diff --git a/index.html b/index.html index 35aa1ec..8c6e7bb 100644 --- a/index.html +++ b/index.html @@ -47,7 +47,7 @@
-
Xiao He (何潇) is a master student at degree China University of Geosciences, . @@ -61,7 +61,6 @@ Github  /  -
More
@@ -102,402 +102,108 @@
-
-
-
- |
-
-
- - Yue Liu, - Shihao Zhu, - J. Xia, - Y. Ma, - J. Ma, - Wenliang Zhong, - G. Zhang, - K. Zhang, - Xinwang Liu - - arXiv, 2024 - - Paper - / - Code - - - - We propose an intent learning method termed ELCRec, which leverages end-to-end learnable clustering and cluster-assisted contrastive learning to improve recommendation. Both the results on open benchmarks and industrial engine demonstrate the superiority. - - - - |
-
-
-
-
- |
-
-
- - Meng Liu, - Yue Liu, - K. Liang, - S. Wang, - S. Zhou, - Xinwang Liu - - - ICLR, 2024 - - Paper - / - Code - - - We aim to extend deep graph clustering to temporal graphs, which are more practical in real-world scenarios. We propose a general framework TGC by clustering distribution assignment and adjacency reconstruction. - - - |
-
-
-
-
- |
-
-
- - Yingwei Ma*, - Yue Liu*, - Y. Yu, - Y. Jiang, - C. Wang, - S. Li - - ICLR (Spotlight), 2024 - - Paper - / - Code - - - We explore at which training stage can code data help LLMs reasoning. The extensive experiments and insights deepen the understanding of LLMs' reasoning capability and the corresponding applications, e.g., scientific question answering, legal support, etc. - - - - - - |
-
+
+
+
+ |
+
+
+ + Xiao He, + Chang Tang, + Xinwang Liu, + Chuankun Li, + Shan An, + Zhenglai Li + + ACM MM (Oral), 2023 + + Paper + / + Code + + + We propose stGCL. + + |
+
-
-
-
- |
-
-
- - Yue Liu, - Ke Liang, - Jun Xia, - X. Yang, - S. Zhou, - Meng Liu, - Xinwang Liu, - Stan Z. Li - - ACM MM, 2023 - - Paper - / - Code - - - We propose RGC by determining the cluster number in deep graph clustering methods via the reinforcement learning. - - |
-
-
-
-
- |
-
-
- - Ke Liang*, - Yue Liu*, - S. Zhou, - W. Tu, - Y. Wen, - X. Yang, - X. Dong, - Xinwang Liu - - IEEE T-KDE (ESI Highly Cited Paper), 2023 - - Paper - / - Code - - - We propose a plug-and-play knowledge graph contrastive learning method named KGE-SymCL by mining the symmetrical structure information in knowledge graphs. - - |
-
-
-
-
- |
-
-
- - Yue Liu, - K. Liang, - Jun Xia, - S. Zhou, - X. Yang, - Xinwang Liu, - Stan Z. Li - - ICML, 2023 - - Paper - / - Project Page - / - Code - - - We analyze drawbacks of the exising deep graph clustering methods and scale deep graph clustering to large-scale graphs. The proposed shrink and dilation loss functions optimize clustering distribution adversarially, allowing batch training without performance dropping. - - |
-
-
-
-
- |
-
-
- - Yue Liu, - X. Yang, - S. Zhou, - Xinwang Liu, - S. Wang, - K. Liang, - W. Tu, - L. Li, - - - IEEE T-NNLS, 2023 - - Paper - / - Code - - - We propose to replace the complicated and consuming graph data augmentations by designing the parameter un-shared siamese encoders and perurbing the node embeddings. - - - |
-
-
-
-
- |
-
-
- - Jun Xia, - C. Zhao, - B. Hu, - Z. Gao, - C. Tan, - Yue Liu, - S. Li, - Stan Z. Li - - ICLR, 2023 - - Paper - / - Code - - - The negative transfer in molecular graph pre-training are analyzed. To alleviate this issue, we first enlarge the atom vocabulary size and then develop two novel pre-training strategies at node and graph level. - - |
-
-
-
-
- |
-
-
- - Yue Liu, - X. Yang, - S. Zhou, - X. Liu, - Z. Wang, - K. Liang, - W. Tu, - L. Li, - J. Duan, - C. Chen - - AAAI (Oral & Most Influential AAAI Paper) (13/539) [Link], 2023 - - Paper - / - Code - - - We propose Hard Sample Aware Network (HSAN) to mine both the hard positive samples and hard negative samples with a comprehensive similarity measure criterion and a general dynamic sample weighing strategy. - - |
-
+
+
+
+ |
+
+
+ + Xiao He, + Chang Tang, + Xin Zou, + Wei Zhang + + ACM MM (Oral), 2023 + + Paper + / + Code + + + We propose CALNet. + + |
+
+
-
-
-
- |
-
-
- - Yue Liu, - J. Xia, - S. Zhou, - S. Wang, - X. Guo, - X. Yang, - K. Liang, - W. Tu, - Stan Z. Li, - X. Liu - - arXiv, 2022 - - Paper - / - Project Page - - - Deep graph clustering, which aims to group the nodes in graph into disjoint clusters, has become a new hot research spot. This paper summarizes the taxonomy, challenge, and application of deep graph clustering. We hope this work will serve as a quick guide and help researchers to overcome the challenges in this field. - - |
-
+
+
+
+ |
+
+
+ + Xiao He, + Chang Tang, + Xinwang Liu, + Wei Zhang, + Kun Sun, + Jiangfeng Xu + + IEEE T-GRS , 2024 + + Paper + / + Code + + + We propose S2ADet and a News Dataset HOD3K. + + |
+
+
-
-
-
-
- |
-
-
- - Yue Liu*, - - Wenxuan Tu*, - S. Zhou, - X. Liu, - L. Song, - X. Yang, - E. Zhu - - AAAI, 2022 - - Paper - / - Code - - - We propose a self-supervised deep graph clustering method termed Dual Correlation Reduction Network (DCRN) to address the representation collapse issue by reducing information correlation in both sample and feature levels. - - |
-