We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Hello, I'm trying to reproduce the test from a closed issue. When I try to run the following:
python src/main.py --output_dir experiments --comment "pretraining through imputation" --name pretrained --records_file Imputation_records.xls --data_dir "datasets/Monash_UEA_UCR_Regression_Archive/AppliancesEnergy/" --data_class tsra --pattern TRAIN --val_ratio 0.2 --epochs 700 --lr 0.001 --optimizer RAdam --pos_encoding learnable --num_layers 3 --num_heads 16 --d_model 128 --dim_feedforward 512 --batch_size 64
I get the following error:
2023-10-16 01:00:54,681 | INFO : Loading packages ... 2023-10-16 01:00:57,006 | INFO : Stored configuration file in 'experiments/pretrained_2023-10-16_01-00-57_vCC' 2023-10-16 01:00:57,006 | INFO : Running: src/main.py --output_dir experiments --comment pretraining through imputation --name pretrained --records_file Imputation_records.xls --data_dir datasets/Monash_UEA_UCR_Regression_Archive/AppliancesEnergy/ --data_class tsra --pattern TRAIN --val_ratio 0.2 --epochs 700 --lr 0.001 --optimizer RAdam --pos_encoding learnable --num_layers 3 --num_heads 16 --d_model 128 --dim_feedforward 512 --batch_size 64 2023-10-16 01:00:58,017 | INFO : Using device: cuda 2023-10-16 01:00:58,018 | INFO : Loading and preprocessing data ... 119it [00:03, 39.15it/s] 2023-10-16 01:01:01,578 | INFO : 76 samples may be used for training 2023-10-16 01:01:01,578 | INFO : 19 samples will be used for validation 2023-10-16 01:01:01,578 | INFO : 0 samples will be used for testing 2023-10-16 01:01:01,597 | INFO : Creating model ... /home/dblab/pal/Documents/pyscripts/mvts_transformer/mvtsenv/lib/python3.8/site-packages/torch/nn/modules/transformer.py:282: UserWarning: enable_nested_tensor is True, but self.use_nested_tensor is False because encoder_layer was not TransformerEncoderLayer warnings.warn(f"enable_nested_tensor is True, but self.use_nested_tensor is False because {why_not_sparsity_fast_path}") 2023-10-16 01:01:01,639 | INFO : Model: TSTransformerEncoder( (project_inp): Linear(in_features=24, out_features=128, bias=True) (pos_enc): LearnablePositionalEncoding( (dropout): Dropout(p=0.1, inplace=False) ) (transformer_encoder): TransformerEncoder( (layers): ModuleList( (0-2): 3 x TransformerBatchNormEncoderLayer( (self_attn): MultiheadAttention( (out_proj): NonDynamicallyQuantizableLinear(in_features=128, out_features=128, bias=True) ) (linear1): Linear(in_features=128, out_features=512, bias=True) (dropout): Dropout(p=0.1, inplace=False) (linear2): Linear(in_features=512, out_features=128, bias=True) (norm1): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (norm2): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (dropout1): Dropout(p=0.1, inplace=False) (dropout2): Dropout(p=0.1, inplace=False) ) ) ) (output_layer): Linear(in_features=128, out_features=24, bias=True) (dropout1): Dropout(p=0.1, inplace=False) ) 2023-10-16 01:01:01,640 | INFO : Total number of parameters: 619544 2023-10-16 01:01:01,641 | INFO : Trainable parameters: 619544 2023-10-16 01:01:02,995 | INFO : Evaluating on validation set ... Traceback (most recent call last): File "src/main.py", line 307, in <module> main(config) File "src/main.py", line 235, in main aggr_metrics_val, best_metrics, best_value = validate(val_evaluator, tensorboard_writer, config, best_metrics, File "/home/dblab/pal/Documents/pyscripts/mvts_transformer/src/running.py", line 191, in validate aggr_metrics, per_batch = val_evaluator.evaluate(epoch, keep_all=True) File "/home/dblab/pal/Documents/pyscripts/mvts_transformer/src/running.py", line 346, in evaluate predictions = self.model(X.to(self.device), padding_masks) # (batch_size, padded_length, feat_dim) File "/home/dblab/pal/Documents/pyscripts/mvts_transformer/mvtsenv/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "/home/dblab/pal/Documents/pyscripts/mvts_transformer/mvtsenv/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl return forward_call(*args, **kwargs) File "/home/dblab/pal/Documents/pyscripts/mvts_transformer/src/models/ts_transformer.py", line 240, in forward output = self.transformer_encoder(inp, src_key_padding_mask=~padding_masks) # (seq_length, batch_size, d_model) File "/home/dblab/pal/Documents/pyscripts/mvts_transformer/mvtsenv/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "/home/dblab/pal/Documents/pyscripts/mvts_transformer/mvtsenv/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl return forward_call(*args, **kwargs) File "/home/dblab/pal/Documents/pyscripts/mvts_transformer/mvtsenv/lib/python3.8/site-packages/torch/nn/modules/transformer.py", line 387, in forward output = mod(output, src_mask=mask, is_causal=is_causal, src_key_padding_mask=src_key_padding_mask_for_layers) File "/home/dblab/pal/Documents/pyscripts/mvts_transformer/mvtsenv/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "/home/dblab/pal/Documents/pyscripts/mvts_transformer/mvtsenv/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl return forward_call(*args, **kwargs) TypeError: forward() got an unexpected keyword argument 'is_causal'
Following is the data in datasets/Monash_UEA_UCR_Regression_Archive/AppliancesEnergy:
These are my package versions:
Package Version ------------------------ ------------ absl-py 2.0.0 asttokens 2.4.0 backcall 0.2.0 cachetools 5.3.1 certifi 2023.7.22 charset-normalizer 3.3.0 contourpy 1.1.1 cycler 0.12.1 decorator 5.1.1 executing 2.0.0 filelock 3.12.4 fonttools 4.43.1 fsspec 2023.9.2 google-auth 2.23.3 google-auth-oauthlib 1.0.0 grpcio 1.59.0 idna 3.4 importlib-metadata 6.8.0 importlib-resources 6.1.0 ipdb 0.13.13 ipython 8.12.3 jedi 0.19.1 Jinja2 3.1.2 joblib 1.3.2 kiwisolver 1.4.5 Markdown 3.5 MarkupSafe 2.1.3 matplotlib 3.7.3 matplotlib-inline 0.1.6 mpmath 1.3.0 networkx 3.1 numpy 1.24.4 nvidia-cublas-cu12 12.1.3.1 nvidia-cuda-cupti-cu12 12.1.105 nvidia-cuda-nvrtc-cu12 12.1.105 nvidia-cuda-runtime-cu12 12.1.105 nvidia-cudnn-cu12 8.9.2.26 nvidia-cufft-cu12 11.0.2.54 nvidia-curand-cu12 10.3.2.106 nvidia-cusolver-cu12 11.4.5.107 nvidia-cusparse-cu12 12.1.0.106 nvidia-nccl-cu12 2.18.1 nvidia-nvjitlink-cu12 12.2.140 nvidia-nvtx-cu12 12.1.105 oauthlib 3.2.2 packaging 23.2 pandas 2.0.3 parso 0.8.3 patsy 0.5.3 pexpect 4.8.0 pickleshare 0.7.5 Pillow 10.1.0 pip 23.0.1 prompt-toolkit 3.0.39 protobuf 4.24.4 ptyprocess 0.7.0 pure-eval 0.2.2 pyasn1 0.5.0 pyasn1-modules 0.3.0 Pygments 2.16.1 pyparsing 3.1.1 python-dateutil 2.8.2 pytz 2023.3.post1 requests 2.31.0 requests-oauthlib 1.3.1 rsa 4.9 scikit-learn 1.3.1 scipy 1.10.1 setuptools 56.0.0 six 1.16.0 sktime 0.4.1 stack-data 0.6.3 statsmodels 0.14.0 sympy 1.12 tabulate 0.9.0 tensorboard 2.14.0 tensorboard-data-server 0.7.1 threadpoolctl 3.2.0 tomli 2.0.1 torch 2.1.0 tqdm 4.66.1 traitlets 5.11.2 triton 2.1.0 typing_extensions 4.8.0 tzdata 2023.3 urllib3 2.0.6 wcwidth 0.2.8 Werkzeug 3.0.0 wheel 0.41.2 xlrd 2.0.1 xlutils 2.0.0 xlwt 1.3.0 zipp 3.17.0
Python version is 3.8.18. Would appreciate it if anyone could suggest some changes to the code.
The text was updated successfully, but these errors were encountered:
I received the same. I deleted the parameter is_causal = is_causual from the function call and it worked.
Sorry, something went wrong.
Hi, set is_causal=None as argument to TransformerBatchNormEncoderLayer.forward. This made the code work for me.
is_causal=None
No branches or pull requests
Hello, I'm trying to reproduce the test from a closed issue.
When I try to run the following:
I get the following error:
Following is the data in datasets/Monash_UEA_UCR_Regression_Archive/AppliancesEnergy:
These are my package versions:
Python version is 3.8.18.
Would appreciate it if anyone could suggest some changes to the code.
The text was updated successfully, but these errors were encountered: