-
Notifications
You must be signed in to change notification settings - Fork 0
/
discretePoissonOG.R
139 lines (71 loc) · 1.29 KB
/
discretePoissonOG.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
Logout
Maps
Sync Geoserver
mancio
br_precip
Development Tools
Tools
precip
test
sir compartment model
sir_22
discretePoissonOG
discreteNOG
sirODE
discreteOG
discretePoissonNOG
sirODE_user
aggregate
discretePoissonNOG_userparams
Results
Analyses
Main
News
Map
Info
Find
Analyze
Select Tool
Tool: discretePoissonOG
Description: undefined
Set Parameters
Save Analysis
Submit Tool
Results
R Result
Save
Overview
View Code
Fork
## Iterating function
f = function(x,bta,gma,dt){
with(as.list(x),{
infect = rpois(1, bta*dt*S*I)
recover = rpois(1, gma*I*dt)
Sp = S - infect
Ip = I + infect - recover
Rp = R + recover
time = time + dt
return(c(time=time,S=Sp,I=Ip,R=Rp))
})
}
## Initial Conditions
x = c(time=0,S=100,I=1,R=0)
## Data frame for holding all data
d = data.frame(t(x))
## Iterate while we still more or less have
## infectious individuals
while(x["I"] > 0.01 ){
x = f(x,0.003,1/7,0.1)
d = rbind(d,x)
}
## Plotting outcomes
par(lwd=2)
with(d, plot(time,S,col="green", pch=18,
ylab="Abundance", xlab="Time",
ylim=c(-50,150),type="b"))
abline(h=0,col="gray")
with(d,lines(time,I,col="red",
type="b",pch=18))
with(d,lines(time,R,col="blue",
type="b",pch=18))