Checkout the run.md for all flags.
- Input dir: Run AlphaPose for all images in a folder with:
python scripts/demo_inference.py --cfg ${cfg_file} --checkpoint ${trained_model} --indir ${img_directory} --outdir ${output_directory}
- Video: Run AlphaPose for a video and save the rendered video with:
python scripts/demo_inference.py --cfg ${cfg_file} --checkpoint ${trained_model} --video ${path to video} --outdir examples/res --save_video
- Webcam: Run AlphaPose using default webcam and visualize the results with:
python scripts/demo_inference.py --cfg ${cfg_file} --checkpoint ${trained_model} --outdir examples/res --vis --webcam 0
- Input list: Run AlphaPose for images in a list and save the rendered images with:
python scripts/demo_inference.py --cfg ${cfg_file} --checkpoint ${trained_model} --list examples/list-coco-demo.txt --indir ${img_directory} --outdir examples/res --save_img
- Only-cpu/Multi-gpus: Run AlphaPose for images in a list by cpu only or multi gpus:
python scripts/demo_inference.py --cfg ${cfg_file} --checkpoint ${trained_model} --list examples/list-coco-demo.txt --indir ${img_directory} --outdir examples/res --gpus ${-1(cpu only)/0,1,2,3(multi-gpus)}
- Re-ID Track(Experimental): Run AlphaPose for tracking persons in a video by human re-id algorithm:
python scripts/demo_inference.py --cfg ${cfg_file} --checkpoint ${trained_model} --video ${path to video} --outdir examples/res --pose_track --save_video
- Simple Track(Experimental): Run AlphaPose for tracking persons in a video by MOT tracking algorithm:
python scripts/demo_inference.py --cfg ${cfg_file} --checkpoint ${trained_model} --video ${path to video} --outdir examples/res --detector tracker --save_video
- Pose Flow(not ready): Run AlphaPose for tracking persons in a video by embedded PoseFlow algorithm:
python scripts/demo_inference.py --cfg ${cfg_file} --checkpoint ${trained_model} --video ${path to video} --outdir examples/res --pose_flow --save_video
- Note: If you meet OOM(out of memory) problem, decreasing the pose estimation batch until the program can run on your computer:
python scripts/demo_inference.py --cfg ${cfg_file} --checkpoint ${trained_model} --indir ${img_directory} --outdir examples/res --detbatch 1 --posebatch 30
- Getting more accurate: You can use larger input for pose network to improve performance e.g.:
python scripts/demo_inference.py --cfg ${cfg_file} --checkpoint ${trained_model} --indir ${img_directory} --outdir ${output_directory} --flip
- Speeding up: Checkout the speed_up.md for more details.
Checkout the output.md for more details.