-
Notifications
You must be signed in to change notification settings - Fork 10
/
LiveFFT.py
192 lines (154 loc) · 5.95 KB
/
LiveFFT.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
# -*- coding: utf-8 -*-
"""
Created on May 23 2014
@author: florian
"""
import sys
import threading
import atexit
import pyaudio
import numpy as np
import matplotlib
matplotlib.use("TkAgg")
from matplotlib import figure
from PyQt4 import QtGui, QtCore
from matplotlib.backends.backend_qt4agg import FigureCanvasQTAgg as FigureCanvas
from matplotlib.backends.backend_qt4agg import NavigationToolbar2QT as NavigationToolbar
# class taken from the SciPy 2015 Vispy talk opening example
# see https://github.com/vispy/vispy/pull/928
class MicrophoneRecorder(object):
def __init__(self, rate=4000, chunksize=1024):
self.rate = rate
self.chunksize = chunksize
self.p = pyaudio.PyAudio()
self.stream = self.p.open(format=pyaudio.paInt16,
channels=1,
rate=self.rate,
input=True,
frames_per_buffer=self.chunksize,
stream_callback=self.new_frame)
self.lock = threading.Lock()
self.stop = False
self.frames = []
atexit.register(self.close)
def new_frame(self, data, frame_count, time_info, status):
data = np.fromstring(data, 'int16')
with self.lock:
self.frames.append(data)
if self.stop:
return None, pyaudio.paComplete
return None, pyaudio.paContinue
def get_frames(self):
with self.lock:
frames = self.frames
self.frames = []
return frames
def start(self):
self.stream.start_stream()
def close(self):
with self.lock:
self.stop = True
self.stream.close()
self.p.terminate()
class MplFigure(object):
def __init__(self, parent):
self.figure = figure.Figure(facecolor='white')
self.canvas = FigureCanvas(self.figure)
self.toolbar = NavigationToolbar(self.canvas, parent)
class LiveFFTWidget(QtGui.QWidget):
def __init__(self):
QtGui.QWidget.__init__(self)
# customize the UI
self.initUI()
# init class data
self.initData()
# connect slots
self.connectSlots()
# init MPL widget
self.initMplWidget()
def initUI(self):
hbox_gain = QtGui.QHBoxLayout()
autoGain = QtGui.QLabel('Auto gain for frequency spectrum')
autoGainCheckBox = QtGui.QCheckBox(checked=True)
hbox_gain.addWidget(autoGain)
hbox_gain.addWidget(autoGainCheckBox)
# reference to checkbox
self.autoGainCheckBox = autoGainCheckBox
hbox_fixedGain = QtGui.QHBoxLayout()
fixedGain = QtGui.QLabel('Manual gain level for frequency spectrum')
fixedGainSlider = QtGui.QSlider(QtCore.Qt.Horizontal)
hbox_fixedGain.addWidget(fixedGain)
hbox_fixedGain.addWidget(fixedGainSlider)
self.fixedGainSlider = fixedGainSlider
vbox = QtGui.QVBoxLayout()
vbox.addLayout(hbox_gain)
vbox.addLayout(hbox_fixedGain)
# mpl figure
self.main_figure = MplFigure(self)
vbox.addWidget(self.main_figure.toolbar)
vbox.addWidget(self.main_figure.canvas)
self.setLayout(vbox)
self.setGeometry(300, 300, 350, 300)
self.setWindowTitle('LiveFFT')
self.show()
# timer for calls, taken from:
# http://ralsina.me/weblog/posts/BB974.html
timer = QtCore.QTimer()
timer.timeout.connect(self.handleNewData)
timer.start(50)
# keep reference to timer
self.timer = timer
def initData(self):
mic = MicrophoneRecorder()
mic.start()
# keeps reference to mic
self.mic = mic
# computes the parameters that will be used during plotting
self.freq_vect = np.fft.rfftfreq(mic.chunksize,
1./mic.rate)
self.time_vect = np.arange(mic.chunksize, dtype=np.float32) / mic.rate * 1000
def connectSlots(self):
pass
def initMplWidget(self):
"""creates initial matplotlib plots in the main window and keeps
references for further use"""
# top plot
self.ax_top = self.main_figure.figure.add_subplot(211)
self.ax_top.set_ylim(-32768, 32768)
self.ax_top.set_xlim(0, self.time_vect.max())
self.ax_top.set_xlabel(u'time (ms)', fontsize=6)
# bottom plot
self.ax_bottom = self.main_figure.figure.add_subplot(212)
self.ax_bottom.set_ylim(0, 1)
self.ax_bottom.set_xlim(0, self.freq_vect.max())
self.ax_bottom.set_xlabel(u'frequency (Hz)', fontsize=6)
# line objects
self.line_top, = self.ax_top.plot(self.time_vect,
np.ones_like(self.time_vect))
self.line_bottom, = self.ax_bottom.plot(self.freq_vect,
np.ones_like(self.freq_vect))
# tight layout
#plt.tight_layout()
def handleNewData(self):
""" handles the asynchroneously collected sound chunks """
# gets the latest frames
frames = self.mic.get_frames()
if len(frames) > 0:
# keeps only the last frame
current_frame = frames[-1]
# plots the time signal
self.line_top.set_data(self.time_vect, current_frame)
# computes and plots the fft signal
fft_frame = np.fft.rfft(current_frame)
if self.autoGainCheckBox.checkState() == QtCore.Qt.Checked:
fft_frame /= np.abs(fft_frame).max()
else:
fft_frame *= (1 + self.fixedGainSlider.value()) / 5000000.
#print(np.abs(fft_frame).max())
self.line_bottom.set_data(self.freq_vect, np.abs(fft_frame))
# refreshes the plots
self.main_figure.canvas.draw()
if __name__ == "__main__":
app = QtGui.QApplication(sys.argv)
window = LiveFFTWidget()
sys.exit(app.exec_())