-
Notifications
You must be signed in to change notification settings - Fork 1
/
Seminar 4-Elasticity of Substitution and Uncertainty.tex
925 lines (646 loc) · 31.7 KB
/
Seminar 4-Elasticity of Substitution and Uncertainty.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
\documentclass{article}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage[english]{babel}
\setlength{\parindent}{0pt}
\usepackage{hyperref}
\hypersetup{
colorlinks=true,
linkcolor=blue,
filecolor=magenta,
urlcolor=cyan}
\usepackage{graphicx}
\graphicspath{ {./pic/} }
\usepackage{multicol}
\usepackage{lscape}
\usepackage{fourier,amssymb,microtype,amsmath,gensymb}
\newcommand{\R}{\mathbb{R}}
\usepackage{mdframed,caption,xcolor}
\usepackage{tikz,tkz-euclide}
\title{Seminar 4. Elasticity of Substitution \\
\large (and a bonus for Choice with Uncertainty)}
\author{Xiaoguang Ling \\ \href{[email protected]}{[email protected]}}
\date{\today}
\begin{document}
\maketitle
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{mdframed}[backgroundcolor=blue!20,linecolor=white]
This review part is to help you to understand Elasticity of Substitution step by step.
It contains the following key points:
\begin{enumerate}
\item The |slop| of indifference curve is \textbf{Marginal Rate of Substitution} ($MRS$);
\item $MRS$ shows the relative importance of the two commodities;
\item The relation between $MRS_{12}$ and $\frac{x_2}{x_1}$ shows the \textbf{substitution status} between the two commodities;
\item The relation between $MRS_{12}$ and $\frac{x_2}{x_1}$ can be expressed by \textbf{Elasticity of Substitution} $\sigma_{12}$
\end{enumerate}
After this part you will understand:
\begin{enumerate}
\item $\sigma_{12} = 0 \iff$ Leotief preference
\item $\sigma_{12} = constant \iff$ CES
\item $\sigma_{12} = + \infty \iff$ Perfect substitution
\end{enumerate}
Note that I will use MRS instead of MRTS by default in this part, because we have spent more time on consumer theory and MRS
can be easily generalized to MRTS.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Substitution along an indifference curve}
\begin{center}
\begin{tikzpicture}[scale=0.5]
\draw[thick,<->] (0,12) node[left]{$x_2$}--(0,0)--(12,0) node[right]{$x_1$};
\node [below left] at (0,0) {$0$};
\tkzDefPoint(2,10){A}
\tkzDefPoint(4.25,5.84){B}
\tkzDefPoint(2,5.84){C}
\node[right,blue] at (A) {A} ;
\draw[fill,blue] (A) circle [radius =0.04];
\node[right,blue] at (B) {B} ;
\draw[fill,blue] (B) circle [radius =0.04];
\draw [blue] (A)--(B)--(C)--cycle;
\tkzMarkAngle[fill=yellow, opacity=0.8](A,B,C)
\tkzLabelAngle[pos= 1.3,red](A,B,C){$\alpha$}
\node[left] at (2,7.5) {$\Delta x_2$};
\node[below] at (3,5.84) {$\Delta x_1$};
\tkzDefPoint(7.85,2.95){D}
\tkzDefPoint(10,2){E}
\tkzDefPoint(7.85,2){F}
\draw [blue] (D)--(E)--(F)--cycle;
\node[above,blue] at (D) {D} ;
\draw[fill,blue] (D) circle [radius =0.04];
\node[above,blue] at (E) {E} ;
\draw[fill,blue] (E) circle [radius =0.04];
\tkzMarkAngle[fill=yellow,opacity=0.8](D,E,F)
\tkzLabelAngle[pos= 1.3,red](D,E,F){$\alpha$}
\node[left] at (7.8,2.5) {$\Delta x_2$};
\node[below] at (9,2) {$\Delta x_1$};
\draw(1.6,11.2) ..controls (3.1,6) and (6,3.1) .. (11.2,1.6) node[right]{$u(x_1,x_2)=\bar{u}$};
\end{tikzpicture}
\captionof{figure}{You have to give up $\Delta x_2$ to consume 1 more $\Delta x_1$}
\label{fig:margin}
\end{center}
\vspace{2mm}
When we move along $u(x_1,x_2)=\bar{u}$, we can observe the following facts:
\begin{itemize}
\item The small increase of $x_1$ (i.e. $\Delta x_1$) is always followed by some small decrease of $x_2$ (i.e. $\Delta x_2$). Angle $\alpha$ reflects how much you have to give up (substitute).
\item $\alpha = - \frac{\Delta x_2}{\Delta x_1}$ depends on the relative amount of $x_1$ and $x_2$, i.e. $\frac{x_2}{x_1}$ (Note $\Delta x_2$ is negative here).
\end{itemize}
\textbf{Intuition}: To keep utility the same, you need to give up $\Delta x_2$ to consume $\Delta x_1$.
\vspace{4mm}
\textbf{Two questions:}
\begin{itemize}
\item How to calculate $\alpha = - \frac{\Delta x_2}{\Delta x_1}$ ?
\item How to describe the relation between $\alpha$ and $\frac{x_2}{x_1}$ ?
\end{itemize}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Marginal Rate of Substitution (MRS)}
When $x_1$ increases one very small unit, we define $\angle \alpha$ as Marginal Rate of Substitution (MRS).
$$MRS = \alpha = - \frac{\Delta x_2}{\Delta x_1}$$
We can calculate $\alpha$ in the following 2 ways:
\vspace{4mm}
\textbf{Method 1 (2-D thinking)}
When line segment $A-B$ and $D-E$ are extremely short, $- \alpha$ is simply the slope of the indifference curve.
Similar to Jehle \& Reny 1.27 in seminar 1, an indifference curve can be seen as the graph of a function $x_2 = f_(x_1)$ given some utility $\bar{u}$. Thus $\alpha = - \frac{dx_2}{dx_1}$.
\vspace{2mm}
\textbf{Method 2 (3-D thinking)}
Given $u(x_1,x_2)$ is a differentiable function (recall the hill-like 3-D graph I showed you). The small change of $u(x_1,x_2)$, i.e. $\Delta u(x_1,x_2)$, can always be attributed to the small change of $x_1$ and $x_2$. "Marginal utility", $\frac{\partial u(x_1,x_2)}{\partial x_1}$ and $\frac{\partial u(x_1,x_2)}{\partial x_2}$, show how "effective" the two commodities are :
$$\Delta u(x_1,x_2) = \frac{\partial u(x_1,x_2)}{\partial x_1} \Delta x_1 + \frac{\partial u(x_1,x_2)}{\partial x_2} \Delta x_2$$
(See also \href{https://en.wikipedia.org/wiki/Total_derivative}{Total derivative}.)
Now, let's keep $u(x_1,x_2) = \bar{u}$, i.e. $\Delta u(x_1,x_2) = 0$, we have
$$0 = \frac{\partial u(x_1,x_2)}{\partial x_1} \Delta x_1 + \frac{\partial u(x_1,x_2)}{\partial x_2} \Delta x_2$$
$$ \alpha = - \frac{\Delta x_2}{\Delta x_1} = \frac{\partial u(x_1,x_2) / \partial x_1}{\partial u(x_1,x_2) / \partial x_2}$$
\textbf{Intuition:} The more important $x_1$ is, the more $x_2$ you'd like to give up.
\vspace{2mm}
Another virtue of the 3-D thinking is that it can be easily generalized to many-dimension problems. Given utility the same, \textbf{to consume more commodity $i$}, how much commodity $j$ must you give up? This is called the \textbf{Marginal Rate of Substitution of good $j$ for good $i$}:
$$MRS_{ij}(x) = \frac{\partial u(x) / \partial x_i}{\partial u(x) / \partial x_j}$$
Similarly, in the case of Production theory, given the quantity of production the same (along an isoquant), \textbf{to increase input $i$}, how much input $j$ must be decreased? This is called the \textbf{Marginal Rate of Technical Substitution of input $j$ for input $i$}:
$$MRTS_{ij}(x) = \frac{\partial f(x) / \partial x_i}{\partial f(x) / \partial x_j}$$
Here the word "Technical" refers to the technology $f(x)$.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{$\alpha$ and $\frac{x_2}{x_1}$}
The relation between $\alpha$ and $\frac{x_2}{x_1}$ also reflects the substitution nature of the two commodities. Note that we can use angles to express $\frac{x_2}{x_1}$. For example, in Figure \ref{fig:bent}, $\angle AOB = \frac{AB}{OB} = \frac{x^1_2}{x^1_1}$. Similarly, $\angle COD = \frac{CD}{OD} = \frac{x^2_2}{x^2_1}$.
\begin{center}
\begin{tikzpicture}[scale=0.5]
\draw[thick,<->] (0,12) node[left]{$x_2$}--(0,0)--(12,0) node[right]{$x_1$};
\node [below left] at (0,0) {$0$};
\draw(2.5,11) ..controls (3,3).. (11,2.5) node[right]{$u(x_1,x_2)=\bar{u}$};
\tkzDefPoint(0,0){O}
\tkzDefPoint(2.7,8.3){A}
\tkzDefPoint(2.7,0){B}
\tkzDefPoint(6,3){C}
\tkzDefPoint(6,0){D}
\draw [red] (O)--(A);
\draw [red] (A)--(B);
\draw [blue] (O)--(C);
\draw [blue] (C)--(D);
\node[right,red] at (A) {A} ;
\node[below,red] at (B) {B} ;
\draw[fill,red] (A) circle [radius =0.04];
\node[above,blue] at (C) {C} ;
\node[below,blue] at (D) {D} ;
\draw[fill,blue] (C) circle [radius =0.04];
\tkzMarkAngle[fill=red,size=0.8,opacity=0.4](D,O,C)
% \tkzLabelAngle[pos= 1,red](D,O,C){$\beta$}
\tkzMarkAngle[fill=blue,size=1,opacity=0.4](B,O,A)
% \tkzLabelAngle[pos= 1.5,blue](B,O,A){$\alpha$}
\tkzMarkAngle[fill=yellow,size=1.4,opacity=0.4](C,O,A)
\tkzLabelAngle[pos= 1.6,yellow](C,O,A){$\gamma$}
\end{tikzpicture}
\captionof{figure}{MRS changes much}
\label{fig:bent}
\end{center}
\vspace{2mm}
\begin{center}
\begin{tikzpicture}[scale=0.5]
\draw[thick,<->] (0,12) node[left]{$x_2$}--(0,0)--(12,0) node[right]{$x_1$};
\node [below left] at (0,0) {$0$};
\draw(2.5,11) ..controls (5.5,5.5).. (11,2.5) node[right]{$u(x_1,x_2)=\bar{u}$};
\tkzDefPoint(0,0){O}
\tkzDefPoint(3,10.07){A}
\tkzDefPoint(6.75,5){C}
\draw [red] (O)--(A);
\draw [blue] (O)--(C);
\node[right,red] at (A) {A} ;
\draw[fill,red] (A) circle [radius =0.04];
\node[above,blue] at (C) {C} ;
\draw[fill,blue] (C) circle [radius =0.04];
\tkzMarkAngle[fill=yellow,size=1.4,opacity=0.4](C,O,A)
\tkzLabelAngle[pos= 1.6,yellow](C,O,A){$\gamma$}
\end{tikzpicture}
\captionof{figure}{MRS changes a little}
\label{fig:flat}
\end{center}
\vspace{2mm}
The change of $\frac{x_2}{x_1}$ can be expressed by $\angle \gamma$. When $\frac{x_2}{x_1}$ changes $\gamma$:
\begin{itemize}
\item in Figure \ref{fig:bent}, the "|slope|" MRS changes a lot.
\item in Figure \ref{fig:flat}, the "|slope|" MRS changes a little.
\end{itemize}
Now let's think about an extreme case. In Figure \ref{fig:straight}, when
$\frac{x_2}{x_1}$ changes $\gamma$, MRS does not change ($MRS_{12}(x) = \frac{\partial u(x) / \partial x_1}{\partial u(x) / \partial x_2} = 0.5$). That is, MRS is independent of $\frac{x_2}{x_1}$.
\begin{center}
\begin{tikzpicture}[scale=0.5]
\draw[thick,<->] (0,10) node[left]{$x_2$}--(0,0)--(12,0) node[right]{$x_1$};
\node [below left] at (0,0) {$0$};
\draw(2,9) -- (10,5) node[right]{$u(x_1,x_2)= x_1 + 2x_2$};
\tkzDefPoint(0,0){O}
\tkzDefPoint(3,8.5){A}
\tkzDefPoint(8,6){C}
\draw [red] (O)--(A);
\draw [blue] (O)--(C);
\node[above,red] at (A) {A} ;
\draw[fill,red] (A) circle [radius =0.04];
\node[above,blue] at (C) {C} ;
\draw[fill,blue] (C) circle [radius =0.04];
\tkzMarkAngle[fill=yellow,size=1.4,opacity=0.4](C,O,A)
\tkzLabelAngle[pos= 1.6,yellow](C,O,A){$\gamma$}
\end{tikzpicture}
\captionof{figure}{Perfect substitution}
\label{fig:straight}
\end{center}
\vspace{2mm}
You're never bored with $x_1$ comparing with $x_2$, no matter how much $x_1$ and $x_2$ you consumed. This can only happen when $x_1$ and $x_2$ are in nature the same commodity.
For example, $x_1$ is an apple, while $x_2$ is a pack of 2 apples. The quality of the apples are the same and the only difference is the amount per package. Since you can always substitute a 2-apple pack with 2 single apples, we call this condition as "\textbf{Perfect Substitution}".
\vspace{6mm}
Another extreme example is Leontief preference. In Figure \ref{fig:leo}, when $\frac{x_2}{x_1}$ changes $\gamma$, MRS changes from $+\infty$ to $0$.
\begin{center}
\begin{tikzpicture}[scale=0.5]
\draw[thick,<->] (0,12) node[left]{$x_2$}--(0,0)--(12,0) node[right]{$x_1$};
\node [below left] at (0,0) {$0$};
\tkzDefPoint(0,0){O}
\tkzDefPoint(4,8){A}
\tkzDefPoint(8,4){C}
\draw [red] (O)--(A);
\draw [blue] (O)--(C);
\node[right,red] at (A) {A} ;
\draw[fill,red] (A) circle [radius =0.04];
\node[above,blue] at (C) {C} ;
\draw[fill,blue] (C) circle [radius =0.04];
\tkzMarkAngle[fill=yellow,size=1.4,opacity=0.4](C,O,A)
\tkzLabelAngle[pos= 1.6,yellow](C,O,A){$\gamma$}
\draw [thick] (4,10) -- (4,4);
\draw [thick] (4,4) -- (10,4);
\end{tikzpicture}
\captionof{figure}{Leontief Preference}
\label{fig:leo}
\end{center}
We already know with Leontief preference, you believe $x_1$ and $x_2$ are totally different and can only make sense with a certain proportion, like bread and cheese. There can be \textbf{NO substitution} between the two.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Elasticity of Substitution $\sigma_{12}$}
We want to know the relation between $\alpha$ and $\gamma$, i.e. $MRS$ and $\frac{x_2}{x_1}$:
\begin{itemize}
\item "$1\% \ change \ of \ \frac{x_2}{x_1} $" will lead to how many percent change of $MRS$.
\end{itemize}
\begin{align*}
ES &= [\frac{some \ \ \% \ change \ of \ MRS}{some \ \ \% \ change \ of \ \frac{x_2}{x_1}}]^{-1} \\
&= [\frac{\frac{d MRS}{MRS}}{\frac{d(x_2/x_1)}{x_2/x_1}}]^{-1} \\
&= [\frac{d ln(MRS)}{d ln(x_2/x_1)}]^{-1}
\end{align*}
\begin{itemize}
\item Inside brackets: when $\frac{x_2}{x_1}$ changes 1 percent, how many percent $MRS$ changes. E.g. $0$ if perfect substitution, $+\infty$ if no substitution.
\item Why inverse? We want it to be $+\infty$ when perfect substitution, and $0$ when no substitution (more intuitive).
\end{itemize}
Similarly, for firms, we have:
\textbf{DEFINITION: The Elasticity of Technical Substitution} (a 2-input case for DEFINITION 3.2 on Jehle \& Reny pp. 129)
\vspace{2mm}
For a production function $f(x_1,x_2)$, the elasticity of substitution of input $2$ for input $1$ at the
point $(x_1,x_2) \in \R^2_{++}$ is defined as:
$$\sigma_{12}(x_1,x_2) \equiv (\frac{d ln MRTS_{12}(\frac{x_2}{x_1})}{dln (\frac{x_2}{x_1})})^{-1}$$
Note both the numerator and the denominator are functions of $\frac{x_2}{x_1}$. If we define $\frac{x_2}{x_1} = r$,
$\sigma_{12}(x_1,x_2)$ can be rewritten as:
$$\sigma_{12}(x_1,x_2) \equiv (\frac{d ln MRTS_{12}(r)}{dln r})^{-1}$$
\end{mdframed}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{An example from exam 2019 Q1(a)}
Deb and Frank have the following utility functions
$U_D = x_D + 2y_D$ and $U_F = x^\alpha_Fy^{1-\alpha}_F$, with $\alpha \in (0,1)$
b) [5\%] What is the elasticity of substitution for Deb? What is the
implication for the income and substitution effects?
\vspace{2mm}
\begin{mdframed}[backgroundcolor=blue!20,linecolor=white]
Obviously, Deb has a "perfect substitution" preference exactly the same as Figure \ref{fig:straight}.
$$MRS_{xy} = \frac{\partial / \partial x}{\partial u / \partial y} = 0.5$$
$$\sigma_{xy} = [\frac{d ln(MRS)}{d ln(y/x)}]^{-1} = [\frac{0}{d ln(x/y)}]^{-1}=[0]^{-1} = + \infty$$
In this case, Deb believes $x$ and $y$ are the same product but with different amount per package.
As for income and substitution effects, the solution online is incorrect.
Let's use apple as an example to make it clear:
\vspace{2mm}
\textbf{Day 1:}
\begin{center}
\begin{tikzpicture}[scale = 0.9]
\draw[thick,<->] (0,3.5) node[left]{$y$}--(0,0)--(7,0) node[right]{$x$};
\node [below left] at (0,0) {$0$};
\tkzDefPoint(0,0){O}
\tkzDefPoint(4,0){A}
\tkzDefPoint(0,2){B}
\tkzDefPoint(6,0){C}
\tkzDefPoint(0,3){D}
\draw [red] (B)--(A);
\draw [blue] (D)--(C) ;
\node[left,red] at (B) {$\frac{\$}{10 kr}$} ;
\draw[fill,red] (B) circle [radius =0.04];
\node[below,red] at (A) {$\frac{\$}{5 kr}$} ;
\draw[fill,red] (A) circle [radius =0.04];
\node[left,red] at (1.5,1) {Budget} ;
\node[above,blue] at (2.5,2) {$u = x + 2 y$} ;
\end{tikzpicture}
\captionof{figure}{A fair deal}
\label{fig:fair}
\end{center}
\vspace{2mm}
\begin{itemize}
\item $x$ : an apple , 5 kr per package.
\item $y$ : a 2-apple pack, 10 kr per package.
\end{itemize}
It's fair! Deb will not mind to substitute 2 $x$ with 1 $y$. Her demands lie on the budget frontier.
\vspace{2mm}
\textbf{Day 2:}
\begin{itemize}
\item $x$ : an apple , 5 kr per package.
\item $y$ : a 2-apple pack,\textcolor{red}{5 kr per package. On Sale!}.
\end{itemize}
\begin{center}
\begin{tikzpicture}
\draw[thick,<->] (0,5) node[left]{$y$}--(0,0)--(10,0) node[right]{$x$};
\node [below left] at (0,0) {$0$};
\tkzDefPoint(0,0){O}
\tkzDefPoint(4,0){A}
\tkzDefPoint(0,2){B}
\tkzDefPoint(8,0){C}
\tkzDefPoint(0,4){D}
\tkzDefPoint(0,4){E}
\tkzDefPoint(2,0){F}
\draw [red] (B)--(A);
\draw [red] (E)--(A);
\draw [dashed,red] (F)--(B);
\draw [blue] (D)--(C) ;
\node[left,red] at (B) {$\frac{\$}{10 kr}$} ;
\draw[fill,black] (B) circle [radius =0.04];
\node[left,red] at (E) {$\frac{\$}{5 kr}$} ;
\draw[fill,black] (E) circle [radius =0.04];
\node[below,red] at (A) {$\frac{\$}{5 kr}$} ;
\draw[fill,red] (A) circle [radius =0.04];
\node[left,red] at (1.9,1) {B} ;
\node[left,red] at (2.5,2) {B'} ;
\node[above,blue] at (4,2) {$u'$} ;
\end{tikzpicture}
\captionof{figure}{$y$ is on sale}
\label{fig:fair}
\end{center}
\vspace{2mm}
Deb will spend all income on $y$ because it's cheaper per apple.
If Deb chose $(x=0,y=\frac{\$}{10 kr})$ in Day 1, when "relative price" changes (dash line), her demand
will not change $\Rightarrow$ no substitution effects, and income effects only exist for $y$:
$$y = \frac{\$}{10kr} = \to y= \frac{\$}{5kr}$$
(Note in Day 1, indifference curve $u$ is also on the budget frontier $B$)
\vspace{2mm}
\textbf{Day 3:}
\begin{itemize}
\item $x$ : an apple , \textcolor{red}{3 kr} per package (also on sale but still more expensive).
\item $y$ : a 2-apple pack,5 kr per package. Still on sale.
\end{itemize}
\begin{center}
\begin{tikzpicture}
\draw[thick,<->] (0,5) node[left]{$y$}--(0,0)--(9,0) node[right]{$x$};
\node [below left] at (0,0) {$0$};
\tkzDefPoint(0,0){O}
\tkzDefPoint(4,0){B}
\tkzDefPoint(8,0){C}
\tkzDefPoint(0,4){D}
\draw [red] (D)--(A);
\draw [red] (B)--(D);
\draw [red] (D)--(6,0);
\draw [blue] (C)--(D) ;
\node[left,red] at (D) {$\frac{\$}{5 kr}$} ;
\draw[fill,black] (D) circle [radius =0.04];
\node[below,red] at (A) {$\frac{\$}{5 kr}$} ;
\node[left,red] at (3,2) {B''} ;
\node[below,red] at (2.5,1.5) {B'} ;
\node[below,blue] at (5.2,1.8) {$u'$} ;
\end{tikzpicture}
\captionof{figure}{$y$ is still cheaper}
\label{fig:fair}
\end{center}
\vspace{2mm}
There is no substitution effect and income effect. Demands unchange.
\vspace{2mm}
\textbf{Day 4:}
\begin{itemize}
\item $x$ : an apple , \textcolor{red}{2 kr} per package (Cheaper!).
\item $y$ : a 2-apple pack,5 kr per package. Still on sale.
\end{itemize}
\begin{center}
\begin{tikzpicture}
\draw[thick,<->] (0,6) node[left]{$y$}--(0,0)--(10.5,0) node[right]{$x$};
\node [below left] at (0,0) {$0$};
\tkzDefPoint(0,0){O}
\tkzDefPoint(10,0){A}
\tkzDefPoint(4,0){B}
\tkzDefPoint(8,0){C}
\tkzDefPoint(0,4){D}
\tkzDefPoint(0,5){E}
\draw [red] (D)--(A);
\draw [red] (B)--(D);
\draw [dashed,red] (0,3.2)--(C);
\draw [blue] (E)--(A) ;
\draw [blue] (C)--(D) ;
\node[left,red] at (D) {$\frac{\$}{10 kr}$} ;
\draw[fill,black] (D) circle [radius =0.04];
\node[below,red] at (A) {$\frac{\$}{2 kr}$} ;
\draw[fill,black] (A) circle [radius =0.04];
\node[below,black] at (C) {$x^h$} ;
\draw[fill,black] (C) circle [radius =0.04];
\node[left,red] at (4.5,2.5) {B'''} ;
\node[below,red] at (2.5,1.5) {B'} ;
\node[above,blue] at (6,2) {$u''$} ;
\node[below,blue] at (5.2,1.8) {$u'$} ;
\end{tikzpicture}
\captionof{figure}{$x$ is cheaper}
\label{fig:fair}
\end{center}
\vspace{2mm}
If the relative price changed (red dash line),with the same utility, Deb's demand will change:
$$x=0 \to x^h$$
$$y=\frac{\$}{10 kr} \to y= 0$$
This is due to substitution effect. In this case, the income effects only exist for $x$:
$$x^h \to x= \frac{\$}{2kr}$$
\end{mdframed}
Answer: The elasticity of substitution for Deb is infinite due to perfect substitution.
Assume there is a cheaper commodity, like $y$ in Day 2.
\begin{itemize}
\item When the cheaper is still cheaper($y$ in Day 3), no substitution effect, no income effect, no price effect.
\item When the cheaper becomes the more expensive ($y$ in Day 4), income effect exists only for the cheaper ($x$ in Day 4).
\end{itemize}
\begin{mdframed}[backgroundcolor=yellow!20,linecolor=white]
Tips: Allocate your time according to the point of the questions.
\begin{itemize}
\item This is a 5\% point question, then just answer it briefly.
\item Use graphs can save your time.
\item Use "common sense" to avoid proving (unless the question asks you to \textbf{calculate}), e.g. "straight" indifference curve $\Rightarrow$ perfect substitution $\Rightarrow \sigma = + \infty $
\item Just skip it if you find it difficult. This small sub-question is really hard to answer.
\end{itemize}
\end{mdframed}
\begin{mdframed}[backgroundcolor=blue!20,linecolor=white]
Question: What is the implication of Leontief preference's ES for the income and substitution effects?
\end{mdframed}
\newpage
Since you are here...
\section{exam 2019 Q1(a) c)- d) - Choice with uncertainty}
\subsection{exam 2019 Q1(a) c) [5\%] }
Deb and Frank have the following utility functions
$U_D = x_D + 2y_D$ and $U_F = x^\alpha_Fy^{1-\alpha}_F$, with $\alpha \in (0,1)$
c)Suppose that $x$ and $y$ measure the same commodity in two
different states of the world, say states $X$ and $Y$.
\begin{itemize}
\item Rewrite the utility functions as expected utility functions.
\item For which $\alpha$ do the utility functions for $D$ and $F$ have the same MRS at the 45 degree line?
\item What does this mean?
\end{itemize}
\begin{mdframed}[backgroundcolor=blue!20,linecolor=white]
The questiong want us to \textbf{rewrite} utility functions when there are 2 possible states.
We know:
\begin{itemize}
\item The summation of the possibilities of the two states must be $1$.
\item Any monotonic transformation ($f(u)$ is a strictly increasing function of $u$, e.g. $f(u) = 0.5 u, f(u) = ln(u), f(u)=u^2 $) of utility functions will not change preference.
\end{itemize}
\end{mdframed}
1.Rewrite:
\begin{align*}
E(U_D) &= \frac{1}{3}x_D + \frac{2}{3}y_D \\
E(U_F) &= \alpha ln x_F + ({1-\alpha}) ln y_F
\end{align*}
\begin{mdframed}[backgroundcolor=blue!20,linecolor=white]
\begin{itemize}
\item \textcolor{red}{Deb's utility function is actually $U_D(w) = w$, where $w = x, y$}
\item \textcolor{red}{Frank's utility function is $U_F(w) = lnw$, where $w = x, y$}
\end{itemize}
\end{mdframed}
2.$\alpha$ and MRS:
\begin{align*}
MRS_{D12} &= 0.5 \\
MRS_{F12} &= \frac{\alpha / x}{({1-\alpha})/ y} = \frac{\alpha}{1-\alpha} \frac{y}{x} = \frac{\alpha}{1-\alpha} \bigg\vert_{x=y}
\end{align*}
When $MRS_{D12} = 0.5 = MRS_{F12}\bigg\vert_{x=y} = \frac{\alpha}{1-\alpha}$, we have $\alpha = \frac{1}{3}$
3.Meaning
When $\alpha = \frac{1}{3}$, $E(U_F) =\frac{1}{3} ln x_F + \frac{2}{3} ln y_F$ ,
Deb and Frank believe the possibilities of the two states are the same.
\subsection{exam 2019 Q1(a) d) [5\%] }
\begin{itemize}
\item Compute Deb's certainty equivalent at her endowment.
\item Compute the Arrow-Pratt index of absolute risk aversion for Frank.
\end{itemize}
\begin{mdframed}[backgroundcolor=blue!20,linecolor=white]
\vspace{2mm}
{\centering
\includegraphics[width=0.8\textwidth]{4.cereq}
\captionof{figure}{Concave utility functions have positive risk premium $P \equiv E(g) - CE$}
\label{cf}}
\vspace{2mm}
\end{mdframed}
1. Deb's certainty equivalent
Since Deb's utility function \textcolor{red}{$u = w$(, where $w = x,y$)} is a straight line.
\textcolor{red}{
In this world, Deb has $0$ payoff if $X$ happened, and $1$ payoff if $Y$ happened, thus $E(payoff) = 0 \times \tfrac1{3} + 1 \times \tfrac2{3} = \tfrac2{3}$
$$CE = E(g) = \tfrac2{3}$$}
2. Absolute risk aversion for Frank
\begin{mdframed}[backgroundcolor=blue!20,linecolor=white]
\textbf{DEFINITION 2.6 The Arrow-Pratt Measure of Absolute Risk Aversion} (pp.113)
$$R_a(w) \equiv -\frac{u''(w)}{u'(w)}$$
\end{mdframed}
The utility function of Frank with no uncertainty is \textcolor{red}{$u = ln w $(, where $w = x,y$)}, thus
$$R_a(w) = -\frac{-\frac{1}{w^2}}{\frac{1}{w}}=\frac{1}{w}$$
\newpage
\section{exam 2017 Part 1. Q5 - Certainty Equivalent}
Emilia's vN-M utility function is $u(c_1,c_2,\pi_1, \pi_2) = \pi_1 \sqrt{c_1} + \pi_2 \sqrt{c_2}$
, where $c_1$ and $c_1$ are
monetary payoffs in states $1$ and $2$ and $\pi_1$ and $\pi_2$ are the probabilities associated to such states.
Emilia is offered the possibility to take a gamble that pays either $36$ or $64$ with equal probability.
What is Emilia’s reservation price for this gamble? What is her risk premium?
Consider now a gamble that pays $4$ times as much in each state (i.e., $4 \times 36$ and $4 \times 64$). Would
Emilia be willing to pay $4$ times as much for such a gamble?
\begin{mdframed}[backgroundcolor=blue!20,linecolor=white]
Parse the question in plain language:
\begin{itemize}
\item Emilia's utitlity with no uncertainty is $u(c) = \sqrt{c}$, $c$ is money.
\item Now there are uncertainty: $2$ states with the same possibility, i.e. $\frac{1}{2}$ and $\frac{1}{2}$
\item Money in the two states: $c_1 = 36$, $c_2 = 64$
\end{itemize}
"Reservation price" is the price you want to pay to play the gamble, which is the same as "certainty equivalent".
\end{mdframed}
\textbf{1. Certainty equivalent}
$$E(u) = \frac{1}{2}\sqrt{36} + \frac{1}{2}\sqrt{64} =7$$
$$u(CE) = \sqrt{CE}$$
Let $u(CE) = E(u)$, we have $$\sqrt{CE} = 7 \Rightarrow CE = 49$$
Emilia can pay as much as $49$ to play the gamble.
\vspace{4mm}
\textbf{2. Risk Premium}
Risk Premium $= E(c) - CE$
$$E(c)= \frac{1}{2} \times 36 + \frac{1}{2} \times 64 = 50$$
$$P = 50 - 49 = 1$$
\textbf{3. $4$ times as much}
$$E(u) = \frac{1}{2}\sqrt{4 \times 36} + \frac{1}{2}\sqrt{4 \times 64} =2 \times 7$$
$$\sqrt{CE} = 2 \times 7 \Rightarrow CE = 4 \times49$$
Yes, Emilia is willing to pay $4$ times as much for such a gamble.
\newpage
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Jehle \& Reny 3.10}
A Leontief production function has the form $$y = min\{\alpha x_1, \beta x_2 \}$$
for $\alpha > 0$ and $\beta > 0$. Carefully sketch the isoquant map for this technology and verify that the
elasticity of substitution $\sigma = 0$, where defined.
\begin{mdframed}[backgroundcolor=blue!20,linecolor=white]
\begin{equation}
\begin{cases}
If \ \alpha x_1 > \beta x_2, i.e. \frac{\alpha}{\beta} x_1 > x_2, y = \beta x_2 \\
If \ \alpha x_1 = \beta x_2, i.e. \frac{\alpha}{\beta} x_1 = x_2, y = \alpha x_1 = \beta x_2 \\
If \ \alpha x_1 < \beta x_2, i.e. \frac{\alpha}{\beta} x_1 < x_2, y = \alpha x_1
\end{cases}
\nonumber
\end{equation}
Similar to Jehle \& Reny 1.27 in seminar 1, the indifference curves are seperated by a line. Here the line is
$\frac{\alpha}{\beta} x_1 = x_2$. Since $\alpha > 0$ and $\beta > 0, \frac{\alpha}{\beta} \in (0,+\infty)$
{\centering
\begin{tikzpicture}[scale=0.85]
\draw [->] (0,0) node [below] {0} -- (0,0) -- (6,0) node [below] {$x_1$};
\draw [->] (0,0) node [below] {0} -- (0,0) -- (0,3) node [left] {$x_2$};
\draw[dashed](0,0)--(5,2);
\node[right] at (5,2) {$x_2 = \frac{\alpha}{\beta}x_1$};
\node[right] at (1.5,2) {$y = \alpha x_1$};
\node[right] at (3,0.8) {$y =\beta x_2$};
\end{tikzpicture}
\captionof{figure}{A possible $\frac{\alpha}{\beta}$}
\label{fig:3_10_1}}
We can then draw the indifference curves:
\end{mdframed}
{\centering
\begin{tikzpicture}[scale=0.85]
\draw [->] (0,0) node [below] {0} -- (0,0) -- (12,0) node [below] {$x_1$};
\draw [->] (0,0) node [below] {0} -- (0,0) -- (0,7) node [left] {$x_2$};
\draw [thick] (5,6) -- (5,2);
\draw [thick] (5,2) -- (11,2);
\draw [thick] (4,6) -- (4,1.6);
\draw [thick] (4,1.6) -- (11,1.6);
\draw [thick] (10,6) -- (10,4);
\draw [thick] (10,4) -- (11,4);
\draw[dashed](0,0)--(12,4.8);
\node[right] at (12,5) {$x_2 = \frac{\alpha}{\beta}x_1$};
\end{tikzpicture}
\captionof{figure}{A map of the indifference sets for Q.3.10}
\label{fig:3_10_2}}
\vspace{3mm}
Like Figure \ref{fig:leo}, when $\frac{x_2}{x_1}$ changes some angle $\gamma$, MRS changes from $+\infty$ to $0$.
$$MRTS = [\frac{d ln(MRTS)}{d ln(x_2/x_1)}]^{-1} = [\frac{+\infty}{some \ finite \ number }]^{-1} = 0$$
\begin{mdframed}[backgroundcolor=blue!20,linecolor=white]
A formal proof: from CES to Leontief (read if you're interested)
\vspace{2mm}
Since Leontief indifference curve is not differentiable(at the kink point), it's easier to start from a CES utility function.
Suppose we have a CES utility function:
$$u(x_1,x_2) = [(\alpha x_1)^\rho + (\beta x_2)^\rho]^\frac{1}{\rho}$$
Where $\rho < 1, and \ \rho \ne 0$. The Elasticity of Substitution of the CES utility function is $\sigma = \frac{1}{1-\rho}$ (Jehle \& Reny pp.130).
For simplicity, let's denote $\alpha x_1$ as $m$ and $\beta x_2$ as $n$. A log transformation will simplify our proof too:
$$ln u(m,n) = \frac{ln(m^\rho + n^\rho)}{\rho}$$
Then:
$$\lim_{\rho \to -\infty} ln u(m,n) = \lim_{\rho \to -\infty}\frac{ln(m^\rho + n^\rho)}{\rho} \to \frac{ln(0) \ or \ ln(+\infty)}{-\infty} = \frac{\infty}{\infty}$$
Which is a \href{https://en.wikipedia.org/wiki/Indeterminate_form}{Indeterminate Form}. We can thus apply \href{https://en.wikipedia.org/wiki/L\%27H\%C3\%B4pital\%27s_rule}{L'Hôpital's rule}:
\begin{align*}
\lim_{\rho \to -\infty} ln u(m,n) &= \lim_{\rho \to -\infty}\frac{ln(m^\rho + n^\rho)}{\rho} \\
L'Hôpital's \ rule : \ \ \ &= \lim_{\rho \to -\infty} \frac{d ln(m^\rho + n^\rho) /d \rho}{d \rho / d\rho} \\
&= \lim_{\rho \to -\infty} \frac{m^\rho ln m+ n^\rho ln n}{m^\rho + n^\rho}
\end{align*}
(Note here we treat $\rho$ as the only variable, therefore $\frac{d x^\rho}{d\rho}=x^\rho lnx$)
Denote $c = min\{m,n\}$
\begin{align*}
\lim_{\rho \to -\infty} ln u(m,n) &= \lim_{\rho \to -\infty} \frac{\frac{1}{c^\rho}}{\frac{1}{c^\rho}} ln u(m,n)\\
&= \lim_{\rho \to -\infty} \frac{(m/c)^\rho ln m+ (n/c)^\rho ln n}{(m/c)^\rho + (n/c)^\rho}
\end{align*}
\textbf{Case 1. if $m<n$}: $c = m, \frac{n}{c} = \frac{n}{m} >1$
\begin{align*}
\lim_{\rho \to -\infty} ln u(m,n) &= \lim_{\rho \to -\infty} \frac{1^\rho ln m+ (n/m)^\rho ln n}{1^\rho + (n/m)^\rho} \\
(\textcolor{red}{\frac{n}{m} >1}) \ \ \ \ \ \ \ &= \lim_{\rho \to -\infty} \frac{ln m+ 0}{1 + 0} \\
&= ln m
\end{align*}
Therefore $\lim_{\rho \to -\infty} ln u(x_1,x_2) =ln m = ln (\alpha x_1) \Rightarrow \lim_{\rho \to -\infty} u(x_1,x_2) = \alpha x_1$
\vspace{2mm}
\textbf{Case 2. if $m>n$}: $c = n, \frac{m}{c} = \frac{m}{n} >1$
\begin{align*}
\lim_{\rho \to -\infty} ln u(m,n) &= \lim_{\rho \to -\infty} \frac{(m/n)^\rho ln m+ 1^\rho ln n}{(m/n)^\rho + 1^\rho} \\
(\textcolor{red}{\frac{m}{n} >1}) \ \ \ \ \ \ \ &= \lim_{\rho \to -\infty} \frac{ 0 + ln n}{0 + 1} \\
&= ln m
\end{align*}
Therefore $\lim_{\rho \to -\infty} ln u(x_1,x_2) =ln n = ln (\beta x_2) \Rightarrow \lim_{\rho \to -\infty} u(x_1,x_2) = \beta x_2$
\vspace{2mm}
To sum up, $$\lim_{\rho \to -\infty} u(x_1,x_2) = min\{\alpha x_1,\beta x_2\}$$
In addition, $$\lim_{\rho \to -\infty} \sigma =\lim_{\rho \to -\infty} \frac{1}{1-\rho} = 0$$
We can conclude:when $\rho \to -\infty$, the CES utility function shows Leontief preference, and $\sigma = 0$.
\end{mdframed}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Jehle \& Reny 3.11}
Calculate $\sigma$ for the Cobb-Douglas production function $y = Ax_1^\alpha x_2^\beta$, where $A > 0,\alpha > 0,$ and $\beta > 0$.
\begin{mdframed}[backgroundcolor=blue!20,linecolor=white]
$$\sigma_{12}(x_1,x_2) \equiv (\frac{d ln MRTS_{12}(r)}{dln r})^{-1}$$
$$ MRTS = \frac{\partial f(x_1,x_2) / \partial x_1}{\partial f(x_1,x_2) / \partial x_2}$$
\end{mdframed}
\begin{align*}
MRTS &= \frac{\partial Ax_1^\alpha x_2^\beta / \partial x_1}{\partial Ax_1^\alpha x_2^\beta / \partial x_2} \\
&= \frac{A\alpha x_1^{\alpha - 1} x_2^\beta }{Ax_1^\alpha \beta x_2^{\beta -1}} \\
&= \frac{\alpha x_2}{\beta x_1}
\end{align*}
Denote $\frac{x_2}{ x_1}$ as $r$, then $MRTS = \frac{\alpha}{\beta} r$. Then,
\begin{align*}
\sigma_{12}&= (\frac{d ln (\frac{\alpha}{\beta} r)}{dln r})^{-1} \\
&= (\frac{d [ln (\frac{\alpha}{\beta}) +ln(r)]}{dln r})^{-1} \\
&= (\frac{d ln (\frac{\alpha}{\beta}) +d ln(r)}{d ln r})^{-1} \\
&= (\frac{0 +d ln(r)}{d ln r})^{-1} \\
& = 1
\end{align*}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Jehle \& Reny 3.14}
Calculate the elasticity of substitution for the production function in Example 3.2.
\begin{mdframed}[backgroundcolor=blue!20,linecolor=white]
EXAMPLE 3.2 (Jehle \& Reny pp.134 ) A production function with variable returns to scale:
$$y = k(1 + x_1^{-\alpha} x_2^{-\beta} )^{-1}$$
where $\alpha > 0,\alpha > 0$, and $k$ is an upper bound on the level of output, so that $0 \le y < k$.
\end{mdframed}
\begin{align*}
MRTS &= \frac{\partial k(1 + x_1^{-\alpha} x_2^{-\beta} )^{-1} / \partial x_1}{\partial k(1 + x_1^{-\alpha} x_2^{-\beta} )^{-1} / \partial x_2} \\
&= \frac{-k(1 + x_1^{-\alpha} x_2^{-\beta} )^{-2}(-\alpha) x_1^{-\alpha-1} x_2^{-\beta})}{-k(1 + x_1^{-\alpha} x_2^{-\beta} )^{-2} x_1^{-\alpha} (-\beta)x_2^{-\beta-1})} \\
&= \frac{\alpha x_2}{\beta x_1}
\end{align*}
The same as Jehle \& Reny 3.11, $\sigma_{12} = 1$
\end{document}