-
Notifications
You must be signed in to change notification settings - Fork 5
/
evaluate.py
executable file
·111 lines (83 loc) · 4.28 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import argparse
import numpy as np
import tensorflow as tf
from sklearn.metrics.pairwise import cosine_similarity
from lib.model import conv_autoencoder_3d
from lib.utils import load_data
from lib.utils import calculate_average_precision
from lib.visualize import visualize, visualize_3d_iodata, visualize_tsne
def parse_args():
parser = argparse.ArgumentParser(description='Evaluate 3D Convolutional AutoEncoder')
parser.add_argument('--learning_rate', default=1e-4, type=float, help='learning rate of optimizer')
parser.add_argument('--data_path', default='./data/modelnet10.npz', type=str, help='path to dataset to evaluate')
parser.add_argument('--use_exist_modelout', default=False, type=bool,
help='whether to use existing model output in npz. If False, model evaluation will be done again')
parser.add_argument('--modelout_save', default=False, type=bool, help='whether to save model output')
parser.add_argument('--checkpoint_dir', default='./checkpoint', type=str, help='path to directory to checkpoint')
parser.add_argument('--modeleval_out_dir', default='./output.npz', type=str,
help='path to directory to save and load model evaluation output')
parser.add_argument('--num_search_sample', default=1, type=int, help='the number of samples to search')
parser.add_argument('--num_top_similarity', default=4, type=int, help='search top k similarity data')
args = parser.parse_args()
return args
def similarity_search(encoded, k):
"""
caluculate similarity between encoded data for each row.
run similar data search based on cosine similarity and return similar data index and similarity
"""
mat = cosine_similarity(encoded)
# top k index
idx = np.argsort(mat)[:, ::-1]
sims = np.array([mat[i][d] for i, d in enumerate(idx)])
# return top 2 ~ k + 1 index and similarity since top 1 will be the self-data.
return idx[:, 1:k + 1], sims[:, 1:k+1]
def main():
# Prepare parameters
args = parse_args()
checkpoint_dir = args.checkpoint_dir
data_path = args.data_path
num_top_similarity = args.num_top_similarity
num_search_sample = args.num_search_sample
modelout_save = args.modelout_save
use_exist_modelout = args.use_exist_modelout
modeleval_out_dir = args.modeleval_out_dir
# Prepare Data
_, _, x_test, y_test = load_data(data_path=data_path)
input_data = tf.placeholder(tf.float32, shape=[None, 32, 32, 32], name='input')
net_input = input_data[:, :, :, :, np.newaxis]
CAE_3D = conv_autoencoder_3d(net_input, args=args, is_training=False)
if use_exist_modelout:
data = np.load(modeleval_out_dir)
idx = data['idx']
sims = data['sims']
encoded = data['encoded']
decoded = data['decoded']
else:
with tf.Session() as sess:
saver = tf.train.Saver()
saver.restore(sess, tf.train.latest_checkpoint(checkpoint_dir))
feed_dict = {input_data: x_test}
# extract encoded features and vectorize them
encoded = CAE_3D.encoded.eval(session=sess, feed_dict=feed_dict)
nd, k1, k2, k3, k4 = encoded.shape
encoded = np.reshape(encoded, (nd, k1 * k2 * k3 * k4))
decoded = CAE_3D.decoded.eval(session=sess, feed_dict=feed_dict)
idx, sims = similarity_search(encoded, num_top_similarity)
if modelout_save:
np.savez_compressed(modeleval_out_dir, idx=idx, sims=sims, encoded=encoded, decoded=decoded)
# visualize encoded data with t-SNE
# visualize_tsne(encoded, y_test)
# add self-index as the first column
self_idx = np.arange(encoded.shape[0]).reshape((encoded.shape[0], 1))
idx = np.concatenate([self_idx, idx], axis=1)
# select samples to visualize randomly
sample_idx = np.random.randint(0, x_test.shape[0], num_search_sample)
# visualize similar search result
visualize(x_test, y_test, idx[sample_idx])
# visualize input and its decoded data
# visualize_3d_iodata(x_test[sample_idx], decoded[sample_idx], y_test[sample_idx])
# calculate average precision
ap = calculate_average_precision(y_test, idx[sample_idx], sims[sample_idx], num_search_sample)
print('Average Precision per sample : ', ap)
if __name__ == '__main__':
main()