-
Notifications
You must be signed in to change notification settings - Fork 0
/
wave_net_mlp.py
189 lines (146 loc) · 6.07 KB
/
wave_net_mlp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import torch
import torch.nn as nn
from torch.nn import functional as F
from dataclasses import dataclass
# hyperparameters
batch_size = 64 # how many independent sequences will we process in parallel?
block_size = 256 # what is the maximum context length for predictions?
max_iters = 5000
eval_interval = 500
learning_rate = 3e-4
device = 'mps' if torch.backends.mps.is_available() else 'cpu'
eval_iters = 200
d_model = 384
d_hidden = 2*d_model
n_layer = 1
dropout = 0.2
write_to_file = False
# ------------
@dataclass
class Config:
pass
torch.manual_seed(1337)
# wget https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt
with open('input.txt', 'r', encoding='utf-8') as f:
text = f.read()
# here are all the unique characters that occur in this text
chars = sorted(list(set(text)))
vocab_size = len(chars)
# create a mapping from characters to integers
stoi = { ch:i for i,ch in enumerate(chars) }
itos = { i:ch for i,ch in enumerate(chars) }
encode = lambda s: [stoi[c] for c in s] # encoder: take a string, output a list of integers
decode = lambda l: ''.join([itos[i] for i in l]) # decoder: take a list of integers, output a string
# Train and test splits
data = torch.tensor(encode(text), dtype=torch.long)
n = int(0.9*len(data)) # first 90% will be train, rest val
train_data = data[:n]
val_data = data[n:]
# data loading
def get_batch(split):
# generate a small batch of data of inputs x and targets y
data = train_data if split == 'train' else val_data
ix = torch.randint(len(data) - block_size, (batch_size,))
x = torch.stack([data[i:i+block_size] for i in ix]) # 256
y = torch.stack([data[i+block_size] for i in ix]) # 1
x, y = x.to(device), y.to(device)
return x, y
@torch.no_grad()
def estimate_loss():
out = {}
model.eval()
for split in ['train', 'val']:
losses = torch.zeros(eval_iters)
for k in range(eval_iters):
xb, yb = get_batch(split)
logits, loss = model(xb, yb)
losses[k] = loss.item()
out[split] = losses.mean()
model.train()
return out
# RNN
class WaveNetMLPLanguageModel(nn.Module):
def __init__(self):
super().__init__()
# each token directly reads off the logits for the next token from a lookup table
self.token_embedding_table = nn.Embedding(vocab_size, d_model)
self.ln_f = nn.LayerNorm(vocab_size) # final layer norm
self.ln_1 = nn.LayerNorm(d_model // 2)
self.ln_2 = nn.LayerNorm(d_model // 4)
self.ln_3 = nn.LayerNorm(d_model // 8)
self.linear_1 = nn.Linear(2 * d_model, d_model) # (2 * 384, 384)
self.linear_2 = nn.Linear(2 * d_model, d_model) # (2 * 384, 384)
self.linear_3 = nn.Linear(2 * d_model, d_model) # (2 * 384, 384)
self.linear_4 = nn.Linear(2 * d_model, d_model) # (2 * 384, 384)
self.linear_5 = nn.Linear(2 * d_model, d_model) # (2 * 384, 384)
self.linear_6 = nn.Linear(2 * d_model, d_model) # (2 * 384, 384)
self.ff = nn.Linear(4 * d_model, vocab_size)
self.gelu = nn.GELU()
self.dp_1 = nn.Dropout(dropout)
self.dp_2 = nn.Dropout(dropout)
def forward(self, idx, targets=None):
B, T = idx.shape
# idx and targets are both (B,T) tensor of integers
tok_emb = self.token_embedding_table(idx) # (B,T,d_model)
# Do this here!!!
x = tok_emb.view(B, T // 2, -1)
x = self.linear_1(x) # (B, T // 2, d_model), T = 128
x = x.view(B, T // 4, -1)
x = self.linear_2(x) # (B, T // 4, d_model), T = 64
x = x.view(B, T // 8, -1)
x = self.linear_3(x) # (B, T // 8, d_model), T = 32
x = x.view(B, T // 16, -1)
x = self.linear_4(x) # (B, T // 16, d_model), T = 16
x = x.view(B, T // 32, -1)
x = self.linear_5(x) # (B, T // 32, d_model), T = 8
x = x.view(B, T // 64, -1)
x = self.linear_6(x) # (B, T // 64, d_model), T // 64 = 4
x = x.view(B, -1) # (B, 4 * d_model)
logits = self.ff(x) # (B, vocab_size)
if targets is None:
loss = None
else:
B, C = logits.shape
assert(C == vocab_size)
#print(logits.shape, targets.shape)
loss = F.cross_entropy(logits, targets)
return logits, loss
def generate(self, idx, max_new_tokens):
# idx is (B, T) array of indices in the current context
for _ in range(max_new_tokens):
# crop idx to the last block_size tokens
idx_cond = idx[:, -block_size:]
# get the predictions
logits, loss = self(idx_cond)
# focus only on the last time step and use it to generate
logits = logits[:, -1, :] # becomes (B, C)
# apply softmax to get probabilities
probs = F.softmax(logits, dim=-1) # (B, C)
# sample from the distribution
idx_next = torch.multinomial(probs, num_samples=1) # (B, 1)
# append sampled index to the running sequence
idx = torch.cat((idx, idx_next), dim=1) # (B, T+1)
return idx
model = WaveNetMLPLanguageModel()
m = model.to(device)
# print the number of parameters in the model
print(sum(p.numel() for p in m.parameters())/1e6, 'M parameters')
# create a PyTorch optimizer
optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)
for it in range(max_iters):
# every once in a while evaluate the loss on train and val sets
if it % eval_interval == 0 or it == max_iters - 1:
losses = estimate_loss()
print(f"step {it}: train loss {losses['train']:.4f}, val loss {losses['val']:.4f}")
# sample a batch of data
xb, yb = get_batch('train')
# evaluate the loss
logits, loss = model(xb, yb)
optimizer.zero_grad(set_to_none=True)
loss.backward()
optimizer.step()
# generate from the model
context = torch.zeros((1, 1), dtype=torch.long, device=device)
print(decode(m.generate(context, max_new_tokens=500)[0].tolist()))
if write_to_file:
open('more.txt', 'w').write(decode(m.generate(context, max_new_tokens=10000)[0].tolist()))