-
Notifications
You must be signed in to change notification settings - Fork 3
/
convlowmem.py
172 lines (151 loc) · 5.38 KB
/
convlowmem.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import torch
import numpy as np
import jax.numpy as jnp
import io
import os
torch.set_printoptions(linewidth=130, sci_mode=False)
np.set_printoptions(linewidth=130, suppress=True)
layers = 28
total_shards = 8
ckpt_dir = "step_383500/"
output_dir = "j6b_ckpt"
try: os.mkdir(output_dir)
except: pass
def reshard(x, old_shape):
if len(x.shape) == 1:
# print("epoch")
# print(x)
out = x[0:1]
elif len(x.shape) == 2:
#print(f"LN/bias {x.shape}")
#print(x[:, :16])
if (x[1:] == x[-1]).all():
#print("LN")
if (x[1:] == 0).all() or (x[1:] == 1).all():
out = x[0:1]
else:
#print("shard bias")
out = x[0:1] * 8#* x.shape[0] / old_shape[0]
else:
#print("bias")
out = x.reshape(old_shape)
#print(out[:, :16])
elif len(x.shape) == 3:
#print(f"weight {x.shape}")
if x.shape[0] * x.shape[2] == old_shape[2]:
#print("case 1")
out = jnp.transpose(x, (1, 0, 2)).reshape(old_shape)
elif x.shape[0] * x.shape[1] == old_shape[1]:
#print("case 2")
out = x.reshape(old_shape)
else:
raise Exception(f"unimplemented, {x.shape}, {old_shape}")
else:
raise Exception(f"unimplemented, {x}")
#flattened, structure = jax.tree_flatten(out)
#return flattened
return out
def get_old_shape(t, dim=2):
if len(t.shape) == 3:
shard_shape = t.shape
if dim == 1:
return (shard_shape[0] * shard_shape[1], shard_shape[2])
elif dim == 2:
return (shard_shape[1], shard_shape[0] * shard_shape[2])
else:
raise ValueError(f"unsupported dim {dim}")
if len(t.shape) == 2:
return (t.shape[1] * t.shape[0],)
else:
raise ValueError(f"unsupported shape {t.shape}")
def read_shard(ckpt_dir):
global part
out = []
idx = part
file_path = ckpt_dir + f"{idx}.npz"
#print(f"-- {file_path}")
with open(file_path, "rb") as f:
buf = f.read()
f_io = io.BytesIO(buf)
deserialized = np.load(f_io)
for i in deserialized:
out.append(deserialized[i])
#print(deserialized[i].shape)
return out
unshard = None
transforms = [("transformer.wte.bias", None, None), ("transformer.wte.weight", unshard, 1)]
checkpoint = {}
ckmap = {}
ckid = 0
def save(params, name):
global ckid
ckmap[name] = f"{output_dir}/b{ckid}.pt"
ckid += 1
torch.save(params, ckmap[name])
torch.save(ckmap, f"{output_dir}/m.pt")
del params
layer_names = sorted(map(str, range(layers)))
for layer in layer_names:
checkpoint[f"transformer.h.{layer}.attn.attention.bias"] = torch.tril(torch.ones(1, 1, 2048, 2048))
checkpoint[f"transformer.h.{layer}.attn.attention.masked_bias"] = torch.tensor(-1e9)
transforms.extend([
(f"transformer.h.{layer}.attn.attention.q_proj.weight", unshard, 2),
(f"transformer.h.{layer}.attn.attention.v_proj.weight", unshard, 2),
(f"transformer.h.{layer}.attn.attention.k_proj.weight", unshard, 2),
(f"transformer.h.{layer}.attn.attention.out_proj.weight", unshard, 1),
(f"transformer.h.{layer}.mlp.c_fc.bias", unshard, 1),
(f"transformer.h.{layer}.mlp.c_fc.weight", unshard, 2),
(f"transformer.h.{layer}.mlp.c_proj.bias", None, None),
(f"transformer.h.{layer}.mlp.c_proj.weight", unshard, 1),
(f"transformer.h.{layer}.ln_1.bias", None, None),
(f"transformer.h.{layer}.ln_1.weight", None, None),
])
transforms.extend([
("lm_head.bias", unshard, 1),
("lm_head.weight", unshard, 2),
("transformer.ln_f.bias", None, None),
("transformer.ln_f.weight", None, None),
])
part = 0
element = 0
while len(transforms) > 0:
print(f"loading shards for part {part}")
shards = list(map(read_shard, [f"{ckpt_dir}shard_{i}/" for i in range(total_shards)]))
print(f"read from checkpoint")
unsharded = []
for all_shards in zip(*shards):
x = np.stack(all_shards)
# No idea why this is V2...?
if x.dtype == np.dtype('V2'):
x.dtype = jnp.bfloat16
x = x.astype(np.float32)
unsharded.append(x)
#print(f"unsharded: {x.shape}")
while len(transforms) > 0 and len(unsharded) > 0:
transform = transforms.pop(0)
params = unsharded.pop(0)
if transform[2] is not None:
old_shape = (1,) + get_old_shape(params, transform[2])
else:
old_shape = (params.shape[1],)
print(f"< {params.shape} to {old_shape}")
params = reshard(params, old_shape).squeeze(0).T
old_params = params
params = torch.tensor(params.copy()).half()
if params.isnan().any() or params.isinf().any():
raise ValueError(f"fp16 over/underflow at {part} {element}")
print(f"> {transform[0]} {params.shape}")
if transform[0] in ['transformer.wte.weight', 'transformer.wte.bias']:
checkpoint[transform[0]] = params
else:
save(params, transform[0])
del old_params
element += 1
part += 1
checkpoint['transformer.wte.weight'] = (checkpoint['transformer.wte.weight'].T + checkpoint['transformer.wte.bias'])
del checkpoint['transformer.wte.bias']
print(f"left over: {unsharded}")
print("saving")
for name in checkpoint.keys():
save(checkpoint[name], name)
print("done")