-
Notifications
You must be signed in to change notification settings - Fork 0
/
figures-cohens_d.qmd
264 lines (236 loc) · 12.7 KB
/
figures-cohens_d.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
---
title: "Code for Figures 1-2 based on Cohen's d"
author: "Eduard Klapwijk"
---
Load libraries to produce figures:
```{r setup}
#| eval: TRUE
#| echo: TRUE
#| message: FALSE
#| error: FALSE
#| warning: FALSE
# load libraries
library(dplyr)
library(patchwork)
library(ggplot2)
library(ggpubr)
# install neuroUp package from CRAN
# install.packages("neuroUp")
# load neuroUp
library(neuroUp)
```
Set seed and create Figure 1a for the Feedback task DLPFC ROI:
```{r Figure 1a}
#| label: fig-1a
#| eval: TRUE
#| echo: TRUE
#| message: FALSE
#| warning: FALSE
# set seed
set.seed(1234)
# Estimate differences (unstandardized and Cohen's d)
feedback_fig <- estim_diff(data = feedback,
vars_of_interest = c("mfg_learning",
"mfg_application"),
sample_size = 20:271,
k = 1000,
name = "A. Feedback DLPFC")
# plot figure 1a (and remove legend using ggplot2)
feedback_fig$fig_cohens_d + theme(legend.position = "none")
```
Plot Figure 2a for the Feedback task DLPFC ROI:
```{r Figure 2a}
#| label: fig-2a
#| eval: TRUE
#| echo: TRUE
#| message: FALSE
#| warning: FALSE
# plot figure 2a
feedback_fig$fig_d_nozero
```
Set seed and create Figure 1b for the Gambling task NAcc ROI:
```{r Figure 1b}
#| label: fig-1b
#| eval: TRUE
#| echo: TRUE
#| message: FALSE
#| warning: FALSE
# set seed
set.seed(1234)
# Estimate differences (unstandardized and Cohen's d)
gambling_fig <- estim_diff(data = gambling,
vars_of_interest = c("lnacc_self_win",
"lnacc_self_loss"),
sample_size = 20:221,
k = 1000,
name = "B. Gambling NAcc")
# plot figure 1b (and remove legend using ggplot2)
gambling_fig$fig_cohens_d + theme(legend.position = "none")
```
Plot Figure 2b for the Gambling task NAcc ROI:
```{r Figure 2b}
#| label: fig-2b
#| eval: TRUE
#| echo: TRUE
#| message: FALSE
#| warning: FALSE
# plot figure 2b
gambling_fig$fig_d_nozero
```
Set seed and create Figure 1c for the Self-evaluations task mPFC ROI:
```{r Figure 1c}
#| label: fig-1c
#| eval: TRUE
#| echo: TRUE
#| message: FALSE
#| warning: FALSE
# set seed
set.seed(1234)
# Estimate differences (unstandardized and Cohen's d)
selfeval_fig <- estim_diff(data = self_eval,
vars_of_interest = c("mpfc_self",
"mpfc_control"),
sample_size = 20:149,
k = 1000,
name = "C. Self-evaluations mPFC")
# plot figure 1c (and remove legend using ggplot2)
selfeval_fig$fig_cohens_d + theme(legend.position = "none")
```
Plot Figure 2c for the Self-evaluations task mPFC ROI:
```{r Figure 2c}
#| label: fig-2c
#| eval: TRUE
#| echo: TRUE
#| message: FALSE
#| warning: FALSE
# plot figure 2c
selfeval_fig$fig_d_nozero
```
Set seed and create Figure 1d for the Gaining for self task NAcc ROI:
```{r Figure 1d}
#| label: fig-1d
#| eval: TRUE
#| echo: TRUE
#| message: FALSE
#| warning: FALSE
# set seed
set.seed(1234)
# Estimate differences (unstandardized and Cohen's d)
vicar_char_fig <- estim_diff(data = vicar_char,
vars_of_interest = c("nacc_selfgain",
"nacc_bothnogain"),
sample_size = 20:156,
k = 1000,
name = "D. Gaining self NAcc")
# plot figure 1d (and remove legend using ggplot2)
vicar_char_fig$fig_cohens_d + theme(legend.position = "none")
```
Plot Figure 2d for the Gaining for self task NAcc ROI:
```{r Figure 2d}
#| label: fig-2d
#| eval: TRUE
#| echo: TRUE
#| message: FALSE
#| warning: FALSE
# plot figure 2d
vicar_char_fig$fig_d_nozero
```
Plot a mock figure with similar aesthetics to create an overall ggplot legend.
The only purpose of this code chunk is to make a simple overall legend to show that in light blue a subset of the individual permutations is shown and in purple the overall values. The original legends with permutation numbers will not be shown in the overall figure to create a cleaner look.
The approach taken here was to use a simple mock ggplot figure and then use the `ggpubr` package to isolate the legend and display the legend together with the 4 actual plots.
```{r Figure legend for paper}
#| label: fig-legend
#| eval: TRUE
#| echo: TRUE
#| message: FALSE
#| warning: FALSE
# make simple mock data to create overall legend
legend_data <- tibble(legend = c("10 permutations","Overall"), N = 1:2, scores = c(1.6, 1.8),
lower = c(.4, .6), upper = c(2.8, 3))
# factorize legend and N
legend_data$legend <- factor(legend_data$legend)
legend_data$N <- as.factor(legend_data$N)
# plot data to produce legend
figure_legend <- ggplot2::ggplot(data = legend_data,
ggplot2::aes(x = .data$N,
y = .data$scores,
colour = .data$legend,
size = .data$legend) ) +
ggplot2::theme_classic() +
ggplot2::geom_point(position = ggplot2::position_dodge(.8),
ggplot2::aes(x = .data$N,
y = .data$scores,
colour = .data$legend,
size = .data$legend)) +
ggplot2::scale_size_manual(values = c(2, 4)) +
ggplot2::geom_errorbar(ggplot2::aes(ymin = .data$lower, ymax = .data$upper),
linewidth = .5,
position = ggplot2::position_dodge(.1)) +
ggplot2::scale_linetype_manual(values = c(1, 6)) +
ggplot2::scale_color_manual(values = c("#56B4E9","#CC79A7") ) +
theme(legend.title=element_blank())
# use ggpubr get_legend to plot legend only
leg <- ggpubr::get_legend(figure_legend)
simple_legend <- ggpubr::as_ggplot(leg)
# show the simple overall legend
simple_legend
```
Plot Figure 1 (4 data sets combined):
```{r Figure 1}
#| label: fig-1-total
#| eval: TRUE
#| echo: FALSE
#| message: FALSE
#| warning: FALSE
#| fig-height: 6
#| fig-width: 10
#| fig-cap: "Estimates of task effects for five different sample sizes (starting with $N = 20$, then 1/5th parts of the total dataset). For each sample size 10 randomly chosen HDCI’s out of the 1000 HDCI’s computed are displayed (in light blue). The average estimate with credible interval summarizing the 1000 HDCI’s for each sample size are plotted in reddish purple. DLPFC = dorsolateral prefrontal cortex; mPFC = medial prefrontal cortex; NAcc = nucleus accumbens."
# plot figure 1 using patchwork library
feedback_fig$fig_cohens_d + theme(legend.position = "none") +
gambling_fig$fig_cohens_d + theme(legend.position = "none") +
selfeval_fig$fig_cohens_d + theme(legend.position = "none") +
vicar_char_fig$fig_cohens_d + theme(legend.position = "none") +
inset_element(simple_legend,
left = 1.7, bottom = 3.8, right = 0, top = 0,
on_top = T, align_to = 'full')
```
Plot Figure 2 (4 data sets combined):
```{r Figure 2}
#| label: fig-2
#| eval: TRUE
#| echo: FALSE
#| message: FALSE
#| warning: FALSE
#| fig-height: 6
#| fig-width: 10
#| fig-cap: "For each task, for five different sample sizes (starting with $N = 20$, then 1/5th parts of the total dataset), the proportion of intervals not containing the value 0 is plotted in reddish purple."
# plot figure 2 using patchwork library
feedback_fig$fig_d_nozero + ylab(label = "Proportion not containing zero") +
gambling_fig$fig_d_nozero + ylab(label = "Proportion not containing zero") +
selfeval_fig$fig_d_nozero + ylab(label = "Proportion not containing zero") +
vicar_char_fig$fig_d_nozero + ylab(label = "Proportion not containing zero")
```
Extract numbers to make table 2:
```{r Results table Cohens d}
#| label: data-summary-cohens
#| eval: TRUE
#| echo: TRUE
#| message: FALSE
#| warning: FALSE
# first extract tibble from results (select mean only)
feedback_sum <- as_tibble(feedback_fig$tbl_select) %>%
dplyr::filter(permutation == "Overall")
gambling_sum <- as_tibble(gambling_fig$tbl_select) %>%
dplyr::filter(permutation == "Overall")
selfeval_sum <- as_tibble(selfeval_fig$tbl_select) %>%
dplyr::filter(permutation == "Overall")
gaining_sum <- as_tibble(vicar_char_fig$tbl_select) %>%
dplyr::filter(permutation == "Overall")
```
Use numbers to produce a table in text:
| task | brain region | $n = 20$ | $n = 2/5$ | $n = 3/5$ | $n = 4/5$ | $N = total$ |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Feedback | DLPFC | **`r round(feedback_sum[[1,"cohens_d"]], 2)`** (`r round(feedback_sum[[1,"d_lower"]], 2)`, `r round(feedback_sum[[1,"d_upper"]], 2)`) | **`r round(feedback_sum[[2,"cohens_d"]], 2)`** (`r round(feedback_sum[[2,"d_lower"]], 2)`, `r round(feedback_sum[[2,"d_upper"]], 2)`), *n* = `r feedback_sum[[2,"N"]]` | **`r round(feedback_sum[[3,"cohens_d"]], 2)`** (`r round(feedback_sum[[3,"d_lower"]], 2)`, `r round(feedback_sum[[3,"d_upper"]], 2)`), *n* = `r feedback_sum[[3,"N"]]` | **`r round(feedback_sum[[4,"cohens_d"]], 2)`** (`r round(feedback_sum[[4,"d_lower"]], 2)`, `r round(feedback_sum[[4,"d_upper"]], 2)`), *n* = `r feedback_sum[[4,"N"]]` | **`r round(feedback_sum[[5,"cohens_d"]], 2)`** (`r round(feedback_sum[[5,"d_lower"]], 2)`, `r round(feedback_sum[[5,"d_upper"]], 2)`), *N* = `r feedback_sum[[5,"N"]]` |
| Gambling | NAcc | **`r round(gambling_sum[[1,"cohens_d"]], 2)`** (`r round(gambling_sum[[1,"d_lower"]], 2)`, `r round(gambling_sum[[1,"d_upper"]], 2)`) | **`r round(gambling_sum[[2,"cohens_d"]], 2)`** (`r round(gambling_sum[[2,"d_lower"]], 2)`, `r round(gambling_sum[[2,"d_upper"]], 2)`), *n* = `r gambling_sum[[2,"N"]]` | **`r round(gambling_sum[[3,"cohens_d"]], 2)`** (`r round(gambling_sum[[3,"d_lower"]], 2)`, `r round(gambling_sum[[3,"d_upper"]], 2)`), *n* = `r gambling_sum[[3,"N"]]` | **`r round(gambling_sum[[4,"cohens_d"]], 2)`** (`r round(gambling_sum[[4,"d_lower"]], 2)`, `r round(gambling_sum[[4,"d_upper"]], 2)`), *n* = `r gambling_sum[[4,"N"]]` | **`r round(gambling_sum[[5,"cohens_d"]], 2)`** (`r round(gambling_sum[[5,"d_lower"]], 2)`, `r round(gambling_sum[[5,"d_upper"]], 2)`), *N* = `r gambling_sum[[5,"N"]]` |
| Self-evaluations | mPFC | **`r round(selfeval_sum[[1,"cohens_d"]], 2)`** (`r round(selfeval_sum[[1,"d_lower"]], 2)`, `r round(selfeval_sum[[1,"d_upper"]], 2)`) | **`r round(selfeval_sum[[2,"cohens_d"]], 2)`** (`r round(selfeval_sum[[2,"d_lower"]], 2)`, `r round(selfeval_sum[[2,"d_upper"]], 2)`), *n* = `r selfeval_sum[[2,"N"]]` | **`r round(selfeval_sum[[3,"cohens_d"]], 2)`** (`r round(selfeval_sum[[3,"d_lower"]], 2)`, `r round(selfeval_sum[[3,"d_upper"]], 2)`), *n* = `r selfeval_sum[[3,"N"]]` | **`r round(selfeval_sum[[4,"cohens_d"]], 2)`** (`r round(selfeval_sum[[4,"d_lower"]], 2)`, `r round(selfeval_sum[[4,"d_upper"]], 2)`), *n* = `r selfeval_sum[[4,"N"]]` | **`r round(selfeval_sum[[5,"cohens_d"]], 2)`** (`r round(selfeval_sum[[5,"d_lower"]], 2)`, `r round(selfeval_sum[[5,"d_upper"]], 2)`), *N* = `r selfeval_sum[[5,"N"]]` |
| Gaining self | NAcc | **`r round(gaining_sum[[1,"cohens_d"]], 2)`** (`r round(gaining_sum[[1,"d_lower"]], 2)`, `r round(gaining_sum[[1,"d_upper"]], 2)`) | **`r round(gaining_sum[[2,"cohens_d"]], 2)`** (`r round(gaining_sum[[2,"d_lower"]], 2)`, `r round(gaining_sum[[2,"d_upper"]], 2)`), *n* = `r gaining_sum[[2,"N"]]` | **`r round(gaining_sum[[3,"cohens_d"]], 2)`** (`r round(gaining_sum[[3,"d_lower"]], 2)`, `r round(gaining_sum[[3,"d_upper"]], 2)`), *n* = `r gaining_sum[[3,"N"]]` | **`r round(gaining_sum[[4,"cohens_d"]], 2)`** (`r round(gaining_sum[[4,"d_lower"]], 2)`, `r round(gaining_sum[[4,"d_upper"]], 2)`), *n* = `r gaining_sum[[4,"N"]]` | **`r round(gaining_sum[[5,"cohens_d"]], 2)`** (`r round(gaining_sum[[5,"d_lower"]], 2)`, `r round(gaining_sum[[5,"d_upper"]], 2)`), *N* = `r gaining_sum[[5,"N"]]` |