forked from adambard/learnxinyminutes-docs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
common-lisp.html.markdown
690 lines (467 loc) · 19.9 KB
/
common-lisp.html.markdown
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
---
language: "Common Lisp"
filename: commonlisp.lisp
contributors:
- ["Paul Nathan", "https://github.com/pnathan"]
- ["Rommel Martinez", "https://ebzzry.io"]
---
Common Lisp is a general-purpose, multi-paradigm programming language suited for a wide variety of
industry applications. It is frequently referred to as a programmable programming language.
The classic starting point is [Practical Common Lisp](http://www.gigamonkeys.com/book/). Another
popular and recent book is [Land of Lisp](http://landoflisp.com/). A new book about best practices,
[Common Lisp Recipes](http://weitz.de/cl-recipes/), was recently published.
```lisp
;;;-----------------------------------------------------------------------------
;;; 0. Syntax
;;;-----------------------------------------------------------------------------
;;; General form
;;; CL has two fundamental pieces of syntax: ATOM and S-EXPRESSION.
;;; Typically, grouped S-expressions are called `forms`.
10 ; an atom; it evaluates to itself
:thing ; another atom; evaluating to the symbol :thing
t ; another atom, denoting true
(+ 1 2 3 4) ; an s-expression
'(4 :foo t) ; another s-expression
;;; Comments
;;; Single-line comments start with a semicolon; use four for file-level
;;; comments, three for section descriptions, two inside definitions, and one
;;; for single lines. For example,
;;;; life.lisp
;;; Foo bar baz, because quu quux. Optimized for maximum krakaboom and umph.
;;; Needed by the function LINULUKO.
(defun meaning (life)
"Return the computed meaning of LIFE"
(let ((meh "abc"))
;; Invoke krakaboom
(loop :for x :across meh
:collect x))) ; store values into x, then return it
;;; Block comments, on the other hand, allow for free-form comments. They are
;;; delimited with #| and |#
#| This is a block comment which
can span multiple lines and
#|
they can be nested!
|#
|#
;;; Environment
;;; A variety of implementations exist; most are standards-conformant. SBCL
;;; is a good starting point. Third party libraries can be easily installed with
;;; Quicklisp
;;; CL is usually developed with a text editor and a Read Eval Print
;;; Loop (REPL) running at the same time. The REPL allows for interactive
;;; exploration of the program while it is running "live".
;;;-----------------------------------------------------------------------------
;;; 1. Primitive datatypes and operators
;;;-----------------------------------------------------------------------------
;;; Symbols
'foo ; => FOO Notice that the symbol is upper-cased automatically.
;;; INTERN manually creates a symbol from a string.
(intern "AAAA") ; => AAAA
(intern "aaa") ; => |aaa|
;;; Numbers
9999999999999999999999 ; integers
#b111 ; binary => 7
#o111 ; octal => 73
#x111 ; hexadecimal => 273
3.14159s0 ; single
3.14159d0 ; double
1/2 ; ratios
#C(1 2) ; complex numbers
;;; Function application are written as (f x y z ...) where f is a function and
;;; x, y, z, ... are the arguments.
(+ 1 2) ; => 3
;;; If you want to create literal data, use QUOTE to prevent it from being
;;; evaluated
(quote (+ 1 2)) ; => (+ 1 2)
(quote a) ; => A
;;; The shorthand for QUOTE is '
'(+ 1 2) ; => (+ 1 2)
'a ; => A
;;; Basic arithmetic operations
(+ 1 1) ; => 2
(- 8 1) ; => 7
(* 10 2) ; => 20
(expt 2 3) ; => 8
(mod 5 2) ; => 1
(/ 35 5) ; => 7
(/ 1 3) ; => 1/3
(+ #C(1 2) #C(6 -4)) ; => #C(7 -2)
;;; Booleans
t ; true; any non-NIL value is true
nil ; false; also, the empty list: ()
(not nil) ; => T
(and 0 t) ; => T
(or 0 nil) ; => 0
;;; Characters
#\A ; => #\A
#\λ ; => #\GREEK_SMALL_LETTER_LAMDA
#\u03BB ; => #\GREEK_SMALL_LETTER_LAMDA
;;; Strings are fixed-length arrays of characters
"Hello, world!"
"Benjamin \"Bugsy\" Siegel" ; backslash is an escaping character
;;; Strings can be concatenated
(concatenate 'string "Hello, " "world!") ; => "Hello, world!"
;;; A string can be treated like a sequence of characters
(elt "Apple" 0) ; => #\A
;;; FORMAT is used to create formatted output, which ranges from simple string
;;; interpolation to loops and conditionals. The first argument to FORMAT
;;; determines where will the formatted string go. If it is NIL, FORMAT
;;; simply returns the formatted string as a value; if it is T, FORMAT outputs
;;; to the standard output, usually the screen, then it returns NIL.
(format nil "~A, ~A!" "Hello" "world") ; => "Hello, world!"
(format t "~A, ~A!" "Hello" "world") ; => NIL
;;;-----------------------------------------------------------------------------
;;; 2. Variables
;;;-----------------------------------------------------------------------------
;;; You can create a global (dynamically scoped) variable using DEFVAR and
;;; DEFPARAMETER. The variable name can use any character except: ()",'`;#|\
;;; The difference between DEFVAR and DEFPARAMETER is that re-evaluating a
;;; DEFVAR expression doesn't change the value of the variable. DEFPARAMETER,
;;; on the other hand, does.
;;; By convention, dynamically scoped variables have earmuffs in their name.
(defparameter *some-var* 5)
*some-var* ; => 5
;;; You can also use unicode characters.
(defparameter *AΛB* nil)
;;; Accessing a previously unbound variable results in an UNBOUND-VARIABLE
;;; error, however it is defined behavior. Don't do it.
;;; You can create local bindings with LET. In the following snippet, `me` is
;;; bound to "dance with you" only within the (let ...). LET always returns
;;; the value of the last `form` in the LET form.
(let ((me "dance with you")) me) ; => "dance with you"
;;;-----------------------------------------------------------------------------;
;;; 3. Structs and collections
;;;-----------------------------------------------------------------------------;
;;; Structs
(defstruct dog name breed age)
(defparameter *rover*
(make-dog :name "rover"
:breed "collie"
:age 5))
*rover* ; => #S(DOG :NAME "rover" :BREED "collie" :AGE 5)
(dog-p *rover*) ; => T
(dog-name *rover*) ; => "rover"
;;; DOG-P, MAKE-DOG, and DOG-NAME are all automatically created by DEFSTRUCT
;;; Pairs
;;; CONS constructs pairs. CAR and CDR return the head and tail of a CONS-pair.
(cons 'SUBJECT 'VERB) ; => '(SUBJECT . VERB)
(car (cons 'SUBJECT 'VERB)) ; => SUBJECT
(cdr (cons 'SUBJECT 'VERB)) ; => VERB
;;; Lists
;;; Lists are linked-list data structures, made of CONS pairs and end with a
;;; NIL (or '()) to mark the end of the list
(cons 1 (cons 2 (cons 3 nil))) ; => '(1 2 3)
;;; LIST is a convenience variadic constructor for lists
(list 1 2 3) ; => '(1 2 3)
;;; When the first argument to CONS is an atom and the second argument is a
;;; list, CONS returns a new CONS-pair with the first argument as the first
;;; item and the second argument as the rest of the CONS-pair
(cons 4 '(1 2 3)) ; => '(4 1 2 3)
;;; Use APPEND to join lists
(append '(1 2) '(3 4)) ; => '(1 2 3 4)
;;; Or CONCATENATE
(concatenate 'list '(1 2) '(3 4)) ; => '(1 2 3 4)
;;; Lists are a very central type, so there is a wide variety of functionality for
;;; them, a few examples:
(mapcar #'1+ '(1 2 3)) ; => '(2 3 4)
(mapcar #'+ '(1 2 3) '(10 20 30)) ; => '(11 22 33)
(remove-if-not #'evenp '(1 2 3 4)) ; => '(2 4)
(every #'evenp '(1 2 3 4)) ; => NIL
(some #'oddp '(1 2 3 4)) ; => T
(butlast '(subject verb object)) ; => (SUBJECT VERB)
;;; Vectors
;;; Vector's literals are fixed-length arrays
#(1 2 3) ; => #(1 2 3)
;;; Use CONCATENATE to add vectors together
(concatenate 'vector #(1 2 3) #(4 5 6)) ; => #(1 2 3 4 5 6)
;;; Arrays
;;; Both vectors and strings are special-cases of arrays.
;;; 2D arrays
(make-array (list 2 2)) ; => #2A((0 0) (0 0))
(make-array '(2 2)) ; => #2A((0 0) (0 0))
(make-array (list 2 2 2)) ; => #3A(((0 0) (0 0)) ((0 0) (0 0)))
;;; Caution: the default initial values of MAKE-ARRAY are implementation-defined.
;;; To explicitly specify them:
(make-array '(2) :initial-element 'unset) ; => #(UNSET UNSET)
;;; To access the element at 1, 1, 1:
(aref (make-array (list 2 2 2)) 1 1 1) ; => 0
;;; This value is implementation-defined:
;;; NIL on ECL, 0 on SBCL and CCL.
;;; Adjustable vectors
;;; Adjustable vectors have the same printed representation as
;;; fixed-length vector's literals.
(defparameter *adjvec* (make-array '(3) :initial-contents '(1 2 3)
:adjustable t :fill-pointer t))
*adjvec* ; => #(1 2 3)
;;; Adding new elements
(vector-push-extend 4 *adjvec*) ; => 3
*adjvec* ; => #(1 2 3 4)
;;; Sets, naively, are just lists:
(set-difference '(1 2 3 4) '(4 5 6 7)) ; => (3 2 1)
(intersection '(1 2 3 4) '(4 5 6 7)) ; => 4
(union '(1 2 3 4) '(4 5 6 7)) ; => (3 2 1 4 5 6 7)
(adjoin 4 '(1 2 3 4)) ; => (1 2 3 4)
;;; However, you'll need a better data structure than linked lists when working
;;; with larger data sets
;;; Dictionaries are implemented as hash tables.
;;; Create a hash table
(defparameter *m* (make-hash-table))
;;; Set value
(setf (gethash 'a *m*) 1)
;;; Retrieve value
(gethash 'a *m*) ; => 1, T
;;; CL expressions have the ability to return multiple values.
(values 1 2) ; => 1, 2
;;; which can be bound with MULTIPLE-VALUE-BIND
(multiple-value-bind (x y)
(values 1 2)
(list y x))
; => '(2 1)
;;; GETHASH is an example of a function that returns multiple values. The first
;;; value it return is the value of the key in the hash table; if the key is
;;; not found it returns NIL.
;;; The second value determines if that key is indeed present in the hash
;;; table. If a key is not found in the table it returns NIL. This behavior
;;; allows us to check if the value of a key is actually NIL.
;;; Retrieving a non-present value returns nil
(gethash 'd *m*) ;=> NIL, NIL
;;; You can provide a default value for missing keys
(gethash 'd *m* :not-found) ; => :NOT-FOUND
;;; Let's handle the multiple return values here in code.
(multiple-value-bind (a b)
(gethash 'd *m*)
(list a b))
; => (NIL NIL)
(multiple-value-bind (a b)
(gethash 'a *m*)
(list a b))
; => (1 T)
;;;-----------------------------------------------------------------------------
;;; 3. Functions
;;;-----------------------------------------------------------------------------
;;; Use LAMBDA to create anonymous functions. Functions always returns the
;;; value of the last expression. The exact printable representation of a
;;; function varies between implementations.
(lambda () "Hello World") ; => #<FUNCTION (LAMBDA ()) {1004E7818B}>
;;; Use FUNCALL to call anonymous functions
(funcall (lambda () "Hello World")) ; => "Hello World"
(funcall #'+ 1 2 3) ; => 6
;;; A call to FUNCALL is also implied when the lambda expression is the CAR of
;;; an unquoted list
((lambda () "Hello World")) ; => "Hello World"
((lambda (val) val) "Hello World") ; => "Hello World"
;;; FUNCALL is used when the arguments are known beforehand. Otherwise, use APPLY
(apply #'+ '(1 2 3)) ; => 6
(apply (lambda () "Hello World") nil) ; => "Hello World"
;;; To name a function, use DEFUN
(defun hello-world () "Hello World")
(hello-world) ; => "Hello World"
;;; The () in the definition above is the list of arguments
(defun hello (name) (format nil "Hello, ~A" name))
(hello "Steve") ; => "Hello, Steve"
;;; Functions can have optional arguments; they default to NIL
(defun hello (name &optional from)
(if from
(format t "Hello, ~A, from ~A" name from)
(format t "Hello, ~A" name)))
(hello "Jim" "Alpacas") ; => Hello, Jim, from Alpacas
;;; The default values can also be specified
(defun hello (name &optional (from "The world"))
(format nil "Hello, ~A, from ~A" name from))
(hello "Steve") ; => Hello, Steve, from The world
(hello "Steve" "the alpacas") ; => Hello, Steve, from the alpacas
;;; Functions also have keyword arguments to allow non-positional arguments
(defun generalized-greeter (name &key (from "the world") (honorific "Mx"))
(format t "Hello, ~A ~A, from ~A" honorific name from))
(generalized-greeter "Jim")
; => Hello, Mx Jim, from the world
(generalized-greeter "Jim" :from "the alpacas you met last summer" :honorific "Mr")
; => Hello, Mr Jim, from the alpacas you met last summer
;;;-----------------------------------------------------------------------------
;;; 4. Equality
;;;-----------------------------------------------------------------------------
;;; CL has a sophisticated equality system. Some are covered here.
;;; For numbers, use `='
(= 3 3.0) ; => T
(= 2 1) ; => NIL
;;; For object identity (approximately) use EQL
(eql 3 3) ; => T
(eql 3 3.0) ; => NIL
(eql (list 3) (list 3)) ; => NIL
;;; for lists, strings, and bit-vectors use EQUAL
(equal (list 'a 'b) (list 'a 'b)) ; => T
(equal (list 'a 'b) (list 'b 'a)) ; => NIL
;;;-----------------------------------------------------------------------------
;;; 5. Control Flow
;;;-----------------------------------------------------------------------------
;;; Conditionals
(if t ; test expression
"this is true" ; then expression
"this is false") ; else expression
; => "this is true"
;;; In conditionals, all non-NIL values are treated as true
(member 'Groucho '(Harpo Groucho Zeppo)) ; => '(GROUCHO ZEPPO)
(if (member 'Groucho '(Harpo Groucho Zeppo))
'yep
'nope)
; => 'YEP
;;; COND chains a series of tests to select a result
(cond ((> 2 2) (error "wrong!"))
((< 2 2) (error "wrong again!"))
(t 'ok)) ; => 'OK
;;; TYPECASE switches on the type of the value
(typecase 1
(string :string)
(integer :int))
; => :int
;;; Looping
;;; Recursion
(defun fact (n)
(if (< n 2)
1
(* n (fact(- n 1)))))
(fact 5) ; => 120
;;; Iteration
(defun fact (n)
(loop :for result = 1 :then (* result i)
:for i :from 2 :to n
:finally (return result)))
(fact 5) ; => 120
(loop :for x :across "abcd" :collect x)
; => (#\a #\b #\c #\d)
(dolist (i '(1 2 3 4))
(format t "~A" i))
; => 1234
;;;-----------------------------------------------------------------------------
;;; 6. Mutation
;;;-----------------------------------------------------------------------------
;;; Use SETF to assign a new value to an existing variable. This was
;;; demonstrated earlier in the hash table example.
(let ((variable 10))
(setf variable 2))
; => 2
;;; Good Lisp style is to minimize the use of destructive functions and to avoid
;;; mutation when reasonable.
;;;-----------------------------------------------------------------------------
;;; 7. Classes and objects
;;;-----------------------------------------------------------------------------
;;; No more animal classes. Let's have Human-Powered Mechanical
;;; Conveyances.
(defclass human-powered-conveyance ()
((velocity
:accessor velocity
:initarg :velocity)
(average-efficiency
:accessor average-efficiency
:initarg :average-efficiency))
(:documentation "A human powered conveyance"))
;;; The arguments to DEFCLASS, in order are:
;;; 1. class name
;;; 2. superclass list
;;; 3. slot list
;;; 4. optional specifiers
;;; When no superclass list is set, the empty list defaults to the
;;; standard-object class. This *can* be changed, but not until you
;;; know what you're doing. Look up the Art of the Metaobject Protocol
;;; for more information.
(defclass bicycle (human-powered-conveyance)
((wheel-size
:accessor wheel-size
:initarg :wheel-size
:documentation "Diameter of the wheel.")
(height
:accessor height
:initarg :height)))
(defclass recumbent (bicycle)
((chain-type
:accessor chain-type
:initarg :chain-type)))
(defclass unicycle (human-powered-conveyance) nil)
(defclass canoe (human-powered-conveyance)
((number-of-rowers
:accessor number-of-rowers
:initarg :number-of-rowers)))
;;; Calling DESCRIBE on the HUMAN-POWERED-CONVEYANCE class in the REPL gives:
(describe 'human-powered-conveyance)
; COMMON-LISP-USER::HUMAN-POWERED-CONVEYANCE
; [symbol]
;
; HUMAN-POWERED-CONVEYANCE names the standard-class #<STANDARD-CLASS
; HUMAN-POWERED-CONVEYANCE>:
; Documentation:
; A human powered conveyance
; Direct superclasses: STANDARD-OBJECT
; Direct subclasses: UNICYCLE, BICYCLE, CANOE
; Not yet finalized.
; Direct slots:
; VELOCITY
; Readers: VELOCITY
; Writers: (SETF VELOCITY)
; AVERAGE-EFFICIENCY
; Readers: AVERAGE-EFFICIENCY
; Writers: (SETF AVERAGE-EFFICIENCY)
;;; Note the reflective behavior available. CL was designed to be an
;;; interactive system
;;; To define a method, let's find out what our circumference of the
;;; bike wheel turns out to be using the equation: C = d * pi
(defmethod circumference ((object bicycle))
(* pi (wheel-size object)))
;;; PI is defined as a built-in in CL
;;; Let's suppose we find out that the efficiency value of the number
;;; of rowers in a canoe is roughly logarithmic. This should probably be set
;;; in the constructor/initializer.
;;; To initialize your instance after CL gets done constructing it:
(defmethod initialize-instance :after ((object canoe) &rest args)
(setf (average-efficiency object) (log (1+ (number-of-rowers object)))))
;;; Then to construct an instance and check the average efficiency...
(average-efficiency (make-instance 'canoe :number-of-rowers 15))
; => 2.7725887
;;;-----------------------------------------------------------------------------
;;; 8. Macros
;;;-----------------------------------------------------------------------------
;;; Macros let you extend the syntax of the language. CL doesn't come
;;; with a WHILE loop, however, it's trivial to write one. If we obey our
;;; assembler instincts, we wind up with:
(defmacro while (condition &body body)
"While `condition` is true, `body` is executed.
`condition` is tested prior to each execution of `body`"
(let ((block-name (gensym)) (done (gensym)))
`(tagbody
,block-name
(unless ,condition
(go ,done))
(progn
,@body)
(go ,block-name)
,done)))
;;; Let's look at the high-level version of this:
(defmacro while (condition &body body)
"While `condition` is true, `body` is executed.
`condition` is tested prior to each execution of `body`"
`(loop while ,condition
do
(progn
,@body)))
;;; However, with a modern compiler, this is not required; the LOOP form
;;; compiles equally well and is easier to read.
;;; Note that ``` is used, as well as `,` and `@`. ``` is a quote-type operator
;;; known as quasiquote; it allows the use of `,` . `,` allows "unquoting"
;;; variables. @ interpolates lists.
;;; GENSYM creates a unique symbol guaranteed to not exist elsewhere in
;;; the system. This is because macros are expanded at compile time and
;;; variables declared in the macro can collide with variables used in
;;; regular code.
;;; See Practical Common Lisp and On Lisp for more information on macros.
```
## Further reading
- [Practical Common Lisp](http://www.gigamonkeys.com/book/)
- [Common Lisp: A Gentle Introduction to Symbolic Computation](https://www.cs.cmu.edu/~dst/LispBook/book.pdf)
## Extra information
- [CLiki](http://www.cliki.net/)
- [common-lisp.net](https://common-lisp.net/)
- [Awesome Common Lisp](https://github.com/CodyReichert/awesome-cl)
- [Lisp Lang](http://lisp-lang.org/)
## Credits
Lots of thanks to the Scheme people for rolling up a great starting
point which could be easily moved to Common Lisp.
- [Paul Khuong](https://github.com/pkhuong) for some great reviewing.