forked from DistributedScience/Distributed-CellProfiler
-
Notifications
You must be signed in to change notification settings - Fork 0
/
lambda_function.py
208 lines (180 loc) · 7.88 KB
/
lambda_function.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import boto3
import datetime
import botocore
import json
s3 = boto3.client("s3")
ecs = boto3.client("ecs")
ec2 = boto3.client("ec2")
cloudwatch = boto3.client("cloudwatch")
sqs = boto3.client("sqs")
bucket = "BUCKET_NAME"
def killdeadAlarms(fleetId, project):
checkdates = [
datetime.datetime.now().strftime("%Y-%m-%d"),
(datetime.datetime.now() - datetime.timedelta(days=1)).strftime("%Y-%m-%d"),
]
todel = []
for eachdate in checkdates:
datedead = ec2.describe_spot_fleet_request_history(
SpotFleetRequestId=fleetId, StartTime=eachdate
)
for eachevent in datedead["HistoryRecords"]:
if eachevent["EventType"] == "instanceChange":
if eachevent["EventInformation"]["EventSubType"] == "terminated":
todel.append(eachevent["EventInformation"]["InstanceId"])
todel = [f"{project}_{x}" for x in todel]
while len(todel) > 100:
dellist = todel[:100]
cloudwatch.delete_alarms(AlarmNames=dellist)
todel = todel[100:]
if len(todel) <= 100:
cloudwatch.delete_alarms(AlarmNames=todel)
print("Old alarms deleted")
def seeIfLogExportIsDone(logExportId):
while True:
result = cloudwatch.describe_export_tasks(taskId=logExportId)
if result["exportTasks"][0]["status"]["code"] != "PENDING":
if result["exportTasks"][0]["status"]["code"] != "RUNNING":
print(result["exportTasks"][0]["status"]["code"])
break
time.sleep(30)
def downscaleSpotFleet(nonvisible, spotFleetID):
status = ec2.describe_spot_fleet_instances(SpotFleetRequestId=spotFleetID)
if nonvisible < len(status["ActiveInstances"]):
ec2.modify_spot_fleet_request(
ExcessCapacityTerminationPolicy="noTermination",
TargetCapacity=str(nonvisible),
SpotFleetRequestId=spotFleetID,
)
def check_sqs_queue(queueName):
response = sqs.get_queue_url(QueueName=queueName)
queueUrl = response["QueueUrl"]
response = sqs.get_queue_attributes(
QueueUrl=queueUrl,
AttributeNames=[
"ApproximateNumberOfMessages",
"ApproximateNumberOfMessagesNotVisible",
],
)
visible = int(response["Attributes"]["ApproximateNumberOfMessages"])
nonvisible = int(response["Attributes"]["ApproximateNumberOfMessagesNotVisible"])
print(
f"Found {visible} visible messages and {nonvisible} nonvisible messages in queue."
)
return visible, nonvisible
def lambda_handler(event, lambda_context):
# Triggered any time SQS queue ApproximateNumberOfMessagesVisible = 0
# OR ApproximateNumberOfMessagesNotVisible = 0
messagestring = event["Records"][0]["Sns"]["Message"]
messagedict = json.loads(messagestring)
queueName = messagedict["Trigger"]["Dimensions"][0]["value"]
project = queueName.rsplit("_", 1)[0]
# Download monitor file
monitor_file_name = f"{queueName.split('Queue')[0]}SpotFleetRequestId.json"
monitor_local_name = f"/tmp/{monitor_file_name}"
monitor_on_bucket_name = f"monitors/{monitor_file_name}"
with open(monitor_local_name, "wb") as f:
try:
s3.download_fileobj(bucket, monitor_on_bucket_name, f)
except botocore.exceptions.ClientError as error:
print("Error retrieving monitor file.")
return
with open(monitor_local_name, "r") as input:
monitorInfo = json.load(input)
monitorcluster = monitorInfo["MONITOR_ECS_CLUSTER"]
monitorapp = monitorInfo["MONITOR_APP_NAME"]
fleetId = monitorInfo["MONITOR_FLEET_ID"]
loggroupId = monitorInfo["MONITOR_LOG_GROUP_NAME"]
CLEAN_DASHBOARD = monitorInfo["CLEAN_DASHBOARD"]
print(f"Monitor triggered for {monitorcluster} {monitorapp} {fleetId} {loggroupId}")
visible, nonvisible = check_sqs_queue(queueName)
# If no visible messages, downscale machines
if visible == 0 and nonvisible > 0:
print("No visible messages. Tidying as we go.")
killdeadAlarms(fleetId, project)
downscaleSpotFleet(nonvisible, fleetId)
# If no messages in progress, cleanup
if visible == 0 and nonvisible == 0:
print("No messages in progress. Cleaning up.")
ecs.update_service(
cluster=monitorcluster,
service=f"{monitorapp}Service",
desiredCount=0,
)
print("Service has been downscaled")
# Delete the alarms from active machines and machines that have died.
active_dictionary = ec2.describe_spot_fleet_instances(
SpotFleetRequestId=fleetId
)
active_instances = []
for instance in active_dictionary["ActiveInstances"]:
active_instances.append(instance["InstanceId"])
while len(active_instances) > 100:
dellist = active_instances[:100]
cloudwatch.delete_alarms(AlarmNames=dellist)
active_instances = active_instances[100:]
if len(active_instances) <= 100:
cloudwatch.delete_alarms(AlarmNames=active_instances)
killdeadAlarms(fleetId, monitorapp, project)
# Read spot fleet id and terminate all EC2 instances
ec2.cancel_spot_fleet_requests(
SpotFleetRequestIds=[fleetId], TerminateInstances=True
)
print("Fleet shut down.")
# Remove SQS queue, ECS Task Definition, ECS Service
ECS_TASK_NAME = monitorapp + "Task"
ECS_SERVICE_NAME = monitorapp + "Service"
print("Deleting existing queue.")
queueoutput = sqs.list_queues(QueueNamePrefix=queueName)
try:
if len(queueoutput["QueueUrls"]) == 1:
queueUrl = queueoutput["QueueUrls"][0]
else: # In case we have "AnalysisQueue" and "AnalysisQueue1" and only want to delete the first of those
for eachUrl in queueoutput["QueueUrls"]:
if eachUrl.split("/")[-1] == queueName:
queueUrl = eachUrl
sqs.delete_queue(QueueUrl=queueUrl)
except KeyError:
print("Can't find queue to delete.")
print("Deleting service")
try:
ecs.delete_service(cluster=monitorcluster, service=ECS_SERVICE_NAME)
except:
print("Couldn't delete service.")
print("De-registering task")
taskArns = ecs.list_task_definitions(familyPrefix=ECS_TASK_NAME)
for eachtask in taskArns["taskDefinitionArns"]:
fulltaskname = eachtask.split("/")[-1]
ecs.deregister_task_definition(taskDefinition=fulltaskname)
print("Removing cluster if it's not the default and not otherwise in use")
if monitorcluster != "default":
result = ecs.describe_clusters(clusters=[monitorcluster])
if (
sum(
[
result["clusters"][0]["pendingTasksCount"],
result["clusters"][0]["runningTasksCount"],
result["clusters"][0]["activeServicesCount"],
]
)
== 0
):
ecs.delete_cluster(cluster=monitorcluster)
# Remove alarms that triggered monitor
print("Removing alarms that triggered Monitor")
cloudwatch.delete_alarms(
AlarmNames=[
f"ApproximateNumberOfMessagesVisibleisZero_{monitorapp}",
f"ApproximateNumberOfMessagesNotVisibleisZero_{monitorapp}",
]
)
# Remove Cloudwatch dashboard if created and cleanup desired
if CLEAN_DASHBOARD.lower() == "true":
dashboard_list = cloudwatch.list_dashboards()
for entry in dashboard_list["DashboardEntries"]:
if monitorapp in entry["DashboardName"]:
cloudwatch.delete_dashboards(
DashboardNames=[entry["DashboardName"]]
)
# Delete monitor file
s3.delete_object(Bucket=bucket, Key=monitor_on_bucket_name)