forked from hans/glove.py
-
Notifications
You must be signed in to change notification settings - Fork 0
/
glove.py
executable file
·397 lines (302 loc) · 14.3 KB
/
glove.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
#!/usr/bin/env python
from argparse import ArgumentParser
import codecs
from collections import Counter
import itertools
from functools import partial
import logging
from math import log
import os.path
import cPickle as pickle
from random import shuffle
import msgpack
import numpy as np
from scipy import sparse
from util import listify
logger = logging.getLogger("glove")
def parse_args():
parser = ArgumentParser(
description=('Build a GloVe vector-space model from the '
'provided corpus'))
parser.add_argument('corpus', metavar='corpus_path',
type=partial(codecs.open, encoding='utf-8'))
g_vocab = parser.add_argument_group('Vocabulary options')
g_vocab.add_argument('--vocab-path',
help=('Path to vocabulary file. If this path '
'exists, the vocabulary will be loaded '
'from the file. If it does not exist, '
'the vocabulary will be written to this '
'file.'))
g_cooccur = parser.add_argument_group('Cooccurrence tracking options')
g_cooccur.add_argument('--cooccur-path',
help=('Path to cooccurrence matrix file. If '
'this path exists, the matrix will be '
'loaded from the file. If it does not '
'exist, the matrix will be written to '
'this file.'))
g_cooccur.add_argument('-w', '--window-size', type=int, default=10,
help=('Number of context words to track to '
'left and right of each word'))
g_cooccur.add_argument('--min-count', type=int, default=10,
help=('Discard cooccurrence pairs where at '
'least one of the words occurs fewer '
'than this many times in the training '
'corpus'))
g_glove = parser.add_argument_group('GloVe options')
g_glove.add_argument('--vector-path',
help=('Path to which to save computed word '
'vectors'))
g_glove.add_argument('-s', '--vector-size', type=int, default=100,
help=('Dimensionality of output word vectors'))
g_glove.add_argument('--iterations', type=int, default=25,
help='Number of training iterations')
g_glove.add_argument('--learning-rate', type=float, default=0.05,
help='Initial learning rate')
g_glove.add_argument('--save-often', action='store_true', default=False,
help=('Save vectors after every training '
'iteration'))
return parser.parse_args()
def get_or_build(path, build_fn, *args, **kwargs):
"""
Load from serialized form or build an object, saving the built
object.
Remaining arguments are provided to `build_fn`.
"""
save = False
obj = None
if path is not None and os.path.isfile(path):
with open(path, 'rb') as obj_f:
obj = msgpack.load(obj_f, use_list=False, encoding='utf-8')
else:
save = True
if obj is None:
obj = build_fn(*args, **kwargs)
if save and path is not None:
with open(path, 'wb') as obj_f:
msgpack.dump(obj, obj_f)
return obj
def build_vocab(corpus):
"""
Build a vocabulary with word frequencies for an entire corpus.
Returns a dictionary `w -> (i, f)`, mapping word strings to pairs of
word ID and word corpus frequency.
"""
logger.info("Building vocab from corpus")
vocab = Counter()
for line in corpus:
tokens = line.strip().split()
vocab.update(tokens)
logger.info("Done building vocab from corpus.")
return {word: (i, freq) for i, (word, freq) in enumerate(vocab.iteritems())}
@listify
def build_cooccur(vocab, corpus, window_size=10, min_count=None):
"""
Build a word co-occurrence list for the given corpus.
This function is a tuple generator, where each element (representing
a cooccurrence pair) is of the form
(i_main, i_context, cooccurrence)
where `i_main` is the ID of the main word in the cooccurrence and
`i_context` is the ID of the context word, and `cooccurrence` is the
`X_{ij}` cooccurrence value as described in Pennington et al.
(2014).
If `min_count` is not `None`, cooccurrence pairs where either word
occurs in the corpus fewer than `min_count` times are ignored.
"""
vocab_size = len(vocab)
id2word = dict((i, word) for word, (i, _) in vocab.iteritems())
# Collect cooccurrences internally as a sparse matrix for passable
# indexing speed; we'll convert into a list later
cooccurrences = sparse.lil_matrix((vocab_size, vocab_size),
dtype=np.float64)
for i, line in enumerate(corpus):
if i % 1000 == 0:
logger.info("Building cooccurrence matrix: on line %i", i)
tokens = line.strip().split()
token_ids = [vocab[word][0] for word in tokens]
for center_i, center_id in enumerate(token_ids):
# Collect all word IDs in left window of center word
context_ids = token_ids[max(0, center_i - window_size) : center_i]
contexts_len = len(context_ids)
for left_i, left_id in enumerate(context_ids):
# Distance from center word
distance = contexts_len - left_i
# Weight by inverse of distance between words
increment = 1.0 / float(distance)
# Build co-occurrence matrix symmetrically (pretend we
# are calculating right contexts as well)
cooccurrences[center_id, left_id] += increment
cooccurrences[left_id, center_id] += increment
# Now yield our tuple sequence (dig into the LiL-matrix internals to
# quickly iterate through all nonzero cells)
for i, (row, data) in enumerate(itertools.izip(cooccurrences.rows,
cooccurrences.data)):
if min_count is not None and vocab[id2word[i]][1] < min_count:
continue
for data_idx, j in enumerate(row):
if min_count is not None and vocab[id2word[j]][1] < min_count:
continue
yield i, j, data[data_idx]
def run_iter(vocab, data, learning_rate=0.05, x_max=100, alpha=0.75):
"""
Run a single iteration of GloVe training using the given
cooccurrence data and the previously computed weight vectors /
biases and accompanying gradient histories.
`data` is a pre-fetched data / weights list where each element is of
the form
(v_main, v_context,
b_main, b_context,
gradsq_W_main, gradsq_W_context,
gradsq_b_main, gradsq_b_context,
cooccurrence)
as produced by the `train_glove` function. Each element in this
tuple is an `ndarray` view into the data structure which contains
it.
See the `train_glove` function for information on the shapes of `W`,
`biases`, `gradient_squared`, `gradient_squared_biases` and how they
should be initialized.
The parameters `x_max`, `alpha` define our weighting function when
computing the cost for two word pairs; see the GloVe paper for more
details.
Returns the cost associated with the given weight assignments and
updates the weights by online AdaGrad in place.
"""
global_cost = 0
# We want to iterate over data randomly so as not to unintentionally
# bias the word vector contents
shuffle(data)
for (v_main, v_context, b_main, b_context, gradsq_W_main, gradsq_W_context,
gradsq_b_main, gradsq_b_context, cooccurrence) in data:
weight = (cooccurrence / x_max) ** alpha if cooccurrence < x_max else 1
# Compute inner component of cost function, which is used in
# both overall cost calculation and in gradient calculation
#
# $$ J' = w_i^Tw_j + b_i + b_j - log(X_{ij}) $$
cost_inner = (v_main.dot(v_context)
+ b_main[0] + b_context[0]
- log(cooccurrence))
# Compute cost
#
# $$ J = f(X_{ij}) (J')^2 $$
cost = weight * (cost_inner ** 2)
# Add weighted cost to the global cost tracker
global_cost += 0.5 * cost
# Compute gradients for word vector terms.
#
# NB: `main_word` is only a view into `W` (not a copy), so our
# modifications here will affect the global weight matrix;
# likewise for context_word, biases, etc.
grad_main = weight * cost_inner * v_context
grad_context = weight * cost_inner * v_main
# Compute gradients for bias terms
grad_bias_main = weight * cost_inner
grad_bias_context = weight * cost_inner
# Now perform adaptive updates
v_main -= (learning_rate * grad_main / np.sqrt(gradsq_W_main))
v_context -= (learning_rate * grad_context / np.sqrt(gradsq_W_context))
b_main -= (learning_rate * grad_bias_main / np.sqrt(gradsq_b_main))
b_context -= (learning_rate * grad_bias_context / np.sqrt(
gradsq_b_context))
# Update squared gradient sums
gradsq_W_main += np.square(grad_main)
gradsq_W_context += np.square(grad_context)
gradsq_b_main += grad_bias_main ** 2
gradsq_b_context += grad_bias_context ** 2
return global_cost
def train_glove(vocab, cooccurrences, iter_callback=None, vector_size=100,
iterations=25, **kwargs):
"""
Train GloVe vectors on the given generator `cooccurrences`, where
each element is of the form
(word_i_id, word_j_id, x_ij)
where `x_ij` is a cooccurrence value $X_{ij}$ as presented in the
matrix defined by `build_cooccur` and the Pennington et al. (2014)
paper itself.
If `iter_callback` is not `None`, the provided function will be
called after each iteration with the learned `W` matrix so far.
Keyword arguments are passed on to the iteration step function
`run_iter`.
Returns the computed word vector matrix `W`.
"""
vocab_size = len(vocab)
# Word vector matrix. This matrix is (2V) * d, where N is the size
# of the corpus vocabulary and d is the dimensionality of the word
# vectors. All elements are initialized randomly in the range (-0.5,
# 0.5]. We build two word vectors for each word: one for the word as
# the main (center) word and one for the word as a context word.
#
# It is up to the client to decide what to do with the resulting two
# vectors. Pennington et al. (2014) suggest adding or averaging the
# two for each word, or discarding the context vectors.
W = (np.random.rand(vocab_size * 2, vector_size) - 0.5) / float(vector_size + 1)
# Bias terms, each associated with a single vector. An array of size
# $2V$, initialized randomly in the range (-0.5, 0.5].
biases = (np.random.rand(vocab_size * 2) - 0.5) / float(vector_size + 1)
# Training is done via adaptive gradient descent (AdaGrad). To make
# this work we need to store the sum of squares of all previous
# gradients.
#
# Like `W`, this matrix is (2V) * d.
#
# Initialize all squared gradient sums to 1 so that our initial
# adaptive learning rate is simply the global learning rate.
gradient_squared = np.ones((vocab_size * 2, vector_size),
dtype=np.float64)
# Sum of squared gradients for the bias terms.
gradient_squared_biases = np.ones(vocab_size * 2, dtype=np.float64)
# Build a reusable list from the given cooccurrence generator,
# pre-fetching all necessary data.
#
# NB: These are all views into the actual data matrices, so updates
# to them will pass on to the real data structures
#
# (We even extract the single-element biases as slices so that we
# can use them as views)
data = [(W[i_main], W[i_context + vocab_size],
biases[i_main : i_main + 1],
biases[i_context + vocab_size : i_context + vocab_size + 1],
gradient_squared[i_main], gradient_squared[i_context + vocab_size],
gradient_squared_biases[i_main : i_main + 1],
gradient_squared_biases[i_context + vocab_size
: i_context + vocab_size + 1],
cooccurrence)
for i_main, i_context, cooccurrence in cooccurrences]
for i in range(iterations):
logger.info("\tBeginning iteration %i..", i)
cost = run_iter(vocab, data, **kwargs)
logger.info("\t\tDone (cost %f)", cost)
if iter_callback is not None:
iter_callback(W)
return W
def save_model(W, path):
with open(path, 'wb') as vector_f:
pickle.dump(W, vector_f, protocol=2)
logger.info("Saved vectors to %s", path)
def main(arguments):
corpus = arguments.corpus
logger.info("Fetching vocab..")
vocab = get_or_build(arguments.vocab_path, build_vocab, corpus)
logger.info("Vocab has %i elements.\n", len(vocab))
logger.info("Fetching cooccurrence list..")
corpus.seek(0)
cooccurrences = get_or_build(arguments.cooccur_path,
build_cooccur, vocab, corpus,
window_size=arguments.window_size,
min_count=arguments.min_count)
logger.info("Cooccurrence list fetch complete (%i pairs).\n",
len(cooccurrences))
if arguments.save_often:
iter_callback = partial(save_model, path=arguments.vector_path)
else:
iter_callback = None
logger.info("Beginning GloVe training..")
W = train_glove(vocab, cooccurrences,
iter_callback=iter_callback,
vector_size=arguments.vector_size,
iterations=arguments.iterations,
learning_rate=arguments.learning_rate)
# TODO shave off bias values, do something with context vectors
save_model(W, arguments.vector_path)
if __name__ == '__main__':
logging.basicConfig(level=logging.DEBUG,
format="%(asctime)s\t%(message)s")
main(parse_args())