-
Notifications
You must be signed in to change notification settings - Fork 0
/
machinedream.py
101 lines (88 loc) · 3.42 KB
/
machinedream.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
# machinedream (c) 2024 PYTHAI BSD licence v3
import random
import json
class MachineDream:
def __init__(self):
# Placeholder for memory structure
self.memory = []
self.insights = []
def parse_information(self, data):
"""
Parse the incoming data and structure it for knowledge creation.
Parameters:
data (str): Raw data to be parsed
Returns:
dict: Parsed and structured data
"""
# Simulate parsing raw data into structured knowledge (JSON in this case)
parsed_data = {"knowledge": data.split()}
return parsed_data
def simulate_problem_solving(self, problem):
"""
Simulate problem-solving scenarios based on the given problem.
Parameters:
problem (str): Problem statement to simulate
Returns:
dict: Simulated scenarios and possible solutions
"""
# Simulate by generating random solutions for the problem
solutions = []
for i in range(3):
simulated_solution = f"Solution_{random.randint(100, 999)}"
solutions.append(simulated_solution)
scenario = {
"problem": problem,
"solutions": solutions,
"chosen_solution": random.choice(solutions) # Randomly choose a solution
}
return scenario
def machine_dream(self, problem):
"""
Perform a machine dream, simulating a solution for a given problem.
Parameters:
problem (str): The problem statement
Returns:
dict: A dictionary of insights from the dream
"""
# Parse and dream on the problem
parsed_problem = self.parse_information(problem)
dream_result = self.simulate_problem_solving(problem)
# Generate insights from machine dreaming
insights = {
"dream_id": random.randint(1000, 9999),
"problem_parsed": parsed_problem,
"solution_chosen": dream_result['chosen_solution']
}
# Store insights into memory
self.memory.append(insights)
return insights
def auto_fine_tune(self):
"""
Auto-tune model parameters based on previous dreams and insights.
This is a simple simulation of auto-tuning.
"""
if self.memory:
tuning_factor = random.uniform(0.9, 1.1) # Adjust model by a random factor
print(f"Auto-tuning the model by a factor of {tuning_factor}")
else:
print("No previous insights to auto-tune from.")
def save_memory(self, filename="machine_dream_memory.json"):
"""
Save the memory of dreams to a file.
Parameters:
filename (str): The name of the file to save the memory
"""
with open(filename, 'w') as file:
json.dump(self.memory, file, indent=4)
print(f"Memory saved to {filename}")
# Example of usage
if __name__ == "__main__":
dream_machine = MachineDream()
# Simulate a machine dream on a problem statement
problem_statement = "Optimize neural network hyperparameters for image classification"
dream_insights = dream_machine.machine_dream(problem_statement)
print("Dream Insights:", dream_insights)
# Auto fine-tune based on dreams
dream_machine.auto_fine_tune()
# Save the memory for future reference
dream_machine.save_memory()