作者:杨夕
本文链接:https://github.com/km1994/nlp_paper_study
个人介绍:大佬们好,我叫杨夕,该项目主要是本人在研读顶会论文和复现经典论文过程中,所见、所思、所想、所闻,可能存在一些理解错误,希望大佬们多多指正。
【注:手机阅读可能图片打不开!!!】
对抗训练 从 CV 引入到 NLP 领域,作为一种防御机制,能够在修改部分信息的情况下,提高模型的泛化能力。
对抗样本可以用来攻击和防御,而对抗训练其实是“对抗”家族中防御的一种方式,其基本的原理呢,就是通过添加扰动构造一些对抗样本,放给模型去训练,以攻为守,提高模型在遇到对抗样本时的鲁棒性,同时一定程度也能提高模型的表现和泛化能力。
- 对抗样本一般需要具有两个特点:
- 相对于原始输入,所添加的扰动是微小的;
- 能使模型犯错
- 提高模型应对恶意对抗样本时的鲁棒性;
- 作为一种regularization,减少overfitting,提高泛化能力。
在原始输入样本 x 上加一个扰动
注: y 为gold label, θ 为模型参数
- 动机:神经网络由于其线性的特点,很容易受到线性扰动的攻击
- 方法:FGSM
注: sgn 为符号函数, L 为损失函数。Goodfellow发现,令 ε=0.25 ,用这个扰动能给一个单层分类器造成99.9%的错误率。
- 动机:将问题重新定义成了一个找鞍点的问题
- 方法:Min-Max公式
注:公式由两部分构成:一个是内部损失函数的最大化,一个是外部经验风险的最小化 内部max是为了找到worst-case的扰动,也就是攻击,其中, L 为损失函数, S 为扰动的范围空间。 外部min是为了基于该攻击方式,找到最鲁棒的模型参数,也就是防御,其中 D 是输入样本的分布。
- 方法:假设输入的文本序列的embedding vectors [v1,v2,...,vT] 为 x ,embedding的扰动为:
注:实际上就是取消了符号函数,用二范式做了一个scale,需要注意的是:这里的norm计算的是,每个样本的输入序列中出现过的词组成的矩阵的梯度norm。原作者提供了一个TensorFlow的实现 [10],在他的实现中,公式里的 x 是embedding后的中间结果(batch_size, timesteps, hidden_dim),对其梯度 g 的后面两维计算norm,得到的是一个(batch_size, 1, 1)的向量
$||g||_2$ 。为了实现插件式的调用,笔者将一个batch抽象成一个样本,一个batch统一用一个norm,由于本来norm也只是一个scale的作用,影响不大。
- 代码实现:
- FGM 类实现
import torch
class FGM():
def __init__(self, model):
self.model = model
self.backup = {}
def attack(self, epsilon=1., emb_name='emb.'):
# emb_name这个参数要换成你模型中embedding的参数名
for name, param in self.model.named_parameters():
if param.requires_grad and emb_name in name:
self.backup[name] = param.data.clone()
norm = torch.norm(param.grad)
if norm != 0 and not torch.isnan(norm):
r_at = epsilon * param.grad / norm
param.data.add_(r_at)
def restore(self, emb_name='emb.'):
# emb_name这个参数要换成你模型中embedding的参数名
for name, param in self.model.named_parameters():
if param.requires_grad and emb_name in name:
assert name in self.backup
param.data = self.backup[name]
self.backup = {}
- FGM 类调用
# 初始化
fgm = FGM(model)
for batch_input, batch_label in data:
# 正常训练
loss = model(batch_input, batch_label)
loss.backward() # 反向传播,得到正常的grad
# 对抗训练
fgm.attack() # 在embedding上添加对抗扰动
loss_adv = model(batch_input, batch_label)
loss_adv.backward() # 反向传播,并在正常的grad基础上,累加对抗训练的梯度
fgm.restore() # 恢复embedding参数
# 梯度下降,更新参数
optimizer.step()
model.zero_grad()
注:PyTorch为了节约内存,在backward的时候并不保存中间变量的梯度。因此,如果需要完全照搬原作的实现,需要用register_hook接口[11]将embedding后的中间变量的梯度保存成全局变量,norm后面两维,计算出扰动后,在对抗训练forward时传入扰动,累加到embedding后的中间变量上,得到新的loss,再进行梯度下降。
- 动机:内部max的过程,本质上是一个非凹的约束优化问题,FGM解决的思路其实就是梯度上升,那么FGM简单粗暴的“一步到位”,是不是有可能并不能走到约束内的最优点呢?
- 方法:用Projected Gradient Descent(PGD)的方法,简单的说,就是“小步走,多走几步”,如果走出了扰动半径为 ε 的空间,就映射回“球面”上,以保证扰动不要过大:
- 代码实现:
- PGD 类实现
import torch
class PGD():
def __init__(self, model):
self.model = model
self.emb_backup = {}
self.grad_backup = {}
def attack(self, epsilon=1., alpha=0.3, emb_name='emb.', is_first_attack=False):
# emb_name这个参数要换成你模型中embedding的参数名
for name, param in self.model.named_parameters():
if param.requires_grad and emb_name in name:
if is_first_attack:
self.emb_backup[name] = param.data.clone()
norm = torch.norm(param.grad)
if norm != 0 and not torch.isnan(norm):
r_at = alpha * param.grad / norm
param.data.add_(r_at)
param.data = self.project(name, param.data, epsilon)
def restore(self, emb_name='emb.'):
# emb_name这个参数要换成你模型中embedding的参数名
for name, param in self.model.named_parameters():
if param.requires_grad and emb_name in name:
assert name in self.emb_backup
param.data = self.emb_backup[name]
self.emb_backup = {}
def project(self, param_name, param_data, epsilon):
r = param_data - self.emb_backup[param_name]
if torch.norm(r) > epsilon:
r = epsilon * r / torch.norm(r)
return self.emb_backup[param_name] + r
def backup_grad(self):
for name, param in self.model.named_parameters():
if param.requires_grad:
self.grad_backup[name] = param.grad.clone()
def restore_grad(self):
for name, param in self.model.named_parameters():
if param.requires_grad:
param.grad = self.grad_backup[name]
- FGM 类调用
pgd = PGD(model)
K = 3
for batch_input, batch_label in data:
# 正常训练
loss = model(batch_input, batch_label)
loss.backward() # 反向传播,得到正常的grad
pgd.backup_grad()
# 对抗训练
for t in range(K):
pgd.attack(is_first_attack=(t==0)) # 在embedding上添加对抗扰动, first attack时备份param.data
if t != K-1:
model.zero_grad()
else:
pgd.restore_grad()
loss_adv = model(batch_input, batch_label)
loss_adv.backward() # 反向传播,并在正常的grad基础上,累加对抗训练的梯度
pgd.restore() # 恢复embedding参数
# 梯度下降,更新参数
optimizer.step()
model.zero_grad()