-
Notifications
You must be signed in to change notification settings - Fork 0
/
requestOllama_struct_llama_reasoning_app.py
151 lines (119 loc) · 6.6 KB
/
requestOllama_struct_llama_reasoning_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import streamlit as st
import ollama
import os
import json
import time
import requests
from pydantic import BaseModel
from typing import Literal
url = "http://localhost:11434/api/chat"
class ReasoningStep(BaseModel):
title: str
content: str
next_action: Literal["continue", "final_answer"]
class FinalAnswer(BaseModel):
title: str
content: str
def make_api_call(messages, max_tokens, is_final_answer=False):
#print(f"messages={messages}")
for attempt in range(3):
try:
#format_schema = ReasoningStep if not is_final_answer else FinalAnswer
# response = ollama.chat(
# model="llama3:8b",
# messages=messages,
# options={"temperature":0.2, "num_predict":max_tokens},
# format=format_schema.model_json_schema(),
# )
data = {
"model": "llama3:8b",
"messages": messages,
"stream": False,
"options":{"temperature":0.2, "num_predict":max_tokens},
}
response = requests.post(url, json=data)
if response.status_code == 200:
response_data = response.json()
#print(f"ollama={response_data['message']['content']}")
return response_data['message']['content']
else:
return FinalAnswer(title="Error", content=f"Failed to generate final answer after 3 attempts. Error: {str(e)}")
except Exception as e:
print(f"e={e}")
if attempt == 2:
if is_final_answer:
return FinalAnswer(title="Error", content=f"Failed to generate final answer after 3 attempts. Error: {str(e)}")
else:
return ReasoningStep(title="Error",
content=f"Failed to generate step after 3 attempts. Error: {str(e)}", next_action="final_answer")
time.sleep(1) # Wait for 1 second before retrying
def generate_response(prompt):
messages = [
{"role": "system", "content": """You are an expert AI assistant that explains your reasoning step by step. For each step, provide a title that describes what you're doing in that step, along with the content. Decide if you need another step or if you're ready to give the final answer. Respond in JSON format with 'title', 'content', and 'next_action' (either 'continue' or 'final_answer') keys. USE AS MANY REASONING STEPS AS POSSIBLE. AT LEAST 3. BE AWARE OF YOUR LIMITATIONS AS AN LLM AND WHAT YOU CAN AND CANNOT DO. IN YOUR REASONING, INCLUDE EXPLORATION OF ALTERNATIVE ANSWERS. CONSIDER YOU MAY BE WRONG, AND IF YOU ARE WRONG IN YOUR REASONING, WHERE IT WOULD BE. FULLY TEST ALL OTHER POSSIBILITIES. YOU CAN BE WRONG. WHEN YOU SAY YOU ARE RE-EXAMINING, ACTUALLY RE-EXAMINE, AND USE ANOTHER APPROACH TO DO SO. DO NOT JUST SAY YOU ARE RE-EXAMINING. USE AT LEAST 3 METHODS TO DERIVE THE ANSWER. USE BEST PRACTICES.
Example of a valid JSON response:
```json
{
"title": "Identifying Key Information",
"content": "To begin solving this problem, we need to carefully examine the given information and identify the crucial elements that will guide our solution process. This involves...",
"next_action": "continue"
}```
"""},
{"role": "user", "content": prompt},
{"role": "assistant", "content": "Thank you! I will now think step by step following my instructions, starting at the beginning after decomposing the problem."}
]
steps = []
step_count = 1
total_thinking_time = 0
while True:
start_time = time.time()
step_data = make_api_call(messages, 300)
end_time = time.time()
thinking_time = end_time - start_time
total_thinking_time += thinking_time
steps.append((f"Step {step_count}: {step_data.title}", step_data.content, thinking_time))
messages.append({"role": "assistant", "content": step_data.model_dump_json()})
if step_data.next_action == 'final_answer' or step_count > 25: # Maximum of 25 steps to prevent infinite thinking time. Can be adjusted.
break
step_count += 1
# Yield after each step for Streamlit to update
yield steps, None # We're not yielding the total time until the end
for msg in messages:
print(msg['role'], msg['content'][:20])
# Generate final answer
messages.append({"role": "user", "content": "Please provide the final answer based on your reasoning above."})
start_time = time.time()
final_data = make_api_call(messages, 200, is_final_answer=True)
end_time = time.time()
thinking_time = end_time - start_time
total_thinking_time += thinking_time
steps.append(("Final Answer", final_data.content, thinking_time))
yield steps, total_thinking_time
def main():
st.set_page_config(page_title="g1 prototype", page_icon="🧠", layout="wide")
st.title("g1: Using Llama-3.1 8b on local to create o1-like reasoning chains")
st.markdown("""
This is an early prototype of using prompting to create o1-like reasoning chains to improve output accuracy. It is not perfect and accuracy has yet to be formally evaluated. It is powered by Ollama.
Open source [repository here](https://github.com/bklieger-groq)
""")
# Text input for user query
user_query = st.text_input("Enter your query:", placeholder="e.g., How many 'R's are in the word strawberry?")
if user_query:
st.write("Generating response...")
# Create empty elements to hold the generated text and total time
response_container = st.empty()
time_container = st.empty()
# Generate and display the response
for steps, total_thinking_time in generate_response(user_query):
with response_container.container():
for i, (title, content, thinking_time) in enumerate(steps):
if title.startswith("Final Answer"):
st.markdown(f"### {title}")
st.markdown(content.replace('\n', '<br>'), unsafe_allow_html=True)
else:
with st.expander(title, expanded=True):
st.markdown(content.replace('\n', '<br>'), unsafe_allow_html=True)
# Only show total time when it's available at the end
if total_thinking_time is not None:
time_container.markdown(f"**Total thinking time: {total_thinking_time:.2f} seconds**")
if __name__ == "__main__":
main()