We first export the predictions of NetVLAD (global descriptor) and SuperPoint (dense keypoint scores and descriptors), which will be the labels of the dataset.
python3 hfnet/export_predictions.py
hfnet/configs/netvlad_export_distill.yaml \
global_descriptors \
--keys global_descriptor \
--as_dataset
python3 hfnet/export_predictions.py
hfnet/configs/superpoint_export_distill.yaml \
superpoint_predictions \
--keys local_descriptor_map,dense_scores \
--as_dataset
python3 hfnet/train.py hfnet/configs/hfnet_train_distill.yaml hfnet
The training can be interrupted at any time using Ctrl+C
and can be monitored with Tensorboard summaries saved in $EXPER_PATH/hfnet/
. The weights are also saved there.
python3 hfnet/export_model.py config/hfnet_train_distill.yaml hfnet
will export the model to $EXPER_PATH/saved_models/hfnet/
.