forked from rfablet/PB_ANDA
-
Notifications
You must be signed in to change notification settings - Fork 1
/
test_AnDA_SLA.py
197 lines (176 loc) · 7.25 KB
/
test_AnDA_SLA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
#!/usr/bin/env python
""" test_AnDA_SLA.py: Application of MS_AnDA to spatio-temporal interpolation of SLA (sea level anomaly). """
__author__ = "Phi Huynh Viet"
__version__ = "2.0"
__date__ = "2017-08-01"
__email__ = "[email protected]"
import numpy as np
import matplotlib.pyplot as plt
from AnDA_variables import PR, VAR, General_AF, AnDA_result
from AnDA_stat_functions import raPsd2dv1
from AnDA_transform_functions import Load_data, Gradient, Post_process, LR_perform
from AnDA_stat_functions import AnDA_RMSE, AnDA_correlate
from AnDA_Multiscale_Assimilation import Multiscale_Assimilation as MS_AnDA
import pickle
np.random.seed(1)
###### Parameters setting for SST ###########################
PR_sla = PR()
PR_sla.flag_scale = True # True: multi scale, False: one scale
PR_sla.n = 15 # dimension state
PR_sla.patch_r = 20 # size of patch
PR_sla.patch_c = 20 # size of patch
PR_sla.training_days = 6209-122 # num of training images: 2008-2014
PR_sla.test_days = 122 # num of test images: 2015
PR_sla.lag = 1 # lag of time series: t -> t+lag
PR_sla.G_PCA = 12 # N_eof for global PCA
# Input dataset
PR_sla.path_X = './SLA.npz'
PR_sla.path_OI = './OI.npz'
PR_sla.path_mask = './alongtrack_mask.npz'
# Dataset automatically created during execution
PR_sla.path_X_lr = './sla_lr.npz'
PR_sla.path_dX_PCA = './dX_pca.npz'
PR_sla.path_index_patches = './list_pos.pickle'
PR_sla.path_neighbor_patches = './pair_pos.pickle'
AF_sla = General_AF()
AF_sla.flag_reduced = False # True: Reduced version of Local Linear AF
AF_sla.flag_cond = False # True: use Obs at t+lag as condition to select successors
# False: no condition in analog forecasting
AF_sla.flag_model = False # True: Use gradient, velocity as additional regressors in AF
AF_sla.flag_catalog = True # True: each catalog for each patch position
# False: only one catalog for all positions
AF_sla.cluster = 1 # clusterized version AF
AF_sla.k = 50 # number of analogs
AF_sla.k_initial = 200 # retrieving k_initial nearest neighbors, then using condition to retrieve k analogs
AF_sla.neighborhood = np.ones([PR_sla.n,PR_sla.n]) # global analogs
AF_sla.regression = 'local_linear'
AF_sla.sampling = 'gaussian'
AF_sla.B = 0.0001
AF_sla.R = 0.0001
""" Loading data """
VAR_sla = VAR()
VAR_sla = Load_data(PR_sla)
""" Assimilation """
r_start = 75
c_start = 35
r_length = 65
c_length = 65
level = 22 # 22 patches executed simultaneously
saved_path = 'saved_path.pickle'
AnDA_sla_1 = AnDA_result()
MS_AnDA_sla = MS_AnDA(VAR_sla, PR_sla, AF_sla)
AnDA_sla_1 = MS_AnDA_sla.multi_patches_assimilation(level, r_start, r_length, c_start, c_length)
""" Postprocessing step: remove block artifact (do PCA twice gives perfect results) """
Pre_filtered = np.copy(VAR_sla.dX_orig[:PR_sla.training_days,r_start:r_start+r_length,c_start:c_start+c_length]+VAR_sla.X_lr[:PR_sla.training_days,r_start:r_start+r_length,c_start:c_start+c_length])
Pre_filtered = np.concatenate((Pre_filtered,AnDA_sla_1.itrp_AnDA),axis=0)
AnDA_sla_1.itrp_postAnDA = Post_process(Pre_filtered,len(VAR_sla.Obs_test),17)
Pre_filtered = np.copy(VAR_sla.dX_orig[:PR_sla.training_days,r_start:r_start+r_length,c_start:c_start+c_length]+VAR_sla.X_lr[:PR_sla.training_days,r_start:r_start+r_length,c_start:c_start+c_length])
Pre_filtered = np.concatenate((Pre_filtered,AnDA_sla_1.itrp_postAnDA),axis=0)
AnDA_sla_1.itrp_postAnDA = Post_process(Pre_filtered,len(VAR_sla.Obs_test),13)
X_initialization = np.copy(VAR_sla.X_lr[:,r_start:r_start+r_length,c_start:c_start+c_length]+VAR_sla.dX_orig[:,r_start:r_start+r_length,c_start:c_start+c_length])
X_initialization[PR_sla.training_days:,:,:] = AnDA_sla_1.itrp_postAnDA
X_lr = LR_perform(X_initialization,'',100)
AnDA_sla_1.itrp_postAnDA = X_lr[PR_sla.training_days:,:,:]
""" Save AnDA result """
with open(saved_path, 'wb') as handle:
pickle.dump(AnDA_sla_1, handle)
""" Reload saved AnDA result """
with open(saved_path, 'rb') as handle:
AnDA_sla_1 = pickle.load(handle)
""" Radial Power Spetral """
day = 85
resSLA = 0.25
f0, Pf_AnDA = raPsd2dv1(AnDA_sla_1.itrp_AnDA[day,:,:],resSLA,True)
f1, Pf_postAnDA = raPsd2dv1(AnDA_sla_1.itrp_postAnDA[day,:,:],resSLA,True)
f2, Pf_GT = raPsd2dv1(AnDA_sla_1.GT[day,:,:],resSLA,True)
f3, Pf_OI = raPsd2dv1(AnDA_sla_1.itrp_OI[day,:,:],resSLA,True)
wf1 = 1/f1
wf2 = 1/f2
wf3 = 1/f3
plt.figure()
plt.loglog(wf2,Pf_GT,label='GT')
plt.loglog(wf3,Pf_OI,label='OI')
plt.loglog(wf1,Pf_AnDA,label='AnDA')
plt.loglog(wf2,Pf_postAnDA,label='postAnDA')
plt.gca().invert_xaxis()
plt.legend()
# display
colormap='nipy_spectral'
plt.figure()
plt.ion()
for day in range(13,len(AnDA_sla_1.GT)):
plt.clf()
gt = AnDA_sla_1.GT[day,:,:]
obs = AnDA_sla_1.Obs[day,:,:]
AnDA = AnDA_sla_1.itrp_AnDA[day,:,:]
OI = AnDA_sla_1.itrp_OI[day,:,:]
Post_AnDA = AnDA_sla_1.itrp_postAnDA[day,:,:]
Grad_gt = Gradient(gt,2)
Grad_AnDA = Gradient(AnDA,2)
Grad_Post_AnDA = Gradient(Post_AnDA,2)
Grad_OI = Gradient(OI,2)
vmin = np.nanmin(gt)
vmax = np.nanmax(gt)
vmin_2 = np.nanmin(Grad_gt)
vmax_2 = np.nanmax(Grad_gt)
plt.subplot(3,3,1)
plt.imshow(gt,aspect='auto',cmap=colormap,vmin=vmin,vmax=vmax)
plt.colorbar()
plt.title('GT')
plt.subplot(3,3,2)
plt.imshow(obs,aspect='auto',cmap=colormap,vmin=vmin,vmax=vmax)
plt.colorbar()
plt.title('Obs')
plt.subplot(3,3,3)
plt.imshow(Grad_gt,aspect='auto',cmap=colormap,vmin=vmin_2,vmax=vmax_2)
plt.colorbar()
plt.title(r"$\nabla_{GT}$")
plt.subplot(3,3,4)
plt.imshow(OI,aspect='auto',cmap=colormap,vmin=vmin,vmax=vmax)
plt.colorbar()
plt.title('OI')
plt.subplot(3,3,5)
plt.imshow(AnDA,aspect='auto',cmap=colormap,vmin=vmin,vmax=vmax)
plt.colorbar()
plt.title('AnDA')
plt.subplot(3,3,6)
plt.imshow(Post_AnDA,aspect='auto',cmap=colormap,vmin=vmin,vmax=vmax)
plt.colorbar()
plt.title('Post_AnDA')
plt.subplot(3,3,8)
plt.imshow(Grad_AnDA,aspect='auto',cmap=colormap,vmin=vmin_2,vmax=vmax_2)
plt.colorbar()
plt.title(r"$\nabla_{AnDA}$")
plt.subplot(3,3,7)
plt.imshow(Grad_OI,aspect='auto',cmap=colormap,vmin=vmin_2,vmax=vmax_2)
plt.colorbar()
plt.title(r"$\nabla_{OI}$")
plt.subplot(3,3,9)
plt.imshow(Grad_Post_AnDA,aspect='auto',cmap=colormap,vmin=vmin_2,vmax=vmax_2)
plt.colorbar()
plt.title(r"$\nabla_{Post_AnDA}$")
plt.draw()
plt.waitforbuttonpress()
colormap='jet'
plt.ion()
for day in range(50,len(VAR_sla.dX_GT_test)):
plt.clf()
gt = VAR_sla.dX_GT_test[day,:,:]
obs = VAR_sla.Obs_test[day,:,:]
itrp = VAR_sla.Optimal_itrp[day,:,:]
vmin = np.nanmin(gt)
vmax = np.nanmax(gt)
plt.subplot(1,3,1)
plt.imshow(gt,aspect='auto',cmap=colormap,vmin=vmin,vmax=vmax)
plt.colorbar()
plt.title('GT')
plt.subplot(1,3,2)
plt.imshow(obs,aspect='auto',cmap=colormap,vmin=vmin,vmax=vmax)
plt.colorbar()
plt.title('Obs')
plt.subplot(1,3,3)
plt.imshow(itrp,aspect='auto',cmap=colormap,vmin=vmin,vmax=vmax)
plt.colorbar()
plt.title('OI')
plt.draw()
plt.waitforbuttonpress()