-
Notifications
You must be signed in to change notification settings - Fork 106
/
train.py
88 lines (66 loc) · 3.78 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
"""Script for training an Omnimatte model on a video.
You need to specify the dataset ('--dataroot') and experiment name ('--name').
Example:
python train.py --dataroot ./datasets/tennis --name tennis --gpu_ids 0,1
The script first creates a model, dataset, and visualizer given the options.
It then does standard network training. During training, it also visualizes/saves the images, prints/saves the loss
plot, and saves the model.
Use '--continue_train' to resume your previous training.
See options/base_options.py and options/train_options.py for more training options.
"""
import time
from options.train_options import TrainOptions
from third_party.data import create_dataset
from third_party.models import create_model
from third_party.util.visualizer import Visualizer
import torch
import numpy as np
def main():
trainopt = TrainOptions()
opt = trainopt.parse()
torch.manual_seed(opt.seed)
np.random.seed(opt.seed)
dataset = create_dataset(opt)
dataset_size = len(dataset)
print('The number of training images = %d' % dataset_size)
opt.n_epochs = int(opt.n_steps / np.ceil(dataset_size / opt.batch_size))
opt.n_epochs_decay = int(opt.n_steps_decay / np.ceil(dataset_size / opt.batch_size))
model = create_model(opt)
model.setup(opt) # regular setup: load and print networks; create schedulers
visualizer = Visualizer(opt)
train(model, dataset, visualizer, opt)
def train(model, dataset, visualizer, opt):
dataset_size = len(dataset)
total_iters = 0 # the total number of training iterations
for epoch in range(opt.epoch_count, opt.n_epochs + opt.n_epochs_decay + 1): # outer loop for different epochs; we save the model by <epoch_count>, <epoch_count>+<save_latest_freq>
epoch_start_time = time.time() # timer for entire epoch
iter_data_time = time.time() # timer for data loading per iteration
epoch_iter = 0 # the number of training iterations in current epoch, reset to 0 every epoch
model.update_lambdas(epoch)
for i, data in enumerate(dataset): # inner loop within one epoch
iter_start_time = time.time() # timer for computation per iteration
if i % opt.print_freq == 0:
t_data = iter_start_time - iter_data_time
total_iters += opt.batch_size
epoch_iter += opt.batch_size
model.set_input(data)
model.optimize_parameters()
if i % opt.print_freq == 0: # print training losses and save logging information to the disk
losses = model.get_current_losses()
t_comp = (time.time() - iter_start_time) / opt.batch_size
visualizer.print_current_losses(epoch, epoch_iter, losses, t_comp, t_data)
if opt.display_id > 0:
visualizer.plot_current_losses(epoch, float(epoch_iter) / dataset_size, losses)
iter_data_time = time.time()
if epoch % opt.display_freq == 1: # display images on visdom and save images to a HTML file
save_result = epoch % opt.update_html_freq == 1
model.compute_visuals()
visualizer.display_current_results(model.get_current_visuals(), epoch, save_result)
if epoch % opt.save_latest_freq == 0: # cache our latest model every <save_latest_freq> epochs
print('saving the latest model (epoch %d, total_iters %d)' % (epoch, total_iters))
save_suffix = 'epoch_%d' % epoch if opt.save_by_epoch else 'latest'
model.save_networks(save_suffix)
model.update_learning_rate() # update learning rates at the end of every epoch.
print('End of epoch %d / %d \t Time Taken: %d sec' % (epoch, opt.n_epochs + opt.n_epochs_decay, time.time() - epoch_start_time))
if __name__ == '__main__':
main()