, 55, 60, 63, 65, 68, 69, 76, 77, 81, 85, 87, 88, 89, 90, 91, 96, 99, 101, 104, 105, 112, 113, 117, 121, 123, 124], "henc": [2, 15, 19, 21, 24, 36, 54, 64, 67, 68, 70, 79, 90, 100, 103, 104, 106, 115], "her": [21, 22, 28, 68, 69, 74, 104, 105, 110], "here": [1, 3, 4, 5, 9, 10, 14, 19, 24, 26, 27, 28, 32, 39, 42, 43, 44, 46, 47, 48, 53, 55, 56, 57, 60, 61, 63, 67, 70, 72, 73, 74, 76, 81, 83, 84, 85, 87, 88, 89, 91, 92, 93, 96, 97, 99, 103, 106, 108, 109, 110, 112, 117, 119, 120, 121, 123, 124], "hi": [14, 27, 32, 37, 63, 73, 76, 80, 99, 109, 112, 116], "hick": [36, 79, 115], "hidden": [44, 46, 85, 87, 88, 121, 123, 124], "high": [1, 7, 8, 14, 15, 17, 18, 22, 31, 32, 33, 37, 39, 41, 42, 46, 47, 48, 53, 58, 59, 63, 64, 65, 66, 69, 76, 77, 80, 81, 83, 87, 88, 89, 94, 95, 99, 100, 101, 102, 105, 112, 113, 116, 117, 119, 123, 124], "higher": [1, 2, 4, 7, 8, 12, 14, 15, 17, 18, 21, 22, 24, 26, 27, 28, 33, 37, 39, 42, 44, 46, 47, 48, 49, 53, 54, 56, 58, 59, 62, 63, 64, 65, 66, 68, 69, 70, 72, 73, 74, 77, 80, 81, 83, 85, 87, 88, 89, 90, 92, 94, 95, 98, 99, 100, 101, 102, 104, 105, 106, 108, 109, 110, 113, 116, 117, 119, 121, 123, 124], "highest": [1, 5, 14, 19, 22, 32, 48, 53, 57, 63, 67, 69, 76, 88, 89, 93, 99, 103, 105, 112, 124], "highgrov": [8, 59, 95], "highli": [46, 47, 48, 87, 88, 123, 124], "highlight": [4, 44, 56, 85, 92, 121], "hike": [5, 32, 57, 76, 93, 112], "him": [1, 14, 32, 53, 63, 76, 89, 99, 112], "hin": [46, 47, 87, 123], "hin_arrai": [46, 47, 87, 123], "hin_tabl": [46, 47, 87, 123], "hint": [1, 53, 89], "hire": [7, 17, 18, 22, 58, 65, 66, 69, 94, 101, 102, 105], "hispan": [44, 45, 85, 86, 121, 122], "hist": [44, 85, 121], "histor": [3, 4, 31, 35, 37, 39, 55, 56, 81, 91, 92, 117], "histori": [1, 32, 39, 53, 76, 81, 89, 112, 117], "hit": [32, 38, 76, 112], "hmm": [30, 75, 111], "hold": [2, 5, 9, 14, 15, 17, 18, 19, 21, 32, 33, 36, 39, 42, 46, 47, 54, 57, 60, 63, 64, 65, 66, 67, 68, 76, 77, 79, 81, 83, 87, 90, 93, 96, 99, 100, 101, 102, 103, 104, 112, 113, 115, 117, 119, 123], "holder": [39, 81, 117], "hollevik": 51, "home": [33, 77, 87, 113, 123], "homi": 52, "honda": [30, 75, 111], "hoo": 52, "hoo41": 52, "hope": [1, 44, 53, 85, 89, 121], "horizont": [5, 7, 15, 36, 57, 58, 64, 79, 93, 94, 100, 115], "hospit": [5, 57, 93], "hot": [5, 10, 57, 61, 93, 97], "hour": [1, 17, 53, 65, 89, 101], "hourli": [43, 44, 84, 85, 120, 121], "hous": [5, 57, 93], "household": [14, 22, 24, 31, 63, 69, 70, 99, 105, 106], "how": [1, 2, 4, 5, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 31, 32, 33, 35, 36, 37, 39, 40, 41, 42, 44, 45, 48, 49, 51, 53, 54, 56, 57, 58, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 92, 93, 94, 96, 97, 98, 99, 100, 101, 102, 104, 105, 106, 108, 109, 110, 111, 112, 113, 115, 116, 117, 118, 119, 121, 122, 123, 124], "howev": [1, 5, 12, 14, 15, 17, 21, 22, 25, 26, 27, 33, 36, 37, 39, 44, 46, 47, 48, 53, 57, 62, 63, 64, 65, 68, 69, 71, 72, 73, 77, 79, 80, 81, 85, 87, 88, 89, 93, 98, 99, 100, 101, 104, 105, 107, 108, 109, 113, 115, 116, 117, 121, 123, 124], "html": [0, 46, 47, 48, 87, 88, 123, 124], "http": [46, 47, 48, 79, 87, 88, 115, 123, 124], "huge": [1, 42, 53, 83, 89, 119], "human": [1, 4, 17, 49, 53, 56, 65, 89, 92, 101], "humboldt": [8, 59, 95], "hump": [22, 69, 105], "hungri": [14, 21, 63, 68, 99, 104], "hunter": [8, 59, 95], "huntington": [8, 59, 95], "hybrid": [2, 54, 90], "hyde": [46, 47, 87, 123], "hydrocarbon": 49, "hypothes": [18, 46, 47, 66, 87, 102, 123], "hypothesi": [28, 45, 49, 74, 86, 110, 122], "hypothet": [9, 60, 96], "i": [0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 14, 15, 17, 18, 19, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 116, 117, 118, 119, 120, 121, 122, 123, 124], "i_t": [32, 33, 76, 77, 112, 113], "idea": [1, 14, 17, 21, 22, 25, 28, 31, 37, 40, 42, 44, 46, 47, 48, 51, 53, 63, 65, 68, 69, 71, 74, 80, 82, 83, 85, 87, 88, 89, 99, 101, 104, 105, 107, 110, 116, 118, 119, 121, 123, 124], "ideal": [14, 32, 41, 42, 63, 76, 83, 99, 112, 119], "ident": [29, 39, 41, 42, 81, 83, 117, 119], "idl": [14, 63, 99], "idna": [39, 81, 117], "idx": [30, 75, 111], "ie": 50, "iea": [48, 88, 124], "ignor": [22, 25, 27, 36, 39, 42, 69, 71, 73, 79, 81, 83, 105, 107, 109, 115, 117, 119], "ill": 31, "illicit": [27, 73, 109], "illust": [36, 79, 115], "illustr": [5, 14, 28, 32, 36, 48, 49, 51, 57, 63, 74, 76, 79, 88, 93, 99, 110, 112, 115, 124], "imag": [1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 14, 15, 17, 18, 19, 21, 22, 24, 25, 26, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106], "imageri": [46, 47, 48, 87, 88, 123, 124], "imagin": [1, 4, 5, 12, 14, 21, 28, 39, 41, 42, 53, 56, 57, 62, 63, 68, 74, 81, 83, 89, 92, 93, 98, 99, 104, 110, 117, 119], "imm": [44, 45, 85, 86, 121, 122], "immedi": [1, 53, 89], "impact": [1, 21, 31, 44, 46, 47, 48, 51, 53, 68, 85, 87, 88, 89, 104, 121, 123, 124], "imperfect": 29, "implement": [22, 69, 105], "impli": [4, 7, 15, 18, 25, 26, 34, 36, 37, 39, 42, 44, 56, 58, 64, 66, 71, 72, 78, 79, 80, 81, 83, 85, 92, 94, 100, 102, 107, 108, 114, 115, 116, 117, 119, 121], "implic": [1, 6, 22, 24, 53, 69, 70, 89, 105, 106], "implicitli": [39, 42, 81, 83, 117, 119], "import": [1, 2, 5, 7, 9, 10, 12, 14, 18, 21, 27, 28, 30, 32, 33, 36, 37, 38, 39, 40, 44, 45, 46, 47, 49, 53, 54, 57, 58, 60, 61, 62, 63, 66, 68, 73, 74, 75, 76, 77, 79, 80, 81, 82, 85, 86, 87, 89, 90, 93, 94, 96, 97, 98, 99, 102, 104, 109, 110, 111, 112, 113, 115, 116, 117, 118, 121, 122, 123], "importantli": [39, 81, 117], "impos": [12, 15, 62, 64, 98, 100], "imposs": [1, 41, 42, 44, 53, 83, 85, 89, 119, 121], "impress": [4, 56, 92], "improv": [14, 22, 27, 31, 35, 46, 47, 48, 63, 69, 73, 87, 88, 99, 105, 109, 123, 124], "imput": [22, 69, 105], "inabl": [48, 88, 124], "inaccess": [22, 69, 105], "incandesc": [48, 88, 124], "incent": [22, 25, 36, 48, 49, 69, 71, 79, 88, 105, 107, 115, 124], "incentiv": [18, 31, 66, 102], "includ": [1, 6, 7, 15, 18, 25, 29, 30, 31, 32, 33, 34, 37, 42, 44, 46, 47, 53, 58, 64, 66, 71, 75, 76, 77, 78, 80, 83, 85, 87, 89, 94, 100, 102, 107, 111, 112, 113, 114, 116, 119, 121, 123], "inclus": [15, 64, 100], "incom": [5, 15, 19, 23, 24, 33, 36, 39, 40, 43, 52, 57, 64, 67, 70, 77, 79, 81, 82, 84, 93, 100, 103, 106, 113, 115, 117, 118, 120], "income_distribut": [24, 70, 106], "income_distribution2": [24, 70, 106], "income_distribution3": [24, 70, 106], "inconveni": [14, 63, 99], "incorpor": [37, 80, 116], "increas": [1, 2, 3, 4, 5, 7, 10, 12, 14, 15, 17, 18, 19, 21, 22, 24, 25, 27, 31, 32, 34, 36, 37, 39, 40, 42, 43, 44, 46, 47, 48, 49, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 93, 94, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 109, 112, 114, 115, 116, 117, 118, 119, 120, 121, 123, 124], "increasi": [17, 65, 101], "incredibli": [32, 76, 112], "increment": [39, 81, 117], "incur": [7, 25, 58, 71, 94, 107], "inde": [21, 32, 33, 46, 47, 68, 76, 77, 87, 104, 112, 113, 123], "independ": [3, 5, 15, 22, 32, 45, 55, 57, 64, 69, 76, 86, 91, 93, 100, 105, 112, 122], "index": [1, 30, 33, 39, 53, 75, 77, 89, 111, 113], "india": [22, 48, 69, 88, 105, 124], "indic": [3, 14, 22, 24, 25, 26, 27, 28, 32, 35, 42, 44, 45, 55, 63, 69, 70, 71, 72, 73, 74, 76, 83, 85, 86, 91, 99, 105, 106, 107, 108, 109, 110, 112, 119, 121, 122], "indiffer": [19, 20, 40, 67, 82, 103, 118], "individu": [1, 7, 14, 15, 26, 28, 30, 33, 48, 53, 58, 63, 64, 72, 74, 75, 77, 88, 89, 94, 99, 100, 108, 110, 111, 113, 124], "individual_firm_cost": [7, 58, 94], "induc": [7, 58, 94], "industri": [1, 15, 25, 26, 48, 53, 64, 71, 72, 88, 89, 100, 107, 108, 124], "ineffic": [14, 63, 99], "ineffici": [48, 88, 124], "inelast": [5, 15, 57, 64, 93, 100], "inequ": 52, "infant": 31, "inferenti": 31, "inferior": [5, 57, 93], "infinit": [42, 83, 119], "inflat": [10, 22, 32, 37, 61, 69, 76, 80, 97, 105, 112, 116], "inflect": [46, 47, 87, 123], "influenc": [22, 32, 34, 46, 47, 69, 76, 78, 87, 105, 112, 114, 123], "influenti": [48, 88, 124], "inform": [15, 17, 22, 24, 28, 29, 30, 42, 44, 45, 46, 47, 48, 64, 65, 69, 70, 74, 75, 83, 85, 86, 87, 88, 100, 101, 105, 106, 110, 111, 119, 121, 122, 123, 124], "inher": [14, 29, 33, 63, 77, 99, 113], "inherit": [22, 69, 105], "initi": [5, 7, 14, 30, 37, 40, 45, 57, 58, 63, 75, 80, 82, 86, 93, 94, 99, 111, 116, 118, 122], "inject": 31, "inlin": [46, 87, 88, 123, 124], "innov": [10, 48, 61, 88, 97, 124], "input": [7, 17, 18, 20, 21, 30, 39, 42, 44, 58, 65, 66, 68, 75, 81, 83, 85, 94, 101, 102, 104, 111, 117, 119, 121], "insid": [30, 75, 111], "insight": [1, 17, 18, 33, 46, 47, 48, 53, 65, 66, 77, 87, 88, 89, 101, 102, 113, 123, 124], "instal": [39, 48, 81, 88, 117, 124], "instanc": [39, 40, 46, 47, 48, 81, 82, 87, 88, 117, 118, 123, 124], "instead": [1, 2, 3, 4, 12, 14, 15, 19, 22, 24, 30, 31, 39, 40, 42, 44, 53, 54, 55, 56, 62, 63, 64, 67, 69, 70, 75, 81, 82, 83, 85, 89, 90, 91, 92, 98, 99, 100, 103, 105, 106, 111, 117, 118, 119, 121], "institut": [22, 32, 33, 40, 69, 76, 77, 82, 105, 112, 113, 118], "instructor": 51, "instrument": [48, 88, 124], "insur": [39, 81, 117], "int_0": [24, 70, 106], "integr": [1, 53, 89], "intellig": [42, 83, 119], "intend": [15, 64, 100], "intens": [17, 18, 46, 47, 49, 65, 66, 87, 101, 102, 123], "interact": [14, 18, 19, 21, 29, 30, 31, 36, 63, 66, 67, 68, 75, 79, 99, 102, 103, 104, 111, 115], "intercept": [3, 4, 10, 15, 26, 36, 42, 44, 45, 55, 56, 61, 64, 72, 79, 83, 85, 86, 91, 92, 97, 100, 108, 115, 119, 121, 122], "interchang": [3, 55, 91], "interest": [1, 4, 17, 19, 32, 36, 37, 38, 39, 42, 44, 46, 47, 48, 53, 56, 65, 67, 76, 79, 80, 81, 83, 85, 87, 88, 89, 92, 101, 103, 112, 115, 116, 117, 119, 121, 123, 124], "interestingli": [5, 37, 57, 80, 93, 116], "interf": 49, "intermedi": [33, 77, 113], "intern": [12, 32, 48, 49, 50, 62, 76, 88, 98, 112, 124], "internet": 31, "interpol": [24, 70, 106], "interpret": [2, 3, 4, 39, 42, 44, 54, 55, 56, 81, 83, 85, 90, 91, 92, 117, 119, 121], "interrog": [27, 73, 109], "intersect": [1, 7, 9, 10, 12, 15, 19, 25, 26, 36, 49, 53, 58, 60, 61, 62, 64, 67, 71, 72, 79, 89, 94, 96, 97, 98, 100, 103, 107, 108, 115], "intertermpor": [1, 53, 89], "interv": [5, 31, 33, 39, 40, 42, 43, 44, 45, 57, 77, 81, 82, 83, 84, 85, 86, 93, 113, 117, 118, 119, 120, 121, 122], "interven": [13, 15, 64, 100], "intervent": [10, 13, 15, 31, 49, 61, 64, 97, 100], "intestin": 31, "intrins": [17, 49, 65, 101], "introduc": [5, 7, 12, 16, 19, 27, 33, 36, 37, 45, 49, 57, 58, 62, 67, 73, 77, 79, 80, 86, 93, 94, 98, 103, 109, 113, 115, 116, 122], "introduct": [15, 38, 49, 64, 100], "introductori": 51, "intuit": [1, 2, 3, 4, 5, 15, 17, 19, 21, 24, 25, 26, 32, 33, 39, 53, 54, 55, 56, 57, 64, 65, 67, 68, 70, 71, 72, 76, 77, 81, 89, 90, 91, 92, 93, 100, 101, 103, 104, 106, 107, 108, 112, 113, 117], "invers": [2, 3, 5, 36, 37, 39, 54, 55, 57, 79, 80, 81, 90, 91, 93, 115, 116, 117], "invert": [27, 73, 109], "invest": [36, 39, 40, 48, 79, 81, 82, 88, 115, 117, 118, 124], "investig": 52, "investor": [38, 39, 48, 81, 88, 117, 124], "invis": [10, 12, 61, 62, 97, 98], "involv": [1, 15, 31, 32, 33, 34, 41, 42, 44, 53, 64, 76, 77, 78, 83, 85, 89, 100, 112, 113, 114, 119, 121], "io": [46, 47, 48, 87, 88, 123, 124], "ipython": [30, 75, 111], "ir": [22, 69, 105], "irrat": [28, 74, 110], "irrelev": [1, 53, 89], "irrespect": [5, 7, 57, 58, 93, 94], "isbn": 52, "ish": [32, 76, 112], "isinst": [30, 75, 111], "isn": [4, 14, 30, 39, 56, 63, 75, 81, 92, 99, 111, 117], "isol": [12, 22, 31, 62, 69, 98, 105], "issu": [1, 23, 34, 37, 42, 53, 78, 80, 83, 89, 114, 116, 119], "ital": [46, 47, 48, 87, 88, 123, 124], "item": [15, 25, 64, 71, 100, 107], "its": [2, 3, 4, 5, 7, 8, 9, 14, 17, 21, 22, 25, 26, 27, 29, 30, 32, 33, 39, 40, 44, 46, 47, 48, 49, 54, 55, 56, 57, 58, 59, 60, 63, 65, 68, 69, 71, 72, 73, 75, 76, 77, 81, 82, 85, 87, 88, 90, 91, 92, 93, 94, 95, 96, 99, 101, 104, 105, 107, 108, 109, 111, 112, 113, 117, 118, 121, 123, 124], "itself": [1, 4, 12, 17, 24, 46, 47, 53, 56, 62, 65, 70, 87, 89, 92, 98, 101, 106, 123], "j": [46, 47, 48, 87, 88, 123, 124], "jai": [32, 76, 112], "jan": 42, "jane": [30, 75, 111], "janet": [32, 76, 112], "januari": [32, 40, 76, 82, 112, 118], "japan": [48, 88, 124], "jarqu": [42, 45, 83, 86, 119, 122], "jb": [42, 45, 83, 86, 119, 122], "jelli": [5, 57, 93], "jerom": [32, 76, 112], "jha": 51, "job": [1, 22, 33, 37, 42, 53, 69, 77, 80, 83, 89, 105, 113, 116, 119], "john": [27, 29, 30, 32, 73, 75, 76, 109, 111, 112], "join": [22, 24, 69, 70, 105, 106], "joint": [26, 72, 108], "joseph": [25, 71, 107], "journal": [31, 52], "jr": [27, 73, 109], "jul": [83, 119], "juli": [40, 82, 118], "jump": [4, 39, 46, 47, 56, 81, 87, 92, 117, 123], "jun": [45, 86, 122], "jupyt": [0, 46, 47, 48, 51, 87, 88, 123, 124], "just": [1, 4, 5, 8, 12, 15, 17, 22, 24, 25, 26, 27, 31, 32, 33, 39, 41, 42, 44, 46, 47, 48, 53, 56, 57, 59, 62, 64, 65, 69, 70, 71, 72, 73, 76, 77, 81, 83, 85, 87, 88, 89, 92, 93, 95, 98, 100, 101, 105, 106, 107, 108, 109, 112, 113, 117, 119, 121, 123, 124], "justif": [42, 83, 119], "justifi": [4, 56, 92], "k": [17, 18, 39, 42, 46, 47, 48, 52, 65, 66, 81, 83, 87, 88, 101, 102, 117, 119, 123, 124], "kaggl": [3, 55, 91], "keep": [1, 4, 12, 14, 32, 40, 44, 48, 53, 56, 62, 63, 76, 82, 85, 88, 89, 92, 98, 99, 112, 118, 121, 124], "kei": [3, 4, 7, 12, 17, 22, 33, 48, 51, 55, 56, 58, 62, 65, 69, 77, 88, 91, 92, 94, 98, 101, 105, 113, 124], "kenesian": 36, "kenya": 31, "kesicki": [48, 88, 124], "keynesian": [37, 80, 116], "keyword": [5, 57, 93], "khara": 52, "kill": 31, "kind": [1, 5, 27, 30, 53, 57, 73, 75, 89, 93, 109, 111], "kingdom": [37, 46, 47, 80, 87, 116, 123], "kitchen": [17, 65, 101], "know": [1, 4, 7, 9, 11, 15, 21, 24, 26, 27, 28, 29, 30, 31, 39, 41, 44, 46, 47, 48, 53, 56, 58, 60, 64, 68, 70, 72, 73, 74, 75, 81, 85, 87, 88, 89, 92, 94, 96, 100, 104, 106, 108, 109, 110, 111, 117, 121, 123, 124], "knowledg": [4, 17, 29, 48, 56, 65, 88, 92, 101, 124], "known": [4, 9, 10, 15, 17, 21, 22, 24, 32, 33, 36, 44, 56, 60, 61, 64, 65, 68, 69, 70, 76, 77, 79, 85, 92, 96, 97, 100, 101, 104, 105, 106, 112, 113, 115, 121], "kremer": 31, "kroft": [15, 64, 100], "krueger": [46, 47, 87, 123], "kurtosi": [42, 45, 83, 86, 119, 122], "kuznet": 49, "kwh": [14, 63, 99], "l": [1, 17, 18, 24, 53, 65, 66, 70, 89, 101, 102, 106], "lab": 31, "label": [9, 10, 12, 26, 60, 61, 62, 72, 96, 97, 98, 108], "labor": [7, 16, 18, 22, 33, 37, 52, 58, 66, 69, 77, 80, 94, 102, 105, 113, 116], "lack": [14, 63, 99], "lafayett": [36, 79, 115], "lambda": [14, 63, 99], "land": [1, 7, 8, 46, 47, 48, 53, 58, 59, 87, 88, 89, 94, 95, 123, 124], "landscap": [1, 53, 89], "languag": [30, 75, 111], "laptop": [5, 57, 93], "larg": [4, 18, 41, 44, 46, 47, 56, 66, 85, 87, 92, 102, 121, 123], "larger": [1, 4, 8, 19, 22, 24, 32, 44, 46, 47, 48, 53, 56, 59, 67, 69, 70, 76, 85, 87, 88, 89, 92, 95, 103, 105, 106, 112, 121, 123, 124], "largest": [22, 69, 105], "last": [4, 12, 13, 18, 22, 26, 28, 30, 32, 37, 39, 45, 48, 56, 62, 66, 69, 72, 74, 75, 76, 80, 81, 86, 88, 92, 98, 102, 105, 108, 110, 111, 112, 116, 117, 122, 124], "lastli": [15, 25, 29, 33, 64, 71, 77, 100, 107, 113], "late": [5, 32, 57, 76, 93, 112], "later": [1, 4, 14, 17, 31, 33, 40, 44, 48, 53, 56, 63, 65, 77, 82, 85, 88, 89, 92, 99, 101, 113, 118, 121, 124], "latest": [22, 69, 105], "latter": [17, 48, 65, 88, 101, 124], "law": [2, 7, 32, 54, 58, 76, 90, 94, 112], "lcca_cgep": [46, 47, 48, 87, 88, 123, 124], "ldar": [48, 88, 124], "le": [25, 71, 107], "lead": [2, 4, 5, 15, 17, 18, 22, 27, 31, 37, 42, 51, 54, 56, 57, 64, 65, 66, 69, 73, 80, 83, 90, 92, 93, 100, 101, 102, 105, 109, 116, 119], "leader": [32, 76, 112], "leadership": [1, 53, 89], "learn": [1, 5, 6, 10, 11, 15, 16, 20, 23, 26, 32, 37, 38, 44, 46, 47, 48, 49, 53, 57, 61, 64, 72, 76, 80, 85, 87, 88, 89, 93, 97, 100, 108, 112, 116, 121, 123, 124], "learnt": [1, 53, 89], "least": [5, 14, 24, 42, 43, 44, 45, 46, 47, 57, 63, 70, 83, 84, 85, 86, 87, 93, 99, 106, 119, 120, 121, 122, 123], "leav": [10, 15, 26, 61, 64, 72, 97, 100, 108], "lectur": [17, 28, 39, 44, 65, 74, 81, 85, 101, 110, 117, 121], "led": [22, 32, 48, 69, 76, 88, 105, 112, 124], "left": [2, 3, 5, 14, 17, 18, 19, 22, 30, 39, 40, 44, 49, 54, 55, 57, 63, 65, 66, 67, 69, 75, 81, 82, 85, 90, 91, 93, 99, 101, 102, 103, 105, 111, 117, 118, 121], "leftmost": [14, 63, 99], "leftov": [19, 67, 103], "leftward": [2, 3, 10, 15, 48, 54, 55, 61, 64, 88, 90, 91, 97, 100, 124], "legend": [48, 88, 124], "len": [13, 24, 30, 48, 70, 75, 88, 106, 111, 124], "lend": [33, 77, 113], "lender": [32, 40, 76, 82, 112, 118], "length": [30, 75, 111], "less": [1, 2, 3, 5, 7, 10, 12, 14, 15, 17, 18, 19, 21, 22, 24, 25, 27, 30, 32, 36, 37, 39, 41, 53, 54, 55, 57, 58, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 75, 76, 79, 80, 81, 89, 90, 91, 93, 94, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 109, 111, 112, 115, 116, 117], "lesson": [39, 81, 117], "let": [1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 14, 15, 17, 18, 19, 21, 22, 24, 25, 26, 27, 28, 30, 33, 36, 39, 42, 43, 44, 45, 46, 47, 48, 49, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 77, 79, 81, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 113, 115, 117, 119, 120, 121, 122, 123, 124], "lev": [36, 79, 115], "level": [1, 4, 7, 10, 12, 15, 17, 18, 19, 21, 22, 24, 25, 26, 27, 32, 33, 34, 36, 37, 46, 47, 48, 51, 53, 56, 58, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 76, 77, 78, 79, 80, 87, 88, 89, 92, 94, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 112, 113, 114, 115, 116, 123, 124], "leverag": [10, 61, 97], "levi": [15, 64, 100], "levlafayett": [79, 115], "li": [7, 34, 48, 58, 78, 88, 94, 114, 124], "liang": 51, "lib": [39, 81, 117], "liber": [1, 53, 89], "librari": [9, 60, 96], "lie": [19, 67, 103], "life": [1, 17, 27, 51, 53, 65, 73, 89, 101, 109], "lifetim": [1, 48, 53, 88, 89, 124], "light": [1, 8, 48, 53, 59, 88, 89, 95, 124], "lightn": [48, 88, 124], "lih_arrai": [46, 47, 87, 123], "lih_tabl": [46, 47, 87, 123], "like": [1, 3, 4, 5, 7, 10, 14, 17, 19, 22, 26, 27, 29, 30, 32, 37, 39, 41, 42, 44, 45, 46, 47, 48, 53, 55, 56, 57, 58, 61, 63, 65, 67, 69, 72, 73, 75, 76, 80, 81, 83, 85, 86, 87, 88, 89, 91, 92, 93, 94, 97, 99, 101, 103, 105, 108, 109, 111, 112, 116, 117, 119, 121, 122, 123, 124], "likelihood": [42, 45, 83, 86, 119, 122], "limit": [7, 17, 27, 39, 49, 58, 65, 73, 81, 94, 101, 109, 117], "lin": [46, 47, 87, 123], "line": [1, 3, 4, 5, 7, 8, 9, 10, 12, 14, 19, 22, 25, 26, 36, 39, 42, 44, 45, 53, 55, 56, 57, 58, 59, 60, 61, 62, 63, 67, 69, 71, 79, 83, 85, 86, 89, 91, 92, 93, 94, 95, 96, 97, 98, 99, 103, 105, 107, 115, 119, 121, 122], "linear": [2, 4, 5, 26, 42, 43, 44, 45, 46, 47, 54, 56, 57, 72, 83, 84, 85, 86, 87, 90, 92, 93, 108, 119, 120, 121, 122, 123], "linearli": [4, 25, 46, 47, 56, 71, 87, 92, 107, 123], "linewidth": [48, 88, 124], "link": [1, 53, 89], "liquid": [36, 79, 115], "list": [9, 10, 14, 32, 44, 48, 51, 60, 61, 63, 76, 85, 88, 96, 97, 99, 112, 121, 124], "literaci": 35, "littl": [3, 17, 21, 26, 34, 39, 46, 47, 55, 65, 68, 72, 78, 81, 87, 91, 101, 104, 108, 114, 117, 123], "live": [1, 5, 31, 44, 51, 53, 57, 85, 89, 93, 121], "ll": [1, 4, 15, 19, 21, 23, 28, 30, 32, 33, 43, 44, 46, 47, 48, 49, 53, 56, 64, 67, 68, 74, 75, 76, 77, 84, 85, 87, 88, 89, 92, 100, 103, 104, 110, 111, 112, 113, 120, 121, 123, 124], "lm": [36, 79, 115], "ln": [4, 17, 39, 43, 56, 65, 81, 84, 92, 101, 117, 120], "ln_gdp": [4, 56, 92], "load": [1, 53, 89], "loan": [33, 39, 40, 77, 81, 82, 113, 117, 118], "local": [31, 46, 47, 87, 123], "localwkr": [44, 45, 85, 86, 121, 122], "locat": [5, 32, 57, 76, 93, 112], "log": [5, 6, 17, 42, 43, 44, 45, 46, 47, 57, 65, 83, 84, 85, 86, 87, 93, 101, 119, 120, 121, 122, 123], "log_earn_1999": [42, 44, 83, 85, 119, 121], "log_pric": [4, 56, 92], "log_quant": [4, 56, 92], "logco2": [46, 47, 87, 123], "logearn": [44, 85, 121], "logearn_standard": [44, 85, 121], "loggdp": [46, 47, 87, 123], "logic": [37, 39, 80, 81, 116, 117], "logwag": [44, 45, 85, 86, 121, 122], "logwage_standard": [44, 85, 121], "long": [1, 4, 22, 25, 32, 37, 39, 46, 47, 48, 53, 56, 69, 71, 76, 80, 81, 87, 88, 89, 92, 105, 107, 112, 116, 117, 123, 124], "longer": [10, 12, 15, 18, 25, 26, 33, 61, 62, 64, 66, 71, 72, 77, 97, 98, 100, 102, 107, 108, 113], "longitudin": [1, 53, 89], "look": [1, 2, 3, 4, 5, 7, 8, 10, 14, 17, 19, 21, 22, 24, 26, 27, 29, 30, 31, 32, 33, 34, 37, 39, 40, 41, 42, 44, 46, 47, 48, 53, 54, 55, 56, 57, 58, 59, 61, 63, 65, 67, 68, 69, 70, 72, 73, 75, 76, 77, 78, 80, 81, 82, 83, 85, 87, 88, 89, 90, 91, 92, 93, 94, 95, 97, 99, 101, 103, 104, 105, 106, 108, 109, 111, 112, 113, 114, 116, 117, 118, 119, 121, 123, 124], "loonei": [15, 64, 100], "lorenz": 23, "lose": [5, 7, 12, 18, 39, 57, 58, 62, 66, 81, 93, 94, 98, 102, 117], "loss": [7, 12, 25, 39, 44, 58, 62, 71, 81, 85, 94, 98, 107, 117, 121], "lost": [5, 15, 22, 27, 39, 57, 64, 69, 73, 81, 93, 100, 105, 109, 117], "lot": [1, 14, 21, 26, 32, 33, 44, 45, 48, 53, 63, 68, 72, 76, 77, 85, 86, 88, 89, 99, 104, 108, 112, 113, 121, 122, 124], "loui": [25, 71, 107], "low": [5, 7, 14, 15, 17, 22, 27, 32, 37, 39, 41, 48, 49, 57, 58, 63, 64, 65, 69, 73, 76, 80, 81, 88, 93, 94, 99, 100, 101, 105, 109, 112, 116, 117, 124], "low_wage_job": [1, 53, 89], "lower": [1, 2, 4, 7, 8, 10, 12, 14, 15, 17, 18, 22, 24, 25, 26, 27, 32, 34, 36, 37, 39, 46, 47, 48, 49, 53, 54, 56, 58, 59, 61, 62, 63, 64, 65, 66, 69, 70, 71, 72, 73, 76, 78, 79, 80, 81, 87, 88, 89, 90, 92, 94, 95, 97, 98, 99, 100, 101, 102, 105, 106, 107, 108, 109, 112, 114, 115, 116, 117, 123, 124], "lower_bound": [44, 85, 121], "lowest": [7, 8, 25, 48, 58, 59, 71, 88, 94, 95, 107, 124], "luck": [1, 53, 89], "lxml": [39, 81, 117], "m": [3, 4, 19, 26, 55, 56, 67, 72, 87, 91, 92, 103, 108, 123], "mac": 49, "macc": [46, 47, 48, 87, 88, 123, 124], "machin": [46, 47, 48, 87, 88, 123, 124], "machineri": [7, 14, 58, 63, 94, 99], "macro": [1, 32, 35, 53, 76, 89, 112], "macroeconom": [17, 22, 32, 34, 36, 65, 69, 76, 78, 79, 101, 105, 112, 114, 115], "macroeconomist": [33, 77, 113], "made": [10, 14, 22, 28, 29, 33, 39, 61, 63, 69, 74, 77, 81, 97, 99, 105, 110, 113, 117], "magic": [10, 61, 97], "mai": [1, 4, 12, 15, 22, 24, 25, 26, 27, 31, 33, 36, 39, 48, 53, 56, 62, 64, 69, 70, 71, 72, 73, 77, 79, 81, 88, 89, 92, 98, 100, 105, 106, 107, 108, 109, 113, 115, 117, 124], "main": [26, 31, 32, 33, 35, 46, 47, 48, 72, 76, 77, 87, 88, 108, 112, 113, 123, 124], "mainli": [32, 76, 112], "maintain": [27, 32, 73, 76, 109, 112], "major": [37, 49, 80, 116], "major_categori": [1, 53, 89], "major_cod": [1, 53, 89], "make": [1, 2, 5, 7, 14, 15, 17, 18, 19, 21, 24, 25, 26, 27, 28, 30, 31, 32, 33, 37, 39, 40, 42, 44, 48, 53, 54, 57, 58, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 77, 80, 81, 82, 83, 85, 88, 89, 90, 93, 94, 99, 100, 101, 102, 103, 104, 106, 107, 108, 109, 110, 111, 112, 113, 116, 117, 118, 119, 121, 124], "make_arrai": [7, 24, 30, 44, 46, 47, 58, 70, 75, 85, 87, 94, 106, 111, 121, 123], "maker": [29, 48, 88, 124], "malaria": 31, "male": [44, 85, 121], "manag": [1, 27, 30, 31, 32, 34, 48, 53, 73, 75, 76, 78, 88, 89, 109, 111, 112, 114, 124], "mandalai": [8, 59, 95], "mandat": [32, 76, 112], "mani": [1, 4, 5, 9, 14, 17, 19, 21, 22, 25, 28, 29, 30, 31, 32, 33, 34, 42, 45, 49, 53, 56, 57, 60, 63, 65, 67, 68, 69, 71, 74, 75, 76, 77, 78, 83, 86, 89, 92, 93, 96, 99, 101, 103, 104, 105, 107, 110, 111, 112, 113, 114, 119, 122], "maniku": 51, "manner": [4, 56, 92], "manual": [44, 45, 85, 86, 121, 122], "manufactur": [10, 26, 61, 72, 97, 108], "map": [31, 32, 46, 47, 48, 87, 88, 123, 124], "march": [27, 44, 73, 85, 109, 121], "margin": [1, 3, 5, 7, 14, 15, 17, 19, 25, 26, 27, 36, 49, 53, 55, 57, 58, 63, 64, 65, 67, 71, 72, 73, 79, 89, 91, 93, 94, 99, 100, 101, 103, 107, 108, 109, 115], "marijn": [22, 52, 69, 105], "marin": [1, 53, 89], "mark": [27, 37, 49, 73, 80, 109, 116], "market": [2, 5, 7, 8, 9, 12, 13, 14, 15, 25, 26, 27, 32, 33, 36, 39, 48, 49, 54, 57, 58, 59, 60, 62, 63, 64, 71, 72, 73, 76, 77, 79, 81, 88, 90, 93, 94, 95, 96, 98, 99, 100, 107, 108, 109, 112, 113, 115, 117, 124], "market_suppli": [7, 58, 94], "massiv": [1, 27, 53, 73, 89, 109], "match": [1, 15, 18, 45, 53, 64, 66, 86, 89, 100, 102, 122], "materi": [1, 7, 53, 58, 89, 94], "math": [9, 26, 42, 60, 72, 83, 96, 108, 119], "mathemat": [1, 13, 17, 24, 26, 29, 33, 42, 44, 53, 65, 70, 72, 77, 83, 85, 89, 101, 106, 108, 113, 119, 121], "mathematician": [27, 73, 109], "mathrm": [26, 72, 108], "matplotlib": [46, 87, 88, 123, 124], "matpri": [46, 47, 48, 87, 88, 123, 124], "matrix": [14, 27, 42, 45, 63, 73, 83, 86, 99, 109, 119, 122], "matter": [1, 15, 30, 31, 33, 53, 64, 75, 77, 89, 100, 111, 113], "matthew": 51, "max": [5, 14, 19, 57, 63, 67, 93, 99, 103], "maxim": [1, 3, 5, 10, 14, 20, 21, 25, 26, 27, 28, 48, 53, 55, 57, 61, 63, 68, 71, 72, 73, 74, 88, 89, 91, 93, 97, 99, 104, 107, 108, 109, 110, 124], "maxima": [27, 73, 109], "maximis": [1, 7, 8, 53, 58, 59, 89, 94, 95], "maximum": [1, 12, 14, 19, 27, 32, 53, 62, 63, 67, 73, 76, 89, 98, 99, 103, 109, 112], "maximun": [5, 57, 93], "mayb": [5, 14, 17, 25, 57, 63, 65, 71, 93, 99, 101, 107], "mc": [7, 26, 48, 58, 72, 88, 94, 108, 124], "mckinsei": 49, "mckinsey_curv": [48, 88, 124], "md": [4, 56, 92], "me": [4, 21, 39, 40, 56, 68, 81, 82, 92, 104, 117, 118], "meal": [5, 57, 93], "mean": [2, 3, 4, 5, 10, 14, 15, 16, 17, 18, 19, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, 36, 39, 42, 43, 45, 54, 55, 56, 57, 61, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 81, 83, 84, 86, 90, 91, 92, 93, 97, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 115, 117, 119, 120, 122], "mean_squared_error": [42, 44, 83, 85, 119, 121], "meant": [22, 69, 105], "measur": [1, 2, 4, 5, 10, 15, 17, 18, 21, 22, 23, 31, 33, 42, 43, 44, 48, 53, 54, 56, 57, 61, 64, 65, 66, 68, 69, 77, 83, 84, 85, 88, 89, 90, 92, 93, 97, 100, 101, 102, 104, 105, 113, 119, 120, 121, 124], "mechan": [1, 53, 89], "media": [22, 24, 69, 70, 105, 106], "medicin": [31, 41], "meet": [10, 32, 61, 76, 97, 112], "megawatt": [8, 59, 95], "melvin": [27, 73, 109], "member": [22, 26, 27, 32, 69, 72, 73, 76, 105, 108, 109, 112], "membership": [22, 69, 105], "men": [1, 53, 89], "mention": [25, 32, 39, 44, 71, 76, 81, 85, 107, 112, 117, 121], "menu": [37, 80, 116], "merril": [27, 73, 109], "met": [5, 48, 57, 88, 93, 124], "metallurg": [1, 53, 89], "methan": 49, "methane_tax": [48, 88, 124], "method": [1, 4, 5, 13, 14, 15, 28, 29, 42, 45, 53, 56, 57, 63, 64, 74, 83, 86, 89, 92, 93, 99, 100, 110, 119, 122], "methodologi": [31, 46, 47, 48, 87, 88, 123, 124], "metric": 31, "mgmt": [1, 53, 89], "michael": 31, "micro": [1, 53, 89], "microeconom": 51, "microwav": [5, 57, 93], "mid": [5, 57, 93], "middl": [1, 5, 22, 45, 46, 47, 53, 57, 69, 86, 87, 89, 93, 105, 122, 123], "might": [1, 2, 4, 5, 8, 14, 25, 30, 31, 33, 39, 40, 42, 44, 48, 53, 54, 56, 57, 59, 63, 71, 75, 77, 81, 82, 83, 85, 87, 88, 89, 90, 92, 93, 95, 99, 107, 111, 113, 117, 118, 119, 121, 123, 124], "miguel": 31, "mil16": 52, "milanov": 52, "mile": [30, 75, 111], "mileag": [30, 75, 111], "miles_to_empti": [30, 75, 111], "million": [26, 31, 72, 108], "mimic": [18, 66, 102], "min": [48, 88, 124], "mind": [1, 4, 14, 15, 21, 27, 42, 44, 53, 56, 63, 64, 68, 73, 83, 85, 89, 92, 99, 100, 104, 109, 119, 121], "mine": [1, 14, 53, 63, 89, 99], "miner": [1, 53, 89], "minim": [1, 7, 14, 27, 42, 44, 53, 58, 63, 73, 83, 85, 89, 94, 99, 109, 119, 121], "minima": [7, 58, 94], "minimis": [7, 58, 94], "minimum": [8, 12, 14, 59, 62, 63, 95, 98, 99], "minu": [1, 7, 31, 53, 58, 89, 94], "mirror": [14, 15, 63, 64, 99, 100], "mislead": [4, 42, 56, 83, 92, 119], "miss": [39, 81, 117], "mix": [28, 74, 110], "model": [0, 1, 2, 4, 15, 16, 17, 19, 21, 25, 26, 27, 30, 31, 33, 36, 37, 42, 44, 45, 46, 47, 48, 49, 53, 54, 56, 64, 65, 67, 68, 71, 72, 73, 75, 77, 79, 80, 83, 85, 86, 87, 88, 89, 90, 92, 100, 101, 103, 104, 107, 108, 109, 111, 113, 115, 116, 119, 121, 122, 123, 124], "moder": [15, 64, 100], "modern": [17, 65, 101], "modifi": [1, 53, 89], "modul": [30, 75, 111], "mohav": [8, 59, 95], "moment": [1, 5, 14, 53, 57, 63, 89, 93, 99], "monei": [1, 2, 5, 7, 19, 32, 33, 34, 36, 37, 38, 39, 53, 54, 57, 58, 67, 76, 77, 78, 79, 80, 81, 89, 90, 93, 94, 103, 112, 113, 114, 115, 116, 117], "monetar": [34, 78, 114], "monetari": [15, 17, 32, 33, 34, 35, 36, 37, 64, 65, 76, 77, 78, 79, 80, 100, 101, 112, 113, 114, 115, 116], "monitor": [32, 76, 112], "monopoli": [25, 26, 27, 71, 72, 73, 107, 108, 109], "monoton": [17, 27, 65, 73, 101, 109], "month": [39, 81, 117], "monthli": [40, 82, 118], "mor11": 52, "more": [1, 2, 3, 4, 5, 7, 8, 10, 12, 14, 15, 17, 18, 19, 21, 22, 24, 25, 27, 30, 31, 32, 33, 36, 37, 39, 40, 41, 42, 44, 46, 47, 48, 49, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 75, 76, 77, 79, 80, 81, 82, 83, 85, 87, 88, 89, 90, 91, 92, 93, 94, 95, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 109, 111, 112, 113, 115, 116, 117, 118, 119, 121, 123, 124], "moreov": [32, 76, 112], "moreso": [10, 15, 61, 64, 97, 100], "morro": [8, 59, 95], "morsi": [22, 52, 69, 105], "mortal": 31, "mortgag": [33, 77, 113], "moss": [8, 59, 95], "most": [2, 5, 14, 18, 19, 21, 22, 27, 29, 30, 31, 32, 33, 38, 39, 40, 43, 44, 45, 46, 47, 48, 54, 57, 63, 66, 67, 68, 69, 73, 75, 76, 77, 81, 82, 84, 85, 86, 87, 88, 90, 93, 99, 102, 103, 104, 105, 109, 111, 112, 113, 117, 118, 120, 121, 122, 123, 124], "mother_colleg": [44, 85, 121], "motiv": [1, 46, 47, 48, 49, 51, 53, 87, 88, 89, 123, 124], "motor": [48, 88, 124], "mountain": [5, 57, 93], "move": [1, 5, 10, 17, 19, 27, 28, 29, 31, 32, 37, 39, 48, 53, 57, 61, 65, 67, 73, 74, 76, 80, 81, 88, 89, 93, 97, 101, 103, 109, 110, 112, 116, 117, 124], "movement": [3, 5, 6, 38, 46, 47, 55, 57, 87, 91, 93, 123], "mpc": [36, 79, 115], "mpg": [30, 75, 111], "mpk": [17, 18, 65, 66, 101, 102], "mpl": [17, 18, 65, 66, 101, 102], "mq_1": [26, 72, 108], "mq_1q_2": [26, 72, 108], "mq_2": [26, 72, 108], "mr": [26, 72, 108], "mu": [44, 85, 121], "mu_x": [44, 85, 121], "much": [1, 4, 5, 9, 10, 11, 12, 14, 15, 17, 18, 21, 22, 24, 25, 26, 32, 37, 39, 40, 44, 46, 47, 49, 53, 56, 57, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 76, 80, 81, 82, 85, 87, 89, 92, 93, 96, 97, 98, 99, 100, 101, 102, 104, 105, 106, 107, 108, 112, 116, 117, 118, 121, 123], "multi": [43, 84, 120], "multipl": [21, 22, 48, 68, 69, 88, 104, 105, 124], "multipli": [4, 33, 56, 77, 92, 113], "multitask": [39, 81, 117], "multivari": [21, 45, 68, 86, 104, 122], "music": [1, 53, 89], "must": [1, 4, 9, 12, 14, 15, 26, 27, 28, 33, 34, 39, 42, 45, 53, 56, 60, 62, 63, 64, 72, 73, 74, 77, 78, 81, 83, 86, 89, 92, 96, 98, 99, 100, 108, 109, 110, 113, 114, 117, 119, 122], "mute": 2, "mutual": [27, 42, 73, 83, 109, 119], "mw": [8, 59, 95], "mx": [3, 55, 91], "my": [39, 40, 81, 82, 117, 118], "n": [28, 32, 39, 40, 44, 46, 47, 74, 76, 81, 82, 85, 87, 110, 112, 117, 118, 121, 123], "n_": [44, 85, 121], "name": [1, 8, 9, 25, 26, 27, 30, 32, 53, 59, 60, 71, 72, 73, 75, 76, 89, 95, 96, 107, 108, 109, 111, 112], "nan": [22, 46, 47, 69, 87, 105, 123], "nash": [25, 26, 71, 72, 107, 108], "nation": [16, 17, 18, 22, 24, 31, 36, 46, 47, 52, 65, 66, 69, 70, 79, 87, 101, 102, 105, 106, 115, 123], "natur": [1, 4, 5, 14, 15, 18, 31, 32, 39, 44, 53, 56, 57, 63, 64, 66, 76, 81, 85, 89, 92, 93, 99, 100, 102, 112, 117, 121], "naval": [1, 53, 89], "nearbi": [5, 15, 31, 57, 64, 93, 100], "nearli": [5, 57, 93], "necessarili": [14, 15, 18, 42, 63, 64, 66, 83, 99, 100, 102, 119], "need": [1, 7, 8, 14, 17, 21, 25, 26, 29, 30, 31, 32, 34, 36, 39, 40, 42, 44, 53, 58, 59, 63, 65, 68, 71, 72, 75, 76, 78, 79, 81, 82, 83, 85, 89, 94, 95, 99, 101, 104, 107, 108, 111, 112, 114, 115, 117, 118, 119, 121], "neg": [1, 3, 5, 9, 10, 15, 18, 19, 32, 33, 49, 53, 55, 57, 60, 61, 64, 66, 67, 76, 77, 89, 91, 93, 96, 97, 100, 102, 103, 112, 113], "neither": [4, 25, 26, 27, 56, 71, 72, 73, 92, 107, 108, 109], "neoclass": [37, 80, 116], "nest": [19, 21, 67, 68, 103, 104], "net": [12, 46, 47, 48, 62, 87, 88, 98, 123, 124], "netherland": [46, 47, 87, 123], "network": [32, 76, 112], "neumann": 29, "neutral": [3, 31, 55, 91], "never": [1, 24, 28, 39, 53, 70, 74, 81, 89, 106, 110, 117], "new": [4, 10, 22, 23, 30, 31, 32, 37, 40, 44, 48, 52, 56, 61, 69, 75, 76, 80, 82, 85, 88, 92, 97, 105, 111, 112, 116, 118, 121, 124], "new_x": [48, 88, 124], "new_x_group": [48, 88, 124], "newer": [14, 63, 99], "newfound": [48, 88, 124], "newli": [33, 77, 113], "newspap": [32, 76, 112], "next": [4, 5, 9, 10, 17, 18, 27, 32, 40, 45, 56, 57, 60, 61, 65, 66, 73, 76, 82, 86, 92, 93, 96, 97, 101, 102, 109, 112, 118, 122], "ngo": 31, "nicaragua": [46, 47, 87, 123], "nice": [45, 86, 122], "nicer": [30, 75, 111], "nitrou": 49, "nlsy": [42, 44, 83, 85, 119, 121], "nlsy_cleaned_smal": [44, 85, 121], "no_tabl": [46, 47, 87, 123], "nobel": [31, 43, 84, 120], "node": [79, 115], "nogrid": 2, "nois": [44, 85, 121], "nomin": [32, 33, 76, 77, 112, 113], "non": [3, 4, 5, 6, 14, 17, 18, 19, 22, 25, 27, 29, 31, 42, 44, 55, 56, 57, 63, 65, 66, 67, 69, 71, 73, 83, 85, 91, 92, 93, 99, 101, 102, 103, 105, 107, 109, 119, 121], "non_college_job": [1, 53, 89], "none": [9, 10, 27, 30, 60, 61, 73, 75, 96, 97, 109, 111], "nonrobust": [42, 45, 83, 86, 119, 122], "nor": [32, 76, 112], "normal": [5, 12, 27, 39, 40, 44, 45, 57, 62, 73, 81, 82, 85, 86, 93, 98, 109, 117, 118, 121, 122], "norwai": [46, 47], "norwegian": [87, 123], "notabl": [1, 2, 8, 15, 25, 53, 54, 59, 64, 71, 89, 90, 95, 100, 107], "notch": [1, 53, 89], "note": [1, 3, 5, 7, 9, 10, 15, 17, 18, 21, 24, 25, 26, 27, 30, 32, 33, 40, 42, 44, 45, 46, 47, 48, 53, 55, 57, 58, 60, 61, 64, 65, 66, 68, 70, 71, 72, 73, 75, 76, 77, 82, 83, 85, 86, 87, 88, 89, 91, 93, 94, 96, 97, 100, 101, 102, 104, 106, 107, 108, 109, 111, 112, 113, 118, 119, 121, 122, 123, 124], "notebook": [1, 2, 9, 46, 47, 48, 49, 51, 53, 60, 87, 88, 89, 96, 123, 124], "noth": [8, 17, 39, 41, 59, 65, 81, 95, 101, 117], "notic": [1, 3, 5, 7, 14, 15, 17, 18, 19, 22, 28, 39, 40, 42, 44, 53, 55, 57, 58, 63, 64, 65, 66, 67, 69, 74, 81, 82, 83, 85, 89, 91, 93, 94, 99, 100, 101, 102, 103, 105, 110, 117, 118, 119, 121], "notion": [1, 5, 17, 53, 57, 65, 89, 93, 101], "now": [1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 14, 15, 17, 18, 19, 21, 22, 24, 25, 26, 30, 31, 32, 36, 39, 40, 42, 43, 44, 45, 46, 47, 48, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 75, 76, 79, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 111, 112, 115, 117, 118, 119, 120, 121, 122, 123, 124], "np": [3, 4, 6, 10, 14, 22, 24, 39, 42, 44, 46, 47, 48, 55, 56, 61, 63, 69, 70, 81, 83, 85, 87, 88, 91, 92, 97, 99, 105, 106, 117, 119, 121, 123, 124], "nt": [40, 82, 118], "nuclear": [1, 53, 89], "null": [45, 86, 122], "number": [5, 10, 14, 15, 17, 22, 24, 26, 27, 30, 31, 39, 44, 45, 46, 47, 57, 61, 63, 64, 65, 69, 70, 72, 73, 75, 81, 85, 86, 87, 93, 97, 99, 100, 101, 105, 106, 108, 109, 111, 117, 121, 122, 123], "numer": [21, 29, 68, 104], "numpi": [3, 10, 30, 39, 45, 46, 55, 61, 75, 81, 86, 87, 88, 91, 97, 111, 117, 122, 123, 124], "nutrit": [1, 53, 89], "nx": [34, 78, 114], "ny": [10, 61, 97], "o": [42, 83, 119], "obj": [30, 75, 111], "object": [30, 75, 111], "oblig": [39, 81, 117], "observ": [1, 4, 8, 10, 22, 24, 27, 32, 33, 42, 44, 45, 46, 47, 48, 53, 56, 59, 61, 69, 70, 73, 76, 77, 83, 85, 86, 87, 88, 89, 92, 95, 97, 105, 106, 109, 112, 113, 119, 121, 122, 123, 124], "obtain": [1, 2, 25, 26, 27, 28, 53, 54, 71, 72, 73, 74, 89, 90, 107, 108, 109, 110], "obviou": [39, 81, 117], "occas": [32, 76, 112], "occup": [1, 53, 89], "occur": [2, 14, 15, 18, 25, 27, 28, 29, 36, 39, 48, 54, 63, 64, 66, 71, 73, 74, 79, 81, 88, 90, 99, 100, 102, 107, 109, 110, 115, 117, 124], "occurr": [28, 74, 110], "oecd": [22, 69, 105], "off": [1, 9, 14, 25, 32, 37, 39, 44, 46, 47, 53, 60, 63, 71, 76, 80, 81, 85, 87, 89, 96, 99, 107, 112, 116, 117, 121, 123], "offer": [5, 7, 28, 39, 48, 57, 58, 74, 81, 88, 93, 94, 110, 117, 124], "offici": [22, 27, 69, 73, 105, 109], "offset": [5, 7, 15, 22, 57, 58, 64, 69, 93, 94, 100, 105], "offshor": [48, 88, 124], "often": [1, 15, 22, 23, 24, 32, 33, 34, 37, 43, 49, 53, 64, 69, 70, 76, 77, 78, 80, 84, 89, 100, 105, 106, 112, 113, 114, 116, 120], "oh": [22, 69, 105], "oil": [27, 32, 48, 49, 73, 76, 88, 109, 112, 124], "okai": [1, 53, 89], "okun": [32, 76, 112], "ol": [42, 44, 45, 83, 85, 86, 119, 121, 122], "old": [1, 8, 15, 31, 53, 59, 64, 89, 95, 100], "older": [14, 48, 63, 88, 99, 124], "oligarch": [22, 69, 105], "oligopoli": [25, 26, 29, 71, 72, 107, 108], "omit": [1, 3, 4, 8, 10, 22, 24, 42, 44, 45, 46, 47, 48, 53, 55, 56, 59, 61, 69, 70, 83, 85, 86, 87, 88, 89, 91, 92, 95, 97, 105, 106, 119, 121, 122, 123, 124], "omnibu": [42, 45, 83, 86, 119, 122], "onc": [1, 4, 15, 17, 18, 30, 53, 56, 64, 65, 66, 75, 89, 92, 100, 101, 102, 111], "one": [1, 2, 3, 4, 5, 7, 8, 14, 17, 18, 19, 21, 22, 25, 26, 27, 28, 29, 30, 31, 33, 35, 37, 39, 40, 41, 42, 44, 46, 47, 48, 49, 53, 54, 55, 56, 57, 58, 59, 63, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 77, 80, 81, 82, 83, 85, 87, 88, 89, 90, 91, 92, 93, 94, 95, 99, 101, 102, 103, 104, 105, 107, 108, 109, 110, 111, 113, 116, 117, 118, 119, 121, 123, 124], "ones": [29, 31, 33, 77, 113], "ongo": [37, 80, 116], "onli": [1, 4, 5, 7, 10, 14, 15, 17, 19, 21, 22, 25, 26, 27, 28, 29, 30, 31, 33, 34, 36, 38, 39, 40, 41, 42, 44, 48, 49, 53, 56, 57, 58, 61, 63, 64, 65, 67, 68, 69, 71, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 85, 88, 89, 92, 93, 94, 97, 99, 100, 101, 103, 104, 105, 107, 108, 109, 110, 111, 113, 114, 115, 117, 118, 119, 121, 124], "onshor": [48, 88, 124], "onto": [15, 39, 40, 42, 44, 64, 81, 82, 83, 85, 100, 117, 118, 119, 121], "op": [1, 53, 89], "opec": [26, 27, 72, 73, 108, 109], "open": [12, 32, 39, 62, 76, 81, 98, 112, 117], "oper": [12, 14, 17, 25, 32, 48, 62, 63, 65, 71, 76, 88, 98, 99, 101, 107, 112, 124], "opportun": [1, 14, 22, 33, 36, 39, 48, 53, 63, 69, 77, 79, 81, 88, 89, 99, 105, 113, 115, 117, 124], "oppos": [5, 14, 27, 39, 42, 57, 63, 73, 81, 83, 93, 99, 109, 117, 119], "opposit": [1, 5, 14, 15, 18, 34, 36, 39, 40, 42, 53, 57, 63, 64, 66, 78, 79, 81, 82, 83, 89, 93, 99, 100, 102, 114, 115, 117, 118, 119], "opt": [39, 81, 117], "optim": [10, 25, 26, 48, 49, 61, 71, 72, 88, 97, 107, 108, 124], "optimist": [37, 80, 116], "optimum": 49, "option": [1, 5, 27, 28, 32, 37, 38, 48, 53, 57, 73, 74, 76, 80, 88, 89, 93, 109, 110, 112, 116, 124], "orang": [10, 18, 21, 26, 36, 61, 66, 68, 72, 97, 102, 104, 108], "oranges_raw": [10, 61, 97], "order": [0, 1, 22, 26, 28, 31, 32, 33, 39, 40, 44, 53, 69, 72, 74, 76, 77, 81, 82, 85, 89, 105, 108, 110, 112, 113, 117, 118, 121], "ordinari": [43, 84, 120], "organ": [3, 4, 22, 27, 55, 56, 69, 73, 91, 92, 105, 109], "orient": [30, 75, 111], "origin": [2, 3, 4, 15, 22, 29, 37, 44, 48, 54, 55, 56, 64, 69, 80, 85, 88, 90, 91, 92, 100, 105, 116, 121, 124], "ormond": [8, 59, 95], "other": [1, 2, 3, 4, 9, 10, 14, 15, 17, 18, 19, 21, 22, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 39, 40, 41, 42, 44, 46, 47, 48, 53, 54, 55, 56, 60, 61, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 81, 82, 83, 85, 87, 88, 89, 90, 91, 92, 96, 97, 99, 100, 101, 102, 103, 104, 105, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 119, 121, 123, 124], "other_incom": [1, 53, 89], "otherwis": [12, 14, 25, 39, 40, 42, 44, 62, 63, 71, 81, 82, 83, 85, 98, 99, 107, 117, 118, 119, 121], "ought": [46, 47, 48, 87, 88, 123, 124], "our": [1, 3, 4, 5, 7, 9, 10, 12, 14, 15, 18, 19, 21, 22, 24, 28, 30, 32, 33, 34, 38, 42, 43, 44, 45, 48, 49, 51, 53, 55, 56, 57, 58, 60, 61, 62, 63, 64, 66, 67, 68, 69, 70, 74, 75, 76, 77, 78, 83, 84, 85, 86, 88, 89, 91, 92, 93, 94, 96, 97, 98, 99, 100, 102, 103, 104, 105, 106, 110, 111, 112, 113, 114, 119, 120, 121, 122, 124], "ourselv": [29, 43, 44, 46, 47, 84, 85, 87, 120, 121, 123], "out": [1, 2, 5, 9, 10, 14, 15, 18, 22, 28, 30, 31, 32, 33, 39, 40, 42, 44, 45, 46, 47, 48, 53, 54, 57, 60, 61, 63, 64, 66, 69, 74, 75, 76, 77, 81, 82, 83, 85, 86, 87, 88, 89, 90, 93, 96, 97, 99, 100, 102, 105, 110, 111, 112, 113, 117, 118, 119, 121, 122, 123, 124], "outcom": [1, 6, 11, 16, 20, 23, 25, 28, 31, 41, 42, 45, 48, 49, 53, 71, 74, 83, 86, 88, 89, 107, 110, 119, 122, 124], "outearn": [1, 53, 89], "outlier": [1, 53, 89], "outlin": [32, 76, 112], "outlook": [32, 76, 112], "output": [0, 7, 8, 16, 17, 21, 25, 26, 27, 32, 33, 34, 36, 58, 59, 65, 68, 71, 72, 73, 76, 77, 78, 79, 94, 95, 101, 104, 107, 108, 109, 112, 113, 114, 115], "outsid": [2, 30, 33, 54, 75, 77, 90, 111, 113], "outward": [10, 61, 97], "outweight": [1, 53, 89], "oven": [17, 65, 101], "over": [2, 4, 5, 10, 16, 22, 23, 28, 31, 32, 33, 39, 42, 44, 48, 54, 56, 57, 61, 69, 74, 76, 77, 81, 83, 85, 88, 90, 92, 93, 97, 105, 110, 112, 113, 117, 119, 121, 124], "overal": [1, 2, 14, 15, 22, 31, 33, 39, 53, 54, 63, 64, 69, 77, 81, 89, 90, 99, 100, 105, 113, 117], "overestim": [48, 88, 124], "overh": [34, 78, 114], "overkil": [17, 65, 101], "overlaid": 39, "overrepres": [33, 77, 113], "overse": [32, 76, 112], "overseen": [32, 76, 112], "oversimpl": [1, 53, 89], "oversimplifc": [1, 53, 89], "overst": [1, 33, 53, 77, 89, 113], "overtak": [1, 26, 53, 72, 89, 108], "overview": [13, 34, 78, 114], "ow": [40, 82, 118], "own": [5, 10, 17, 21, 24, 25, 26, 27, 32, 33, 39, 48, 49, 57, 61, 65, 68, 70, 71, 72, 73, 76, 77, 81, 88, 93, 97, 101, 104, 106, 107, 108, 109, 112, 113, 117, 124], "owner": [7, 58, 94], "ownership": [22, 69, 105], "oxford": [22, 69, 105], "oxid": 49, "oz": [25, 71, 107], "p": [3, 4, 5, 9, 10, 14, 15, 17, 25, 26, 32, 39, 42, 45, 55, 56, 57, 60, 61, 63, 64, 65, 71, 72, 76, 81, 83, 86, 91, 92, 93, 96, 97, 99, 100, 101, 107, 108, 112, 117, 119, 122], "p0p50": [22, 69, 105], "p1": [5, 57, 93], "p2": [5, 57, 93], "p25th": [1, 53, 89], "p500": [39, 81, 117], "p75th": [1, 53, 89], "p90p100": [22, 69, 105], "p99p100": [22, 69, 105], "p_": [5, 9, 57, 60, 93, 96], "p_1": [2, 5, 19, 25, 28, 54, 57, 67, 71, 74, 90, 93, 103, 107, 110], "p_1_prime": [25, 71, 107], "p_1x_1": [19, 67, 103], "p_2": [2, 5, 19, 25, 28, 54, 57, 67, 71, 74, 90, 93, 103, 107, 110], "p_2x_2": [19, 67, 103], "p_c": [15, 64, 100], "p_d": [9, 60, 96], "p_i": [28, 74, 110], "p_m": [25, 71, 107], "p_p": [15, 64, 100], "p_star": [10, 61, 97], "pacif": [48, 88, 124], "packag": [39, 44, 45, 46, 81, 85, 86, 87, 88, 117, 121, 122, 123, 124], "packet": [15, 64, 100], "page": [0, 4, 22, 31, 46, 47, 48, 56, 69, 87, 88, 92, 105, 123, 124], "pai": [1, 2, 5, 9, 12, 14, 15, 22, 39, 40, 48, 49, 53, 54, 57, 60, 62, 63, 64, 69, 81, 82, 88, 89, 90, 93, 96, 98, 99, 100, 105, 117, 118, 124], "paid": [9, 12, 14, 15, 39, 40, 60, 62, 63, 64, 81, 82, 96, 98, 99, 100, 117, 118], "pakistan": [46, 47, 87, 123], "palat": [5, 57, 93], "palett": 2, "panda": [39, 46, 81, 87, 88, 117, 123, 124], "pandem": [27, 32, 73, 76, 109, 112], "panel": 36, "paper": [2, 22, 37, 69, 80, 105, 116], "paradigm": [27, 29, 73, 109], "param": [44, 85, 121], "paramet": [3, 24, 26, 42, 44, 55, 70, 72, 83, 85, 91, 106, 108, 119, 121], "parasit": 31, "parent": [1, 22, 33, 53, 69, 77, 89, 105, 113], "paribu": [2, 54, 90], "part": [1, 4, 15, 17, 22, 24, 31, 32, 33, 39, 46, 47, 53, 56, 64, 65, 69, 70, 76, 77, 81, 87, 89, 92, 100, 101, 105, 106, 112, 113, 117, 123], "part_tim": [1, 53, 89], "parti": [15, 64, 100], "partial": [17, 21, 26, 65, 68, 72, 101, 104, 108], "particip": [13, 14, 15, 25, 26, 27, 41, 48, 63, 64, 71, 72, 73, 88, 99, 100, 107, 108, 109, 124], "particular": [1, 5, 7, 8, 15, 29, 32, 39, 40, 42, 44, 53, 57, 58, 59, 64, 76, 81, 82, 83, 85, 89, 93, 94, 95, 100, 112, 117, 118, 119, 121], "particularli": [4, 32, 42, 56, 76, 83, 92, 112, 119], "partli": [1, 53, 89], "pass": [9, 15, 37, 46, 47, 60, 64, 80, 87, 96, 100, 116, 123], "past": [1, 22, 53, 69, 89, 105], "pastel": 2, "patch": [7, 46, 58, 87, 88, 94, 123, 124], "patent": [17, 65, 101], "path": [46, 47, 87, 123], "pathwai": [17, 46, 47, 49, 51, 65, 87, 101, 123], "pattern": [5, 57, 93], "paul": [32, 76, 112], "payment": [31, 39, 40, 81, 82, 117, 118], "payoff": 29, "pct": [4, 56, 92], "pd": [46, 48, 87, 88, 123, 124], "pdf": [46, 47, 48, 87, 88, 123, 124], "peach": [10, 61, 97], "peak": [22, 46, 47, 69, 87, 105, 123], "peanut": [5, 57, 93], "pear": [10, 61, 97], "peculiar": [1, 53, 89], "pedagog": 31, "peer": [14, 63, 99], "pen": [48, 88, 124], "peopl": [1, 2, 5, 22, 31, 32, 33, 36, 37, 39, 41, 42, 44, 48, 53, 54, 57, 69, 76, 77, 79, 80, 81, 83, 85, 88, 89, 90, 93, 105, 112, 113, 115, 116, 117, 119, 121, 124], "pepsi": [25, 71, 107], "per": [7, 8, 12, 14, 15, 16, 17, 21, 22, 27, 40, 43, 46, 47, 48, 58, 59, 62, 63, 64, 65, 68, 69, 73, 82, 84, 87, 88, 94, 95, 98, 99, 100, 101, 104, 105, 109, 118, 120, 123, 124], "per_consum": [14, 63, 99], "per_produc": [14, 63, 99], "percent": [4, 5, 22, 24, 32, 33, 40, 56, 57, 69, 70, 76, 77, 82, 92, 93, 105, 106, 112, 113, 118], "percentag": [4, 5, 15, 22, 24, 33, 40, 56, 57, 64, 69, 70, 77, 82, 92, 93, 100, 105, 106, 113, 118], "percentil": [1, 22, 24, 44, 53, 69, 70, 85, 89, 105, 106, 121], "perfect": [5, 22, 25, 26, 29, 44, 57, 69, 71, 72, 85, 93, 105, 107, 108, 121], "perfectli": [5, 14, 57, 63, 93, 99], "perform": [30, 33, 41, 42, 44, 45, 75, 77, 83, 85, 86, 111, 113, 119, 121, 122], "perhap": [1, 4, 8, 15, 22, 48, 53, 56, 59, 64, 69, 88, 89, 92, 95, 100, 105, 124], "period": [1, 2, 7, 17, 22, 31, 33, 37, 39, 40, 46, 47, 53, 54, 58, 65, 69, 77, 80, 81, 82, 87, 89, 90, 94, 101, 105, 113, 116, 117, 118, 123], "perman": [46, 47, 87, 123], "persist": [37, 80, 116], "person": [1, 14, 17, 22, 27, 30, 33, 36, 39, 41, 42, 44, 53, 63, 65, 69, 73, 75, 77, 79, 81, 83, 85, 89, 99, 101, 105, 109, 111, 113, 115, 117, 119, 121], "perspect": [5, 39, 48, 57, 81, 88, 93, 117, 124], "peter": [48, 51, 88, 124], "petroleum": [1, 27, 53, 73, 89, 109], "phd": 31, "phenomenom": [2, 54, 90], "phenomenon": [1, 4, 8, 24, 53, 56, 59, 70, 89, 92, 95, 106], "phew": [26, 72, 108], "physic": [1, 17, 53, 65, 89, 101], "pi": [32, 37, 76, 80, 112, 116], "pi_1": [26, 72, 108], "pi_2": [26, 72, 108], "pi_t": [32, 76, 112], "pick": [1, 44, 48, 53, 85, 88, 89, 121, 124], "pictur": [15, 48, 64, 88, 100, 124], "piec": [28, 45, 74, 86, 110, 122], "piecewis": [25, 71, 107], "pigouvian": [48, 88, 124], "piketti": [22, 69, 105], "pill": 31, "pilot": 31, "pin": [37, 80, 116], "pip": [39, 81, 117], "pittsburgh": [8, 59, 95], "pivot": 38, "pizza": [5, 17, 21, 57, 65, 68, 93, 101, 104], "place": [4, 5, 14, 30, 34, 39, 48, 56, 57, 63, 75, 78, 81, 88, 92, 93, 99, 111, 114, 117, 124], "placebo": 41, "plai": [14, 27, 28, 32, 33, 63, 73, 74, 76, 77, 99, 109, 110, 112, 113], "plan": [32, 76, 112], "plane": [19, 42, 67, 83, 103, 119], "planet": [46, 47, 48, 87, 88, 123, 124], "plant": [8, 14, 31, 46, 47, 48, 59, 63, 87, 88, 95, 99, 123, 124], "plate": [32, 76, 112], "player": [26, 27, 28, 29, 72, 73, 74, 108, 109, 110], "pleijt": [22, 52, 69, 105], "plenti": [5, 57, 93], "plot": [1, 3, 4, 5, 7, 8, 9, 10, 15, 17, 18, 19, 21, 22, 24, 27, 39, 42, 44, 46, 47, 48, 53, 55, 56, 57, 58, 59, 60, 61, 64, 65, 66, 67, 68, 69, 70, 73, 81, 83, 85, 87, 88, 89, 91, 92, 93, 94, 95, 96, 97, 100, 101, 102, 103, 104, 105, 106, 109, 117, 119, 121, 123, 124], "plot_equ": [9, 10, 60, 61, 96, 97], "plot_intercept": [9, 10, 60, 61, 96, 97], "plot_pric": [9, 10, 60, 61, 96, 97], "plot_quant": [9, 10, 60, 61, 96, 97], "plt": [2, 3, 5, 9, 10, 22, 46, 47, 48, 55, 57, 60, 61, 69, 87, 88, 91, 93, 96, 97, 105, 123, 124], "plu": [22, 36, 69, 79, 105, 115], "plug": [9, 15, 32, 44, 60, 64, 76, 85, 96, 100, 112, 121], "plum": [10, 61, 97], "point": [3, 4, 5, 7, 8, 9, 10, 14, 19, 21, 22, 24, 28, 30, 33, 36, 39, 42, 44, 46, 47, 48, 55, 56, 57, 58, 59, 60, 61, 63, 67, 68, 69, 70, 74, 75, 77, 79, 81, 83, 85, 87, 88, 91, 92, 93, 94, 95, 96, 97, 99, 103, 104, 105, 106, 110, 111, 113, 115, 117, 119, 121, 123, 124], "point_1": [30, 75, 111], "point_2": [30, 75, 111], "polic": [27, 73, 109], "polici": [13, 17, 22, 26, 32, 33, 36, 37, 46, 47, 48, 49, 65, 69, 72, 76, 77, 79, 80, 87, 88, 101, 105, 108, 112, 113, 115, 116, 123, 124], "policymak": [18, 37, 48, 66, 80, 88, 102, 116, 124], "polit": [32, 76, 112], "politician": [24, 70, 106], "pollut": [15, 46, 47, 48, 49, 64, 87, 88, 100, 123, 124], "polyfit": [3, 4, 6, 10, 55, 56, 61, 91, 92, 97], "polynomi": [3, 55, 91], "pool": [37, 80, 116], "poorer": [22, 69, 105], "poorest": [22, 69, 105], "pop_growth": [22, 69, 105], "popul": [1, 24, 31, 33, 43, 44, 46, 47, 52, 53, 70, 77, 84, 85, 87, 89, 106, 113, 120, 121, 123], "popular": [1, 15, 29, 45, 53, 64, 86, 89, 100, 122], "portfilio": [8, 59, 95], "portfolio": [39, 81, 117], "portion": [22, 39, 69, 81, 105, 117], "posit": [1, 3, 5, 15, 22, 24, 25, 31, 32, 33, 36, 39, 44, 46, 47, 48, 53, 55, 57, 64, 69, 70, 71, 76, 77, 79, 81, 85, 87, 88, 89, 91, 93, 100, 105, 106, 107, 112, 113, 115, 117, 121, 123, 124], "possess": [22, 69, 105], "possibl": [1, 4, 17, 19, 25, 26, 27, 28, 39, 40, 42, 48, 51, 53, 56, 65, 67, 71, 72, 73, 74, 81, 82, 83, 88, 89, 92, 101, 103, 107, 108, 109, 110, 117, 118, 119, 124], "post": [1, 15, 22, 39, 53, 64, 69, 81, 89, 100, 105, 117], "poster": [2, 15, 64, 100], "postpon": [40, 82, 118], "potenti": [1, 22, 32, 36, 39, 42, 46, 47, 48, 53, 69, 76, 79, 81, 83, 87, 88, 89, 105, 112, 115, 117, 119, 123, 124], "poverti": [31, 34, 78, 114], "powel": [32, 76, 112], "power": [2, 3, 8, 10, 14, 17, 26, 44, 46, 47, 48, 54, 55, 59, 61, 63, 65, 72, 85, 87, 88, 90, 91, 95, 97, 99, 101, 108, 121, 123, 124], "pq_1": [26, 72, 108], "pq_2": [26, 72, 108], "practic": [10, 32, 61, 76, 97, 112], "pre": [10, 37, 39, 61, 80, 81, 97, 116, 117], "precipit": [27, 73, 109], "precis": [36, 44, 79, 85, 115, 121], "pred": [42, 44, 83, 85, 119, 121], "predict": [10, 25, 42, 43, 44, 48, 61, 71, 83, 84, 85, 88, 97, 107, 119, 120, 121, 124], "prefer": [2, 5, 10, 14, 21, 28, 36, 54, 57, 61, 63, 68, 74, 79, 90, 93, 97, 99, 104, 110, 115], "prep": [17, 65, 101], "prepar": [48, 88, 124], "prescrib": [12, 32, 62, 76, 98, 112], "prescript": [48, 88, 124], "present": [1, 22, 24, 33, 37, 39, 42, 53, 69, 70, 77, 80, 81, 83, 89, 105, 106, 113, 116, 117, 119], "presid": [32, 76, 112], "press": [32, 52, 76, 112], "pressur": [32, 76, 112], "pretti": [1, 14, 32, 33, 39, 44, 53, 63, 76, 77, 81, 85, 89, 99, 112, 113, 117, 121], "prevail": [39, 81, 117], "preval": 29, "prevent": [22, 69, 105], "previou": [2, 3, 4, 7, 10, 15, 21, 22, 32, 39, 45, 54, 55, 56, 58, 61, 64, 68, 69, 76, 81, 86, 90, 91, 92, 94, 97, 100, 104, 105, 112, 117, 122], "previous": [10, 15, 18, 24, 29, 37, 46, 47, 61, 64, 66, 70, 80, 87, 97, 100, 102, 106, 116, 123], "price": [2, 4, 5, 6, 7, 8, 9, 11, 13, 14, 18, 19, 25, 26, 27, 32, 33, 37, 38, 40, 48, 49, 54, 56, 57, 58, 59, 60, 63, 66, 67, 71, 72, 73, 76, 77, 80, 82, 88, 90, 92, 93, 94, 95, 96, 99, 102, 103, 107, 108, 109, 112, 113, 116, 118, 124], "price_end": [9, 10, 60, 61, 96, 97], "price_start": [9, 10, 60, 61, 96, 97], "primari": [15, 31, 64, 100], "primarili": [31, 34, 78, 114], "prime": [27, 73, 109], "princeton": [22, 69, 105], "principl": 20, "print": [2, 3, 4, 5, 14, 30, 44, 48, 55, 56, 57, 63, 75, 85, 88, 91, 92, 93, 99, 111, 121, 124], "priorit": [48, 88, 124], "prison": [27, 29, 73, 109], "privat": [15, 22, 48, 64, 69, 88, 100, 105, 124], "prize": [31, 43, 84, 120], "proabalbi": [5, 57, 93], "prob": [42, 45, 83, 86, 119, 122], "probabl": [1, 3, 4, 5, 14, 15, 17, 28, 32, 33, 39, 42, 53, 55, 56, 57, 63, 64, 65, 74, 76, 77, 81, 83, 89, 91, 92, 93, 99, 100, 101, 110, 112, 113, 117, 119], "problem": [1, 5, 25, 26, 33, 39, 42, 48, 53, 57, 71, 72, 77, 81, 83, 88, 89, 93, 107, 108, 113, 117, 119, 124], "proce": [27, 73, 109], "procedur": [42, 44, 83, 85, 119, 121], "proceed": [1, 53, 89], "process": [26, 31, 33, 37, 45, 72, 77, 80, 86, 108, 113, 116, 122], "produc": [1, 4, 5, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 24, 25, 26, 27, 32, 33, 36, 37, 48, 53, 56, 57, 58, 59, 60, 61, 62, 64, 65, 66, 70, 71, 72, 73, 76, 77, 79, 80, 88, 89, 92, 93, 94, 95, 96, 97, 98, 100, 101, 102, 106, 107, 108, 109, 112, 113, 115, 116, 124], "product": [3, 4, 5, 8, 10, 14, 15, 18, 21, 22, 25, 26, 27, 32, 34, 44, 48, 55, 56, 57, 59, 61, 63, 64, 66, 68, 69, 71, 72, 73, 76, 78, 85, 88, 91, 92, 93, 95, 97, 99, 100, 102, 104, 105, 107, 108, 109, 112, 114, 121, 124], "professor": [17, 22, 28, 31, 32, 43, 65, 69, 74, 76, 84, 101, 105, 110, 112, 120], "profit": [5, 7, 8, 15, 18, 25, 31, 39, 48, 57, 58, 59, 64, 66, 71, 81, 88, 93, 94, 95, 100, 102, 107, 117, 124], "profound": [1, 4, 53, 56, 89, 92], "program": [1, 30, 31, 46, 47, 48, 51, 53, 75, 87, 88, 89, 111, 123, 124], "programm": [1, 53, 89], "progress": [22, 69, 105], "prohibit": [14, 48, 63, 88, 99, 124], "project": [1, 17, 31, 33, 48, 53, 65, 77, 88, 89, 101, 113, 124], "promot": [4, 22, 31, 32, 34, 56, 69, 76, 78, 92, 105, 112, 114], "prompt": [32, 76, 112], "propens": [36, 79, 115], "properli": 31, "properti": [5, 6, 15, 17, 19, 21, 22, 57, 64, 65, 67, 68, 69, 93, 100, 101, 103, 104, 105], "proport": [7, 15, 17, 49, 58, 64, 65, 94, 100, 101], "proportion": [44, 85, 121], "propos": [26, 32, 44, 72, 76, 85, 108, 112, 121], "protect": [17, 22, 31, 65, 69, 101, 105], "proud": [1, 53, 89], "prove": [3, 14, 18, 44, 55, 63, 66, 85, 91, 99, 102, 121], "provid": [1, 4, 6, 9, 10, 12, 17, 21, 22, 24, 27, 30, 31, 32, 39, 45, 53, 56, 60, 61, 62, 65, 68, 69, 70, 73, 75, 76, 81, 86, 89, 92, 96, 97, 98, 101, 104, 105, 106, 109, 111, 112, 117, 122], "proxi": [42, 83, 119], "psychologi": [1, 53, 89], "public": [22, 48, 51, 69, 88, 105, 124], "publish": [1, 53, 89], "pull": [1, 7, 53, 58, 89, 94], "puls": [5, 57, 93], "pump": [48, 88, 124], "purbl": [18, 66, 102], "purchas": [2, 3, 7, 9, 10, 12, 15, 17, 31, 38, 39, 54, 55, 58, 60, 61, 62, 64, 65, 81, 90, 91, 94, 96, 97, 98, 100, 101, 117], "pure": [1, 12, 28, 46, 47, 48, 49, 53, 62, 74, 87, 88, 89, 98, 110, 123, 124], "purifi": 31, "purpl": [18, 39, 66, 81, 102, 117], "purpos": [26, 27, 31, 33, 44, 72, 73, 77, 85, 108, 109, 113, 121], "pursu": [1, 48, 53, 88, 89, 124], "push": [5, 12, 15, 25, 48, 57, 62, 64, 71, 88, 93, 98, 100, 107, 124], "put": [14, 18, 26, 28, 30, 44, 48, 63, 66, 72, 74, 75, 85, 88, 99, 102, 108, 110, 111, 121, 124], "pv": [40, 82, 118], "pyle": 51, "pyplot": [46, 87, 88, 123, 124], "python": [9, 26, 39, 45, 51, 60, 72, 81, 86, 96, 108, 117, 122], "python3": [39, 81, 117], "pytz": [39, 81, 117], "q": [3, 5, 9, 10, 15, 25, 26, 55, 57, 60, 61, 64, 71, 72, 91, 93, 96, 97, 100, 107, 108], "q1": [5, 26, 57, 72, 93, 108], "q1_br_2": [26, 72, 108], "q2": [5, 26, 57, 72, 93, 108], "q_": [5, 10, 12, 57, 61, 62, 93, 97, 98], "q_1": [2, 5, 26, 54, 57, 72, 90, 93, 108], "q_1_star": [26, 72, 108], "q_2": [2, 5, 26, 54, 57, 72, 90, 93, 108], "q_2_star": [26, 72, 108], "q_d": [10, 12, 61, 62, 97, 98], "q_m": [25, 71, 107], "q_star": [9, 60, 96], "qquad": [44, 85, 121], "quad": [15, 21, 64, 68, 100, 104], "qualiti": [46, 47, 87, 123], "quantifi": [3, 10, 24, 40, 44, 48, 55, 61, 70, 82, 85, 88, 91, 97, 106, 118, 121, 124], "quantit": [7, 24, 58, 70, 94, 106], "quantiti": [2, 4, 5, 7, 8, 9, 12, 19, 25, 26, 46, 47, 48, 49, 54, 56, 57, 58, 59, 60, 62, 67, 71, 72, 87, 88, 90, 92, 93, 94, 95, 96, 98, 103, 107, 108, 123, 124], "quarter": [33, 77, 113], "quarterli": [40, 82, 118], "question": [1, 5, 7, 37, 40, 41, 44, 46, 47, 53, 57, 58, 80, 82, 85, 87, 89, 93, 94, 116, 118, 121, 123], "questionnair": [1, 53, 89], "quick": [3, 55, 91], "quickli": [7, 39, 40, 58, 81, 82, 94, 117, 118], "quit": [3, 26, 32, 33, 39, 55, 72, 76, 77, 81, 91, 108, 112, 113, 117], "quot": [40, 82, 118], "quota": 49, "r": [17, 25, 39, 40, 42, 44, 45, 48, 65, 71, 81, 82, 83, 85, 86, 88, 101, 107, 117, 118, 119, 121, 122, 124], "r_": [39, 81, 117], "r_t": [32, 33, 76, 77, 112, 113], "railwai": [5, 57, 93], "rais": [5, 17, 25, 26, 37, 57, 65, 71, 72, 80, 93, 101, 107, 108, 116], "ramp": [7, 58, 94], "randn": [44, 85, 121], "random": [28, 31, 42, 44, 45, 74, 83, 85, 86, 110, 119, 121, 122], "randomli": [28, 31, 41, 42, 74, 83, 110, 119], "rang": [5, 14, 44, 48, 57, 63, 85, 88, 93, 99, 121, 124], "rank": [1, 53, 89], "rapidli": [22, 37, 46, 47, 48, 69, 80, 87, 88, 105, 116, 123, 124], "rate": [12, 14, 17, 18, 24, 31, 32, 36, 37, 38, 39, 48, 62, 63, 65, 66, 70, 76, 79, 80, 81, 88, 98, 99, 101, 102, 106, 112, 115, 116, 117, 124], "rather": [1, 4, 22, 25, 40, 44, 53, 56, 69, 71, 82, 85, 89, 92, 105, 107, 118, 121], "ratio": [24, 29, 46, 47, 70, 87, 106, 123], "ration": [14, 15, 21, 26, 27, 28, 29, 39, 48, 63, 64, 68, 72, 73, 74, 81, 88, 99, 100, 104, 108, 109, 110, 117, 124], "raw": [7, 58, 94], "rct": 31, "re": [1, 5, 21, 25, 28, 30, 32, 42, 48, 53, 57, 68, 71, 74, 75, 76, 83, 87, 88, 89, 93, 104, 107, 110, 111, 112, 119, 123, 124], "reach": [5, 14, 25, 32, 39, 46, 47, 48, 57, 63, 71, 76, 81, 87, 88, 93, 99, 107, 112, 117, 123, 124], "react": [4, 25, 48, 56, 88, 92, 124], "reaction": [25, 71, 107], "read": [24, 70, 106], "read_tabl": [1, 3, 4, 7, 8, 10, 22, 44, 46, 47, 48, 53, 55, 56, 58, 59, 61, 69, 85, 87, 88, 89, 91, 92, 94, 95, 97, 105, 121, 123, 124], "readi": [36, 79, 115], "real": [1, 4, 17, 18, 22, 32, 36, 44, 51, 53, 56, 65, 66, 69, 76, 79, 85, 89, 92, 101, 102, 105, 112, 115, 121], "real_earnings_1999": [44, 85, 121], "realiti": [14, 15, 24, 26, 39, 63, 64, 70, 72, 81, 99, 100, 106, 108, 117], "realiz": [37, 80, 116], "realli": [5, 30, 40, 42, 57, 75, 82, 83, 93, 111, 118, 119], "realm": [1, 53, 89], "rearrang": [17, 65, 101], "reason": [1, 8, 14, 25, 26, 30, 31, 39, 40, 42, 48, 53, 59, 63, 71, 72, 75, 81, 82, 83, 88, 89, 95, 99, 107, 108, 111, 117, 118, 119, 124], "reat": 36, "recal": [1, 4, 10, 18, 25, 26, 32, 33, 39, 44, 45, 53, 56, 61, 66, 71, 72, 76, 77, 81, 85, 86, 89, 92, 97, 102, 107, 108, 112, 113, 117, 121, 122], "recap": [33, 77, 113], "receiv": [2, 9, 15, 21, 24, 27, 31, 36, 39, 40, 41, 48, 54, 60, 64, 68, 70, 73, 79, 81, 82, 88, 90, 96, 100, 104, 106, 109, 115, 117, 118, 124], "recent": [1, 15, 22, 30, 31, 37, 46, 47, 53, 64, 69, 75, 80, 87, 89, 100, 105, 111, 116, 123], "recess": [2, 32, 34, 54, 76, 78, 90, 112, 114], "reciev": [1, 53, 89], "record": [46, 47, 87, 123], "recov": [7, 32, 58, 76, 94, 112], "recruit": 31, "rectangl": [15, 48, 64, 88, 100, 124], "red": [4, 7, 27, 56, 58, 73, 92, 94, 109], "redondo": [8, 59, 95], "reduc": [10, 14, 15, 17, 22, 25, 27, 31, 34, 46, 47, 48, 49, 61, 63, 64, 65, 69, 71, 73, 78, 87, 88, 97, 99, 100, 101, 105, 107, 109, 114, 123, 124], "reduct": [15, 48, 49, 64, 88, 100, 124], "redund": [42, 83, 119], "refer": [1, 7, 8, 10, 17, 18, 24, 27, 30, 33, 53, 58, 59, 61, 65, 66, 70, 73, 75, 77, 89, 94, 95, 97, 101, 102, 106, 109, 111, 113], "referenc": [3, 55, 91], "reflect": [1, 4, 14, 15, 32, 33, 40, 49, 53, 56, 63, 64, 76, 77, 82, 89, 92, 99, 100, 112, 113, 118], "refresh": [3, 55, 91], "refus": [5, 27, 57, 73, 93, 109], "regard": [5, 39, 57, 81, 93, 117], "regardless": [1, 7, 15, 39, 44, 48, 53, 58, 64, 81, 85, 88, 89, 94, 100, 117, 121, 124], "region": [22, 32, 48, 69, 76, 88, 105, 112, 124], "regress": [3, 41, 43, 55, 84, 91, 120], "regul": [8, 32, 59, 76, 95, 112], "regular": [18, 27, 66, 73, 102, 109], "reinforc": [5, 51, 57, 93], "rejoic": [12, 62, 98], "rel": [1, 2, 15, 17, 18, 32, 33, 37, 48, 53, 54, 64, 65, 66, 76, 77, 80, 88, 89, 90, 100, 101, 102, 112, 113, 116, 124], "relabel": [8, 10, 22, 24, 46, 47, 48, 59, 61, 69, 70, 87, 88, 95, 97, 105, 106, 123, 124], "relat": [1, 2, 4, 5, 7, 27, 30, 32, 33, 35, 37, 40, 42, 44, 49, 52, 53, 54, 56, 57, 58, 73, 75, 76, 77, 80, 82, 85, 89, 90, 92, 93, 94, 109, 111, 112, 113, 116, 118, 121], "relationship": [2, 7, 9, 22, 32, 33, 35, 36, 37, 44, 54, 58, 60, 69, 76, 77, 79, 80, 85, 90, 94, 96, 105, 112, 113, 115, 116, 121], "releas": [32, 76, 112], "relev": [1, 10, 23, 32, 42, 48, 53, 61, 76, 83, 88, 89, 97, 112, 119, 124], "reli": [4, 25, 28, 56, 71, 74, 92, 107, 110], "reliabl": [14, 63, 99], "remain": [2, 12, 15, 22, 26, 27, 54, 62, 64, 69, 72, 73, 90, 98, 100, 105, 108, 109], "remark": [37, 80, 116], "rememb": [3, 5, 10, 27, 33, 39, 55, 57, 61, 73, 77, 81, 91, 93, 97, 109, 113, 117], "renam": [10, 61, 97], "renegad": [27, 73, 109], "rent": [12, 17, 18, 62, 65, 66, 98, 101, 102], "rental": [17, 18, 65, 66, 101, 102], "repai": [40, 82, 118], "repay": [40, 82, 118], "repeat": [14, 44, 63, 85, 99, 121], "replac": [22, 48, 69, 88, 105, 124], "report": [22, 43, 49, 69, 84, 105, 120], "report_101620": [46, 47, 48, 87, 88, 123, 124], "repres": [1, 7, 9, 10, 12, 15, 19, 21, 24, 26, 27, 30, 32, 33, 35, 36, 39, 42, 44, 46, 47, 48, 53, 58, 60, 61, 62, 64, 67, 68, 70, 72, 73, 75, 76, 77, 79, 81, 83, 85, 87, 88, 89, 94, 96, 97, 98, 100, 103, 104, 106, 108, 109, 111, 112, 113, 115, 117, 119, 121, 123, 124], "represent": [44, 85, 121], "request": [39, 81, 117], "requir": [1, 2, 8, 39, 48, 53, 54, 59, 81, 88, 89, 90, 95, 117, 124], "resampl": [44, 85, 121], "research": [1, 15, 17, 22, 31, 32, 37, 41, 46, 47, 48, 49, 53, 64, 65, 69, 76, 80, 87, 88, 89, 100, 101, 105, 112, 116, 123, 124], "resembl": [14, 63, 87, 99, 123], "reserv": [27, 32, 73, 76, 109, 112], "reshap": [46, 47, 87, 123], "residu": [42, 45, 83, 86, 119, 122], "resolv": [5, 15, 57, 64, 93, 100], "resort": [32, 76, 112], "resourc": [1, 14, 17, 18, 22, 31, 46, 47, 48, 49, 53, 63, 65, 66, 69, 87, 88, 89, 99, 101, 102, 105, 123, 124], "resp": [18, 30, 66, 75, 102, 111], "respect": [4, 9, 10, 12, 17, 18, 21, 26, 27, 56, 60, 61, 62, 65, 66, 68, 72, 73, 92, 96, 97, 98, 101, 102, 104, 108, 109], "respiratori": 31, "respond": [1, 5, 53, 57, 89, 93], "respons": [5, 18, 22, 25, 27, 32, 48, 57, 66, 69, 73, 76, 88, 93, 102, 105, 109, 112, 124], "rest": [12, 15, 27, 37, 62, 64, 73, 80, 98, 100, 109, 116], "restaur": [5, 15, 57, 64, 93, 100], "restor": [48, 88, 124], "restrict": [39, 81, 117], "result": [1, 4, 9, 10, 12, 15, 17, 21, 22, 24, 25, 27, 31, 33, 34, 41, 42, 43, 45, 46, 47, 48, 49, 53, 56, 60, 61, 62, 64, 65, 68, 69, 70, 71, 73, 77, 78, 83, 84, 86, 87, 88, 89, 92, 96, 97, 98, 100, 101, 104, 105, 106, 107, 109, 113, 114, 119, 120, 122, 123, 124], "retir": [1, 53, 89], "retire": [33, 77, 113], "return": [3, 5, 9, 10, 14, 16, 17, 24, 30, 33, 42, 44, 48, 55, 57, 60, 61, 63, 65, 70, 75, 77, 83, 85, 88, 91, 93, 96, 97, 99, 101, 106, 111, 113, 119, 121, 124], "reveal": [18, 49, 66, 102], "revenu": [7, 15, 22, 25, 26, 27, 31, 58, 64, 69, 71, 72, 73, 94, 100, 105, 107, 108, 109], "revisit": [1, 44, 52, 53, 85, 89, 121], "revolut": 31, "revolv": [32, 76, 112], "reward": [14, 63, 99], "rewrit": [4, 17, 19, 56, 65, 67, 92, 101, 103], "rf": [39, 81, 117], "richer": [22, 24, 69, 70, 105, 106], "richest": [22, 69, 105], "rid": [42, 83, 119], "right": [1, 2, 8, 14, 17, 18, 19, 22, 28, 30, 32, 39, 40, 44, 53, 54, 59, 63, 65, 66, 67, 69, 74, 75, 76, 81, 82, 85, 89, 90, 95, 99, 101, 102, 103, 105, 110, 111, 112, 117, 118, 121], "rightmost": [19, 45, 67, 86, 103, 122], "rightward": [3, 10, 15, 55, 61, 64, 91, 97, 100], "rigor": [30, 75, 111], "rise": [7, 12, 22, 25, 36, 37, 58, 62, 69, 71, 79, 80, 94, 98, 105, 107, 115, 116], "risk": [39, 40, 81, 82, 117, 118], "rivalr": [17, 65, 101], "river": [15, 46, 47, 64, 87, 100, 123], "rmse": [42, 44, 83, 85, 119, 121], "robot": [17, 65, 101], "robust": [1, 4, 24, 53, 56, 70, 89, 92, 106], "rock": [32, 76, 112], "rod": [48, 88, 124], "rohan": 51, "rohanjha": [39, 81, 117], "role": [32, 33, 37, 39, 76, 77, 80, 81, 112, 113, 116, 117], "roll": 31, "rollout": 31, "room": [1, 26, 53, 72, 89, 108], "rotat": [18, 42, 48, 66, 88, 102, 124], "rough": [17, 65, 101], "roughli": [3, 4, 42, 44, 45, 55, 56, 83, 85, 86, 91, 92, 119, 121, 122], "round": [37, 48, 80, 88, 116, 124], "roundabout": [42, 83, 119], "row": [1, 3, 4, 8, 10, 14, 22, 24, 27, 28, 39, 44, 45, 46, 47, 48, 53, 55, 56, 59, 61, 63, 69, 70, 73, 74, 81, 85, 86, 87, 88, 89, 91, 92, 95, 97, 99, 105, 106, 109, 110, 117, 121, 122, 123, 124], "rsch": [1, 53, 89], "rudd": [37, 80, 116], "rule": [21, 32, 39, 68, 76, 81, 104, 112, 117], "run": [0, 1, 24, 30, 32, 37, 53, 70, 75, 76, 80, 89, 106, 111, 112, 116], "rund": [1, 53, 89], "rural": 31, "rush": [48, 88, 124], "russel": [27, 73, 109], "russia": [22, 27, 46, 47, 69, 73, 87, 105, 109, 123], "russian": [22, 69, 105], "rutabaga": [15, 64, 100], "rwanda": [46, 47, 87, 123], "sa": 50, "sach": [46, 47, 48, 87, 88, 123, 124], "sacrif": [19, 67, 103], "saez": [22, 69, 105], "safe": [42, 83, 119], "saharan": 31, "sai": [5, 14, 15, 17, 21, 22, 25, 28, 30, 32, 39, 42, 44, 48, 57, 63, 64, 65, 68, 69, 71, 74, 75, 76, 81, 83, 85, 88, 93, 99, 100, 101, 104, 105, 107, 110, 111, 112, 117, 119, 121, 124], "said": [5, 17, 33, 39, 45, 57, 65, 77, 81, 86, 93, 101, 113, 117, 122], "salari": [1, 53, 89], "sale": [3, 4, 7, 15, 27, 55, 56, 58, 64, 73, 91, 92, 94, 100, 109], "salient": [15, 64, 100], "salin": 31, "salt": [4, 56, 92], "same": [1, 2, 3, 4, 5, 9, 10, 14, 15, 17, 18, 21, 22, 24, 25, 26, 29, 30, 31, 33, 36, 39, 41, 44, 53, 54, 55, 56, 57, 60, 61, 63, 64, 65, 66, 68, 69, 70, 71, 72, 75, 77, 79, 81, 85, 89, 90, 91, 92, 93, 96, 97, 99, 100, 101, 102, 104, 105, 106, 107, 108, 111, 113, 115, 117, 121], "sampl": [41, 42, 43, 44, 83, 84, 85, 119, 120, 121], "sample_s": [1, 53, 89], "san": [3, 4, 10, 55, 56, 61, 91, 92, 97], "satellit": [46, 47, 48, 87, 88, 123, 124], "satisfact": [1, 53, 89], "satisfi": [21, 26, 39, 42, 44, 45, 68, 72, 81, 83, 85, 86, 104, 108, 117, 119, 121, 122], "saudi": [27, 73, 109], "save": [4, 33, 36, 45, 48, 56, 77, 79, 86, 88, 92, 113, 115, 122, 124], "saw": [14, 22, 63, 69, 99, 105], "scale": [7, 8, 16, 17, 44, 46, 47, 58, 59, 65, 85, 87, 94, 95, 101, 121, 123], "scatter": [3, 4, 9, 10, 24, 42, 44, 46, 47, 55, 56, 60, 61, 70, 87, 91, 92, 96, 97, 106, 123], "scatterplot": [3, 10, 55, 61, 91, 97], "scenario": [5, 7, 12, 14, 15, 22, 24, 26, 57, 58, 62, 63, 64, 69, 70, 72, 93, 94, 98, 99, 100, 105, 106, 108], "scene": 31, "schedul": [32, 76, 112], "schilb": [48, 88, 124], "scholar": [46, 47, 48, 87, 88, 123, 124], "school": [31, 41, 42, 43, 83, 84, 119, 120], "sci": [1, 53, 89], "scienc": [4, 29, 32, 46, 47, 48, 49, 51, 56, 76, 87, 88, 92, 112, 123, 124], "scientist": [1, 3, 26, 31, 44, 46, 47, 48, 53, 55, 72, 85, 87, 88, 89, 91, 108, 121, 123, 124], "scope": [44, 46, 47, 48, 85, 87, 88, 121, 123, 124], "score": [42, 83, 119], "screen": 31, "seaborn": 2, "seal": [48, 88, 124], "search": [25, 71, 107], "season": [37, 80, 116], "second": [1, 3, 7, 10, 17, 21, 27, 28, 30, 31, 32, 33, 36, 48, 53, 55, 58, 61, 65, 68, 73, 74, 75, 76, 77, 79, 88, 89, 91, 94, 97, 101, 104, 109, 110, 111, 112, 113, 115, 124], "section": [4, 5, 8, 15, 17, 19, 27, 30, 32, 34, 36, 45, 56, 57, 59, 64, 65, 67, 73, 75, 76, 78, 79, 86, 92, 93, 95, 100, 101, 103, 109, 111, 112, 114, 115, 122], "sector": [48, 88, 124], "secur": [39, 40, 81, 82, 117, 118], "see": [1, 3, 4, 5, 7, 10, 14, 15, 17, 18, 19, 22, 24, 26, 27, 28, 30, 32, 34, 36, 39, 42, 44, 45, 46, 47, 48, 53, 55, 56, 57, 58, 61, 63, 64, 65, 66, 67, 69, 70, 72, 73, 74, 75, 76, 78, 79, 81, 83, 85, 86, 87, 88, 89, 91, 92, 93, 94, 97, 99, 100, 101, 102, 103, 105, 106, 108, 109, 110, 111, 112, 114, 115, 117, 119, 121, 122, 123, 124], "seed": [31, 44, 85, 121], "seek": [1, 15, 26, 49, 53, 64, 72, 89, 100, 108], "seem": [4, 5, 14, 17, 18, 22, 42, 44, 46, 47, 56, 57, 63, 65, 66, 69, 83, 85, 87, 92, 93, 99, 101, 102, 105, 119, 121, 123], "seen": [7, 22, 24, 26, 28, 31, 32, 33, 46, 47, 48, 58, 69, 70, 72, 74, 76, 77, 87, 94, 105, 106, 108, 110, 112, 113, 123], "segundo": [8, 59, 95], "seidel": 52, "select": [1, 2, 8, 10, 22, 25, 42, 44, 45, 46, 47, 48, 53, 54, 59, 61, 69, 71, 83, 85, 86, 87, 88, 89, 90, 95, 97, 105, 107, 119, 121, 122, 123, 124], "self": [12, 14, 29, 30, 62, 63, 75, 98, 99, 111], "sell": [10, 12, 14, 15, 25, 38, 39, 61, 62, 63, 64, 71, 81, 97, 98, 99, 100, 107, 117], "seller": [7, 10, 39, 58, 61, 81, 94, 97, 117], "semest": [1, 33, 53, 77, 89, 113], "semi": [6, 40, 42, 82, 118], "semin": 31, "sens": [1, 2, 5, 14, 15, 19, 25, 26, 33, 39, 40, 42, 44, 48, 49, 53, 54, 57, 63, 64, 67, 71, 72, 77, 81, 82, 83, 85, 88, 89, 90, 93, 99, 100, 103, 107, 108, 113, 117, 118, 119, 121, 124], "sensit": [15, 32, 64, 76, 100, 112], "sent": [42, 83, 119], "separ": [1, 14, 45, 53, 63, 86, 89, 99, 122], "sepear": [14, 63, 99], "sequenti": 29, "seri": [1, 19, 21, 48, 51, 53, 67, 68, 88, 89, 103, 104, 124], "seriou": [25, 27, 71, 73, 107, 109], "serv": [0, 3, 14, 22, 32, 33, 55, 63, 69, 76, 77, 91, 99, 105, 112, 113], "server": [17, 65, 101], "servic": [2, 5, 9, 10, 14, 15, 17, 27, 33, 36, 39, 54, 57, 60, 61, 63, 64, 65, 73, 77, 79, 81, 90, 93, 96, 97, 99, 100, 101, 109, 113, 115, 117], "set": [3, 5, 9, 10, 12, 14, 17, 21, 25, 26, 27, 28, 31, 32, 33, 37, 40, 42, 44, 46, 47, 48, 49, 55, 57, 60, 61, 62, 63, 65, 68, 71, 72, 73, 74, 76, 77, 80, 82, 83, 85, 87, 88, 91, 93, 96, 97, 98, 99, 101, 104, 107, 108, 109, 110, 112, 113, 116, 118, 119, 121, 123, 124], "setter": [30, 75, 111], "settl": [12, 62, 98], "setup": [4, 41, 56, 92], "sever": [14, 27, 29, 45, 63, 73, 86, 99, 109, 122], "sex": 29, "sf": [32, 76, 112], "shade": [24, 70, 106], "shaki": [37, 80, 116], "shall": [1, 53, 89], "shape": [5, 18, 22, 37, 46, 47, 48, 51, 57, 66, 69, 80, 87, 88, 93, 102, 105, 116, 123, 124], "share": [15, 22, 24, 25, 26, 27, 32, 36, 39, 64, 69, 70, 71, 72, 73, 76, 79, 81, 100, 105, 106, 107, 108, 109, 112, 115, 117], "sharealik": 50, "sharewomen": [1, 53, 89], "shashank": 51, "she": [21, 22, 28, 68, 69, 74, 104, 105, 110], "shift": [5, 6, 10, 12, 15, 17, 19, 36, 57, 61, 62, 64, 65, 67, 79, 93, 97, 98, 100, 101, 103, 115], "shirt": [15, 64, 100], "shock": [10, 18, 22, 32, 34, 61, 66, 69, 76, 78, 97, 102, 105, 112, 114], "short": [7, 32, 37, 39, 48, 58, 76, 80, 81, 88, 94, 112, 116, 117, 124], "shortag": [10, 12, 61, 62, 97, 98], "shortcom": [48, 88, 124], "shorthand": [27, 73, 109], "shot": [15, 37, 64, 80, 100, 116], "should": [1, 2, 4, 5, 9, 14, 15, 21, 25, 30, 32, 33, 36, 37, 39, 42, 44, 48, 53, 54, 56, 57, 60, 63, 64, 68, 71, 75, 76, 77, 79, 80, 81, 83, 85, 88, 89, 90, 92, 93, 96, 99, 100, 104, 107, 111, 112, 113, 115, 116, 117, 119, 121, 124], "show": [1, 2, 3, 5, 7, 8, 10, 17, 18, 22, 25, 26, 31, 32, 36, 39, 42, 44, 46, 47, 48, 53, 54, 55, 57, 58, 59, 61, 65, 66, 69, 71, 72, 76, 79, 81, 83, 85, 87, 88, 89, 90, 91, 93, 94, 95, 97, 101, 102, 105, 107, 108, 112, 115, 117, 119, 121, 123, 124], "shown": [3, 10, 26, 39, 55, 61, 72, 81, 91, 97, 108, 117], "shut": [7, 14, 58, 63, 94, 99], "side": [1, 3, 4, 9, 10, 14, 15, 24, 30, 31, 33, 39, 53, 55, 56, 60, 61, 63, 64, 70, 75, 77, 81, 89, 91, 92, 96, 97, 99, 100, 106, 111, 113, 117], "sigma": [39, 44, 81, 85, 117, 121], "sigma_x": [44, 85, 121], "sign": [46, 47, 87, 123], "signifi": [2, 54, 90], "signific": [1, 5, 12, 14, 17, 18, 22, 24, 33, 44, 45, 53, 57, 62, 63, 65, 66, 69, 70, 77, 85, 86, 89, 93, 98, 99, 101, 102, 105, 106, 113, 121, 122], "significantli": [1, 5, 15, 17, 44, 53, 57, 64, 65, 85, 89, 93, 100, 101, 121], "silenc": [27, 73, 109], "similar": [1, 2, 14, 15, 17, 25, 26, 27, 32, 39, 43, 46, 47, 53, 54, 63, 64, 65, 71, 72, 73, 76, 81, 84, 89, 90, 99, 100, 101, 107, 108, 109, 112, 117, 120], "similarli": [1, 2, 4, 5, 9, 10, 14, 15, 26, 39, 43, 44, 53, 54, 56, 57, 60, 61, 63, 64, 72, 81, 84, 85, 89, 90, 92, 93, 96, 97, 99, 100, 108, 117, 120, 121], "simpl": [17, 21, 32, 39, 44, 48, 65, 68, 76, 81, 85, 88, 101, 104, 112, 117, 121, 124], "simplest": [39, 81, 117], "simpli": [3, 4, 7, 15, 22, 33, 37, 42, 44, 55, 56, 58, 64, 69, 77, 80, 83, 85, 91, 92, 94, 100, 105, 113, 116, 119, 121], "simplic": [17, 65, 101], "simplif": [1, 17, 32, 33, 53, 65, 76, 77, 89, 101, 112, 113], "simplifi": [14, 30, 33, 37, 48, 63, 75, 77, 80, 88, 99, 111, 113, 116, 124], "simul": [44, 85, 121], "simulatan": [18, 66, 102], "simultan": [14, 29, 36, 42, 63, 79, 83, 99, 115, 119], "sinc": [1, 2, 4, 5, 7, 8, 9, 10, 15, 19, 21, 22, 24, 25, 28, 29, 31, 32, 33, 36, 37, 39, 40, 42, 45, 46, 47, 53, 54, 56, 57, 58, 59, 60, 61, 64, 67, 68, 69, 70, 71, 74, 76, 77, 79, 80, 81, 82, 83, 86, 87, 89, 90, 92, 93, 94, 95, 96, 97, 100, 103, 104, 105, 106, 107, 110, 112, 113, 115, 116, 117, 118, 119, 122, 123], "singl": [1, 3, 5, 7, 17, 24, 28, 30, 42, 45, 48, 49, 53, 55, 57, 58, 65, 70, 74, 75, 83, 86, 88, 89, 91, 93, 94, 101, 106, 110, 111, 119, 122, 124], "singular": [33, 46, 47, 77, 113], "sit": [37, 80, 116], "site": [31, 39, 46, 47, 48, 81, 87, 88, 117, 123, 124], "situat": [5, 22, 32, 39, 42, 57, 69, 76, 81, 83, 93, 105, 112, 117, 119], "six": [1, 39, 53, 81, 89, 117], "size": [3, 10, 15, 31, 46, 47, 48, 55, 61, 64, 87, 91, 97, 100, 123], "skeleton": [45, 86, 122], "skeptic": [48, 88, 124], "skew": [42, 45, 83, 86, 119, 122], "ski": [46, 47, 87, 123], "skill": [22, 48, 69, 88, 105, 124], "sklearn": [44, 85, 121], "slice": [5, 21, 57, 68, 93, 104], "slider": [14, 18, 63, 66, 99, 102], "slight": [24, 44, 46, 47, 70, 85, 87, 106, 121, 123], "slightli": [1, 3, 15, 17, 25, 32, 53, 55, 64, 65, 71, 76, 89, 91, 100, 101, 107, 112], "slope": [2, 3, 4, 5, 7, 8, 9, 10, 14, 17, 22, 24, 26, 36, 37, 39, 44, 46, 47, 54, 55, 56, 57, 58, 59, 60, 61, 63, 65, 69, 70, 72, 79, 85, 87, 90, 91, 92, 93, 94, 95, 96, 97, 99, 101, 105, 106, 108, 115, 121, 123], "slopign": 36, "slow": [22, 69, 105], "sm": [42, 44, 45, 83, 85, 86, 119, 121, 122], "small": [4, 8, 18, 25, 31, 33, 39, 40, 44, 56, 59, 66, 71, 77, 81, 82, 85, 92, 95, 102, 107, 113, 117, 118, 121], "smaller": [17, 24, 37, 65, 70, 80, 101, 106, 116], "snake": [5, 57, 93], "snapshot": [1, 32, 53, 76, 89, 112], "so": [1, 2, 3, 4, 5, 7, 8, 10, 12, 14, 15, 17, 21, 22, 24, 25, 26, 28, 30, 31, 32, 33, 34, 36, 37, 39, 42, 43, 44, 45, 46, 47, 48, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 68, 69, 70, 71, 72, 74, 75, 76, 77, 78, 79, 80, 81, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 97, 98, 99, 100, 101, 104, 105, 106, 107, 108, 110, 111, 112, 113, 114, 115, 116, 117, 119, 120, 121, 122, 123, 124], "social": [1, 15, 22, 29, 31, 46, 47, 48, 49, 53, 64, 69, 87, 88, 89, 100, 105, 123, 124], "societ": [48, 88, 124], "societi": [14, 15, 46, 47, 48, 63, 64, 87, 88, 99, 100, 123, 124], "soft": [25, 27, 71, 73, 107, 109], "softwar": [1, 46, 47, 48, 53, 87, 88, 89, 123, 124], "soil": [48, 88, 124], "solar": [14, 48, 63, 88, 99, 124], "solarize_light2": 2, "sold": [3, 4, 7, 10, 12, 15, 25, 31, 39, 55, 56, 58, 61, 62, 64, 71, 81, 91, 92, 94, 97, 98, 100, 107, 117], "sole": [42, 83, 119], "solid": [1, 5, 53, 57, 89, 93], "solut": [22, 31, 42, 69, 83, 105, 119], "solv": [2, 9, 10, 11, 25, 26, 39, 54, 60, 61, 71, 72, 81, 90, 96, 97, 107, 108, 117], "some": [1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 14, 15, 17, 21, 22, 25, 27, 28, 29, 30, 31, 32, 33, 34, 38, 39, 40, 42, 44, 45, 46, 47, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 68, 69, 71, 73, 74, 75, 76, 77, 78, 81, 82, 83, 85, 86, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 104, 105, 107, 109, 110, 111, 112, 113, 114, 117, 118, 119, 121, 122, 123], "some_vari": [30, 75, 111], "someon": [1, 39, 42, 53, 81, 83, 89, 117, 119], "someth": [1, 4, 5, 17, 18, 26, 30, 33, 39, 41, 44, 48, 53, 56, 57, 65, 66, 72, 75, 77, 81, 85, 87, 88, 89, 92, 93, 101, 102, 108, 111, 113, 117, 121, 123, 124], "sometim": [10, 22, 31, 32, 36, 39, 44, 61, 69, 76, 79, 81, 85, 97, 105, 112, 115, 117, 121], "somewhat": [2, 4, 22, 54, 56, 69, 90, 92, 105], "somewher": [39, 46, 47, 81, 87, 117, 123], "soon": [14, 15, 37, 40, 44, 63, 64, 80, 82, 85, 99, 100, 116, 118, 121], "sort": [1, 8, 24, 31, 46, 47, 48, 53, 59, 70, 87, 88, 89, 95, 106, 123, 124], "sorted_distribut": [24, 70, 106], "sound": [44, 85, 121], "sourc": [1, 8, 31, 36, 42, 46, 47, 48, 53, 59, 79, 83, 87, 88, 89, 95, 115, 119, 123, 124], "south": [8, 46, 47, 59, 87, 95, 123], "soviet": [22, 69, 105], "space": [30, 75, 111], "speak": [33, 34, 77, 78, 113, 114], "specif": [1, 4, 5, 13, 15, 17, 22, 26, 33, 39, 40, 42, 48, 53, 56, 57, 64, 65, 69, 72, 77, 81, 82, 83, 88, 89, 92, 93, 100, 101, 105, 108, 113, 117, 118, 119, 124], "specifi": [21, 28, 33, 39, 42, 45, 68, 74, 77, 81, 83, 86, 104, 110, 113, 117, 119, 122], "spend": [2, 19, 33, 34, 36, 44, 54, 67, 77, 78, 79, 85, 90, 103, 113, 114, 115, 121], "spent": [19, 67, 103], "spike": [22, 69, 105], "spillov": [48, 88, 124], "split": [7, 25, 26, 58, 71, 72, 94, 107, 108], "spot": [87, 123], "spread": [1, 43, 53, 84, 89, 120], "spring": [31, 37, 80, 116], "sqrt": [39, 42, 44, 81, 83, 85, 117, 119, 121], "squar": [18, 42, 43, 45, 66, 83, 84, 86, 102, 119, 120, 122], "sreeja": 51, "st": [32, 76, 112], "stabil": [32, 34, 36, 76, 78, 79, 112, 114, 115], "stabl": [32, 37, 76, 80, 112, 116], "stack": [22, 69, 105], "stage": [87, 123], "stagflat": [22, 37, 69, 80, 105, 116], "stagnat": [46, 47, 87, 123], "stai": [1, 2, 22, 25, 32, 33, 53, 54, 69, 71, 76, 77, 89, 90, 105, 107, 112, 113], "stand": [32, 76, 112], "standard": [30, 33, 42, 43, 44, 45, 48, 75, 77, 83, 84, 85, 86, 88, 111, 113, 119, 120, 121, 122, 124], "standard_unit": [44, 85, 121], "star": [1, 32, 53, 76, 89, 112], "start": [2, 4, 5, 9, 10, 14, 21, 22, 25, 26, 27, 33, 39, 44, 45, 46, 47, 48, 54, 56, 57, 60, 61, 63, 68, 69, 71, 72, 73, 77, 81, 85, 86, 87, 88, 90, 92, 93, 96, 97, 99, 104, 105, 107, 108, 109, 113, 117, 121, 122, 123, 124], "state": [1, 2, 12, 15, 25, 26, 27, 32, 33, 43, 44, 45, 53, 54, 62, 64, 71, 72, 73, 76, 77, 84, 85, 86, 87, 89, 90, 98, 100, 107, 108, 109, 112, 113, 120, 121, 122, 123], "statement": [17, 30, 32, 65, 75, 76, 101, 111, 112], "statewkr": [44, 45, 85, 86, 121, 122], "static": [46, 47, 48, 49, 87, 88, 123, 124], "station": 49, "statist": [1, 4, 10, 31, 32, 42, 45, 53, 56, 61, 76, 83, 86, 89, 92, 97, 112, 119, 122], "statsmodel": [42, 44, 83, 85, 119, 121], "statutori": [15, 64, 100], "std": [1, 42, 44, 45, 53, 83, 85, 86, 89, 119, 121, 122], "steadi": [5, 22, 57, 69, 93, 105], "steadili": [22, 46, 47, 69, 87, 105, 123], "steep": [17, 65, 101], "step": [39, 81, 117], "stern": [46, 47, 87, 123], "still": [5, 7, 14, 17, 19, 22, 26, 27, 36, 37, 44, 57, 58, 63, 65, 67, 69, 72, 73, 79, 80, 85, 87, 93, 94, 99, 101, 103, 105, 108, 109, 115, 116, 121, 123], "stimul": [22, 32, 34, 69, 76, 78, 105, 112, 114], "stock": [17, 27, 38, 39, 46, 47, 48, 65, 73, 81, 87, 88, 101, 109, 117, 123, 124], "stop": [14, 33, 48, 63, 77, 88, 99, 113, 124], "storag": [48, 88, 124], "store": [0, 30, 31, 44, 75, 85, 111, 121], "stori": [1, 22, 46, 47, 53, 69, 87, 89, 105, 123], "stove": 31, "str": [5, 30, 57, 75, 93, 111], "straight": [4, 24, 44, 56, 70, 85, 92, 106, 121], "strang": [44, 85, 121], "strateg": 29, "strategi": [25, 26, 27, 29, 49, 71, 72, 73, 107, 108, 109], "strength": [44, 85, 121], "strictli": [44, 85, 121], "strike": [39, 48, 81, 88, 117, 124], "string": [30, 75, 111], "strong": [22, 31, 34, 42, 45, 46, 47, 69, 78, 83, 86, 87, 105, 114, 119, 122, 123], "strongli": [33, 77, 113], "structur": [30, 75, 111], "struggl": [5, 57, 93], "student": [1, 5, 6, 11, 16, 20, 23, 31, 33, 44, 49, 51, 53, 57, 77, 85, 89, 93, 113, 121], "studi": [1, 13, 15, 17, 22, 27, 29, 31, 32, 33, 39, 43, 44, 51, 53, 64, 65, 69, 73, 76, 77, 81, 84, 85, 89, 100, 101, 105, 109, 112, 113, 117, 120, 121], "style": [2, 44, 85, 121], "su": [44, 85, 121], "sub": [5, 9, 10, 25, 26, 31, 57, 60, 61, 71, 72, 93, 96, 97, 107, 108], "subconci": 41, "subject": [12, 62, 98], "subpar": [1, 53, 89], "subsequ": [4, 22, 37, 56, 69, 80, 92, 105, 116], "subset": [26, 31, 49, 72, 108], "subsidi": [12, 13, 49, 62, 98], "subsitut": [2, 54, 90], "substitut": [5, 9, 15, 32, 57, 60, 64, 76, 93, 96, 100, 112], "substiut": [26, 72, 108], "subtract": [15, 33, 44, 64, 77, 85, 100, 113, 121], "succe": [37, 80, 116], "success": [1, 37, 53, 80, 89, 116], "suddenli": [17, 65, 101], "suffer": [37, 80, 116], "suffici": [12, 14, 39, 41, 62, 63, 81, 98, 99, 117], "suggest": [1, 2, 15, 24, 26, 32, 34, 36, 53, 54, 64, 70, 72, 76, 78, 79, 89, 90, 100, 106, 108, 112, 114, 115], "suit": [14, 31, 63, 99], "sum": [7, 14, 29, 33, 39, 44, 48, 58, 63, 77, 81, 85, 88, 94, 99, 113, 117, 121, 124], "sum_": [28, 44, 74, 85, 110, 121], "summari": [42, 45, 83, 86, 119, 122], "summat": [7, 58, 94], "sun": [83, 119], "super": [1, 53, 89], "suppli": [2, 3, 4, 5, 8, 9, 12, 13, 15, 18, 25, 26, 32, 33, 34, 36, 48, 54, 55, 56, 57, 59, 60, 62, 64, 66, 71, 72, 76, 77, 78, 79, 88, 90, 91, 92, 93, 95, 96, 98, 100, 102, 107, 108, 112, 113, 114, 115, 124], "supplier": [8, 9, 10, 59, 60, 61, 95, 96, 97], "supply_textbook": [7, 58, 94], "support": [22, 24, 32, 69, 70, 76, 105, 106, 112], "suppos": [4, 5, 9, 14, 15, 22, 24, 25, 26, 28, 30, 39, 44, 56, 57, 60, 63, 64, 69, 70, 71, 72, 74, 75, 81, 85, 92, 93, 96, 99, 100, 105, 106, 107, 108, 110, 111, 117, 121], "sure": [5, 30, 33, 39, 57, 75, 77, 81, 93, 111, 113, 117], "surf": 31, "surfac": [4, 18, 42, 56, 66, 92, 102], "surpass": [7, 58, 94], "surplu": [5, 10, 12, 13, 15, 57, 61, 62, 64, 93, 97, 98, 100], "surplus": [14, 63, 99], "surpris": [1, 53, 89], "surprisingli": [4, 56, 92], "survei": [1, 22, 31, 44, 53, 69, 85, 89, 105, 121], "surveyor": 31, "sushil": 51, "sustain": [32, 34, 46, 47, 48, 76, 78, 87, 88, 112, 114, 123, 124], "swing": [39, 81, 117], "switch": [15, 48, 64, 88, 100, 124], "sykes92": [46, 47, 48, 87, 88, 123, 124], "symbol": [5, 9, 10, 25, 26, 39, 57, 60, 61, 71, 72, 81, 93, 96, 97, 107, 108, 117], "symbol_we_want_to_substitut": [9, 60, 96], "symmetr": [25, 29, 71, 107], "sympi": [5, 10, 11, 25, 26, 57, 61, 71, 72, 93, 97, 107, 108], "synonym": [33, 77, 113], "syntax": [9, 30, 60, 75, 96, 111], "system": [11, 17, 22, 25, 26, 32, 46, 47, 48, 65, 69, 71, 72, 76, 87, 88, 101, 105, 107, 108, 112, 123, 124], "systemat": [28, 74, 110], "t": [1, 4, 5, 14, 15, 21, 24, 27, 28, 30, 31, 33, 37, 39, 40, 41, 42, 44, 45, 46, 47, 53, 56, 57, 63, 64, 68, 70, 73, 74, 75, 77, 80, 81, 82, 83, 85, 86, 87, 89, 92, 93, 99, 100, 104, 106, 109, 110, 111, 113, 116, 117, 118, 119, 121, 122, 123], "tHere": 32, "tab": [10, 61, 97], "tabl": [1, 3, 4, 7, 8, 10, 14, 22, 24, 30, 40, 43, 44, 45, 46, 47, 48, 53, 55, 56, 58, 59, 61, 63, 69, 70, 75, 82, 84, 85, 86, 87, 88, 89, 91, 92, 94, 95, 97, 99, 105, 106, 111, 118, 120, 121, 122, 123, 124], "tableau": 2, "tackl": [1, 53, 89], "take": [1, 3, 4, 5, 8, 9, 10, 12, 14, 15, 17, 19, 21, 22, 25, 26, 27, 28, 30, 31, 32, 33, 37, 38, 39, 40, 42, 44, 48, 51, 53, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 80, 81, 82, 83, 85, 88, 89, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 107, 108, 109, 110, 111, 112, 113, 116, 117, 118, 119, 121, 124], "taken": [3, 28, 31, 33, 55, 74, 77, 91, 110, 113], "talent": [1, 37, 53, 80, 89, 116], "talk": [2, 27, 32, 48, 73, 76, 88, 109, 112, 124], "taller": [48, 88, 124], "tamc": [46, 47, 48, 87, 88, 123, 124], "tame": [39, 81, 117], "tangenti": [19, 67, 103], "tangibl": [17, 65, 101], "tank": [30, 75, 111], "target": [31, 32, 37, 42, 44, 45, 48, 76, 80, 83, 85, 86, 88, 112, 116, 119, 121, 122, 124], "tariff": [22, 69, 105], "task": [24, 42, 70, 83, 106, 119], "taught": [45, 86, 122], "tax": [12, 13, 34, 36, 48, 49, 62, 78, 79, 88, 98, 114, 115, 124], "taxat": [22, 34, 48, 69, 78, 88, 105, 114, 124], "taylor": [32, 76, 112], "tbl": [3, 30, 55, 75, 91, 111], "tc": [7, 58, 94], "tco2": [48, 88, 124], "tea": [10, 61, 97], "teach": 31, "team": [32, 48, 76, 88, 112, 124], "tech": [1, 53, 89], "technic": [39, 42, 81, 83, 117, 119], "techniqu": [1, 53, 89], "technolog": [48, 88, 124], "technologi": [1, 17, 18, 46, 47, 48, 53, 65, 66, 87, 88, 89, 101, 102, 123, 124], "telecom": [27, 73, 109], "tell": [5, 24, 26, 28, 30, 32, 46, 47, 57, 70, 72, 74, 75, 76, 87, 93, 106, 108, 110, 111, 112, 123], "templat": [3, 30, 55, 75, 91, 111], "temporari": [22, 69, 105], "tempt": [25, 71, 107], "tend": [1, 4, 5, 8, 32, 33, 36, 37, 39, 42, 48, 53, 56, 57, 59, 76, 77, 79, 80, 81, 83, 88, 89, 92, 93, 95, 112, 113, 115, 116, 117, 119, 124], "tenet": 49, "tent": [32, 76, 112], "tenur": 32, "term": [1, 3, 4, 7, 9, 10, 15, 17, 22, 32, 42, 43, 44, 45, 46, 47, 48, 53, 55, 56, 58, 60, 61, 64, 65, 69, 76, 83, 84, 85, 86, 87, 88, 89, 91, 92, 94, 96, 97, 100, 101, 105, 112, 119, 120, 121, 122, 123, 124], "terminologi": [30, 75, 111], "test": [31, 42, 44, 45, 83, 85, 86, 119, 121, 122], "text": [2, 4, 7, 9, 15, 17, 18, 21, 24, 25, 28, 40, 42, 43, 44, 48, 54, 56, 58, 60, 64, 65, 66, 68, 70, 71, 74, 82, 83, 84, 85, 88, 90, 92, 94, 96, 100, 101, 102, 104, 106, 107, 110, 118, 119, 120, 121, 124], "textbook": [30, 48, 51, 75, 88, 111, 124], "textrm": [21, 26, 68, 72, 104, 108], "tfc": [7, 58, 94], "tfp": [17, 65, 101], "than": [1, 2, 4, 5, 7, 10, 12, 14, 15, 17, 18, 21, 22, 24, 25, 26, 30, 31, 36, 39, 40, 42, 44, 46, 47, 48, 49, 53, 54, 56, 57, 58, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 75, 79, 81, 82, 83, 85, 87, 88, 89, 90, 92, 93, 94, 97, 98, 99, 100, 101, 102, 104, 105, 106, 107, 108, 111, 115, 117, 118, 119, 121, 123, 124], "theatr": [1, 53, 89], "thei": [1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 14, 15, 18, 19, 20, 21, 22, 24, 25, 27, 30, 32, 33, 35, 36, 37, 39, 40, 42, 44, 48, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, 69, 70, 71, 73, 75, 76, 77, 79, 80, 81, 82, 83, 85, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 106, 107, 109, 111, 112, 113, 115, 116, 117, 118, 119, 121, 124], "them": [1, 2, 5, 10, 14, 15, 18, 22, 25, 27, 29, 30, 31, 33, 34, 39, 40, 42, 44, 48, 53, 54, 57, 61, 63, 64, 66, 69, 71, 73, 75, 77, 78, 81, 82, 83, 85, 88, 89, 90, 93, 97, 99, 100, 102, 105, 107, 109, 111, 113, 114, 117, 118, 119, 121, 124], "theme": [1, 53, 89], "themselv": [15, 46, 47, 64, 87, 100, 123], "theoret": [29, 37, 39, 80, 81, 116, 117], "theori": [1, 15, 26, 27, 33, 34, 37, 46, 47, 51, 53, 64, 72, 73, 77, 78, 80, 87, 89, 100, 108, 109, 113, 114, 116, 123], "therebi": [2, 15, 17, 54, 64, 65, 90, 100, 101], "therefor": [1, 5, 7, 32, 33, 36, 37, 39, 42, 44, 53, 57, 58, 76, 77, 79, 80, 81, 83, 85, 89, 93, 94, 112, 113, 115, 116, 117, 119, 121], "thesi": [31, 51], "thi": [0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124], "thin": [8, 59, 95], "thing": [1, 3, 7, 14, 21, 26, 30, 33, 36, 53, 55, 58, 63, 68, 72, 75, 77, 79, 87, 89, 91, 94, 99, 104, 108, 111, 113, 115, 123], "think": [1, 3, 4, 5, 14, 15, 17, 21, 24, 25, 26, 30, 31, 32, 33, 39, 40, 41, 42, 44, 45, 48, 53, 55, 56, 57, 63, 64, 65, 68, 70, 71, 72, 75, 76, 77, 81, 82, 83, 85, 86, 88, 89, 91, 92, 93, 99, 100, 101, 104, 106, 107, 108, 111, 112, 113, 117, 118, 119, 121, 122, 124], "third": [30, 33, 44, 45, 75, 77, 85, 86, 111, 113, 121, 122], "thoma": [22, 69, 105], "those": [1, 8, 15, 22, 25, 28, 29, 32, 33, 37, 41, 42, 44, 49, 53, 59, 64, 69, 71, 74, 76, 77, 80, 83, 85, 89, 95, 100, 105, 107, 110, 112, 113, 116, 119, 121], "though": [15, 37, 39, 42, 44, 64, 80, 81, 83, 85, 100, 116, 117, 119, 121], "thought": [31, 32, 37, 76, 80, 87, 112, 116, 123], "thousand": [44, 85, 121], "three": [5, 17, 37, 42, 46, 47, 57, 65, 80, 83, 87, 93, 101, 116, 119, 123], "threshold": [46, 47, 87, 123], "through": [4, 10, 13, 15, 18, 22, 24, 27, 30, 32, 34, 38, 44, 48, 49, 51, 56, 61, 64, 66, 69, 70, 73, 75, 76, 78, 85, 88, 92, 97, 100, 102, 105, 106, 109, 111, 112, 114, 121, 124], "throughout": [1, 7, 12, 22, 26, 32, 46, 47, 53, 58, 62, 69, 72, 76, 87, 89, 94, 98, 105, 108, 112, 123], "throw": [30, 75, 111], "thrown": [30, 75, 111], "thu": [1, 2, 3, 4, 5, 7, 9, 12, 14, 15, 17, 18, 22, 25, 27, 31, 32, 33, 37, 39, 40, 42, 44, 53, 54, 55, 56, 57, 58, 60, 62, 63, 64, 65, 66, 69, 71, 73, 76, 77, 80, 81, 82, 85, 89, 90, 91, 92, 93, 94, 96, 98, 99, 100, 101, 102, 105, 107, 109, 112, 113, 116, 117, 118, 121], "thump": [22, 69, 105], "ti": [30, 40, 75, 82, 111, 118], "tick": 2, "ticker": [39, 81, 117], "till": [39, 81, 117], "time": [2, 4, 5, 7, 14, 15, 16, 17, 18, 22, 29, 31, 32, 33, 37, 38, 39, 42, 44, 45, 46, 47, 48, 49, 54, 56, 57, 58, 63, 64, 65, 66, 69, 76, 77, 80, 81, 83, 85, 86, 87, 88, 90, 92, 93, 94, 99, 100, 101, 102, 105, 112, 113, 116, 117, 119, 121, 122, 123, 124], "timefram": [1, 53, 89], "timer": [8, 59, 95], "times0": [5, 57, 93], "times100": [5, 57, 93], "tini": [3, 55, 91], "titl": [3, 5, 10, 22, 37, 39, 48, 55, 57, 61, 69, 80, 81, 88, 91, 93, 97, 105, 116, 117, 124], "to_minim": [42, 83, 119], "todai": [10, 21, 22, 28, 39, 40, 41, 46, 47, 61, 68, 69, 74, 81, 82, 87, 97, 104, 105, 110, 117, 118, 123], "togeth": [14, 26, 32, 33, 39, 42, 46, 47, 63, 72, 76, 77, 81, 83, 87, 99, 108, 112, 113, 117, 119, 123], "toggl": [1, 53, 89], "toler": [40, 82, 118], "tomorrow": [39, 40, 81, 82, 117, 118], "ton": [10, 48, 61, 88, 97, 124], "too": [3, 5, 14, 15, 17, 26, 33, 39, 44, 55, 57, 63, 64, 65, 72, 77, 81, 85, 91, 93, 99, 100, 101, 108, 113, 117, 121], "took": [1, 22, 26, 42, 48, 53, 69, 72, 83, 88, 89, 105, 108, 119, 124], "tool": [9, 26, 31, 32, 34, 35, 36, 44, 46, 47, 48, 49, 60, 72, 76, 78, 79, 85, 87, 88, 96, 108, 112, 114, 115, 121, 123, 124], "top": [1, 24, 53, 70, 89, 106], "top_10_u": [22, 69, 105], "top_10_world": [22, 69, 105], "top_1_u": [22, 69, 105], "top_1_world": [22, 69, 105], "topic": [4, 22, 29, 30, 46, 47, 48, 56, 69, 75, 87, 88, 92, 105, 111, 123, 124], "toptax": [22, 69, 105], "toptaxr": [22, 69, 105], "toronto": [22, 69, 105], "total": [1, 3, 4, 7, 8, 12, 14, 15, 16, 18, 21, 22, 24, 33, 36, 40, 46, 47, 48, 53, 55, 56, 58, 59, 62, 63, 64, 66, 68, 69, 70, 77, 79, 82, 87, 88, 89, 91, 92, 94, 95, 98, 99, 100, 102, 104, 105, 106, 113, 115, 118, 123, 124], "total_abat": [48, 88, 124], "total_var_cost_usdpermwh": [8, 59, 95], "touch": [19, 33, 67, 77, 103, 113], "tour": [32, 76, 112], "toward": [15, 17, 19, 40, 48, 64, 65, 67, 82, 88, 100, 101, 103, 118, 124], "traceback": [30, 75, 111], "track": [30, 75, 111], "trade": [46, 47, 48, 49, 87, 88, 123, 124], "tradeoff": [1, 37, 53, 80, 89, 116], "tradit": [15, 48, 64, 88, 100, 124], "tradoff": [48, 88, 124], "train": [22, 69, 105], "transact": [10, 15, 61, 64, 97, 100], "transcript": [1, 53, 89], "transform": [4, 17, 56, 65, 92, 101], "transit": [48, 88, 124], "translat": [20, 21, 37, 68, 80, 104, 116], "transmiss": [15, 64, 100], "transpar": 42, "treat": 31, "treatment": [1, 31, 41, 42, 53, 83, 89, 119], "trend": [1, 22, 23, 35, 39, 44, 46, 47, 53, 69, 81, 85, 87, 89, 105, 117, 121, 123], "tri": [44, 85, 121], "trial": 31, "triangl": [12, 15, 24, 62, 64, 70, 98, 100, 106], "trigger": [3, 55, 91], "trivial": [4, 39, 56, 81, 92, 117], "troubl": [24, 70, 106], "true": [1, 2, 3, 4, 15, 19, 24, 25, 26, 30, 36, 42, 44, 45, 46, 47, 49, 53, 54, 55, 56, 64, 67, 70, 71, 72, 75, 79, 83, 85, 86, 87, 89, 90, 91, 92, 100, 103, 106, 107, 108, 111, 115, 119, 121, 122, 123], "trunk": [22, 69, 105], "try": [1, 4, 5, 8, 9, 14, 18, 19, 22, 26, 30, 33, 41, 44, 53, 56, 57, 59, 60, 63, 66, 67, 69, 72, 75, 77, 85, 89, 92, 93, 95, 96, 99, 102, 103, 105, 108, 111, 113, 121], "tupl": [28, 74, 110], "turn": [4, 5, 14, 22, 24, 37, 39, 42, 45, 46, 47, 56, 57, 63, 69, 70, 80, 81, 83, 86, 87, 92, 93, 99, 105, 106, 116, 117, 119, 122, 123], "tvc": [7, 58, 94], "twenti": [1, 53, 89], "twentieth": [32, 76, 112], "twice": [22, 69, 105], "two": [3, 5, 7, 9, 10, 17, 24, 25, 26, 27, 28, 30, 31, 32, 34, 36, 39, 40, 41, 42, 44, 45, 48, 49, 55, 57, 58, 60, 61, 65, 70, 71, 72, 73, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 88, 91, 93, 94, 96, 97, 101, 106, 107, 108, 109, 110, 111, 112, 114, 115, 117, 118, 119, 121, 122, 124], "type": [1, 5, 6, 12, 14, 15, 27, 28, 39, 42, 45, 46, 47, 48, 53, 57, 62, 63, 64, 73, 74, 81, 83, 86, 87, 88, 89, 93, 98, 99, 100, 109, 110, 117, 119, 122, 123, 124], "typic": [1, 4, 5, 8, 15, 21, 24, 34, 40, 53, 56, 57, 59, 64, 68, 70, 78, 82, 89, 92, 93, 95, 100, 104, 106, 114, 118], "u": [1, 3, 4, 5, 9, 12, 15, 17, 18, 19, 21, 22, 23, 24, 26, 28, 29, 30, 32, 33, 37, 42, 44, 45, 46, 47, 51, 53, 55, 56, 57, 60, 62, 64, 65, 66, 67, 68, 69, 70, 72, 74, 75, 76, 77, 80, 83, 85, 86, 87, 89, 91, 92, 93, 96, 98, 100, 101, 102, 103, 104, 105, 106, 108, 110, 111, 112, 113, 116, 119, 121, 122, 123], "u_1": [28, 74, 110], "u_2": [28, 74, 110], "uc": [0, 1, 31, 43, 49, 51, 53, 84, 89, 120], "ultim": [1, 4, 19, 37, 53, 56, 67, 80, 89, 92, 103, 116], "umar": 51, "un": [46, 47, 87, 123], "unabl": [15, 33, 64, 77, 100, 113], "unaccount": 49, "unaffect": [3, 12, 55, 62, 91, 98], "uncertainti": [1, 43, 45, 53, 84, 86, 89, 120, 122], "unchang": [15, 27, 48, 64, 73, 88, 100, 109, 124], "uncontest": [22, 69, 105], "uncov": [4, 56, 92], "under": [24, 25, 31, 34, 40, 50, 51, 70, 71, 78, 82, 106, 107, 114, 118], "undercut": [25, 26, 71, 72, 107, 108], "undergradu": [1, 53, 89], "underli": [9, 31, 37, 39, 44, 60, 80, 81, 85, 96, 116, 117, 121], "underneath": [43, 84, 120], "underpin": [28, 74, 110], "underscor": [13, 30, 75, 111], "underset": [26, 72, 108], "understand": [1, 3, 6, 7, 8, 10, 11, 16, 20, 23, 24, 26, 27, 32, 35, 39, 48, 49, 53, 55, 58, 59, 61, 70, 72, 73, 76, 81, 88, 89, 91, 94, 95, 97, 106, 108, 109, 112, 117, 124], "unemploi": [1, 33, 37, 52, 53, 77, 80, 89, 113, 116], "unemploy": [12, 32, 37, 62, 76, 80, 98, 112, 116], "unemployment_r": [1, 53, 89], "uneth": 41, "unfavour": [48, 88, 124], "unfortun": [5, 12, 37, 57, 62, 80, 93, 98, 116], "uniform": [44, 85, 121], "unilater": [25, 27, 71, 73, 107, 109], "union": [22, 69, 105], "uniqu": [1, 5, 26, 42, 53, 57, 72, 83, 89, 93, 108, 119], "unit": [1, 2, 3, 4, 5, 7, 8, 10, 12, 15, 16, 17, 18, 19, 21, 25, 26, 32, 33, 36, 37, 43, 44, 53, 54, 55, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 68, 71, 72, 76, 77, 79, 80, 84, 85, 87, 89, 90, 91, 92, 93, 94, 95, 97, 98, 100, 101, 102, 103, 104, 107, 108, 112, 113, 115, 116, 120, 121, 123], "univeristi": [22, 69, 105], "univers": [1, 10, 22, 46, 47, 48, 52, 53, 61, 69, 87, 88, 89, 97, 105, 123, 124], "unknowingli": 31, "unknown": [15, 39, 64, 81, 100, 117], "unlik": [5, 44, 57, 85, 93, 121], "unload": [10, 61, 97], "unobserv": [1, 53, 89], "unreason": [5, 57, 93], "unsatisfact": [1, 53, 89], "unseen": [44, 85, 121], "until": [1, 5, 7, 10, 12, 25, 31, 39, 46, 47, 48, 53, 57, 58, 61, 62, 71, 81, 87, 88, 89, 93, 94, 97, 98, 107, 117, 123, 124], "unwil": [15, 64, 100], "up": [1, 3, 4, 7, 8, 9, 10, 14, 15, 18, 19, 22, 23, 26, 27, 31, 32, 33, 39, 40, 42, 46, 47, 48, 53, 55, 56, 58, 59, 60, 61, 63, 64, 66, 67, 69, 72, 73, 76, 77, 81, 82, 83, 87, 88, 89, 91, 92, 94, 95, 96, 97, 99, 100, 102, 103, 105, 108, 109, 112, 113, 117, 118, 119, 123, 124], "updat": [30, 75, 111], "upfront": [15, 48, 64, 88, 100, 124], "upload": [46, 47, 48, 87, 88, 123, 124], "upon": [1, 27, 45, 53, 73, 86, 89, 109, 122], "upper": [1, 22, 43, 46, 47, 51, 53, 69, 84, 87, 89, 105, 120, 123], "upper_bound": [44, 85, 121], "upset": [42, 83, 119], "upsid": [39, 81, 117], "upstream": [48, 88, 124], "upward": [2, 4, 5, 8, 9, 10, 17, 18, 36, 39, 46, 47, 54, 56, 57, 59, 60, 61, 65, 66, 79, 87, 90, 92, 93, 95, 96, 97, 101, 102, 115, 123], "urllib3": [39, 81, 117], "us": [1, 2, 3, 5, 6, 9, 10, 11, 12, 14, 15, 17, 18, 19, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 36, 40, 42, 43, 44, 48, 49, 53, 54, 55, 57, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 75, 76, 77, 78, 79, 82, 83, 84, 85, 88, 89, 90, 91, 93, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 111, 112, 113, 114, 115, 118, 119, 120, 121, 124], "us_hist": [22, 69, 105], "us_hist_join": [22, 69, 105], "us_inequ": [22, 69, 105], "us_tabl": [46, 47, 87, 123], "usa": [22, 69, 105], "usag": [7, 14, 17, 46, 47, 49, 58, 63, 65, 87, 94, 99, 101, 123], "usd": [46, 47, 48, 87, 88, 123, 124], "user": [30, 31, 39, 75, 81, 111, 117], "ussr": [22, 29, 69, 105], "usual": [5, 14, 22, 31, 33, 36, 40, 41, 42, 44, 48, 57, 63, 69, 77, 79, 82, 83, 85, 88, 93, 99, 105, 113, 115, 118, 119, 121, 124], "util": [2, 4, 17, 26, 27, 43, 54, 56, 65, 72, 73, 84, 90, 92, 101, 108, 109, 120], "ux": 31, "v": [4, 5, 15, 22, 24, 29, 42, 44, 46, 47, 48, 49, 56, 57, 64, 69, 70, 83, 85, 87, 88, 92, 93, 100, 105, 106, 119, 121, 123, 124], "v0_8": 2, "vaccin": [15, 31, 64, 100], "vagu": [14, 63, 99], "valid": [4, 42, 56, 83, 92, 119], "vallei": [22, 69, 105], "valorem": [15, 64, 100], "valu": [1, 4, 5, 9, 14, 15, 17, 18, 21, 22, 24, 25, 26, 27, 28, 30, 33, 38, 39, 42, 43, 44, 45, 48, 49, 53, 56, 57, 60, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 77, 81, 83, 84, 85, 86, 88, 89, 92, 93, 96, 99, 100, 101, 102, 104, 105, 106, 107, 108, 109, 110, 111, 113, 117, 119, 120, 121, 122, 124], "valuabl": [18, 21, 66, 68, 102, 104], "valuat": [46, 47, 48, 87, 88, 123, 124], "value_to_substitute_with": [9, 60, 96], "van": 51, "varepsilon": [44, 85, 121], "varepsilon_i": [43, 84, 120], "vari": [4, 14, 18, 26, 39, 49, 56, 63, 66, 72, 81, 92, 99, 102, 108, 117], "variabl": [1, 3, 4, 7, 8, 9, 15, 17, 18, 27, 30, 32, 33, 45, 53, 55, 56, 58, 59, 60, 64, 65, 66, 73, 75, 76, 77, 86, 89, 91, 92, 94, 95, 96, 100, 101, 102, 109, 111, 112, 113, 122], "varianc": [1, 53, 89], "variasbl": [8, 59, 95], "variat": [43, 84, 120], "varibl": [3, 55, 91], "varieti": [1, 33, 46, 47, 48, 53, 77, 87, 88, 89, 113, 123, 124], "variou": [1, 17, 29, 31, 45, 49, 53, 65, 86, 89, 101, 122], "vast": [1, 41, 53, 89], "vastli": [1, 53, 89], "ve": [1, 3, 4, 5, 10, 14, 15, 19, 24, 28, 32, 33, 42, 53, 55, 56, 57, 61, 63, 64, 67, 70, 74, 76, 77, 83, 89, 91, 92, 93, 97, 99, 100, 103, 106, 110, 112, 113, 119], "vendor": [25, 71, 107], "venkatesh": 51, "venom": [5, 57, 93], "vent": [48, 88, 124], "veri": [1, 3, 5, 14, 17, 21, 22, 30, 31, 33, 39, 42, 44, 46, 47, 48, 49, 53, 55, 57, 63, 65, 68, 69, 75, 77, 81, 83, 85, 87, 88, 89, 91, 93, 99, 101, 104, 105, 111, 113, 117, 119, 121, 123, 124], "verifi": [4, 5, 21, 26, 27, 44, 56, 57, 68, 72, 73, 85, 92, 93, 104, 108, 109, 121], "versa": [27, 33, 73, 77, 109, 113], "versatil": [1, 53, 89], "version": [1, 30, 42, 48, 49, 53, 75, 83, 88, 89, 111, 119, 124], "versu": [1, 14, 17, 32, 53, 63, 65, 76, 89, 99, 101, 112], "vertex": [15, 64, 100], "vertic": [5, 7, 15, 18, 22, 25, 34, 36, 37, 57, 58, 64, 66, 69, 71, 78, 79, 80, 87, 93, 94, 100, 102, 105, 107, 114, 115, 116, 123], "via": [1, 24, 37, 44, 45, 53, 70, 80, 85, 86, 89, 106, 116, 121, 122], "vice": [27, 33, 73, 77, 109, 113], "view": [8, 42, 44, 48, 59, 85, 88, 95, 121, 124], "villag": 31, "violat": [30, 75, 111], "vishwanathan": 51, "visibl": [15, 42, 64, 100], "vision": [32, 76, 112], "visit": 31, "visitor": 31, "visual": [1, 7, 14, 15, 16, 17, 18, 19, 21, 24, 34, 44, 48, 53, 58, 63, 64, 65, 66, 67, 68, 70, 78, 85, 88, 89, 94, 99, 100, 101, 102, 103, 104, 106, 114, 121, 124], "vogt": [48, 88, 124], "volatil": [27, 39, 73, 81, 109, 117], "volcker": [32, 76, 112], "volum": [3, 4, 27, 39, 55, 56, 73, 81, 91, 92, 109, 117], "volunt": 31, "von": 29, "vote": [32, 76, 112], "vulner": [22, 69, 105], "w": [17, 37, 65, 80, 101, 116], "wa": [1, 3, 4, 5, 15, 17, 18, 22, 25, 26, 27, 28, 31, 32, 37, 42, 44, 46, 47, 48, 49, 53, 55, 56, 57, 64, 65, 66, 69, 71, 72, 73, 74, 76, 80, 83, 85, 87, 88, 89, 91, 92, 93, 100, 101, 102, 105, 107, 108, 109, 110, 112, 116, 119, 121, 123, 124], "wage": [1, 10, 12, 17, 18, 37, 43, 44, 45, 53, 61, 62, 65, 66, 80, 84, 85, 86, 89, 97, 98, 101, 102, 116, 120, 121, 122], "wages": [44, 45, 85, 86, 121, 122], "wai": [1, 2, 3, 4, 5, 13, 14, 15, 17, 22, 24, 25, 27, 28, 29, 30, 32, 33, 37, 38, 39, 41, 42, 48, 53, 54, 55, 56, 57, 63, 64, 65, 69, 70, 71, 73, 74, 75, 76, 77, 80, 81, 83, 87, 88, 89, 90, 91, 92, 93, 99, 100, 101, 105, 106, 107, 109, 110, 111, 112, 113, 116, 117, 119, 123, 124], "wait": 31, "walk": [10, 49, 61, 97], "want": [1, 3, 4, 5, 10, 25, 26, 30, 32, 33, 39, 40, 42, 44, 53, 55, 56, 57, 61, 71, 72, 75, 76, 77, 81, 82, 83, 85, 89, 91, 92, 93, 97, 107, 108, 111, 112, 113, 117, 118, 119, 121], "war": [27, 29, 73, 109], "warn": [45, 83, 86, 119, 122], "washington": [22, 69, 105], "wasn": [28, 74, 110], "water": [31, 46, 47, 87, 123], "watson": [42, 45, 83, 86, 119, 122], "watt": [48, 88, 124], "we": [1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 14, 15, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124], "weaker": [32, 76, 112], "wealth": [22, 24, 31, 42, 46, 47, 69, 70, 83, 87, 105, 106, 119, 123], "wealthier": [5, 42, 46, 47, 57, 83, 87, 93, 119, 123], "web": 31, "webpag": [1, 53, 89], "wed": [45, 86, 122], "wedg": [15, 64, 100], "week": [7, 14, 15, 26, 31, 38, 39, 42, 44, 58, 63, 64, 72, 81, 83, 85, 94, 99, 100, 108, 117, 119, 121], "weeks_worked_1999": [44, 85, 121], "weigh": 49, "weight": [17, 28, 39, 65, 74, 81, 101, 110, 117], "welcom": [1, 53, 89], "welfar": [1, 13, 14, 15, 48, 53, 63, 64, 88, 89, 99, 100, 124], "well": [1, 4, 5, 14, 27, 29, 31, 32, 40, 42, 44, 53, 56, 57, 63, 73, 76, 82, 83, 85, 87, 89, 92, 93, 99, 109, 112, 118, 119, 121, 123], "went": [42, 44, 83, 85, 119, 121], "were": [1, 4, 5, 10, 12, 15, 17, 18, 22, 24, 26, 30, 31, 33, 39, 46, 47, 48, 53, 56, 57, 61, 62, 64, 65, 66, 69, 70, 72, 75, 77, 81, 87, 88, 89, 92, 93, 97, 98, 100, 101, 102, 105, 106, 108, 111, 113, 117, 123, 124], "what": [1, 3, 4, 5, 7, 10, 12, 14, 15, 17, 18, 19, 22, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 39, 40, 42, 43, 44, 52, 53, 55, 56, 57, 58, 61, 62, 63, 64, 65, 66, 67, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 89, 91, 92, 93, 94, 97, 98, 99, 100, 101, 102, 103, 105, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121], "whatev": [39, 81, 117], "when": [1, 2, 3, 4, 5, 7, 8, 10, 11, 12, 15, 17, 18, 19, 21, 22, 24, 25, 26, 27, 28, 29, 30, 32, 33, 36, 37, 39, 40, 42, 44, 48, 49, 53, 54, 55, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 85, 88, 89, 90, 91, 92, 93, 94, 95, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 115, 116, 117, 118, 119, 121, 124], "whenev": [30, 37, 42, 48, 75, 80, 83, 88, 111, 116, 119, 124], "where": [1, 3, 4, 5, 7, 8, 10, 12, 15, 17, 19, 21, 22, 25, 26, 27, 30, 31, 32, 33, 36, 37, 39, 40, 41, 42, 44, 46, 47, 48, 49, 53, 55, 56, 57, 58, 59, 61, 62, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 77, 79, 80, 81, 82, 83, 85, 87, 88, 89, 91, 92, 93, 94, 95, 97, 98, 100, 101, 103, 104, 105, 107, 108, 109, 111, 112, 113, 115, 116, 117, 118, 119, 121, 123, 124], "wherea": [14, 32, 44, 63, 76, 85, 99, 112, 121], "wherein": [17, 65, 101], "whether": [1, 14, 15, 28, 44, 46, 47, 48, 53, 63, 64, 74, 85, 87, 88, 89, 99, 100, 110, 121, 123, 124], "which": [0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124], "while": [1, 3, 4, 5, 7, 10, 14, 15, 17, 18, 19, 21, 22, 24, 26, 27, 29, 32, 33, 37, 39, 42, 44, 46, 47, 53, 55, 56, 57, 58, 61, 63, 64, 65, 66, 67, 68, 69, 70, 72, 73, 76, 77, 80, 81, 83, 85, 87, 89, 91, 92, 93, 94, 97, 99, 100, 101, 102, 103, 104, 105, 106, 108, 109, 112, 113, 116, 117, 119, 121, 123], "white": 2, "whitegrid": 2, "who": [1, 5, 10, 14, 15, 22, 26, 27, 31, 32, 33, 36, 37, 39, 42, 44, 53, 57, 61, 63, 64, 69, 72, 73, 76, 77, 79, 80, 81, 83, 85, 89, 93, 97, 99, 100, 105, 108, 109, 112, 113, 115, 116, 117, 119, 121], "whoever": [39, 81, 117], "whole": [15, 31, 33, 48, 64, 77, 88, 100, 113, 124], "whose": [1, 14, 44, 53, 63, 85, 89, 99, 121], "why": [1, 4, 8, 9, 10, 25, 34, 36, 42, 44, 53, 56, 59, 60, 61, 71, 78, 79, 83, 85, 89, 92, 95, 96, 97, 107, 114, 115, 119, 121], "wide": [48, 88, 124], "wider": [48, 88, 124], "width": [3, 10, 22, 48, 55, 61, 69, 88, 91, 97, 105, 124], "width_group": [48, 88, 124], "wih": [19, 67, 103], "wild": [39, 81, 117], "willing": [2, 5, 7, 10, 12, 14, 15, 25, 33, 37, 39, 54, 57, 58, 61, 62, 63, 64, 71, 77, 80, 81, 90, 93, 94, 97, 98, 99, 100, 107, 113, 116, 117], "willingli": [12, 62, 98], "win": [27, 43, 73, 84, 109, 120], "wind": [48, 88, 124], "wise": [1, 5, 53, 57, 89, 93], "with_column": [7, 14, 24, 44, 46, 47, 48, 58, 63, 70, 85, 87, 88, 94, 99, 106, 121, 123, 124], "within": [12, 22, 23, 24, 27, 32, 33, 48, 49, 51, 62, 69, 70, 73, 76, 77, 88, 98, 105, 106, 109, 112, 113, 124], "without": [1, 5, 12, 15, 24, 27, 29, 30, 39, 42, 45, 46, 47, 53, 57, 62, 64, 70, 73, 75, 81, 83, 86, 87, 89, 93, 98, 100, 106, 109, 111, 117, 119, 122, 123], "woman": [32, 76, 112], "women": [1, 53, 89], "won": [5, 14, 28, 31, 44, 57, 63, 74, 85, 93, 99, 110, 121], "wonder": [1, 53, 89], "word": [2, 5, 12, 14, 33, 39, 42, 54, 57, 62, 63, 77, 81, 83, 90, 93, 98, 99, 113, 117, 119], "work": [1, 12, 14, 17, 22, 24, 30, 31, 32, 33, 39, 48, 49, 51, 53, 62, 63, 65, 69, 70, 75, 76, 77, 81, 88, 89, 98, 99, 101, 105, 106, 111, 112, 113, 117, 124], "worker": [12, 17, 22, 32, 33, 37, 62, 65, 69, 76, 77, 80, 98, 101, 105, 112, 113, 116], "workforc": [1, 53, 89], "world": [1, 4, 15, 24, 27, 31, 37, 44, 46, 47, 48, 51, 52, 53, 56, 64, 70, 73, 80, 85, 87, 88, 89, 92, 100, 106, 109, 116, 121, 123, 124], "world_hist": [22, 69, 105], "world_inequ": [22, 69, 105], "worri": [44, 85, 121], "wors": [22, 27, 44, 69, 73, 85, 105, 109, 121], "worsen": [46, 47, 87, 123], "worth": [14, 33, 39, 40, 63, 77, 81, 82, 99, 113, 117, 118], "worthwhil": [5, 42, 57, 83, 93, 119], "would": [1, 2, 3, 4, 5, 7, 9, 10, 12, 14, 15, 17, 18, 21, 22, 24, 25, 26, 27, 28, 30, 31, 33, 37, 39, 40, 42, 44, 46, 47, 48, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 77, 80, 81, 82, 83, 85, 87, 88, 89, 90, 91, 92, 93, 94, 96, 97, 98, 99, 100, 101, 102, 104, 105, 106, 107, 108, 109, 110, 111, 113, 116, 117, 118, 119, 121, 123, 124], "wouldn": [5, 33, 57, 77, 93, 113], "wow": [44, 85, 121], "write": [3, 10, 30, 39, 44, 55, 61, 75, 81, 85, 91, 97, 111, 117, 121], "written": [42, 83, 119], "wrote": [22, 69, 105], "wta": [14, 63, 99], "wtp": [14, 63, 99], "ww1": [37, 80, 116], "www": [46, 47, 48, 87, 88, 123, 124], "x": [3, 4, 5, 9, 14, 15, 18, 21, 22, 24, 28, 30, 36, 37, 39, 42, 44, 45, 46, 47, 48, 55, 56, 57, 60, 63, 64, 66, 68, 69, 70, 74, 75, 81, 83, 85, 86, 87, 88, 91, 92, 93, 96, 99, 100, 102, 104, 105, 106, 110, 111, 117, 119, 121, 122, 123, 124], "x1": [19, 21, 42, 45, 67, 68, 83, 86, 103, 104, 119, 122], "x2": [19, 21, 42, 67, 68, 83, 103, 104, 119], "x_": [39, 42, 44, 81, 83, 85, 117, 119, 121], "x_1": [19, 21, 42, 67, 68, 83, 103, 104, 119], "x_2": [19, 21, 42, 67, 68, 83, 103, 104, 119], "x_i": [28, 44, 74, 85, 110, 121], "x_po": [48, 88, 124], "x_standard": [44, 85, 121], "x_t": [39, 81, 117], "xi": 36, "xlabel": [5, 9, 22, 48, 57, 60, 69, 88, 93, 96, 105, 124], "xtick": [48, 88, 124], "y": [3, 9, 10, 15, 17, 18, 24, 32, 34, 36, 37, 39, 42, 44, 45, 46, 47, 48, 55, 60, 61, 64, 65, 66, 70, 76, 78, 83, 85, 86, 87, 88, 91, 96, 97, 100, 101, 102, 106, 112, 114, 119, 121, 122, 123, 124], "y_i": [44, 85, 121], "y_standard": [44, 85, 121], "yai": [32, 76, 112], "yale": [32, 76, 112], "year": [1, 4, 10, 22, 27, 30, 31, 32, 33, 37, 39, 40, 41, 42, 43, 46, 47, 48, 53, 56, 61, 69, 73, 75, 76, 77, 80, 81, 82, 83, 84, 87, 88, 89, 92, 97, 105, 109, 111, 112, 113, 116, 117, 118, 119, 120, 123, 124], "yearli": [40, 82, 118], "yellen": [32, 76, 112], "yellow": [1, 18, 53, 66, 89, 102], "yep": 51, "yet": [2, 17, 26, 33, 39, 44, 48, 54, 65, 72, 77, 81, 85, 88, 90, 101, 108, 113, 117, 121, 124], "yf": [39, 81, 117], "yfinanc": [39, 81, 117], "yield": [2, 4, 14, 17, 24, 31, 33, 54, 56, 63, 65, 70, 77, 90, 92, 99, 101, 106, 113], "ylabel": [5, 9, 22, 48, 57, 60, 69, 88, 93, 96, 105, 124], "ylim": [9, 60, 96], "yml": 0, "york": [32, 76, 112], "you": [1, 3, 4, 5, 9, 10, 14, 15, 18, 21, 22, 24, 26, 27, 28, 30, 31, 32, 33, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 53, 55, 56, 57, 60, 61, 63, 64, 66, 68, 69, 70, 72, 73, 74, 75, 76, 77, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 96, 97, 99, 100, 102, 104, 105, 106, 108, 109, 110, 111, 112, 113, 117, 118, 119, 120, 121, 122, 123, 124], "young": [22, 69, 105], "younger": [1, 53, 89], "your": [4, 5, 10, 22, 39, 40, 42, 44, 45, 46, 47, 48, 56, 57, 61, 69, 81, 82, 83, 85, 86, 87, 88, 92, 93, 97, 105, 117, 118, 119, 121, 122, 123, 124], "yourself": [1, 5, 18, 53, 57, 66, 89, 93, 102], "z": [18, 66, 102], "zealand": [37, 80, 116], "zero": [18, 29, 39, 42, 44, 46, 47, 48, 66, 83, 85, 87, 88, 102, 119, 121, 123, 124], "zorder": [10, 61, 97], "zucman": [22, 69, 105], "\u03c4": [39, 81, 117], "\ud835\udc56": [33, 77, 113], "\ud835\udf0b_t": [33, 77, 113], "\ud835\udf0b_\ud835\udc61": [33, 77, 113]}, "titles": ["textbook", "Introduction", "Demand Curves", "An Empirical Demand Curve", "Log-log and Semi-log Demand Curves", "Elasticity", "Demand and Elasticities", "The Supply Curve", "An Empirical Example from EEP 147", "SymPy", "Market Equilibria", "Supply and Market Equilibrium", "Other Forms of Government Intervention", "Public Economics", "Surplus", "Taxes and Subsidies", "Production", "Production and Cobb-Douglas Functions", "Analyzing Shifts in \\(A\\) and \\(\\alpha\\)", "Budget Constraints and Utility Maximization", "Utility", "Utility Functions and Indifference Curves", "Income Inequality Historically", "Inequality", "Measurements of Inequality", "Bertrand Competition", "Cournot Competition", "Equilibria & Oligopolies", "Expected Utility Theory", "Game Theory", "Python Classes", "Development", "Central Banks", "Macroeconomic Indicators", "Fiscal Policy", "Macroeconomic Policy", "IS-Curve", "Phillips Curve", "Finance", "Options", "Present Value, Future Value, and Interest Rates", "Econometrics", "Multivariable Regression and Bias", "Reading Economics Papers", "Single Variable Regression", "Using statsmodels for Regression", "Environmental Kuznets Curve Hypothesis", "Environmental Kuznets Curve Hypothesis", "Marginal Abatement Cost Curves", "Environmental Economics", "License for this book", " Data 88E: Economic Models ", "Bibliography", "Introduction", "Demand Curves", "An Empirical Demand Curve", "Log-log and Semi-log Demand Curves", "Elasticity", "The Supply Curve", "An Empirical Example from EEP 147", "SymPy", "Market Equilibria", "Other Forms of Government Intervention", "Surplus", "Taxes and Subsidies", "Production and Cobb-Douglas Functions", "Analyzing Shifts in \\(A\\) and \\(\\alpha\\)", "Budget Constraints and Utility Maximization", "Utility Functions and Indifference Curves", "Income Inequality Historically", "Measurements of Inequality", "Bertrand Competition", "Cournot Competition", "Equilibria & Oligopolies", "Expected Utility Theory", "Python Classes", "Central Banks", "Macroeconomic Indicators", "Fiscal Policy", "IS-Curve", "Phillips Curve", "Options", "Present Value, Future Value, and Interest Rates", "Multivariable Regression and Bias", "Reading Economics Papers", "Single Variable Regression", "Using statsmodels for Regression", "Environmental Kuznets Curve Hypothesis", "Marginal Abatement Cost Curves", "Introduction", "Demand Curves", "An Empirical Demand Curve", "Log-log and Semi-log Demand Curves", "Elasticity", "The Supply Curve", "An Empirical Example from EEP 147", "SymPy", "Market Equilibria", "Other Forms of Government Intervention", "Surplus", "Taxes and Subsidies", "Production and Cobb-Douglas Functions", "Analyzing Shifts in \\(A\\) and \\(\\alpha\\)", "Budget Constraints and Utility Maximization", "Utility Functions and Indifference Curves", "Income Inequality Historically", "Measurements of Inequality", "Bertrand Competition", "Cournot Competition", "Equilibria & Oligopolies", "Expected Utility Theory", "Python Classes", "Central Banks", "Macroeconomic Indicators", "Fiscal Policy", "IS-Curve", "Phillips Curve", "Options", "Present Value, Future Value, and Interest Rates", "Multivariable Regression and Bias", "Reading Economics Papers", "Single Variable Regression", "Using statsmodels for Regression", "Environmental Kuznets Curve Hypothesis", "Marginal Abatement Cost Curves"], "titleterms": {"": [46, 47, 48, 87, 88, 123, 124], "1": [48, 88, 124], "147": [8, 59, 95], "2": [48, 88, 124], "88e": 51, "A": [1, 18, 24, 53, 66, 70, 89, 102, 106], "The": [1, 7, 17, 22, 24, 40, 48, 53, 58, 65, 69, 70, 82, 88, 89, 94, 101, 105, 106, 118, 124], "abat": [48, 88, 124], "acknowledg": 51, "affect": [22, 69, 105], "afterword": [1, 53, 89], "algebra": [15, 64, 100], "along": [2, 54, 90], "alpha": [18, 66, 102], "an": [1, 3, 8, 15, 39, 53, 55, 59, 64, 81, 89, 91, 95, 100, 117], "analyz": [18, 66, 102], "api": [39, 81, 117], "appli": [25, 26, 71, 72, 107, 108], "ar": [48, 88, 124], "assert": [30, 75, 111], "assess": [48, 88, 124], "augment": [37, 80, 116], "autarki": [12, 62, 98], "avocado": [4, 56, 92], "awai": [10, 61, 97], "back": [48, 88, 124], "bank": [32, 76, 112], "behavior": [7, 58, 94], "benefit": [1, 53, 89], "bertrand": [25, 71, 107], "best": [26, 72, 108], "beta": [44, 85, 121], "between": [3, 55, 91], "bia": [42, 83, 119], "bibliographi": 52, "binari": [44, 85, 121], "black": [39, 81, 117], "book": 50, "bric": [46, 47, 87, 123], "brief": [1, 53, 89], "budget": [19, 67, 103], "build": [46, 47, 87, 123], "calcul": [15, 39, 64, 81, 100, 117], "call": [39, 81, 117], "capit": [17, 48, 65, 88, 101, 124], "causal": [1, 53, 89], "central": [32, 76, 112], "chang": [4, 56, 92], "china": [46, 47, 87, 123], "class": [30, 75, 111], "classic": [34, 37, 78, 80, 114, 116], "cobb": [17, 21, 65, 68, 101, 104], "coeffici": [24, 70, 106], "colinear": [42, 83, 119], "collect": [1, 53, 89], "compar": [24, 70, 106], "comparison": [17, 65, 101], "competit": [25, 26, 71, 72, 107, 108], "comput": [1, 53, 89], "conclus": [48, 88, 124], "constraint": [19, 67, 103], "construct": [48, 88, 124], "consum": [14, 63, 99], "control": [12, 62, 98], "cost": [7, 48, 58, 88, 94, 124], "countri": [17, 46, 47, 65, 87, 101, 123], "cournot": [26, 72, 108], "cours": 51, "creat": [10, 30, 61, 75, 97, 111], "critic": [46, 47, 87, 123], "cross": [17, 36, 65, 79, 101, 115], "curv": [2, 3, 4, 7, 10, 14, 21, 24, 36, 37, 46, 47, 48, 54, 55, 56, 58, 61, 63, 68, 70, 79, 80, 87, 88, 90, 91, 92, 94, 97, 99, 104, 106, 115, 116, 123, 124], "data": [1, 10, 51, 53, 61, 89, 97], "deadweight": [15, 64, 100], "definit": [7, 10, 24, 27, 28, 40, 58, 61, 70, 73, 74, 82, 94, 97, 106, 109, 110, 118], "demand": [2, 3, 4, 6, 10, 14, 54, 55, 56, 61, 63, 90, 91, 92, 97, 99], "deriv": [36, 79, 115], "descript": 51, "develop": 31, "diagram": [39, 81, 117], "diminish": [21, 68, 104], "disclaim": [39, 81, 117], "discount": [40, 82, 118], "discours": [1, 53, 89], "domest": [33, 77, 113], "dougla": [17, 21, 65, 68, 101, 104], "dummi": [42, 83, 119], "dynam": [36, 48, 79, 88, 115, 124], "earn": [44, 85, 121], "econom": [1, 13, 43, 49, 51, 53, 84, 89, 120], "econometr": [41, 44, 85, 121], "economi": [17, 65, 101], "eep": [8, 59, 95], "effect": [1, 2, 15, 18, 53, 54, 64, 66, 89, 90, 100, 102], "elast": [5, 6, 57, 93], "eleph": [22, 69, 105], "empir": [3, 8, 55, 59, 91, 95], "environment": [46, 47, 49, 87, 123], "equal": [24, 70, 106], "equilibria": [10, 15, 27, 61, 64, 73, 97, 100, 109], "equilibrium": [10, 11, 25, 26, 27, 61, 71, 72, 73, 97, 107, 108, 109], "error": [44, 85, 121], "examin": [15, 21, 64, 68, 100, 104], "exampl": [8, 14, 15, 24, 59, 63, 64, 70, 95, 99, 100, 106], "expect": [28, 37, 74, 80, 110, 116], "express": [15, 64, 100], "factor": [17, 22, 40, 65, 69, 82, 101, 105, 118], "financ": 38, "financi": [1, 53, 89], "find": [10, 61, 97], "firm": [7, 48, 58, 88, 94, 124], "fiscal": [34, 78, 114], "fit": [3, 10, 55, 61, 91, 97], "form": [12, 24, 62, 70, 98, 106], "from": [8, 10, 59, 61, 95, 97], "function": [3, 15, 17, 21, 26, 55, 64, 65, 68, 72, 91, 100, 101, 104, 108], "further": [46, 47, 48, 87, 88, 123, 124], "futur": [40, 82, 118], "ga": [48, 88, 124], "game": 29, "gener": [1, 53, 89], "gini": [24, 70, 106], "github": 51, "govern": [12, 48, 62, 88, 98, 124], "graph": [22, 46, 47, 69, 87, 105, 123], "gross": [33, 77, 113], "growth": [22, 69, 105], "hat": [44, 85, 121], "histor": [22, 69, 105], "href": 51, "http": 51, "hypothesi": [46, 47, 87, 123], "i": [21, 36, 68, 79, 104, 115], "implic": [17, 25, 26, 36, 65, 71, 72, 79, 101, 107, 108, 115], "import": [48, 88, 124], "incid": [15, 64, 100], "incom": [1, 2, 22, 46, 47, 53, 54, 69, 87, 89, 90, 105, 123], "india": [46, 47, 87, 123], "indic": [33, 77, 113], "indiffer": [21, 68, 104], "individu": [46, 47, 87, 123], "inequ": [22, 23, 24, 69, 70, 105, 106], "infer": [1, 53, 89], "inflat": [33, 77, 113], "instanc": [30, 75, 111], "intens": [48, 88, 124], "interest": [33, 40, 77, 82, 113, 118], "intertempor": [1, 53, 89], "intervent": [12, 48, 62, 88, 98, 124], "introduc": [48, 88, 124], "introduct": [1, 53, 89], "io": 51, "keynesian": [34, 36, 78, 79, 114, 115], "kuznet": [46, 47, 87, 123], "labor": [17, 65, 101], "lack": [48, 88, 124], "law": [21, 68, 104], "learn": 35, "licens": [50, 51], "limit": [48, 88, 124], "line": [24, 70, 106], "linear": [3, 55, 91], "log": [4, 56, 92], "logarithm": [4, 56, 92], "lorenz": [24, 70, 106], "loss": [15, 64, 100], "low": [46, 47, 87, 123], "lucr": [1, 53, 89], "mac": [48, 88, 124], "macroeconom": [33, 35, 77, 113], "major": [1, 53, 89], "margin": [21, 22, 48, 68, 69, 88, 104, 105, 124], "market": [10, 11, 61, 97], "matric": [27, 73, 109], "matrix": [28, 74, 110], "maxim": [19, 67, 103], "mckinsei": [48, 88, 124], "mean": [1, 44, 53, 85, 89, 121], "measur": [24, 70, 106], "median": [1, 53, 89], "methan": [48, 88, 124], "method": [30, 75, 111], "model": 51, "monei": [40, 82, 118], "most": [1, 53, 89], "movement": [2, 10, 54, 61, 90, 97], "multivari": [42, 83, 119], "nash": [27, 73, 109], "neg": [21, 48, 68, 88, 104, 124], "new": [15, 64, 100], "next": [46, 47, 48, 87, 88, 123, 124], "non": [21, 68, 104], "norwai": [87, 123], "note": [14, 63, 99], "oligopoli": [27, 73, 109], "oper": [30, 75, 111], "option": [12, 39, 62, 81, 98, 117], "other": [5, 12, 24, 57, 62, 70, 93, 98, 106], "our": [46, 47, 87, 123], "outcom": 35, "output": [18, 66, 102], "over": [1, 53, 89], "own": [46, 47, 87, 123], "paper": [43, 84, 120], "payoff": [27, 28, 39, 73, 74, 81, 109, 110, 117], "perfect": [24, 70, 106], "phillip": [37, 80, 116], "polici": [34, 35, 78, 114], "polynomi": [10, 61, 97], "popul": [22, 69, 105], "preprocess": [10, 61, 97], "present": [40, 82, 118], "price": [3, 10, 12, 15, 39, 55, 61, 62, 64, 81, 91, 97, 98, 100, 117], "produc": [14, 63, 99], "product": [7, 16, 17, 33, 58, 65, 77, 94, 101, 113], "profit": [26, 72, 108], "proport": [4, 56, 92], "public": 13, "put": [39, 81, 117], "python": [30, 75, 111], "quantiti": [3, 10, 15, 55, 61, 64, 91, 97, 100], "rate": [22, 33, 40, 69, 77, 82, 105, 113, 118], "reaction": [48, 88, 124], "read": [28, 43, 46, 47, 48, 74, 84, 87, 88, 110, 120, 123, 124], "real": [33, 77, 113], "reassign": [30, 75, 111], "recommend": [46, 47, 48, 87, 88, 123, 124], "regress": [42, 44, 45, 83, 85, 86, 119, 121, 122], "rel": [5, 57, 93], "relationship": [3, 4, 10, 55, 56, 61, 91, 92, 97], "represent": [30, 75, 111], "respons": [26, 72, 108], "rest": [22, 69, 105], "return": [18, 21, 39, 66, 68, 81, 102, 104, 117], "revenu": [5, 57, 93], "revisit": [4, 56, 92], "risk": [1, 53, 89], "root": [44, 85, 121], "salienc": [15, 64, 100], "scale": [18, 66, 102], "schole": [39, 81, 117], "school": [44, 85, 121], "scienc": [1, 53, 89], "semi": [4, 56, 92], "shift": [2, 18, 54, 66, 90, 102], "singl": [44, 85, 121], "solut": [15, 64, 100], "solv": [15, 64, 100], "some": [48, 88, 124], "squar": [44, 85, 121], "state": [22, 46, 47, 69, 105], "statsmodel": [45, 86, 122], "strategi": [28, 74, 110], "student": 35, "subsid": [15, 64, 100], "subsidi": [15, 64, 100], "substitut": [2, 54, 90], "suppli": [7, 10, 11, 14, 58, 61, 63, 94, 97, 99], "surplu": [14, 63, 99], "sympi": [9, 60, 96], "tax": [15, 22, 64, 69, 100, 105], "taxat": [15, 64, 100], "textbook": 0, "theori": [28, 29, 74, 110], "thi": 50, "time": [1, 40, 53, 82, 89, 118], "toi": [24, 70, 106], "top": [22, 69, 105], "total": [17, 65, 101], "trade": [12, 39, 62, 81, 98, 117], "uncertainti": [44, 85, 121], "unemploy": [22, 33, 69, 77, 105, 113], "unit": [22, 46, 47, 69, 105], "us": [4, 39, 45, 56, 81, 86, 92, 117, 122], "usa": [87, 123], "util": [1, 19, 20, 21, 28, 53, 67, 68, 74, 89, 103, 104, 110], "v": [1, 12, 34, 53, 62, 78, 89, 98, 114], "valu": [40, 82, 118], "variabl": [42, 44, 83, 85, 119, 121], "view": [34, 78, 114], "visual": [3, 4, 10, 42, 55, 56, 61, 83, 91, 92, 97, 119], "what": [21, 46, 47, 48, 68, 87, 88, 104, 123, 124], "why": [15, 48, 64, 88, 100, 124], "world": [12, 22, 62, 69, 98, 105], "year": [44, 85, 121], "your": [1, 53, 89], "\ud835\udc48": [33, 77, 113], "\ud835\udc4c": [33, 77, 113], "\ud835\udc5f": [33, 77, 113], "\ud835\udf0b": [33, 77, 113]}}) \ No newline at end of file +Search.setIndex({"alltitles": {" Data 88E: Economic Models ": [[51, null]], "A Toy Example": [[24, "a-toy-example"], [70, "a-toy-example"], [106, "a-toy-example"]], "A brief discourse on utility": [[1, "a-brief-discourse-on-utility"], [53, "a-brief-discourse-on-utility"], [89, "a-brief-discourse-on-utility"]], "Acknowledgements": [[51, "acknowledgements"]], "An Afterword": [[1, "an-afterword"], [53, "an-afterword"], [89, "an-afterword"]], "An Empirical Demand Curve": [[3, null], [55, null], [91, null]], "An Empirical Example from EEP 147": [[8, null], [59, null], [95, null]], "An Example": [[15, "an-example"], [64, "an-example"], [100, "an-example"]], "Analyzing Shifts in A and \\alpha": [[18, null], [66, null], [102, null]], "Applying Bertrand": [[25, "applying-bertrand"], [71, "applying-bertrand"], [107, "applying-bertrand"]], "Applying Cournot": [[26, "applying-cournot"], [72, "applying-cournot"], [108, "applying-cournot"]], "Assertions": [[30, "assertions"], [75, "assertions"], [111, "assertions"]], "BRICS": [[46, "brics"], [47, "brics"], [87, "brics"], [123, "brics"]], "Back to the Government": [[48, "back-to-the-government"], [88, "back-to-the-government"], [124, "back-to-the-government"]], "Bertrand Competition": [[25, null], [71, null], [107, null]], "Bertrand Equilibrium": [[25, "bertrand-equilibrium"], [71, "bertrand-equilibrium"], [107, "bertrand-equilibrium"]], "Best Response Functions": [[26, "best-response-functions"], [72, "best-response-functions"], [108, "best-response-functions"]], "Bibliography": [[52, null]], "Black-Scholes": [[39, "black-scholes"], [81, "black-scholes"], [117, "black-scholes"]], "Budget Constraints and Utility Maximization": [[19, null], [67, null], [103, null]], "Building our own Environmental Kuznets Curve": [[46, "building-our-own-environmental-kuznets-curve"], [47, "building-our-own-environmental-kuznets-curve"], [87, "building-our-own-environmental-kuznets-curve"], [123, "building-our-own-environmental-kuznets-curve"]], "Calculating Returns Using an API": [[39, "calculating-returns-using-an-api"], [81, "calculating-returns-using-an-api"], [117, "calculating-returns-using-an-api"]], "Calculating Taxes Algebraically": [[15, "calculating-taxes-algebraically"], [64, "calculating-taxes-algebraically"], [100, "calculating-taxes-algebraically"]], "Calls": [[39, "calls"], [81, "calls"], [117, "calls"]], "Capital": [[17, "capital"], [65, "capital"], [101, "capital"]], "Central Banks": [[32, null], [76, null], [112, null]], "China": [[46, "china"], [47, "china"], [87, "china"], [123, "china"]], "Class Representations": [[30, "class-representations"], [75, "class-representations"], [111, "class-representations"]], "Classical Phillips Curve": [[37, "classical-phillips-curve"], [80, "classical-phillips-curve"], [116, "classical-phillips-curve"]], "Classical vs Keynesian View": [[34, "classical-vs-keynesian-view"], [78, "classical-vs-keynesian-view"], [114, "classical-vs-keynesian-view"]], "Cobb-Douglas Utility Function": [[21, "cobb-douglas-utility-function"], [68, "cobb-douglas-utility-function"], [104, "cobb-douglas-utility-function"]], "Colinearity and Dummy Variables": [[42, "colinearity-and-dummy-variables"], [83, "colinearity-and-dummy-variables"], [119, "colinearity-and-dummy-variables"]], "Comparing Lorenz Curves": [[24, "comparing-lorenz-curves"], [70, "comparing-lorenz-curves"], [106, "comparing-lorenz-curves"]], "Conclusion": [[48, "conclusion"], [88, "conclusion"], [124, "conclusion"]], "Constructing a MAC for Methane Gas Abatement": [[48, "constructing-a-mac-for-methane-gas-abatement"], [88, "constructing-a-mac-for-methane-gas-abatement"], [124, "constructing-a-mac-for-methane-gas-abatement"]], "Consumer Surplus": [[14, "consumer-surplus"], [63, "consumer-surplus"], [99, "consumer-surplus"]], "Costs": [[7, "costs"], [58, "costs"], [94, "costs"]], "Cournot Competition": [[26, null], [72, null], [108, null]], "Cournot Equilibrium": [[26, "cournot-equilibrium"], [72, "cournot-equilibrium"], [108, "cournot-equilibrium"]], "Cournot Profit Functions": [[26, "cournot-profit-functions"], [72, "cournot-profit-functions"], [108, "cournot-profit-functions"]], "Course Description": [[51, "course-description"]], "Create the Demand Curve": [[10, "create-the-demand-curve"], [61, "create-the-demand-curve"], [97, "create-the-demand-curve"]], "Create the Supply Curve": [[10, "create-the-supply-curve"], [61, "create-the-supply-curve"], [97, "create-the-supply-curve"]], "Creating Instances": [[30, "creating-instances"], [75, "creating-instances"], [111, "creating-instances"]], "Criticism of the Environmental Kuznets Curve Hypothesis": [[46, "criticism-of-the-environmental-kuznets-curve-hypothesis"], [47, "criticism-of-the-environmental-kuznets-curve-hypothesis"], [87, "criticism-of-the-environmental-kuznets-curve-hypothesis"], [123, "criticism-of-the-environmental-kuznets-curve-hypothesis"]], "Data Collection": [[1, "data-collection"], [53, "data-collection"], [89, "data-collection"]], "Data Preprocessing": [[10, "data-preprocessing"], [61, "data-preprocessing"], [97, "data-preprocessing"]], "Deadweight Loss": [[15, "deadweight-loss"], [64, "deadweight-loss"], [100, "deadweight-loss"]], "Definition": [[7, null], [7, null], [10, null], [24, null], [27, null], [28, null], [40, null], [58, null], [58, null], [61, null], [70, null], [73, null], [74, null], [82, null], [94, null], [94, null], [97, null], [106, null], [109, null], [110, null], [118, null]], "Demand Curves": [[2, null], [54, null], [90, null]], "Demand and Elasticities": [[6, null]], "Demand with Price as a Function of Quantity": [[3, "demand-with-price-as-a-function-of-quantity"], [55, "demand-with-price-as-a-function-of-quantity"], [91, "demand-with-price-as-a-function-of-quantity"]], "Demand with Quantity as a Function of Price": [[3, "demand-with-quantity-as-a-function-of-price"], [55, "demand-with-quantity-as-a-function-of-price"], [91, "demand-with-quantity-as-a-function-of-price"]], "Development": [[31, null]], "Disclaimer": [[39, null], [81, null], [117, null]], "Dynamics of Keynesian Cross and Derivation of IS Curve": [[36, "dynamics-of-keynesian-cross-and-derivation-of-is-curve"], [79, "dynamics-of-keynesian-cross-and-derivation-of-is-curve"], [115, "dynamics-of-keynesian-cross-and-derivation-of-is-curve"]], "Econometric Single Variable Regression": [[44, "econometric-single-variable-regression"], [85, "econometric-single-variable-regression"], [121, "econometric-single-variable-regression"]], "Econometrics": [[41, null]], "Effects of Subsidies": [[15, "effects-of-subsidies"], [64, "effects-of-subsidies"], [100, "effects-of-subsidies"]], "Effects of Taxation": [[15, "effects-of-taxation"], [64, "effects-of-taxation"], [100, "effects-of-taxation"]], "Elasticity": [[5, null], [57, null], [93, null]], "Elasticity and Revenue": [[5, "elasticity-and-revenue"], [57, "elasticity-and-revenue"], [93, "elasticity-and-revenue"]], "Environmental Economics": [[49, null]], "Environmental Kuznets Curve Hypothesis": [[46, null], [47, null], [87, null], [123, null]], "Equilibria & Oligopolies": [[27, null], [73, null], [109, null]], "Equilibrium": [[27, "equilibrium"], [73, "equilibrium"], [109, "equilibrium"]], "Examining the Effects of Taxes": [[15, "examining-the-effects-of-taxes"], [64, "examining-the-effects-of-taxes"], [100, "examining-the-effects-of-taxes"]], "Examining the Utility Function": [[21, "examining-the-utility-function"], [68, "examining-the-utility-function"], [104, "examining-the-utility-function"]], "Example": [[14, "example"], [63, "example"], [99, "example"]], "Expectation-Augmented Phillips Curve": [[37, "expectation-augmented-phillips-curve"], [80, "expectation-augmented-phillips-curve"], [116, "expectation-augmented-phillips-curve"]], "Expected Utility": [[28, "expected-utility"], [74, "expected-utility"], [110, "expected-utility"]], "Expected Utility Theory": [[28, null], [74, null], [110, null]], "Expressing Quantity as a Function of Price": [[15, "expressing-quantity-as-a-function-of-price"], [64, "expressing-quantity-as-a-function-of-price"], [100, "expressing-quantity-as-a-function-of-price"]], "Factors that Affect Income Inequality": [[22, "factors-that-affect-income-inequality"], [69, "factors-that-affect-income-inequality"], [105, "factors-that-affect-income-inequality"]], "Finance": [[38, null]], "Find the Price Equilibrium": [[10, "find-the-price-equilibrium"], [61, "find-the-price-equilibrium"], [97, "find-the-price-equilibrium"]], "Find the Quantity Equilibrium": [[10, "find-the-quantity-equilibrium"], [61, "find-the-quantity-equilibrium"], [97, "find-the-quantity-equilibrium"]], "Finding the Equilibrium": [[10, "finding-the-equilibrium"], [61, "finding-the-equilibrium"], [97, "finding-the-equilibrium"]], "Fiscal Policy": [[34, null], [78, null], [114, null]], "Fit a Polynomial": [[10, "fit-a-polynomial"], [61, "fit-a-polynomial"], [97, "fit-a-polynomial"]], "Fitting a Linear Demand Curve": [[3, "fitting-a-linear-demand-curve"], [55, "fitting-a-linear-demand-curve"], [91, "fitting-a-linear-demand-curve"]], "Further recommended readings": [[46, "further-recommended-readings"], [47, "further-recommended-readings"], [48, "further-recommended-readings"], [87, "further-recommended-readings"], [88, "further-recommended-readings"], [123, "further-recommended-readings"], [124, "further-recommended-readings"]], "Game Theory": [[29, null]], "Generalization and Causal Inference": [[1, "generalization-and-causal-inference"], [53, "generalization-and-causal-inference"], [89, "generalization-and-causal-inference"]], "Government Intervention": [[48, "government-intervention"], [88, "government-intervention"], [124, "government-intervention"]], "Gross Domestic Product (\ud835\udc4c)": [[33, "gross-domestic-product"], [77, "gross-domestic-product"], [113, "gross-domestic-product"]], "IS-Curve": [[36, null], [79, null], [115, null]], "Implication for Cross-Country Comparisons": [[17, "implication-for-cross-country-comparisons"], [65, "implication-for-cross-country-comparisons"], [101, "implication-for-cross-country-comparisons"]], "Implication of IS Curve": [[36, "implication-of-is-curve"], [79, "implication-of-is-curve"], [115, "implication-of-is-curve"]], "Implications": [[25, "implications"], [26, "implications"], [71, "implications"], [72, "implications"], [107, "implications"], [108, "implications"]], "Incidence": [[15, "incidence"], [64, "incidence"], [100, "incidence"]], "Income Inequality Historically": [[22, null], [69, null], [105, null]], "Income Inequality for the Rest of the World": [[22, "income-inequality-for-the-rest-of-the-world"], [69, "income-inequality-for-the-rest-of-the-world"], [105, "income-inequality-for-the-rest-of-the-world"]], "Income and Substitution Effect": [[2, "income-and-substitution-effect"], [54, "income-and-substitution-effect"], [90, "income-and-substitution-effect"]], "Incomes Over Time: Computer Science vs Economics": [[1, "incomes-over-time-computer-science-vs-economics"], [53, "incomes-over-time-computer-science-vs-economics"], [89, "incomes-over-time-computer-science-vs-economics"]], "India": [[46, "india"], [47, "india"], [87, "india"], [123, "india"]], "Indifference Curves": [[21, "indifference-curves"], [68, "indifference-curves"], [104, "indifference-curves"]], "Individual country graphs": [[46, "individual-country-graphs"], [47, "individual-country-graphs"], [87, "individual-country-graphs"], [123, "individual-country-graphs"]], "Inequality": [[23, null]], "Inflation Rate (\ud835\udf0b)": [[33, "inflation-rate"], [77, "inflation-rate"], [113, "inflation-rate"]], "Instance Methods": [[30, "instance-methods"], [75, "instance-methods"], [111, "instance-methods"]], "Interest": [[40, "interest"], [82, "interest"], [118, "interest"]], "Intertemporal Effects": [[1, "intertemporal-effects"], [53, "intertemporal-effects"], [89, "intertemporal-effects"]], "Introduction": [[1, null], [53, null], [89, null]], "Keynesian Cross": [[36, "keynesian-cross"], [79, "keynesian-cross"], [115, "keynesian-cross"]], "Labor": [[17, "labor"], [65, "labor"], [101, "labor"]], "License": [[51, "license"]], "License for this book": [[50, null]], "Limitation 1: Introducing Capital Intensity": [[48, "limitation-1-introducing-capital-intensity"], [88, "limitation-1-introducing-capital-intensity"], [124, "limitation-1-introducing-capital-intensity"]], "Limitation 2: Lack of Dynamic Cost Assessment": [[48, "limitation-2-lack-of-dynamic-cost-assessment"], [88, "limitation-2-lack-of-dynamic-cost-assessment"], [124, "limitation-2-lack-of-dynamic-cost-assessment"]], "Line of Perfect Equality": [[24, "line-of-perfect-equality"], [70, "line-of-perfect-equality"], [106, "line-of-perfect-equality"]], "Log-log": [[4, "log-log"], [56, "log-log"], [92, "log-log"]], "Log-log Demand Curves": [[4, "log-log-demand-curves"], [56, "log-log-demand-curves"], [92, "log-log-demand-curves"]], "Log-log and Semi-log Demand Curves": [[4, null], [56, null], [92, null]], "Low Income Countries": [[46, "low-income-countries"], [47, "low-income-countries"], [87, "low-income-countries"], [123, "low-income-countries"]], "Macroeconomic Indicators": [[33, null], [77, null], [113, null]], "Macroeconomic Policy": [[35, null]], "Marginal Abatement Cost Curves": [[48, null], [88, null], [124, null]], "Marginal Cost": [[48, "marginal-cost"], [88, "marginal-cost"], [124, "marginal-cost"]], "Marginal Utility and the Law of Diminishing Returns": [[21, "marginal-utility-and-the-law-of-diminishing-returns"], [68, "marginal-utility-and-the-law-of-diminishing-returns"], [104, "marginal-utility-and-the-law-of-diminishing-returns"]], "Market Equilibria": [[10, null], [61, null], [97, null]], "Mean vs Median": [[1, "mean-vs-median"], [53, "mean-vs-median"], [89, "mean-vs-median"]], "Measurements of Inequality": [[24, null], [70, null], [106, null]], "Movement and the Demand Curve": [[2, "movement-and-the-demand-curve"], [54, "movement-and-the-demand-curve"], [90, "movement-and-the-demand-curve"]], "Movements Away from Equilibrium": [[10, "movements-away-from-equilibrium"], [61, "movements-away-from-equilibrium"], [97, "movements-away-from-equilibrium"]], "Movements along the Demand Curve": [[2, "movements-along-the-demand-curve"], [54, "movements-along-the-demand-curve"], [90, "movements-along-the-demand-curve"]], "Multivariable Regression": [[42, "multivariable-regression"], [83, "multivariable-regression"], [119, "multivariable-regression"]], "Multivariable Regression and Bias": [[42, null], [83, null], [119, null]], "Nash equilibria in payoff matrices": [[27, null], [73, null], [109, null]], "Non-negative Marginal Utility": [[21, "non-negative-marginal-utility"], [68, "non-negative-marginal-utility"], [104, "non-negative-marginal-utility"]], "Norway": [[87, "norway"], [123, "norway"]], "Note on the Demand and Supply Curves": [[14, "note-on-the-demand-and-supply-curves"], [63, "note-on-the-demand-and-supply-curves"], [99, "note-on-the-demand-and-supply-curves"]], "Oligopolies": [[27, "oligopolies"], [73, "oligopolies"], [109, "oligopolies"]], "Operators": [[30, "operators"], [75, "operators"], [111, "operators"]], "Optional: World Trade vs. Autarky": [[12, "optional-world-trade-vs-autarky"], [62, "optional-world-trade-vs-autarky"], [98, "optional-world-trade-vs-autarky"]], "Options": [[39, null], [81, null], [117, null]], "Other Elasticities": [[5, "other-elasticities"], [57, "other-elasticities"], [93, "other-elasticities"]], "Other Forms of Government Intervention": [[12, null], [62, null], [98, null]], "Other Forms of Measurement": [[24, "other-forms-of-measurement"], [70, "other-forms-of-measurement"], [106, "other-forms-of-measurement"]], "Payoff Diagrams": [[39, "payoff-diagrams"], [81, "payoff-diagrams"], [117, "payoff-diagrams"]], "Phillips Curve": [[37, null], [80, null], [116, null]], "Population growth": [[22, "population-growth"], [69, "population-growth"], [105, "population-growth"]], "Present Value, Future Value, and Interest Rates": [[40, null], [82, null], [118, null]], "Present Value, Future Value, and the Discount Factor": [[40, "present-value-future-value-and-the-discount-factor"], [82, "present-value-future-value-and-the-discount-factor"], [118, "present-value-future-value-and-the-discount-factor"]], "Price Controls": [[12, "price-controls"], [62, "price-controls"], [98, "price-controls"]], "Pricing Options": [[39, "pricing-options"], [81, "pricing-options"], [117, "pricing-options"]], "Producer Surplus": [[14, "producer-surplus"], [63, "producer-surplus"], [99, "producer-surplus"]], "Production": [[16, null]], "Production and Cobb-Douglas Functions": [[17, null], [65, null], [101, null]], "Production and Firm Behavior": [[7, "production-and-firm-behavior"], [58, "production-and-firm-behavior"], [94, "production-and-firm-behavior"]], "Production in the Economy": [[17, "production-in-the-economy"], [65, "production-in-the-economy"], [101, "production-in-the-economy"]], "Public Economics": [[13, null]], "Puts": [[39, "puts"], [81, "puts"], [117, "puts"]], "Python Classes": [[30, null], [75, null], [111, null]], "Reading Economics Papers": [[43, null], [84, null], [120, null]], "Reading a payoff matrix": [[28, null], [74, null], [110, null]], "Real Interest Rate (\ud835\udc5f)": [[33, "real-interest-rate-r"], [77, "real-interest-rate-r"], [113, "real-interest-rate-r"]], "Reassignment Operators": [[30, "reassignment-operators"], [75, "reassignment-operators"], [111, "reassignment-operators"]], "Regression with a Binary Variable": [[44, "regression-with-a-binary-variable"], [85, "regression-with-a-binary-variable"], [121, "regression-with-a-binary-variable"]], "Relative Elasticity": [[5, "relative-elasticity"], [57, "relative-elasticity"], [93, "relative-elasticity"]], "Returns": [[39, "returns"], [81, "returns"], [117, "returns"]], "Returns to Scale": [[18, "returns-to-scale"], [66, "returns-to-scale"], [102, "returns-to-scale"]], "Revisiting Avocados": [[4, "revisiting-avocados"], [56, "revisiting-avocados"], [92, "revisiting-avocados"]], "Risk": [[1, "risk"], [53, "risk"], [89, "risk"]], "Root-Mean-Squared Error": [[44, "root-mean-squared-error"], [85, "root-mean-squared-error"], [121, "root-mean-squared-error"]], "Salience": [[15, "salience"], [64, "salience"], [100, "salience"]], "Semi-log": [[4, "semi-log"], [56, "semi-log"], [92, "semi-log"]], "Semi-log Demand Curves": [[4, "semi-log-demand-curves"], [56, "semi-log-demand-curves"], [92, "semi-log-demand-curves"]], "Shifts in A and their Effect on Output": [[18, "shifts-in-a-and-their-effect-on-output"], [66, "shifts-in-a-and-their-effect-on-output"], [102, "shifts-in-a-and-their-effect-on-output"]], "Shifts in \\alpha and their Effect on Output": [[18, "shifts-in-alpha-and-their-effect-on-output"], [66, "shifts-in-alpha-and-their-effect-on-output"], [102, "shifts-in-alpha-and-their-effect-on-output"]], "Shifts in the Demand Curve": [[2, "shifts-in-the-demand-curve"], [54, "shifts-in-the-demand-curve"], [90, "shifts-in-the-demand-curve"]], "Single Variable Regression": [[44, null], [85, null], [121, null]], "Solution": [[15, null], [15, null], [15, null], [15, null], [64, null], [64, null], [64, null], [64, null], [100, null], [100, null], [100, null], [100, null]], "Solving for the new quantity and price equilibria": [[15, "solving-for-the-new-quantity-and-price-equilibria"], [64, "solving-for-the-new-quantity-and-price-equilibria"], [100, "solving-for-the-new-quantity-and-price-equilibria"]], "Strategies": [[28, "strategies"], [74, "strategies"], [110, "strategies"]], "Student Learning Outcomes:": [[35, "student-learning-outcomes"]], "Supply and Market Equilibrium": [[11, null]], "Surplus": [[14, null], [63, null], [99, null]], "SymPy": [[9, null], [60, null], [96, null]], "Taxes and Subsidies": [[15, null], [64, null], [100, null]], "The Cobb-Douglas Production Function": [[17, "the-cobb-douglas-production-function"], [65, "the-cobb-douglas-production-function"], [101, "the-cobb-douglas-production-function"]], "The Elephant Graph": [[22, "the-elephant-graph"], [69, "the-elephant-graph"], [105, "the-elephant-graph"]], "The Financial Benefits of Your Major": [[1, "the-financial-benefits-of-your-major"], [53, "the-financial-benefits-of-your-major"], [89, "the-financial-benefits-of-your-major"]], "The Firm\u2019s Reaction": [[48, "the-firms-reaction"], [88, "the-firms-reaction"], [124, "the-firms-reaction"]], "The Gini Coefficient": [[24, "the-gini-coefficient"], [70, "the-gini-coefficient"], [106, "the-gini-coefficient"]], "The Lorenz Curve": [[24, "the-lorenz-curve"], [70, "the-lorenz-curve"], [106, "the-lorenz-curve"]], "The MAC curve\u2019s important limitations": [[48, "the-mac-curve-s-important-limitations"], [88, "the-mac-curve-s-important-limitations"], [124, "the-mac-curve-s-important-limitations"]], "The McKinsey Marginal Abatement Cost Curve (MAC)": [[48, "the-mckinsey-marginal-abatement-cost-curve-mac"], [88, "the-mckinsey-marginal-abatement-cost-curve-mac"], [124, "the-mckinsey-marginal-abatement-cost-curve-mac"]], "The Supply Curve": [[7, null], [58, null], [94, null]], "The Time Value of Money": [[40, "the-time-value-of-money"], [82, "the-time-value-of-money"], [118, "the-time-value-of-money"]], "The United States": [[22, "the-united-states"], [69, "the-united-states"], [105, "the-united-states"]], "The most lucrative major": [[1, "the-most-lucrative-major"], [53, "the-most-lucrative-major"], [89, "the-most-lucrative-major"]], "Top marginal tax rates": [[22, "top-marginal-tax-rates"], [69, "top-marginal-tax-rates"], [105, "top-marginal-tax-rates"]], "Total Factor Productivity": [[17, "total-factor-productivity"], [65, "total-factor-productivity"], [101, "total-factor-productivity"]], "Trading Options": [[39, "trading-options"], [81, "trading-options"], [117, "trading-options"]], "USA": [[87, "usa"], [123, "usa"]], "Uncertainty in \\hat{\\beta}": [[44, "uncertainty-in-hat-beta"], [85, "uncertainty-in-hat-beta"], [121, "uncertainty-in-hat-beta"]], "Unemployment Rate (\ud835\udc48)": [[33, "unemployment-rate"], [77, "unemployment-rate"], [113, "unemployment-rate"]], "Unemployment rates": [[22, "unemployment-rates"], [69, "unemployment-rates"], [105, "unemployment-rates"]], "United States": [[46, "united-states"], [47, "united-states"]], "Using Logarithms for Proportional Changes": [[4, "using-logarithms-for-proportional-changes"], [56, "using-logarithms-for-proportional-changes"], [92, "using-logarithms-for-proportional-changes"]], "Using statsmodels for Regression": [[45, null], [86, null], [122, null]], "Utility": [[20, null]], "Utility Functions": [[21, "utility-functions"], [68, "utility-functions"], [104, "utility-functions"]], "Utility Functions and Indifference Curves": [[21, null], [68, null], [104, null]], "Visualize the Relationship": [[10, "visualize-the-relationship"], [61, "visualize-the-relationship"], [97, "visualize-the-relationship"]], "Visualize the Market Equilibrium": [[10, "visualize-the-market-equilibrium"], [61, "visualize-the-market-equilibrium"], [97, "visualize-the-market-equilibrium"]], "Visualizing Multivariable Regression": [[42, "visualizing-multivariable-regression"], [83, "visualizing-multivariable-regression"], [119, "visualizing-multivariable-regression"]], "Visualizing the Relationship between Price and Quantity": [[3, "visualizing-the-relationship-between-price-and-quantity"], [55, "visualizing-the-relationship-between-price-and-quantity"], [91, "visualizing-the-relationship-between-price-and-quantity"]], "Visualizing the log-log relationship": [[4, "visualizing-the-log-log-relationship"], [56, "visualizing-the-log-log-relationship"], [92, "visualizing-the-log-log-relationship"]], "Visualizing the semi-log relationship": [[4, "visualizing-the-semi-log-relationship"], [56, "visualizing-the-semi-log-relationship"], [92, "visualizing-the-semi-log-relationship"]], "What is Utility?": [[21, "what-is-utility"], [68, "what-is-utility"], [104, "what-is-utility"]], "What\u2019s next?": [[46, "what-s-next"], [47, "what-s-next"], [48, "what-s-next"], [87, "what-s-next"], [88, "what-s-next"], [123, "what-s-next"], [124, "what-s-next"]], "Why Tax or Subsidize?": [[15, "why-tax-or-subsidize"], [64, "why-tax-or-subsidize"], [100, "why-tax-or-subsidize"]], "Why are some costs negative?": [[48, "why-are-some-costs-negative"], [88, "why-are-some-costs-negative"], [124, "why-are-some-costs-negative"]], "Years of Schooling and Earnings": [[44, "years-of-schooling-and-earnings"], [85, "years-of-schooling-and-earnings"], [121, "years-of-schooling-and-earnings"]], "textbook": [[0, null]]}, "docnames": ["README", "content/00-intro/index", "content/01-demand/01-demand", "content/01-demand/02-example", "content/01-demand/03-log-log", "content/01-demand/04-elasticity", "content/01-demand/index", "content/02-supply/01-supply", "content/02-supply/02-eep147-example", "content/02-supply/03-sympy", "content/02-supply/04-market-equilibria", "content/02-supply/index", "content/03-public/govt-intervention", "content/03-public/index", "content/03-public/surplus", "content/03-public/taxes-subsidies", "content/04-production/index", "content/04-production/production", "content/04-production/shifts", "content/05-utility/budget-constraints", "content/05-utility/index", "content/05-utility/utility", "content/06-inequality/historical-inequality", "content/06-inequality/index", "content/06-inequality/inequality", "content/07-game-theory/bertrand", "content/07-game-theory/cournot", "content/07-game-theory/equilibria-oligopolies", "content/07-game-theory/expected-utility", "content/07-game-theory/index", "content/07-game-theory/python-classes", "content/08-development/index", "content/09-macro/CentralBanks", "content/09-macro/Indicators", "content/09-macro/fiscal_policy", "content/09-macro/index", "content/09-macro/is_curve", "content/09-macro/phillips_curve", "content/10-finance/index", "content/10-finance/options", "content/10-finance/value-interest", "content/11-econometrics/index", "content/11-econometrics/multivariable", "content/11-econometrics/reading-econ-papers", "content/11-econometrics/single-variable", "content/11-econometrics/statsmodels", "content/12-environmental/KuznetsHypothesis", "content/12-environmental/KuznetsHypothesis-Copy1", "content/12-environmental/MAC", "content/12-environmental/index", "content/LICENSE", "content/intro", "content/references", "docs/jupyter_execute/content/00-intro/index", "docs/jupyter_execute/content/01-demand/01-demand", "docs/jupyter_execute/content/01-demand/02-example", "docs/jupyter_execute/content/01-demand/03-log-log", "docs/jupyter_execute/content/01-demand/04-elasticity", "docs/jupyter_execute/content/02-supply/01-supply", "docs/jupyter_execute/content/02-supply/02-eep147-example", "docs/jupyter_execute/content/02-supply/03-sympy", "docs/jupyter_execute/content/02-supply/04-market-equilibria", "docs/jupyter_execute/content/03-public/govt-intervention", "docs/jupyter_execute/content/03-public/surplus", "docs/jupyter_execute/content/03-public/taxes-subsidies", "docs/jupyter_execute/content/04-production/production", "docs/jupyter_execute/content/04-production/shifts", "docs/jupyter_execute/content/05-utility/budget-constraints", "docs/jupyter_execute/content/05-utility/utility", "docs/jupyter_execute/content/06-inequality/historical-inequality", "docs/jupyter_execute/content/06-inequality/inequality", "docs/jupyter_execute/content/07-game-theory/bertrand", "docs/jupyter_execute/content/07-game-theory/cournot", "docs/jupyter_execute/content/07-game-theory/equilibria-oligopolies", "docs/jupyter_execute/content/07-game-theory/expected-utility", "docs/jupyter_execute/content/07-game-theory/python-classes", "docs/jupyter_execute/content/09-macro/CentralBanks", "docs/jupyter_execute/content/09-macro/Indicators", "docs/jupyter_execute/content/09-macro/fiscal_policy", "docs/jupyter_execute/content/09-macro/is_curve", "docs/jupyter_execute/content/09-macro/phillips_curve", "docs/jupyter_execute/content/10-finance/options", "docs/jupyter_execute/content/10-finance/value-interest", "docs/jupyter_execute/content/11-econometrics/multivariable", "docs/jupyter_execute/content/11-econometrics/reading-econ-papers", "docs/jupyter_execute/content/11-econometrics/single-variable", "docs/jupyter_execute/content/11-econometrics/statsmodels", "docs/jupyter_execute/content/12-environmental/KuznetsHypothesis-Copy1", "docs/jupyter_execute/content/12-environmental/textbook1", "docs/jupyter_execute/docs/jupyter_execute/content/00-intro/index", "docs/jupyter_execute/docs/jupyter_execute/content/01-demand/01-demand", "docs/jupyter_execute/docs/jupyter_execute/content/01-demand/02-example", "docs/jupyter_execute/docs/jupyter_execute/content/01-demand/03-log-log", "docs/jupyter_execute/docs/jupyter_execute/content/01-demand/04-elasticity", "docs/jupyter_execute/docs/jupyter_execute/content/02-supply/01-supply", "docs/jupyter_execute/docs/jupyter_execute/content/02-supply/02-eep147-example", "docs/jupyter_execute/docs/jupyter_execute/content/02-supply/03-sympy", "docs/jupyter_execute/docs/jupyter_execute/content/02-supply/04-market-equilibria", "docs/jupyter_execute/docs/jupyter_execute/content/03-public/govt-intervention", "docs/jupyter_execute/docs/jupyter_execute/content/03-public/surplus", "docs/jupyter_execute/docs/jupyter_execute/content/03-public/taxes-subsidies", "docs/jupyter_execute/docs/jupyter_execute/content/04-production/production", "docs/jupyter_execute/docs/jupyter_execute/content/04-production/shifts", "docs/jupyter_execute/docs/jupyter_execute/content/05-utility/budget-constraints", "docs/jupyter_execute/docs/jupyter_execute/content/05-utility/utility", "docs/jupyter_execute/docs/jupyter_execute/content/06-inequality/historical-inequality", "docs/jupyter_execute/docs/jupyter_execute/content/06-inequality/inequality", "docs/jupyter_execute/docs/jupyter_execute/content/07-game-theory/bertrand", "docs/jupyter_execute/docs/jupyter_execute/content/07-game-theory/cournot", "docs/jupyter_execute/docs/jupyter_execute/content/07-game-theory/equilibria-oligopolies", "docs/jupyter_execute/docs/jupyter_execute/content/07-game-theory/expected-utility", "docs/jupyter_execute/docs/jupyter_execute/content/07-game-theory/python-classes", "docs/jupyter_execute/docs/jupyter_execute/content/09-macro/CentralBanks", "docs/jupyter_execute/docs/jupyter_execute/content/09-macro/Indicators", "docs/jupyter_execute/docs/jupyter_execute/content/09-macro/fiscal_policy", "docs/jupyter_execute/docs/jupyter_execute/content/09-macro/is_curve", "docs/jupyter_execute/docs/jupyter_execute/content/09-macro/phillips_curve", "docs/jupyter_execute/docs/jupyter_execute/content/10-finance/options", "docs/jupyter_execute/docs/jupyter_execute/content/10-finance/value-interest", "docs/jupyter_execute/docs/jupyter_execute/content/11-econometrics/multivariable", "docs/jupyter_execute/docs/jupyter_execute/content/11-econometrics/reading-econ-papers", "docs/jupyter_execute/docs/jupyter_execute/content/11-econometrics/single-variable", "docs/jupyter_execute/docs/jupyter_execute/content/11-econometrics/statsmodels", "docs/jupyter_execute/docs/jupyter_execute/content/12-environmental/KuznetsHypothesis-Copy1", "docs/jupyter_execute/docs/jupyter_execute/content/12-environmental/textbook1"], "envversion": {"sphinx": 62, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.intersphinx": 1, "sphinxcontrib.bibtex": 9}, "filenames": ["README.md", "content/00-intro/index.ipynb", "content/01-demand/01-demand.ipynb", "content/01-demand/02-example.ipynb", "content/01-demand/03-log-log.ipynb", "content/01-demand/04-elasticity.ipynb", "content/01-demand/index.md", "content/02-supply/01-supply.ipynb", "content/02-supply/02-eep147-example.ipynb", "content/02-supply/03-sympy.ipynb", "content/02-supply/04-market-equilibria.ipynb", "content/02-supply/index.md", "content/03-public/govt-intervention.ipynb", "content/03-public/index.md", "content/03-public/surplus.ipynb", "content/03-public/taxes-subsidies.ipynb", "content/04-production/index.md", "content/04-production/production.ipynb", "content/04-production/shifts.ipynb", "content/05-utility/budget-constraints.ipynb", "content/05-utility/index.md", "content/05-utility/utility.ipynb", "content/06-inequality/historical-inequality.ipynb", "content/06-inequality/index.md", "content/06-inequality/inequality.ipynb", "content/07-game-theory/bertrand.ipynb", "content/07-game-theory/cournot.ipynb", "content/07-game-theory/equilibria-oligopolies.ipynb", "content/07-game-theory/expected-utility.ipynb", "content/07-game-theory/index.md", "content/07-game-theory/python-classes.ipynb", "content/08-development/index.md", "content/09-macro/CentralBanks.ipynb", "content/09-macro/Indicators.ipynb", "content/09-macro/fiscal_policy.ipynb", "content/09-macro/index.md", "content/09-macro/is_curve.ipynb", "content/09-macro/phillips_curve.ipynb", "content/10-finance/index.md", "content/10-finance/options.ipynb", "content/10-finance/value-interest.ipynb", "content/11-econometrics/index.md", "content/11-econometrics/multivariable.ipynb", "content/11-econometrics/reading-econ-papers.ipynb", "content/11-econometrics/single-variable.ipynb", "content/11-econometrics/statsmodels.ipynb", "content/12-environmental/KuznetsHypothesis.ipynb", "content/12-environmental/KuznetsHypothesis-Copy1.ipynb", "content/12-environmental/MAC.ipynb", "content/12-environmental/index.md", "content/LICENSE.md", "content/intro.md", "content/references.md", "docs/jupyter_execute/content/00-intro/index.ipynb", "docs/jupyter_execute/content/01-demand/01-demand.ipynb", "docs/jupyter_execute/content/01-demand/02-example.ipynb", "docs/jupyter_execute/content/01-demand/03-log-log.ipynb", "docs/jupyter_execute/content/01-demand/04-elasticity.ipynb", "docs/jupyter_execute/content/02-supply/01-supply.ipynb", "docs/jupyter_execute/content/02-supply/02-eep147-example.ipynb", "docs/jupyter_execute/content/02-supply/03-sympy.ipynb", "docs/jupyter_execute/content/02-supply/04-market-equilibria.ipynb", "docs/jupyter_execute/content/03-public/govt-intervention.ipynb", "docs/jupyter_execute/content/03-public/surplus.ipynb", "docs/jupyter_execute/content/03-public/taxes-subsidies.ipynb", "docs/jupyter_execute/content/04-production/production.ipynb", "docs/jupyter_execute/content/04-production/shifts.ipynb", "docs/jupyter_execute/content/05-utility/budget-constraints.ipynb", "docs/jupyter_execute/content/05-utility/utility.ipynb", "docs/jupyter_execute/content/06-inequality/historical-inequality.ipynb", "docs/jupyter_execute/content/06-inequality/inequality.ipynb", "docs/jupyter_execute/content/07-game-theory/bertrand.ipynb", "docs/jupyter_execute/content/07-game-theory/cournot.ipynb", "docs/jupyter_execute/content/07-game-theory/equilibria-oligopolies.ipynb", "docs/jupyter_execute/content/07-game-theory/expected-utility.ipynb", "docs/jupyter_execute/content/07-game-theory/python-classes.ipynb", "docs/jupyter_execute/content/09-macro/CentralBanks.ipynb", "docs/jupyter_execute/content/09-macro/Indicators.ipynb", "docs/jupyter_execute/content/09-macro/fiscal_policy.ipynb", "docs/jupyter_execute/content/09-macro/is_curve.ipynb", "docs/jupyter_execute/content/09-macro/phillips_curve.ipynb", "docs/jupyter_execute/content/10-finance/options.ipynb", "docs/jupyter_execute/content/10-finance/value-interest.ipynb", "docs/jupyter_execute/content/11-econometrics/multivariable.ipynb", "docs/jupyter_execute/content/11-econometrics/reading-econ-papers.ipynb", "docs/jupyter_execute/content/11-econometrics/single-variable.ipynb", "docs/jupyter_execute/content/11-econometrics/statsmodels.ipynb", "docs/jupyter_execute/content/12-environmental/KuznetsHypothesis-Copy1.ipynb", "docs/jupyter_execute/content/12-environmental/textbook1.ipynb", "docs/jupyter_execute/docs/jupyter_execute/content/00-intro/index.ipynb", "docs/jupyter_execute/docs/jupyter_execute/content/01-demand/01-demand.ipynb", "docs/jupyter_execute/docs/jupyter_execute/content/01-demand/02-example.ipynb", "docs/jupyter_execute/docs/jupyter_execute/content/01-demand/03-log-log.ipynb", "docs/jupyter_execute/docs/jupyter_execute/content/01-demand/04-elasticity.ipynb", "docs/jupyter_execute/docs/jupyter_execute/content/02-supply/01-supply.ipynb", "docs/jupyter_execute/docs/jupyter_execute/content/02-supply/02-eep147-example.ipynb", "docs/jupyter_execute/docs/jupyter_execute/content/02-supply/03-sympy.ipynb", "docs/jupyter_execute/docs/jupyter_execute/content/02-supply/04-market-equilibria.ipynb", "docs/jupyter_execute/docs/jupyter_execute/content/03-public/govt-intervention.ipynb", "docs/jupyter_execute/docs/jupyter_execute/content/03-public/surplus.ipynb", "docs/jupyter_execute/docs/jupyter_execute/content/03-public/taxes-subsidies.ipynb", "docs/jupyter_execute/docs/jupyter_execute/content/04-production/production.ipynb", "docs/jupyter_execute/docs/jupyter_execute/content/04-production/shifts.ipynb", "docs/jupyter_execute/docs/jupyter_execute/content/05-utility/budget-constraints.ipynb", "docs/jupyter_execute/docs/jupyter_execute/content/05-utility/utility.ipynb", "docs/jupyter_execute/docs/jupyter_execute/content/06-inequality/historical-inequality.ipynb", "docs/jupyter_execute/docs/jupyter_execute/content/06-inequality/inequality.ipynb", "docs/jupyter_execute/docs/jupyter_execute/content/07-game-theory/bertrand.ipynb", "docs/jupyter_execute/docs/jupyter_execute/content/07-game-theory/cournot.ipynb", "docs/jupyter_execute/docs/jupyter_execute/content/07-game-theory/equilibria-oligopolies.ipynb", "docs/jupyter_execute/docs/jupyter_execute/content/07-game-theory/expected-utility.ipynb", "docs/jupyter_execute/docs/jupyter_execute/content/07-game-theory/python-classes.ipynb", "docs/jupyter_execute/docs/jupyter_execute/content/09-macro/CentralBanks.ipynb", "docs/jupyter_execute/docs/jupyter_execute/content/09-macro/Indicators.ipynb", "docs/jupyter_execute/docs/jupyter_execute/content/09-macro/fiscal_policy.ipynb", "docs/jupyter_execute/docs/jupyter_execute/content/09-macro/is_curve.ipynb", "docs/jupyter_execute/docs/jupyter_execute/content/09-macro/phillips_curve.ipynb", "docs/jupyter_execute/docs/jupyter_execute/content/10-finance/options.ipynb", "docs/jupyter_execute/docs/jupyter_execute/content/10-finance/value-interest.ipynb", "docs/jupyter_execute/docs/jupyter_execute/content/11-econometrics/multivariable.ipynb", "docs/jupyter_execute/docs/jupyter_execute/content/11-econometrics/reading-econ-papers.ipynb", "docs/jupyter_execute/docs/jupyter_execute/content/11-econometrics/single-variable.ipynb", "docs/jupyter_execute/docs/jupyter_execute/content/11-econometrics/statsmodels.ipynb", "docs/jupyter_execute/docs/jupyter_execute/content/12-environmental/KuznetsHypothesis-Copy1.ipynb", "docs/jupyter_execute/docs/jupyter_execute/content/12-environmental/textbook1.ipynb"], "indexentries": {}, "objects": {}, "objnames": {}, "objtypes": {}, "terms": {"": [1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 14, 15, 17, 18, 19, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 36, 37, 39, 40, 41, 42, 43, 44, 45, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 115, 116, 117, 118, 119, 120, 121, 122], "0": [1, 3, 4, 5, 7, 8, 9, 10, 14, 15, 17, 18, 19, 21, 22, 24, 25, 26, 28, 30, 32, 33, 36, 39, 40, 42, 43, 44, 45, 46, 47, 48, 50, 53, 55, 56, 57, 58, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 115, 117, 118, 119, 120, 121, 122, 123, 124], "00": [42, 45, 83, 86, 119, 122], "000": [1, 22, 31, 42, 45, 46, 47, 48, 53, 69, 83, 86, 87, 88, 89, 105, 119, 122, 123, 124], "0000000000000": [25, 71, 107], "00000000000000": [5, 57, 93], "00000109": [3, 55, 91], "00000109q": [3, 55, 91], "001": [42, 43, 45, 83, 84, 86, 119, 120, 122], "00144": [44, 85, 121], "00159": [44, 85, 121], "00159484193178": 44, "0015948419317821812": [85, 121], "00191237": [46, 47, 87, 123], "0027228592": 44, "002722859240283": [85, 121], "005": [42, 83, 119], "007": [42, 83, 119], "008": [42, 83, 119], "0084": [42, 83, 119], "009": [42, 83, 119], "01": [3, 4, 22, 39, 42, 48, 55, 56, 69, 81, 83, 88, 91, 92, 105, 117, 119, 124], "010010": [39, 81, 117], "010871": [46, 47, 87, 123], "0115423": [46, 47, 87, 123], "0116837": [46, 47, 87, 123], "0130359": [46, 47, 87, 123], "0132159": [46, 47, 87, 123], "0183805": [1, 53, 89], "0186057": [46, 47, 87, 123], "01m": [4, 56, 92], "01p": [4, 56, 92], "02": [7, 24, 48, 70, 88, 106, 124], "021": [44, 45, 85, 86, 121, 122], "0211674": [1, 53, 89], "0218121": [46, 47, 87, 123], "022": [44, 85, 121], "0240964": [1, 53, 89], "025": [42, 45, 83, 86, 119, 122], "03": [10, 22, 24, 42, 61, 69, 70, 83, 97, 105, 106, 119], "030029": [39, 81, 117], "0343433": [46, 47, 87, 123], "037": [42, 83, 119], "04": [3, 4, 10, 22, 39, 42, 45, 55, 56, 61, 69, 81, 83, 86, 91, 92, 97, 105, 117, 119, 122], "040039": [39, 81, 117], "0481": [44, 85, 121], "04879016416943127": [4, 56, 92], "049988": [39, 81, 117], "05": [3, 4, 24, 25, 39, 40, 55, 56, 70, 71, 81, 82, 91, 92, 106, 107, 117, 118], "0501253": [1, 53, 89], "0573423": [1, 53, 89], "0591738": [1, 53, 89], "06": [3, 4, 10, 39, 55, 56, 61, 81, 91, 92, 97, 117], "060059": [39, 81, 117], "0610977": [1, 53, 89], "0625": [40, 82, 118], "07": [24, 39, 70, 81, 83, 106, 117, 119], "070068": [39, 81, 117], "08": [3, 4, 39, 55, 56, 81, 91, 92, 117], "083": [42, 83, 119], "09": [10, 24, 52, 61, 70, 97, 106], "0909269659806726e": [3, 55, 91], "0956522": [1, 53, 89], "0th": [24, 70, 106], "0x10848c358": [30, 75, 111], "1": [1, 2, 3, 4, 5, 7, 8, 9, 10, 14, 15, 17, 18, 21, 22, 24, 25, 26, 28, 29, 30, 31, 33, 36, 37, 39, 40, 42, 43, 44, 45, 53, 54, 55, 56, 57, 58, 59, 60, 61, 63, 64, 65, 66, 68, 69, 70, 71, 72, 74, 75, 77, 79, 80, 81, 82, 83, 84, 85, 86, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 104, 105, 106, 107, 108, 110, 111, 113, 115, 116, 117, 118, 119, 120, 121, 122], "10": [1, 3, 4, 5, 7, 9, 10, 14, 17, 22, 24, 25, 30, 36, 39, 40, 42, 43, 44, 45, 48, 53, 55, 56, 57, 58, 60, 61, 63, 65, 69, 70, 71, 75, 81, 82, 83, 84, 85, 86, 88, 89, 91, 92, 93, 94, 96, 97, 99, 101, 105, 106, 107, 111, 117, 118, 119, 120, 121, 122, 124], "100": [4, 7, 10, 15, 17, 22, 24, 26, 28, 30, 33, 39, 40, 43, 44, 48, 56, 58, 61, 64, 65, 69, 70, 72, 74, 75, 77, 81, 82, 84, 85, 88, 92, 94, 97, 100, 101, 105, 106, 108, 110, 111, 113, 117, 118, 120, 121, 124], "1000": [5, 8, 39, 57, 59, 81, 93, 95, 117], "10000": [1, 53, 89], "100000": [1, 44, 45, 53, 85, 86, 89, 121, 122], "100859": [1, 53, 89], "100p": [15, 64, 100], "100p_c": [15, 64, 100], "100p_p": [15, 64, 100], "100th": [24, 70, 106], "101852": [1, 53, 89], "102": [1, 40, 53, 82, 89, 118], "102000": [1, 53, 89], "102361": [1, 53, 89], "10280": [1, 53, 89], "1029": [1, 53, 89], "103": [1, 53, 89], "103000": [1, 53, 89], "103616": [1, 53, 89], "103e": [45, 86, 122], "104193": [1, 53, 89], "1045603129388414": [85, 121], "10456031293885952": 44, "105": [22, 40, 45, 69, 82, 86, 105, 118, 122], "105000": [1, 53, 89], "105601": [1, 53, 89], "105e": [45, 86, 122], "10600": [1, 53, 89], "106500": [1, 53, 89], "106548": [1, 53, 89], "1069": [1, 53, 89], "107": [40, 82, 118], "107000": [1, 53, 89], "107022": [1, 53, 89], "107205": [1, 53, 89], "107313": [1, 53, 89], "1078": [45, 86, 122], "10781133924799272": [85, 121], "107811339248": 44, "108000": [1, 53, 89], "1085": [1, 53, 89], "10874": [1, 53, 89], "109000": [1, 53, 89], "10907": [1, 53, 89], "10931": [44, 45, 85, 86, 121, 122], "10th": [1, 48, 53, 88, 89, 124], "11": [3, 4, 7, 8, 14, 22, 24, 32, 42, 44, 45, 55, 56, 58, 59, 63, 69, 70, 76, 83, 85, 86, 91, 92, 94, 95, 99, 105, 106, 112, 119, 121, 122], "110": [39, 40, 81, 82, 117, 118], "110000": [1, 53, 89], "11021": [1, 53, 89], "11063": [10, 61, 97], "11093735589830463": 44, "1109373558983047": [85, 121], "111": [45, 86, 122], "111111111111111": [5, 57, 93], "111220": [1, 53, 89], "111500": [1, 53, 89], "112": [7, 58, 94], "1123": [1, 53, 89], "1142": [1, 53, 89], "114465": [1, 53, 89], "115000": [1, 53, 89], "1154": [44, 45, 85, 86, 121, 122], "115540": [1, 53, 89], "1156": [46, 47, 87, 123], "1167": [15, 64, 100], "1170": [46, 47, 87, 123], "117187": [1, 53, 89], "117241": [1, 53, 89], "118115": [1, 53, 89], "118886": [1, 53, 89], "1189": [46, 47, 87, 123], "119559": [1, 53, 89], "12": [1, 3, 4, 7, 22, 24, 25, 27, 32, 39, 44, 45, 46, 47, 48, 53, 55, 56, 58, 69, 70, 71, 73, 76, 81, 85, 86, 88, 89, 91, 92, 94, 105, 106, 107, 109, 112, 117, 121, 122, 124], "120": [39, 81, 117], "120000": [1, 53, 89], "120117": [39, 81, 117], "120564": [1, 53, 89], "1207": [1, 53, 89], "121146": [1, 53, 89], "121250": [1, 53, 89], "123456": [30, 75, 111], "123457": [1, 53, 89], "1240": [46, 47, 87, 123], "1245": [46, 47, 87, 123], "1246": [46, 47, 87, 123], "125": [42, 83, 119], "125000": [1, 53, 89], "125092": [1, 53, 89], "12520": [1, 53, 89], "1253": [46, 47, 87, 123], "1258": [1, 53, 89], "126": [42, 83, 119], "126626": [1, 53, 89], "12695": [1, 53, 89], "127454": [1, 53, 89], "1278": [46, 47, 87, 123], "128": [7, 58, 94], "128178": [1, 53, 89], "1282": [44, 85, 121], "12821": [44, 45, 85, 86, 121, 122], "129407": [1, 53, 89], "12e": [42, 83, 119], "13": [1, 3, 4, 7, 10, 22, 24, 42, 44, 45, 53, 55, 56, 61, 69, 70, 85, 86, 89, 91, 92, 97, 105, 106, 121, 122], "130": [7, 58, 94], "1300": [15, 64, 100], "13071": [10, 61, 97], "131": [1, 53, 89], "13101": [1, 53, 89], "131773": [1, 53, 89], "132357": [1, 53, 89], "132967": [1, 53, 89], "133": [1, 15, 53, 64, 89, 100], "135": [1, 53, 89], "135302": [1, 53, 89], "135852": [1, 53, 89], "136": 38, "13600": [1, 53, 89], "137090": [1, 53, 89], "13900": [1, 53, 89], "14": [4, 7, 10, 22, 42, 44, 45, 48, 56, 58, 61, 69, 83, 85, 86, 92, 94, 97, 105, 119, 121, 122], "140982": [1, 53, 89], "141214": [1, 53, 89], "14286": [7, 58, 94], "1429": [7, 58, 94], "1446951": [3, 55, 91], "1446952": [3, 55, 91], "1449": [1, 53, 89], "144967": [1, 53, 89], "145446": [46, 47, 87, 123], "148": [7, 26, 58, 72, 94, 108], "148817": [1, 53, 89], "15": [1, 3, 4, 7, 10, 14, 22, 24, 39, 53, 55, 56, 61, 63, 69, 70, 81, 89, 91, 92, 97, 99, 105, 106, 117], "150": [1, 7, 8, 53, 58, 59, 89, 94, 95], "15000": [1, 53, 89], "151641": [1, 53, 89], "1526": [1, 53, 89], "153037": [1, 53, 89], "1534": [1, 53, 89], "153648": [1, 53, 89], "154232": [1, 53, 89], "15426": [10, 61, 97], "155": [42, 83, 119], "157764": [1, 53, 89], "158": [42, 83, 119], "159": [3, 4, 55, 56, 91, 92], "16": [1, 3, 5, 7, 10, 22, 42, 44, 45, 53, 55, 57, 58, 61, 69, 83, 85, 86, 89, 91, 93, 94, 97, 105, 119, 121, 122], "160000": [1, 53, 89], "16016": [1, 53, 89], "162": [7, 58, 94], "163": [1, 53, 89], "16384": [1, 53, 89], "165109": [1, 53, 89], "1667": [1, 53, 89], "16697": [1, 53, 89], "166973": [1, 53, 89], "1672": [1, 53, 89], "168052": [1, 53, 89], "17": [1, 22, 39, 44, 45, 53, 69, 81, 85, 86, 89, 105, 117, 121, 122], "170": [1, 53, 89], "170013": [39, 81, 117], "17082": [10, 61, 97], "172": 31, "172378": [1, 53, 89], "17293": [10, 61, 97], "1739": [44, 45, 85, 86, 121, 122], "175": [7, 58, 94], "175559": [1, 53, 89], "175940": [1, 53, 89], "176": [1, 53, 89], "1763": [22, 69, 105], "176418": [1, 53, 89], "176659": [1, 53, 89], "1768": [1, 53, 89], "177226": [1, 53, 89], "177747": [1, 53, 89], "1792": [1, 53, 89], "18": [7, 22, 24, 30, 42, 44, 45, 46, 47, 48, 58, 69, 70, 75, 85, 86, 88, 94, 105, 106, 111, 121, 122, 124], "180": [7, 58, 94], "1800": [46, 47, 87, 123], "18000": [44, 45, 85, 86, 121, 122], "180283": [1, 53, 89], "181": [22, 69, 105], "18314": [1, 53, 89], "18380": [1, 53, 89], "184": [22, 69, 105], "18489": [10, 61, 97], "1849": [1, 53, 89], "1857": [1, 53, 89], "1861": [37, 80, 116], "18650": [8, 59, 95], "187": [22, 69, 105], "1870": [22, 52, 69, 105], "18766": [10, 61, 97], "187899": [1, 53, 89], "1884": [22, 69, 105], "1885090000": [39, 81, 117], "189": [44, 85, 121], "1895": [22, 69, 105], "189941": [39, 81, 117], "18b8ef0eb9ac": [30, 75, 111], "19": [10, 22, 24, 27, 31, 45, 61, 69, 70, 73, 83, 86, 97, 105, 106, 109, 119, 122], "1900": [8, 15, 59, 64, 95, 100], "1910": [22, 69, 105], "1913": [22, 32, 69, 76, 105, 112], "1914": [22, 69, 105], "1915": [22, 48, 69, 88, 105, 124], "1916": [22, 69, 105], "1917": [22, 69, 105], "1918": [22, 69, 105], "1919": [22, 69, 105], "1920": [10, 22, 61, 69, 97, 105], "1921": [22, 69, 105], "1922": [22, 69, 105], "1924": [10, 61, 97], "1925": [10, 61, 97], "19255": [10, 61, 97], "1926": [10, 61, 97], "1927": [10, 61, 97], "192756": [1, 53, 89], "1928": [10, 61, 97], "1929": [10, 61, 97], "193": [1, 53, 89], "1930": [10, 61, 97], "193007": [1, 53, 89], "1931": [10, 61, 97], "1932": [10, 61, 97], "1933": [10, 22, 61, 69, 97, 105], "19371": [48, 88, 124], "1938": [10, 61, 97], "1940": [22, 69, 105], "19401": [22, 69, 105], "1941": 52, "1944": [22, 69, 105], "1949": [46, 47, 87, 123], "1950": [27, 46, 47, 73, 87, 109, 123], "19501": [22, 69, 105], "1951": [46, 47, 87, 123], "1952": [46, 47, 87, 123], "1953": [46, 47, 87, 123], "1954": [46, 47, 87, 123], "1955": [46, 47, 87, 123], "1956": [46, 47, 87, 123], "1957": [37, 46, 47, 80, 87, 116, 123], "1958": [37, 80, 116], "1960": [37, 46, 47, 87, 123], "1962": [32, 76, 112], "19645": [1, 53, 89], "1965": [22, 69, 105], "1970": [22, 37, 69, 80, 105, 116], "1976": [1, 48, 53, 88, 89, 124], "1979": [32, 76, 112], "1980": [22, 37, 69, 105], "1981": [22, 69, 105], "1982": [22, 69, 105], "1983": [22, 69, 105], "1984": [22, 69, 105], "1985": [22, 69, 105], "1986": [22, 69, 105], "1987": [22, 32, 69, 76, 105, 112], "1988": [22, 69, 105], "1989": [22, 69, 105], "1990": 37, "1991": [22, 69, 105], "1992": [22, 69, 105], "1993": [22, 32, 39, 69, 76, 81, 105, 112, 117], "1994": [22, 69, 105], "1995": [22, 69, 105], "1996": [22, 69, 105], "1997": [22, 69, 105], "1998": [22, 69, 105], "1999": [22, 52, 69, 105], "199951": [39, 81, 117], "1f9f7f": [48, 88, 124], "2": [1, 2, 3, 4, 5, 7, 8, 9, 10, 14, 15, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 36, 39, 40, 42, 43, 44, 45, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 81, 82, 83, 84, 85, 86, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 117, 118, 119, 120, 121, 122], "20": [3, 4, 5, 7, 9, 14, 17, 22, 24, 25, 30, 39, 48, 55, 56, 57, 58, 60, 63, 65, 69, 70, 71, 75, 81, 88, 91, 92, 93, 94, 96, 99, 101, 105, 106, 107, 111, 117, 124], "200": [7, 15, 44, 48, 58, 64, 85, 88, 94, 100, 121, 124], "2000": [1, 5, 15, 22, 46, 47, 52, 53, 57, 64, 69, 87, 89, 93, 100, 105, 123], "20000": [1, 53, 89], "2000x1500": [87, 123], "2003": [46, 47, 87, 123], "2004": [46, 47, 87, 123], "2005": [22, 69, 105], "2006": [32, 76, 112], "2007": [22, 69, 105], "2008": [2, 54, 90], "2009": [15, 48, 49, 64, 88, 100, 124], "200p_p": [15, 64, 100], "201": [45, 86, 122], "2010": [1, 37, 53, 89], "2011": [22, 52, 69, 105], "2012": [1, 44, 48, 53, 85, 88, 89, 121, 124], "201210000": [39, 81, 117], "2013": [22, 69, 105], "2014": [22, 31, 32, 69, 76, 105, 112], "2015": [3, 4, 46, 47, 48, 55, 56, 87, 88, 91, 92, 123, 124], "2016": [22, 40, 52, 69, 82, 105, 118], "2017": [39, 40, 81, 82, 117, 118], "2018": [3, 4, 30, 32, 40, 46, 47, 48, 55, 56, 75, 76, 82, 87, 88, 91, 92, 111, 112, 118, 123, 124], "2019": [1, 10, 22, 31, 48, 53, 61, 69, 88, 89, 97, 105, 124], "2020": [27, 31, 37, 39, 45, 73, 81, 83, 86, 109, 117, 119, 122], "2021": [32, 37, 39, 76, 80, 81, 112, 116, 117], "2022": [32, 37, 76, 80, 112, 116], "2024": 42, "203522": [1, 53, 89], "2038": [1, 53, 89], "204": [7, 45, 58, 86, 94, 122], "20513": [45, 86, 122], "2057": [1, 53, 89], "2064": [22, 69, 105], "20708": [10, 61, 97], "207451": [1, 53, 89], "2093": [44, 45, 85, 86, 121, 122], "209961": [39, 81, 117], "20th": [1, 53, 89], "21": [1, 7, 10, 14, 22, 30, 39, 53, 61, 63, 69, 75, 81, 89, 97, 99, 105, 111, 117], "2100": [15, 64, 100], "21000": [1, 53, 89], "2101": [22, 69, 105], "2102": [22, 69, 105], "2110": [1, 53, 89], "212274": [1, 53, 89], "21239": [1, 53, 89], "21258": [10, 61, 97], "2150": [1, 53, 89], "21897": [44, 45, 85, 86, 121, 122], "21905": [45, 86, 122], "21907": [45, 86, 122], "21919": [10, 61, 97], "22": [1, 3, 4, 10, 22, 30, 53, 55, 56, 61, 69, 75, 89, 91, 92, 97, 105, 111], "220": [1, 53, 89], "2200": [1, 53, 89], "22000": [1, 53, 89], "22068": [10, 61, 97], "222420": [1, 53, 89], "22300": [1, 53, 89], "2237": [22, 69, 105], "2238": [22, 69, 105], "225": [7, 58, 94], "22766": [10, 61, 97], "23": [1, 10, 22, 24, 30, 52, 53, 61, 69, 70, 75, 89, 97, 105, 106, 111], "23000": [1, 53, 89], "23170": [1, 53, 89], "232527": [1, 53, 89], "2339": [1, 53, 89], "234567": [30, 75, 111], "235170": [1, 53, 89], "23718": [10, 61, 97], "2372": [22, 69, 105], "24": [1, 7, 22, 30, 39, 53, 58, 69, 75, 81, 89, 94, 105, 111, 117], "24000": [1, 53, 89], "240350000": [39, 81, 117], "2405": [1, 53, 89], "2408": [1, 53, 89], "2414": [1, 53, 89], "2415": [1, 53, 89], "2416": [1, 53, 89], "2417": [1, 53, 89], "2418": [1, 53, 89], "2419": [1, 53, 89], "242": [7, 58, 94], "244": [1, 53, 89], "24762": [10, 61, 97], "2482": [1, 53, 89], "2495": [3, 55, 91], "2495304122570334": [3, 55, 91], "25": [1, 3, 4, 5, 7, 22, 24, 25, 28, 30, 32, 39, 40, 48, 53, 55, 56, 57, 58, 69, 70, 71, 74, 75, 76, 81, 82, 88, 89, 91, 92, 93, 94, 105, 106, 107, 110, 111, 112, 117, 118, 124], "250": [8, 22, 46, 47, 59, 69, 87, 95, 105, 123], "25000": [1, 44, 45, 53, 85, 86, 89, 121, 122], "250000000000000": [5, 57, 93], "252461": [1, 53, 89], "254": [7, 58, 94], "254526": [1, 53, 89], "25694": [1, 53, 89], "257": [1, 53, 89], "2573": [1, 53, 89], "259": [1, 53, 89], "259180": [1, 53, 89], "259311": [44, 85, 121], "25th": [1, 53, 89], "26": [1, 7, 10, 22, 39, 53, 58, 61, 69, 81, 89, 94, 97, 105, 117], "26000": [1, 44, 45, 53, 85, 86, 89, 121, 122], "261114": [1, 53, 89], "261653": [1, 53, 89], "263470000": [39, 81, 117], "264": [1, 53, 89], "26700": [1, 53, 89], "27": [1, 3, 4, 10, 22, 24, 39, 44, 45, 53, 55, 56, 61, 69, 70, 81, 85, 86, 89, 91, 92, 97, 105, 106, 117, 121, 122], "270": [1, 53, 89], "270020": [39, 81, 117], "2713": [44, 85, 121], "2724": [22, 69, 105], "276090": [1, 53, 89], "27642": [10, 61, 97], "2768": [22, 69, 105], "27883": [44, 85, 121], "2788317347": 44, "278831734712744": [85, 121], "279246": [1, 53, 89], "28": [1, 7, 10, 14, 22, 39, 53, 58, 61, 63, 69, 81, 89, 94, 97, 99, 105, 117], "280": 31, "2800": [8, 59, 95], "28000": [1, 53, 89], "2802": [45, 86, 122], "2809": [22, 69, 105], "2819": [22, 69, 105], "282": [1, 53, 89], "2823": [22, 69, 105], "283": [22, 44, 69, 85, 105, 121], "2845": [22, 69, 105], "2846": [22, 69, 105], "28600": [1, 53, 89], "2867": [22, 69, 105], "2871": [22, 69, 105], "289": [1, 53, 89], "2898": [42, 83, 119], "2899": [22, 69, 105], "29": [1, 3, 4, 7, 10, 22, 39, 53, 55, 56, 58, 61, 69, 81, 89, 91, 92, 94, 97, 105, 117], "29000": [1, 53, 89], "2912": [1, 53, 89], "292": [7, 58, 94], "2924": [1, 53, 89], "29328": [10, 61, 97], "29364": [1, 53, 89], "2942": [22, 69, 105], "2952": [22, 69, 105], "295240000": [39, 81, 117], "296": [1, 53, 89], "29680": [10, 61, 97], "2974": [22, 69, 105], "2987": [22, 69, 105], "2991": [22, 69, 105], "299140": [1, 53, 89], "29966": [10, 61, 97], "2a8506": [48, 88, 124], "2d": [21, 68, 104], "2m": [26, 72, 108], "2mq_1": [26, 72, 108], "2mq_2": [26, 72, 108], "2q": [9, 60, 96], "3": [1, 2, 3, 5, 7, 8, 9, 10, 14, 15, 19, 21, 22, 24, 26, 28, 30, 32, 37, 39, 44, 45, 48, 51, 53, 54, 55, 57, 58, 59, 60, 61, 63, 64, 67, 68, 69, 70, 72, 74, 75, 76, 81, 85, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97, 99, 100, 103, 104, 105, 106, 108, 110, 111, 112, 117, 121, 122, 124], "30": [1, 4, 7, 8, 14, 19, 22, 24, 31, 39, 53, 56, 58, 59, 63, 67, 69, 70, 81, 89, 92, 94, 95, 99, 103, 105, 106, 117], "300": [7, 8, 15, 58, 59, 64, 94, 95, 100], "30000": [1, 53, 89], "3005": [22, 69, 105], "300p_p": [15, 64, 100], "301": [22, 69, 105], "30179178e": [42, 83, 119], "30226": [44, 45, 85, 86, 121, 122], "3024": [22, 69, 105], "30259": [44, 45, 85, 86, 121, 122], "304850000": [39, 81, 117], "30500": [1, 53, 89], "3067": [22, 69, 105], "307": [42, 83, 119], "3071": [22, 69, 105], "308": [1, 53, 89], "31": [1, 7, 39, 53, 58, 81, 89, 94, 117], "31000": [1, 53, 89], "310059": [39, 81, 117], "313": [44, 85, 121], "314": [1, 53, 89], "314279": [1, 53, 89], "3145200000": [39, 81, 117], "315": [22, 69, 105], "31500": [1, 53, 89], "31609070915": 44, "3160907091507876": [85, 121], "3170": [1, 53, 89], "3172510000": [39, 81, 117], "32": [1, 7, 8, 19, 22, 53, 58, 59, 67, 69, 89, 94, 95, 103, 105], "320007": [39, 81, 117], "320068": [39, 81, 117], "32260": [1, 53, 89], "32500": [10, 61, 97], "3253": [1, 53, 89], "32721": [44, 85, 121], "33": [1, 7, 9, 15, 22, 24, 48, 53, 58, 60, 64, 69, 70, 88, 89, 94, 96, 100, 105, 106, 124], "33280": [1, 53, 89], "3333": [7, 58, 94], "33333": [7, 58, 94], "33333333333333": [5, 57, 93], "3338": [22, 69, 105], "33400": [1, 53, 89], "3387030000": [39, 81, 117], "339996": [39, 81, 117], "34": [8, 10, 22, 59, 61, 69, 95, 97, 105], "340": [1, 53, 89], "34000": [1, 53, 89], "341631": [1, 53, 89], "34192": [42, 83, 119], "3424": [22, 69, 105], "3432": [10, 61, 97], "3433": [10, 61, 97], "3447": [22, 69, 105], "3472": [22, 69, 105], "3479": [22, 69, 105], "349": [22, 69, 105], "35": [1, 4, 7, 10, 22, 53, 56, 58, 61, 69, 89, 92, 94, 97, 105], "350": [1, 7, 8, 53, 58, 59, 89, 94, 95], "3500": [8, 59, 95], "35000": [1, 53, 89], "35004": [1, 53, 89], "3504": [10, 61, 97], "3507": [22, 69, 105], "35250": [1, 53, 89], "352506861683818": [4, 56, 92], "3527460000": [39, 81, 117], "3528": [22, 69, 105], "35360": [1, 53, 89], "3538": [22, 69, 105], "3541": [22, 69, 105], "3542": [22, 69, 105], "355": [42, 83, 119], "35520": [1, 53, 89], "35560": [10, 61, 97], "35600": [44, 45, 85, 86, 121, 122], "35702": [10, 61, 97], "358": [42, 83, 119], "35862": [44, 85, 121], "36": [1, 7, 8, 10, 14, 22, 53, 58, 59, 61, 63, 69, 89, 94, 95, 97, 99, 105], "360107": [39, 81, 117], "364": [1, 53, 89], "3647": [22, 69, 105], "36500": [1, 53, 89], "36540": [10, 61, 97], "3666": [22, 69, 105], "3689": [39, 81, 117], "3694": [39, 81, 117], "36990": [10, 61, 97], "37": [1, 8, 22, 24, 44, 45, 53, 59, 69, 70, 85, 86, 89, 95, 105, 106, 121, 122], "37000": [1, 53, 89], "3703": [39, 81, 117], "37220": [1, 53, 89], "3723": [39, 81, 117], "3726": [39, 81, 117], "3727": [39, 81, 117], "373": [1, 53, 89], "3730": [39, 81, 117], "3732": [39, 81, 117], "3733": [39, 81, 117], "3735": [39, 81, 117], "3736": [39, 81, 117], "3740": [39, 81, 117], "37400": [1, 53, 89], "3744": [39, 81, 117], "3750": [39, 81, 117], "3756": [39, 81, 117], "37569589e": [42, 83, 119], "37580": [1, 53, 89], "3760": [39, 81, 117], "3761": [22, 69, 105], "3777": [1, 53, 89], "37900": [1, 53, 89], "38": [7, 21, 22, 40, 42, 44, 45, 58, 68, 69, 82, 85, 86, 94, 104, 105, 118, 121, 122], "38000": [1, 53, 89], "380005": [39, 81, 117], "385": [7, 58, 94], "38553": [10, 61, 97], "38629": [44, 45, 85, 86, 121, 122], "38640": [1, 53, 89], "3867": [22, 69, 105], "38772": [10, 61, 97], "388": [1, 42, 53, 83, 89, 119], "3895": [1, 22, 53, 69, 89, 105], "39": [1, 7, 22, 44, 45, 53, 58, 69, 85, 86, 89, 94, 105, 121, 122], "39000": [1, 53, 89], "39263": [10, 61, 97], "393": [44, 85, 121], "3958": [44, 85, 121], "399994": [39, 81, 117], "399996707216": [88, 124], "39999671": 48, "3d": [17, 18, 19, 21, 42, 65, 66, 67, 68, 83, 101, 102, 103, 104, 119], "3m": [26, 72, 108], "3mq_1": [26, 72, 108], "4": [1, 3, 4, 5, 7, 8, 10, 14, 15, 17, 18, 19, 21, 22, 27, 30, 32, 35, 39, 42, 44, 45, 48, 50, 53, 55, 56, 57, 58, 59, 61, 63, 64, 65, 66, 67, 68, 69, 73, 75, 76, 81, 83, 85, 86, 88, 89, 91, 92, 93, 94, 95, 97, 99, 100, 101, 102, 103, 104, 105, 109, 111, 112, 117, 119, 121, 122, 124], "40": [1, 7, 8, 24, 31, 46, 47, 53, 58, 59, 70, 87, 89, 94, 95, 106, 123], "400": [1, 53, 89], "40000": [1, 53, 89], "401": [42, 83, 119], "41": [1, 8, 10, 22, 53, 59, 61, 69, 89, 95, 97, 105], "41000": [1, 53, 89], "412": [44, 85, 121], "41200": [1, 53, 89], "41300": [1, 53, 89], "41413": [1, 53, 89], "415": [42, 83, 119], "41600": [1, 53, 89], "41880": [10, 61, 97], "42": [22, 24, 44, 69, 70, 85, 105, 106, 121], "42000": [1, 53, 89], "421": 52, "4219": [22, 69, 105], "4231": [22, 69, 105], "426": [39, 81, 117], "428571428571429": [5, 57, 93], "429": [39, 81, 117], "4295": [22, 69, 105], "43": [1, 22, 42, 44, 45, 53, 69, 83, 85, 86, 89, 105, 119, 121, 122], "430": [39, 42, 81, 83, 117, 119], "43000": [1, 53, 89], "4301": [42, 83, 119], "432": [39, 45, 81, 86, 117, 122], "433": [39, 52, 81, 117], "434": [39, 81, 117], "4344": [22, 69, 105], "4348": [10, 61, 97], "4348p": [10, 61, 97], "435": [7, 39, 58, 81, 94, 117], "4364": [22, 69, 105], "43680": [1, 53, 89], "437": [39, 81, 117], "44": [10, 27, 44, 45, 61, 73, 85, 86, 97, 109, 121, 122], "44000": [1, 53, 89], "441356": [1, 53, 89], "4439": [22, 69, 105], "4440": [1, 53, 89], "4444": [7, 58, 94], "444444444444445": [30, 75, 111], "449": [22, 69, 105], "45": [14, 21, 22, 24, 36, 48, 63, 68, 69, 70, 79, 99, 104, 105, 106, 115], "4500": [44, 45, 85, 86, 121, 122], "45000": [1, 53, 89], "4500x3000": [46, 47], "4543": [22, 69, 105], "4554": [22, 69, 105], "456": [1, 53, 89], "45600": [1, 53, 89], "45760": [1, 53, 89], "4579": [48, 88, 124], "45829": [1, 53, 89], "459991": [39, 81, 117], "46": 42, "46000": [1, 53, 89], "4615": [44, 45, 85, 86, 121, 122], "4632": [22, 69, 105], "4650": [1, 53, 89], "46516": [10, 61, 97], "4653": [22, 69, 105], "4658": [44, 85, 121], "46820": [10, 61, 97], "47": [44, 85, 121], "4702": [22, 69, 105], "472287673006932": [85, 121], "47228767301": 44, "4723": [45, 86, 122], "476412": [3, 55, 91], "476413": [3, 55, 91], "476413p": [3, 55, 91], "48": [1, 25, 26, 53, 71, 72, 89, 107, 108], "48000": [1, 53, 89], "480011": [39, 81, 117], "4815": [22, 69, 105], "483": [45, 86, 122], "485e": [42, 83, 119], "4875": [44, 85, 121], "48756218905472637": [24, 70, 106], "487e": [42, 83, 119], "4888": [22, 69, 105], "48880": [1, 53, 89], "4893": [22, 69, 105], "4898": [22, 69, 105], "49": [7, 58, 83, 94, 119], "4916": [22, 69, 105], "4934357195937577": [24, 70, 106], "4971": [22, 69, 105], "49736": [44, 85, 121], "49900": [1, 53, 89], "49920": [1, 53, 89], "49980": [1, 53, 89], "5": [1, 4, 5, 7, 8, 9, 10, 14, 17, 18, 19, 21, 22, 24, 25, 27, 28, 30, 31, 32, 36, 39, 40, 42, 44, 45, 48, 53, 56, 57, 58, 59, 60, 61, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 81, 82, 83, 85, 86, 88, 89, 92, 93, 94, 95, 96, 97, 99, 101, 102, 103, 104, 105, 106, 107, 109, 110, 111, 112, 117, 118, 119, 121, 122, 124], "50": [1, 4, 7, 8, 22, 24, 40, 44, 53, 56, 58, 59, 69, 70, 82, 85, 89, 92, 94, 95, 105, 106, 118, 121], "500": [1, 39, 53, 89], "5000": [1, 53, 89], "50000": [1, 53, 89], "50000000000000": [5, 57, 93], "5001": [1, 53, 89], "5008": [22, 69, 105], "502": [42, 83, 119], "5043": [22, 69, 105], "5078": [22, 69, 105], "50800": [1, 53, 89], "50940": [10, 61, 97], "50th": [1, 53, 89], "51": [1, 22, 53, 69, 89, 105], "51000": [1, 53, 89], "510010": [39, 81, 117], "51060": [1, 53, 89], "5108": [22, 69, 105], "513": [45, 86, 122], "5180": [1, 53, 89], "518628912071535": [70, 106], "51862891207153505": 24, "519989": [39, 81, 117], "52": [44, 85, 121], "520": [42, 83, 119], "52000": [1, 44, 45, 53, 85, 86, 89, 121, 122], "52210": [1, 53, 89], "52354": [44, 85, 121], "52844": [1, 53, 89], "529": [1, 53, 89], "53000": [1, 53, 89], "53427": [46, 47, 87, 123], "535714": [1, 53, 89], "53625": [10, 61, 97], "53626": [10, 61, 97], "54": [24, 70, 106], "5403": [44, 85, 121], "5410": [42, 83, 119], "5413": [42, 83, 119], "54545": [7, 58, 94], "5455": [7, 58, 94], "54639": [1, 53, 89], "54996": [1, 53, 89], "54997": [1, 53, 89], "549988": [39, 81, 117], "55": [3, 4, 22, 55, 56, 69, 91, 92, 105], "55000": [1, 53, 89], "5526": [10, 61, 97], "553": [1, 53, 89], "55450": [1, 53, 89], "55556": [7, 58, 94], "556": [1, 53, 89], "558": [1, 53, 89], "5590151265266388": [85, 121], "55901512653": 44, "56": [8, 59, 95], "5600": [45, 86, 122], "561342": [3, 4, 55, 56, 91, 92], "56160": [1, 53, 89], "5638": [10, 61, 97], "56390": [1, 53, 89], "57": [4, 10, 48, 56, 61, 88, 92, 97, 124], "57000": [1, 53, 89], "57020": [1, 53, 89], "57100": [1, 53, 89], "5721131095": [10, 61, 97], "5742": [10, 61, 97], "5758": [10, 61, 97], "57625": [1, 53, 89], "5792670374517227": [4, 56, 92], "58": [7, 22, 48, 58, 69, 88, 94, 105, 124], "58000": [1, 53, 89], "59": [24, 44, 48, 70, 85, 88, 106, 121, 124], "599884": [3, 4, 55, 56, 91, 92], "5c_": [32, 76, 112], "5f": [44, 85, 121], "5fb3b3": [48, 88, 124], "6": [1, 5, 7, 8, 10, 14, 15, 21, 22, 28, 32, 39, 44, 48, 53, 57, 58, 59, 61, 63, 64, 68, 69, 74, 76, 81, 85, 87, 88, 89, 93, 94, 95, 97, 99, 100, 104, 105, 110, 112, 117, 121, 123, 124], "60": [24, 70, 88, 106, 124], "6000": [10, 61, 97], "60000": [1, 53, 89], "61": [8, 22, 59, 69, 95, 105], "61000": [1, 53, 89], "616016": [3, 4, 55, 56, 91, 92], "61928": [1, 53, 89], "61a": [30, 75, 111], "62": [1, 48, 53, 88, 89, 124], "6200": [1, 53, 89], "62000": [1, 53, 89], "6202": [1, 53, 89], "62257495590827": [26, 72, 108], "62257495590830": [26, 72, 108], "62719": [1, 53, 89], "62825": [44, 85, 121], "62850": [1, 53, 89], "629": [79, 115], "629883": [39, 81, 117], "63": [10, 22, 61, 69, 97, 105], "63000": [1, 53, 89], "631": [1, 53, 89], "63476": [44, 45, 85, 86, 121, 122], "637091": [3, 4, 55, 56, 91, 92], "639972971752": [88, 124], "639973": 48, "64": [7, 22, 39, 58, 69, 81, 94, 105, 117], "640": [1, 53, 89], "6408050181": [3, 55, 91], "648": [1, 53, 89], "64966": [44, 45, 85, 86, 121, 122], "65": [22, 24, 25, 69, 70, 71, 105, 106, 107], "650": [8, 59, 95], "65000": [1, 53, 89], "65000000000000": [25, 71, 107], "651639": [3, 4, 55, 56, 91, 92], "65250": [1, 53, 89], "65511": [1, 53, 89], "657": [1, 53, 89], "6582": [10, 61, 97], "66": [8, 22, 59, 69, 95, 105], "6600": [1, 53, 89], "665": [8, 59, 95], "666666666666667": [5, 57, 93], "6667": [7, 44, 45, 58, 85, 86, 94, 121, 122], "669": [44, 85, 121], "6699cc": [48, 88, 124], "67": [5, 10, 15, 22, 44, 57, 61, 64, 69, 85, 93, 97, 100, 105, 121], "67000": [1, 53, 89], "679": [1, 53, 89], "68": [10, 22, 37, 61, 69, 80, 97, 105, 116], "68000": [1, 53, 89], "68060": [44, 85, 121], "683": [44, 85, 121], "69": [22, 40, 69, 82, 105, 118], "692": [1, 53, 89], "69207": [1, 53, 89], "692206": [3, 4, 55, 56, 91, 92], "694982": [3, 4, 55, 56, 91, 92], "69737": [1, 53, 89], "7": [1, 3, 5, 7, 8, 10, 14, 15, 22, 24, 28, 30, 37, 39, 44, 53, 55, 57, 58, 59, 61, 63, 64, 69, 70, 74, 75, 80, 81, 85, 89, 91, 93, 94, 95, 97, 99, 100, 105, 106, 110, 111, 116, 117, 121], "70": [1, 7, 22, 24, 25, 32, 39, 42, 44, 45, 53, 58, 69, 70, 71, 76, 81, 83, 85, 86, 89, 94, 105, 106, 107, 112, 117, 119, 121, 122], "70000": [1, 53, 89], "700012": [39, 81, 117], "70200": [1, 53, 89], "7052": [39, 81, 117], "706": [45, 86, 122], "709444": [3, 4, 55, 56, 91, 92], "71": [10, 22, 45, 61, 69, 86, 97, 105, 122], "71000": [1, 53, 89], "71298": [1, 53, 89], "7189820772": [3, 55, 91], "72": [8, 22, 42, 44, 59, 69, 83, 85, 95, 105, 119, 121], "72000": [1, 53, 89], "72250": [1, 53, 89], "72389": [44, 85, 121], "7238911245275386": [85, 121], "72389112452754": [85, 121], "723891124528": 44, "725": [1, 53, 89], "72700": [1, 53, 89], "73": [8, 22, 24, 59, 69, 70, 95, 105, 106], "73000": [1, 53, 89], "730011": [39, 81, 117], "731": [42, 83, 119], "73513640760529786": 44, "7351364076052979": [85, 121], "7364": [10, 61, 97], "74": [45, 86, 122], "74000": [1, 53, 89], "74010": [1, 53, 89], "7421": [42, 83, 119], "74364": [1, 53, 89], "75": [1, 7, 24, 32, 48, 53, 58, 70, 76, 88, 89, 94, 106, 112, 124], "750": [8, 59, 95], "75000": [1, 53, 89], "75553": [1, 53, 89], "756": [1, 53, 89], "758": [1, 53, 89], "75th": [1, 53, 89], "76": [22, 69, 105], "76000": [1, 53, 89], "760010": [39, 81, 117], "76442": [1, 53, 89], "765": [45, 86, 122], "76929": [1, 53, 89], "77": [1, 22, 53, 69, 89, 105], "77182": [1, 53, 89], "775849": [3, 4, 55, 56, 91, 92], "78": [7, 10, 22, 26, 58, 61, 69, 72, 94, 97, 105, 108], "78531": [44, 85, 121], "78950": [22, 69, 105], "78q_1": [26, 72, 108], "78q_2": [26, 72, 108], "79": [22, 27, 28, 69, 73, 74, 105, 109, 110], "79617": [1, 53, 89], "798": [44, 85, 121], "798460905495737": [4, 56, 92], "7998": [10, 61, 97], "8": [1, 5, 7, 8, 10, 14, 15, 17, 18, 22, 26, 27, 30, 32, 39, 42, 43, 44, 45, 51, 53, 57, 58, 59, 61, 63, 64, 65, 66, 69, 72, 73, 75, 76, 81, 83, 84, 85, 86, 87, 89, 93, 94, 95, 97, 99, 100, 101, 102, 105, 108, 109, 111, 112, 117, 119, 120, 121, 122, 123], "80": [24, 28, 30, 32, 70, 74, 75, 76, 106, 110, 111, 112], "800": [8, 59, 95], "8000": [44, 45, 85, 86, 121, 122], "80000": [1, 22, 53, 69, 89, 105], "80004": [1, 53, 89], "80320": [1, 53, 89], "806": [42, 83, 119], "80675": [1, 53, 89], "81": [10, 22, 24, 61, 69, 70, 97, 105, 106], "81341": [44, 45, 85, 86, 121, 122], "8136": [10, 61, 97], "81425": [1, 53, 89], "8145": [44, 85, 121], "81527": [1, 53, 89], "8157285894758461": [4, 56, 92], "816": [4, 56, 92], "82": [22, 69, 105], "82000": [1, 53, 89], "820068": [39, 81, 117], "82523": [1, 53, 89], "827": [1, 53, 89], "83": [21, 22, 68, 69, 104, 105], "831": [45, 86, 122], "832": [1, 53, 89], "83998": [44, 45, 85, 86, 121, 122], "84": [22, 48, 69, 88, 105, 124], "84000": [1, 53, 89], "846": [10, 61, 97], "84670093": [10, 61, 97], "85": [1, 7, 22, 53, 58, 69, 89, 94, 105], "85000": [1, 53, 89], "856": [1, 53, 89], "85e827": [48, 88, 124], "86": [10, 61, 97], "86250": [1, 53, 89], "86500": [1, 53, 89], "8658": [44, 85, 121], "869927": [3, 4, 55, 56, 91, 92], "87": [10, 22, 37, 61, 69, 80, 97, 105, 116], "873": [45, 86, 122], "8748401": [10, 61, 97], "87500": [1, 53, 89], "87689": [1, 53, 89], "879883": [39, 81, 117], "88": [22, 30, 69, 75, 105, 111], "880005": [39, 81, 117], "8887": [48, 88, 124], "8889": [7, 58, 94], "88e": [0, 1, 53, 89], "89": [10, 26, 44, 61, 72, 85, 97, 108, 121], "89037": [44, 45, 85, 86, 121, 122], "89203590457901": [10, 61, 97], "89q": [26, 72, 108], "89q_1": [26, 72, 108], "89q_1q_2": [26, 72, 108], "89q_2": [26, 72, 108], "8ae22d6f2de2": [30, 75, 111], "8th": [7, 21, 58, 68, 94, 104], "9": [1, 5, 7, 9, 10, 14, 22, 24, 39, 42, 44, 45, 53, 57, 58, 60, 61, 63, 69, 70, 81, 83, 85, 86, 88, 89, 93, 94, 96, 97, 99, 105, 106, 117, 119, 121, 122, 124], "90": [7, 22, 24, 25, 30, 39, 58, 69, 70, 71, 75, 81, 94, 105, 106, 107, 111, 117], "9000": [1, 53, 89], "90000": [1, 53, 89], "900000000000000": [25, 71, 107], "90009": [1, 53, 89], "90069": [1, 53, 89], "90303": [1, 53, 89], "908": [42, 83, 119], "9086": [22, 69, 105], "90th": [1, 53, 89], "91": [10, 48, 61, 88, 97, 124], "91227": [1, 53, 89], "92": [22, 69, 105], "92054": [1, 53, 89], "923": [42, 83, 119], "93": [22, 69, 105], "93089": [1, 53, 89], "9317": [22, 69, 105], "94": [8, 22, 59, 69, 95, 105], "945cf8": [48, 88, 124], "95": [22, 39, 42, 43, 44, 45, 69, 81, 83, 84, 85, 86, 105, 117, 119, 120, 121, 122], "950": [8, 59, 95], "95000": [1, 53, 89], "95595982e": [42, 83, 119], "956": [42, 83, 119], "9563": [42, 83, 119], "96": [10, 61, 97], "960": [1, 53, 89], "967": [10, 61, 97], "97": [3, 4, 10, 44, 55, 56, 61, 85, 91, 92, 97, 121], "972": [1, 45, 53, 86, 89, 122], "97294": [1, 53, 89], "975": [42, 45, 83, 86, 119, 122], "977": [44, 85, 121], "9780674737136": 52, "98": [7, 10, 44, 58, 61, 85, 94, 97, 121], "989": [45, 86, 122], "99": [3, 4, 24, 44, 55, 56, 70, 85, 91, 92, 106, 121], "99c794": [48, 88, 124], "9th": [7, 58, 94], "A": [4, 5, 7, 10, 12, 14, 15, 17, 21, 22, 27, 28, 29, 30, 31, 36, 37, 39, 40, 42, 44, 46, 47, 48, 49, 52, 56, 57, 58, 61, 62, 63, 64, 65, 68, 69, 73, 74, 75, 79, 80, 81, 82, 83, 85, 87, 88, 92, 93, 94, 97, 98, 99, 100, 101, 104, 105, 109, 110, 111, 115, 116, 117, 118, 119, 121, 123, 124], "AND": [1, 53, 89], "AS": [34, 78, 114], "And": [31, 32, 39, 44, 48, 76, 81, 85, 88, 112, 117, 121, 124], "As": [1, 2, 3, 4, 5, 7, 10, 12, 14, 15, 18, 19, 21, 22, 24, 26, 27, 33, 44, 46, 47, 48, 49, 51, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 68, 69, 70, 72, 73, 77, 85, 87, 88, 89, 90, 91, 92, 93, 94, 97, 98, 99, 100, 102, 103, 104, 105, 106, 108, 109, 113, 121, 123, 124], "At": [1, 4, 7, 8, 10, 12, 14, 15, 17, 32, 42, 48, 53, 56, 58, 59, 61, 62, 63, 64, 65, 76, 83, 88, 89, 92, 94, 95, 97, 98, 99, 100, 101, 112, 119, 124], "BY": 50, "Being": [8, 59, 95], "But": [1, 5, 7, 19, 24, 30, 32, 37, 39, 40, 41, 42, 44, 53, 57, 58, 67, 70, 75, 76, 80, 81, 82, 83, 85, 89, 93, 94, 103, 106, 111, 112, 116, 117, 118, 119, 121], "By": [1, 4, 15, 27, 28, 32, 33, 39, 41, 44, 48, 53, 56, 64, 73, 74, 76, 77, 81, 85, 88, 89, 92, 100, 109, 110, 112, 113, 117, 121, 124], "For": [1, 2, 4, 5, 7, 8, 10, 12, 14, 15, 17, 22, 24, 25, 26, 28, 30, 31, 32, 39, 43, 44, 48, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 69, 70, 71, 72, 74, 75, 76, 81, 84, 85, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 101, 105, 106, 107, 108, 110, 111, 112, 117, 120, 121, 124], "If": [1, 2, 3, 4, 5, 7, 15, 17, 18, 21, 24, 25, 26, 27, 28, 29, 30, 32, 33, 37, 39, 40, 42, 44, 46, 47, 48, 53, 54, 55, 56, 57, 58, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 80, 81, 82, 83, 85, 87, 88, 89, 90, 91, 92, 93, 94, 100, 101, 102, 104, 106, 107, 108, 109, 110, 111, 112, 113, 116, 117, 118, 119, 121, 123, 124], "In": [1, 2, 3, 4, 5, 7, 9, 10, 12, 14, 15, 17, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 39, 40, 42, 43, 44, 45, 46, 47, 48, 49, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124], "It": [1, 3, 5, 7, 8, 9, 10, 12, 13, 15, 17, 21, 25, 27, 29, 30, 32, 33, 39, 40, 42, 43, 44, 45, 46, 47, 48, 49, 51, 53, 55, 57, 58, 59, 60, 61, 62, 64, 65, 68, 71, 73, 75, 76, 77, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 93, 94, 95, 96, 97, 98, 100, 101, 104, 107, 109, 111, 112, 113, 117, 118, 119, 120, 121, 122, 123, 124], "Near": [5, 57, 93], "No": [8, 42, 45, 48, 58, 59, 74, 83, 86, 88, 94, 95, 110, 119, 122, 124], "Not": [42, 83, 119], "Of": [5, 39, 44, 57, 81, 85, 93, 117, 121], "On": [2, 14, 17, 22, 24, 33, 34, 54, 63, 65, 69, 70, 77, 78, 90, 99, 101, 105, 106, 113, 114], "One": [3, 4, 15, 17, 21, 25, 26, 27, 28, 31, 32, 39, 41, 44, 48, 49, 55, 56, 64, 65, 68, 71, 72, 73, 74, 76, 81, 85, 88, 91, 92, 100, 101, 104, 107, 108, 109, 110, 112, 117, 121, 124], "Or": [21, 30, 44, 68, 75, 85, 104, 111, 121], "That": [1, 5, 10, 15, 30, 32, 39, 42, 53, 57, 61, 64, 75, 76, 81, 83, 89, 93, 97, 100, 111, 112, 117, 119], "The": [2, 3, 4, 5, 8, 9, 10, 12, 14, 15, 18, 19, 21, 25, 26, 27, 28, 30, 31, 32, 33, 36, 37, 39, 41, 42, 43, 44, 45, 46, 47, 49, 51, 52, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 66, 67, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 83, 84, 85, 86, 87, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 102, 103, 104, 107, 108, 109, 110, 111, 112, 113, 115, 116, 117, 119, 120, 121, 122, 123], "Their": [12, 22, 62, 69, 98, 105], "Then": [9, 25, 28, 30, 39, 44, 60, 71, 74, 75, 81, 85, 96, 107, 110, 111, 117, 121], "There": [1, 4, 5, 7, 10, 12, 15, 17, 21, 22, 27, 28, 29, 32, 33, 34, 40, 42, 53, 56, 57, 58, 61, 62, 64, 65, 68, 69, 73, 74, 76, 77, 78, 82, 83, 89, 92, 93, 94, 97, 98, 100, 101, 104, 105, 109, 110, 112, 113, 114, 118, 119], "These": [1, 5, 8, 15, 17, 18, 22, 24, 25, 27, 31, 33, 34, 38, 39, 42, 44, 46, 47, 48, 49, 53, 57, 59, 64, 65, 66, 69, 70, 71, 73, 77, 78, 81, 83, 85, 87, 88, 89, 93, 95, 100, 101, 102, 105, 106, 107, 109, 113, 114, 117, 119, 121, 123, 124], "To": [0, 1, 3, 4, 5, 7, 9, 10, 15, 21, 24, 25, 26, 27, 28, 33, 34, 42, 44, 45, 53, 55, 56, 57, 58, 60, 61, 64, 68, 70, 71, 72, 73, 74, 77, 78, 83, 85, 86, 89, 91, 92, 93, 94, 96, 97, 100, 104, 106, 107, 108, 109, 110, 113, 114, 119, 121, 122], "With": [2, 9, 10, 15, 21, 22, 46, 47, 48, 54, 60, 61, 64, 68, 69, 87, 88, 90, 96, 97, 100, 104, 105, 123, 124], "_": [2, 5, 9, 54, 57, 60, 90, 93, 96], "_1": [25, 42, 71, 83, 107, 119], "_2": [24, 25, 42, 70, 71, 83, 106, 107, 119], "__eq__": [30, 75, 111], "__getattr__": [30, 75, 111], "__getitem__": [30, 75, 111], "__gt__": [30, 75, 111], "__gte__": [30, 75, 111], "__hash__": [30, 75, 111], "__init__": [14, 30, 63, 75, 99, 111], "__len__": [30, 75, 111], "__lt__": [30, 75, 111], "__lte__": [30, 75, 111], "__main__": [30, 75, 111], "__repr__": [30, 75, 111], "__setattr__": [30, 75, 111], "__setitem__": [30, 75, 111], "__str__": [30, 75, 111], "_build": 0, "_i": [43, 44, 84, 85, 120, 121], "_toc": 0, "_x": [44, 85, 121], "_y": [44, 85, 121], "aalborg": [46, 47, 48, 87, 88, 123, 124], "ab": [5, 57, 93], "abat": [46, 47, 49, 87, 123], "abatement_colors_dict": [48, 88, 124], "abatement_data": [48, 88, 124], "abatement_t": [48, 88, 124], "abatement_technologi": [48, 88, 124], "abid": [27, 73, 109], "abil": [14, 34, 40, 42, 44, 63, 78, 82, 83, 85, 99, 114, 118, 119, 121], "abkhazia": [46, 47, 87, 123], "abl": [1, 10, 12, 14, 15, 17, 19, 24, 25, 29, 31, 33, 39, 40, 48, 53, 61, 62, 63, 64, 65, 67, 70, 71, 77, 81, 82, 88, 89, 97, 98, 99, 100, 101, 103, 106, 107, 113, 117, 118, 124], "about": [1, 4, 5, 7, 10, 14, 15, 17, 19, 22, 24, 25, 26, 27, 30, 31, 32, 35, 37, 39, 41, 42, 44, 46, 47, 48, 53, 56, 57, 58, 61, 63, 64, 65, 67, 69, 70, 71, 72, 73, 75, 76, 80, 81, 83, 85, 87, 88, 89, 92, 93, 94, 97, 99, 100, 101, 103, 105, 106, 107, 108, 109, 111, 112, 116, 117, 119, 121, 123, 124], "abov": [1, 2, 3, 4, 5, 7, 8, 12, 14, 15, 17, 18, 19, 21, 22, 24, 25, 27, 28, 30, 32, 33, 37, 39, 40, 41, 42, 43, 44, 45, 48, 53, 54, 55, 56, 57, 58, 59, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 80, 81, 82, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 94, 95, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 109, 110, 111, 112, 113, 116, 117, 118, 119, 120, 121, 122, 124], "above_or_equal_to": [46, 47, 87, 123], "absente": 31, "absolut": [1, 4, 5, 22, 46, 47, 53, 56, 57, 69, 87, 89, 92, 93, 105, 123], "abstract": [1, 30, 42, 53, 75, 83, 89, 111, 119], "ac": [1, 53, 89], "academ": [42, 83, 119], "accept": [37, 80, 116], "access": [30, 39, 75, 81, 111, 117], "accompani": [45, 86, 122], "accomplish": [39, 81, 117], "accord": [8, 22, 27, 28, 32, 59, 69, 73, 74, 76, 95, 105, 109, 110, 112], "accordingli": [1, 53, 89], "account": [1, 15, 17, 25, 30, 33, 37, 39, 40, 53, 64, 65, 71, 75, 77, 80, 81, 82, 89, 100, 101, 107, 111, 113, 116, 117, 118], "account1": [30, 75, 111], "account2": [30, 75, 111], "accumul": [1, 22, 53, 69, 89, 105], "accur": [4, 42, 56, 83, 92, 119], "achiev": [1, 10, 14, 19, 32, 39, 44, 53, 61, 63, 67, 76, 81, 85, 89, 97, 99, 103, 112, 117, 121], "acquir": [22, 69, 105], "across": [1, 7, 17, 18, 21, 22, 23, 27, 32, 33, 48, 49, 53, 58, 65, 66, 68, 69, 73, 76, 77, 88, 89, 94, 101, 102, 104, 105, 109, 112, 113, 124], "act": [12, 15, 21, 32, 46, 47, 62, 64, 68, 76, 87, 98, 100, 104, 112, 123], "action": [17, 26, 29, 32, 65, 72, 76, 101, 108, 112], "activ": [27, 39, 48, 73, 81, 88, 109, 117, 124], "actor": [15, 49, 64, 100], "actual": [1, 3, 4, 14, 15, 22, 25, 31, 37, 39, 42, 43, 44, 48, 53, 55, 56, 63, 64, 69, 71, 80, 81, 83, 84, 85, 88, 89, 91, 92, 99, 100, 105, 107, 116, 117, 119, 120, 121, 124], "actuari": [1, 53, 89], "ad": [15, 17, 18, 34, 39, 40, 42, 44, 48, 64, 65, 66, 78, 81, 82, 83, 85, 88, 100, 101, 102, 114, 117, 118, 119, 121, 124], "adapt": [17, 65, 101], "add": [15, 17, 30, 33, 45, 64, 65, 75, 77, 86, 100, 101, 111, 113, 122], "add_const": [42, 44, 45, 83, 85, 86, 119, 121, 122], "addit": [1, 2, 3, 7, 9, 10, 15, 17, 18, 21, 31, 36, 48, 53, 54, 55, 58, 60, 61, 64, 65, 66, 68, 79, 88, 89, 90, 91, 94, 96, 97, 100, 101, 102, 104, 115, 124], "addition": [22, 39, 44, 69, 81, 85, 105, 117, 121], "address": [15, 37, 40, 49, 64, 80, 82, 100, 116, 118], "adher": [19, 67, 103], "adj": [39, 42, 45, 81, 83, 86, 117, 119, 122], "adjust": [5, 7, 14, 15, 18, 19, 32, 33, 34, 57, 58, 63, 64, 66, 67, 76, 77, 78, 93, 94, 99, 100, 102, 103, 112, 113, 114], "administr": [1, 53, 89], "adult": [22, 69, 105], "advanc": [14, 51, 63, 99], "advantag": [48, 88, 124], "advert": [15, 64, 100], "advis": [27, 73, 109], "advisor": 31, "afc": [7, 58, 94], "affect": [1, 2, 5, 13, 16, 18, 20, 26, 34, 36, 37, 39, 41, 42, 53, 54, 57, 66, 72, 78, 79, 80, 81, 83, 89, 90, 93, 102, 108, 114, 115, 116, 117, 119], "afford": [5, 39, 57, 81, 93, 117], "afghanistan": [46, 47, 87, 123], "aforement": [32, 76, 112], "afqt": [42, 44, 83, 85, 119, 121], "africa": [31, 46, 47, 87, 123], "african": [22, 69, 105], "after": [1, 2, 4, 15, 17, 22, 27, 29, 31, 32, 38, 39, 40, 45, 46, 47, 53, 54, 56, 64, 65, 69, 73, 76, 81, 82, 86, 87, 89, 90, 92, 100, 101, 105, 109, 112, 117, 118, 122, 123], "afteral": [1, 53, 89], "afterward": [22, 69, 105], "ag": [1, 31, 44, 45, 46, 47, 48, 52, 53, 85, 86, 87, 88, 89, 121, 122, 123, 124], "again": [1, 4, 5, 14, 17, 18, 39, 45, 46, 47, 53, 56, 57, 63, 65, 66, 81, 86, 87, 89, 92, 93, 99, 101, 102, 117, 122, 123], "against": [27, 31, 73, 109], "agenc": [48, 88, 124], "aggreg": [17, 22, 34, 36, 65, 69, 78, 79, 101, 105, 114, 115], "agre": [27, 73, 109], "agreement": 29, "agricultur": [1, 31, 53, 89], "ahead": [48, 87, 88, 123, 124], "aic": [42, 45, 83, 86, 119, 122], "aim": [15, 17, 31, 48, 49, 64, 65, 88, 100, 101, 124], "air": [46, 47, 48, 87, 88, 123, 124], "airbu": [26, 72, 108], "airlin": [26, 27, 72, 73, 108, 109], "aj": [46, 47, 48, 87, 88, 123, 124], "akhil": 51, "al": [48, 88, 124], "alamito": [8, 59, 95], "alan": [32, 51, 76, 112], "alexandra": [22, 52, 69, 105], "algebra": [26, 72, 108], "alic": [28, 74, 110], "align": [3, 4, 5, 15, 17, 18, 21, 22, 26, 28, 39, 40, 42, 55, 56, 57, 64, 65, 66, 68, 69, 72, 74, 81, 82, 83, 91, 92, 93, 100, 101, 102, 104, 105, 108, 110, 117, 118, 119], "all": [1, 2, 3, 5, 7, 8, 12, 14, 15, 17, 18, 19, 21, 22, 25, 27, 28, 29, 30, 32, 33, 36, 39, 40, 42, 44, 45, 46, 47, 48, 50, 53, 54, 55, 57, 58, 59, 62, 63, 64, 65, 66, 67, 68, 69, 71, 73, 74, 75, 76, 77, 79, 81, 82, 83, 85, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 100, 101, 102, 103, 104, 105, 107, 109, 110, 111, 112, 113, 115, 117, 118, 119, 121, 122, 123, 124], "all_arrai": [46, 47, 87, 123], "all_tabl": [46, 47, 87, 123], "alll": [1, 53, 89], "alloc": [14, 18, 63, 66, 99, 102], "allow": [4, 9, 12, 17, 22, 27, 30, 31, 32, 39, 40, 56, 60, 62, 65, 69, 73, 75, 76, 81, 82, 92, 96, 98, 101, 105, 109, 111, 112, 117, 118], "almost": [5, 42, 44, 48, 57, 83, 85, 87, 88, 93, 119, 121, 123, 124], "alon": [31, 46, 47, 87, 123], "along": [3, 6, 10, 15, 19, 25, 27, 29, 37, 42, 55, 61, 64, 67, 71, 73, 80, 83, 91, 97, 100, 103, 107, 109, 116, 119], "alpha": [17, 19, 21, 42, 43, 44, 45, 65, 67, 68, 83, 84, 85, 86, 101, 103, 104, 119, 120, 121, 122], "alreadi": [1, 5, 14, 28, 30, 39, 40, 44, 53, 57, 63, 74, 75, 81, 82, 85, 89, 93, 99, 110, 111, 117, 118, 121], "also": [1, 2, 4, 5, 8, 9, 10, 14, 15, 17, 18, 19, 21, 22, 24, 25, 26, 29, 30, 31, 32, 33, 36, 37, 39, 40, 42, 44, 45, 46, 47, 48, 49, 51, 53, 54, 56, 57, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 75, 76, 77, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 92, 93, 95, 96, 97, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 111, 112, 113, 115, 116, 117, 118, 119, 121, 122, 123, 124], "alter": [5, 15, 49, 57, 64, 93, 100], "altern": [2, 3, 5, 10, 15, 18, 24, 48, 54, 55, 57, 61, 64, 66, 70, 88, 90, 91, 93, 97, 100, 102, 106, 124], "although": [14, 21, 22, 25, 63, 68, 69, 71, 99, 104, 105, 107], "alumni": [1, 53, 89], "alwai": [1, 4, 14, 19, 21, 24, 25, 28, 42, 44, 53, 56, 63, 67, 68, 70, 71, 74, 83, 85, 89, 92, 99, 103, 104, 106, 107, 110, 119, 121], "am": [39, 81, 117], "amal": 51, "ambigu": [1, 4, 24, 42, 53, 56, 70, 83, 89, 92, 106, 119], "amen": 49, "american": [1, 32, 39, 53, 76, 81, 89, 112, 117], "among": [3, 14, 22, 27, 29, 46, 47, 55, 63, 69, 73, 87, 91, 99, 105, 109, 123], "amount": [1, 2, 4, 5, 7, 10, 12, 15, 17, 19, 21, 24, 25, 31, 36, 39, 40, 46, 47, 48, 49, 53, 54, 56, 57, 58, 61, 62, 64, 65, 67, 68, 70, 71, 79, 81, 82, 87, 88, 89, 90, 92, 93, 94, 97, 98, 100, 101, 103, 104, 106, 107, 115, 117, 118, 123, 124], "an": [2, 4, 5, 7, 9, 10, 14, 17, 18, 19, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 52, 54, 56, 57, 58, 60, 61, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 92, 93, 94, 96, 97, 99, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 118, 119, 120, 121, 122, 123, 124], "anaconda3": [39, 81, 117], "analog": [44, 85, 121], "analysi": [1, 24, 32, 48, 53, 70, 76, 88, 89, 106, 112, 124], "analyst": [1, 53, 89], "analyt": 31, "analyz": [1, 22, 26, 32, 36, 45, 53, 69, 72, 76, 79, 86, 89, 105, 108, 112, 115, 122], "anchor": [32, 37, 76, 80, 112, 116], "andrei": 51, "angl": [42, 83, 119], "ani": [1, 2, 3, 4, 5, 7, 8, 12, 14, 15, 17, 18, 19, 21, 22, 24, 25, 27, 28, 30, 31, 33, 34, 36, 39, 41, 42, 44, 48, 50, 53, 54, 55, 56, 57, 58, 59, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 83, 85, 88, 89, 90, 91, 92, 93, 94, 95, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 109, 110, 111, 113, 114, 115, 117, 119, 121, 124], "ann": [21, 68, 104], "anniversari": [48, 88, 124], "annot": [46, 47, 87, 123], "announc": [27, 73, 109], "annual": [32, 40, 43, 76, 82, 84, 112, 118, 120], "anoth": [1, 2, 4, 7, 9, 14, 15, 17, 21, 22, 24, 25, 26, 27, 28, 30, 31, 32, 33, 35, 37, 39, 42, 44, 46, 47, 53, 54, 56, 58, 60, 63, 64, 65, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 80, 81, 83, 85, 87, 89, 90, 92, 94, 96, 99, 100, 101, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 116, 117, 119, 121, 123], "answer": [1, 4, 5, 7, 41, 46, 47, 53, 56, 57, 58, 87, 89, 92, 93, 94, 123], "anthropogen": [46, 47, 87, 123], "anthropologi": [1, 53, 89], "anti": 31, "antivenom": [5, 57, 93], "anymor": [5, 39, 57, 81, 93, 117], "anyon": [1, 33, 53, 77, 89, 113], "anyth": [1, 5, 17, 39, 53, 57, 65, 81, 89, 93, 101, 117], "aontoin": [26, 72, 108], "apart": [4, 5, 41, 42, 56, 57, 83, 92, 93, 119], "apparaju": 51, "appeal": [1, 53, 89], "appear": [32, 37, 39, 44, 46, 47, 76, 80, 81, 85, 87, 112, 116, 117, 121, 123], "append": [44, 46, 47, 48, 85, 87, 88, 121, 123, 124], "appl": [1, 21, 53, 68, 89, 104], "appli": [1, 14, 17, 22, 46, 47, 48, 49, 51, 53, 63, 65, 69, 87, 88, 89, 99, 101, 105, 123, 124], "applic": [27, 29, 31, 46, 47, 48, 49, 73, 87, 88, 109, 123, 124], "approach": [4, 17, 26, 33, 48, 52, 56, 65, 72, 77, 88, 92, 101, 108, 113, 124], "appropri": [36, 79, 115], "approx": [4, 5, 21, 56, 57, 68, 92, 93, 104], "approx2": [21, 68, 104], "approxim": [4, 17, 32, 43, 44, 56, 65, 76, 84, 85, 92, 101, 112, 120, 121], "april": [32, 76, 112], "ar": [1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 14, 15, 17, 18, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 44, 45, 46, 47, 49, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 86, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 121, 122, 123], "arabia": [27, 73, 109], "arang": [14, 22, 24, 44, 63, 69, 70, 85, 99, 105, 106, 121], "arbitrari": [44, 85, 121], "arbitrarili": [44, 85, 121], "arbritari": [48, 88, 124], "architectur": [1, 53, 89], "area": [15, 17, 24, 33, 46, 47, 48, 64, 65, 70, 77, 87, 88, 100, 101, 106, 113, 123, 124], "aren": [14, 30, 39, 41, 42, 63, 75, 81, 83, 99, 111, 117, 119], "argmax": [26, 72, 108], "argu": [31, 37, 46, 47, 80, 87, 116, 123], "argument": [9, 30, 60, 75, 96, 111], "aris": [24, 34, 70, 78, 106, 114], "arm": [17, 31, 32, 44, 65, 76, 85, 101, 112, 121], "around": [1, 3, 4, 5, 15, 22, 32, 46, 47, 51, 53, 55, 56, 57, 64, 69, 76, 87, 89, 91, 92, 93, 100, 105, 112, 123], "arrai": [3, 10, 14, 24, 30, 42, 44, 45, 55, 61, 63, 70, 75, 83, 85, 86, 91, 97, 99, 106, 111, 119, 121, 122], "arrang": [48, 88, 124], "array1": [44, 85, 121], "array2": [44, 85, 121], "arriv": [14, 48, 63, 88, 99, 124], "art": [1, 53, 89], "arthur": [32, 76, 112], "articl": [1, 31, 32, 46, 47, 48, 53, 87, 88, 89, 123, 124], "artist": [1, 53, 89], "ascend": [1, 53, 89], "asia": [46, 47, 48, 87, 88, 123, 124], "asian": [44, 45, 85, 86, 121, 122], "asid": [44, 85, 121], "ask": [1, 39, 40, 46, 47, 53, 81, 82, 87, 89, 117, 118, 123], "aspect": [29, 31, 33, 77, 113], "assembl": [17, 65, 101], "assertionerror": [30, 75, 111], "assess": [46, 47, 87, 123], "asset": [17, 22, 36, 39, 40, 65, 69, 79, 81, 82, 101, 105, 115, 117, 118], "assign": [9, 10, 31, 41, 42, 60, 61, 83, 96, 97, 119], "assist": [22, 69, 105], "associ": [1, 7, 15, 39, 42, 44, 46, 47, 53, 58, 64, 81, 83, 85, 87, 89, 94, 100, 117, 119, 121, 123], "assum": [2, 4, 5, 10, 12, 14, 15, 17, 18, 19, 21, 25, 26, 27, 39, 42, 44, 45, 48, 54, 56, 57, 61, 62, 63, 64, 65, 66, 67, 68, 71, 72, 73, 81, 83, 85, 86, 88, 90, 92, 93, 97, 98, 99, 100, 101, 102, 103, 104, 107, 108, 109, 117, 119, 121, 122, 124], "assumpt": [1, 5, 14, 15, 18, 21, 25, 26, 44, 45, 53, 57, 63, 64, 66, 68, 71, 72, 85, 86, 89, 93, 99, 100, 102, 104, 107, 108, 121, 122], "astronomi": [1, 53, 89], "astrophys": [1, 53, 89], "asymmetr": [29, 39, 81, 117], "asymptot": [17, 65, 101], "atc": [7, 58, 94], "atmospher": 49, "attack": [22, 69, 105], "attain": [1, 19, 53, 67, 89, 103], "attempt": [21, 24, 27, 68, 70, 73, 104, 106, 109], "attend": [1, 28, 31, 42, 53, 74, 83, 89, 110, 119], "attr": [30, 75, 111], "attract": [37, 80, 116], "attribut": [7, 27, 29, 30, 39, 41, 42, 50, 73, 75, 81, 83, 109, 111, 117, 119], "attributeerror": 7, "author": [37, 80, 116], "automat": [26, 72, 108], "avail": [24, 28, 70, 74, 106, 110], "avc": [7, 8, 58, 59, 94, 95], "averag": [1, 3, 4, 5, 7, 8, 17, 28, 33, 41, 42, 44, 53, 55, 56, 57, 58, 59, 65, 74, 77, 83, 85, 89, 91, 92, 93, 94, 95, 101, 110, 113, 119, 121], "avg": [44, 85, 121], "avg_logearn_col": [44, 85, 121], "avg_logearn_nocol": [44, 85, 121], "avocado": [3, 55, 91], "avoid": [22, 42, 48, 69, 83, 88, 105, 119, 124], "awai": [1, 2, 5, 15, 39, 45, 53, 54, 57, 64, 81, 86, 89, 90, 93, 100, 117, 122], "awar": [15, 29, 64, 100], "ax": [3, 4, 9, 15, 18, 36, 44, 46, 47, 55, 56, 60, 64, 66, 79, 85, 87, 91, 92, 96, 100, 102, 115, 121, 123], "axhlin": [48, 88, 124], "axi": [3, 4, 9, 15, 17, 18, 21, 24, 36, 37, 39, 46, 47, 48, 55, 56, 60, 64, 65, 66, 68, 70, 79, 87, 88, 91, 92, 96, 100, 101, 102, 104, 106, 115, 123, 124], "b": [2, 3, 4, 5, 7, 21, 24, 26, 27, 31, 32, 36, 54, 55, 56, 57, 58, 68, 70, 72, 73, 76, 90, 91, 92, 93, 94, 104, 106, 108, 109, 112], "back": [1, 5, 14, 37, 39, 42, 53, 57, 63, 80, 81, 83, 87, 89, 93, 99, 116, 117, 119, 123], "backbon": [44, 85, 121], "bad": [1, 53, 89], "bai": [8, 59, 95], "bake": [17, 65, 101], "balanc": [30, 31, 32, 75, 76, 111, 112], "bang": [48, 88, 124], "bank": [1, 22, 30, 33, 35, 37, 40, 53, 69, 75, 77, 80, 82, 89, 105, 111, 113, 116, 118], "banker": [1, 32, 53, 76, 89, 112], "bar": [1, 8, 17, 30, 48, 53, 59, 65, 75, 88, 89, 95, 101, 111, 124], "barclai": [32, 76, 112], "barrel": [27, 73, 109], "barrier": [30, 75, 111], "base": [1, 2, 5, 7, 10, 14, 15, 25, 28, 32, 33, 40, 46, 47, 48, 49, 53, 54, 57, 58, 61, 63, 64, 71, 74, 76, 77, 82, 87, 88, 89, 90, 93, 94, 97, 99, 100, 107, 110, 112, 113, 118, 123, 124], "baselin": [4, 31, 56, 92], "basi": [34, 40, 48, 78, 82, 88, 114, 118, 124], "basic": [1, 6, 20, 39, 41, 53, 81, 89, 117], "basket": [33, 77, 113], "basket_0": [33, 77, 113], "basket_t": [33, 77, 113], "bat": [1, 53, 89], "battl": [46, 47, 87, 123], "bau": [48, 88, 124], "bdp": 52, "beach": [8, 59, 95], "bear": [5, 15, 39, 57, 64, 81, 93, 100, 117], "beauti": [27, 73, 109], "becaus": [1, 2, 3, 5, 7, 10, 14, 15, 18, 19, 22, 24, 25, 26, 27, 28, 30, 32, 33, 36, 39, 40, 41, 42, 44, 53, 54, 55, 57, 58, 61, 63, 64, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 81, 82, 83, 85, 89, 90, 91, 93, 94, 97, 99, 100, 102, 103, 105, 106, 107, 108, 109, 110, 111, 112, 113, 115, 117, 118, 119, 121], "becom": [1, 14, 17, 20, 22, 24, 26, 39, 42, 48, 53, 63, 65, 69, 70, 72, 81, 83, 88, 89, 99, 101, 105, 106, 108, 117, 119, 124], "bednet": 31, "been": [5, 8, 12, 22, 25, 27, 28, 31, 32, 33, 37, 39, 42, 44, 46, 47, 57, 59, 62, 69, 71, 73, 74, 76, 77, 80, 81, 83, 85, 87, 93, 95, 98, 105, 107, 109, 110, 112, 113, 116, 117, 119, 121, 123], "befor": [1, 4, 5, 10, 14, 15, 17, 22, 26, 27, 30, 31, 32, 33, 39, 40, 44, 48, 53, 56, 57, 61, 63, 64, 65, 69, 72, 73, 75, 76, 77, 81, 82, 85, 88, 89, 92, 93, 97, 99, 100, 101, 105, 108, 109, 111, 112, 113, 117, 118, 121, 124], "began": [27, 46, 47, 73, 87, 109, 123], "begin": [1, 4, 5, 7, 13, 15, 17, 18, 21, 22, 25, 26, 28, 31, 32, 38, 39, 40, 42, 53, 56, 57, 58, 64, 65, 66, 68, 69, 71, 72, 74, 76, 81, 82, 83, 89, 92, 93, 94, 100, 101, 102, 104, 105, 107, 108, 110, 112, 117, 118, 119], "behav": [4, 14, 39, 44, 56, 63, 81, 85, 92, 99, 117, 121], "behavior": [8, 33, 49, 59, 77, 95, 113], "behind": [8, 17, 26, 31, 32, 44, 59, 65, 72, 76, 85, 95, 101, 108, 112, 121], "being": [1, 4, 5, 14, 22, 25, 27, 29, 30, 31, 32, 39, 42, 53, 56, 57, 63, 69, 71, 73, 75, 76, 81, 83, 89, 92, 93, 99, 105, 107, 109, 111, 112, 117, 119], "belfort": [1, 53, 89], "belief": [25, 71, 107], "believ": [1, 22, 25, 42, 44, 53, 69, 71, 83, 85, 89, 105, 107, 119, 121], "below": [1, 2, 5, 7, 8, 15, 18, 22, 24, 25, 26, 27, 30, 32, 34, 36, 39, 40, 42, 43, 44, 46, 47, 48, 53, 54, 57, 58, 59, 64, 66, 69, 70, 71, 72, 73, 75, 76, 78, 79, 81, 82, 83, 84, 85, 87, 88, 89, 90, 93, 94, 95, 100, 102, 105, 106, 107, 108, 109, 111, 112, 114, 115, 117, 118, 119, 120, 121, 123, 124], "below_or_equal_to": [48, 88, 124], "ben": [32, 76, 112], "benefit": [8, 14, 15, 42, 48, 49, 59, 63, 64, 83, 88, 95, 99, 100, 119, 124], "bera": [42, 45, 83, 86, 119, 122], "berkelei": [0, 1, 12, 22, 31, 32, 43, 49, 51, 53, 62, 69, 76, 84, 89, 98, 105, 112, 120], "bernank": [32, 76, 112], "besid": [31, 46, 47, 48, 87, 88, 123, 124], "best": [4, 25, 27, 32, 37, 48, 56, 71, 73, 76, 80, 88, 92, 107, 109, 112, 116, 124], "bet": [25, 38, 71, 107], "beta": [17, 18, 42, 43, 45, 65, 66, 83, 84, 86, 101, 102, 119, 120, 122], "beta_1": [42, 83, 119], "beta_2": [42, 83, 119], "betrai": [27, 73, 109], "better": [1, 3, 4, 14, 17, 21, 22, 24, 25, 27, 28, 33, 39, 42, 44, 46, 47, 53, 55, 56, 63, 65, 68, 69, 70, 71, 73, 74, 77, 81, 83, 85, 87, 89, 91, 92, 99, 101, 104, 105, 106, 107, 109, 110, 113, 117, 119, 121, 123], "between": [1, 2, 4, 5, 7, 10, 12, 14, 15, 17, 18, 21, 22, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 36, 37, 40, 42, 43, 44, 46, 47, 48, 49, 52, 53, 54, 56, 57, 58, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 76, 77, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 97, 98, 99, 100, 101, 102, 104, 105, 106, 107, 109, 110, 112, 113, 114, 115, 116, 118, 119, 120, 121, 123, 124], "beverag": [10, 61, 97], "beyond": [32, 44, 76, 85, 112, 121], "bhatnagar": 51, "bia": [22, 40, 69, 82, 105, 118], "bias": [42, 83, 119], "bic": [42, 45, 83, 86, 119, 122], "bid": [26, 27, 39, 72, 73, 81, 108, 109, 117], "big": [1, 4, 8, 25, 48, 53, 56, 59, 71, 88, 89, 92, 95, 107, 124], "bigr": [5, 57, 93], "bill": [48, 88, 124], "billion": 31, "binari": [14, 63, 99], "bioengin": [1, 53, 89], "biologi": [1, 29, 53, 89], "birth": [22, 69, 105], "bit": [32, 39, 44, 76, 81, 85, 112, 117, 121], "bite": [5, 57, 93], "black": [44, 45, 48, 79, 85, 86, 88, 115, 121, 122, 124], "blind": 41, "block": [17, 65, 101], "blowdown": [48, 88, 124], "blue": [1, 18, 30, 36, 53, 66, 75, 79, 89, 102, 111, 115], "board": [32, 76, 112], "bob": [21, 68, 104], "bodi": [32, 76, 112], "boe": [26, 72, 108], "boggl": [1, 53, 89], "bolhui": [22, 52, 69, 105], "bond": [39, 40, 81, 82, 117, 118], "book": 0, "boolean": [30, 75, 111], "boom": [46, 47, 87, 123], "boost": [32, 76, 112], "bootstrap": [44, 45, 85, 86, 121, 122], "bore": [28, 74, 110], "born": [22, 31, 42, 69, 83, 105, 119], "borrow": [32, 33, 34, 36, 39, 40, 76, 77, 78, 79, 81, 82, 112, 113, 114, 115, 117, 118], "both": [1, 4, 5, 9, 15, 17, 18, 19, 21, 24, 25, 26, 27, 28, 29, 32, 36, 37, 42, 44, 46, 47, 48, 53, 56, 57, 60, 64, 65, 66, 67, 68, 70, 71, 72, 73, 74, 76, 79, 80, 83, 85, 87, 88, 89, 92, 93, 96, 100, 101, 102, 103, 104, 106, 107, 108, 109, 110, 112, 115, 116, 119, 121, 123, 124], "bottom": [1, 22, 24, 28, 48, 53, 69, 70, 74, 88, 89, 105, 106, 110, 124], "bottom_50_u": [22, 69, 105], "bottom_50_world": [22, 69, 105], "bought": [39, 81, 117], "bp": [4, 56, 92], "bq_1": [26, 72, 108], "bq_2": [26, 72, 108], "br_q_1": [26, 72, 108], "br_q_2": [26, 72, 108], "bracket": [22, 69, 105], "branch": [29, 32, 76, 112], "branko": 52, "brazil": [22, 46, 47, 69, 87, 105, 123], "breviti": [10, 61, 97], "brics_arrai": [46, 47, 87, 123], "brics_tabl": [46, 47, 87, 123], "briefli": [5, 33, 39, 57, 77, 81, 93, 113, 117], "brina": 52, "bring": [1, 7, 19, 21, 22, 31, 53, 58, 67, 68, 69, 89, 94, 103, 104, 105], "broad": [34, 49, 78, 114], "broader": 31, "broadli": [15, 64, 100], "broadwai": [1, 53, 89], "broker": [39, 81, 117], "brook": [22, 69, 105], "bsd": 51, "buck": [48, 88, 124], "budget": 20, "bui": [2, 3, 5, 10, 12, 14, 19, 21, 25, 39, 48, 54, 55, 57, 61, 62, 63, 67, 68, 71, 81, 88, 90, 91, 93, 97, 98, 99, 103, 104, 107, 117, 124], "build": [0, 14, 45, 48, 49, 63, 86, 88, 99, 122, 124], "built": [9, 30, 60, 75, 96, 111], "bulb": [48, 88, 124], "bun": [5, 57, 93], "bundl": [19, 21, 67, 68, 103, 104], "burden": [15, 31, 64, 100], "busi": [1, 5, 14, 15, 18, 48, 53, 57, 63, 64, 66, 88, 89, 93, 99, 100, 102, 124], "butter": [5, 57, 93], "button": 31, "buyer": [2, 39, 54, 81, 90, 117], "c": [1, 7, 9, 10, 17, 18, 25, 26, 27, 30, 34, 36, 39, 53, 60, 61, 65, 66, 71, 72, 73, 75, 78, 81, 89, 96, 97, 101, 102, 107, 108, 109, 111, 114, 117], "c02": [46, 47, 87, 123], "c594c5": [48, 88, 124], "c_": [32, 76, 112], "c_1": [26, 72, 108], "c_2": [26, 72, 108], "cal": [1, 53, 89], "cal_incom": [1, 53, 89], "cal_vs_al": [1, 53, 89], "calcul": [5, 6, 7, 9, 11, 17, 23, 24, 26, 28, 33, 40, 44, 45, 48, 57, 58, 60, 65, 70, 72, 74, 77, 82, 85, 86, 88, 93, 94, 96, 101, 106, 108, 110, 113, 118, 121, 122, 124], "calculu": [21, 24, 44, 68, 70, 85, 104, 106, 121], "calibr": 31, "california": [1, 8, 53, 59, 89, 95], "call": [1, 2, 3, 5, 7, 9, 15, 17, 18, 21, 24, 26, 28, 30, 31, 32, 37, 40, 41, 42, 44, 45, 48, 53, 54, 55, 57, 60, 64, 65, 66, 68, 70, 72, 74, 75, 76, 80, 82, 83, 85, 86, 88, 89, 90, 91, 93, 96, 100, 101, 102, 104, 106, 108, 110, 111, 112, 116, 118, 119, 121, 122, 124], "came": [31, 32, 76, 112], "campu": [1, 5, 53, 57, 89, 93], "can": [0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 14, 15, 17, 18, 19, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124], "canada": [46, 47, 87, 123], "cannot": [5, 7, 17, 24, 26, 27, 29, 37, 39, 42, 44, 57, 58, 65, 70, 72, 73, 80, 81, 83, 85, 93, 94, 101, 106, 108, 109, 116, 117, 119, 121], "canyon": [8, 59, 95], "cap": 49, "capabl": [8, 42, 59, 83, 95, 119], "capac": [8, 17, 25, 59, 65, 71, 95, 101, 107], "capacity_mw": [8, 59, 95], "capit": [7, 14, 16, 18, 31, 49, 58, 63, 66, 94, 99, 102], "capita": [46, 47, 87, 123], "caprau": 51, "captur": [4, 10, 14, 27, 32, 33, 42, 43, 48, 56, 61, 63, 73, 76, 77, 83, 84, 88, 92, 97, 99, 109, 112, 113, 119, 120, 124], "car": [2, 5, 17, 30, 48, 54, 57, 65, 75, 88, 90, 93, 101, 111, 124], "car99": 52, "car_1": [30, 75, 111], "car_2": [30, 75, 111], "carbon": [46, 47, 48, 49, 87, 88, 123, 124], "carbonom": [46, 47, 48, 87, 88, 123, 124], "card": [33, 43, 52, 77, 84, 113, 120], "care": [15, 32, 44, 64, 76, 85, 100, 112, 121], "career": [1, 53, 89], "carefulli": 31, "carri": [1, 31, 32, 49, 53, 76, 89, 112], "cartel": [26, 27, 72, 73, 108, 109], "cartoon": 32, "case": [1, 2, 3, 4, 7, 8, 10, 12, 14, 15, 17, 18, 21, 24, 25, 26, 27, 28, 29, 31, 36, 39, 40, 42, 44, 46, 47, 48, 53, 54, 55, 56, 58, 59, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 81, 82, 83, 85, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 99, 100, 101, 102, 104, 106, 107, 108, 109, 110, 117, 118, 119, 121, 123, 124], "cash": [1, 39, 53, 81, 89, 117], "categori": [1, 7, 53, 58, 89, 94], "caus": [2, 4, 5, 15, 18, 22, 26, 30, 31, 37, 42, 48, 54, 56, 57, 64, 66, 69, 72, 75, 80, 83, 88, 90, 92, 93, 100, 102, 105, 108, 111, 116, 119, 124], "causal": [44, 52, 85, 121], "causat": [3, 31, 44, 55, 85, 91, 121], "caveat": [1, 4, 53, 56, 89, 92], "cc": [48, 50, 88, 124], "cdf": [39, 81, 117], "cdot": [2, 3, 4, 9, 15, 17, 18, 28, 37, 39, 40, 42, 43, 44, 54, 55, 56, 60, 64, 65, 66, 74, 80, 81, 82, 83, 84, 85, 90, 91, 92, 96, 100, 101, 102, 110, 116, 117, 118, 119, 120, 121], "ceil": [1, 12, 53, 62, 89, 98], "cell": [1, 7, 27, 28, 53, 73, 74, 89, 109, 110], "censu": [22, 24, 69, 70, 105, 106], "cent": [14, 63, 99], "center": [45, 86, 122], "central": [33, 35, 37, 77, 80, 113, 116], "centuri": [32, 76, 112], "certain": [1, 4, 5, 12, 14, 17, 22, 26, 31, 33, 38, 39, 40, 44, 45, 46, 47, 53, 56, 57, 62, 63, 65, 69, 72, 77, 81, 82, 85, 86, 87, 89, 92, 93, 98, 99, 101, 105, 108, 113, 117, 118, 121, 122, 123], "certainli": [14, 42, 63, 83, 87, 99, 119, 123], "certainti": [48, 88, 124], "certifi": [39, 81, 117], "ceteri": [2, 54, 90], "chain": [5, 57, 93], "chair": [32, 76, 112], "chairman": [32, 76, 112], "challeng": [24, 42, 70, 83, 106, 119], "chanc": [15, 33, 39, 64, 77, 81, 100, 113, 117], "chang": [0, 1, 2, 3, 5, 7, 12, 13, 14, 15, 16, 18, 21, 22, 25, 26, 27, 29, 30, 31, 32, 33, 34, 37, 39, 40, 44, 46, 47, 48, 53, 54, 55, 57, 58, 62, 63, 64, 66, 68, 69, 71, 72, 73, 75, 76, 77, 78, 80, 81, 82, 85, 87, 88, 89, 90, 91, 93, 94, 98, 99, 100, 102, 104, 105, 107, 108, 109, 111, 112, 113, 114, 116, 117, 118, 121, 123, 124], "chapter": [2, 13, 23, 26, 29, 32, 33, 36, 48, 54, 72, 76, 77, 88, 90, 108, 112, 113, 124], "charact": [27, 73, 109], "character": [36, 37, 79, 80, 115, 116], "characterist": [14, 63, 99], "chardet": [39, 81, 117], "charg": [5, 12, 15, 25, 33, 39, 40, 57, 62, 64, 71, 77, 81, 82, 93, 98, 100, 107, 113, 117, 118], "chart": [1, 22, 24, 36, 52, 53, 69, 70, 79, 89, 105, 106, 115], "cheaper": [2, 5, 8, 54, 57, 59, 90, 93, 95], "cheapest": [48, 88, 124], "check": [1, 21, 30, 53, 68, 75, 89, 104, 111], "chemic": [1, 53, 89], "chemistri": [1, 53, 89], "chetti": [15, 64, 100], "child": 31, "childhood": 31, "children": [22, 31, 69, 105], "china": [22, 69, 105], "choic": [1, 10, 25, 27, 28, 36, 48, 53, 61, 71, 73, 74, 79, 88, 89, 97, 107, 109, 110, 115, 124], "choos": [1, 19, 21, 26, 28, 42, 48, 53, 67, 68, 72, 74, 83, 88, 89, 103, 104, 108, 110, 119, 124], "chose": [1, 42, 48, 53, 83, 88, 89, 119, 124], "chosen": [1, 27, 28, 53, 73, 74, 89, 109, 110], "christoph": 51, "ci": [48, 88, 124], "cigarett": [15, 64, 100], "circul": [32, 76, 112], "civic": [30, 75, 111], "claim": [22, 34, 37, 39, 42, 44, 69, 78, 80, 81, 83, 85, 105, 114, 116, 117, 119, 121], "class": [1, 9, 12, 14, 22, 26, 28, 46, 47, 48, 51, 53, 60, 62, 63, 69, 72, 74, 87, 88, 89, 96, 98, 99, 105, 108, 110, 123, 124], "classic": [27, 44, 48, 73, 85, 88, 109, 121, 124], "classifi": [17, 65, 101], "claus": 51, "clean": [15, 22, 31, 46, 47, 64, 69, 87, 100, 105, 123], "clear": [4, 10, 46, 47, 56, 61, 87, 92, 97, 123], "clearli": [14, 32, 39, 42, 63, 76, 81, 83, 99, 112, 117, 119], "climat": [46, 47, 48, 87, 88, 123, 124], "clinic": 31, "cliometr": [1, 53, 89], "close": [5, 32, 39, 44, 57, 76, 81, 85, 93, 112, 117, 121], "closer": [5, 24, 32, 44, 57, 70, 76, 85, 93, 106, 112, 121], "closest": [41, 44, 85, 121], "co": [22, 69, 105], "co2": [46, 47, 48, 49, 87, 88, 123, 124], "co2_tabl": [46, 47, 87, 123], "co_2": [48, 88, 124], "coal": [8, 14, 48, 49, 59, 63, 88, 95, 99, 124], "cobb": [16, 18, 20, 66, 102], "code": [1, 24, 26, 39, 44, 45, 46, 47, 53, 70, 72, 81, 85, 86, 87, 89, 106, 108, 117, 121, 122, 123], "coef": [42, 45, 83, 86, 119, 122], "coefficeint": [24, 70, 106], "coeffici": [22, 23, 32, 42, 43, 44, 69, 76, 83, 84, 85, 105, 112, 119, 120, 121], "cognit": [1, 53, 89], "cogniz": [1, 53, 89], "coincid": [14, 44, 63, 85, 99, 121], "coke": [25, 71, 107], "cold": 29, "cole": 51, "coll": [44, 85, 121], "coll_standard": [44, 85, 121], "collater": [39, 81, 117], "collect": [22, 41, 46, 47, 48, 69, 87, 88, 105, 123, 124], "colleg": [1, 42, 44, 53, 83, 85, 89, 119, 121], "college_job": [1, 53, 89], "collud": [26, 72, 108], "collus": [26, 72, 108], "color": [8, 10, 15, 30, 31, 39, 48, 59, 61, 64, 75, 81, 88, 95, 97, 100, 111, 117, 124], "colors_map": [48, 88, 124], "columbia": [46, 47, 48, 87, 88, 123, 124], "column": [1, 3, 4, 7, 10, 14, 22, 27, 28, 39, 42, 43, 44, 45, 46, 47, 48, 53, 55, 56, 61, 63, 69, 73, 74, 81, 83, 84, 85, 86, 87, 88, 89, 91, 92, 97, 99, 105, 109, 110, 117, 119, 120, 121, 122, 123, 124], "com": [46, 47, 48, 79, 87, 88, 115, 123, 124], "combat": [32, 76, 112], "combin": [1, 9, 14, 21, 22, 27, 28, 30, 31, 39, 42, 53, 60, 63, 68, 69, 73, 74, 75, 81, 83, 89, 96, 99, 104, 105, 109, 110, 111, 117, 119], "combust": 49, "come": [1, 5, 8, 15, 23, 25, 26, 33, 37, 39, 53, 57, 59, 64, 71, 72, 77, 80, 81, 89, 93, 95, 100, 107, 108, 113, 116, 117], "command": 49, "commerci": [14, 32, 63, 76, 99, 112], "commit": [29, 32, 76, 112], "committe": [32, 76, 112], "commod": [7, 58, 94], "common": [17, 18, 22, 24, 27, 29, 31, 32, 33, 44, 50, 65, 66, 69, 70, 73, 76, 77, 85, 101, 102, 105, 106, 109, 112, 113, 121], "commonli": [48, 88, 124], "commun": [1, 15, 53, 64, 89, 100], "comp": [1, 53, 89], "compani": [7, 17, 18, 31, 37, 39, 58, 65, 66, 80, 81, 94, 101, 102, 116, 117], "compar": [1, 4, 5, 14, 15, 16, 17, 18, 21, 23, 30, 31, 32, 33, 37, 39, 41, 42, 49, 53, 56, 57, 63, 64, 65, 66, 68, 75, 77, 80, 81, 83, 89, 92, 93, 99, 100, 101, 102, 104, 111, 113, 116, 117, 119], "comparion": [1, 53, 89], "comparison": [1, 18, 30, 31, 34, 53, 66, 75, 78, 89, 102, 111, 114], "compens": [1, 7, 22, 40, 53, 58, 69, 82, 89, 94, 105, 118], "compet": [5, 13, 25, 26, 27, 37, 57, 71, 72, 73, 80, 93, 107, 108, 109, 116], "competit": [5, 10, 14, 27, 57, 61, 63, 73, 93, 97, 99, 109], "competitor": [25, 26, 29, 71, 72, 107, 108], "compil": [1, 53, 89], "complain": [42, 83, 119], "complement": [5, 57, 93], "complementar": 52, "complementari": [5, 57, 93], "complet": [1, 5, 27, 31, 39, 42, 44, 46, 47, 53, 57, 73, 81, 83, 85, 87, 89, 93, 109, 117, 119, 121, 123], "complex": [21, 30, 42, 68, 75, 83, 104, 111, 119], "complic": [1, 17, 39, 42, 53, 65, 81, 83, 89, 101, 117, 119], "compon": [10, 39, 61, 81, 97, 117], "compos": [30, 75, 111], "compound": [40, 82, 118], "comprehens": [1, 24, 36, 53, 70, 79, 89, 106, 115], "compress": [22, 69, 105], "compressor": [48, 88, 124], "compris": [7, 22, 32, 58, 69, 76, 94, 105, 112], "comput": [14, 42, 63, 83, 99, 119], "comsum": [14, 63, 99], "concav": [17, 65, 101], "conceiv": [28, 29, 74, 110], "concentr": [8, 34, 59, 78, 95, 114], "concept": [1, 2, 5, 10, 13, 14, 16, 19, 27, 33, 40, 44, 45, 48, 49, 51, 53, 54, 57, 61, 63, 67, 73, 77, 82, 85, 86, 88, 89, 90, 93, 97, 99, 103, 109, 113, 118, 121, 122, 124], "conceptu": [28, 74, 110], "concern": [1, 17, 29, 40, 53, 65, 82, 89, 101, 118], "concious": 41, "conclud": [4, 12, 22, 24, 44, 46, 47, 56, 62, 69, 70, 85, 87, 92, 98, 105, 106, 121, 123], "conclus": [14, 63, 99], "concret": [37, 80, 116], "cond": [42, 45, 83, 86, 119, 122], "condit": [21, 31, 32, 39, 42, 44, 48, 68, 76, 81, 83, 85, 88, 104, 112, 117, 119, 121, 124], "conduct": [1, 4, 15, 24, 32, 33, 43, 53, 56, 64, 70, 76, 77, 84, 89, 92, 100, 106, 112, 113, 120], "confid": [41, 42, 43, 44, 45, 83, 84, 85, 86, 119, 120, 121, 122], "confirm": [24, 70, 106], "confound": [1, 27, 31, 53, 73, 89, 109], "confus": [32, 76, 112], "congress": [22, 69, 105], "congression": [32, 76, 112], "connect": [22, 31, 51, 69, 105], "connector": 51, "consequ": [4, 12, 15, 22, 24, 48, 49, 56, 62, 64, 69, 70, 88, 92, 98, 100, 105, 106, 124], "conserv": [1, 53, 89], "consid": [1, 2, 4, 5, 7, 14, 15, 21, 24, 25, 26, 27, 28, 30, 32, 33, 36, 42, 43, 44, 48, 49, 53, 54, 56, 57, 58, 63, 64, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 83, 84, 85, 88, 89, 90, 92, 93, 94, 99, 100, 104, 106, 107, 108, 109, 110, 111, 112, 113, 115, 119, 120, 121, 124], "consider": [4, 56, 92], "consist": [1, 10, 27, 33, 39, 53, 61, 73, 77, 81, 89, 97, 109, 113, 117], "consolid": [3, 55, 91], "conspir": [27, 73, 109], "const": [42, 45, 83, 86, 119, 122], "constant": [2, 4, 17, 18, 21, 24, 25, 26, 37, 42, 45, 46, 47, 54, 56, 65, 66, 68, 70, 71, 72, 80, 83, 86, 87, 90, 92, 101, 102, 104, 106, 107, 108, 116, 119, 122, 123], "constantli": 31, "constitut": [27, 49, 73, 109], "constraint": [20, 25, 71, 107], "construct": [3, 9, 25, 28, 31, 37, 43, 44, 45, 55, 60, 71, 74, 80, 84, 85, 86, 91, 96, 107, 110, 116, 120, 121, 122], "constructor": [30, 75, 111], "consult": [1, 53, 89], "consum": [1, 2, 3, 4, 5, 9, 10, 12, 13, 15, 19, 21, 25, 33, 36, 37, 49, 53, 54, 55, 56, 57, 60, 61, 62, 64, 67, 68, 71, 77, 79, 80, 89, 90, 91, 92, 93, 96, 97, 98, 100, 103, 104, 107, 113, 115, 116], "consumpt": [5, 15, 19, 21, 36, 48, 57, 64, 67, 68, 79, 88, 93, 100, 103, 104, 115, 124], "contact": [27, 73, 109], "contain": [24, 42, 44, 45, 49, 70, 83, 85, 86, 106, 119, 121, 122], "contained_in": [46, 47, 87, 123], "content": [0, 7, 50, 51], "context": [5, 14, 42, 48, 57, 63, 83, 88, 93, 99, 119, 124], "contin": [46, 47, 87, 123], "continu": [1, 4, 5, 14, 18, 22, 31, 39, 40, 48, 53, 56, 57, 63, 66, 69, 81, 82, 88, 89, 92, 93, 99, 102, 105, 117, 118, 124], "contour": [21, 68, 104], "contra": [8, 59, 95], "contract": [36, 38, 39, 81, 117], "contrast": [5, 14, 17, 57, 63, 65, 93, 99, 101], "contrat": 36, "contribut": [22, 32, 39, 69, 76, 81, 105, 112, 117], "control": [13, 14, 27, 31, 37, 41, 42, 49, 63, 73, 80, 83, 99, 109, 116, 119], "controversi": [46, 47, 87, 123], "convent": [27, 32, 48, 73, 76, 88, 109, 112, 124], "converg": [10, 14, 17, 61, 63, 65, 97, 99, 101], "convers": [2, 8, 40, 49, 54, 59, 82, 90, 95, 118], "convert": [4, 44, 56, 85, 92, 121], "convex": [17, 19, 21, 65, 67, 68, 101, 103, 104], "cook": [5, 31, 57, 93], "cooki": [1, 30, 53, 75, 89, 111], "cool": [21, 32, 34, 68, 76, 78, 87, 104, 112, 114, 123], "coolwat": [8, 59, 95], "cooper": [22, 25, 27, 29, 69, 71, 73, 105, 107, 109], "coordin": [3, 55, 91], "cop26": [46, 47, 87, 123], "copi": [0, 30, 39, 75, 81, 111, 117], "core": [17, 65, 101], "corner": [8, 59, 95], "coronaviru": [32, 76, 112], "corpor": [22, 69, 105], "correct": [4, 15, 31, 44, 56, 64, 85, 92, 100, 121], "correctli": [42, 45, 83, 86, 119, 122], "correl": [1, 3, 22, 31, 33, 43, 44, 53, 55, 69, 77, 84, 85, 89, 91, 105, 113, 120, 121], "correspond": [1, 3, 4, 7, 10, 28, 34, 39, 43, 44, 45, 53, 55, 56, 58, 61, 74, 78, 81, 84, 85, 86, 89, 91, 92, 94, 97, 110, 114, 117, 120, 121, 122], "corrobor": [22, 69, 105], "cost": [2, 5, 8, 10, 12, 14, 15, 17, 18, 21, 25, 26, 31, 32, 33, 36, 37, 39, 46, 47, 49, 54, 57, 59, 61, 62, 63, 64, 65, 66, 68, 71, 72, 76, 77, 79, 80, 81, 87, 90, 93, 95, 97, 98, 99, 100, 101, 102, 104, 107, 108, 112, 113, 115, 116, 117, 123], "costa": [8, 59, 95], "costli": [26, 72, 108], "could": [1, 2, 5, 15, 18, 26, 28, 31, 33, 37, 39, 42, 44, 46, 47, 48, 49, 53, 54, 57, 64, 66, 72, 74, 77, 80, 81, 83, 85, 87, 88, 89, 90, 93, 100, 102, 108, 110, 113, 116, 117, 119, 121, 123, 124], "count": [28, 33, 48, 74, 77, 88, 110, 113, 124], "counter": [4, 56, 92], "counterpart": [1, 53, 89], "countless": [5, 57, 93], "countri": [4, 12, 16, 18, 22, 23, 24, 27, 32, 33, 48, 49, 56, 62, 66, 69, 70, 73, 76, 77, 88, 92, 98, 102, 105, 106, 109, 112, 113, 124], "country1": [24, 70, 106], "country2": [24, 70, 106], "country3": [24, 70, 106], "coupl": [22, 69, 105], "coupon": [39, 81, 117], "cournot": [25, 71, 107], "cours": [1, 3, 5, 15, 26, 31, 32, 39, 43, 53, 55, 57, 64, 72, 76, 81, 84, 89, 91, 93, 100, 108, 112, 117, 120], "coursework": 51, "courtesi": [10, 61, 97], "covari": [42, 45, 83, 86, 119, 122], "cover": [1, 7, 13, 38, 39, 45, 51, 53, 58, 81, 86, 89, 94, 117, 122], "covid": [27, 31, 73, 109], "cp": [44, 45, 85, 86, 121, 122], "cpi": [33, 77, 113], "cpi_": [33, 77, 113], "cpi_t": [33, 77, 113], "cq_1": [26, 72, 108], "cq_2": [26, 72, 108], "crack": [30, 75, 111], "creat": [1, 3, 6, 7, 8, 9, 12, 14, 17, 22, 24, 26, 31, 33, 44, 45, 48, 53, 55, 58, 59, 60, 62, 63, 65, 69, 70, 72, 77, 85, 86, 88, 89, 91, 94, 95, 96, 98, 99, 101, 105, 106, 108, 113, 121, 122, 124], "creation": [22, 69, 105], "creativ": 50, "credit": [33, 77, 113], "creek": [8, 59, 95], "crise": [18, 66, 102], "critic": [33, 77, 113], "crop": [31, 46, 47, 48, 87, 88, 123, 124], "cross": [5, 24, 52, 57, 70, 93, 106], "crow": [27, 73, 109], "crowd": [17, 65, 101], "crucial": [48, 88, 124], "crude": [27, 73, 109], "crypto": [14, 63, 99], "cryptocurr": [14, 63, 99], "cs_econ_by_ag": [1, 53, 89], "cs_vs_econ": [1, 53, 89], "csap": 7, "csv": [1, 3, 4, 7, 8, 10, 22, 44, 46, 47, 48, 53, 55, 56, 58, 59, 61, 69, 85, 87, 88, 89, 91, 92, 94, 95, 97, 105, 121, 123, 124], "cumsum": [48, 88, 124], "cumul": [24, 48, 70, 88, 106, 124], "cumulative_width": [48, 88, 124], "currenc": [33, 77, 113], "current": [2, 5, 7, 21, 22, 30, 31, 32, 33, 39, 44, 48, 54, 57, 58, 68, 69, 75, 76, 77, 81, 85, 88, 90, 93, 94, 104, 105, 111, 112, 113, 117, 121, 124], "curtain": [32, 76, 112], "curv": [5, 6, 8, 9, 11, 12, 15, 17, 19, 20, 22, 23, 25, 26, 34, 49, 57, 59, 60, 62, 64, 65, 67, 69, 71, 72, 78, 93, 95, 96, 98, 100, 101, 103, 105, 107, 108, 114], "custom": [5, 9, 10, 12, 30, 57, 60, 61, 62, 75, 93, 96, 97, 98, 111], "cut": [14, 15, 63, 64, 99, 100], "cutter": [30, 75, 111], "d": [1, 2, 3, 4, 9, 10, 15, 24, 27, 36, 53, 54, 55, 56, 60, 61, 64, 70, 73, 89, 90, 91, 92, 96, 97, 100, 106, 109], "d_1": [39, 81, 117], "d_2": [39, 81, 117], "dai": [4, 42, 51, 56, 83, 92, 119], "daili": [27, 73, 109], "dalmia": 51, "dashboard": [1, 53, 89], "data": [0, 3, 4, 6, 17, 22, 24, 26, 30, 31, 32, 37, 39, 42, 43, 44, 45, 46, 47, 48, 49, 55, 56, 65, 69, 70, 72, 75, 76, 80, 81, 84, 85, 86, 87, 88, 91, 92, 101, 105, 106, 108, 111, 112, 116, 117, 120, 121, 122, 123, 124], "databas": [1, 22, 53, 69, 89, 105], "datapoint": [3, 55, 91], "datasci": [46, 87, 88, 123, 124], "dataset": [1, 3, 4, 8, 22, 42, 44, 45, 46, 47, 48, 51, 53, 55, 56, 59, 69, 83, 85, 86, 87, 88, 89, 91, 92, 95, 105, 119, 121, 122, 123, 124], "date": [3, 4, 39, 42, 45, 55, 56, 81, 83, 86, 91, 92, 117, 119, 122], "dateutil": [39, 81, 117], "david": [43, 52, 84, 120], "de": [22, 52, 69, 105], "dead": [5, 57, 93], "deal": [1, 13, 15, 22, 39, 53, 64, 69, 81, 89, 100, 105, 117], "debat": [22, 37, 69, 80, 105, 116], "debt": [34, 78, 114], "decad": [22, 32, 37, 69, 76, 105, 112], "decai": [4, 56, 92], "decid": [1, 5, 7, 11, 14, 15, 19, 21, 28, 33, 36, 37, 48, 49, 53, 57, 58, 63, 64, 67, 68, 74, 77, 79, 80, 88, 89, 93, 94, 99, 100, 103, 104, 110, 113, 115, 116, 124], "decim": [40, 82, 118], "decis": [7, 10, 15, 21, 26, 27, 29, 33, 37, 42, 48, 51, 58, 61, 64, 68, 72, 73, 77, 80, 83, 88, 94, 97, 100, 104, 108, 109, 113, 116, 119, 124], "declin": [5, 21, 46, 47, 57, 68, 87, 93, 104, 123], "decreas": [2, 3, 4, 5, 7, 10, 12, 14, 15, 17, 18, 19, 21, 22, 27, 34, 36, 37, 39, 46, 47, 48, 54, 55, 56, 57, 58, 61, 62, 63, 64, 65, 66, 67, 68, 69, 73, 78, 79, 80, 81, 87, 88, 90, 91, 92, 93, 94, 97, 98, 99, 100, 101, 102, 103, 104, 105, 109, 114, 115, 116, 117, 123, 124], "deeper": [32, 48, 76, 88, 112, 124], "def": [5, 9, 10, 14, 24, 30, 42, 44, 48, 57, 60, 61, 63, 70, 75, 83, 85, 88, 93, 96, 97, 99, 106, 111, 119, 121, 124], "default": [30, 40, 46, 47, 48, 75, 82, 87, 88, 111, 118, 123, 124], "defect": [27, 73, 109], "defector": [27, 73, 109], "defin": [5, 9, 21, 27, 28, 30, 33, 39, 42, 44, 48, 57, 60, 68, 73, 74, 75, 77, 81, 83, 85, 88, 93, 96, 104, 109, 110, 111, 113, 117, 119, 121, 124], "definit": [5, 18, 30, 33, 39, 57, 66, 75, 77, 81, 93, 102, 111, 113, 117], "deforest": [46, 47, 87, 123], "degrad": [46, 47, 49, 87, 123], "degre": [1, 3, 24, 49, 53, 55, 70, 89, 91, 106], "delai": [40, 82, 118], "deliber": [42, 83, 119], "delic": [32, 76, 112], "delin": [46, 47, 87, 123], "deliv": 31, "delta": [5, 48, 57, 88, 93, 124], "delv": [48, 88, 124], "demand": [1, 5, 9, 11, 12, 13, 15, 25, 26, 27, 32, 33, 34, 36, 37, 46, 47, 53, 57, 60, 62, 64, 71, 72, 73, 76, 77, 78, 79, 80, 87, 89, 93, 96, 98, 100, 107, 108, 109, 112, 113, 114, 115, 116, 123], "demand_equ": [5, 57, 93], "demo": [1, 53, 89], "demograph": [1, 22, 53, 69, 89, 105], "demonstr": [25, 26, 30, 44, 71, 72, 75, 85, 107, 108, 111, 121], "denot": [2, 5, 9, 10, 15, 25, 33, 54, 57, 60, 61, 64, 71, 77, 90, 93, 96, 97, 100, 107, 113], "dep": [42, 45, 83, 86, 119, 122], "depart": [10, 61, 97], "depend": [1, 3, 4, 5, 8, 15, 25, 29, 33, 39, 40, 44, 53, 55, 56, 57, 59, 64, 71, 77, 81, 82, 85, 89, 91, 92, 93, 95, 100, 107, 113, 117, 118, 121], "depict": [5, 14, 15, 22, 23, 57, 63, 64, 69, 93, 99, 100, 105], "deploi": [17, 31, 65, 101], "deposit": [39, 40, 81, 82, 117, 118], "depress": [22, 69, 105], "depth": [39, 81, 117], "deregul": [22, 69, 105], "deriv": [1, 16, 17, 21, 24, 25, 26, 39, 53, 65, 68, 70, 71, 72, 81, 89, 101, 104, 106, 107, 108, 117], "descend": [1, 8, 53, 59, 89, 95], "describ": [1, 2, 26, 27, 32, 36, 37, 46, 47, 48, 49, 53, 54, 72, 73, 76, 79, 80, 87, 88, 89, 90, 108, 109, 112, 115, 116, 123, 124], "descript": [30, 75, 111], "design": [31, 32, 44, 76, 85, 112, 121], "desir": [10, 14, 31, 39, 61, 63, 81, 97, 99, 117], "destin": [1, 53, 89], "detail": [15, 22, 31, 33, 44, 64, 69, 77, 85, 100, 105, 113, 121], "deterior": [46, 47, 87, 123], "determin": [9, 12, 15, 21, 24, 26, 28, 30, 34, 36, 39, 40, 42, 44, 60, 62, 64, 68, 70, 72, 74, 75, 78, 79, 81, 82, 83, 85, 96, 98, 100, 104, 106, 108, 110, 111, 114, 115, 117, 118, 119, 121], "dev": [44, 85, 121], "develop": [1, 16, 17, 22, 46, 47, 51, 52, 53, 65, 69, 87, 89, 101, 105, 123], "deviat": [26, 43, 44, 45, 72, 84, 85, 86, 108, 120, 121, 122], "devot": [36, 49, 79, 115], "deworm": 31, "df": [40, 42, 45, 82, 83, 86, 118, 119, 122], "dfrac": [2, 15, 17, 40, 44, 54, 64, 65, 82, 85, 90, 100, 101, 118, 121], "diablo": [8, 59, 95], "diagon": [14, 63, 99], "diagram": [10, 12, 15, 34, 36, 48, 61, 62, 64, 78, 79, 97, 98, 100, 114, 115], "diarrhea": 31, "did": [1, 5, 15, 24, 26, 31, 42, 44, 53, 57, 64, 70, 72, 83, 85, 89, 93, 100, 106, 108, 119, 121], "didn": [1, 27, 31, 39, 44, 53, 73, 81, 85, 89, 109, 117, 121], "diesel": 49, "differ": [1, 3, 4, 5, 6, 7, 10, 12, 13, 14, 15, 17, 18, 21, 22, 24, 27, 28, 29, 31, 32, 33, 36, 37, 39, 40, 41, 42, 43, 44, 46, 47, 48, 53, 55, 56, 57, 58, 61, 62, 63, 64, 65, 66, 68, 69, 70, 73, 74, 76, 77, 81, 82, 83, 84, 85, 87, 88, 89, 91, 92, 93, 94, 97, 98, 99, 100, 101, 102, 104, 105, 106, 109, 110, 112, 113, 117, 118, 119, 120, 121, 123, 124], "differenti": [22, 48, 69, 88, 105, 124], "difficult": [22, 39, 42, 69, 81, 83, 105, 117, 119], "digit": [1, 53, 89], "dilemma": [27, 29, 73, 109], "dimens": [40, 82, 118], "dimension": [36, 79, 115], "diminish": [1, 17, 53, 65, 89, 101], "dioxid": 49, "dip": [46, 47, 87, 123], "dire": [32, 76, 112], "direct": [1, 17, 22, 27, 36, 53, 65, 69, 73, 79, 89, 101, 105, 109, 115], "directli": [12, 15, 22, 32, 62, 64, 69, 76, 98, 100, 105, 112], "director": [22, 69, 105], "disadvantag": [39, 81, 117], "discard": [1, 53, 89], "discern": [5, 7, 57, 58, 93, 94], "disciplin": [1, 29, 51, 53, 89], "discount": [27, 39, 73, 81, 109, 117], "discourag": [5, 33, 57, 77, 93, 113], "discret": [14, 63, 99], "discuss": [3, 5, 13, 14, 15, 24, 27, 29, 32, 33, 36, 38, 39, 40, 42, 45, 46, 47, 49, 55, 57, 63, 64, 70, 73, 76, 77, 79, 81, 82, 83, 86, 87, 91, 93, 99, 100, 106, 109, 112, 113, 115, 117, 118, 119, 122, 123], "diseas": [15, 31, 64, 100], "disequilibrium": [12, 15, 62, 64, 98, 100], "dispar": [22, 69, 105], "displai": [1, 14, 15, 24, 45, 53, 63, 64, 70, 86, 89, 99, 100, 106, 122], "displaystyl": [10, 61, 97], "dispos": [2, 5, 54, 57, 90, 93], "disput": [48, 88, 124], "disrupt": [15, 64, 100], "dissolut": [22, 69, 105], "dissuad": [2, 14, 54, 63, 90, 99], "distanc": [15, 25, 44, 64, 71, 85, 100, 107, 121], "distast": [18, 66, 102], "distribut": [1, 22, 23, 24, 28, 39, 44, 45, 52, 53, 69, 70, 74, 81, 85, 86, 89, 105, 106, 110, 117, 121, 122], "disuad": [5, 57, 93], "disutil": [1, 53, 89], "dive": [4, 32, 33, 56, 76, 77, 92, 112, 113], "diverg": [4, 56, 92], "divers": 31, "divid": [7, 29, 31, 33, 58, 77, 94, 113], "dividend": [39, 81, 117], "divis": [1, 42, 43, 51, 53, 83, 84, 89, 119, 120], "do": [1, 3, 4, 7, 10, 14, 15, 17, 18, 24, 26, 28, 30, 32, 33, 36, 37, 39, 41, 42, 44, 45, 46, 47, 48, 53, 55, 56, 58, 61, 63, 64, 65, 66, 70, 72, 74, 75, 76, 77, 79, 80, 81, 83, 85, 86, 87, 88, 89, 91, 92, 94, 97, 99, 100, 101, 102, 106, 108, 110, 111, 112, 113, 115, 116, 117, 119, 121, 122, 123, 124], "doc": 0, "document": [7, 31], "doe": [1, 4, 5, 7, 12, 14, 15, 18, 19, 21, 24, 25, 27, 30, 31, 39, 42, 43, 44, 45, 46, 47, 48, 53, 56, 57, 58, 62, 63, 64, 66, 67, 68, 70, 71, 73, 75, 81, 83, 84, 85, 86, 87, 88, 89, 92, 93, 94, 98, 99, 100, 102, 103, 104, 106, 107, 109, 111, 117, 119, 120, 121, 122, 123, 124], "doesn": [1, 5, 14, 21, 28, 37, 39, 53, 57, 63, 68, 74, 80, 81, 89, 93, 99, 104, 110, 116, 117], "dog": [5, 57, 93], "dollar": [3, 4, 5, 10, 15, 21, 22, 25, 26, 33, 36, 39, 40, 55, 56, 57, 61, 64, 68, 69, 71, 72, 77, 79, 81, 82, 91, 92, 93, 97, 100, 104, 105, 107, 108, 113, 115, 117, 118], "domain": [4, 56, 92], "domest": [12, 17, 32, 62, 65, 76, 98, 101, 112], "don": [1, 5, 14, 24, 30, 33, 39, 41, 42, 44, 53, 57, 63, 70, 74, 75, 77, 81, 83, 85, 89, 93, 99, 106, 110, 111, 113, 117, 119, 121], "done": [17, 22, 26, 41, 65, 69, 72, 101, 105, 108], "dont": [48, 88, 124], "dot": [30, 46, 47, 75, 87, 111, 123], "doubl": [5, 30, 33, 41, 57, 75, 77, 93, 111, 113], "doubt": [40, 82, 118], "dougla": [16, 18, 20, 66, 102], "dove": [1, 32, 53, 76, 89, 112], "down": [1, 5, 7, 12, 14, 19, 25, 27, 34, 37, 39, 46, 47, 53, 57, 58, 62, 63, 67, 71, 73, 78, 80, 81, 87, 89, 93, 94, 98, 99, 103, 107, 109, 114, 116, 117, 123], "download": [10, 39, 61, 81, 97, 117], "downsid": [39, 81, 117], "downstream": [48, 88, 124], "downward": [2, 3, 4, 5, 9, 10, 14, 17, 18, 26, 36, 37, 39, 46, 47, 54, 55, 56, 57, 60, 61, 63, 65, 66, 79, 87, 90, 91, 92, 93, 96, 97, 99, 101, 102, 115, 123], "dp": [5, 57, 93], "dpi": [46, 47, 87, 123], "dq": [5, 57, 93], "drastic": [22, 69, 105], "draw": [1, 3, 14, 45, 46, 47, 48, 53, 55, 63, 86, 87, 88, 89, 91, 99, 122, 123, 124], "drawback": [14, 48, 63, 88, 99, 124], "drawn": [10, 12, 15, 37, 61, 62, 64, 80, 97, 98, 100, 116], "dread": [1, 53, 89], "dresher": [27, 73, 109], "drink": [25, 27, 31, 71, 73, 107, 109], "drive": [30, 75, 111], "driven": [30, 46, 47, 75, 87, 111, 123], "driver": [32, 46, 47, 76, 87, 112, 123], "drop": [1, 5, 14, 22, 27, 46, 47, 48, 53, 57, 63, 69, 73, 87, 88, 89, 93, 99, 105, 109, 123, 124], "drug": 31, "dual": [10, 32, 61, 76, 97, 112], "due": [1, 5, 7, 10, 14, 15, 17, 22, 27, 31, 41, 44, 53, 57, 58, 61, 63, 64, 65, 69, 73, 85, 89, 93, 94, 97, 99, 100, 101, 105, 109, 121], "duli": [1, 53, 89], "dummi": [44, 85, 121], "dunder": [30, 75, 111], "duopoli": [25, 26, 71, 72, 107, 108], "durbin": [42, 45, 83, 86, 119, 122], "dure": [2, 17, 22, 29, 33, 37, 54, 65, 69, 77, 80, 90, 101, 105, 113, 116], "dusen": 51, "dy": [15, 64, 100], "dynam": [46, 47, 49, 87, 123], "e": [4, 7, 15, 19, 21, 22, 24, 25, 26, 28, 30, 37, 39, 42, 46, 47, 48, 49, 56, 58, 64, 67, 68, 69, 70, 71, 72, 74, 75, 80, 81, 83, 87, 88, 92, 94, 100, 103, 104, 105, 106, 107, 108, 110, 111, 116, 117, 119, 123, 124], "e4c645b85ba9": [30, 75, 111], "each": [1, 2, 4, 5, 7, 9, 14, 15, 17, 18, 21, 22, 24, 26, 27, 28, 30, 31, 33, 34, 36, 39, 40, 41, 44, 46, 47, 48, 49, 53, 54, 56, 57, 58, 60, 63, 64, 65, 66, 68, 69, 70, 72, 73, 74, 75, 77, 78, 79, 81, 82, 85, 87, 88, 89, 90, 92, 93, 94, 96, 99, 100, 101, 102, 104, 105, 106, 108, 109, 110, 111, 113, 114, 115, 117, 118, 121, 123, 124], "earli": [27, 31, 32, 73, 76, 87, 109, 112, 123], "earlier": [1, 5, 10, 14, 26, 29, 32, 33, 39, 42, 44, 45, 48, 53, 57, 61, 63, 72, 76, 77, 81, 83, 85, 86, 88, 89, 93, 97, 99, 108, 112, 113, 117, 119, 121, 122, 124], "earn": [1, 9, 15, 22, 24, 33, 40, 41, 42, 43, 52, 53, 60, 64, 69, 70, 77, 82, 83, 84, 89, 96, 100, 105, 106, 113, 118, 119, 120], "easi": [24, 27, 30, 42, 70, 73, 75, 83, 106, 109, 111, 119], "easier": [24, 70, 106], "easili": [5, 24, 27, 57, 70, 73, 93, 106, 109], "east": [8, 59, 95], "eat": [1, 5, 21, 53, 57, 68, 89, 93, 104], "ec5f67": [48, 88, 124], "econ": [1, 31, 38, 53, 89], "econm": [10, 61, 97], "econom": [0, 2, 9, 12, 14, 15, 21, 22, 27, 29, 31, 32, 33, 34, 36, 37, 38, 40, 41, 44, 46, 47, 48, 52, 54, 60, 62, 63, 64, 68, 69, 73, 76, 77, 78, 79, 80, 82, 85, 87, 88, 90, 96, 98, 99, 100, 104, 105, 109, 112, 113, 114, 115, 116, 118, 121, 123, 124], "econometr": [42, 51, 83, 119], "econometrician": [42, 44, 83, 85, 119, 121], "economi": [8, 12, 14, 15, 22, 32, 33, 34, 36, 37, 46, 47, 49, 59, 62, 63, 64, 69, 76, 77, 78, 79, 80, 87, 95, 98, 99, 100, 105, 112, 113, 114, 115, 116, 123], "economist": [1, 12, 17, 18, 21, 22, 24, 31, 32, 37, 41, 44, 46, 47, 49, 53, 62, 65, 66, 68, 69, 70, 76, 80, 85, 87, 89, 98, 101, 102, 104, 105, 106, 112, 116, 121, 123], "edgecolor": [48, 88, 124], "edu": [46, 47, 48, 87, 88, 123, 124], "educ": [31, 43, 44, 45, 52, 84, 85, 86, 120, 121, 122], "educ_logwag": [44, 85, 121], "educ_logwage_sampl": [44, 85, 121], "educ_standard": [44, 85, 121], "edward": 31, "edwin": [48, 88, 124], "eec": [1, 53, 89], "effect": [3, 4, 10, 12, 13, 17, 22, 27, 31, 34, 37, 39, 40, 41, 42, 43, 44, 46, 47, 48, 52, 55, 56, 61, 62, 65, 69, 73, 78, 80, 81, 82, 83, 84, 85, 87, 88, 91, 92, 97, 98, 101, 105, 109, 114, 116, 117, 118, 119, 120, 121, 123, 124], "effici": [2, 7, 13, 14, 17, 48, 54, 58, 63, 65, 88, 90, 94, 99, 101, 124], "egyptian": [22, 69, 105], "either": [1, 2, 4, 10, 14, 15, 17, 18, 33, 41, 42, 48, 53, 54, 56, 61, 63, 64, 65, 66, 77, 83, 88, 89, 90, 92, 97, 99, 100, 101, 102, 113, 119, 124], "el": [8, 59, 95], "elabor": 31, "elast": [4, 11, 15, 18, 56, 64, 66, 92, 100, 102], "elasticti": [5, 57, 93], "electr": [1, 2, 8, 14, 48, 53, 54, 59, 63, 88, 89, 90, 95, 99, 124], "element": [3, 10, 28, 30, 42, 55, 61, 74, 75, 83, 91, 97, 110, 111, 119], "eleph": 52, "elimin": [21, 68, 104], "els": [1, 4, 5, 14, 18, 21, 39, 41, 42, 48, 53, 56, 57, 63, 66, 68, 81, 83, 88, 89, 92, 93, 99, 102, 104, 117, 119, 124], "emanuel": [22, 69, 105], "emerg": [22, 32, 69, 76, 105, 112], "emiss": [46, 47, 48, 49, 87, 88, 123, 124], "emit": [46, 47, 48, 49, 87, 88, 123, 124], "emitt": 49, "emphasi": [34, 78, 114], "empir": [1, 17, 32, 34, 37, 43, 44, 45, 53, 65, 76, 78, 80, 84, 85, 86, 89, 101, 112, 114, 116, 120, 121, 122], "emploi": [1, 31, 33, 53, 77, 89, 113], "employ": [32, 76, 112], "employe": [14, 17, 63, 65, 99, 101], "empti": [30, 75, 111], "encina": [8, 59, 95], "encompass": [32, 76, 112], "encount": [1, 22, 53, 69, 89, 105], "encourag": [2, 54, 90], "end": [1, 4, 5, 8, 15, 17, 18, 21, 25, 26, 28, 33, 39, 40, 42, 46, 47, 53, 56, 57, 59, 64, 65, 66, 68, 71, 72, 74, 77, 81, 82, 83, 87, 89, 92, 93, 95, 100, 101, 102, 104, 107, 108, 110, 113, 117, 118, 119, 123], "endogen": [2, 54, 90], "energi": [8, 18, 46, 47, 48, 59, 66, 87, 88, 95, 102, 123, 124], "energypolici": [46, 47, 48, 87, 88, 123, 124], "enforc": [15, 29, 64, 100], "eng": [1, 53, 89], "engag": 31, "engin": [1, 31, 53, 89], "english": [26, 32, 72, 76, 108, 112], "enjoi": [1, 14, 53, 63, 89, 99], "enjoy": 49, "enorm": [45, 86, 122], "enough": [7, 25, 30, 37, 39, 58, 71, 75, 80, 81, 94, 107, 111, 116, 117], "ensur": [30, 46, 47, 75, 87, 111, 123], "entail": [48, 88, 124], "enter": [1, 14, 15, 53, 63, 64, 89, 99, 100], "entic": [8, 59, 95], "entir": [1, 15, 22, 24, 25, 44, 49, 53, 64, 69, 70, 71, 85, 89, 100, 105, 106, 107, 121], "entiti": [14, 46, 47, 63, 87, 99, 123], "environ": [8, 14, 18, 46, 47, 48, 49, 59, 63, 66, 87, 88, 95, 99, 102, 123, 124], "environment": [48, 51, 88, 124], "epa": [46, 47, 48, 87, 88, 123, 124], "eplanoptmac": [46, 47, 48, 87, 88, 123, 124], "epsilon": [42, 83, 119], "epsilon_": [15, 64, 100], "epsilon_d": [15, 64, 100], "eq1": [9, 10, 26, 60, 61, 72, 96, 97, 108], "eq2": [9, 10, 60, 61, 96, 97], "equal": [1, 4, 5, 7, 8, 9, 14, 15, 19, 21, 22, 25, 26, 30, 36, 39, 42, 43, 48, 53, 56, 57, 58, 59, 60, 63, 64, 67, 68, 69, 71, 72, 75, 79, 81, 83, 84, 88, 89, 92, 93, 94, 95, 96, 99, 100, 103, 104, 105, 107, 108, 111, 115, 117, 119, 120, 124], "equal_to": [8, 59, 95], "equat": [2, 9, 10, 11, 15, 17, 24, 26, 32, 33, 54, 60, 61, 64, 65, 70, 72, 76, 77, 90, 96, 97, 100, 101, 106, 108, 112, 113], "equilbrium": [10, 61, 97], "equilibria": [13, 26, 29, 36, 72, 79, 108, 115], "equilibrium": [9, 12, 13, 15, 32, 36, 48, 49, 60, 62, 64, 76, 79, 88, 96, 98, 100, 112, 115, 124], "equip": [7, 8, 58, 59, 94, 95], "equiti": 13, "equival": [1, 2, 4, 10, 14, 53, 54, 56, 61, 63, 89, 90, 92, 97, 99], "era": [22, 69, 105], "eric": 51, "err": [42, 45, 83, 86, 119, 122], "error": [1, 26, 30, 42, 43, 45, 53, 72, 75, 83, 84, 86, 89, 108, 111, 119, 120, 122], "esg_tabl": [8, 59, 95], "esgporfolios_forcsv": [8, 59, 95], "especi": [1, 17, 22, 33, 34, 36, 53, 65, 69, 77, 78, 79, 89, 101, 105, 113, 114, 115], "essenc": [37, 80, 116], "essenti": [1, 5, 14, 15, 18, 22, 27, 39, 40, 43, 45, 53, 57, 63, 64, 66, 69, 73, 81, 82, 84, 86, 89, 93, 99, 100, 102, 105, 109, 117, 118, 120, 122], "establish": [32, 76, 112], "estim": [24, 42, 44, 45, 70, 83, 85, 86, 106, 119, 121, 122], "et": [48, 88, 124], "etc": [1, 7, 53, 58, 89, 94], "ethic": [14, 63, 99], "ethnic": [1, 31, 53, 89], "etiwanda": [8, 59, 95], "europ": [22, 52, 69, 105], "european": [39, 81, 117], "evalu": [9, 31, 49, 60, 96], "even": [1, 5, 15, 17, 18, 21, 25, 30, 31, 33, 36, 37, 39, 40, 44, 46, 47, 48, 49, 53, 57, 64, 65, 66, 68, 71, 75, 77, 79, 80, 81, 82, 85, 87, 88, 89, 93, 100, 101, 102, 104, 107, 111, 113, 115, 116, 117, 118, 121, 123, 124], "evenli": [25, 71, 107], "event": [2, 12, 39, 54, 62, 81, 90, 98, 117], "eventu": [10, 31, 37, 61, 80, 97, 116], "ever": [32, 33, 39, 76, 77, 81, 112, 113, 117], "everi": [1, 2, 4, 10, 15, 17, 26, 30, 31, 36, 39, 42, 43, 46, 47, 48, 51, 53, 54, 56, 61, 64, 65, 72, 75, 79, 81, 83, 84, 87, 88, 89, 90, 92, 97, 100, 101, 108, 111, 115, 117, 119, 120, 123, 124], "everyon": [1, 22, 24, 53, 69, 70, 89, 105, 106], "everyth": [5, 25, 42, 57, 71, 83, 93, 107, 119], "evid": [31, 37, 45, 46, 47, 52, 80, 86, 87, 116, 122, 123], "evolut": 29, "ex": [9, 10, 60, 61, 96, 97], "exact": [14, 17, 21, 24, 30, 46, 47, 63, 65, 68, 70, 75, 87, 99, 101, 104, 106, 111, 123], "exactli": [1, 3, 4, 14, 17, 18, 24, 39, 44, 53, 55, 56, 63, 65, 66, 70, 81, 85, 89, 91, 92, 99, 101, 102, 106, 117, 121], "examin": [1, 2, 3, 4, 6, 10, 17, 18, 19, 22, 28, 29, 37, 39, 41, 46, 47, 53, 54, 55, 56, 61, 65, 66, 67, 69, 74, 80, 81, 89, 90, 91, 92, 97, 101, 102, 103, 105, 110, 116, 117], "exampl": [1, 2, 4, 5, 7, 9, 10, 12, 17, 18, 21, 22, 25, 26, 27, 28, 30, 31, 32, 39, 40, 42, 44, 46, 47, 48, 49, 51, 53, 54, 56, 57, 58, 60, 61, 62, 65, 66, 68, 69, 71, 72, 73, 74, 75, 76, 81, 82, 83, 85, 87, 88, 89, 90, 92, 93, 94, 96, 97, 98, 101, 102, 104, 105, 107, 108, 109, 110, 111, 112, 117, 118, 119, 121, 123, 124], "exce": [10, 25, 39, 61, 71, 81, 97, 107, 117], "exceed": [25, 71, 107], "except": [14, 42, 44, 63, 83, 85, 99, 119, 121], "excerpt": [32, 76, 112], "excess": [10, 61, 97], "exchang": [39, 81, 117], "excis": [15, 64, 100], "exclud": [17, 22, 42, 65, 69, 83, 101, 105, 119], "exclus": [42, 83, 119], "execut": [1, 53, 89], "exercis": [1, 5, 10, 14, 39, 51, 53, 57, 61, 63, 81, 89, 93, 97, 99, 117], "exhaust": [42, 83, 119], "exhibit": [4, 5, 18, 56, 57, 66, 92, 93, 102], "exist": [12, 14, 24, 32, 39, 43, 44, 48, 62, 63, 70, 76, 81, 84, 85, 88, 98, 99, 106, 112, 117, 120, 121, 124], "exit": [14, 63, 99], "exogen": [2, 10, 54, 61, 90, 97], "expand": 29, "expans": [31, 36], "expect": [1, 2, 3, 4, 5, 10, 32, 33, 36, 40, 42, 44, 48, 53, 54, 55, 56, 57, 61, 76, 77, 79, 82, 83, 85, 88, 89, 90, 91, 92, 93, 97, 112, 113, 115, 118, 119, 121, 124], "expenditur": [33, 36, 77, 79, 113, 115], "expens": [2, 5, 14, 18, 39, 42, 48, 54, 57, 63, 66, 81, 83, 88, 90, 93, 99, 102, 117, 119, 124], "experi": [1, 14, 27, 31, 37, 41, 42, 44, 53, 63, 73, 80, 83, 85, 89, 99, 109, 116, 119, 121], "experienc": [27, 32, 46, 47, 73, 76, 87, 109, 112, 123], "experiment": 31, "expir": [39, 81, 117], "expiri": [17, 65, 101], "explain": [1, 2, 21, 22, 24, 29, 32, 36, 37, 53, 54, 68, 69, 70, 79, 80, 89, 90, 104, 105, 106, 115, 116], "explanatori": [42, 83, 119], "explor": [1, 2, 10, 14, 17, 44, 49, 51, 53, 54, 61, 63, 65, 85, 89, 90, 97, 99, 101, 121], "expon": [17, 18, 65, 66, 101, 102], "exponenti": [4, 18, 44, 56, 66, 85, 92, 102, 121], "export": [12, 27, 46, 47, 62, 73, 87, 98, 109, 123], "expos": [39, 81, 117], "exposur": [39, 81, 117], "express": [3, 5, 9, 10, 24, 30, 33, 39, 44, 55, 57, 60, 61, 70, 75, 77, 81, 85, 91, 93, 96, 97, 106, 111, 113, 117, 121], "extend": [45, 48, 86, 88, 122, 124], "extens": [17, 48, 65, 88, 101, 124], "extent": [24, 34, 46, 47, 70, 78, 87, 106, 114, 123], "extern": [15, 29, 48, 49, 64, 88, 100, 124], "extra": [7, 17, 31, 40, 48, 58, 65, 82, 88, 94, 101, 118, 124], "extrem": [5, 37, 57, 80, 93, 116], "f": [2, 17, 30, 42, 45, 48, 51, 54, 65, 75, 83, 86, 88, 90, 101, 111, 119, 122, 124], "f165fd": [48, 88, 124], "f29056": [48, 88, 124], "f9c863": [48, 88, 124], "face": [5, 14, 15, 19, 21, 32, 36, 46, 47, 48, 57, 63, 64, 67, 68, 76, 79, 87, 88, 93, 99, 100, 103, 104, 112, 115, 123, 124], "fact": [1, 4, 14, 19, 25, 33, 39, 42, 44, 45, 46, 47, 53, 56, 63, 67, 71, 77, 81, 83, 85, 86, 87, 89, 92, 99, 103, 107, 113, 117, 119, 121, 122, 123], "factor": [1, 2, 4, 7, 10, 15, 16, 18, 25, 31, 39, 42, 53, 54, 56, 58, 61, 64, 66, 71, 81, 83, 89, 90, 92, 94, 97, 100, 102, 107, 117, 119], "factori": [7, 10, 14, 15, 17, 48, 58, 61, 63, 64, 65, 88, 94, 97, 99, 100, 101, 124], "fail": [22, 37, 45, 69, 80, 86, 105, 116, 122], "failur": [15, 49, 64, 100], "fair": [1, 39, 40, 42, 53, 81, 82, 83, 89, 117, 118, 119], "fair_area": [24, 70, 106], "fairli": [1, 3, 22, 24, 26, 39, 41, 53, 55, 69, 70, 72, 81, 89, 91, 105, 106, 108, 117], "fall": [4, 15, 22, 30, 36, 56, 64, 69, 75, 79, 92, 100, 105, 111, 115], "fallen": [22, 37, 69, 80, 105, 116], "fals": [8, 30, 59, 75, 95, 111], "familar": [21, 68, 104], "famili": [1, 22, 42, 53, 69, 83, 89, 105, 119], "familiar": [14, 20, 30, 31, 32, 40, 43, 48, 63, 75, 76, 82, 84, 88, 99, 111, 112, 118, 120, 124], "famou": 49, "famous": [32, 76, 112], "fantast": [1, 53, 89], "far": [1, 4, 5, 12, 15, 17, 18, 30, 32, 37, 39, 42, 44, 53, 56, 57, 62, 64, 65, 66, 75, 76, 80, 81, 83, 85, 89, 92, 93, 98, 100, 101, 102, 111, 112, 116, 117, 119, 121], "fargo": [32, 76, 112], "farm": [14, 52, 63, 99], "farther": [39, 81, 117], "fascin": [46, 47, 48, 87, 88, 123, 124], "fast": [5, 57, 93], "faster": [18, 66, 102], "fatal": 31, "father_colleg": [44, 85, 121], "faulti": [22, 69, 105], "favor": [18, 32, 39, 66, 76, 81, 102, 112, 117], "feasibl": [7, 58, 94], "featur": [1, 4, 22, 32, 42, 44, 45, 53, 56, 69, 76, 83, 85, 86, 89, 92, 105, 112, 119, 121, 122], "februari": [37, 80, 116], "fed": [32, 76, 112], "feder": [32, 76, 112], "fedwkr": [44, 45, 85, 86, 121, 122], "feel": [1, 53, 89], "femal": [44, 45, 85, 86, 121, 122], "fertil": 31, "few": [1, 5, 14, 15, 22, 27, 29, 30, 45, 46, 47, 48, 49, 53, 57, 63, 64, 69, 73, 75, 86, 87, 88, 89, 93, 99, 100, 105, 109, 111, 122, 123, 124], "fewer": [2, 3, 10, 22, 27, 54, 55, 61, 69, 73, 90, 91, 97, 105, 109], "ff3a1d": [48, 88, 124], "field": [1, 31, 37, 41, 46, 47, 48, 49, 53, 80, 87, 88, 89, 116, 123, 124], "fifth": [43, 84, 120], "fig": 2, "figsiz": [5, 39, 46, 47, 48, 57, 81, 87, 88, 93, 117, 123, 124], "figur": [1, 5, 15, 32, 36, 37, 39, 44, 46, 47, 48, 53, 57, 64, 85, 87, 88, 89, 93, 100, 121, 123, 124], "file": [0, 7, 46, 47, 48, 50, 87, 88, 123, 124], "fill": [30, 75, 111], "fill_tank": [30, 75, 111], "final": [1, 4, 5, 15, 25, 33, 46, 47, 48, 53, 56, 57, 64, 71, 77, 87, 88, 89, 92, 93, 100, 107, 113, 123, 124], "financ": [40, 52, 82, 118], "financi": [15, 18, 32, 38, 40, 64, 66, 76, 82, 100, 102, 112, 118], "find": [1, 3, 5, 7, 9, 12, 14, 15, 17, 21, 22, 25, 26, 27, 33, 39, 42, 44, 46, 47, 48, 53, 55, 57, 58, 60, 62, 63, 64, 65, 68, 69, 71, 72, 73, 77, 81, 83, 85, 87, 88, 89, 91, 93, 94, 96, 98, 99, 100, 101, 104, 105, 107, 108, 109, 113, 117, 119, 121, 123, 124], "find_x_po": [48, 88, 124], "fine": [5, 57, 93], "finish": [39, 81, 117], "finit": [44, 85, 121], "fire": [22, 69, 105], "firm": [5, 8, 11, 14, 15, 25, 26, 27, 37, 57, 59, 63, 64, 71, 72, 73, 80, 93, 95, 99, 100, 107, 108, 109, 116], "firm_behaviour": [7, 58, 94], "first": [1, 3, 4, 5, 7, 8, 9, 10, 12, 14, 17, 18, 21, 22, 24, 26, 27, 28, 30, 32, 33, 34, 36, 39, 40, 42, 43, 44, 48, 49, 53, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 72, 73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 84, 85, 88, 89, 91, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 104, 105, 106, 108, 109, 110, 111, 112, 113, 114, 115, 117, 118, 119, 120, 121, 124], "fiscal": [35, 36, 79, 115], "fisher": [32, 33, 76, 77, 112, 113], "fit": [42, 44, 45, 83, 85, 86, 119, 121, 122], "fit_lin": [3, 55, 91], "fivethirtyeight": [1, 53, 89], "fix": [4, 7, 8, 12, 15, 26, 40, 42, 48, 49, 56, 58, 59, 62, 64, 72, 82, 83, 88, 92, 94, 95, 98, 100, 108, 118, 119, 124], "flare": [48, 88, 124], "flat": [7, 15, 17, 39, 58, 64, 65, 94, 100, 101], "flatten": [18, 66, 102], "flaw": [1, 26, 53, 72, 89, 108], "flexibl": [17, 32, 65, 76, 101, 112], "flip": [3, 33, 55, 77, 91, 113], "flood": [27, 73, 109], "floor": [12, 62, 98], "flordia": [10, 61, 97], "flow": [5, 31, 39, 57, 81, 93, 117], "fluctuat": [14, 34, 36, 40, 63, 78, 79, 82, 87, 99, 114, 115, 118, 123], "focu": [1, 17, 31, 33, 41, 43, 48, 53, 65, 77, 84, 88, 89, 101, 113, 120, 124], "focus": 31, "folder": [0, 50], "follow": [1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15, 17, 18, 19, 21, 22, 24, 25, 26, 30, 32, 33, 37, 39, 40, 42, 43, 44, 45, 46, 47, 48, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 75, 76, 77, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 108, 111, 112, 113, 116, 117, 118, 119, 120, 121, 122, 123, 124], "follw": [22, 69, 105], "fomc": [32, 76, 112], "fontsiz": [3, 10, 22, 48, 55, 61, 69, 91, 97, 105], "foo": [30, 75, 111], "food": [5, 14, 15, 57, 63, 64, 93, 99, 100], "forb": [27, 73, 109], "forc": [12, 13, 14, 33, 41, 44, 62, 63, 77, 85, 98, 99, 113, 121], "forecast": [22, 27, 32, 69, 73, 76, 105, 109, 112], "forestri": [1, 53, 89], "forget": [30, 75, 111], "forgot": [1, 53, 89], "form": [9, 11, 15, 25, 26, 29, 31, 33, 37, 39, 40, 44, 60, 64, 71, 72, 77, 80, 81, 82, 85, 96, 100, 107, 108, 113, 116, 117, 118, 121], "formal": [21, 26, 28, 68, 72, 74, 104, 108, 110], "format": [15, 28, 44, 64, 74, 85, 100, 110, 121], "former": [10, 17, 22, 61, 65, 69, 97, 101, 105], "formula": [5, 9, 15, 25, 39, 44, 48, 57, 60, 64, 71, 81, 85, 88, 93, 96, 100, 107, 117, 121, 124], "fortun": [5, 57, 93], "forward": [1, 44, 53, 85, 89, 121], "fossil": [8, 59, 95], "found": [3, 15, 17, 22, 25, 30, 31, 33, 44, 46, 47, 55, 64, 65, 69, 71, 75, 77, 85, 87, 91, 100, 101, 105, 107, 111, 113, 121, 123], "foundat": [2, 29, 37, 45, 54, 80, 86, 90, 116, 122], "four": [8, 27, 30, 32, 33, 36, 59, 73, 75, 76, 77, 95, 109, 111, 112, 113], "fourth": [33, 77, 113], "frac": [2, 4, 5, 9, 15, 17, 18, 21, 22, 24, 26, 28, 32, 33, 39, 40, 44, 48, 54, 56, 57, 60, 64, 65, 66, 68, 69, 70, 72, 74, 76, 77, 81, 82, 85, 88, 90, 92, 93, 96, 100, 101, 102, 104, 105, 106, 108, 110, 112, 113, 117, 118, 121, 124], "fraction": [5, 57, 93], "frame": [39, 81, 117], "framework": [16, 48, 88, 124], "francisco": [3, 4, 55, 56, 91, 92], "francoi": [25, 71, 107], "free": [1, 15, 17, 27, 39, 53, 64, 65, 73, 81, 89, 100, 101, 109, 117], "free_symbol": [9, 10, 60, 61, 96, 97], "frequent": [5, 14, 40, 57, 63, 82, 93, 99, 118], "fresh": [1, 52, 53, 89], "freshman": [1, 53, 89], "friendli": [48, 88, 124], "from": [0, 1, 2, 3, 4, 5, 6, 7, 12, 14, 15, 17, 18, 21, 22, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 53, 54, 55, 56, 57, 58, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 98, 99, 100, 101, 102, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124], "frozen": [5, 57, 93], "fruit": [48, 52, 88, 124], "fruitpric": [10, 61, 97], "fuel": [48, 52, 88, 124], "fulfil": [12, 25, 62, 71, 98, 107], "full": [8, 25, 32, 48, 59, 71, 76, 87, 88, 95, 107, 112, 123, 124], "full_tim": [1, 53, 89], "full_time_year_round": [1, 53, 89], "fulli": [12, 15, 48, 62, 64, 88, 98, 100, 124], "function": [2, 5, 9, 10, 14, 16, 18, 19, 20, 24, 25, 27, 30, 32, 39, 42, 44, 45, 48, 54, 57, 60, 61, 63, 66, 67, 70, 71, 73, 75, 76, 81, 83, 85, 86, 88, 90, 93, 96, 97, 99, 102, 103, 106, 107, 109, 111, 112, 117, 119, 121, 122, 124], "fund": [17, 32, 65, 76, 101, 112], "fundament": [1, 21, 25, 31, 51, 53, 68, 71, 89, 104, 107], "further": [1, 5, 14, 17, 22, 53, 57, 63, 65, 69, 89, 93, 99, 101, 105], "furthermor": [5, 42, 44, 57, 83, 85, 93, 119, 121], "futur": [2, 26, 31, 33, 39, 41, 42, 46, 47, 48, 54, 72, 77, 81, 83, 87, 88, 90, 108, 113, 117, 119, 123, 124], "fv": [40, 82, 118], "g": [15, 25, 30, 34, 46, 47, 48, 49, 64, 71, 75, 78, 87, 88, 100, 107, 111, 114, 123, 124], "ga": [2, 14, 30, 46, 47, 49, 54, 63, 75, 87, 90, 99, 111, 123], "gabriel": [22, 69, 105], "gain": [4, 12, 14, 15, 17, 19, 36, 56, 62, 63, 64, 65, 67, 79, 92, 98, 99, 100, 101, 103, 115], "gallon": [30, 75, 111], "gambl": [28, 74, 110], "game": [26, 27, 28, 72, 73, 74, 108, 109, 110], "gap": [22, 32, 37, 69, 76, 80, 105, 112, 116], "gapmind": [46, 47, 87, 123], "gase": 49, "gasolin": [5, 49, 57, 93], "gather": [1, 53, 89], "gave": [39, 81, 117], "gdp": [4, 17, 32, 33, 36, 46, 47, 56, 65, 76, 77, 79, 87, 92, 101, 112, 113, 115, 123], "gender": [1, 53, 89], "gener": [3, 4, 5, 7, 8, 18, 21, 22, 31, 33, 36, 39, 40, 42, 44, 45, 48, 51, 55, 56, 57, 58, 59, 66, 68, 69, 77, 79, 81, 82, 83, 85, 86, 88, 91, 92, 93, 94, 95, 102, 104, 105, 113, 115, 117, 118, 119, 121, 122, 124], "generaliz": [1, 53, 89], "geograph": [33, 46, 47, 48, 77, 87, 88, 113, 123, 124], "geographi": [1, 53, 89], "geq": [19, 21, 67, 68, 103, 104], "germani": [46, 47, 87, 123], "get": [1, 3, 4, 5, 7, 9, 14, 15, 18, 19, 22, 24, 26, 27, 28, 30, 31, 32, 39, 41, 42, 44, 46, 47, 48, 53, 55, 56, 57, 58, 60, 63, 64, 66, 67, 69, 70, 72, 73, 74, 75, 76, 81, 83, 85, 87, 88, 89, 91, 92, 93, 94, 96, 99, 100, 102, 103, 105, 106, 108, 109, 110, 111, 112, 117, 119, 121, 123, 124], "getter": [30, 75, 111], "ggmacc": [46, 47, 48, 87, 88, 123, 124], "ghg": [48, 49, 88, 124], "gi": [46, 47, 48, 87, 88, 123, 124], "gillingham": [46, 47, 48, 87, 88, 123, 124], "gillingham_stock_cost_080218_post": [46, 47, 48, 87, 88, 123, 124], "gini": [22, 23, 69, 105], "gini_coefficient_country1": [24, 70, 106], "gini_coefficient_country2": [24, 70, 106], "gini_coefficient_country3": [24, 70, 106], "ginter": 51, "girl": 31, "github": [0, 7, 46, 47, 48, 87, 88, 123, 124], "give": [1, 7, 10, 17, 18, 26, 31, 33, 34, 39, 40, 45, 48, 51, 53, 58, 61, 65, 66, 72, 77, 78, 81, 82, 86, 88, 89, 94, 97, 101, 102, 108, 113, 114, 117, 118, 122, 124], "given": [1, 2, 5, 7, 9, 10, 14, 15, 17, 18, 19, 25, 26, 28, 32, 33, 37, 39, 40, 42, 44, 46, 47, 48, 53, 54, 57, 58, 60, 61, 63, 64, 65, 66, 67, 71, 72, 74, 76, 77, 80, 81, 82, 83, 85, 87, 88, 89, 90, 93, 94, 96, 97, 99, 100, 101, 102, 103, 107, 108, 110, 112, 113, 116, 117, 118, 119, 121, 123, 124], "glanc": [32, 76, 112], "global": [12, 22, 46, 47, 49, 52, 62, 69, 87, 98, 105, 123], "go": [1, 4, 5, 17, 18, 21, 22, 23, 25, 30, 31, 32, 33, 39, 42, 44, 53, 56, 57, 65, 66, 68, 69, 71, 75, 76, 77, 81, 83, 85, 87, 89, 92, 93, 101, 102, 104, 105, 107, 111, 112, 113, 117, 119, 121, 123], "goal": [14, 27, 32, 33, 48, 49, 63, 73, 76, 77, 88, 99, 109, 112, 113, 124], "goe": [1, 4, 15, 27, 28, 31, 32, 39, 44, 49, 53, 56, 64, 73, 74, 76, 81, 85, 89, 92, 100, 109, 110, 112, 117, 121], "goer": [42, 83, 119], "goldman": [46, 47, 48, 87, 88, 123, 124], "goldmansach": [46, 47, 48, 87, 88, 123, 124], "gone": [1, 46, 47, 53, 87, 89, 123], "good": [1, 2, 5, 7, 9, 10, 11, 12, 14, 15, 17, 19, 21, 22, 25, 26, 27, 33, 36, 42, 53, 54, 57, 58, 60, 61, 62, 63, 64, 65, 67, 68, 69, 71, 72, 73, 77, 79, 83, 89, 90, 93, 94, 96, 97, 98, 99, 100, 101, 103, 104, 105, 107, 108, 109, 113, 115, 119], "googl": 31, "got": [31, 32, 76, 112], "gotten": 31, "gov": [46, 47, 48, 87, 88, 123, 124], "govern": [10, 13, 15, 17, 22, 32, 34, 37, 49, 61, 64, 65, 69, 76, 78, 80, 97, 100, 101, 105, 112, 114, 116], "governor": [32, 76, 112], "grad": [1, 53, 89], "graduat": [1, 42, 53, 83, 89, 119], "grain": [4, 56, 92], "grant": [15, 64, 100], "graph": [1, 2, 3, 4, 7, 8, 9, 10, 12, 14, 15, 17, 18, 19, 21, 24, 25, 26, 32, 39, 48, 53, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 70, 71, 72, 76, 81, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 106, 107, 108, 112, 117, 124], "graphic": [2, 9, 13, 15, 21, 26, 32, 35, 54, 60, 64, 68, 72, 76, 90, 96, 100, 104, 108, 112], "grasp": [5, 57, 93], "great": [1, 15, 17, 22, 32, 46, 47, 48, 53, 64, 65, 69, 76, 87, 88, 89, 100, 101, 105, 112, 123, 124], "greater": [5, 7, 10, 12, 15, 17, 18, 22, 26, 30, 36, 57, 58, 61, 62, 64, 65, 66, 69, 72, 75, 79, 93, 94, 97, 98, 100, 101, 102, 105, 108, 111, 115], "greatest": [24, 38, 49, 70, 106], "greatli": [1, 17, 53, 65, 89, 101], "green": [7, 10, 26, 58, 61, 72, 94, 97, 108], "greenhous": [46, 47, 48, 49, 87, 88, 123, 124], "greenspan": [32, 76, 112], "grew": [42, 83, 119], "grind": 51, "gross": [17, 65, 101], "grossman": [46, 47, 87, 123], "ground": [5, 57, 93], "group": [8, 22, 27, 31, 41, 42, 46, 47, 48, 59, 69, 73, 83, 87, 88, 95, 105, 109, 119, 123, 124], "group_num": [8, 59, 95], "group_plot": [48, 88, 124], "grow": [4, 5, 32, 33, 40, 46, 47, 48, 56, 57, 76, 77, 82, 87, 88, 92, 93, 112, 113, 118, 123, 124], "grown": [22, 69, 105], "growth": [4, 18, 32, 34, 37, 46, 47, 52, 56, 66, 76, 78, 80, 87, 92, 102, 112, 114, 116, 123], "gspc": [39, 81, 117], "gtco2": [48, 88, 124], "guarante": [1, 28, 39, 48, 53, 74, 81, 88, 89, 110, 117, 124], "guard": 31, "guess": [42, 83, 119], "guid": [1, 32, 33, 53, 76, 77, 89, 112, 113], "h": [17, 25, 37, 46, 47, 48, 65, 71, 80, 87, 88, 101, 107, 116, 123, 124], "ha": [1, 2, 3, 5, 7, 9, 14, 15, 17, 18, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 37, 39, 40, 42, 44, 45, 46, 47, 48, 49, 53, 54, 55, 57, 60, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 91, 93, 96, 99, 100, 101, 102, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 116, 117, 118, 119, 121, 122, 123, 124], "habit": [46, 47, 87, 123], "had": [1, 3, 14, 22, 24, 25, 27, 28, 31, 37, 39, 40, 44, 48, 53, 55, 63, 69, 70, 71, 73, 74, 80, 81, 82, 85, 88, 89, 91, 99, 105, 106, 107, 109, 110, 116, 117, 118, 121, 124], "haiti": [46, 47, 87, 123], "half": [22, 25, 40, 69, 71, 82, 105, 107, 118], "half_width": [48, 88, 124], "hanan": [22, 52, 69, 105], "hand": [2, 3, 9, 10, 12, 15, 22, 24, 32, 34, 54, 55, 60, 61, 62, 64, 69, 70, 76, 78, 90, 91, 96, 97, 98, 100, 105, 106, 112, 114], "handbook": 52, "hang": [48, 88, 124], "hansen": [36, 79, 115], "happen": [4, 5, 10, 15, 18, 26, 30, 31, 36, 37, 39, 42, 44, 46, 47, 48, 52, 56, 57, 61, 64, 66, 72, 75, 79, 80, 81, 83, 85, 87, 88, 92, 93, 97, 100, 102, 108, 111, 115, 116, 117, 119, 121, 123, 124], "happi": [1, 14, 53, 63, 89, 99], "harberg": [15, 64, 100], "hard": [1, 17, 24, 31, 46, 47, 48, 53, 65, 70, 87, 88, 89, 101, 106, 123, 124], "harm": [1, 53, 89], "harvard": [31, 46, 47, 48, 52, 87, 88, 123, 124], "hash": [30, 75, 111], "hat": [42, 45, 83, 86, 119, 122], "have": [1, 2, 3, 4, 5, 7, 8, 10, 12, 14, 15, 17, 19, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 97, 98, 99, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124], "hawk": [32, 76, 112], "hawkish": [32, 76, 112], "he": [1, 28, 32, 53, 74, 76, 89, 110, 112], "head": [87, 123], "heal": [46, 47, 87, 123], "health": [1, 31, 32, 33, 53, 76, 77, 89, 112, 113], "healthi": [32, 76, 112], "hear": [32, 76, 112], "heard": [32, 76, 112], "heart": [1, 40, 53, 82, 89, 118], "height": [3, 10, 21, 22, 24, 32, 48, 55, 61, 68, 69, 70, 88, 91, 97, 104, 105, 106, 124], "height_group": [48, 88, 124], "held": [2, 17, 54, 65, 90, 101], "helm": [8, 59, 95], "helminth": 31, "help": [1, 2, 3, 9, 14, 17, 21, 22, 31, 32, 33, 39, 44, 46, 47, 48, 53, 54, 55, 60, 63, 65, 68, 69, 76, 77, 81, 85, 87, 88, 89, 90, 91, 96, 99, 101, 104, 105, 112, 113, 117, 121, 123, 124], "henc": [2, 15, 19, 21, 24, 36, 54, 64, 67, 68, 70, 79, 90, 100, 103, 104, 106, 115], "her": [21, 22, 28, 68, 69, 74, 104, 105, 110], "here": [1, 3, 4, 5, 9, 10, 14, 19, 24, 26, 27, 28, 32, 39, 42, 43, 44, 46, 47, 48, 53, 55, 56, 57, 60, 61, 63, 67, 70, 72, 73, 74, 76, 81, 83, 84, 85, 87, 88, 89, 91, 92, 93, 96, 97, 99, 103, 106, 108, 109, 110, 112, 117, 119, 120, 121, 123, 124], "hi": [14, 27, 32, 37, 63, 73, 76, 80, 99, 109, 112, 116], "hick": [36, 79, 115], "hidden": [44, 46, 85, 87, 88, 121, 123, 124], "high": [1, 7, 8, 14, 15, 17, 18, 22, 31, 32, 33, 37, 39, 41, 42, 46, 47, 48, 53, 58, 59, 63, 64, 65, 66, 69, 76, 77, 80, 81, 83, 87, 88, 89, 94, 95, 99, 100, 101, 102, 105, 112, 113, 116, 117, 119, 123, 124], "higher": [1, 2, 4, 7, 8, 12, 14, 15, 17, 18, 21, 22, 24, 26, 27, 28, 33, 37, 39, 42, 44, 46, 47, 48, 49, 53, 54, 56, 58, 59, 62, 63, 64, 65, 66, 68, 69, 70, 72, 73, 74, 77, 80, 81, 83, 85, 87, 88, 89, 90, 92, 94, 95, 98, 99, 100, 101, 102, 104, 105, 106, 108, 109, 110, 113, 116, 117, 119, 121, 123, 124], "highest": [1, 5, 14, 19, 22, 32, 48, 53, 57, 63, 67, 69, 76, 88, 89, 93, 99, 103, 105, 112, 124], "highgrov": [8, 59, 95], "highli": [46, 47, 48, 87, 88, 123, 124], "highlight": [4, 44, 56, 85, 92, 121], "hike": [5, 32, 57, 76, 93, 112], "him": [1, 14, 32, 53, 63, 76, 89, 99, 112], "hin": [46, 47, 87, 123], "hin_arrai": [46, 47, 87, 123], "hin_tabl": [46, 47, 87, 123], "hint": [1, 53, 89], "hire": [7, 17, 18, 22, 58, 65, 66, 69, 94, 101, 102, 105], "hispan": [44, 45, 85, 86, 121, 122], "hist": [44, 85, 121], "histor": [3, 4, 31, 35, 37, 39, 55, 56, 81, 91, 92, 117], "histori": [1, 32, 39, 53, 76, 81, 89, 112, 117], "hit": [32, 38, 76, 112], "hmm": [30, 75, 111], "hold": [2, 5, 9, 14, 15, 17, 18, 19, 21, 32, 33, 36, 39, 42, 46, 47, 54, 57, 60, 63, 64, 65, 66, 67, 68, 76, 77, 79, 81, 83, 87, 90, 93, 96, 99, 100, 101, 102, 103, 104, 112, 113, 115, 117, 119, 123], "holder": [39, 81, 117], "hollevik": 51, "home": [33, 77, 87, 113, 123], "homi": 52, "honda": [30, 75, 111], "hoo": 52, "hoo41": 52, "hope": [1, 44, 53, 85, 89, 121], "horizont": [5, 7, 15, 36, 57, 58, 64, 79, 93, 94, 100, 115], "hospit": [5, 57, 93], "hot": [5, 10, 57, 61, 93, 97], "hour": [1, 17, 53, 65, 89, 101], "hourli": [43, 44, 84, 85, 120, 121], "hous": [5, 57, 93], "household": [14, 22, 24, 31, 63, 69, 70, 99, 105, 106], "how": [1, 2, 4, 5, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 31, 32, 33, 35, 36, 37, 39, 40, 41, 42, 44, 45, 48, 49, 51, 53, 54, 56, 57, 58, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 92, 93, 94, 96, 97, 98, 99, 100, 101, 102, 104, 105, 106, 108, 109, 110, 111, 112, 113, 115, 116, 117, 118, 119, 121, 122, 123, 124], "howev": [1, 5, 12, 14, 15, 17, 21, 22, 25, 26, 27, 33, 36, 37, 39, 44, 46, 47, 48, 53, 57, 62, 63, 64, 65, 68, 69, 71, 72, 73, 77, 79, 80, 81, 85, 87, 88, 89, 93, 98, 99, 100, 101, 104, 105, 107, 108, 109, 113, 115, 116, 117, 121, 123, 124], "html": [0, 46, 47, 48, 87, 88, 123, 124], "http": [46, 47, 48, 79, 87, 88, 115, 123, 124], "huge": [1, 42, 53, 83, 89, 119], "human": [1, 4, 17, 49, 53, 56, 65, 89, 92, 101], "humboldt": [8, 59, 95], "hump": [22, 69, 105], "hungri": [14, 21, 63, 68, 99, 104], "hunter": [8, 59, 95], "huntington": [8, 59, 95], "hybrid": [2, 54, 90], "hyde": [46, 47, 87, 123], "hydrocarbon": 49, "hypothes": [18, 46, 47, 66, 87, 102, 123], "hypothesi": [28, 45, 49, 74, 86, 110, 122], "hypothet": [9, 60, 96], "i": [0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 14, 15, 17, 18, 19, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 116, 117, 118, 119, 120, 121, 122, 123, 124], "i_t": [32, 33, 76, 77, 112, 113], "idea": [1, 14, 17, 21, 22, 25, 28, 31, 37, 40, 42, 44, 46, 47, 48, 51, 53, 63, 65, 68, 69, 71, 74, 80, 82, 83, 85, 87, 88, 89, 99, 101, 104, 105, 107, 110, 116, 118, 119, 121, 123, 124], "ideal": [14, 32, 41, 42, 63, 76, 83, 99, 112, 119], "ident": [29, 39, 41, 42, 81, 83, 117, 119], "idl": [14, 63, 99], "idna": [39, 81, 117], "idx": [30, 75, 111], "ie": 50, "iea": [48, 88, 124], "ignor": [22, 25, 27, 36, 39, 42, 69, 71, 73, 79, 81, 83, 105, 107, 109, 115, 117, 119], "ill": 31, "illicit": [27, 73, 109], "illust": [36, 79, 115], "illustr": [5, 14, 28, 32, 36, 48, 49, 51, 57, 63, 74, 76, 79, 88, 93, 99, 110, 112, 115, 124], "imag": [1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 14, 15, 17, 18, 19, 21, 22, 24, 25, 26, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106], "imageri": [46, 47, 48, 87, 88, 123, 124], "imagin": [1, 4, 5, 12, 14, 21, 28, 39, 41, 42, 53, 56, 57, 62, 63, 68, 74, 81, 83, 89, 92, 93, 98, 99, 104, 110, 117, 119], "imm": [44, 45, 85, 86, 121, 122], "immedi": [1, 53, 89], "impact": [1, 21, 31, 44, 46, 47, 48, 51, 53, 68, 85, 87, 88, 89, 104, 121, 123, 124], "imperfect": 29, "implement": [22, 69, 105], "impli": [4, 7, 15, 18, 25, 26, 34, 36, 37, 39, 42, 44, 56, 58, 64, 66, 71, 72, 78, 79, 80, 81, 83, 85, 92, 94, 100, 102, 107, 108, 114, 115, 116, 117, 119, 121], "implic": [1, 6, 22, 24, 53, 69, 70, 89, 105, 106], "implicitli": [39, 42, 81, 83, 117, 119], "import": [1, 2, 5, 7, 9, 10, 12, 14, 18, 21, 27, 28, 30, 32, 33, 36, 37, 38, 39, 40, 44, 45, 46, 47, 49, 53, 54, 57, 58, 60, 61, 62, 63, 66, 68, 73, 74, 75, 76, 77, 79, 80, 81, 82, 85, 86, 87, 89, 90, 93, 94, 96, 97, 98, 99, 102, 104, 109, 110, 111, 112, 113, 115, 116, 117, 118, 121, 122, 123], "importantli": [39, 81, 117], "impos": [12, 15, 62, 64, 98, 100], "imposs": [1, 41, 42, 44, 53, 83, 85, 89, 119, 121], "impress": [4, 56, 92], "improv": [14, 22, 27, 31, 35, 46, 47, 48, 63, 69, 73, 87, 88, 99, 105, 109, 123, 124], "imput": [22, 69, 105], "inabl": [48, 88, 124], "inaccess": [22, 69, 105], "incandesc": [48, 88, 124], "incent": [22, 25, 36, 48, 49, 69, 71, 79, 88, 105, 107, 115, 124], "incentiv": [18, 31, 66, 102], "includ": [1, 6, 7, 15, 18, 25, 29, 30, 31, 32, 33, 34, 37, 42, 44, 46, 47, 53, 58, 64, 66, 71, 75, 76, 77, 78, 80, 83, 85, 87, 89, 94, 100, 102, 107, 111, 112, 113, 114, 116, 119, 121, 123], "inclus": [15, 64, 100], "incom": [5, 15, 19, 23, 24, 33, 36, 39, 40, 43, 52, 57, 64, 67, 70, 77, 79, 81, 82, 84, 93, 100, 103, 106, 113, 115, 117, 118, 120], "income_distribut": [24, 70, 106], "income_distribution2": [24, 70, 106], "income_distribution3": [24, 70, 106], "inconveni": [14, 63, 99], "incorpor": [37, 80, 116], "increas": [1, 2, 3, 4, 5, 7, 10, 12, 14, 15, 17, 18, 19, 21, 22, 24, 25, 27, 31, 32, 34, 36, 37, 39, 40, 42, 43, 44, 46, 47, 48, 49, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 93, 94, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 109, 112, 114, 115, 116, 117, 118, 119, 120, 121, 123, 124], "increasi": [17, 65, 101], "incredibli": [32, 76, 112], "increment": [39, 81, 117], "incur": [7, 25, 58, 71, 94, 107], "inde": [21, 32, 33, 46, 47, 68, 76, 77, 87, 104, 112, 113, 123], "independ": [3, 5, 15, 22, 32, 45, 55, 57, 64, 69, 76, 86, 91, 93, 100, 105, 112, 122], "index": [1, 30, 33, 39, 53, 75, 77, 89, 111, 113], "india": [22, 48, 69, 88, 105, 124], "indic": [3, 14, 22, 24, 25, 26, 27, 28, 32, 35, 42, 44, 45, 55, 63, 69, 70, 71, 72, 73, 74, 76, 83, 85, 86, 91, 99, 105, 106, 107, 108, 109, 110, 112, 119, 121, 122], "indiffer": [19, 20, 40, 67, 82, 103, 118], "individu": [1, 7, 14, 15, 26, 28, 30, 33, 48, 53, 58, 63, 64, 72, 74, 75, 77, 88, 89, 94, 99, 100, 108, 110, 111, 113, 124], "individual_firm_cost": [7, 58, 94], "induc": [7, 58, 94], "industri": [1, 15, 25, 26, 48, 53, 64, 71, 72, 88, 89, 100, 107, 108, 124], "ineffic": [14, 63, 99], "ineffici": [48, 88, 124], "inelast": [5, 15, 57, 64, 93, 100], "inequ": 52, "infant": 31, "inferenti": 31, "inferior": [5, 57, 93], "infinit": [42, 83, 119], "inflat": [10, 22, 32, 37, 61, 69, 76, 80, 97, 105, 112, 116], "inflect": [46, 47, 87, 123], "influenc": [22, 32, 34, 46, 47, 69, 76, 78, 87, 105, 112, 114, 123], "influenti": [48, 88, 124], "inform": [15, 17, 22, 24, 28, 29, 30, 42, 44, 45, 46, 47, 48, 64, 65, 69, 70, 74, 75, 83, 85, 86, 87, 88, 100, 101, 105, 106, 110, 111, 119, 121, 122, 123, 124], "inher": [14, 29, 33, 63, 77, 99, 113], "inherit": [22, 69, 105], "initi": [5, 7, 14, 30, 37, 40, 45, 57, 58, 63, 75, 80, 82, 86, 93, 94, 99, 111, 116, 118, 122], "inject": 31, "inlin": [46, 87, 88, 123, 124], "innov": [10, 48, 61, 88, 97, 124], "input": [7, 17, 18, 20, 21, 30, 39, 42, 44, 58, 65, 66, 68, 75, 81, 83, 85, 94, 101, 102, 104, 111, 117, 119, 121], "insid": [30, 75, 111], "insight": [1, 17, 18, 33, 46, 47, 48, 53, 65, 66, 77, 87, 88, 89, 101, 102, 113, 123, 124], "instal": [39, 48, 81, 88, 117, 124], "instanc": [39, 40, 46, 47, 48, 81, 82, 87, 88, 117, 118, 123, 124], "instead": [1, 2, 3, 4, 12, 14, 15, 19, 22, 24, 30, 31, 39, 40, 42, 44, 53, 54, 55, 56, 62, 63, 64, 67, 69, 70, 75, 81, 82, 83, 85, 89, 90, 91, 92, 98, 99, 100, 103, 105, 106, 111, 117, 118, 119, 121], "institut": [22, 32, 33, 40, 69, 76, 77, 82, 105, 112, 113, 118], "instructor": 51, "instrument": [48, 88, 124], "insur": [39, 81, 117], "int_0": [24, 70, 106], "integr": [1, 53, 89], "intellig": [42, 83, 119], "intend": [15, 64, 100], "intens": [17, 18, 46, 47, 49, 65, 66, 87, 101, 102, 123], "interact": [14, 18, 19, 21, 29, 30, 31, 36, 63, 66, 67, 68, 75, 79, 99, 102, 103, 104, 111, 115], "intercept": [3, 4, 10, 15, 26, 36, 42, 44, 45, 55, 56, 61, 64, 72, 79, 83, 85, 86, 91, 92, 97, 100, 108, 115, 119, 121, 122], "interchang": [3, 55, 91], "interest": [1, 4, 17, 19, 32, 36, 37, 38, 39, 42, 44, 46, 47, 48, 53, 56, 65, 67, 76, 79, 80, 81, 83, 85, 87, 88, 89, 92, 101, 103, 112, 115, 116, 117, 119, 121, 123, 124], "interestingli": [5, 37, 57, 80, 93, 116], "interf": 49, "intermedi": [33, 77, 113], "intern": [12, 32, 48, 49, 50, 62, 76, 88, 98, 112, 124], "internet": 31, "interpol": [24, 70, 106], "interpret": [2, 3, 4, 39, 42, 44, 54, 55, 56, 81, 83, 85, 90, 91, 92, 117, 119, 121], "interrog": [27, 73, 109], "intersect": [1, 7, 9, 10, 12, 15, 19, 25, 26, 36, 49, 53, 58, 60, 61, 62, 64, 67, 71, 72, 79, 89, 94, 96, 97, 98, 100, 103, 107, 108, 115], "intertermpor": [1, 53, 89], "interv": [5, 31, 33, 39, 40, 42, 43, 44, 45, 57, 77, 81, 82, 83, 84, 85, 86, 93, 113, 117, 118, 119, 120, 121, 122], "interven": [13, 15, 64, 100], "intervent": [10, 13, 15, 31, 49, 61, 64, 97, 100], "intestin": 31, "intrins": [17, 49, 65, 101], "introduc": [5, 7, 12, 16, 19, 27, 33, 36, 37, 45, 49, 57, 58, 62, 67, 73, 77, 79, 80, 86, 93, 94, 98, 103, 109, 113, 115, 116, 122], "introduct": [15, 38, 49, 64, 100], "introductori": 51, "intuit": [1, 2, 3, 4, 5, 15, 17, 19, 21, 24, 25, 26, 32, 33, 39, 53, 54, 55, 56, 57, 64, 65, 67, 68, 70, 71, 72, 76, 77, 81, 89, 90, 91, 92, 93, 100, 101, 103, 104, 106, 107, 108, 112, 113, 117], "invers": [2, 3, 5, 36, 37, 39, 54, 55, 57, 79, 80, 81, 90, 91, 93, 115, 116, 117], "invert": [27, 73, 109], "invest": [36, 39, 40, 48, 79, 81, 82, 88, 115, 117, 118, 124], "investig": 52, "investor": [38, 39, 48, 81, 88, 117, 124], "invis": [10, 12, 61, 62, 97, 98], "involv": [1, 15, 31, 32, 33, 34, 41, 42, 44, 53, 64, 76, 77, 78, 83, 85, 89, 100, 112, 113, 114, 119, 121], "io": [46, 47, 48, 87, 88, 123, 124], "ipython": [30, 75, 111], "ir": [22, 69, 105], "irrat": [28, 74, 110], "irrelev": [1, 53, 89], "irrespect": [5, 7, 57, 58, 93, 94], "isbn": 52, "ish": [32, 76, 112], "isinst": [30, 75, 111], "isn": [4, 14, 30, 39, 56, 63, 75, 81, 92, 99, 111, 117], "isol": [12, 22, 31, 62, 69, 98, 105], "issu": [1, 23, 34, 37, 42, 53, 78, 80, 83, 89, 114, 116, 119], "ital": [46, 47, 48, 87, 88, 123, 124], "item": [15, 25, 64, 71, 100, 107], "its": [2, 3, 4, 5, 7, 8, 9, 14, 17, 21, 22, 25, 26, 27, 29, 30, 32, 33, 39, 40, 44, 46, 47, 48, 49, 54, 55, 56, 57, 58, 59, 60, 63, 65, 68, 69, 71, 72, 73, 75, 76, 77, 81, 82, 85, 87, 88, 90, 91, 92, 93, 94, 95, 96, 99, 101, 104, 105, 107, 108, 109, 111, 112, 113, 117, 118, 121, 123, 124], "itself": [1, 4, 12, 17, 24, 46, 47, 53, 56, 62, 65, 70, 87, 89, 92, 98, 101, 106, 123], "j": [46, 47, 48, 87, 88, 123, 124], "jai": [32, 76, 112], "jan": 42, "jane": [30, 75, 111], "janet": [32, 76, 112], "januari": [32, 40, 76, 82, 112, 118], "japan": [48, 88, 124], "jarqu": [42, 45, 83, 86, 119, 122], "jb": [42, 45, 83, 86, 119, 122], "jelli": [5, 57, 93], "jerom": [32, 76, 112], "jha": 51, "job": [1, 22, 33, 37, 42, 53, 69, 77, 80, 83, 89, 105, 113, 116, 119], "john": [27, 29, 30, 32, 73, 75, 76, 109, 111, 112], "join": [22, 24, 69, 70, 105, 106], "joint": [26, 72, 108], "joseph": [25, 71, 107], "journal": [31, 52], "jr": [27, 73, 109], "jul": [83, 119], "juli": [40, 82, 118], "jump": [4, 39, 46, 47, 56, 81, 87, 92, 117, 123], "jun": [45, 86, 122], "jupyt": [0, 46, 47, 48, 51, 87, 88, 123, 124], "just": [1, 4, 5, 8, 12, 15, 17, 22, 24, 25, 26, 27, 31, 32, 33, 39, 41, 42, 44, 46, 47, 48, 53, 56, 57, 59, 62, 64, 65, 69, 70, 71, 72, 73, 76, 77, 81, 83, 85, 87, 88, 89, 92, 93, 95, 98, 100, 101, 105, 106, 107, 108, 109, 112, 113, 117, 119, 121, 123, 124], "justif": [42, 83, 119], "justifi": [4, 56, 92], "k": [17, 18, 39, 42, 46, 47, 48, 52, 65, 66, 81, 83, 87, 88, 101, 102, 117, 119, 123, 124], "kaggl": [3, 55, 91], "keep": [1, 4, 12, 14, 32, 40, 44, 48, 53, 56, 62, 63, 76, 82, 85, 88, 89, 92, 98, 99, 112, 118, 121, 124], "kei": [3, 4, 7, 12, 17, 22, 33, 48, 51, 55, 56, 58, 62, 65, 69, 77, 88, 91, 92, 94, 98, 101, 105, 113, 124], "kenesian": 36, "kenya": 31, "kesicki": [48, 88, 124], "keynesian": [37, 80, 116], "keyword": [5, 57, 93], "khara": 52, "kill": 31, "kind": [1, 5, 27, 30, 53, 57, 73, 75, 89, 93, 109, 111], "kingdom": [37, 46, 47, 80, 87, 116, 123], "kitchen": [17, 65, 101], "know": [1, 4, 7, 9, 11, 15, 21, 24, 26, 27, 28, 29, 30, 31, 39, 41, 44, 46, 47, 48, 53, 56, 58, 60, 64, 68, 70, 72, 73, 74, 75, 81, 85, 87, 88, 89, 92, 94, 96, 100, 104, 106, 108, 109, 110, 111, 117, 121, 123, 124], "knowledg": [4, 17, 29, 48, 56, 65, 88, 92, 101, 124], "known": [4, 9, 10, 15, 17, 21, 22, 24, 32, 33, 36, 44, 56, 60, 61, 64, 65, 68, 69, 70, 76, 77, 79, 85, 92, 96, 97, 100, 101, 104, 105, 106, 112, 113, 115, 121], "kremer": 31, "kroft": [15, 64, 100], "krueger": [46, 47, 87, 123], "kurtosi": [42, 45, 83, 86, 119, 122], "kuznet": 49, "kwh": [14, 63, 99], "l": [1, 17, 18, 24, 53, 65, 66, 70, 89, 101, 102, 106], "lab": 31, "label": [9, 10, 12, 26, 60, 61, 62, 72, 96, 97, 98, 108], "labor": [7, 16, 18, 22, 33, 37, 52, 58, 66, 69, 77, 80, 94, 102, 105, 113, 116], "lack": [14, 63, 99], "lafayett": [36, 79, 115], "lambda": [14, 63, 99], "land": [1, 7, 8, 46, 47, 48, 53, 58, 59, 87, 88, 89, 94, 95, 123, 124], "landscap": [1, 53, 89], "languag": [30, 75, 111], "laptop": [5, 57, 93], "larg": [4, 18, 41, 44, 46, 47, 56, 66, 85, 87, 92, 102, 121, 123], "larger": [1, 4, 8, 19, 22, 24, 32, 44, 46, 47, 48, 53, 56, 59, 67, 69, 70, 76, 85, 87, 88, 89, 92, 95, 103, 105, 106, 112, 121, 123, 124], "largest": [22, 69, 105], "last": [4, 7, 12, 13, 18, 22, 26, 28, 30, 32, 37, 39, 45, 48, 56, 62, 66, 69, 72, 74, 75, 76, 80, 81, 86, 88, 92, 98, 102, 105, 108, 110, 111, 112, 116, 117, 122, 124], "lastli": [15, 25, 29, 33, 64, 71, 77, 100, 107, 113], "late": [5, 32, 57, 76, 93, 112], "later": [1, 4, 14, 17, 31, 33, 40, 44, 48, 53, 56, 63, 65, 77, 82, 85, 88, 89, 92, 99, 101, 113, 118, 121, 124], "latest": [22, 69, 105], "latter": [17, 48, 65, 88, 101, 124], "law": [2, 7, 32, 54, 58, 76, 90, 94, 112], "lcca_cgep": [46, 47, 48, 87, 88, 123, 124], "ldar": [48, 88, 124], "le": [25, 71, 107], "lead": [2, 4, 5, 15, 17, 18, 22, 27, 31, 37, 42, 51, 54, 56, 57, 64, 65, 66, 69, 73, 80, 83, 90, 92, 93, 100, 101, 102, 105, 109, 116, 119], "leader": [32, 76, 112], "leadership": [1, 53, 89], "learn": [1, 5, 6, 10, 11, 15, 16, 20, 23, 26, 32, 37, 38, 44, 46, 47, 48, 49, 53, 57, 61, 64, 72, 76, 80, 85, 87, 88, 89, 93, 97, 100, 108, 112, 116, 121, 123, 124], "learnt": [1, 53, 89], "least": [5, 14, 24, 42, 43, 44, 45, 46, 47, 57, 63, 70, 83, 84, 85, 86, 87, 93, 99, 106, 119, 120, 121, 122, 123], "leav": [10, 15, 26, 61, 64, 72, 97, 100, 108], "lectur": [17, 28, 39, 44, 65, 74, 81, 85, 101, 110, 117, 121], "led": [22, 32, 48, 69, 76, 88, 105, 112, 124], "left": [2, 3, 5, 14, 17, 18, 19, 22, 30, 39, 40, 44, 49, 54, 55, 57, 63, 65, 66, 67, 69, 75, 81, 82, 85, 90, 91, 93, 99, 101, 102, 103, 105, 111, 117, 118, 121], "leftmost": [14, 63, 99], "leftov": [19, 67, 103], "leftward": [2, 3, 10, 15, 48, 54, 55, 61, 64, 88, 90, 91, 97, 100, 124], "legend": [48, 88, 124], "len": [13, 24, 30, 48, 70, 75, 88, 106, 111, 124], "lend": [33, 77, 113], "lender": [32, 40, 76, 82, 112, 118], "length": [30, 75, 111], "less": [1, 2, 3, 5, 7, 10, 12, 14, 15, 17, 18, 19, 21, 22, 24, 25, 27, 30, 32, 36, 37, 39, 41, 53, 54, 55, 57, 58, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 75, 76, 79, 80, 81, 89, 90, 91, 93, 94, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 109, 111, 112, 115, 116, 117], "lesson": [39, 81, 117], "let": [1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 14, 15, 17, 18, 19, 21, 22, 24, 25, 26, 27, 28, 30, 33, 36, 39, 42, 43, 44, 45, 46, 47, 48, 49, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 77, 79, 81, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 113, 115, 117, 119, 120, 121, 122, 123, 124], "lev": [36, 79, 115], "level": [1, 4, 7, 10, 12, 15, 17, 18, 19, 21, 22, 24, 25, 26, 27, 32, 33, 34, 36, 37, 46, 47, 48, 51, 53, 56, 58, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 76, 77, 78, 79, 80, 87, 88, 89, 92, 94, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 112, 113, 114, 115, 116, 123, 124], "leverag": [10, 61, 97], "levi": [15, 64, 100], "levlafayett": [79, 115], "li": [7, 34, 48, 58, 78, 88, 94, 114, 124], "liang": 51, "lib": [39, 81, 117], "liber": [1, 53, 89], "librari": [9, 60, 96], "lie": [19, 67, 103], "life": [1, 17, 27, 51, 53, 65, 73, 89, 101, 109], "lifetim": [1, 48, 53, 88, 89, 124], "light": [1, 8, 48, 53, 59, 88, 89, 95, 124], "lightn": [48, 88, 124], "lih_arrai": [46, 47, 87, 123], "lih_tabl": [46, 47, 87, 123], "like": [1, 3, 4, 5, 7, 10, 14, 17, 19, 22, 26, 27, 29, 30, 32, 37, 39, 41, 42, 44, 45, 46, 47, 48, 53, 55, 56, 57, 58, 61, 63, 65, 67, 69, 72, 73, 75, 76, 80, 81, 83, 85, 86, 87, 88, 89, 91, 92, 93, 94, 97, 99, 101, 103, 105, 108, 109, 111, 112, 116, 117, 119, 121, 122, 123, 124], "likelihood": [42, 45, 83, 86, 119, 122], "limit": [7, 17, 27, 39, 49, 58, 65, 73, 81, 94, 101, 109, 117], "lin": [46, 47, 87, 123], "line": [1, 3, 4, 5, 7, 8, 9, 10, 12, 14, 19, 22, 25, 26, 36, 39, 42, 44, 45, 53, 55, 56, 57, 58, 59, 60, 61, 62, 63, 67, 69, 71, 79, 83, 85, 86, 89, 91, 92, 93, 94, 95, 96, 97, 98, 99, 103, 105, 107, 115, 119, 121, 122], "linear": [2, 4, 5, 26, 42, 43, 44, 45, 46, 47, 54, 56, 57, 72, 83, 84, 85, 86, 87, 90, 92, 93, 108, 119, 120, 121, 122, 123], "linearli": [4, 25, 46, 47, 56, 71, 87, 92, 107, 123], "linewidth": [48, 88, 124], "link": [1, 53, 89], "linspac": 7, "liquid": [36, 79, 115], "list": [9, 10, 14, 32, 44, 48, 51, 60, 61, 63, 76, 85, 88, 96, 97, 99, 112, 121, 124], "literaci": 35, "littl": [3, 17, 21, 26, 34, 39, 46, 47, 55, 65, 68, 72, 78, 81, 87, 91, 101, 104, 108, 114, 117, 123], "live": [1, 5, 31, 44, 51, 53, 57, 85, 89, 93, 121], "ll": [1, 4, 15, 19, 21, 23, 28, 30, 32, 33, 43, 44, 46, 47, 48, 49, 53, 56, 64, 67, 68, 74, 75, 76, 77, 84, 85, 87, 88, 89, 92, 100, 103, 104, 110, 111, 112, 113, 120, 121, 123, 124], "lm": [36, 79, 115], "ln": [4, 17, 39, 43, 56, 65, 81, 84, 92, 101, 117, 120], "ln_gdp": [4, 56, 92], "load": [1, 53, 89], "loan": [33, 39, 40, 77, 81, 82, 113, 117, 118], "local": [31, 46, 47, 87, 123], "localwkr": [44, 45, 85, 86, 121, 122], "locat": [5, 32, 57, 76, 93, 112], "log": [5, 6, 17, 42, 43, 44, 45, 46, 47, 57, 65, 83, 84, 85, 86, 87, 93, 101, 119, 120, 121, 122, 123], "log_earn_1999": [42, 44, 83, 85, 119, 121], "log_pric": [4, 56, 92], "log_quant": [4, 56, 92], "logco2": [46, 47, 87, 123], "logearn": [44, 85, 121], "logearn_standard": [44, 85, 121], "loggdp": [46, 47, 87, 123], "logic": [37, 39, 80, 81, 116, 117], "logwag": [44, 45, 85, 86, 121, 122], "logwage_standard": [44, 85, 121], "long": [1, 4, 22, 25, 32, 37, 39, 46, 47, 48, 53, 56, 69, 71, 76, 80, 81, 87, 88, 89, 92, 105, 107, 112, 116, 117, 123, 124], "longer": [10, 12, 15, 18, 25, 26, 33, 61, 62, 64, 66, 71, 72, 77, 97, 98, 100, 102, 107, 108, 113], "longitudin": [1, 53, 89], "look": [1, 2, 3, 4, 5, 7, 8, 10, 14, 17, 19, 21, 22, 24, 26, 27, 29, 30, 31, 32, 33, 34, 37, 39, 40, 41, 42, 44, 46, 47, 48, 53, 54, 55, 56, 57, 58, 59, 61, 63, 65, 67, 68, 69, 70, 72, 73, 75, 76, 77, 78, 80, 81, 82, 83, 85, 87, 88, 89, 90, 91, 92, 93, 94, 95, 97, 99, 101, 103, 104, 105, 106, 108, 109, 111, 112, 113, 114, 116, 117, 118, 119, 121, 123, 124], "loonei": [15, 64, 100], "lorenz": 23, "lose": [5, 7, 12, 18, 39, 57, 58, 62, 66, 81, 93, 94, 98, 102, 117], "loss": [7, 12, 25, 39, 44, 58, 62, 71, 81, 85, 94, 98, 107, 117, 121], "lost": [5, 15, 22, 27, 39, 57, 64, 69, 73, 81, 93, 100, 105, 109, 117], "lot": [1, 14, 21, 26, 32, 33, 44, 45, 48, 53, 63, 68, 72, 76, 77, 85, 86, 88, 89, 99, 104, 108, 112, 113, 121, 122, 124], "loui": [25, 71, 107], "low": [5, 7, 14, 15, 17, 22, 27, 32, 37, 39, 41, 48, 49, 57, 58, 63, 64, 65, 69, 73, 76, 80, 81, 88, 93, 94, 99, 100, 101, 105, 109, 112, 116, 117, 124], "low_wage_job": [1, 53, 89], "lower": [1, 2, 4, 7, 8, 10, 12, 14, 15, 17, 18, 22, 24, 25, 26, 27, 32, 34, 36, 37, 39, 46, 47, 48, 49, 53, 54, 56, 58, 59, 61, 62, 63, 64, 65, 66, 69, 70, 71, 72, 73, 76, 78, 79, 80, 81, 87, 88, 89, 90, 92, 94, 95, 97, 98, 99, 100, 101, 102, 105, 106, 107, 108, 109, 112, 114, 115, 116, 117, 123, 124], "lower_bound": [44, 85, 121], "lowest": [7, 8, 25, 48, 58, 59, 71, 88, 94, 95, 107, 124], "luck": [1, 53, 89], "lxml": [39, 81, 117], "lynnc": 7, "m": [3, 4, 19, 26, 55, 56, 67, 72, 87, 91, 92, 103, 108, 123], "mac": 49, "macc": [46, 47, 48, 87, 88, 123, 124], "machin": [46, 47, 48, 87, 88, 123, 124], "machineri": [7, 14, 58, 63, 94, 99], "macro": [1, 32, 35, 53, 76, 89, 112], "macroeconom": [17, 22, 32, 34, 36, 65, 69, 76, 78, 79, 101, 105, 112, 114, 115], "macroeconomist": [33, 77, 113], "made": [10, 14, 22, 28, 29, 33, 39, 61, 63, 69, 74, 77, 81, 97, 99, 105, 110, 113, 117], "magic": [10, 61, 97], "mai": [1, 4, 12, 15, 22, 24, 25, 26, 27, 31, 33, 36, 39, 48, 53, 56, 62, 64, 69, 70, 71, 72, 73, 77, 79, 81, 88, 89, 92, 98, 100, 105, 106, 107, 108, 109, 113, 115, 117, 124], "main": [26, 31, 32, 33, 35, 46, 47, 48, 72, 76, 77, 87, 88, 108, 112, 113, 123, 124], "mainli": [32, 76, 112], "maintain": [27, 32, 73, 76, 109, 112], "major": [37, 49, 80, 116], "major_categori": [1, 53, 89], "major_cod": [1, 53, 89], "make": [1, 2, 5, 7, 14, 15, 17, 18, 19, 21, 24, 25, 26, 27, 28, 30, 31, 32, 33, 37, 39, 40, 42, 44, 48, 53, 54, 57, 58, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 77, 80, 81, 82, 83, 85, 88, 89, 90, 93, 94, 99, 100, 101, 102, 103, 104, 106, 107, 108, 109, 110, 111, 112, 113, 116, 117, 118, 119, 121, 124], "make_arrai": [7, 24, 30, 44, 46, 47, 58, 70, 75, 85, 87, 94, 106, 111, 121, 123], "maker": [29, 48, 88, 124], "malaria": 31, "male": [44, 85, 121], "manag": [1, 27, 30, 31, 32, 34, 48, 53, 73, 75, 76, 78, 88, 89, 109, 111, 112, 114, 124], "mandalai": [8, 59, 95], "mandat": [32, 76, 112], "mani": [1, 4, 5, 9, 14, 17, 19, 21, 22, 25, 28, 29, 30, 31, 32, 33, 34, 42, 45, 49, 53, 56, 57, 60, 63, 65, 67, 68, 69, 71, 74, 75, 76, 77, 78, 83, 86, 89, 92, 93, 96, 99, 101, 103, 104, 105, 107, 110, 111, 112, 113, 114, 119, 122], "maniku": 51, "manner": [4, 56, 92], "manual": [44, 45, 85, 86, 121, 122], "manufactur": [10, 26, 61, 72, 97, 108], "map": [31, 32, 46, 47, 48, 87, 88, 123, 124], "march": [27, 44, 73, 85, 109, 121], "margin": [1, 3, 5, 7, 14, 15, 17, 19, 25, 26, 27, 36, 49, 53, 55, 57, 58, 63, 64, 65, 67, 71, 72, 73, 79, 89, 91, 93, 94, 99, 100, 101, 103, 107, 108, 109, 115], "marijn": [22, 52, 69, 105], "marin": [1, 53, 89], "mark": [27, 37, 49, 73, 80, 109, 116], "market": [2, 5, 7, 8, 9, 12, 13, 14, 15, 25, 26, 27, 32, 33, 36, 39, 48, 49, 54, 57, 58, 59, 60, 62, 63, 64, 71, 72, 73, 76, 77, 79, 81, 88, 90, 93, 94, 95, 96, 98, 99, 100, 107, 108, 109, 112, 113, 115, 117, 124], "market_suppli": [7, 58, 94], "massiv": [1, 27, 53, 73, 89, 109], "match": [1, 15, 18, 45, 53, 64, 66, 86, 89, 100, 102, 122], "materi": [1, 7, 53, 58, 89, 94], "math": [9, 26, 42, 60, 72, 83, 96, 108, 119], "mathemat": [1, 13, 17, 24, 26, 29, 33, 42, 44, 53, 65, 70, 72, 77, 83, 85, 89, 101, 106, 108, 113, 119, 121], "mathematician": [27, 73, 109], "mathrm": [26, 72, 108], "matplotlib": [46, 87, 88, 123, 124], "matpri": [46, 47, 48, 87, 88, 123, 124], "matrix": [14, 27, 42, 45, 63, 73, 83, 86, 99, 109, 119, 122], "matter": [1, 15, 30, 31, 33, 53, 64, 75, 77, 89, 100, 111, 113], "matthew": 51, "max": [5, 7, 14, 19, 57, 63, 67, 93, 99, 103], "maxim": [1, 3, 5, 10, 14, 20, 21, 25, 26, 27, 28, 48, 53, 55, 57, 61, 63, 68, 71, 72, 73, 74, 88, 89, 91, 93, 97, 99, 104, 107, 108, 109, 110, 124], "maxima": [27, 73, 109], "maximis": [1, 7, 8, 53, 58, 59, 89, 94, 95], "maximum": [1, 12, 14, 19, 27, 32, 53, 62, 63, 67, 73, 76, 89, 98, 99, 103, 109, 112], "maximun": [5, 57, 93], "mayb": [5, 14, 17, 25, 57, 63, 65, 71, 93, 99, 101, 107], "mc": [7, 26, 48, 58, 72, 88, 94, 108, 124], "mc_": 7, "mckinsei": 49, "mckinsey_curv": [48, 88, 124], "md": [4, 56, 92], "me": [4, 21, 39, 40, 56, 68, 81, 82, 92, 104, 117, 118], "meal": [5, 57, 93], "mean": [2, 3, 4, 5, 10, 14, 15, 16, 17, 18, 19, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, 36, 39, 42, 43, 45, 54, 55, 56, 57, 61, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 81, 83, 84, 86, 90, 91, 92, 93, 97, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 115, 117, 119, 120, 122], "mean_squared_error": [42, 44, 83, 85, 119, 121], "meant": [22, 69, 105], "measur": [1, 2, 4, 5, 10, 15, 17, 18, 21, 22, 23, 31, 33, 42, 43, 44, 48, 53, 54, 56, 57, 61, 64, 65, 66, 68, 69, 77, 83, 84, 85, 88, 89, 90, 92, 93, 97, 100, 101, 102, 104, 105, 113, 119, 120, 121, 124], "mechan": [1, 53, 89], "media": [22, 24, 69, 70, 105, 106], "medicin": [31, 41], "meet": [10, 32, 61, 76, 97, 112], "megawatt": [8, 59, 95], "melvin": [27, 73, 109], "member": [22, 26, 27, 32, 69, 72, 73, 76, 105, 108, 109, 112], "membership": [22, 69, 105], "men": [1, 53, 89], "mention": [25, 32, 39, 44, 71, 76, 81, 85, 107, 112, 117, 121], "menu": [37, 80, 116], "merril": [27, 73, 109], "met": [5, 48, 57, 88, 93, 124], "metallurg": [1, 53, 89], "methan": 49, "methane_tax": [48, 88, 124], "method": [1, 4, 5, 13, 14, 15, 28, 29, 42, 45, 53, 56, 57, 63, 64, 74, 83, 86, 89, 92, 93, 99, 100, 110, 119, 122], "methodologi": [31, 46, 47, 48, 87, 88, 123, 124], "metric": 31, "mgmt": [1, 53, 89], "michael": 31, "micro": [1, 53, 89], "microeconom": 51, "microwav": [5, 57, 93], "mid": [5, 57, 93], "middl": [1, 5, 22, 45, 46, 47, 53, 57, 69, 86, 87, 89, 93, 105, 122, 123], "might": [1, 2, 4, 5, 8, 14, 25, 30, 31, 33, 39, 40, 42, 44, 48, 53, 54, 56, 57, 59, 63, 71, 75, 77, 81, 82, 83, 85, 87, 88, 89, 90, 92, 93, 95, 99, 107, 111, 113, 117, 118, 119, 121, 123, 124], "miguel": 31, "mil16": 52, "milanov": 52, "mile": [30, 75, 111], "mileag": [30, 75, 111], "miles_to_empti": [30, 75, 111], "million": [26, 31, 72, 108], "mimic": [18, 66, 102], "min": [7, 48, 88, 124], "mind": [1, 4, 14, 15, 21, 27, 42, 44, 53, 56, 63, 64, 68, 73, 83, 85, 89, 92, 99, 100, 104, 109, 119, 121], "mine": [1, 14, 53, 63, 89, 99], "miner": [1, 53, 89], "minim": [1, 7, 14, 27, 42, 44, 53, 58, 63, 73, 83, 85, 89, 94, 99, 109, 119, 121], "minima": [7, 58, 94], "minimis": [7, 58, 94], "minimum": [8, 12, 14, 59, 62, 63, 95, 98, 99], "minu": [1, 7, 31, 53, 58, 89, 94], "mirror": [14, 15, 63, 64, 99, 100], "mislead": [4, 42, 56, 83, 92, 119], "miss": [39, 81, 117], "mix": [28, 74, 110], "model": [0, 1, 2, 4, 15, 16, 17, 19, 21, 25, 26, 27, 30, 31, 33, 36, 37, 42, 44, 45, 46, 47, 48, 49, 53, 54, 56, 64, 65, 67, 68, 71, 72, 73, 75, 77, 79, 80, 83, 85, 86, 87, 88, 89, 90, 92, 100, 101, 103, 104, 107, 108, 109, 111, 113, 115, 116, 119, 121, 122, 123, 124], "moder": [15, 64, 100], "modern": [17, 65, 101], "modifi": [1, 53, 89], "modul": [7, 30, 75, 111], "mohav": [8, 59, 95], "moment": [1, 5, 14, 53, 57, 63, 89, 93, 99], "monei": [1, 2, 5, 7, 19, 32, 33, 34, 36, 37, 38, 39, 53, 54, 57, 58, 67, 76, 77, 78, 79, 80, 81, 89, 90, 93, 94, 103, 112, 113, 114, 115, 116, 117], "monetar": [34, 78, 114], "monetari": [15, 17, 32, 33, 34, 35, 36, 37, 64, 65, 76, 77, 78, 79, 80, 100, 101, 112, 113, 114, 115, 116], "monitor": [32, 76, 112], "monopoli": [25, 26, 27, 71, 72, 73, 107, 108, 109], "monoton": [17, 27, 65, 73, 101, 109], "month": [39, 81, 117], "monthli": [40, 82, 118], "mor11": 52, "more": [1, 2, 3, 4, 5, 7, 8, 10, 12, 14, 15, 17, 18, 19, 21, 22, 24, 25, 27, 30, 31, 32, 33, 36, 37, 39, 40, 41, 42, 44, 46, 47, 48, 49, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 75, 76, 77, 79, 80, 81, 82, 83, 85, 87, 88, 89, 90, 91, 92, 93, 94, 95, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 109, 111, 112, 113, 115, 116, 117, 118, 119, 121, 123, 124], "moreov": [32, 76, 112], "moreso": [10, 15, 61, 64, 97, 100], "morro": [8, 59, 95], "morsi": [22, 52, 69, 105], "mortal": 31, "mortgag": [33, 77, 113], "moss": [8, 59, 95], "most": [2, 5, 7, 14, 18, 19, 21, 22, 27, 29, 30, 31, 32, 33, 38, 39, 40, 43, 44, 45, 46, 47, 48, 54, 57, 63, 66, 67, 68, 69, 73, 75, 76, 77, 81, 82, 84, 85, 86, 87, 88, 90, 93, 99, 102, 103, 104, 105, 109, 111, 112, 113, 117, 118, 120, 121, 122, 123, 124], "mother_colleg": [44, 85, 121], "motiv": [1, 46, 47, 48, 49, 51, 53, 87, 88, 89, 123, 124], "motor": [48, 88, 124], "mountain": [5, 57, 93], "move": [1, 5, 10, 17, 19, 27, 28, 29, 31, 32, 37, 39, 48, 53, 57, 61, 65, 67, 73, 74, 76, 80, 81, 88, 89, 93, 97, 101, 103, 109, 110, 112, 116, 117, 124], "movement": [3, 5, 6, 38, 46, 47, 55, 57, 87, 91, 93, 123], "mpc": [36, 79, 115], "mpg": [30, 75, 111], "mpk": [17, 18, 65, 66, 101, 102], "mpl": [17, 18, 65, 66, 101, 102], "mq_1": [26, 72, 108], "mq_1q_2": [26, 72, 108], "mq_2": [26, 72, 108], "mr": [26, 72, 108], "mu": [44, 85, 121], "mu_x": [44, 85, 121], "much": [1, 4, 5, 9, 10, 11, 12, 14, 15, 17, 18, 21, 22, 24, 25, 26, 32, 37, 39, 40, 44, 46, 47, 49, 53, 56, 57, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 76, 80, 81, 82, 85, 87, 89, 92, 93, 96, 97, 98, 99, 100, 101, 102, 104, 105, 106, 107, 108, 112, 116, 117, 118, 121, 123], "multi": [43, 84, 120], "multipl": [21, 22, 48, 68, 69, 88, 104, 105, 124], "multipli": [4, 33, 56, 77, 92, 113], "multitask": [39, 81, 117], "multivari": [21, 45, 68, 86, 104, 122], "music": [1, 53, 89], "must": [1, 4, 9, 12, 14, 15, 26, 27, 28, 33, 34, 39, 42, 45, 53, 56, 60, 62, 63, 64, 72, 73, 74, 77, 78, 81, 83, 86, 89, 92, 96, 98, 99, 100, 108, 109, 110, 113, 114, 117, 119, 122], "mutual": [27, 42, 73, 83, 109, 119], "mw": [8, 59, 95], "mx": [3, 55, 91], "my": [39, 40, 81, 82, 117, 118], "n": [28, 32, 39, 40, 44, 46, 47, 74, 76, 81, 82, 85, 87, 110, 112, 117, 118, 121, 123], "n_": [44, 85, 121], "name": [1, 8, 9, 25, 26, 27, 30, 32, 53, 59, 60, 71, 72, 73, 75, 76, 89, 95, 96, 107, 108, 109, 111, 112], "nan": [22, 46, 47, 69, 87, 105, 123], "nash": [25, 26, 71, 72, 107, 108], "nation": [16, 17, 18, 22, 24, 31, 36, 46, 47, 52, 65, 66, 69, 70, 79, 87, 101, 102, 105, 106, 115, 123], "natur": [1, 4, 5, 14, 15, 18, 31, 32, 39, 44, 53, 56, 57, 63, 64, 66, 76, 81, 85, 89, 92, 93, 99, 100, 102, 112, 117, 121], "naval": [1, 53, 89], "nearbi": [5, 15, 31, 57, 64, 93, 100], "nearli": [5, 57, 93], "necessarili": [14, 15, 18, 42, 63, 64, 66, 83, 99, 100, 102, 119], "need": [1, 7, 8, 14, 17, 21, 25, 26, 29, 30, 31, 32, 34, 36, 39, 40, 42, 44, 53, 58, 59, 63, 65, 68, 71, 72, 75, 76, 78, 79, 81, 82, 83, 85, 89, 94, 95, 99, 101, 104, 107, 108, 111, 112, 114, 115, 117, 118, 119, 121], "neg": [1, 3, 5, 9, 10, 15, 18, 19, 32, 33, 49, 53, 55, 57, 60, 61, 64, 66, 67, 76, 77, 89, 91, 93, 96, 97, 100, 102, 103, 112, 113], "neither": [4, 25, 26, 27, 56, 71, 72, 73, 92, 107, 108, 109], "neoclass": [37, 80, 116], "nest": [19, 21, 67, 68, 103, 104], "net": [12, 46, 47, 48, 62, 87, 88, 98, 123, 124], "netherland": [46, 47, 87, 123], "network": [32, 76, 112], "neumann": 29, "neutral": [3, 31, 55, 91], "never": [1, 24, 28, 39, 53, 70, 74, 81, 89, 106, 110, 117], "new": [4, 10, 22, 23, 30, 31, 32, 37, 40, 44, 48, 52, 56, 61, 69, 75, 76, 80, 82, 85, 88, 92, 97, 105, 111, 112, 116, 118, 121, 124], "new_x": [48, 88, 124], "new_x_group": [48, 88, 124], "newer": [14, 63, 99], "newfound": [48, 88, 124], "newli": [33, 77, 113], "newspap": [32, 76, 112], "next": [4, 5, 9, 10, 17, 18, 27, 32, 40, 45, 56, 57, 60, 61, 65, 66, 73, 76, 82, 86, 92, 93, 96, 97, 101, 102, 109, 112, 118, 122], "ngo": 31, "nicaragua": [46, 47, 87, 123], "nice": [45, 86, 122], "nicer": [30, 75, 111], "nitrou": 49, "nlsy": [42, 44, 83, 85, 119, 121], "nlsy_cleaned_smal": [44, 85, 121], "no_tabl": [46, 47, 87, 123], "nobel": [31, 43, 84, 120], "node": [79, 115], "nois": [44, 85, 121], "nomin": [32, 33, 76, 77, 112, 113], "non": [3, 4, 5, 6, 14, 17, 18, 19, 22, 25, 27, 29, 31, 42, 44, 55, 56, 57, 63, 65, 66, 67, 69, 71, 73, 83, 85, 91, 92, 93, 99, 101, 102, 103, 105, 107, 109, 119, 121], "non_college_job": [1, 53, 89], "none": [9, 10, 27, 30, 60, 61, 73, 75, 96, 97, 109, 111], "nonrobust": [42, 45, 83, 86, 119, 122], "nor": [32, 76, 112], "normal": [5, 12, 27, 39, 40, 44, 45, 57, 62, 73, 81, 82, 85, 86, 93, 98, 109, 117, 118, 121, 122], "norwai": [46, 47], "norwegian": [87, 123], "notabl": [1, 2, 8, 15, 25, 53, 54, 59, 64, 71, 89, 90, 95, 100, 107], "notch": [1, 53, 89], "note": [1, 3, 5, 7, 9, 10, 15, 17, 18, 21, 24, 25, 26, 27, 30, 32, 33, 40, 42, 44, 45, 46, 47, 48, 53, 55, 57, 58, 60, 61, 64, 65, 66, 68, 70, 71, 72, 73, 75, 76, 77, 82, 83, 85, 86, 87, 88, 89, 91, 93, 94, 96, 97, 100, 101, 102, 104, 106, 107, 108, 109, 111, 112, 113, 118, 119, 121, 122, 123, 124], "notebook": [1, 9, 46, 47, 48, 49, 51, 53, 60, 87, 88, 89, 96, 123, 124], "noth": [8, 17, 39, 41, 59, 65, 81, 95, 101, 117], "notic": [1, 3, 5, 7, 14, 15, 17, 18, 19, 22, 28, 39, 40, 42, 44, 53, 55, 57, 58, 63, 64, 65, 66, 67, 69, 74, 81, 82, 83, 85, 89, 91, 93, 94, 99, 100, 101, 102, 103, 105, 110, 117, 118, 119, 121], "notion": [1, 5, 17, 53, 57, 65, 89, 93, 101], "now": [1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 14, 15, 17, 18, 19, 21, 22, 24, 25, 26, 30, 31, 32, 36, 39, 40, 42, 43, 44, 45, 46, 47, 48, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 75, 76, 79, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 111, 112, 115, 117, 118, 119, 120, 121, 122, 123, 124], "np": [3, 4, 6, 7, 10, 14, 22, 24, 39, 42, 44, 46, 47, 48, 55, 56, 61, 63, 69, 70, 81, 83, 85, 87, 88, 91, 92, 97, 99, 105, 106, 117, 119, 121, 123, 124], "nt": [40, 82, 118], "nuclear": [1, 53, 89], "null": [45, 86, 122], "number": [5, 10, 14, 15, 17, 22, 24, 26, 27, 30, 31, 39, 44, 45, 46, 47, 57, 61, 63, 64, 65, 69, 70, 72, 73, 75, 81, 85, 86, 87, 93, 97, 99, 100, 101, 105, 106, 108, 109, 111, 117, 121, 122, 123], "numer": [21, 29, 68, 104], "numpi": [3, 10, 30, 39, 45, 46, 55, 61, 75, 81, 86, 87, 88, 91, 97, 111, 117, 122, 123, 124], "nutrit": [1, 53, 89], "nx": [34, 78, 114], "ny": [10, 61, 97], "o": [42, 83, 119], "obj": [30, 75, 111], "object": [30, 75, 111], "oblig": [39, 81, 117], "observ": [1, 4, 8, 10, 22, 24, 27, 32, 33, 42, 44, 45, 46, 47, 48, 53, 56, 59, 61, 69, 70, 73, 76, 77, 83, 85, 86, 87, 88, 89, 92, 95, 97, 105, 106, 109, 112, 113, 119, 121, 122, 123, 124], "obtain": [1, 2, 25, 26, 27, 28, 53, 54, 71, 72, 73, 74, 89, 90, 107, 108, 109, 110], "obviou": [39, 81, 117], "occas": [32, 76, 112], "occup": [1, 53, 89], "occur": [2, 14, 15, 18, 25, 27, 28, 29, 36, 39, 48, 54, 63, 64, 66, 71, 73, 74, 79, 81, 88, 90, 99, 100, 102, 107, 109, 110, 115, 117, 124], "occurr": [28, 74, 110], "oecd": [22, 69, 105], "off": [1, 9, 14, 25, 32, 37, 39, 44, 46, 47, 53, 60, 63, 71, 76, 80, 81, 85, 87, 89, 96, 99, 107, 112, 116, 117, 121, 123], "offer": [5, 7, 28, 39, 48, 57, 58, 74, 81, 88, 93, 94, 110, 117, 124], "offici": [22, 27, 69, 73, 105, 109], "offset": [5, 7, 15, 22, 57, 58, 64, 69, 93, 94, 100, 105], "offshor": [48, 88, 124], "often": [1, 15, 22, 23, 24, 32, 33, 34, 37, 43, 49, 53, 64, 69, 70, 76, 77, 78, 80, 84, 89, 100, 105, 106, 112, 113, 114, 116, 120], "oh": [22, 69, 105], "oil": [27, 32, 48, 49, 73, 76, 88, 109, 112, 124], "okai": [1, 53, 89], "okun": [32, 76, 112], "ol": [42, 44, 45, 83, 85, 86, 119, 121, 122], "old": [1, 8, 15, 31, 53, 59, 64, 89, 95, 100], "older": [14, 48, 63, 88, 99, 124], "oligarch": [22, 69, 105], "oligopoli": [25, 26, 29, 71, 72, 107, 108], "omit": [1, 3, 4, 8, 10, 22, 24, 42, 44, 45, 46, 47, 48, 53, 55, 56, 59, 61, 69, 70, 83, 85, 86, 87, 88, 89, 91, 92, 95, 97, 105, 106, 119, 121, 122, 123, 124], "omnibu": [42, 45, 83, 86, 119, 122], "onc": [1, 4, 15, 17, 18, 30, 53, 56, 64, 65, 66, 75, 89, 92, 100, 101, 102, 111], "one": [1, 2, 3, 4, 5, 7, 8, 14, 17, 18, 19, 21, 22, 25, 26, 27, 28, 29, 30, 31, 33, 35, 37, 39, 40, 41, 42, 44, 46, 47, 48, 49, 53, 54, 55, 56, 57, 58, 59, 63, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 77, 80, 81, 82, 83, 85, 87, 88, 89, 90, 91, 92, 93, 94, 95, 99, 101, 102, 103, 104, 105, 107, 108, 109, 110, 111, 113, 116, 117, 118, 119, 121, 123, 124], "onedr": 7, "ones": [29, 31, 33, 77, 113], "ongo": [37, 80, 116], "onli": [1, 4, 5, 7, 10, 14, 15, 17, 19, 21, 22, 25, 26, 27, 28, 29, 30, 31, 33, 34, 36, 38, 39, 40, 41, 42, 44, 48, 49, 53, 56, 57, 58, 61, 63, 64, 65, 67, 68, 69, 71, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 85, 88, 89, 92, 93, 94, 97, 99, 100, 101, 103, 104, 105, 107, 108, 109, 110, 111, 113, 114, 115, 117, 118, 119, 121, 124], "onshor": [48, 88, 124], "onto": [15, 39, 40, 42, 44, 64, 81, 82, 83, 85, 100, 117, 118, 119, 121], "op": [1, 53, 89], "opec": [26, 27, 72, 73, 108, 109], "open": [12, 32, 39, 62, 76, 81, 98, 112, 117], "oper": [12, 14, 17, 25, 32, 48, 62, 63, 65, 71, 76, 88, 98, 99, 101, 107, 112, 124], "opportun": [1, 14, 22, 33, 36, 39, 48, 53, 63, 69, 77, 79, 81, 88, 89, 99, 105, 113, 115, 117, 124], "oppos": [5, 14, 27, 39, 42, 57, 63, 73, 81, 83, 93, 99, 109, 117, 119], "opposit": [1, 5, 14, 15, 18, 34, 36, 39, 40, 42, 53, 57, 63, 64, 66, 78, 79, 81, 82, 83, 89, 93, 99, 100, 102, 114, 115, 117, 118, 119], "opt": [39, 81, 117], "optim": [10, 25, 26, 48, 49, 61, 71, 72, 88, 97, 107, 108, 124], "optimist": [37, 80, 116], "optimum": 49, "option": [1, 5, 27, 28, 32, 37, 38, 48, 53, 57, 73, 74, 76, 80, 88, 89, 93, 109, 110, 112, 116, 124], "orang": [10, 18, 21, 26, 36, 61, 66, 68, 72, 97, 102, 104, 108], "oranges_raw": [10, 61, 97], "order": [0, 1, 22, 26, 28, 31, 32, 33, 39, 40, 44, 53, 69, 72, 74, 76, 77, 81, 82, 85, 89, 105, 108, 110, 112, 113, 117, 118, 121], "ordinari": [43, 84, 120], "organ": [3, 4, 22, 27, 55, 56, 69, 73, 91, 92, 105, 109], "orient": [30, 75, 111], "origin": [2, 3, 4, 15, 22, 29, 37, 44, 48, 54, 55, 56, 64, 69, 80, 85, 88, 90, 91, 92, 100, 105, 116, 121, 124], "ormond": [8, 59, 95], "other": [1, 2, 3, 4, 9, 10, 14, 15, 17, 18, 19, 21, 22, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 39, 40, 41, 42, 44, 46, 47, 48, 53, 54, 55, 56, 60, 61, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 81, 82, 83, 85, 87, 88, 89, 90, 91, 92, 96, 97, 99, 100, 101, 102, 103, 104, 105, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 119, 121, 123, 124], "other_incom": [1, 53, 89], "otherwis": [12, 14, 25, 39, 40, 42, 44, 62, 63, 71, 81, 82, 83, 85, 98, 99, 107, 117, 118, 119, 121], "ought": [46, 47, 48, 87, 88, 123, 124], "our": [1, 3, 4, 5, 7, 9, 10, 12, 14, 15, 18, 19, 21, 22, 24, 28, 30, 32, 33, 34, 38, 42, 43, 44, 45, 48, 49, 51, 53, 55, 56, 57, 58, 60, 61, 62, 63, 64, 66, 67, 68, 69, 70, 74, 75, 76, 77, 78, 83, 84, 85, 86, 88, 89, 91, 92, 93, 94, 96, 97, 98, 99, 100, 102, 103, 104, 105, 106, 110, 111, 112, 113, 114, 119, 120, 121, 122, 124], "ourselv": [29, 43, 44, 46, 47, 84, 85, 87, 120, 121, 123], "out": [1, 2, 5, 9, 10, 14, 15, 18, 22, 28, 30, 31, 32, 33, 39, 40, 42, 44, 45, 46, 47, 48, 53, 54, 57, 60, 61, 63, 64, 66, 69, 74, 75, 76, 77, 81, 82, 83, 85, 86, 87, 88, 89, 90, 93, 96, 97, 99, 100, 102, 105, 110, 111, 112, 113, 117, 118, 119, 121, 122, 123, 124], "outcom": [1, 6, 11, 16, 20, 23, 25, 28, 31, 41, 42, 45, 48, 49, 53, 71, 74, 83, 86, 88, 89, 107, 110, 119, 122, 124], "outearn": [1, 53, 89], "outlier": [1, 53, 89], "outlin": [32, 76, 112], "outlook": [32, 76, 112], "output": [0, 7, 8, 16, 17, 21, 25, 26, 27, 32, 33, 34, 36, 58, 59, 65, 68, 71, 72, 73, 76, 77, 78, 79, 94, 95, 101, 104, 107, 108, 109, 112, 113, 114, 115], "output_": 7, "outsid": [2, 30, 33, 54, 75, 77, 90, 111, 113], "outward": [10, 61, 97], "outweight": [1, 53, 89], "oven": [17, 65, 101], "over": [2, 4, 5, 10, 16, 22, 23, 28, 31, 32, 33, 39, 42, 44, 48, 54, 56, 57, 61, 69, 74, 76, 77, 81, 83, 85, 88, 90, 92, 93, 97, 105, 110, 112, 113, 117, 119, 121, 124], "overal": [1, 2, 14, 15, 22, 31, 33, 39, 53, 54, 63, 64, 69, 77, 81, 89, 90, 99, 100, 105, 113, 117], "overestim": [48, 88, 124], "overh": [34, 78, 114], "overkil": [17, 65, 101], "overlaid": 39, "overrepres": [33, 77, 113], "overse": [32, 76, 112], "overseen": [32, 76, 112], "oversimpl": [1, 53, 89], "oversimplifc": [1, 53, 89], "overst": [1, 33, 53, 77, 89, 113], "overtak": [1, 26, 53, 72, 89, 108], "overview": [13, 34, 78, 114], "ow": [40, 82, 118], "own": [5, 10, 17, 21, 24, 25, 26, 27, 32, 33, 39, 48, 49, 57, 61, 65, 68, 70, 71, 72, 73, 76, 77, 81, 88, 93, 97, 101, 104, 106, 107, 108, 109, 112, 113, 117, 124], "owner": [7, 58, 94], "ownership": [22, 69, 105], "oxford": [22, 69, 105], "oxid": 49, "oz": [25, 71, 107], "p": [3, 4, 5, 9, 10, 14, 15, 17, 25, 26, 32, 39, 42, 45, 55, 56, 57, 60, 61, 63, 64, 65, 71, 72, 76, 81, 83, 86, 91, 92, 93, 96, 97, 99, 100, 101, 107, 108, 112, 117, 119, 122], "p0p50": [22, 69, 105], "p1": [5, 57, 93], "p2": [5, 57, 93], "p25th": [1, 53, 89], "p500": [39, 81, 117], "p75th": [1, 53, 89], "p90p100": [22, 69, 105], "p99p100": [22, 69, 105], "p_": [5, 9, 57, 60, 93, 96], "p_1": [2, 5, 19, 25, 28, 54, 57, 67, 71, 74, 90, 93, 103, 107, 110], "p_1_prime": [25, 71, 107], "p_1x_1": [19, 67, 103], "p_2": [2, 5, 19, 25, 28, 54, 57, 67, 71, 74, 90, 93, 103, 107, 110], "p_2x_2": [19, 67, 103], "p_c": [15, 64, 100], "p_d": [9, 60, 96], "p_i": [28, 74, 110], "p_m": [25, 71, 107], "p_p": [15, 64, 100], "p_star": [10, 61, 97], "pacif": [48, 88, 124], "packag": [39, 44, 45, 46, 81, 85, 86, 87, 88, 117, 121, 122, 123, 124], "packet": [15, 64, 100], "page": [0, 4, 22, 31, 46, 47, 48, 56, 69, 87, 88, 92, 105, 123, 124], "pai": [1, 2, 5, 9, 12, 14, 15, 22, 39, 40, 48, 49, 53, 54, 57, 60, 62, 63, 64, 69, 81, 82, 88, 89, 90, 93, 96, 98, 99, 100, 105, 117, 118, 124], "paid": [9, 12, 14, 15, 39, 40, 60, 62, 63, 64, 81, 82, 96, 98, 99, 100, 117, 118], "pakistan": [46, 47, 87, 123], "palat": [5, 57, 93], "panda": [39, 46, 81, 87, 88, 117, 123, 124], "pandem": [27, 32, 73, 76, 109, 112], "panel": 36, "paper": [22, 37, 69, 80, 105, 116], "paradigm": [27, 29, 73, 109], "param": [44, 85, 121], "paramet": [3, 24, 26, 42, 44, 55, 70, 72, 83, 85, 91, 106, 108, 119, 121], "parasit": 31, "parent": [1, 22, 33, 53, 69, 77, 89, 105, 113], "paribu": [2, 54, 90], "part": [1, 4, 15, 17, 22, 24, 31, 32, 33, 39, 46, 47, 53, 56, 64, 65, 69, 70, 76, 77, 81, 87, 89, 92, 100, 101, 105, 106, 112, 113, 117, 123], "part_tim": [1, 53, 89], "parti": [15, 64, 100], "partial": [17, 21, 26, 65, 68, 72, 101, 104, 108], "particip": [13, 14, 15, 25, 26, 27, 41, 48, 63, 64, 71, 72, 73, 88, 99, 100, 107, 108, 109, 124], "particular": [1, 5, 7, 8, 15, 29, 32, 39, 40, 42, 44, 53, 57, 58, 59, 64, 76, 81, 82, 83, 85, 89, 93, 94, 95, 100, 112, 117, 118, 119, 121], "particularli": [4, 32, 42, 56, 76, 83, 92, 112, 119], "partli": [1, 53, 89], "pass": [9, 15, 37, 46, 47, 60, 64, 80, 87, 96, 100, 116, 123], "past": [1, 22, 53, 69, 89, 105], "patch": [7, 46, 58, 87, 88, 94, 123, 124], "patent": [17, 65, 101], "path": [46, 47, 87, 123], "pathwai": [17, 46, 47, 49, 51, 65, 87, 101, 123], "pattern": [5, 57, 93], "paul": [32, 76, 112], "payment": [31, 39, 40, 81, 82, 117, 118], "payoff": 29, "pct": [4, 56, 92], "pd": [46, 48, 87, 88, 123, 124], "pdf": [46, 47, 48, 87, 88, 123, 124], "peach": [10, 61, 97], "peak": [22, 46, 47, 69, 87, 105, 123], "peanut": [5, 57, 93], "pear": [10, 61, 97], "peculiar": [1, 53, 89], "pedagog": 31, "peer": [14, 63, 99], "pen": [48, 88, 124], "peopl": [1, 2, 5, 22, 31, 32, 33, 36, 37, 39, 41, 42, 44, 48, 53, 54, 57, 69, 76, 77, 79, 80, 81, 83, 85, 88, 89, 90, 93, 105, 112, 113, 115, 116, 117, 119, 121, 124], "pepsi": [25, 71, 107], "per": [7, 8, 12, 14, 15, 16, 17, 21, 22, 27, 40, 43, 46, 47, 48, 58, 59, 62, 63, 64, 65, 68, 69, 73, 82, 84, 87, 88, 94, 95, 98, 99, 100, 101, 104, 105, 109, 118, 120, 123, 124], "per_consum": [14, 63, 99], "per_produc": [14, 63, 99], "percent": [4, 5, 22, 24, 32, 33, 40, 56, 57, 69, 70, 76, 77, 82, 92, 93, 105, 106, 112, 113, 118], "percentag": [4, 5, 15, 22, 24, 33, 40, 56, 57, 64, 69, 70, 77, 82, 92, 93, 100, 105, 106, 113, 118], "percentil": [1, 22, 24, 44, 53, 69, 70, 85, 89, 105, 106, 121], "perfect": [5, 22, 25, 26, 29, 44, 57, 69, 71, 72, 85, 93, 105, 107, 108, 121], "perfectli": [5, 14, 57, 63, 93, 99], "perform": [30, 33, 41, 42, 44, 45, 75, 77, 83, 85, 86, 111, 113, 119, 121, 122], "perhap": [1, 4, 8, 15, 22, 48, 53, 56, 59, 64, 69, 88, 89, 92, 95, 100, 105, 124], "period": [1, 2, 7, 17, 22, 31, 33, 37, 39, 40, 46, 47, 53, 54, 58, 65, 69, 77, 80, 81, 82, 87, 89, 90, 94, 101, 105, 113, 116, 117, 118, 123], "perman": [46, 47, 87, 123], "persist": [37, 80, 116], "person": [1, 14, 17, 22, 27, 30, 33, 36, 39, 41, 42, 44, 53, 63, 65, 69, 73, 75, 77, 79, 81, 83, 85, 89, 99, 101, 105, 109, 111, 113, 115, 117, 119, 121], "perspect": [5, 39, 48, 57, 81, 88, 93, 117, 124], "peter": [48, 51, 88, 124], "petroleum": [1, 27, 53, 73, 89, 109], "phd": 31, "phenomenom": [2, 54, 90], "phenomenon": [1, 4, 8, 24, 53, 56, 59, 70, 89, 92, 95, 106], "phew": [26, 72, 108], "physic": [1, 17, 53, 65, 89, 101], "pi": [32, 37, 76, 80, 112, 116], "pi_1": [26, 72, 108], "pi_2": [26, 72, 108], "pi_t": [32, 76, 112], "pick": [1, 44, 48, 53, 85, 88, 89, 121, 124], "pictur": [15, 48, 64, 88, 100, 124], "piec": [28, 45, 74, 86, 110, 122], "piecewis": [25, 71, 107], "pigouvian": [48, 88, 124], "piketti": [22, 69, 105], "pill": 31, "pilot": 31, "pin": [37, 80, 116], "pip": [39, 81, 117], "pittsburgh": [8, 59, 95], "pivot": 38, "pizza": [5, 17, 21, 57, 65, 68, 93, 101, 104], "place": [4, 5, 14, 30, 34, 39, 48, 56, 57, 63, 75, 78, 81, 88, 92, 93, 99, 111, 114, 117, 124], "placebo": 41, "plai": [14, 27, 28, 32, 33, 63, 73, 74, 76, 77, 99, 109, 110, 112, 113], "plan": [32, 76, 112], "plane": [19, 42, 67, 83, 103, 119], "planet": [46, 47, 48, 87, 88, 123, 124], "plant": [8, 14, 31, 46, 47, 48, 59, 63, 87, 88, 95, 99, 123, 124], "plate": [32, 76, 112], "player": [26, 27, 28, 29, 72, 73, 74, 108, 109, 110], "pleijt": [22, 52, 69, 105], "plenti": [5, 57, 93], "plot": [1, 3, 4, 5, 7, 8, 9, 10, 15, 17, 18, 19, 21, 22, 24, 27, 39, 42, 44, 46, 47, 48, 53, 55, 56, 57, 58, 59, 60, 61, 64, 65, 66, 67, 68, 69, 70, 73, 81, 83, 85, 87, 88, 89, 91, 92, 93, 94, 95, 96, 97, 100, 101, 102, 103, 104, 105, 106, 109, 117, 119, 121, 123, 124], "plot_equ": [9, 10, 60, 61, 96, 97], "plot_intercept": [9, 10, 60, 61, 96, 97], "plot_pric": [9, 10, 60, 61, 96, 97], "plot_quant": [9, 10, 60, 61, 96, 97], "plt": [3, 5, 9, 10, 22, 46, 47, 48, 55, 57, 60, 61, 69, 87, 88, 91, 93, 96, 97, 105, 123, 124], "plu": [22, 36, 69, 79, 105, 115], "plug": [9, 15, 32, 44, 60, 64, 76, 85, 96, 100, 112, 121], "plum": [10, 61, 97], "point": [3, 4, 5, 7, 8, 9, 10, 14, 19, 21, 22, 24, 28, 30, 33, 36, 39, 42, 44, 46, 47, 48, 55, 56, 57, 58, 59, 60, 61, 63, 67, 68, 69, 70, 74, 75, 77, 79, 81, 83, 85, 87, 88, 91, 92, 93, 94, 95, 96, 97, 99, 103, 104, 105, 106, 110, 111, 113, 115, 117, 119, 121, 123, 124], "point_1": [30, 75, 111], "point_2": [30, 75, 111], "polic": [27, 73, 109], "polici": [13, 17, 22, 26, 32, 33, 36, 37, 46, 47, 48, 49, 65, 69, 72, 76, 77, 79, 80, 87, 88, 101, 105, 108, 112, 113, 115, 116, 123, 124], "policymak": [18, 37, 48, 66, 80, 88, 102, 116, 124], "polit": [32, 76, 112], "politician": [24, 70, 106], "pollut": [15, 46, 47, 48, 49, 64, 87, 88, 100, 123, 124], "polyfit": [3, 4, 6, 10, 55, 56, 61, 91, 92, 97], "polynomi": [3, 55, 91], "pool": [37, 80, 116], "poorer": [22, 69, 105], "poorest": [22, 69, 105], "pop_growth": [22, 69, 105], "popul": [1, 24, 31, 33, 43, 44, 46, 47, 52, 53, 70, 77, 84, 85, 87, 89, 106, 113, 120, 121, 123], "popular": [1, 15, 29, 45, 53, 64, 86, 89, 100, 122], "portfilio": [8, 59, 95], "portfolio": [39, 81, 117], "portion": [22, 39, 69, 81, 105, 117], "posit": [1, 3, 5, 15, 22, 24, 25, 31, 32, 33, 36, 39, 44, 46, 47, 48, 53, 55, 57, 64, 69, 70, 71, 76, 77, 79, 81, 85, 87, 88, 89, 91, 93, 100, 105, 106, 107, 112, 113, 115, 117, 121, 123, 124], "possess": [22, 69, 105], "possibl": [1, 4, 17, 19, 25, 26, 27, 28, 39, 40, 42, 48, 51, 53, 56, 65, 67, 71, 72, 73, 74, 81, 82, 83, 88, 89, 92, 101, 103, 107, 108, 109, 110, 117, 118, 119, 124], "post": [1, 15, 22, 39, 53, 64, 69, 81, 89, 100, 105, 117], "poster": [15, 64, 100], "postpon": [40, 82, 118], "potenti": [1, 22, 32, 36, 39, 42, 46, 47, 48, 53, 69, 76, 79, 81, 83, 87, 88, 89, 105, 112, 115, 117, 119, 123, 124], "poverti": [31, 34, 78, 114], "powel": [32, 76, 112], "power": [2, 3, 8, 10, 14, 17, 26, 44, 46, 47, 48, 54, 55, 59, 61, 63, 65, 72, 85, 87, 88, 90, 91, 95, 97, 99, 101, 108, 121, 123, 124], "pq_1": [26, 72, 108], "pq_2": [26, 72, 108], "practic": [10, 32, 61, 76, 97, 112], "pre": [10, 37, 39, 61, 80, 81, 97, 116, 117], "precipit": [27, 73, 109], "precis": [36, 44, 79, 85, 115, 121], "pred": [42, 44, 83, 85, 119, 121], "predict": [10, 25, 42, 43, 44, 48, 61, 71, 83, 84, 85, 88, 97, 107, 119, 120, 121, 124], "prefer": [2, 5, 10, 14, 21, 28, 36, 54, 57, 61, 63, 68, 74, 79, 90, 93, 97, 99, 104, 110, 115], "prep": [17, 65, 101], "prepar": [48, 88, 124], "prescrib": [12, 32, 62, 76, 98, 112], "prescript": [48, 88, 124], "present": [1, 22, 24, 33, 37, 39, 42, 53, 69, 70, 77, 80, 81, 83, 89, 105, 106, 113, 116, 117, 119], "presid": [32, 76, 112], "press": [32, 52, 76, 112], "pressur": [32, 76, 112], "pretti": [1, 14, 32, 33, 39, 44, 53, 63, 76, 77, 81, 85, 89, 99, 112, 113, 117, 121], "prevail": [39, 81, 117], "preval": 29, "prevent": [22, 69, 105], "previou": [2, 3, 4, 7, 10, 15, 21, 22, 32, 39, 45, 54, 55, 56, 58, 61, 64, 68, 69, 76, 81, 86, 90, 91, 92, 94, 97, 100, 104, 105, 112, 117, 122], "previous": [10, 15, 18, 24, 29, 37, 46, 47, 61, 64, 66, 70, 80, 87, 97, 100, 102, 106, 116, 123], "price": [2, 4, 5, 6, 7, 8, 9, 11, 13, 14, 18, 19, 25, 26, 27, 32, 33, 37, 38, 40, 48, 49, 54, 56, 57, 58, 59, 60, 63, 66, 67, 71, 72, 73, 76, 77, 80, 82, 88, 90, 92, 93, 94, 95, 96, 99, 102, 103, 107, 108, 109, 112, 113, 116, 118, 124], "price_end": [9, 10, 60, 61, 96, 97], "price_start": [9, 10, 60, 61, 96, 97], "primari": [15, 31, 64, 100], "primarili": [31, 34, 78, 114], "prime": [27, 73, 109], "princeton": [22, 69, 105], "principl": 20, "print": [3, 4, 5, 14, 30, 44, 48, 55, 56, 57, 63, 75, 85, 88, 91, 92, 93, 99, 111, 121, 124], "priorit": [48, 88, 124], "prison": [27, 29, 73, 109], "privat": [15, 22, 48, 64, 69, 88, 100, 105, 124], "prize": [31, 43, 84, 120], "proabalbi": [5, 57, 93], "prob": [42, 45, 83, 86, 119, 122], "probabl": [1, 3, 4, 5, 14, 15, 17, 28, 32, 33, 39, 42, 53, 55, 56, 57, 63, 64, 65, 74, 76, 77, 81, 83, 89, 91, 92, 93, 99, 100, 101, 110, 112, 113, 117, 119], "problem": [1, 5, 25, 26, 33, 39, 42, 48, 53, 57, 71, 72, 77, 81, 83, 88, 89, 93, 107, 108, 113, 117, 119, 124], "proce": [27, 73, 109], "procedur": [42, 44, 83, 85, 119, 121], "proceed": [1, 53, 89], "process": [26, 31, 33, 37, 45, 72, 77, 80, 86, 108, 113, 116, 122], "produc": [1, 4, 5, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 24, 25, 26, 27, 32, 33, 36, 37, 48, 53, 56, 57, 58, 59, 60, 61, 62, 64, 65, 66, 70, 71, 72, 73, 76, 77, 79, 80, 88, 89, 92, 93, 94, 95, 96, 97, 98, 100, 101, 102, 106, 107, 108, 109, 112, 113, 115, 116, 124], "product": [3, 4, 5, 8, 10, 14, 15, 18, 21, 22, 25, 26, 27, 32, 34, 44, 48, 55, 56, 57, 59, 61, 63, 64, 66, 68, 69, 71, 72, 73, 76, 78, 85, 88, 91, 92, 93, 95, 97, 99, 100, 102, 104, 105, 107, 108, 109, 112, 114, 121, 124], "professor": [17, 22, 28, 31, 32, 43, 65, 69, 74, 76, 84, 101, 105, 110, 112, 120], "profit": [5, 7, 8, 15, 18, 25, 31, 39, 48, 57, 58, 59, 64, 66, 71, 81, 88, 93, 94, 95, 100, 102, 107, 117, 124], "profound": [1, 4, 53, 56, 89, 92], "program": [1, 30, 31, 46, 47, 48, 51, 53, 75, 87, 88, 89, 111, 123, 124], "programm": [1, 53, 89], "progress": [22, 69, 105], "prohibit": [14, 48, 63, 88, 99, 124], "project": [1, 17, 31, 33, 48, 53, 65, 77, 88, 89, 101, 113, 124], "promot": [4, 22, 31, 32, 34, 56, 69, 76, 78, 92, 105, 112, 114], "prompt": [32, 76, 112], "propens": [36, 79, 115], "properli": 31, "properti": [5, 6, 15, 17, 19, 21, 22, 57, 64, 65, 67, 68, 69, 93, 100, 101, 103, 104, 105], "proport": [7, 15, 17, 49, 58, 64, 65, 94, 100, 101], "proportion": [44, 85, 121], "propos": [26, 32, 44, 72, 76, 85, 108, 112, 121], "protect": [17, 22, 31, 65, 69, 101, 105], "proud": [1, 53, 89], "prove": [3, 14, 18, 44, 55, 63, 66, 85, 91, 99, 102, 121], "provid": [1, 4, 6, 9, 10, 12, 17, 21, 22, 24, 27, 30, 31, 32, 39, 45, 53, 56, 60, 61, 62, 65, 68, 69, 70, 73, 75, 76, 81, 86, 89, 92, 96, 97, 98, 101, 104, 105, 106, 109, 111, 112, 117, 122], "proxi": [42, 83, 119], "psychologi": [1, 53, 89], "public": [22, 48, 51, 69, 88, 105, 124], "publish": [1, 53, 89], "pull": [1, 7, 53, 58, 89, 94], "puls": [5, 57, 93], "pump": [48, 88, 124], "purbl": [18, 66, 102], "purchas": [2, 3, 7, 9, 10, 12, 15, 17, 31, 38, 39, 54, 55, 58, 60, 61, 62, 64, 65, 81, 90, 91, 94, 96, 97, 98, 100, 101, 117], "pure": [1, 12, 28, 46, 47, 48, 49, 53, 62, 74, 87, 88, 89, 98, 110, 123, 124], "purifi": 31, "purpl": [18, 39, 66, 81, 102, 117], "purpos": [26, 27, 31, 33, 44, 72, 73, 77, 85, 108, 109, 113, 121], "pursu": [1, 48, 53, 88, 89, 124], "push": [5, 12, 15, 25, 48, 57, 62, 64, 71, 88, 93, 98, 100, 107, 124], "put": [14, 18, 26, 28, 30, 44, 48, 63, 66, 72, 74, 75, 85, 88, 99, 102, 108, 110, 111, 121, 124], "pv": [40, 82, 118], "py": 7, "pyle": 51, "pyplot": [46, 87, 88, 123, 124], "python": [9, 26, 39, 45, 51, 60, 72, 81, 86, 96, 108, 117, 122], "python3": [39, 81, 117], "pytz": [39, 81, 117], "q": [3, 5, 9, 10, 15, 25, 26, 55, 57, 60, 61, 64, 71, 72, 91, 93, 96, 97, 100, 107, 108], "q1": [5, 26, 57, 72, 93, 108], "q1_br_2": [26, 72, 108], "q2": [5, 26, 57, 72, 93, 108], "q_": [5, 10, 12, 57, 61, 62, 93, 97, 98], "q_1": [2, 5, 26, 54, 57, 72, 90, 93, 108], "q_1_star": [26, 72, 108], "q_2": [2, 5, 26, 54, 57, 72, 90, 93, 108], "q_2_star": [26, 72, 108], "q_d": [10, 12, 61, 62, 97, 98], "q_m": [25, 71, 107], "q_star": [9, 60, 96], "qquad": [44, 85, 121], "quad": [15, 21, 64, 68, 100, 104], "qualiti": [46, 47, 87, 123], "quantifi": [3, 10, 24, 40, 44, 48, 55, 61, 70, 82, 85, 88, 91, 97, 106, 118, 121, 124], "quantit": [7, 24, 58, 70, 94, 106], "quantiti": [2, 4, 5, 7, 8, 9, 12, 19, 25, 26, 46, 47, 48, 49, 54, 56, 57, 58, 59, 60, 62, 67, 71, 72, 87, 88, 90, 92, 93, 94, 95, 96, 98, 103, 107, 108, 123, 124], "quarter": [33, 77, 113], "quarterli": [40, 82, 118], "question": [1, 5, 7, 37, 40, 41, 44, 46, 47, 53, 57, 58, 80, 82, 85, 87, 89, 93, 94, 116, 118, 121, 123], "questionnair": [1, 53, 89], "quick": [3, 55, 91], "quickli": [7, 39, 40, 58, 81, 82, 94, 117, 118], "quit": [3, 26, 32, 33, 39, 55, 72, 76, 77, 81, 91, 108, 112, 113, 117], "quot": [40, 82, 118], "quota": 49, "r": [17, 25, 39, 40, 42, 44, 45, 48, 65, 71, 81, 82, 83, 85, 86, 88, 101, 107, 117, 118, 119, 121, 122, 124], "r_": [39, 81, 117], "r_t": [32, 33, 76, 77, 112, 113], "railwai": [5, 57, 93], "rais": [5, 17, 25, 26, 37, 57, 65, 71, 72, 80, 93, 101, 107, 108, 116], "ramp": [7, 58, 94], "randn": [44, 85, 121], "random": [28, 31, 42, 44, 45, 74, 83, 85, 86, 110, 119, 121, 122], "randomli": [28, 31, 41, 42, 74, 83, 110, 119], "rang": [5, 14, 44, 48, 57, 63, 85, 88, 93, 99, 121, 124], "rank": [1, 53, 89], "rapidli": [22, 37, 46, 47, 48, 69, 80, 87, 88, 105, 116, 123, 124], "rate": [12, 14, 17, 18, 24, 31, 32, 36, 37, 38, 39, 48, 62, 63, 65, 66, 70, 76, 79, 80, 81, 88, 98, 99, 101, 102, 106, 112, 115, 116, 117, 124], "rather": [1, 4, 22, 25, 40, 44, 53, 56, 69, 71, 82, 85, 89, 92, 105, 107, 118, 121], "ratio": [24, 29, 46, 47, 70, 87, 106, 123], "ration": [14, 15, 21, 26, 27, 28, 29, 39, 48, 63, 64, 68, 72, 73, 74, 81, 88, 99, 100, 104, 108, 109, 110, 117, 124], "raw": [7, 58, 94], "rct": 31, "re": [1, 5, 21, 25, 28, 30, 32, 42, 48, 53, 57, 68, 71, 74, 75, 76, 83, 87, 88, 89, 93, 104, 107, 110, 111, 112, 119, 123, 124], "reach": [5, 14, 25, 32, 39, 46, 47, 48, 57, 63, 71, 76, 81, 87, 88, 93, 99, 107, 112, 117, 123, 124], "react": [4, 25, 48, 56, 88, 92, 124], "reaction": [25, 71, 107], "read": [24, 70, 106], "read_tabl": [1, 3, 4, 7, 8, 10, 22, 44, 46, 47, 48, 53, 55, 56, 58, 59, 61, 69, 85, 87, 88, 89, 91, 92, 94, 95, 97, 105, 121, 123, 124], "readi": [36, 79, 115], "real": [1, 4, 17, 18, 22, 32, 36, 44, 51, 53, 56, 65, 66, 69, 76, 79, 85, 89, 92, 101, 102, 105, 112, 115, 121], "real_earnings_1999": [44, 85, 121], "realiti": [14, 15, 24, 26, 39, 63, 64, 70, 72, 81, 99, 100, 106, 108, 117], "realiz": [37, 80, 116], "realli": [5, 30, 40, 42, 57, 75, 82, 83, 93, 111, 118, 119], "realm": [1, 53, 89], "rearrang": [17, 65, 101], "reason": [1, 8, 14, 25, 26, 30, 31, 39, 40, 42, 48, 53, 59, 63, 71, 72, 75, 81, 82, 83, 88, 89, 95, 99, 107, 108, 111, 117, 118, 119, 124], "reat": 36, "recal": [1, 4, 10, 18, 25, 26, 32, 33, 39, 44, 45, 53, 56, 61, 66, 71, 72, 76, 77, 81, 85, 86, 89, 92, 97, 102, 107, 108, 112, 113, 117, 121, 122], "recap": [33, 77, 113], "receiv": [2, 9, 15, 21, 24, 27, 31, 36, 39, 40, 41, 48, 54, 60, 64, 68, 70, 73, 79, 81, 82, 88, 90, 96, 100, 104, 106, 109, 115, 117, 118, 124], "recent": [1, 7, 15, 22, 30, 31, 37, 46, 47, 53, 64, 69, 75, 80, 87, 89, 100, 105, 111, 116, 123], "recess": [2, 32, 34, 54, 76, 78, 90, 112, 114], "reciev": [1, 53, 89], "record": [46, 47, 87, 123], "recov": [7, 32, 58, 76, 94, 112], "recruit": 31, "rectangl": [15, 48, 64, 88, 100, 124], "red": [4, 7, 27, 56, 58, 73, 92, 94, 109], "redondo": [8, 59, 95], "reduc": [10, 14, 15, 17, 22, 25, 27, 31, 34, 46, 47, 48, 49, 61, 63, 64, 65, 69, 71, 73, 78, 87, 88, 97, 99, 100, 101, 105, 107, 109, 114, 123, 124], "reduct": [15, 48, 49, 64, 88, 100, 124], "redund": [42, 83, 119], "refer": [1, 7, 8, 10, 17, 18, 24, 27, 30, 33, 53, 58, 59, 61, 65, 66, 70, 73, 75, 77, 89, 94, 95, 97, 101, 102, 106, 109, 111, 113], "referenc": [3, 55, 91], "reflect": [1, 4, 14, 15, 32, 33, 40, 49, 53, 56, 63, 64, 76, 77, 82, 89, 92, 99, 100, 112, 113, 118], "refresh": [3, 55, 91], "refus": [5, 27, 57, 73, 93, 109], "regard": [5, 39, 57, 81, 93, 117], "regardless": [1, 7, 15, 39, 44, 48, 53, 58, 64, 81, 85, 88, 89, 94, 100, 117, 121, 124], "region": [22, 32, 48, 69, 76, 88, 105, 112, 124], "regress": [3, 41, 43, 55, 84, 91, 120], "regul": [8, 32, 59, 76, 95, 112], "regular": [18, 27, 66, 73, 102, 109], "reinforc": [5, 51, 57, 93], "rejoic": [12, 62, 98], "rel": [1, 2, 15, 17, 18, 32, 33, 37, 48, 53, 54, 64, 65, 66, 76, 77, 80, 88, 89, 90, 100, 101, 102, 112, 113, 116, 124], "relabel": [8, 10, 22, 24, 46, 47, 48, 59, 61, 69, 70, 87, 88, 95, 97, 105, 106, 123, 124], "relat": [1, 2, 4, 5, 7, 27, 30, 32, 33, 35, 37, 40, 42, 44, 49, 52, 53, 54, 56, 57, 58, 73, 75, 76, 77, 80, 82, 85, 89, 90, 92, 93, 94, 109, 111, 112, 113, 116, 118, 121], "relationship": [2, 7, 9, 22, 32, 33, 35, 36, 37, 44, 54, 58, 60, 69, 76, 77, 79, 80, 85, 90, 94, 96, 105, 112, 113, 115, 116, 121], "releas": [32, 76, 112], "relev": [1, 10, 23, 32, 42, 48, 53, 61, 76, 83, 88, 89, 97, 112, 119, 124], "reli": [4, 25, 28, 56, 71, 74, 92, 107, 110], "reliabl": [14, 63, 99], "remain": [2, 12, 15, 22, 26, 27, 54, 62, 64, 69, 72, 73, 90, 98, 100, 105, 108, 109], "remark": [37, 80, 116], "rememb": [3, 5, 10, 27, 33, 39, 55, 57, 61, 73, 77, 81, 91, 93, 97, 109, 113, 117], "renam": [10, 61, 97], "renegad": [27, 73, 109], "rent": [12, 17, 18, 62, 65, 66, 98, 101, 102], "rental": [17, 18, 65, 66, 101, 102], "repai": [40, 82, 118], "repay": [40, 82, 118], "repeat": [14, 44, 63, 85, 99, 121], "replac": [22, 48, 69, 88, 105, 124], "report": [22, 43, 49, 69, 84, 105, 120], "report_101620": [46, 47, 48, 87, 88, 123, 124], "repres": [1, 7, 9, 10, 12, 15, 19, 21, 24, 26, 27, 30, 32, 33, 35, 36, 39, 42, 44, 46, 47, 48, 53, 58, 60, 61, 62, 64, 67, 68, 70, 72, 73, 75, 76, 77, 79, 81, 83, 85, 87, 88, 89, 94, 96, 97, 98, 100, 103, 104, 106, 108, 109, 111, 112, 113, 115, 117, 119, 121, 123, 124], "represent": [44, 85, 121], "request": [39, 81, 117], "requir": [1, 2, 8, 39, 48, 53, 54, 59, 81, 88, 89, 90, 95, 117, 124], "resampl": [44, 85, 121], "research": [1, 15, 17, 22, 31, 32, 37, 41, 46, 47, 48, 49, 53, 64, 65, 69, 76, 80, 87, 88, 89, 100, 101, 105, 112, 116, 123, 124], "resembl": [14, 63, 87, 99, 123], "reserv": [27, 32, 73, 76, 109, 112], "reshap": [46, 47, 87, 123], "residu": [42, 45, 83, 86, 119, 122], "resolv": [5, 15, 57, 64, 93, 100], "resort": [32, 76, 112], "resourc": [1, 14, 17, 18, 22, 31, 46, 47, 48, 49, 53, 63, 65, 66, 69, 87, 88, 89, 99, 101, 102, 105, 123, 124], "resp": [18, 30, 66, 75, 102, 111], "respect": [4, 9, 10, 12, 17, 18, 21, 26, 27, 56, 60, 61, 62, 65, 66, 68, 72, 73, 92, 96, 97, 98, 101, 102, 104, 108, 109], "respiratori": 31, "respond": [1, 5, 53, 57, 89, 93], "respons": [5, 18, 22, 25, 27, 32, 48, 57, 66, 69, 73, 76, 88, 93, 102, 105, 109, 112, 124], "rest": [12, 15, 27, 37, 62, 64, 73, 80, 98, 100, 109, 116], "restaur": [5, 15, 57, 64, 93, 100], "restor": [48, 88, 124], "restrict": [39, 81, 117], "result": [1, 4, 9, 10, 12, 15, 17, 21, 22, 24, 25, 27, 31, 33, 34, 41, 42, 43, 45, 46, 47, 48, 49, 53, 56, 60, 61, 62, 64, 65, 68, 69, 70, 71, 73, 77, 78, 83, 84, 86, 87, 88, 89, 92, 96, 97, 98, 100, 101, 104, 105, 106, 107, 109, 113, 114, 119, 120, 122, 123, 124], "retir": [1, 53, 89], "retire": [33, 77, 113], "return": [3, 5, 9, 10, 14, 16, 17, 24, 30, 33, 42, 44, 48, 55, 57, 60, 61, 63, 65, 70, 75, 77, 83, 85, 88, 91, 93, 96, 97, 99, 101, 106, 111, 113, 119, 121, 124], "reveal": [18, 49, 66, 102], "revenu": [7, 15, 22, 25, 26, 27, 31, 58, 64, 69, 71, 72, 73, 94, 100, 105, 107, 108, 109], "revisit": [1, 44, 52, 53, 85, 89, 121], "revolut": 31, "revolv": [32, 76, 112], "reward": [14, 63, 99], "rewrit": [4, 17, 19, 56, 65, 67, 92, 101, 103], "rf": [39, 81, 117], "richer": [22, 24, 69, 70, 105, 106], "richest": [22, 69, 105], "rid": [42, 83, 119], "right": [1, 2, 8, 14, 17, 18, 19, 22, 28, 30, 32, 39, 40, 44, 53, 54, 59, 63, 65, 66, 67, 69, 74, 75, 76, 81, 82, 85, 89, 90, 95, 99, 101, 102, 103, 105, 110, 111, 112, 117, 118, 121], "rightmost": [19, 45, 67, 86, 103, 122], "rightward": [3, 10, 15, 55, 61, 64, 91, 97, 100], "rigor": [30, 75, 111], "rise": [7, 12, 22, 25, 36, 37, 58, 62, 69, 71, 79, 80, 94, 98, 105, 107, 115, 116], "risk": [39, 40, 81, 82, 117, 118], "rivalr": [17, 65, 101], "river": [15, 46, 47, 64, 87, 100, 123], "rmse": [42, 44, 83, 85, 119, 121], "robot": [17, 65, 101], "robust": [1, 4, 24, 53, 56, 70, 89, 92, 106], "rock": [32, 76, 112], "rod": [48, 88, 124], "rohan": 51, "rohanjha": [39, 81, 117], "role": [32, 33, 37, 39, 76, 77, 80, 81, 112, 113, 116, 117], "roll": 31, "rollout": 31, "room": [1, 26, 53, 72, 89, 108], "rotat": [18, 42, 48, 66, 88, 102, 124], "rough": [17, 65, 101], "roughli": [3, 4, 42, 44, 45, 55, 56, 83, 85, 86, 91, 92, 119, 121, 122], "round": [37, 48, 80, 88, 116, 124], "roundabout": [42, 83, 119], "row": [1, 3, 4, 8, 10, 14, 22, 24, 27, 28, 39, 44, 45, 46, 47, 48, 53, 55, 56, 59, 61, 63, 69, 70, 73, 74, 81, 85, 86, 87, 88, 89, 91, 92, 95, 97, 99, 105, 106, 109, 110, 117, 121, 122, 123, 124], "rsch": [1, 53, 89], "rudd": [37, 80, 116], "rule": [21, 32, 39, 68, 76, 81, 104, 112, 117], "run": [0, 1, 24, 30, 32, 37, 53, 70, 75, 76, 80, 89, 106, 111, 112, 116], "rund": [1, 53, 89], "rural": 31, "rush": [48, 88, 124], "russel": [27, 73, 109], "russia": [22, 27, 46, 47, 69, 73, 87, 105, 109, 123], "russian": [22, 69, 105], "rutabaga": [15, 64, 100], "rwanda": [46, 47, 87, 123], "sa": 50, "sach": [46, 47, 48, 87, 88, 123, 124], "sacrif": [19, 67, 103], "saez": [22, 69, 105], "safe": [42, 83, 119], "saharan": 31, "sai": [5, 14, 15, 17, 21, 22, 25, 28, 30, 32, 39, 42, 44, 48, 57, 63, 64, 65, 68, 69, 71, 74, 75, 76, 81, 83, 85, 88, 93, 99, 100, 101, 104, 105, 107, 110, 111, 112, 117, 119, 121, 124], "said": [5, 17, 33, 39, 45, 57, 65, 77, 81, 86, 93, 101, 113, 117, 122], "salari": [1, 53, 89], "sale": [3, 4, 7, 15, 27, 55, 56, 58, 64, 73, 91, 92, 94, 100, 109], "salient": [15, 64, 100], "salin": 31, "salt": [4, 56, 92], "same": [1, 2, 3, 4, 5, 9, 10, 14, 15, 17, 18, 21, 22, 24, 25, 26, 29, 30, 31, 33, 36, 39, 41, 44, 53, 54, 55, 56, 57, 60, 61, 63, 64, 65, 66, 68, 69, 70, 71, 72, 75, 77, 79, 81, 85, 89, 90, 91, 92, 93, 96, 97, 99, 100, 101, 102, 104, 105, 106, 107, 108, 111, 113, 115, 117, 121], "sampl": [41, 42, 43, 44, 83, 84, 85, 119, 120, 121], "sample_s": [1, 53, 89], "san": [3, 4, 10, 55, 56, 61, 91, 92, 97], "satellit": [46, 47, 48, 87, 88, 123, 124], "satisfact": [1, 53, 89], "satisfi": [21, 26, 39, 42, 44, 45, 68, 72, 81, 83, 85, 86, 104, 108, 117, 119, 121, 122], "saudi": [27, 73, 109], "save": [4, 33, 36, 45, 48, 56, 77, 79, 86, 88, 92, 113, 115, 122, 124], "saw": [14, 22, 63, 69, 99, 105], "scale": [7, 8, 16, 17, 44, 46, 47, 58, 59, 65, 85, 87, 94, 95, 101, 121, 123], "scatter": [3, 4, 9, 10, 24, 42, 44, 46, 47, 55, 56, 60, 61, 70, 87, 91, 92, 96, 97, 106, 123], "scatterplot": [3, 10, 55, 61, 91, 97], "scenario": [5, 7, 12, 14, 15, 22, 24, 26, 57, 58, 62, 63, 64, 69, 70, 72, 93, 94, 98, 99, 100, 105, 106, 108], "scene": 31, "schedul": [32, 76, 112], "schilb": [48, 88, 124], "scholar": [46, 47, 48, 87, 88, 123, 124], "school": [31, 41, 42, 43, 83, 84, 119, 120], "sci": [1, 53, 89], "scienc": [4, 29, 32, 46, 47, 48, 49, 51, 56, 76, 87, 88, 92, 112, 123, 124], "scientist": [1, 3, 26, 31, 44, 46, 47, 48, 53, 55, 72, 85, 87, 88, 89, 91, 108, 121, 123, 124], "scope": [44, 46, 47, 48, 85, 87, 88, 121, 123, 124], "score": [42, 83, 119], "screen": 31, "seal": [48, 88, 124], "search": [25, 71, 107], "season": [37, 80, 116], "second": [1, 3, 7, 10, 17, 21, 27, 28, 30, 31, 32, 33, 36, 48, 53, 55, 58, 61, 65, 68, 73, 74, 75, 76, 77, 79, 88, 89, 91, 94, 97, 101, 104, 109, 110, 111, 112, 113, 115, 124], "section": [4, 5, 8, 15, 17, 19, 27, 30, 32, 34, 36, 45, 56, 57, 59, 64, 65, 67, 73, 75, 76, 78, 79, 86, 92, 93, 95, 100, 101, 103, 109, 111, 112, 114, 115, 122], "sector": [48, 88, 124], "secur": [39, 40, 81, 82, 117, 118], "see": [1, 3, 4, 5, 7, 10, 14, 15, 17, 18, 19, 22, 24, 26, 27, 28, 30, 32, 34, 36, 39, 42, 44, 45, 46, 47, 48, 53, 55, 56, 57, 58, 61, 63, 64, 65, 66, 67, 69, 70, 72, 73, 74, 75, 76, 78, 79, 81, 83, 85, 86, 87, 88, 89, 91, 92, 93, 94, 97, 99, 100, 101, 102, 103, 105, 106, 108, 109, 110, 111, 112, 114, 115, 117, 119, 121, 122, 123, 124], "seed": [31, 44, 85, 121], "seek": [1, 15, 26, 49, 53, 64, 72, 89, 100, 108], "seem": [4, 5, 14, 17, 18, 22, 42, 44, 46, 47, 56, 57, 63, 65, 66, 69, 83, 85, 87, 92, 93, 99, 101, 102, 105, 119, 121, 123], "seen": [7, 22, 24, 26, 28, 31, 32, 33, 46, 47, 48, 58, 69, 70, 72, 74, 76, 77, 87, 94, 105, 106, 108, 110, 112, 113, 123], "segundo": [8, 59, 95], "seidel": 52, "select": [1, 2, 8, 10, 22, 25, 42, 44, 45, 46, 47, 48, 53, 54, 59, 61, 69, 71, 83, 85, 86, 87, 88, 89, 90, 95, 97, 105, 107, 119, 121, 122, 123, 124], "self": [12, 14, 29, 30, 62, 63, 75, 98, 99, 111], "sell": [10, 12, 14, 15, 25, 38, 39, 61, 62, 63, 64, 71, 81, 97, 98, 99, 100, 107, 117], "seller": [7, 10, 39, 58, 61, 81, 94, 97, 117], "semest": [1, 33, 53, 77, 89, 113], "semi": [6, 40, 42, 82, 118], "semin": 31, "sens": [1, 2, 5, 14, 15, 19, 25, 26, 33, 39, 40, 42, 44, 48, 49, 53, 54, 57, 63, 64, 67, 71, 72, 77, 81, 82, 83, 85, 88, 89, 90, 93, 99, 100, 103, 107, 108, 113, 117, 118, 119, 121, 124], "sensit": [15, 32, 64, 76, 100, 112], "sent": [42, 83, 119], "separ": [1, 14, 45, 53, 63, 86, 89, 99, 122], "sepear": [14, 63, 99], "sequenti": 29, "seri": [1, 19, 21, 48, 51, 53, 67, 68, 88, 89, 103, 104, 124], "seriou": [25, 27, 71, 73, 107, 109], "serv": [0, 3, 14, 22, 32, 33, 55, 63, 69, 76, 77, 91, 99, 105, 112, 113], "server": [17, 65, 101], "servic": [2, 5, 9, 10, 14, 15, 17, 27, 33, 36, 39, 54, 57, 60, 61, 63, 64, 65, 73, 77, 79, 81, 90, 93, 96, 97, 99, 100, 101, 109, 113, 115, 117], "set": [3, 5, 9, 10, 12, 14, 17, 21, 25, 26, 27, 28, 31, 32, 33, 37, 40, 42, 44, 46, 47, 48, 49, 55, 57, 60, 61, 62, 63, 65, 68, 71, 72, 73, 74, 76, 77, 80, 82, 83, 85, 87, 88, 91, 93, 96, 97, 98, 99, 101, 104, 107, 108, 109, 110, 112, 113, 116, 118, 119, 121, 123, 124], "setter": [30, 75, 111], "settl": [12, 62, 98], "setup": [4, 41, 56, 92], "sever": [14, 27, 29, 45, 63, 73, 86, 99, 109, 122], "sex": 29, "sf": [32, 76, 112], "shade": [24, 70, 106], "shaki": [37, 80, 116], "shall": [1, 53, 89], "shape": [5, 18, 22, 37, 46, 47, 48, 51, 57, 66, 69, 80, 87, 88, 93, 102, 105, 116, 123, 124], "share": [15, 22, 24, 25, 26, 27, 32, 36, 39, 64, 69, 70, 71, 72, 73, 76, 79, 81, 100, 105, 106, 107, 108, 109, 112, 115, 117], "sharealik": 50, "sharewomen": [1, 53, 89], "shashank": 51, "she": [21, 22, 28, 68, 69, 74, 104, 105, 110], "shift": [5, 6, 10, 12, 15, 17, 19, 36, 57, 61, 62, 64, 65, 67, 79, 93, 97, 98, 100, 101, 103, 115], "shirt": [15, 64, 100], "shock": [10, 18, 22, 32, 34, 61, 66, 69, 76, 78, 97, 102, 105, 112, 114], "short": [7, 32, 37, 39, 48, 58, 76, 80, 81, 88, 94, 112, 116, 117, 124], "shortag": [10, 12, 61, 62, 97, 98], "shortcom": [48, 88, 124], "shorthand": [27, 73, 109], "shot": [15, 37, 64, 80, 100, 116], "should": [1, 2, 4, 5, 9, 14, 15, 21, 25, 30, 32, 33, 36, 37, 39, 42, 44, 48, 53, 54, 56, 57, 60, 63, 64, 68, 71, 75, 76, 77, 79, 80, 81, 83, 85, 88, 89, 90, 92, 93, 96, 99, 100, 104, 107, 111, 112, 113, 115, 116, 117, 119, 121, 124], "show": [1, 2, 3, 5, 7, 8, 10, 17, 18, 22, 25, 26, 31, 32, 36, 39, 42, 44, 46, 47, 48, 53, 54, 55, 57, 58, 59, 61, 65, 66, 69, 71, 72, 76, 79, 81, 83, 85, 87, 88, 89, 90, 91, 93, 94, 95, 97, 101, 102, 105, 107, 108, 112, 115, 117, 119, 121, 123, 124], "shown": [3, 10, 26, 39, 55, 61, 72, 81, 91, 97, 108, 117], "shut": [7, 14, 58, 63, 94, 99], "side": [1, 3, 4, 9, 10, 14, 15, 24, 30, 31, 33, 39, 53, 55, 56, 60, 61, 63, 64, 70, 75, 77, 81, 89, 91, 92, 96, 97, 99, 100, 106, 111, 113, 117], "sigma": [39, 44, 81, 85, 117, 121], "sigma_x": [44, 85, 121], "sign": [46, 47, 87, 123], "signifi": [2, 54, 90], "signific": [1, 5, 12, 14, 17, 18, 22, 24, 33, 44, 45, 53, 57, 62, 63, 65, 66, 69, 70, 77, 85, 86, 89, 93, 98, 99, 101, 102, 105, 106, 113, 121, 122], "significantli": [1, 5, 15, 17, 44, 53, 57, 64, 65, 85, 89, 93, 100, 101, 121], "silenc": [27, 73, 109], "similar": [1, 2, 14, 15, 17, 25, 26, 27, 32, 39, 43, 46, 47, 53, 54, 63, 64, 65, 71, 72, 73, 76, 81, 84, 89, 90, 99, 100, 101, 107, 108, 109, 112, 117, 120], "similarli": [1, 2, 4, 5, 9, 10, 14, 15, 26, 39, 43, 44, 53, 54, 56, 57, 60, 61, 63, 64, 72, 81, 84, 85, 89, 90, 92, 93, 96, 97, 99, 100, 108, 117, 120, 121], "simpl": [17, 21, 32, 39, 44, 48, 65, 68, 76, 81, 85, 88, 101, 104, 112, 117, 121, 124], "simplest": [39, 81, 117], "simpli": [3, 4, 7, 15, 22, 33, 37, 42, 44, 55, 56, 58, 64, 69, 77, 80, 83, 85, 91, 92, 94, 100, 105, 113, 116, 119, 121], "simplic": [17, 65, 101], "simplif": [1, 17, 32, 33, 53, 65, 76, 77, 89, 101, 112, 113], "simplifi": [14, 30, 33, 37, 48, 63, 75, 77, 80, 88, 99, 111, 113, 116, 124], "simul": [44, 85, 121], "simulatan": [18, 66, 102], "simultan": [14, 29, 36, 42, 63, 79, 83, 99, 115, 119], "sinc": [1, 2, 4, 5, 7, 8, 9, 10, 15, 19, 21, 22, 24, 25, 28, 29, 31, 32, 33, 36, 37, 39, 40, 42, 45, 46, 47, 53, 54, 56, 57, 58, 59, 60, 61, 64, 67, 68, 69, 70, 71, 74, 76, 77, 79, 80, 81, 82, 83, 86, 87, 89, 90, 92, 93, 94, 95, 96, 97, 100, 103, 104, 105, 106, 107, 110, 112, 113, 115, 116, 117, 118, 119, 122, 123], "singl": [1, 3, 5, 7, 17, 24, 28, 30, 42, 45, 48, 49, 53, 55, 57, 58, 65, 70, 74, 75, 83, 86, 88, 89, 91, 93, 94, 101, 106, 110, 111, 119, 122, 124], "singular": [33, 46, 47, 77, 113], "sit": [37, 80, 116], "site": [31, 39, 46, 47, 48, 81, 87, 88, 117, 123, 124], "situat": [5, 22, 32, 39, 42, 57, 69, 76, 81, 83, 93, 105, 112, 117, 119], "six": [1, 39, 53, 81, 89, 117], "size": [3, 10, 15, 31, 46, 47, 48, 55, 61, 64, 87, 91, 97, 100, 123], "skeleton": [45, 86, 122], "skeptic": [48, 88, 124], "skew": [42, 45, 83, 86, 119, 122], "ski": [46, 47, 87, 123], "skill": [22, 48, 69, 88, 105, 124], "sklearn": [44, 85, 121], "slice": [5, 21, 57, 68, 93, 104], "slider": [14, 18, 63, 66, 99, 102], "slight": [24, 44, 46, 47, 70, 85, 87, 106, 121, 123], "slightli": [1, 3, 15, 17, 25, 32, 53, 55, 64, 65, 71, 76, 89, 91, 100, 101, 107, 112], "slope": [2, 3, 4, 5, 7, 8, 9, 10, 14, 17, 22, 24, 26, 36, 37, 39, 44, 46, 47, 54, 55, 56, 57, 58, 59, 60, 61, 63, 65, 69, 70, 72, 79, 85, 87, 90, 91, 92, 93, 94, 95, 96, 97, 99, 101, 105, 106, 108, 115, 121, 123], "slopign": 36, "slow": [22, 69, 105], "sm": [42, 44, 45, 83, 85, 86, 119, 121, 122], "small": [4, 8, 18, 25, 31, 33, 39, 40, 44, 56, 59, 66, 71, 77, 81, 82, 85, 92, 95, 102, 107, 113, 117, 118, 121], "smaller": [17, 24, 37, 65, 70, 80, 101, 106, 116], "smooth": 7, "snake": [5, 57, 93], "snapshot": [1, 32, 53, 76, 89, 112], "so": [1, 2, 3, 4, 5, 7, 8, 10, 12, 14, 15, 17, 21, 22, 24, 25, 26, 28, 30, 31, 32, 33, 34, 36, 37, 39, 42, 43, 44, 45, 46, 47, 48, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 68, 69, 70, 71, 72, 74, 75, 76, 77, 78, 79, 80, 81, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 97, 98, 99, 100, 101, 104, 105, 106, 107, 108, 110, 111, 112, 113, 114, 115, 116, 117, 119, 120, 121, 122, 123, 124], "social": [1, 15, 22, 29, 31, 46, 47, 48, 49, 53, 64, 69, 87, 88, 89, 100, 105, 123, 124], "societ": [48, 88, 124], "societi": [14, 15, 46, 47, 48, 63, 64, 87, 88, 99, 100, 123, 124], "soft": [25, 27, 71, 73, 107, 109], "softwar": [1, 46, 47, 48, 53, 87, 88, 89, 123, 124], "soil": [48, 88, 124], "solar": [14, 48, 63, 88, 99, 124], "sold": [3, 4, 7, 10, 12, 15, 25, 31, 39, 55, 56, 58, 61, 62, 64, 71, 81, 91, 92, 94, 97, 98, 100, 107, 117], "sole": [42, 83, 119], "solid": [1, 5, 53, 57, 89, 93], "solut": [22, 31, 42, 69, 83, 105, 119], "solv": [2, 9, 10, 11, 25, 26, 39, 54, 60, 61, 71, 72, 81, 90, 96, 97, 107, 108, 117], "some": [1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 14, 15, 17, 21, 22, 25, 27, 28, 29, 30, 31, 32, 33, 34, 38, 39, 40, 42, 44, 45, 46, 47, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 68, 69, 71, 73, 74, 75, 76, 77, 78, 81, 82, 83, 85, 86, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 104, 105, 107, 109, 110, 111, 112, 113, 114, 117, 118, 119, 121, 122, 123], "some_vari": [30, 75, 111], "someon": [1, 39, 42, 53, 81, 83, 89, 117, 119], "someth": [1, 4, 5, 17, 18, 26, 30, 33, 39, 41, 44, 48, 53, 56, 57, 65, 66, 72, 75, 77, 81, 85, 87, 88, 89, 92, 93, 101, 102, 108, 111, 113, 117, 121, 123, 124], "sometim": [10, 22, 31, 32, 36, 39, 44, 61, 69, 76, 79, 81, 85, 97, 105, 112, 115, 117, 121], "somewhat": [2, 4, 22, 54, 56, 69, 90, 92, 105], "somewher": [39, 46, 47, 81, 87, 117, 123], "soon": [14, 15, 37, 40, 44, 63, 64, 80, 82, 85, 99, 100, 116, 118, 121], "sort": [1, 8, 24, 31, 46, 47, 48, 53, 59, 70, 87, 88, 89, 95, 106, 123, 124], "sorted_distribut": [24, 70, 106], "sound": [44, 85, 121], "sourc": [1, 8, 31, 36, 42, 46, 47, 48, 53, 59, 79, 83, 87, 88, 89, 95, 115, 119, 123, 124], "south": [8, 46, 47, 59, 87, 95, 123], "soviet": [22, 69, 105], "sp_mc": 7, "space": [30, 75, 111], "speak": [33, 34, 77, 78, 113, 114], "specif": [1, 4, 5, 13, 15, 17, 22, 26, 33, 39, 40, 42, 48, 53, 56, 57, 64, 65, 69, 72, 77, 81, 82, 83, 88, 89, 92, 93, 100, 101, 105, 108, 113, 117, 118, 119, 124], "specifi": [21, 28, 33, 39, 42, 45, 68, 74, 77, 81, 83, 86, 104, 110, 113, 117, 119, 122], "spend": [2, 19, 33, 34, 36, 44, 54, 67, 77, 78, 79, 85, 90, 103, 113, 114, 115, 121], "spent": [19, 67, 103], "spike": [22, 69, 105], "spillov": [48, 88, 124], "split": [7, 25, 26, 58, 71, 72, 94, 107, 108], "spot": [87, 123], "spread": [1, 43, 53, 84, 89, 120], "spring": [31, 37, 80, 116], "sqrt": [39, 42, 44, 81, 83, 85, 117, 119, 121], "squar": [18, 42, 43, 45, 66, 83, 84, 86, 102, 119, 120, 122], "sreeja": 51, "st": [32, 76, 112], "stabil": [32, 34, 36, 76, 78, 79, 112, 114, 115], "stabl": [32, 37, 76, 80, 112, 116], "stack": [22, 69, 105], "stage": [87, 123], "stagflat": [22, 37, 69, 80, 105, 116], "stagnat": [46, 47, 87, 123], "stai": [1, 2, 22, 25, 32, 33, 53, 54, 69, 71, 76, 77, 89, 90, 105, 107, 112, 113], "stand": [32, 76, 112], "standard": [30, 33, 42, 43, 44, 45, 48, 75, 77, 83, 84, 85, 86, 88, 111, 113, 119, 120, 121, 122, 124], "standard_unit": [44, 85, 121], "star": [1, 32, 53, 76, 89, 112], "start": [2, 4, 5, 9, 10, 14, 21, 22, 25, 26, 27, 33, 39, 44, 45, 46, 47, 48, 54, 56, 57, 60, 61, 63, 68, 69, 71, 72, 73, 77, 81, 85, 86, 87, 88, 90, 92, 93, 96, 97, 99, 104, 105, 107, 108, 109, 113, 117, 121, 122, 123, 124], "state": [1, 2, 12, 15, 25, 26, 27, 32, 33, 43, 44, 45, 53, 54, 62, 64, 71, 72, 73, 76, 77, 84, 85, 86, 87, 89, 90, 98, 100, 107, 108, 109, 112, 113, 120, 121, 122, 123], "statement": [17, 30, 32, 65, 75, 76, 101, 111, 112], "statewkr": [44, 45, 85, 86, 121, 122], "static": [46, 47, 48, 49, 87, 88, 123, 124], "station": 49, "statist": [1, 4, 10, 31, 32, 42, 45, 53, 56, 61, 76, 83, 86, 89, 92, 97, 112, 119, 122], "statsmodel": [42, 44, 83, 85, 119, 121], "statutori": [15, 64, 100], "std": [1, 42, 44, 45, 53, 83, 85, 86, 89, 119, 121, 122], "steadi": [5, 22, 57, 69, 93, 105], "steadili": [22, 46, 47, 69, 87, 105, 123], "steep": [17, 65, 101], "step": [39, 81, 117], "stern": [46, 47, 87, 123], "still": [5, 7, 14, 17, 19, 22, 26, 27, 36, 37, 44, 57, 58, 63, 65, 67, 69, 72, 73, 79, 80, 85, 87, 93, 94, 99, 101, 103, 105, 108, 109, 115, 116, 121, 123], "stimul": [22, 32, 34, 69, 76, 78, 105, 112, 114], "stock": [17, 27, 38, 39, 46, 47, 48, 65, 73, 81, 87, 88, 101, 109, 117, 123, 124], "stop": [14, 33, 48, 63, 77, 88, 99, 113, 124], "storag": [48, 88, 124], "store": [0, 30, 31, 44, 75, 85, 111, 121], "stori": [1, 22, 46, 47, 53, 69, 87, 89, 105, 123], "stove": 31, "str": [5, 30, 57, 75, 93, 111], "straight": [4, 24, 44, 56, 70, 85, 92, 106, 121], "strang": [44, 85, 121], "strateg": 29, "strategi": [25, 26, 27, 29, 49, 71, 72, 73, 107, 108, 109], "strength": [44, 85, 121], "strictli": [44, 85, 121], "strike": [39, 48, 81, 88, 117, 124], "string": [30, 75, 111], "strong": [22, 31, 34, 42, 45, 46, 47, 69, 78, 83, 86, 87, 105, 114, 119, 122, 123], "strongli": [33, 77, 113], "structur": [30, 75, 111], "struggl": [5, 57, 93], "student": [1, 5, 6, 11, 16, 20, 23, 31, 33, 44, 49, 51, 53, 57, 77, 85, 89, 93, 113, 121], "studi": [1, 13, 15, 17, 22, 27, 29, 31, 32, 33, 39, 43, 44, 51, 53, 64, 65, 69, 73, 76, 77, 81, 84, 85, 89, 100, 101, 105, 109, 112, 113, 117, 120, 121], "style": [44, 85, 121], "su": [44, 85, 121], "sub": [5, 9, 10, 25, 26, 31, 57, 60, 61, 71, 72, 93, 96, 97, 107, 108], "subconci": 41, "subject": [12, 62, 98], "subpar": [1, 53, 89], "subsequ": [4, 22, 37, 56, 69, 80, 92, 105, 116], "subset": [26, 31, 49, 72, 108], "subsidi": [12, 13, 49, 62, 98], "subsitut": [2, 54, 90], "substitut": [5, 9, 15, 32, 57, 60, 64, 76, 93, 96, 100, 112], "substiut": [26, 72, 108], "subtract": [15, 33, 44, 64, 77, 85, 100, 113, 121], "succe": [37, 80, 116], "success": [1, 37, 53, 80, 89, 116], "suddenli": [17, 65, 101], "suffer": [37, 80, 116], "suffici": [12, 14, 39, 41, 62, 63, 81, 98, 99, 117], "suggest": [1, 2, 15, 24, 26, 32, 34, 36, 53, 54, 64, 70, 72, 76, 78, 79, 89, 90, 100, 106, 108, 112, 114, 115], "suit": [14, 31, 63, 99], "sum": [7, 14, 29, 33, 39, 44, 48, 58, 63, 77, 81, 85, 88, 94, 99, 113, 117, 121, 124], "sum_": [28, 44, 74, 85, 110, 121], "summari": [42, 45, 83, 86, 119, 122], "summat": [7, 58, 94], "sun": [83, 119], "super": [1, 53, 89], "suppli": [2, 3, 4, 5, 8, 9, 12, 13, 15, 18, 25, 26, 32, 33, 34, 36, 48, 54, 55, 56, 57, 59, 60, 62, 64, 66, 71, 72, 76, 77, 78, 79, 88, 90, 91, 92, 93, 95, 96, 98, 100, 102, 107, 108, 112, 113, 114, 115, 124], "supplier": [8, 9, 10, 59, 60, 61, 95, 96, 97], "supply_textbook": [7, 58, 94], "support": [22, 24, 32, 69, 70, 76, 105, 106, 112], "suppos": [4, 5, 9, 14, 15, 22, 24, 25, 26, 28, 30, 39, 44, 56, 57, 60, 63, 64, 69, 70, 71, 72, 74, 75, 81, 85, 92, 93, 96, 99, 100, 105, 106, 107, 108, 110, 111, 117, 121], "sure": [5, 30, 33, 39, 57, 75, 77, 81, 93, 111, 113, 117], "surf": 31, "surfac": [4, 18, 42, 56, 66, 92, 102], "surpass": [7, 58, 94], "surplu": [5, 10, 12, 13, 15, 57, 61, 62, 64, 93, 97, 98, 100], "surplus": [14, 63, 99], "surpris": [1, 53, 89], "surprisingli": [4, 56, 92], "survei": [1, 22, 31, 44, 53, 69, 85, 89, 105, 121], "surveyor": 31, "sushil": 51, "sustain": [32, 34, 46, 47, 48, 76, 78, 87, 88, 112, 114, 123, 124], "swing": [39, 81, 117], "switch": [15, 48, 64, 88, 100, 124], "sykes92": [46, 47, 48, 87, 88, 123, 124], "symbol": [5, 9, 10, 25, 26, 39, 57, 60, 61, 71, 72, 81, 93, 96, 97, 107, 108, 117], "symbol_we_want_to_substitut": [9, 60, 96], "symmetr": [25, 29, 71, 107], "sympi": [5, 10, 11, 25, 26, 57, 61, 71, 72, 93, 97, 107, 108], "synonym": [33, 77, 113], "syntax": [9, 30, 60, 75, 96, 111], "system": [11, 17, 22, 25, 26, 32, 46, 47, 48, 65, 69, 71, 72, 76, 87, 88, 101, 105, 107, 108, 112, 123, 124], "systemat": [28, 74, 110], "t": [1, 4, 5, 14, 15, 21, 24, 27, 28, 30, 31, 33, 37, 39, 40, 41, 42, 44, 45, 46, 47, 53, 56, 57, 63, 64, 68, 70, 73, 74, 75, 77, 80, 81, 82, 83, 85, 86, 87, 89, 92, 93, 99, 100, 104, 106, 109, 110, 111, 113, 116, 117, 118, 119, 121, 122, 123], "tHere": 32, "tab": [10, 61, 97], "tabl": [1, 3, 4, 7, 8, 10, 14, 22, 24, 30, 40, 43, 44, 45, 46, 47, 48, 53, 55, 56, 58, 59, 61, 63, 69, 70, 75, 82, 84, 85, 86, 87, 88, 89, 91, 92, 94, 95, 97, 99, 105, 106, 111, 118, 120, 121, 122, 123, 124], "tackl": [1, 53, 89], "take": [1, 3, 4, 5, 8, 9, 10, 12, 14, 15, 17, 19, 21, 22, 25, 26, 27, 28, 30, 31, 32, 33, 37, 38, 39, 40, 42, 44, 48, 51, 53, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 80, 81, 82, 83, 85, 88, 89, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 107, 108, 109, 110, 111, 112, 113, 116, 117, 118, 119, 121, 124], "taken": [3, 28, 31, 33, 55, 74, 77, 91, 110, 113], "talent": [1, 37, 53, 80, 89, 116], "talk": [27, 32, 48, 73, 76, 88, 109, 112, 124], "taller": [48, 88, 124], "tamc": [46, 47, 48, 87, 88, 123, 124], "tame": [39, 81, 117], "tangenti": [19, 67, 103], "tangibl": [17, 65, 101], "tank": [30, 75, 111], "target": [31, 32, 37, 42, 44, 45, 48, 76, 80, 83, 85, 86, 88, 112, 116, 119, 121, 122, 124], "tariff": [22, 69, 105], "task": [24, 42, 70, 83, 106, 119], "taught": [45, 86, 122], "tax": [12, 13, 34, 36, 48, 49, 62, 78, 79, 88, 98, 114, 115, 124], "taxat": [22, 34, 48, 69, 78, 88, 105, 114, 124], "taylor": [32, 76, 112], "tbl": [3, 30, 55, 75, 91, 111], "tc": [7, 58, 94], "tco2": [48, 88, 124], "tea": [10, 61, 97], "teach": 31, "team": [32, 48, 76, 88, 112, 124], "tech": [1, 53, 89], "technic": [39, 42, 81, 83, 117, 119], "techniqu": [1, 53, 89], "technolog": [48, 88, 124], "technologi": [1, 17, 18, 46, 47, 48, 53, 65, 66, 87, 88, 89, 101, 102, 123, 124], "telecom": [27, 73, 109], "tell": [5, 24, 26, 28, 30, 32, 46, 47, 57, 70, 72, 74, 75, 76, 87, 93, 106, 108, 110, 111, 112, 123], "templat": [3, 30, 55, 75, 91, 111], "temporari": [22, 69, 105], "tempt": [25, 71, 107], "tend": [1, 4, 5, 8, 32, 33, 36, 37, 39, 42, 48, 53, 56, 57, 59, 76, 77, 79, 80, 81, 83, 88, 89, 92, 93, 95, 112, 113, 115, 116, 117, 119, 124], "tenet": 49, "tent": [32, 76, 112], "tenur": 32, "term": [1, 3, 4, 7, 9, 10, 15, 17, 22, 32, 42, 43, 44, 45, 46, 47, 48, 53, 55, 56, 58, 60, 61, 64, 65, 69, 76, 83, 84, 85, 86, 87, 88, 89, 91, 92, 94, 96, 97, 100, 101, 105, 112, 119, 120, 121, 122, 123, 124], "terminologi": [30, 75, 111], "test": [31, 42, 44, 45, 83, 85, 86, 119, 121, 122], "text": [2, 4, 7, 9, 15, 17, 18, 21, 24, 25, 28, 40, 42, 43, 44, 48, 54, 56, 58, 60, 64, 65, 66, 68, 70, 71, 74, 82, 83, 84, 85, 88, 90, 92, 94, 96, 100, 101, 102, 104, 106, 107, 110, 118, 119, 120, 121, 124], "textbook": [7, 30, 48, 51, 75, 88, 111, 124], "textrm": [21, 26, 68, 72, 104, 108], "tfc": [7, 58, 94], "tfp": [17, 65, 101], "than": [1, 2, 4, 5, 7, 10, 12, 14, 15, 17, 18, 21, 22, 24, 25, 26, 30, 31, 36, 39, 40, 42, 44, 46, 47, 48, 49, 53, 54, 56, 57, 58, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 75, 79, 81, 82, 83, 85, 87, 88, 89, 90, 92, 93, 94, 97, 98, 99, 100, 101, 102, 104, 105, 106, 107, 108, 111, 115, 117, 118, 119, 121, 123, 124], "theatr": [1, 53, 89], "thei": [1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 14, 15, 18, 19, 20, 21, 22, 24, 25, 27, 30, 32, 33, 35, 36, 37, 39, 40, 42, 44, 48, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, 69, 70, 71, 73, 75, 76, 77, 79, 80, 81, 82, 83, 85, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 106, 107, 109, 111, 112, 113, 115, 116, 117, 118, 119, 121, 124], "them": [1, 2, 5, 10, 14, 15, 18, 22, 25, 27, 29, 30, 31, 33, 34, 39, 40, 42, 44, 48, 53, 54, 57, 61, 63, 64, 66, 69, 71, 73, 75, 77, 78, 81, 82, 83, 85, 88, 89, 90, 93, 97, 99, 100, 102, 105, 107, 109, 111, 113, 114, 117, 118, 119, 121, 124], "theme": [1, 53, 89], "themselv": [15, 46, 47, 64, 87, 100, 123], "theoret": [29, 37, 39, 80, 81, 116, 117], "theori": [1, 15, 26, 27, 33, 34, 37, 46, 47, 51, 53, 64, 72, 73, 77, 78, 80, 87, 89, 100, 108, 109, 113, 114, 116, 123], "therebi": [2, 15, 17, 54, 64, 65, 90, 100, 101], "therefor": [1, 5, 7, 32, 33, 36, 37, 39, 42, 44, 53, 57, 58, 76, 77, 79, 80, 81, 83, 85, 89, 93, 94, 112, 113, 115, 116, 117, 119, 121], "thesi": [31, 51], "thi": [0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124], "thin": [8, 59, 95], "thing": [1, 3, 7, 14, 21, 26, 30, 33, 36, 53, 55, 58, 63, 68, 72, 75, 77, 79, 87, 89, 91, 94, 99, 104, 108, 111, 113, 115, 123], "think": [1, 3, 4, 5, 14, 15, 17, 21, 24, 25, 26, 30, 31, 32, 33, 39, 40, 41, 42, 44, 45, 48, 53, 55, 56, 57, 63, 64, 65, 68, 70, 71, 72, 75, 76, 77, 81, 82, 83, 85, 86, 88, 89, 91, 92, 93, 99, 100, 101, 104, 106, 107, 108, 111, 112, 113, 117, 118, 119, 121, 122, 124], "third": [30, 33, 44, 45, 75, 77, 85, 86, 111, 113, 121, 122], "thoma": [22, 69, 105], "those": [1, 8, 15, 22, 25, 28, 29, 32, 33, 37, 41, 42, 44, 49, 53, 59, 64, 69, 71, 74, 76, 77, 80, 83, 85, 89, 95, 100, 105, 107, 110, 112, 113, 116, 119, 121], "though": [15, 37, 39, 42, 44, 64, 80, 81, 83, 85, 100, 116, 117, 119, 121], "thought": [31, 32, 37, 76, 80, 87, 112, 116, 123], "thousand": [44, 85, 121], "three": [5, 17, 37, 42, 46, 47, 57, 65, 80, 83, 87, 93, 101, 116, 119, 123], "threshold": [46, 47, 87, 123], "through": [4, 10, 13, 15, 18, 22, 24, 27, 30, 32, 34, 38, 44, 48, 49, 51, 56, 61, 64, 66, 69, 70, 73, 75, 76, 78, 85, 88, 92, 97, 100, 102, 105, 106, 109, 111, 112, 114, 121, 124], "throughout": [1, 7, 12, 22, 26, 32, 46, 47, 53, 58, 62, 69, 72, 76, 87, 89, 94, 98, 105, 108, 112, 123], "throw": [30, 75, 111], "thrown": [30, 75, 111], "thu": [1, 2, 3, 4, 5, 7, 9, 12, 14, 15, 17, 18, 22, 25, 27, 31, 32, 33, 37, 39, 40, 42, 44, 53, 54, 55, 56, 57, 58, 60, 62, 63, 64, 65, 66, 69, 71, 73, 76, 77, 80, 81, 82, 85, 89, 90, 91, 92, 93, 94, 96, 98, 99, 100, 101, 102, 105, 107, 109, 112, 113, 116, 117, 118, 121], "thump": [22, 69, 105], "ti": [30, 40, 75, 82, 111, 118], "ticker": [39, 81, 117], "till": [39, 81, 117], "time": [2, 4, 5, 7, 14, 15, 16, 17, 18, 22, 29, 31, 32, 33, 37, 38, 39, 42, 44, 45, 46, 47, 48, 49, 54, 56, 57, 58, 63, 64, 65, 66, 69, 76, 77, 80, 81, 83, 85, 86, 87, 88, 90, 92, 93, 94, 99, 100, 101, 102, 105, 112, 113, 116, 117, 119, 121, 122, 123, 124], "timefram": [1, 53, 89], "timer": [8, 59, 95], "times0": [5, 57, 93], "times100": [5, 57, 93], "tini": [3, 55, 91], "titl": [3, 5, 10, 22, 37, 39, 48, 55, 57, 61, 69, 80, 81, 88, 91, 93, 97, 105, 116, 117, 124], "to_minim": [42, 83, 119], "todai": [10, 21, 22, 28, 39, 40, 41, 46, 47, 61, 68, 69, 74, 81, 82, 87, 97, 104, 105, 110, 117, 118, 123], "togeth": [14, 26, 32, 33, 39, 42, 46, 47, 63, 72, 76, 77, 81, 83, 87, 99, 108, 112, 113, 117, 119, 123], "toggl": [1, 53, 89], "toler": [40, 82, 118], "tomorrow": [39, 40, 81, 82, 117, 118], "ton": [10, 48, 61, 88, 97, 124], "too": [3, 5, 14, 15, 17, 26, 33, 39, 44, 55, 57, 63, 64, 65, 72, 77, 81, 85, 91, 93, 99, 100, 101, 108, 113, 117, 121], "took": [1, 22, 26, 42, 48, 53, 69, 72, 83, 88, 89, 105, 108, 119, 124], "tool": [9, 26, 31, 32, 34, 35, 36, 44, 46, 47, 48, 49, 60, 72, 76, 78, 79, 85, 87, 88, 96, 108, 112, 114, 115, 121, 123, 124], "top": [1, 24, 53, 70, 89, 106], "top_10_u": [22, 69, 105], "top_10_world": [22, 69, 105], "top_1_u": [22, 69, 105], "top_1_world": [22, 69, 105], "topic": [4, 22, 29, 30, 46, 47, 48, 56, 69, 75, 87, 88, 92, 105, 111, 123, 124], "toptax": [22, 69, 105], "toptaxr": [22, 69, 105], "toronto": [22, 69, 105], "total": [1, 3, 4, 7, 8, 12, 14, 15, 16, 18, 21, 22, 24, 33, 36, 40, 46, 47, 48, 53, 55, 56, 58, 59, 62, 63, 64, 66, 68, 69, 70, 77, 79, 82, 87, 88, 89, 91, 92, 94, 95, 98, 99, 100, 102, 104, 105, 106, 113, 115, 118, 123, 124], "total_abat": [48, 88, 124], "total_var_cost_usdpermwh": [8, 59, 95], "touch": [19, 33, 67, 77, 103, 113], "tour": [32, 76, 112], "toward": [15, 17, 19, 40, 48, 64, 65, 67, 82, 88, 100, 101, 103, 118, 124], "traceback": [7, 30, 75, 111], "track": [30, 75, 111], "trade": [46, 47, 48, 49, 87, 88, 123, 124], "tradeoff": [1, 37, 53, 80, 89, 116], "tradit": [15, 48, 64, 88, 100, 124], "tradoff": [48, 88, 124], "train": [22, 69, 105], "transact": [10, 15, 61, 64, 97, 100], "transcript": [1, 53, 89], "transform": [4, 17, 56, 65, 92, 101], "transit": [48, 88, 124], "translat": [20, 21, 37, 68, 80, 104, 116], "transmiss": [15, 64, 100], "transpar": 42, "treat": 31, "treatment": [1, 31, 41, 42, 53, 83, 89, 119], "trend": [1, 22, 23, 35, 39, 44, 46, 47, 53, 69, 81, 85, 87, 89, 105, 117, 121, 123], "tri": [44, 85, 121], "trial": 31, "triangl": [12, 15, 24, 62, 64, 70, 98, 100, 106], "trigger": [3, 55, 91], "trivial": [4, 39, 56, 81, 92, 117], "troubl": [24, 70, 106], "true": [1, 2, 3, 4, 15, 19, 24, 25, 26, 30, 36, 42, 44, 45, 46, 47, 49, 53, 54, 55, 56, 64, 67, 70, 71, 72, 75, 79, 83, 85, 86, 87, 89, 90, 91, 92, 100, 103, 106, 107, 108, 111, 115, 119, 121, 122, 123], "trunk": [22, 69, 105], "try": [1, 4, 5, 8, 9, 14, 18, 19, 22, 26, 30, 33, 41, 44, 53, 56, 57, 59, 60, 63, 66, 67, 69, 72, 75, 77, 85, 89, 92, 93, 95, 96, 99, 102, 103, 105, 108, 111, 113, 121], "tupl": [28, 74, 110], "turn": [4, 5, 14, 22, 24, 37, 39, 42, 45, 46, 47, 56, 57, 63, 69, 70, 80, 81, 83, 86, 87, 92, 93, 99, 105, 106, 116, 117, 119, 122, 123], "tvc": [7, 58, 94], "twenti": [1, 53, 89], "twentieth": [32, 76, 112], "twice": [22, 69, 105], "two": [3, 5, 7, 9, 10, 17, 24, 25, 26, 27, 28, 30, 31, 32, 34, 36, 39, 40, 41, 42, 44, 45, 48, 49, 55, 57, 58, 60, 61, 65, 70, 71, 72, 73, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 88, 91, 93, 94, 96, 97, 101, 106, 107, 108, 109, 110, 111, 112, 114, 115, 117, 118, 119, 121, 122, 124], "type": [1, 5, 6, 12, 14, 15, 27, 28, 39, 42, 45, 46, 47, 48, 53, 57, 62, 63, 64, 73, 74, 81, 83, 86, 87, 88, 89, 93, 98, 99, 100, 109, 110, 117, 119, 122, 123, 124], "typic": [1, 4, 5, 8, 15, 21, 24, 34, 40, 53, 56, 57, 59, 64, 68, 70, 78, 82, 89, 92, 93, 95, 100, 104, 106, 114, 118], "u": [1, 3, 4, 5, 9, 12, 15, 17, 18, 19, 21, 22, 23, 24, 26, 28, 29, 30, 32, 33, 37, 42, 44, 45, 46, 47, 51, 53, 55, 56, 57, 60, 62, 64, 65, 66, 67, 68, 69, 70, 72, 74, 75, 76, 77, 80, 83, 85, 86, 87, 89, 91, 92, 93, 96, 98, 100, 101, 102, 103, 104, 105, 106, 108, 110, 111, 112, 113, 116, 119, 121, 122, 123], "u_1": [28, 74, 110], "u_2": [28, 74, 110], "uc": [0, 1, 31, 43, 49, 51, 53, 84, 89, 120], "ultim": [1, 4, 19, 37, 53, 56, 67, 80, 89, 92, 103, 116], "umar": 51, "un": [46, 47, 87, 123], "unabl": [15, 33, 64, 77, 100, 113], "unaccount": 49, "unaffect": [3, 12, 55, 62, 91, 98], "uncertainti": [1, 43, 45, 53, 84, 86, 89, 120, 122], "unchang": [15, 27, 48, 64, 73, 88, 100, 109, 124], "uncontest": [22, 69, 105], "uncov": [4, 56, 92], "under": [24, 25, 31, 34, 40, 50, 51, 70, 71, 78, 82, 106, 107, 114, 118], "undercut": [25, 26, 71, 72, 107, 108], "undergradu": [1, 53, 89], "underli": [9, 31, 37, 39, 44, 60, 80, 81, 85, 96, 116, 117, 121], "underneath": [43, 84, 120], "underpin": [28, 74, 110], "underscor": [13, 30, 75, 111], "underset": [26, 72, 108], "understand": [1, 3, 6, 7, 8, 10, 11, 16, 20, 23, 24, 26, 27, 32, 35, 39, 48, 49, 53, 55, 58, 59, 61, 70, 72, 73, 76, 81, 88, 89, 91, 94, 95, 97, 106, 108, 109, 112, 117, 124], "unemploi": [1, 33, 37, 52, 53, 77, 80, 89, 113, 116], "unemploy": [12, 32, 37, 62, 76, 80, 98, 112, 116], "unemployment_r": [1, 53, 89], "uneth": 41, "unfavour": [48, 88, 124], "unfortun": [5, 12, 37, 57, 62, 80, 93, 98, 116], "uniform": [44, 85, 121], "unilater": [25, 27, 71, 73, 107, 109], "union": [22, 69, 105], "uniqu": [1, 5, 26, 42, 53, 57, 72, 83, 89, 93, 108, 119], "unit": [1, 2, 3, 4, 5, 7, 8, 10, 12, 15, 16, 17, 18, 19, 21, 25, 26, 32, 33, 36, 37, 43, 44, 53, 54, 55, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 68, 71, 72, 76, 77, 79, 80, 84, 85, 87, 89, 90, 91, 92, 93, 94, 95, 97, 98, 100, 101, 102, 103, 104, 107, 108, 112, 113, 115, 116, 120, 121, 123], "univariatecubicsmoothingsplin": 7, "univeristi": [22, 69, 105], "univers": [1, 10, 22, 46, 47, 48, 52, 53, 61, 69, 87, 88, 89, 97, 105, 123, 124], "unknowingli": 31, "unknown": [15, 39, 64, 81, 100, 117], "unlik": [5, 44, 57, 85, 93, 121], "unload": [10, 61, 97], "unobserv": [1, 53, 89], "unreason": [5, 57, 93], "unsatisfact": [1, 53, 89], "unseen": [44, 85, 121], "until": [1, 5, 7, 10, 12, 25, 31, 39, 46, 47, 48, 53, 57, 58, 61, 62, 71, 81, 87, 88, 89, 93, 94, 97, 98, 107, 117, 123, 124], "unwil": [15, 64, 100], "up": [1, 3, 4, 7, 8, 9, 10, 14, 15, 18, 19, 22, 23, 26, 27, 31, 32, 33, 39, 40, 42, 46, 47, 48, 53, 55, 56, 58, 59, 60, 61, 63, 64, 66, 67, 69, 72, 73, 76, 77, 81, 82, 83, 87, 88, 89, 91, 92, 94, 95, 96, 97, 99, 100, 102, 103, 105, 108, 109, 112, 113, 117, 118, 119, 123, 124], "updat": [30, 75, 111], "upfront": [15, 48, 64, 88, 100, 124], "upload": [46, 47, 48, 87, 88, 123, 124], "upon": [1, 27, 45, 53, 73, 86, 89, 109, 122], "upper": [1, 22, 43, 46, 47, 51, 53, 69, 84, 87, 89, 105, 120, 123], "upper_bound": [44, 85, 121], "upset": [42, 83, 119], "upsid": [39, 81, 117], "upstream": [48, 88, 124], "upward": [2, 4, 5, 8, 9, 10, 17, 18, 36, 39, 46, 47, 54, 56, 57, 59, 60, 61, 65, 66, 79, 87, 90, 92, 93, 95, 96, 97, 101, 102, 115, 123], "urllib3": [39, 81, 117], "us": [1, 2, 3, 5, 6, 9, 10, 11, 12, 14, 15, 17, 18, 19, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 36, 40, 42, 43, 44, 48, 49, 53, 54, 55, 57, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 75, 76, 77, 78, 79, 82, 83, 84, 85, 88, 89, 90, 91, 93, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 111, 112, 113, 114, 115, 118, 119, 120, 121, 124], "us_hist": [22, 69, 105], "us_hist_join": [22, 69, 105], "us_inequ": [22, 69, 105], "us_tabl": [46, 47, 87, 123], "usa": [22, 69, 105], "usag": [7, 14, 17, 46, 47, 49, 58, 63, 65, 87, 94, 99, 101, 123], "usd": [46, 47, 48, 87, 88, 123, 124], "user": [7, 30, 31, 39, 75, 81, 111, 117], "ussr": [22, 29, 69, 105], "usual": [5, 14, 22, 31, 33, 36, 40, 41, 42, 44, 48, 57, 63, 69, 77, 79, 82, 83, 85, 88, 93, 99, 105, 113, 115, 118, 119, 121, 124], "util": [2, 4, 7, 17, 26, 27, 43, 54, 56, 65, 72, 73, 84, 90, 92, 101, 108, 109, 120], "ux": 31, "v": [4, 5, 15, 22, 24, 29, 42, 44, 46, 47, 48, 49, 56, 57, 64, 69, 70, 83, 85, 87, 88, 92, 93, 100, 105, 106, 119, 121, 123, 124], "vaccin": [15, 31, 64, 100], "vagu": [14, 63, 99], "valid": [4, 42, 56, 83, 92, 119], "vallei": [22, 69, 105], "valorem": [15, 64, 100], "valu": [1, 4, 5, 9, 14, 15, 17, 18, 21, 22, 24, 25, 26, 27, 28, 30, 33, 38, 39, 42, 43, 44, 45, 48, 49, 53, 56, 57, 60, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 77, 81, 83, 84, 85, 86, 88, 89, 92, 93, 96, 99, 100, 101, 102, 104, 105, 106, 107, 108, 109, 110, 111, 113, 117, 119, 120, 121, 122, 124], "valuabl": [18, 21, 66, 68, 102, 104], "valuat": [46, 47, 48, 87, 88, 123, 124], "value_to_substitute_with": [9, 60, 96], "van": 51, "varepsilon": [44, 85, 121], "varepsilon_i": [43, 84, 120], "vari": [4, 14, 18, 26, 39, 49, 56, 63, 66, 72, 81, 92, 99, 102, 108, 117], "variabl": [1, 3, 4, 7, 8, 9, 15, 17, 18, 27, 30, 32, 33, 45, 53, 55, 56, 58, 59, 60, 64, 65, 66, 73, 75, 76, 77, 86, 89, 91, 92, 94, 95, 96, 100, 101, 102, 109, 111, 112, 113, 122], "varianc": [1, 53, 89], "variasbl": [8, 59, 95], "variat": [43, 84, 120], "varibl": [3, 55, 91], "varieti": [1, 33, 46, 47, 48, 53, 77, 87, 88, 89, 113, 123, 124], "variou": [1, 17, 29, 31, 45, 49, 53, 65, 86, 89, 101, 122], "vast": [1, 41, 53, 89], "vastli": [1, 53, 89], "ve": [1, 3, 4, 5, 10, 14, 15, 19, 24, 28, 32, 33, 42, 53, 55, 56, 57, 61, 63, 64, 67, 70, 74, 76, 77, 83, 89, 91, 92, 93, 97, 99, 100, 103, 106, 110, 112, 113, 119], "vendor": [25, 71, 107], "venkatesh": 51, "venom": [5, 57, 93], "vent": [48, 88, 124], "veri": [1, 3, 5, 14, 17, 21, 22, 30, 31, 33, 39, 42, 44, 46, 47, 48, 49, 53, 55, 57, 63, 65, 68, 69, 75, 77, 81, 83, 85, 87, 88, 89, 91, 93, 99, 101, 104, 105, 111, 113, 117, 119, 121, 123, 124], "verifi": [4, 5, 21, 26, 27, 44, 56, 57, 68, 72, 73, 85, 92, 93, 104, 108, 109, 121], "versa": [27, 33, 73, 77, 109, 113], "versatil": [1, 53, 89], "version": [1, 30, 42, 48, 49, 53, 75, 83, 88, 89, 111, 119, 124], "versu": [1, 14, 17, 32, 53, 63, 65, 76, 89, 99, 101, 112], "vertex": [15, 64, 100], "vertic": [5, 7, 15, 18, 22, 25, 34, 36, 37, 57, 58, 64, 66, 69, 71, 78, 79, 80, 87, 93, 94, 100, 102, 105, 107, 114, 115, 116, 123], "via": [1, 24, 37, 44, 45, 53, 70, 80, 85, 86, 89, 106, 116, 121, 122], "vice": [27, 33, 73, 77, 109, 113], "view": [8, 42, 44, 48, 59, 85, 88, 95, 121, 124], "villag": 31, "violat": [30, 75, 111], "vishwanathan": 51, "visibl": [15, 42, 64, 100], "vision": [32, 76, 112], "visit": 31, "visitor": 31, "visual": [1, 7, 14, 15, 16, 17, 18, 19, 21, 24, 34, 44, 48, 53, 58, 63, 64, 65, 66, 67, 68, 70, 78, 85, 88, 89, 94, 99, 100, 101, 102, 103, 104, 106, 114, 121, 124], "vogt": [48, 88, 124], "volatil": [27, 39, 73, 81, 109, 117], "volcker": [32, 76, 112], "volum": [3, 4, 27, 39, 55, 56, 73, 81, 91, 92, 109, 117], "volunt": 31, "von": 29, "vote": [32, 76, 112], "vulner": [22, 69, 105], "w": [17, 37, 65, 80, 101, 116], "wa": [1, 3, 4, 5, 15, 17, 18, 22, 25, 26, 27, 28, 31, 32, 37, 42, 44, 46, 47, 48, 49, 53, 55, 56, 57, 64, 65, 66, 69, 71, 72, 73, 74, 76, 80, 83, 85, 87, 88, 89, 91, 92, 93, 100, 101, 102, 105, 107, 108, 109, 110, 112, 116, 119, 121, 123, 124], "wage": [1, 10, 12, 17, 18, 37, 43, 44, 45, 53, 61, 62, 65, 66, 80, 84, 85, 86, 89, 97, 98, 101, 102, 116, 120, 121, 122], "wages": [44, 45, 85, 86, 121, 122], "wai": [1, 2, 3, 4, 5, 13, 14, 15, 17, 22, 24, 25, 27, 28, 29, 30, 32, 33, 37, 38, 39, 41, 42, 48, 53, 54, 55, 56, 57, 63, 64, 65, 69, 70, 71, 73, 74, 75, 76, 77, 80, 81, 83, 87, 88, 89, 90, 91, 92, 93, 99, 100, 101, 105, 106, 107, 109, 110, 111, 112, 113, 116, 117, 119, 123, 124], "wait": 31, "walk": [10, 49, 61, 97], "want": [1, 3, 4, 5, 10, 25, 26, 30, 32, 33, 39, 40, 42, 44, 53, 55, 56, 57, 61, 71, 72, 75, 76, 77, 81, 82, 83, 85, 89, 91, 92, 93, 97, 107, 108, 111, 112, 113, 117, 118, 119, 121], "war": [27, 29, 73, 109], "warn": [45, 83, 86, 119, 122], "washington": [22, 69, 105], "wasn": [28, 74, 110], "water": [31, 46, 47, 87, 123], "watson": [42, 45, 83, 86, 119, 122], "watt": [48, 88, 124], "we": [1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 14, 15, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124], "weaker": [32, 76, 112], "wealth": [22, 24, 31, 42, 46, 47, 69, 70, 83, 87, 105, 106, 119, 123], "wealthier": [5, 42, 46, 47, 57, 83, 87, 93, 119, 123], "web": 31, "webpag": [1, 53, 89], "wed": [45, 86, 122], "wedg": [15, 64, 100], "week": [7, 14, 15, 26, 31, 38, 39, 42, 44, 58, 63, 64, 72, 81, 83, 85, 94, 99, 100, 108, 117, 119, 121], "weeks_worked_1999": [44, 85, 121], "weigh": 49, "weight": [17, 28, 39, 65, 74, 81, 101, 110, 117], "welcom": [1, 53, 89], "welfar": [1, 13, 14, 15, 48, 53, 63, 64, 88, 89, 99, 100, 124], "well": [1, 4, 5, 14, 27, 29, 31, 32, 40, 42, 44, 53, 56, 57, 63, 73, 76, 82, 83, 85, 87, 89, 92, 93, 99, 109, 112, 118, 119, 121, 123], "went": [42, 44, 83, 85, 119, 121], "were": [1, 4, 5, 10, 12, 15, 17, 18, 22, 24, 26, 30, 31, 33, 39, 46, 47, 48, 53, 56, 57, 61, 62, 64, 65, 66, 69, 70, 72, 75, 77, 81, 87, 88, 89, 92, 93, 97, 98, 100, 101, 102, 105, 106, 108, 111, 113, 117, 123, 124], "what": [1, 3, 4, 5, 7, 10, 12, 14, 15, 17, 18, 19, 22, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 39, 40, 42, 43, 44, 52, 53, 55, 56, 57, 58, 61, 62, 63, 64, 65, 66, 67, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 89, 91, 92, 93, 94, 97, 98, 99, 100, 101, 102, 103, 105, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121], "whatev": [39, 81, 117], "when": [1, 2, 3, 4, 5, 7, 8, 10, 11, 12, 15, 17, 18, 19, 21, 22, 24, 25, 26, 27, 28, 29, 30, 32, 33, 36, 37, 39, 40, 42, 44, 48, 49, 53, 54, 55, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 85, 88, 89, 90, 91, 92, 93, 94, 95, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 115, 116, 117, 118, 119, 121, 124], "whenev": [30, 37, 42, 48, 75, 80, 83, 88, 111, 116, 119, 124], "where": [1, 3, 4, 5, 7, 8, 10, 12, 15, 17, 19, 21, 22, 25, 26, 27, 30, 31, 32, 33, 36, 37, 39, 40, 41, 42, 44, 46, 47, 48, 49, 53, 55, 56, 57, 58, 59, 61, 62, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 77, 79, 80, 81, 82, 83, 85, 87, 88, 89, 91, 92, 93, 94, 95, 97, 98, 100, 101, 103, 104, 105, 107, 108, 109, 111, 112, 113, 115, 116, 117, 118, 119, 121, 123, 124], "wherea": [14, 32, 44, 63, 76, 85, 99, 112, 121], "wherein": [17, 65, 101], "whether": [1, 14, 15, 28, 44, 46, 47, 48, 53, 63, 64, 74, 85, 87, 88, 89, 99, 100, 110, 121, 123, 124], "which": [0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124], "while": [1, 3, 4, 5, 7, 10, 14, 15, 17, 18, 19, 21, 22, 24, 26, 27, 29, 32, 33, 37, 39, 42, 44, 46, 47, 53, 55, 56, 57, 58, 61, 63, 64, 65, 66, 67, 68, 69, 70, 72, 73, 76, 77, 80, 81, 83, 85, 87, 89, 91, 92, 93, 94, 97, 99, 100, 101, 102, 103, 104, 105, 106, 108, 109, 112, 113, 116, 117, 119, 121, 123], "who": [1, 5, 10, 14, 15, 22, 26, 27, 31, 32, 33, 36, 37, 39, 42, 44, 53, 57, 61, 63, 64, 69, 72, 73, 76, 77, 79, 80, 81, 83, 85, 89, 93, 97, 99, 100, 105, 108, 109, 112, 113, 115, 116, 117, 119, 121], "whoever": [39, 81, 117], "whole": [15, 31, 33, 48, 64, 77, 88, 100, 113, 124], "whose": [1, 14, 44, 53, 63, 85, 89, 99, 121], "why": [1, 4, 8, 9, 10, 25, 34, 36, 42, 44, 53, 56, 59, 60, 61, 71, 78, 79, 83, 85, 89, 92, 95, 96, 97, 107, 114, 115, 119, 121], "wide": [48, 88, 124], "wider": [48, 88, 124], "width": [3, 10, 22, 48, 55, 61, 69, 88, 91, 97, 105, 124], "width_group": [48, 88, 124], "wih": [19, 67, 103], "wild": [39, 81, 117], "willing": [2, 5, 7, 10, 12, 14, 15, 25, 33, 37, 39, 54, 57, 58, 61, 62, 63, 64, 71, 77, 80, 81, 90, 93, 94, 97, 98, 99, 100, 107, 113, 116, 117], "willingli": [12, 62, 98], "win": [27, 43, 73, 84, 109, 120], "wind": [48, 88, 124], "wise": [1, 5, 53, 57, 89, 93], "with_column": [7, 14, 24, 44, 46, 47, 48, 58, 63, 70, 85, 87, 88, 94, 99, 106, 121, 123, 124], "within": [12, 22, 23, 24, 27, 32, 33, 48, 49, 51, 62, 69, 70, 73, 76, 77, 88, 98, 105, 106, 109, 112, 113, 124], "without": [1, 5, 12, 15, 24, 27, 29, 30, 39, 42, 45, 46, 47, 53, 57, 62, 64, 70, 73, 75, 81, 83, 86, 87, 89, 93, 98, 100, 106, 109, 111, 117, 119, 122, 123], "woman": [32, 76, 112], "women": [1, 53, 89], "won": [5, 14, 28, 31, 44, 57, 63, 74, 85, 93, 99, 110, 121], "wonder": [1, 53, 89], "word": [2, 5, 12, 14, 33, 39, 42, 54, 57, 62, 63, 77, 81, 83, 90, 93, 98, 99, 113, 117, 119], "work": [1, 12, 14, 17, 22, 24, 30, 31, 32, 33, 39, 48, 49, 51, 53, 62, 63, 65, 69, 70, 75, 76, 77, 81, 88, 89, 98, 99, 101, 105, 106, 111, 112, 113, 117, 124], "worker": [12, 17, 22, 32, 33, 37, 62, 65, 69, 76, 77, 80, 98, 101, 105, 112, 113, 116], "workforc": [1, 53, 89], "world": [1, 4, 15, 24, 27, 31, 37, 44, 46, 47, 48, 51, 52, 53, 56, 64, 70, 73, 80, 85, 87, 88, 89, 92, 100, 106, 109, 116, 121, 123, 124], "world_hist": [22, 69, 105], "world_inequ": [22, 69, 105], "worri": [44, 85, 121], "wors": [22, 27, 44, 69, 73, 85, 105, 109, 121], "worsen": [46, 47, 87, 123], "worth": [14, 33, 39, 40, 63, 77, 81, 82, 99, 113, 117, 118], "worthwhil": [5, 42, 57, 83, 93, 119], "would": [1, 2, 3, 4, 5, 7, 9, 10, 12, 14, 15, 17, 18, 21, 22, 24, 25, 26, 27, 28, 30, 31, 33, 37, 39, 40, 42, 44, 46, 47, 48, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 77, 80, 81, 82, 83, 85, 87, 88, 89, 90, 91, 92, 93, 94, 96, 97, 98, 99, 100, 101, 102, 104, 105, 106, 107, 108, 109, 110, 111, 113, 116, 117, 118, 119, 121, 123, 124], "wouldn": [5, 33, 57, 77, 93, 113], "wow": [44, 85, 121], "write": [3, 10, 30, 39, 44, 55, 61, 75, 81, 85, 91, 97, 111, 117, 121], "written": [42, 83, 119], "wrote": [22, 69, 105], "wta": [14, 63, 99], "wtp": [14, 63, 99], "ww1": [37, 80, 116], "www": [46, 47, 48, 87, 88, 123, 124], "x": [3, 4, 5, 9, 14, 15, 18, 21, 22, 24, 28, 30, 36, 37, 39, 42, 44, 45, 46, 47, 48, 55, 56, 57, 60, 63, 64, 66, 68, 69, 70, 74, 75, 81, 83, 85, 86, 87, 88, 91, 92, 93, 96, 99, 100, 102, 104, 105, 106, 110, 111, 117, 119, 121, 122, 123, 124], "x1": [19, 21, 42, 45, 67, 68, 83, 86, 103, 104, 119, 122], "x2": [19, 21, 42, 67, 68, 83, 103, 104, 119], "x_": [39, 42, 44, 81, 83, 85, 117, 119, 121], "x_1": [19, 21, 42, 67, 68, 83, 103, 104, 119], "x_2": [19, 21, 42, 67, 68, 83, 103, 104, 119], "x_i": [28, 44, 74, 85, 110, 121], "x_po": [48, 88, 124], "x_standard": [44, 85, 121], "x_t": [39, 81, 117], "xi": 36, "xlabel": [5, 9, 22, 48, 57, 60, 69, 88, 93, 96, 105, 124], "xtick": [48, 88, 124], "y": [3, 9, 10, 15, 17, 18, 24, 32, 34, 36, 37, 39, 42, 44, 45, 46, 47, 48, 55, 60, 61, 64, 65, 66, 70, 76, 78, 83, 85, 86, 87, 88, 91, 96, 97, 100, 101, 102, 106, 112, 114, 119, 121, 122, 123, 124], "y_i": [44, 85, 121], "y_standard": [44, 85, 121], "yai": [32, 76, 112], "yale": [32, 76, 112], "year": [1, 4, 10, 22, 27, 30, 31, 32, 33, 37, 39, 40, 41, 42, 43, 46, 47, 48, 53, 56, 61, 69, 73, 75, 76, 77, 80, 81, 82, 83, 84, 87, 88, 89, 92, 97, 105, 109, 111, 112, 113, 116, 117, 118, 119, 120, 123, 124], "yearli": [40, 82, 118], "yellen": [32, 76, 112], "yellow": [1, 18, 53, 66, 89, 102], "yep": 51, "yet": [2, 17, 26, 33, 39, 44, 48, 54, 65, 72, 77, 81, 85, 88, 90, 101, 108, 113, 117, 121, 124], "yf": [39, 81, 117], "yfinanc": [39, 81, 117], "yield": [2, 4, 14, 17, 24, 31, 33, 54, 56, 63, 65, 70, 77, 90, 92, 99, 101, 106, 113], "ylabel": [5, 9, 22, 48, 57, 60, 69, 88, 93, 96, 105, 124], "ylim": [9, 60, 96], "yml": 0, "york": [32, 76, 112], "you": [1, 3, 4, 5, 9, 10, 14, 15, 18, 21, 22, 24, 26, 27, 28, 30, 31, 32, 33, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 53, 55, 56, 57, 60, 61, 63, 64, 66, 68, 69, 70, 72, 73, 74, 75, 76, 77, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 96, 97, 99, 100, 102, 104, 105, 106, 108, 109, 110, 111, 112, 113, 117, 118, 119, 120, 121, 122, 123, 124], "young": [22, 69, 105], "younger": [1, 53, 89], "your": [4, 5, 10, 22, 39, 40, 42, 44, 45, 46, 47, 48, 56, 57, 61, 69, 81, 82, 83, 85, 86, 87, 88, 92, 93, 97, 105, 117, 118, 119, 121, 122, 123, 124], "yourself": [1, 5, 18, 53, 57, 66, 89, 93, 102], "z": [18, 66, 102], "zealand": [37, 80, 116], "zero": [18, 29, 39, 42, 44, 46, 47, 48, 66, 83, 85, 87, 88, 102, 119, 121, 123, 124], "zorder": [10, 61, 97], "zucman": [22, 69, 105], "\u03c4": [39, 81, 117], "\ud835\udc56": [33, 77, 113], "\ud835\udf0b_t": [33, 77, 113], "\ud835\udf0b_\ud835\udc61": [33, 77, 113]}, "titles": ["textbook", "Introduction", "Demand Curves", "An Empirical Demand Curve", "Log-log and Semi-log Demand Curves", "Elasticity", "Demand and Elasticities", "The Supply Curve", "An Empirical Example from EEP 147", "SymPy", "Market Equilibria", "Supply and Market Equilibrium", "Other Forms of Government Intervention", "Public Economics", "Surplus", "Taxes and Subsidies", "Production", "Production and Cobb-Douglas Functions", "Analyzing Shifts in \\(A\\) and \\(\\alpha\\)", "Budget Constraints and Utility Maximization", "Utility", "Utility Functions and Indifference Curves", "Income Inequality Historically", "Inequality", "Measurements of Inequality", "Bertrand Competition", "Cournot Competition", "Equilibria & Oligopolies", "Expected Utility Theory", "Game Theory", "Python Classes", "Development", "Central Banks", "Macroeconomic Indicators", "Fiscal Policy", "Macroeconomic Policy", "IS-Curve", "Phillips Curve", "Finance", "Options", "Present Value, Future Value, and Interest Rates", "Econometrics", "Multivariable Regression and Bias", "Reading Economics Papers", "Single Variable Regression", "Using statsmodels for Regression", "Environmental Kuznets Curve Hypothesis", "Environmental Kuznets Curve Hypothesis", "Marginal Abatement Cost Curves", "Environmental Economics", "License for this book", " Data 88E: Economic Models ", "Bibliography", "Introduction", "Demand Curves", "An Empirical Demand Curve", "Log-log and Semi-log Demand Curves", "Elasticity", "The Supply Curve", "An Empirical Example from EEP 147", "SymPy", "Market Equilibria", "Other Forms of Government Intervention", "Surplus", "Taxes and Subsidies", "Production and Cobb-Douglas Functions", "Analyzing Shifts in \\(A\\) and \\(\\alpha\\)", "Budget Constraints and Utility Maximization", "Utility Functions and Indifference Curves", "Income Inequality Historically", "Measurements of Inequality", "Bertrand Competition", "Cournot Competition", "Equilibria & Oligopolies", "Expected Utility Theory", "Python Classes", "Central Banks", "Macroeconomic Indicators", "Fiscal Policy", "IS-Curve", "Phillips Curve", "Options", "Present Value, Future Value, and Interest Rates", "Multivariable Regression and Bias", "Reading Economics Papers", "Single Variable Regression", "Using statsmodels for Regression", "Environmental Kuznets Curve Hypothesis", "Marginal Abatement Cost Curves", "Introduction", "Demand Curves", "An Empirical Demand Curve", "Log-log and Semi-log Demand Curves", "Elasticity", "The Supply Curve", "An Empirical Example from EEP 147", "SymPy", "Market Equilibria", "Other Forms of Government Intervention", "Surplus", "Taxes and Subsidies", "Production and Cobb-Douglas Functions", "Analyzing Shifts in \\(A\\) and \\(\\alpha\\)", "Budget Constraints and Utility Maximization", "Utility Functions and Indifference Curves", "Income Inequality Historically", "Measurements of Inequality", "Bertrand Competition", "Cournot Competition", "Equilibria & Oligopolies", "Expected Utility Theory", "Python Classes", "Central Banks", "Macroeconomic Indicators", "Fiscal Policy", "IS-Curve", "Phillips Curve", "Options", "Present Value, Future Value, and Interest Rates", "Multivariable Regression and Bias", "Reading Economics Papers", "Single Variable Regression", "Using statsmodels for Regression", "Environmental Kuznets Curve Hypothesis", "Marginal Abatement Cost Curves"], "titleterms": {"": [46, 47, 48, 87, 88, 123, 124], "1": [48, 88, 124], "147": [8, 59, 95], "2": [48, 88, 124], "88e": 51, "A": [1, 18, 24, 53, 66, 70, 89, 102, 106], "The": [1, 7, 17, 22, 24, 40, 48, 53, 58, 65, 69, 70, 82, 88, 89, 94, 101, 105, 106, 118, 124], "abat": [48, 88, 124], "acknowledg": 51, "affect": [22, 69, 105], "afterword": [1, 53, 89], "algebra": [15, 64, 100], "along": [2, 54, 90], "alpha": [18, 66, 102], "an": [1, 3, 8, 15, 39, 53, 55, 59, 64, 81, 89, 91, 95, 100, 117], "analyz": [18, 66, 102], "api": [39, 81, 117], "appli": [25, 26, 71, 72, 107, 108], "ar": [48, 88, 124], "assert": [30, 75, 111], "assess": [48, 88, 124], "augment": [37, 80, 116], "autarki": [12, 62, 98], "avocado": [4, 56, 92], "awai": [10, 61, 97], "back": [48, 88, 124], "bank": [32, 76, 112], "behavior": [7, 58, 94], "benefit": [1, 53, 89], "bertrand": [25, 71, 107], "best": [26, 72, 108], "beta": [44, 85, 121], "between": [3, 55, 91], "bia": [42, 83, 119], "bibliographi": 52, "binari": [44, 85, 121], "black": [39, 81, 117], "book": 50, "bric": [46, 47, 87, 123], "brief": [1, 53, 89], "budget": [19, 67, 103], "build": [46, 47, 87, 123], "calcul": [15, 39, 64, 81, 100, 117], "call": [39, 81, 117], "capit": [17, 48, 65, 88, 101, 124], "causal": [1, 53, 89], "central": [32, 76, 112], "chang": [4, 56, 92], "china": [46, 47, 87, 123], "class": [30, 75, 111], "classic": [34, 37, 78, 80, 114, 116], "cobb": [17, 21, 65, 68, 101, 104], "coeffici": [24, 70, 106], "colinear": [42, 83, 119], "collect": [1, 53, 89], "compar": [24, 70, 106], "comparison": [17, 65, 101], "competit": [25, 26, 71, 72, 107, 108], "comput": [1, 53, 89], "conclus": [48, 88, 124], "constraint": [19, 67, 103], "construct": [48, 88, 124], "consum": [14, 63, 99], "control": [12, 62, 98], "cost": [7, 48, 58, 88, 94, 124], "countri": [17, 46, 47, 65, 87, 101, 123], "cournot": [26, 72, 108], "cours": 51, "creat": [10, 30, 61, 75, 97, 111], "critic": [46, 47, 87, 123], "cross": [17, 36, 65, 79, 101, 115], "curv": [2, 3, 4, 7, 10, 14, 21, 24, 36, 37, 46, 47, 48, 54, 55, 56, 58, 61, 63, 68, 70, 79, 80, 87, 88, 90, 91, 92, 94, 97, 99, 104, 106, 115, 116, 123, 124], "data": [1, 10, 51, 53, 61, 89, 97], "deadweight": [15, 64, 100], "definit": [7, 10, 24, 27, 28, 40, 58, 61, 70, 73, 74, 82, 94, 97, 106, 109, 110, 118], "demand": [2, 3, 4, 6, 10, 14, 54, 55, 56, 61, 63, 90, 91, 92, 97, 99], "deriv": [36, 79, 115], "descript": 51, "develop": 31, "diagram": [39, 81, 117], "diminish": [21, 68, 104], "disclaim": [39, 81, 117], "discount": [40, 82, 118], "discours": [1, 53, 89], "domest": [33, 77, 113], "dougla": [17, 21, 65, 68, 101, 104], "dummi": [42, 83, 119], "dynam": [36, 48, 79, 88, 115, 124], "earn": [44, 85, 121], "econom": [1, 13, 43, 49, 51, 53, 84, 89, 120], "econometr": [41, 44, 85, 121], "economi": [17, 65, 101], "eep": [8, 59, 95], "effect": [1, 2, 15, 18, 53, 54, 64, 66, 89, 90, 100, 102], "elast": [5, 6, 57, 93], "eleph": [22, 69, 105], "empir": [3, 8, 55, 59, 91, 95], "environment": [46, 47, 49, 87, 123], "equal": [24, 70, 106], "equilibria": [10, 15, 27, 61, 64, 73, 97, 100, 109], "equilibrium": [10, 11, 25, 26, 27, 61, 71, 72, 73, 97, 107, 108, 109], "error": [44, 85, 121], "examin": [15, 21, 64, 68, 100, 104], "exampl": [8, 14, 15, 24, 59, 63, 64, 70, 95, 99, 100, 106], "expect": [28, 37, 74, 80, 110, 116], "express": [15, 64, 100], "factor": [17, 22, 40, 65, 69, 82, 101, 105, 118], "financ": 38, "financi": [1, 53, 89], "find": [10, 61, 97], "firm": [7, 48, 58, 88, 94, 124], "fiscal": [34, 78, 114], "fit": [3, 10, 55, 61, 91, 97], "form": [12, 24, 62, 70, 98, 106], "from": [8, 10, 59, 61, 95, 97], "function": [3, 15, 17, 21, 26, 55, 64, 65, 68, 72, 91, 100, 101, 104, 108], "further": [46, 47, 48, 87, 88, 123, 124], "futur": [40, 82, 118], "ga": [48, 88, 124], "game": 29, "gener": [1, 53, 89], "gini": [24, 70, 106], "github": 51, "govern": [12, 48, 62, 88, 98, 124], "graph": [22, 46, 47, 69, 87, 105, 123], "gross": [33, 77, 113], "growth": [22, 69, 105], "hat": [44, 85, 121], "histor": [22, 69, 105], "href": 51, "http": 51, "hypothesi": [46, 47, 87, 123], "i": [21, 36, 68, 79, 104, 115], "implic": [17, 25, 26, 36, 65, 71, 72, 79, 101, 107, 108, 115], "import": [48, 88, 124], "incid": [15, 64, 100], "incom": [1, 2, 22, 46, 47, 53, 54, 69, 87, 89, 90, 105, 123], "india": [46, 47, 87, 123], "indic": [33, 77, 113], "indiffer": [21, 68, 104], "individu": [46, 47, 87, 123], "inequ": [22, 23, 24, 69, 70, 105, 106], "infer": [1, 53, 89], "inflat": [33, 77, 113], "instanc": [30, 75, 111], "intens": [48, 88, 124], "interest": [33, 40, 77, 82, 113, 118], "intertempor": [1, 53, 89], "intervent": [12, 48, 62, 88, 98, 124], "introduc": [48, 88, 124], "introduct": [1, 53, 89], "io": 51, "keynesian": [34, 36, 78, 79, 114, 115], "kuznet": [46, 47, 87, 123], "labor": [17, 65, 101], "lack": [48, 88, 124], "law": [21, 68, 104], "learn": 35, "licens": [50, 51], "limit": [48, 88, 124], "line": [24, 70, 106], "linear": [3, 55, 91], "log": [4, 56, 92], "logarithm": [4, 56, 92], "lorenz": [24, 70, 106], "loss": [15, 64, 100], "low": [46, 47, 87, 123], "lucr": [1, 53, 89], "mac": [48, 88, 124], "macroeconom": [33, 35, 77, 113], "major": [1, 53, 89], "margin": [21, 22, 48, 68, 69, 88, 104, 105, 124], "market": [10, 11, 61, 97], "matric": [27, 73, 109], "matrix": [28, 74, 110], "maxim": [19, 67, 103], "mckinsei": [48, 88, 124], "mean": [1, 44, 53, 85, 89, 121], "measur": [24, 70, 106], "median": [1, 53, 89], "methan": [48, 88, 124], "method": [30, 75, 111], "model": 51, "monei": [40, 82, 118], "most": [1, 53, 89], "movement": [2, 10, 54, 61, 90, 97], "multivari": [42, 83, 119], "nash": [27, 73, 109], "neg": [21, 48, 68, 88, 104, 124], "new": [15, 64, 100], "next": [46, 47, 48, 87, 88, 123, 124], "non": [21, 68, 104], "norwai": [87, 123], "note": [14, 63, 99], "oligopoli": [27, 73, 109], "oper": [30, 75, 111], "option": [12, 39, 62, 81, 98, 117], "other": [5, 12, 24, 57, 62, 70, 93, 98, 106], "our": [46, 47, 87, 123], "outcom": 35, "output": [18, 66, 102], "over": [1, 53, 89], "own": [46, 47, 87, 123], "paper": [43, 84, 120], "payoff": [27, 28, 39, 73, 74, 81, 109, 110, 117], "perfect": [24, 70, 106], "phillip": [37, 80, 116], "polici": [34, 35, 78, 114], "polynomi": [10, 61, 97], "popul": [22, 69, 105], "preprocess": [10, 61, 97], "present": [40, 82, 118], "price": [3, 10, 12, 15, 39, 55, 61, 62, 64, 81, 91, 97, 98, 100, 117], "produc": [14, 63, 99], "product": [7, 16, 17, 33, 58, 65, 77, 94, 101, 113], "profit": [26, 72, 108], "proport": [4, 56, 92], "public": 13, "put": [39, 81, 117], "python": [30, 75, 111], "quantiti": [3, 10, 15, 55, 61, 64, 91, 97, 100], "rate": [22, 33, 40, 69, 77, 82, 105, 113, 118], "reaction": [48, 88, 124], "read": [28, 43, 46, 47, 48, 74, 84, 87, 88, 110, 120, 123, 124], "real": [33, 77, 113], "reassign": [30, 75, 111], "recommend": [46, 47, 48, 87, 88, 123, 124], "regress": [42, 44, 45, 83, 85, 86, 119, 121, 122], "rel": [5, 57, 93], "relationship": [3, 4, 10, 55, 56, 61, 91, 92, 97], "represent": [30, 75, 111], "respons": [26, 72, 108], "rest": [22, 69, 105], "return": [18, 21, 39, 66, 68, 81, 102, 104, 117], "revenu": [5, 57, 93], "revisit": [4, 56, 92], "risk": [1, 53, 89], "root": [44, 85, 121], "salienc": [15, 64, 100], "scale": [18, 66, 102], "schole": [39, 81, 117], "school": [44, 85, 121], "scienc": [1, 53, 89], "semi": [4, 56, 92], "shift": [2, 18, 54, 66, 90, 102], "singl": [44, 85, 121], "solut": [15, 64, 100], "solv": [15, 64, 100], "some": [48, 88, 124], "squar": [44, 85, 121], "state": [22, 46, 47, 69, 105], "statsmodel": [45, 86, 122], "strategi": [28, 74, 110], "student": 35, "subsid": [15, 64, 100], "subsidi": [15, 64, 100], "substitut": [2, 54, 90], "suppli": [7, 10, 11, 14, 58, 61, 63, 94, 97, 99], "surplu": [14, 63, 99], "sympi": [9, 60, 96], "tax": [15, 22, 64, 69, 100, 105], "taxat": [15, 64, 100], "textbook": 0, "theori": [28, 29, 74, 110], "thi": 50, "time": [1, 40, 53, 82, 89, 118], "toi": [24, 70, 106], "top": [22, 69, 105], "total": [17, 65, 101], "trade": [12, 39, 62, 81, 98, 117], "uncertainti": [44, 85, 121], "unemploy": [22, 33, 69, 77, 105, 113], "unit": [22, 46, 47, 69, 105], "us": [4, 39, 45, 56, 81, 86, 92, 117, 122], "usa": [87, 123], "util": [1, 19, 20, 21, 28, 53, 67, 68, 74, 89, 103, 104, 110], "v": [1, 12, 34, 53, 62, 78, 89, 98, 114], "valu": [40, 82, 118], "variabl": [42, 44, 83, 85, 119, 121], "view": [34, 78, 114], "visual": [3, 4, 10, 42, 55, 56, 61, 83, 91, 92, 97, 119], "what": [21, 46, 47, 48, 68, 87, 88, 104, 123, 124], "why": [15, 48, 64, 88, 100, 124], "world": [12, 22, 62, 69, 98, 105], "year": [44, 85, 121], "your": [1, 53, 89], "\ud835\udc48": [33, 77, 113], "\ud835\udc4c": [33, 77, 113], "\ud835\udc5f": [33, 77, 113], "\ud835\udf0b": [33, 77, 113]}}) \ No newline at end of file