Skip to content

Latest commit

 

History

History
12 lines (7 loc) · 506 Bytes

README.md

File metadata and controls

12 lines (7 loc) · 506 Bytes

Code supplement

This repository contains the code used to process and analyse the data presented in the "Supervised latent factor modeling isolates cell-type-specific transcriptomic modules that underlie Alzheimer’s disease progression" paper.

Create the conda python environment: conda env create -f environment.yaml

Notebook to run PLS-DA analysis: 1_fit_pls.ipynb

Notebook to analyze learned gene modules: 2_module_analysis.ipynb

Data to reproduce published figures: figure_source_data/