You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I get the error as below. Do you have any suggestions? Thanks
2021-07-08 11:50:31.201778: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudart.so.11.0
args: Namespace(accumulate_grad_batches=1, amp_backend='native', amp_level='O2', auto_lr_find=False, auto_scale_batch_size=False, auto_select_gpus=True, batch_size=32, benchmark=False, check_val_every_n_epoch=1, checkpoint_callback=True, default_root_dir=None, deterministic=False, distributed_backend=None, early_stop_callback=False, fast_dev_run=False, frac=1, gpus=1, gradient_clip_val=0, learning_rate=2e-05, limit_test_batches=1.0, limit_train_batches=1.0, limit_val_batches=1.0, log_gpu_memory=None, log_save_interval=100, logger=True, max_epochs=1000, max_steps=None, min_epochs=1, min_steps=None, nr_frozen_epochs=5, num_nodes=1, num_processes=1, num_sanity_val_steps=2, overfit_batches=0.0, overfit_pct=None, precision=32, prepare_data_per_node=True, pretrained='distilbert-base-uncased', process_position=0, profiler=None, progress_bar_refresh_rate=1, reload_dataloaders_every_epoch=False, replace_sampler_ddp=True, resume_from_checkpoint=None, row_log_interval=50, sync_batchnorm=False, terminate_on_nan=False, test_percent_check=None, tpu_cores=<function Trainer._gpus_arg_default at 0x7f940221d0e0>, track_grad_norm=-1, train_percent_check=None, training_portion=0.9, truncated_bptt_steps=None, val_check_interval=1.0, val_percent_check=None, weights_save_path=None, weights_summary='top')
kwargs: {}
Loading BERT tokenizer
PRETRAINED:distilbert-base-uncased
Type tokenizer: <class 'transformers.tokenization_distilbert.DistilBertTokenizer'>
Setting up dataset
Number of training sentences: 15,746
14,171 training samples
1,575 validation samples
DistilBertConfig {
"activation": "gelu",
"architectures": [
"DistilBertForMaskedLM"
],
"attention_dropout": 0.1,
"dim": 768,
"dropout": 0.1,
"hidden_dim": 3072,
"id2label": {
"0": "LABEL_0",
"1": "LABEL_1",
"2": "LABEL_2",
"3": "LABEL_3",
"4": "LABEL_4"
},
"initializer_range": 0.02,
"label2id": {
"LABEL_0": 0,
"LABEL_1": 1,
"LABEL_2": 2,
"LABEL_3": 3,
"LABEL_4": 4
},
"max_position_embeddings": 512,
"model_type": "distilbert",
"n_heads": 12,
"n_layers": 6,
"pad_token_id": 0,
"qa_dropout": 0.1,
"seq_classif_dropout": 0.2,
"sinusoidal_pos_embds": false,
"tie_weights_": true,
"vocab_size": 30522
}
Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertForSequenceClassification: ['vocab_transform.weight', 'vocab_transform.bias', 'vocab_layer_norm.weight', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias']
- This IS expected if you are initializing DistilBertForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPretraining model).
- This IS NOT expected if you are initializing DistilBertForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).
Some weights of DistilBertForSequenceClassification were not initialized from the model checkpoint at distilbert-base-uncased and are newly initialized: ['pre_classifier.weight', 'pre_classifier.bias', 'classifier.weight', 'classifier.bias']
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
Model Type <class 'transformers.modeling_distilbert.DistilBertForSequenceClassification'>
GPU available: True, used: True
TPU available: False, using: 0 TPU cores
CUDA_VISIBLE_DEVICES: [0]
/usr/local/lib/python3.7/dist-packages/pytorch_lightning/utilities/distributed.py:37: UserWarning: Could not log computational graph since the `model.example_input_array` attribute is not set or `input_array` was not given
warnings.warn(*args, **kwargs)
| Name | Type | Params
--------------------------------------------------------------
0 | model | DistilBertForSequenceClassification | 66 M
/usr/local/lib/python3.7/dist-packages/pytorch_lightning/utilities/distributed.py:37: UserWarning: Your val_dataloader has `shuffle=True`, it is best practice to turn this off for validation and test dataloaders.
warnings.warn(*args, **kwargs)
Validation sanity check: 0it [00:00, ?it/s]Traceback (most recent call last):
File "nlp_finetuning_lightning_google.py", line 467, in <module>
trainer.fit(m, d)
File "/usr/local/lib/python3.7/dist-packages/pytorch_lightning/trainer/states.py", line 48, in wrapped_fn
result = fn(self, *args, **kwargs)
File "/usr/local/lib/python3.7/dist-packages/pytorch_lightning/trainer/trainer.py", line 1073, in fit
results = self.accelerator_backend.train(model)
File "/usr/local/lib/python3.7/dist-packages/pytorch_lightning/accelerators/gpu_backend.py", line 51, in train
results = self.trainer.run_pretrain_routine(model)
File "/usr/local/lib/python3.7/dist-packages/pytorch_lightning/trainer/trainer.py", line 1224, in run_pretrain_routine
self._run_sanity_check(ref_model, model)
File "/usr/local/lib/python3.7/dist-packages/pytorch_lightning/trainer/trainer.py", line 1257, in _run_sanity_check
eval_results = self._evaluate(model, self.val_dataloaders, max_batches, False)
File "/usr/local/lib/python3.7/dist-packages/pytorch_lightning/trainer/evaluation_loop.py", line 333, in _evaluate
output = self.evaluation_forward(model, batch, batch_idx, dataloader_idx, test_mode)
File "/usr/local/lib/python3.7/dist-packages/pytorch_lightning/trainer/evaluation_loop.py", line 687, in evaluation_forward
output = model.validation_step(*args)
File "nlp_finetuning_lightning_google.py", line 140, in validation_step
loss, logits = self(batch)
File "/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py", line 722, in _call_impl
result = self.forward(*input, **kwargs)
File "nlp_finetuning_lightning_google.py", line 110, in forward
loss, logits = res['loss'], res['logits']
TypeError: tuple indices must be integers or slices, not str
CPU times: user 167 ms, sys: 37.7 ms, total: 204 ms
Wall time: 22 s
The text was updated successfully, but these errors were encountered:
Hi many thanks for your useful blog and notebook. I have been following the instructions and when I get to
I get the error as below. Do you have any suggestions? Thanks
The text was updated successfully, but these errors were encountered: