forked from davidmerwin/distributed-computing
-
Notifications
You must be signed in to change notification settings - Fork 0
/
demo.py
306 lines (234 loc) · 10.2 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
# Copyright 2021 D-Wave Systems Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Graph partitioning with CQM solver."""
from random import random
from collections import defaultdict
import sys
import networkx as nx
import numpy as np
import click
import matplotlib
from dimod import Binary, ConstrainedQuadraticModel, quicksum
from dwave.system import LeapHybridCQMSampler
try:
import matplotlib.pyplot as plt
except ImportError:
matplotlib.use("agg")
import matplotlib.pyplot as plt
def build_graph(graph, nodes, degree, prob, p_in, p_out, new_edges, k_partition):
"""Builds graph from user specified parameters or use defaults.
Args:
See @click decorator before main.
Returns:
G (Graph): The graph to be partitioned
"""
k = k_partition
if k * nodes > 5000:
raise ValueError("Problem size is too large.")
elif nodes % k != 0:
raise ValueError("Number of nodes must be divisible by k.")
# Build graph using networkx
if graph == 'partition':
print("\nBuilding partition graph...")
G = nx.random_partition_graph([int(nodes/k)]*k, p_in, p_out)
elif graph == 'internet':
print("\nReading in internet graph of size", nodes, "...")
G = nx.random_internet_as_graph(nodes)
elif graph == 'rand-reg':
if degree >= nodes:
raise ValueError("degree must be less than number of nodes")
if degree * nodes % 2 == 1:
raise ValueError("degree * nodes must be even")
print("\nGenerating random regular graph...")
G = nx.random_regular_graph(degree, nodes)
elif graph == 'ER':
print("\nGenerating Erdos-Renyi graph...")
G = nx.erdos_renyi_graph(nodes, prob)
elif graph == 'SF':
if new_edges > nodes:
raise ValueError("Number of edges must be less than number of nodes")
print("\nGenerating Barabasi-Albert scale-free graph...")
G = nx.barabasi_albert_graph(nodes, new_edges)
else:
# Should not be reachable, due to click argument validation
raise ValueError(f"Unexpected graph type: {graph}")
return G
# Visualize the input graph
def visualize_input_graph(G):
"""Visualize the graph to be partitioned.
Args:
G (Graph): Input graph to be partitioned
Returns:
None. Image saved as input_graph.png.
"""
pos = nx.random_layout(G)
nx.draw_networkx_nodes(G, pos, node_size=20, node_color='r', edgecolors='k')
nx.draw_networkx_edges(G, pos, edgelist=G.edges(), style='solid', edge_color='#808080')
plt.draw()
plt.savefig('input_graph.png')
plt.close()
def build_cqm(G, k):
"""Build the CQM.
Args:
G (Graph): Input graph to be partitioned
k (int): Number of partitions to be used
Returns:
cqm (ConstrainedQuadraticModel): The CQM for our problem
"""
# Set up the partitions
partitions = range(k)
# Initialize the CQM object
print("\nBuilding constrained quadratic model...")
cqm = ConstrainedQuadraticModel()
# Add binary variables, one for each node and each partition in the graph
print("\nAdding variables....")
v = [[Binary(f'v_{i},{k}') for k in partitions] for i in G.nodes]
# One-hot constraint: each node is assigned to exactly one partition
print("\nAdding one-hot constraints...")
for i in G.nodes:
# print("\nAdding one-hot for node", i)
cqm.add_discrete([f'v_{i},{k}' for k in partitions], label=f"one-hot-node-{i}")
# Constraint: Partitions have equal size
print("\nAdding partition size constraint...")
for p in partitions:
# print("\nAdding partition size constraint for partition", p)
cqm.add_constraint(quicksum(v[n][p] for n in G.nodes) == G.number_of_nodes()/k, label='partition-size-{}'.format(p))
# Objective: minimize edges between partitions
print("\nAdding objective...")
min_edges = []
for i,j in G.edges:
for p in partitions:
min_edges.append(v[i][p]+v[j][p]-2*v[i][p]*v[j][p])
cqm.set_objective(sum(min_edges))
return cqm
def run_cqm_and_collect_solutions(cqm, sampler):
"""Send the CQM to the sampler and return the best sample found.
Args:
cqm (ConstrainedQuadraticModel): The CQM for our problem
sampler: The CQM sampler to be used. Must have sample_cqm function.
Returns:
dict: The first feasible solution found
"""
# Initialize the solver
print("\nSending to the solver...")
# Solve the CQM problem using the solver
sampleset = sampler.sample_cqm(cqm, label='Example - Graph Partitioning')
feasible_sampleset = sampleset.filter(lambda row: row.is_feasible)
# Return the first feasible solution
if not len(feasible_sampleset):
print("\nNo feasible solution found.\n")
return None
return feasible_sampleset.first.sample
def process_sample(sample, G, k, verbose=True):
"""Interpret the sample found in terms of our graph.
Args:
sample (dict): Sample to be used
G (graph): Original input graph
k (int): Number of partitions
verbose (bool): Trigger to print output to command-line
Returns:
soln (list): List of partitions, indexed by node
partitions (dict): Each item is partition: [nodes in partition]
"""
partitions = defaultdict(list)
soln = [-1]*G.number_of_nodes()
for node in G.nodes:
for p in range(k):
if sample[f'v_{node},{p}'] == 1:
partitions[p].append(node)
soln[node] = p
# Count the nodes in each partition
counts = np.zeros(k)
for i in partitions:
counts[i] += len(partitions[i])
# Compute the number of links between different partitions
sum_diff = 0
for i, j in G.edges:
if soln[i] != soln[j]:
sum_diff += 1
if verbose:
print("Counts in each partition: ", counts)
print("Number of links between partitions: ", sum_diff)
print("Number of links within partitions:", len(G.edges)-sum_diff)
return soln, partitions
def visualize_results(G, partitions, soln):
"""Visualize the partition.
Args:
G (graph): Original input graph
partitions (dict): Each item is partition: [nodes in partition]
soln (list): List of partitions, indexed by node
Returns:
None. Output is saved as output_graph.png.
"""
print("\nVisualizing output...")
# Build hypergraph of partitions
hypergraph = nx.Graph()
hypergraph.add_nodes_from(partitions.keys())
pos_h = nx.circular_layout(hypergraph, scale=2.)
# Place nodes within partition
pos_full = {}
assignments = {node: soln[node] for node in range(len(soln))}
for node, partition in assignments.items():
pos_full[node] = pos_h[partition]
pos_g = {}
for _, nodes in partitions.items():
subgraph = G.subgraph(nodes)
pos_subgraph = nx.random_layout(subgraph)
pos_g.update(pos_subgraph)
# Combine hypergraph and partition graph positions
pos = {}
for node in G.nodes():
pos[node] = pos_full[node] + pos_g[node]
nx.draw_networkx_nodes(G, pos, node_size=40, node_color=soln, edgecolors='k')
# Draw good and bad edges in different colors
bad_edges = [(u, v) for u, v in G.edges if soln[u] != soln[v]]
good_edges = [(u,v) for u, v, in G.edges if soln[u] == soln[v]]
nx.draw_networkx_edges(G, pos, edgelist=good_edges, style='solid', edge_color='#7f7f7f')
nx.draw_networkx_edges(G, pos, edgelist=bad_edges, style='solid', edge_color='k')
# Save the output image
plt.draw()
output_name = 'output_graph.png'
plt.savefig(output_name)
print("\tOutput stored in", output_name)
@click.command(context_settings=dict(help_option_names=['-h', '--help']))
@click.option("-g", "--graph", type=click.Choice(['partition', 'internet', 'rand-reg', 'ER', 'SF']),
help="Graph to partition.", default='partition', show_default=True)
@click.option("-n", "--nodes", help="Set graph size for graph.", default=100, type=click.IntRange(1),
show_default=True)
@click.option("-d", "--degree", help="Set node degree for random regular graph.", default=4,
type=click.IntRange(1), show_default=True)
@click.option("-p", "--prob", help="Set graph edge probability for ER graph. Must be between 0 and 1.",
type=click.FloatRange(0, 1), default=0.25, show_default=True)
@click.option("-i", "--p-in", help="Set probability of edges within groups for partition graph. Must be between 0 and 1.",
type=click.FloatRange(0, 1), default=0.5, show_default=True)
@click.option("-o", "--p-out", help="Set probability of edges between groups for partition graph. Must be between 0 and 1.",
type=click.FloatRange(0, 1), default=0.001, show_default=True)
@click.option("-e", "--new-edges", help="Set number of edges from new node to existing node in SF graph.",
default=4, type=click.IntRange(1), show_default=True)
@click.option("-k", "--k-partition", help="Set number of partitions to divide graph into.", default=4,
type=click.IntRange(2), show_default=True)
def main(graph, nodes, degree, prob, p_in, p_out, new_edges, k_partition):
G = build_graph(graph, nodes, degree, prob, p_in, p_out, new_edges, k_partition)
visualize_input_graph(G)
cqm = build_cqm(G, k_partition)
# Initialize the CQM solver
print("\nOptimizing on LeapHybridCQMSampler...")
sampler = LeapHybridCQMSampler()
sample = run_cqm_and_collect_solutions(cqm, sampler)
if sample is not None:
soln, partitions = process_sample(sample, G, k_partition)
visualize_results(G, partitions, soln)
if __name__ == '__main__':
# pylint: disable=no-value-for-parameter
main()