forked from SerenityOS/serenity
-
Notifications
You must be signed in to change notification settings - Fork 0
/
disasm.cpp
228 lines (202 loc) Β· 10.5 KB
/
disasm.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
/*
* Copyright (c) 2020, Andreas Kling <[email protected]>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Debug.h>
#include <AK/Demangle.h>
#include <AK/IterationDecision.h>
#include <AK/OwnPtr.h>
#include <AK/QuickSort.h>
#include <AK/String.h>
#include <AK/StringBuilder.h>
#include <AK/Vector.h>
#include <LibCore/ArgsParser.h>
#include <LibCore/MappedFile.h>
#include <LibCore/System.h>
#include <LibELF/Image.h>
#include <LibMain/Main.h>
#include <LibX86/Disassembler.h>
#include <LibX86/ELFSymbolProvider.h>
struct Symbol {
size_t value { 0 };
size_t size { 0 };
StringView name;
size_t address() const { return value; }
size_t address_end() const { return value + size; }
bool contains(size_t virtual_address) { return (address() <= virtual_address && virtual_address < address_end()) || (size == 0 && address() == virtual_address); }
String format_symbol_address() const
{
if (size > 0)
return MUST(String::formatted("{:p}-{:p}", address(), address_end()));
return MUST(String::formatted("{:p}", address()));
}
};
ErrorOr<int> serenity_main(Main::Arguments args)
{
StringView path {};
StringView target_symbol;
Core::ArgsParser args_parser;
args_parser.set_general_help(
"Disassemble an executable, and show human-readable "
"assembly code for each function.");
args_parser.add_positional_argument(path, "Path to binary file", "path");
args_parser.add_option(target_symbol, "Show disassembly only for a specific symbol", "symbol", 's', "symbol");
args_parser.parse(args);
OwnPtr<Core::MappedFile> file;
u8 const* asm_data = nullptr;
size_t asm_size = 0;
if ((TRY(Core::System::stat(path))).st_size > 0) {
file = TRY(Core::MappedFile::map(path));
asm_data = static_cast<u8 const*>(file->data());
asm_size = MUST(file->size());
}
// Functions and similar symbols.
Vector<Symbol> ranged_symbols;
// Jump labels, relocation targets, etc.
Vector<Symbol> zero_size_symbols;
size_t file_offset = 0;
OwnPtr<X86::ELFSymbolProvider> symbol_provider; // nullptr for non-ELF disassembly.
OwnPtr<ELF::Image> elf;
if (asm_size >= 4 && strncmp(reinterpret_cast<char const*>(asm_data), "\u007fELF", 4) == 0) {
elf = make<ELF::Image>(asm_data, asm_size);
if (elf->is_valid()) {
symbol_provider = make<X86::ELFSymbolProvider>(*elf);
elf->for_each_section_of_type(SHT_PROGBITS, [&](ELF::Image::Section const& section) {
// FIXME: Disassemble all SHT_PROGBITS sections, not just .text.
if (section.name() != ".text")
return IterationDecision::Continue;
asm_data = reinterpret_cast<u8 const*>(section.raw_data());
asm_size = section.size();
file_offset = section.address();
return IterationDecision::Break;
});
ranged_symbols.ensure_capacity(elf->symbol_count() + 1);
zero_size_symbols.ensure_capacity(elf->symbol_count() + 1);
// Sentinels:
ranged_symbols.append({ 0, 0, StringView() });
zero_size_symbols.append({ 0, 0, StringView() });
elf->for_each_symbol([&](ELF::Image::Symbol const& symbol) {
if (symbol.name().is_empty())
return IterationDecision::Continue;
if (symbol.size() == 0)
zero_size_symbols.append({ symbol.value(), symbol.size(), symbol.name() });
else
ranged_symbols.append({ symbol.value(), symbol.size(), symbol.name() });
return IterationDecision::Continue;
});
auto symbol_order = [](auto& a, auto& b) {
if (a.value != b.value)
return a.value < b.value;
if (a.size != b.size)
return a.size < b.size;
return a.name < b.name;
};
quick_sort(ranged_symbols, symbol_order);
quick_sort(zero_size_symbols, symbol_order);
if constexpr (DISASM_DUMP_DEBUG) {
for (size_t i = 0; i < ranged_symbols.size(); ++i)
dbgln("{}: {:p}, {}", ranged_symbols[i].name, ranged_symbols[i].value, ranged_symbols[i].size);
for (size_t i = 0; i < zero_size_symbols.size(); ++i)
dbgln("{}: {:p}", zero_size_symbols[i].name, zero_size_symbols[i].value);
}
}
}
X86::SimpleInstructionStream stream(asm_data, asm_size);
X86::Disassembler disassembler(stream);
Vector<Symbol>::Iterator current_ranged_symbol = ranged_symbols.begin();
Vector<Symbol>::Iterator current_zero_size_symbol = zero_size_symbols.begin();
bool is_first_symbol = true;
bool current_instruction_is_in_symbol = false;
bool found_symbol = false;
for (;;) {
auto offset = stream.offset();
auto insn = disassembler.next();
if (!insn.has_value())
break;
size_t virtual_offset = file_offset + offset;
// Prefix regions of instructions belonging to a symbol with the symbol's name.
// Separate regions of instructions belonging to distinct symbols with newlines,
// and separate regions of instructions not belonging to symbols from regions belonging to symbols with newlines.
// Interesting cases:
// - More than 1 symbol covering a region of instructions (ICF, D1/D2)
// - Symbols of size 0 that don't cover any instructions but are at an address (want to print them, separated from instructions both before and after)
// Invariant: current_ranged_symbol is the largest instruction containing insn, or it is the largest instruction that has an address less than the instruction's address.
StringBuilder dangling_symbols;
StringBuilder instruction_symbols;
bool needs_separator = false;
if (current_zero_size_symbol < zero_size_symbols.end()) {
// Print "dangling" symbols preceding the current instruction.
while (current_zero_size_symbol + 1 < zero_size_symbols.end() && !(current_zero_size_symbol + 1)->contains(virtual_offset) && (current_zero_size_symbol + 1)->address() <= virtual_offset) {
++current_zero_size_symbol;
if (!is_first_symbol)
dangling_symbols.appendff("\n({} ({}))\n", demangle(current_zero_size_symbol->name), current_zero_size_symbol->format_symbol_address());
}
// Find and print all symbols covering the current instruction.
while (current_zero_size_symbol + 1 < zero_size_symbols.end() && (current_zero_size_symbol + 1)->contains(virtual_offset)) {
if (!is_first_symbol && !current_instruction_is_in_symbol)
needs_separator = true;
++current_zero_size_symbol;
current_instruction_is_in_symbol = true;
instruction_symbols.appendff("{} ({}):\n", demangle(current_zero_size_symbol->name), current_zero_size_symbol->format_symbol_address());
}
}
// Handle ranged symbols separately.
if (current_ranged_symbol < ranged_symbols.end() && !current_ranged_symbol->contains(virtual_offset)) {
if (!is_first_symbol && current_instruction_is_in_symbol) {
// The previous instruction was part of a symbol that doesn't cover the current instruction, so separate it from the current instruction with a newline.
needs_separator = true;
current_instruction_is_in_symbol = (current_ranged_symbol + 1 < ranged_symbols.end() && (current_ranged_symbol + 1)->contains(virtual_offset));
}
// Print "dangling" symbols preceding the current instruction.
while (current_ranged_symbol + 1 < ranged_symbols.end() && !(current_ranged_symbol + 1)->contains(virtual_offset) && (current_ranged_symbol + 1)->address() <= virtual_offset) {
++current_ranged_symbol;
if (!is_first_symbol)
dangling_symbols.appendff("\n({} ({}))\n", demangle(current_ranged_symbol->name), current_ranged_symbol->format_symbol_address());
}
// Find and print all symbols covering the current instruction.
while (current_ranged_symbol + 1 < ranged_symbols.end() && (current_ranged_symbol + 1)->contains(virtual_offset)) {
if (!is_first_symbol && !current_instruction_is_in_symbol)
needs_separator = true;
++current_ranged_symbol;
current_instruction_is_in_symbol = true;
instruction_symbols.appendff("{} ({}):\n", demangle(current_ranged_symbol->name), current_ranged_symbol->format_symbol_address());
}
is_first_symbol = false;
}
// Past the target symbol now; no need to disassemble more.
if (found_symbol && current_ranged_symbol->name != target_symbol)
break;
found_symbol = !target_symbol.is_empty() && current_ranged_symbol->name == target_symbol;
// We have not found the target symbol yet; don't print anything.
if (!target_symbol.is_empty() && current_ranged_symbol->name != target_symbol)
continue;
// Insert extra newline after the "dangling" symbols.
if (needs_separator)
outln();
if (auto dangling_symbols_text = TRY(dangling_symbols.to_string()); !dangling_symbols_text.is_empty())
outln("{}", dangling_symbols_text);
if (auto instruction_symbols_text = TRY(instruction_symbols.to_string()); !instruction_symbols_text.is_empty())
out("{}", instruction_symbols_text);
size_t length = insn.value().length();
StringBuilder builder;
builder.appendff("{:p} ", virtual_offset);
for (size_t i = 0; i < 7; i++) {
if (i < length)
builder.appendff("{:02x} ", asm_data[offset + i]);
else
builder.append(" "sv);
}
builder.append(" "sv);
builder.append(insn.value().to_byte_string(virtual_offset, symbol_provider));
outln("{}", builder.string_view());
for (size_t bytes_printed = 7; bytes_printed < length; bytes_printed += 7) {
builder.clear();
builder.appendff("{:p} ", virtual_offset + bytes_printed);
for (size_t i = bytes_printed; i < bytes_printed + 7 && i < length; i++)
builder.appendff(" {:02x}", asm_data[offset + i]);
outln("{}", builder.string_view());
}
}
return 0;
}