forked from lh3/minigraph
-
Notifications
You must be signed in to change notification settings - Fork 0
/
gfa-ed.c
617 lines (563 loc) · 18.6 KB
/
gfa-ed.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
#include <assert.h>
#include <string.h>
#include <stdio.h>
#include "gfa-priv.h"
#include "kalloc.h"
#include "ksort.h"
#include "khashl.h" // make it compatible with kalloc
#include "kdq.h"
#include "kvec-km.h"
int gfa_ed_dbg = 0;
/***************
* Preparation *
***************/
void gfa_edopt_init(gfa_edopt_t *opt)
{
memset(opt, 0, sizeof(gfa_edopt_t));
opt->bw_dyn = opt->max_lag = opt->s_term = -1;
opt->max_chk = 1000;
}
gfa_edseq_t *gfa_edseq_init(const gfa_t *g)
{
uint32_t i, n_vtx = gfa_n_vtx(g);
gfa_edseq_t *es;
GFA_MALLOC(es, n_vtx);
for (i = 0; i < g->n_seg; ++i) {
const gfa_seg_t *s = &g->seg[i];
char *t;
int32_t j;
GFA_MALLOC(t, s->len + 1);
for (j = 0; j < s->len; ++j)
t[s->len - j - 1] = gfa_comp_table[(uint8_t)s->seq[j]];
t[s->len] = 0;
es[i<<1].seq = (char*)s->seq;
es[i<<1|1].seq = t;
es[i<<1].len = es[i<<1|1].len = s->len;
}
return es;
}
void gfa_edseq_destroy(int32_t n_seg, gfa_edseq_t *es)
{
int32_t i;
for (i = 0; i < n_seg; ++i)
free((char*)es[i<<1|1].seq);
free(es);
}
/*****************
* Edit distance *
*****************/
#define GWF_DIAG_SHIFT 0x40000000
static inline uint64_t gwf_gen_vd(uint32_t v, int32_t d)
{
return (uint64_t)v<<32 | (GWF_DIAG_SHIFT + d);
}
/*
* Diagonal interval
*/
typedef struct {
uint64_t vd0, vd1;
} gwf_intv_t;
typedef kvec_t(gwf_intv_t) gwf_intv_v;
#define intvd_key(x) ((x).vd0)
KRADIX_SORT_INIT(gwf_intv, gwf_intv_t, intvd_key, 8)
static int gwf_intv_is_sorted(int32_t n_a, const gwf_intv_t *a)
{
int32_t i;
for (i = 1; i < n_a; ++i)
if (a[i-1].vd0 > a[i].vd0) break;
return (i == n_a);
}
// merge overlapping intervals; input must be sorted
static size_t gwf_intv_merge_adj(size_t n, gwf_intv_t *a)
{
size_t i, k;
uint64_t st, en;
if (n == 0) return 0;
st = a[0].vd0, en = a[0].vd1;
for (i = 1, k = 0; i < n; ++i) {
if (a[i].vd0 > en) {
a[k].vd0 = st, a[k++].vd1 = en;
st = a[i].vd0, en = a[i].vd1;
} else en = en > a[i].vd1? en : a[i].vd1;
}
a[k].vd0 = st, a[k++].vd1 = en;
return k;
}
// merge two sorted interval lists
static size_t gwf_intv_merge2(gwf_intv_t *a, size_t n_b, const gwf_intv_t *b, size_t n_c, const gwf_intv_t *c)
{
size_t i = 0, j = 0, k = 0;
while (i < n_b && j < n_c) {
if (b[i].vd0 <= c[j].vd0)
a[k++] = b[i++];
else a[k++] = c[j++];
}
while (i < n_b) a[k++] = b[i++];
while (j < n_c) a[k++] = c[j++];
return gwf_intv_merge_adj(k, a);
}
/*
* Diagonal
*/
typedef struct { // a diagonal
uint64_t vd; // higher 32 bits: vertex ID; lower 32 bits: diagonal+0x4000000
int32_t k;
int32_t len;
uint32_t xo; // higher 31 bits: anti diagonal; lower 1 bit: out-of-order or not
int32_t t;
} gwf_diag_t;
typedef kvec_t(gwf_diag_t) gwf_diag_v;
#define ed_key(x) ((x).vd)
KRADIX_SORT_INIT(gwf_ed, gwf_diag_t, ed_key, 8)
KDQ_INIT(gwf_diag_t)
// push (v,d,k) to the end of the queue
static inline void gwf_diag_push(void *km, gwf_diag_v *a, uint32_t v, int32_t d, int32_t k, uint32_t x, uint32_t ooo, int32_t t)
{
gwf_diag_t *p;
kv_pushp(gwf_diag_t, km, *a, &p);
p->vd = gwf_gen_vd(v, d), p->k = k, p->xo = x<<1|ooo, p->t = t;
}
// determine the wavefront on diagonal (v,d)
static inline int32_t gwf_diag_update(gwf_diag_t *p, uint32_t v, int32_t d, int32_t k, uint32_t x, uint32_t ooo, int32_t t)
{
uint64_t vd = gwf_gen_vd(v, d);
if (p->vd == vd) {
p->xo = p->k > k? p->xo : x<<1|ooo;
p->t = p->k > k? p->t : t;
p->k = p->k > k? p->k : k;
return 0;
}
return 1;
}
static int gwf_diag_is_sorted(int32_t n_a, const gwf_diag_t *a)
{
int32_t i;
for (i = 1; i < n_a; ++i)
if (a[i-1].vd > a[i].vd) break;
return (i == n_a);
}
// sort a[]. This uses the gwf_diag_t::ooo field to speed up sorting.
static void gwf_diag_sort(int32_t n_a, gwf_diag_t *a, void *km, gwf_diag_v *ooo)
{
int32_t i, j, k, n_b, n_c;
gwf_diag_t *b, *c;
kv_resize(gwf_diag_t, km, *ooo, n_a);
for (i = 0, n_c = 0; i < n_a; ++i)
if (a[i].xo&1) ++n_c;
n_b = n_a - n_c;
b = ooo->a, c = b + n_b;
for (i = j = k = 0; i < n_a; ++i) {
if (a[i].xo&1) c[k++] = a[i];
else b[j++] = a[i];
}
radix_sort_gwf_ed(c, c + n_c);
for (k = 0; k < n_c; ++k) c[k].xo &= 0xfffffffeU;
i = j = k = 0;
while (i < n_b && j < n_c) {
if (b[i].vd <= c[j].vd)
a[k++] = b[i++];
else a[k++] = c[j++];
}
while (i < n_b) a[k++] = b[i++];
while (j < n_c) a[k++] = c[j++];
}
// remove diagonals not on the wavefront
static int32_t gwf_diag_dedup(int32_t n_a, gwf_diag_t *a, void *km, gwf_diag_v *ooo)
{
int32_t i, n, st;
if (!gwf_diag_is_sorted(n_a, a))
gwf_diag_sort(n_a, a, km, ooo);
for (i = 1, st = 0, n = 0; i <= n_a; ++i) {
if (i == n_a || a[i].vd != a[st].vd) {
int32_t j, max_j = st;
if (st + 1 < i)
for (j = st + 1; j < i; ++j) // choose the far end (i.e. the wavefront)
if (a[max_j].k < a[j].k) max_j = j;
a[n++] = a[max_j];
st = i;
}
}
return n;
}
// use forbidden bands to remove diagonals not on the wavefront
static int32_t gwf_mixed_dedup(int32_t n_a, gwf_diag_t *a, int32_t n_b, gwf_intv_t *b)
{
int32_t i = 0, j = 0, k = 0;
while (i < n_a && j < n_b) {
if (a[i].vd >= b[j].vd0 && a[i].vd < b[j].vd1) ++i;
else if (a[i].vd >= b[j].vd1) ++j;
else a[k++] = a[i++];
}
while (i < n_a) a[k++] = a[i++];
return k;
}
/*
* Traceback stack
*/
KHASHL_MAP_INIT(KH_LOCAL, gwf_map64_t, gwf_map64, uint64_t, int32_t, kh_hash_uint64, kh_eq_generic)
typedef struct {
int32_t v;
int32_t pre;
} gwf_trace_t;
typedef kvec_t(gwf_trace_t) gwf_trace_v;
static int32_t gwf_trace_push(void *km, gwf_trace_v *a, int32_t v, int32_t pre, gwf_map64_t *h)
{
uint64_t key = (uint64_t)v << 32 | (uint32_t)pre;
khint_t k;
int absent;
k = gwf_map64_put(h, key, &absent);
if (absent) {
gwf_trace_t *p;
kv_pushp(gwf_trace_t, km, *a, &p);
p->v = v, p->pre = pre;
kh_val(h, k) = a->n - 1;
return a->n - 1;
}
return kh_val(h, k);
}
/*
* Core GWFA routine
*/
KHASHL_INIT(KH_LOCAL, gwf_set64_t, gwf_set64, uint64_t, kh_hash_dummy, kh_eq_generic)
typedef struct {
void *km;
gwf_set64_t *ha; // hash table for adjacency
gwf_map64_t *ht; // hash table for traceback
gwf_intv_v intv;
gwf_intv_v tmp, swap;
gwf_diag_v ooo;
gwf_trace_v t;
} gwf_edbuf_t;
// remove diagonals not on the wavefront
static int32_t gwf_dedup(gwf_edbuf_t *buf, int32_t n_a, gwf_diag_t *a)
{
if (buf->intv.n + buf->tmp.n > 0) {
if (!gwf_intv_is_sorted(buf->tmp.n, buf->tmp.a))
radix_sort_gwf_intv(buf->tmp.a, buf->tmp.a + buf->tmp.n);
kv_copy(gwf_intv_t, buf->km, buf->swap, buf->intv);
kv_resize(gwf_intv_t, buf->km, buf->intv, buf->intv.n + buf->tmp.n);
buf->intv.n = gwf_intv_merge2(buf->intv.a, buf->swap.n, buf->swap.a, buf->tmp.n, buf->tmp.a);
}
n_a = gwf_diag_dedup(n_a, a, buf->km, &buf->ooo);
if (buf->intv.n > 0)
n_a = gwf_mixed_dedup(n_a, a, buf->intv.n, buf->intv.a);
return n_a;
}
// remove diagonals that lag far behind the furthest wavefront
static int32_t gwf_prune(int32_t n_a, gwf_diag_t *a, uint32_t max_lag, int32_t bw_dyn)
{
int32_t i, j, iq, dq, max_i = -1;
uint32_t max_x = 0;
gwf_diag_t *q;
for (i = 0; i < n_a; ++i)
if (a[i].xo>>1 > max_x)
max_x = a[i].xo>>1, max_i = i;
q = &a[max_i];
iq = (int32_t)q->vd - GWF_DIAG_SHIFT + q->k;
dq = (int32_t)(q->xo>>1) - iq - iq;
for (i = j = 0; i < n_a; ++i) {
gwf_diag_t *p = &a[i];
int32_t ip = (int32_t)p->vd - GWF_DIAG_SHIFT + p->k;
int32_t dp = (int32_t)(p->xo>>1) - ip - ip;
int32_t w = dp > dq? dp - dq : dq - dp;
if (bw_dyn >= 0 && w > bw_dyn) continue;
if ((p->xo>>1) + max_lag < max_x) continue;
a[j++] = *p;
}
return j;
}
// reach the wavefront
static inline int32_t gwf_extend1(int32_t d, int32_t k, int32_t vl, const char *ts, int32_t ql, const char *qs)
{
int32_t max_k = (ql - d < vl? ql - d : vl) - 1;
const char *ts_ = ts + 1, *qs_ = qs + d + 1;
#if 0
// int32_t i = k + d; while (k + 1 < vl && i + 1 < ql && ts[k+1] == q[i+1]) ++k, ++i;
while (k < max_k && *(ts_ + k) == *(qs_ + k))
++k;
#else
uint64_t cmp = 0;
while (k + 7 < max_k) {
uint64_t x = *(uint64_t*)(ts_ + k); // warning: unaligned memory access
uint64_t y = *(uint64_t*)(qs_ + k);
cmp = x ^ y;
if (cmp == 0) k += 8;
else break;
}
if (cmp)
k += __builtin_ctzl(cmp) >> 3; // on x86, this is done via the BSR instruction: https://www.felixcloutier.com/x86/bsr
else if (k + 7 >= max_k)
while (k < max_k && *(ts_ + k) == *(qs_ + k)) // use this for generic CPUs. It is slightly faster than the unoptimized version
++k;
#endif
return k;
}
// This is essentially Landau-Vishkin for linear sequences. The function speeds up alignment to long vertices. Not really necessary.
static void gwf_ed_extend_batch(void *km, const gfa_t *g, const gfa_edseq_t *es, int32_t ql, const char *q, int32_t n, gwf_diag_t *a, gwf_diag_v *B,
kdq_t(gwf_diag_t) *A, gwf_intv_v *tmp_intv, gfa_edrst_t *r)
{
int32_t j, m;
int32_t v = a->vd>>32;
int32_t vl = es[v].len;
const char *ts = es[v].seq;
gwf_diag_t *b;
// wfa_extend
for (j = 0; j < n; ++j) {
int32_t k;
k = gwf_extend1((int32_t)a[j].vd - GWF_DIAG_SHIFT, a[j].k, vl, ts, ql, q);
a[j].len = k - a[j].k;
a[j].xo += a[j].len << 2;
a[j].k = k;
}
// wfa_next
kv_resize(gwf_diag_t, km, *B, B->n + n + 2);
b = &B->a[B->n];
b[0].vd = a[0].vd - 1;
b[0].xo = a[0].xo + 2; // 2 == 1<<1
b[0].k = a[0].k + 1;
b[0].t = a[0].t;
b[1].vd = a[0].vd;
b[1].xo = n == 1 || a[0].k > a[1].k? a[0].xo + 4 : a[1].xo + 2;
b[1].t = n == 1 || a[0].k > a[1].k? a[0].t : a[1].t;
b[1].k = (n == 1 || a[0].k > a[1].k? a[0].k : a[1].k) + 1;
for (j = 1; j < n - 1; ++j) {
uint32_t x = a[j-1].xo + 2;
int32_t k = a[j-1].k, t = a[j-1].t;
x = k > a[j].k + 1? x : a[j].xo + 4;
t = k > a[j].k + 1? t : a[j].t;
k = k > a[j].k + 1? k : a[j].k + 1;
x = k > a[j+1].k + 1? x : a[j+1].xo + 2;
t = k > a[j+1].k + 1? t : a[j+1].t;
k = k > a[j+1].k + 1? k : a[j+1].k + 1;
b[j+1].vd = a[j].vd, b[j+1].k = k, b[j+1].xo = x, b[j+1].t = t;
}
if (n >= 2) {
b[n].vd = a[n-1].vd;
b[n].xo = a[n-2].k > a[n-1].k + 1? a[n-2].xo + 2 : a[n-1].xo + 4;
b[n].t = a[n-2].k > a[n-1].k + 1? a[n-2].t : a[n-1].t;
b[n].k = a[n-2].k > a[n-1].k + 1? a[n-2].k : a[n-1].k + 1;
}
b[n+1].vd = a[n-1].vd + 1;
b[n+1].xo = a[n-1].xo + 2;
b[n+1].t = a[n-1].t;
b[n+1].k = a[n-1].k;
// drop out-of-bound cells
//if (a[n-1].k == vl - 1) b[n+1].k = vl; // insertion to the end of a vertex is handled elsewhere. FIXME: this line leads to wrong result for MHC-57 and MHC-HG002.2
for (j = 0; j < n; ++j) {
gwf_diag_t *p = &a[j];
if (p->k == vl - 1 || (int32_t)p->vd - GWF_DIAG_SHIFT + p->k == ql - 1)
p->xo |= 1, *kdq_pushp(gwf_diag_t, A) = *p;
}
for (j = 0, m = 0; j < n + 2; ++j) {
gwf_diag_t *p = &b[j];
int32_t d = (int32_t)p->vd - GWF_DIAG_SHIFT;
if (d + p->k < ql && p->k < vl) {
b[m++] = *p;
} else if (p->k == vl) {
gwf_intv_t *q;
kv_pushp(gwf_intv_t, km, *tmp_intv, &q);
q->vd0 = gwf_gen_vd(v, d), q->vd1 = q->vd0 + 1;
}
}
B->n += m;
}
// wfa_extend and wfa_next combined
static gwf_diag_t *gwf_ed_extend(gwf_edbuf_t *buf, const gfa_edopt_t *opt, const gfa_t *g, const gfa_edseq_t *es, int32_t s, int32_t ql, const char *q,
uint32_t v1, int32_t off1, int32_t *end_tb, int32_t *n_a_, gwf_diag_t *a, gfa_edrst_t *r)
{
int32_t i, x, n = *n_a_, do_dedup = 1;
kdq_t(gwf_diag_t) *A;
gwf_diag_v B = {0,0,0};
gwf_diag_t *b;
r->end_v = (uint32_t)-1;
r->end_off = *end_tb = -1;
buf->tmp.n = 0;
gwf_set64_clear(buf->ha); // hash table $h to avoid visiting a vertex twice
for (i = 0, x = 1; i < 32; ++i, x <<= 1)
if (x >= n) break;
if (i < 4) i = 4;
A = kdq_init2(gwf_diag_t, buf->km, i); // $A is a queue
kv_resize(gwf_diag_t, buf->km, B, n * 2);
#if 0 // unoptimized version without calling gwf_ed_extend_batch() at all. The final result will be the same.
A->count = n;
memcpy(A->a, a, n * sizeof(*a));
#else // optimized for long vertices.
for (x = 0, i = 1; i <= n; ++i) {
if (i == n || a[i].vd != a[i-1].vd + 1) {
gwf_ed_extend_batch(buf->km, g, es, ql, q, i - x, &a[x], &B, A, &buf->tmp, r);
x = i;
}
}
if (kdq_size(A) == 0) do_dedup = 0;
#endif
kfree(buf->km, a); // $a is not used as it has been copied to $A
while (kdq_size(A)) {
gwf_diag_t t;
uint32_t v, x0;
int32_t ooo, d, k, i, vl;
t = *kdq_shift(gwf_diag_t, A);
ooo = t.xo&1, v = t.vd >> 32; // vertex
d = (int32_t)t.vd - GWF_DIAG_SHIFT; // diagonal
k = t.k; // wavefront position on the vertex
vl = es[v].len; // $vl is the vertex length
k = gwf_extend1(d, k, vl, es[v].seq, ql, q);
i = k + d; // query position
x0 = (t.xo >> 1) + ((k - t.k) << 1); // current anti diagonal
if (k + 1 < vl && i + 1 < ql) { // the most common case: the wavefront is in the middle
int32_t push1 = 1, push2 = 1;
if (B.n >= 2) push1 = gwf_diag_update(&B.a[B.n - 2], v, d-1, k+1, x0 + 1, ooo, t.t);
if (B.n >= 1) push2 = gwf_diag_update(&B.a[B.n - 1], v, d, k+1, x0 + 2, ooo, t.t);
if (push1) gwf_diag_push(buf->km, &B, v, d-1, k+1, x0 + 1, 1, t.t);
if (push2 || push1) gwf_diag_push(buf->km, &B, v, d, k+1, x0 + 2, 1, t.t);
gwf_diag_push(buf->km, &B, v, d+1, k, x0 + 1, ooo, t.t);
} else if (i + 1 < ql) { // k + 1 == g->len[v]; reaching the end of the vertex but not the end of query
int32_t nv = gfa_arc_n(g, v), j, n_ext = 0, tw = -1;
gfa_arc_t *av = gfa_arc_a(g, v);
gwf_intv_t *p;
kv_pushp(gwf_intv_t, buf->km, buf->tmp, &p);
p->vd0 = gwf_gen_vd(v, d), p->vd1 = p->vd0 + 1;
if (opt->traceback) tw = gwf_trace_push(buf->km, &buf->t, v, t.t, buf->ht);
for (j = 0; j < nv; ++j) { // traverse $v's neighbors
uint32_t w = av[j].w; // $w is next to $v
int32_t ol = av[j].ow;
int absent;
gwf_set64_put(buf->ha, (uint64_t)w<<32 | (i + 1), &absent); // test if ($w,$i) has been visited
if (q[i + 1] == es[w].seq[ol]) { // can be extended to the next vertex without a mismatch
++n_ext;
if (absent) {
gwf_diag_t *p;
p = kdq_pushp(gwf_diag_t, A);
p->vd = gwf_gen_vd(w, i + 1 - ol), p->k = ol, p->xo = (x0+2)<<1 | 1, p->t = tw;
}
} else if (absent) {
gwf_diag_push(buf->km, &B, w, i - ol, ol, x0 + 1, 1, tw);
gwf_diag_push(buf->km, &B, w, i + 1 - ol, ol, x0 + 2, 1, tw);
}
}
if (nv == 0 || n_ext != nv) // add an insertion to the target; this *might* cause a duplicate in corner cases
gwf_diag_push(buf->km, &B, v, d+1, k, x0 + 1, 1, t.t);
} else if (v1 == (uint32_t)-1 || (v == v1 && k == off1)) { // i + 1 == ql
r->end_v = v, r->end_off = k, r->wlen = x0 - i - 1, *end_tb = t.t, *n_a_ = 0;
kdq_destroy(gwf_diag_t, A);
kfree(buf->km, B.a);
return 0;
} else if (k + 1 < vl) { // i + 1 == ql; reaching the end of the query but not the end of the vertex
gwf_diag_push(buf->km, &B, v, d-1, k+1, x0 + 1, ooo, t.t); // add an deletion; this *might* case a duplicate in corner cases
} else if (v != v1) { // i + 1 == ql && k + 1 == g->len[v]; not reaching the last vertex $v1
int32_t nv = gfa_arc_n(g, v), j, tw = -1;
const gfa_arc_t *av = gfa_arc_a(g, v);
if (opt->traceback) tw = gwf_trace_push(buf->km, &buf->t, v, t.t, buf->ht);
for (j = 0; j < nv; ++j)
gwf_diag_push(buf->km, &B, av[j].w, i - av[j].ow, av[j].ow, x0 + 1, 1, tw); // deleting the first base on the next vertex
} else { // may come here when k>off1 (due to banding); do nothing in this case
}
}
kdq_destroy(gwf_diag_t, A);
*n_a_ = n = B.n, b = B.a;
if (do_dedup) *n_a_ = n = gwf_dedup(buf, n, b);
if (opt->max_lag > 0 && n > opt->max_chk && ((s+1)&0xf) == 0)
*n_a_ = n = gwf_prune(n, b, opt->max_lag, opt->bw_dyn);
return b;
}
static void gwf_traceback(gwf_edbuf_t *buf, int32_t end_v, int32_t end_tb, gfa_edrst_t *path)
{
int32_t i = end_tb, n = 1;
while (i >= 0 && buf->t.a[i].v >= 0)
++n, i = buf->t.a[i].pre;
KMALLOC(buf->km, path->v, n);
i = end_tb, n = 0;
path->v[n++] = end_v;
while (i >= 0 && buf->t.a[i].v >= 0)
path->v[n++] = buf->t.a[i].v, i = buf->t.a[i].pre;
path->nv = n;
for (i = 0; i < path->nv>>1; ++i)
n = path->v[i], path->v[i] = path->v[path->nv - 1 - i], path->v[path->nv - 1 - i] = n;
}
static void gwf_ed_print_diag(const gfa_t *g, size_t n, gwf_diag_t *a) // for debugging only
{
size_t i;
for (i = 0; i < n; ++i) {
int32_t d = (int32_t)a[i].vd - GWF_DIAG_SHIFT;
printf("Z\t%d\t%s\t%d\t%d\t%d\n", d + a[i].k, g->seg[(a[i].vd>>32)>>1].name, d, a[i].k, a[i].xo>>1);
}
}
static void gwf_ed_print_intv(size_t n, gwf_intv_t *a) // for debugging only
{
size_t i;
for (i = 0; i < n; ++i)
printf("Z\t%d\t%d\t%d\n", (int32_t)(a[i].vd0>>32), (int32_t)a[i].vd0 - GWF_DIAG_SHIFT, (int32_t)a[i].vd1 - GWF_DIAG_SHIFT);
}
typedef struct {
const gfa_t *g;
const gfa_edseq_t *es;
const gfa_edopt_t *opt;
int32_t ql;
const char *q;
gwf_edbuf_t buf;
int32_t s, n_a;
gwf_diag_t *a;
int32_t end_tb;
} gfa_edbuf_t;
void *gfa_ed_init(void *km, const gfa_edopt_t *opt, const gfa_t *g, const gfa_edseq_t *es, int32_t ql, const char *q, uint32_t v0, int32_t off0)
{
gfa_edbuf_t *z;
KCALLOC(km, z, 1);
z->buf.km = km;
z->opt = opt;
z->g = g, z->es = es;
z->ql = ql, z->q = q;
z->buf.ha = gwf_set64_init2(km);
z->buf.ht = gwf_map64_init2(km);
kv_resize(gwf_trace_t, km, z->buf.t, 16);
KCALLOC(km, z->a, 1);
z->a[0].vd = gwf_gen_vd(v0, -off0), z->a[0].k = off0 - 1, z->a[0].xo = 0;
if (z->opt->traceback) z->a[0].t = gwf_trace_push(km, &z->buf.t, -1, -1, z->buf.ht);
z->n_a = 1;
return z;
}
void gfa_ed_step(void *z_, uint32_t v1, int32_t off1, int32_t s_term, gfa_edrst_t *r)
{
gfa_edbuf_t *z = (gfa_edbuf_t*)z_;
const gfa_edopt_t *opt = z->opt;
if (s_term < 0 && z->opt->s_term >= 0) s_term = z->opt->s_term;
r->n_end = 0, r->n_iter = 0;
while (z->n_a > 0) {
z->a = gwf_ed_extend(&z->buf, opt, z->g, z->es, z->s, z->ql, z->q, v1, off1, &z->end_tb, &z->n_a, z->a, r);
r->n_iter += z->n_a; // + z->buf.intv.n;
if (r->end_off >= 0 || z->n_a == 0) break;
if (r->n_end > 0) break;
if (s_term >= 0 && z->s >= s_term) break;
if (z->opt->i_term > 0 && r->n_iter > z->opt->i_term) break;
++z->s;
if (gfa_ed_dbg >= 1) {
printf("[%s] dist=%d, n=%d, n_intv=%ld, n_tb=%ld\n", __func__, z->s, z->n_a, z->buf.intv.n, z->buf.t.n);
if (gfa_ed_dbg == 2) gwf_ed_print_diag(z->g, z->n_a, z->a);
if (gfa_ed_dbg == 3) gwf_ed_print_intv(z->buf.intv.n, z->buf.intv.a);
}
}
if (opt->traceback && r->end_off >= 0)
gwf_traceback(&z->buf, r->end_v, z->end_tb, r);
r->s = r->end_v != (uint32_t)-1? z->s : -1;
}
void gfa_ed_destroy(void *z_)
{
gfa_edbuf_t *z = (gfa_edbuf_t*)z_;
void *km = z->buf.km;
kfree(km, z->a);
gwf_set64_destroy(z->buf.ha);
gwf_map64_destroy(z->buf.ht);
kfree(km, z->buf.ooo.a);
kfree(km, z->buf.intv.a);
kfree(km, z->buf.tmp.a);
kfree(km, z->buf.swap.a);
kfree(km, z->buf.t.a);
kfree(km, z);
}
int32_t gfa_edit_dist(void *km, const gfa_edopt_t *opt, const gfa_t *g, const gfa_edseq_t *es, int32_t ql, const char *q, uint32_t v0, int32_t off0, gfa_edrst_t *rst)
{
void *z;
z = gfa_ed_init(km, opt, g, es, ql, q, v0, off0);
gfa_ed_step(z, (uint32_t)-1, -1, -1, rst);
gfa_ed_destroy(z);
return rst->s;
}