-
Notifications
You must be signed in to change notification settings - Fork 1
/
highschool-math.tex
486 lines (417 loc) · 16.5 KB
/
highschool-math.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
\documentclass[titlepage, 12pt]{book}
\usepackage[parfill]{parskip}
\usepackage{amsmath}
\usepackage{xcolor}
\usepackage{amsfonts}
\usepackage{setspace}
\usepackage{hyperref}
\usepackage{tcolorbox}
\tcbuselibrary{theorems}
\hypersetup{
colorlinks=true,
linkcolor=blue,
filecolor=magenta,
urlcolor=blue,
}
\newtcbtheorem[]{definition}{Definition}%
{colback=magenta!5,colframe=magenta!100!black,fonttitle=\bfseries}{th}
\newtcbtheorem[]{proposition}{Proposition}%
{colback=cyan!5,colframe=cyan!100!black,fonttitle=\bfseries}{th}
\newtcbtheorem[]{theorem}{Theorem}%
{colback=orange!5,colframe=orange!100!black,fonttitle=\bfseries}{th}
\begin{document}
\title{Notes on high school mathematics}
\author{Bharathi Ramana Joshi\\\url{https://github.com/iambrj/notes}}
\maketitle
\tableofcontents
\chapter*{Preface}
\addcontentsline{toc}{chapter}{Preface}
I had learnt a lot of useful (and \textit{fun}!) mathematics in my high school,
but all my notes back then were handwritten. This document is an attempt at
digitalizing them since I still find some of that math useful and having a
digital document makes it easier to revisit material.
\chapter{Functions}
\begin{definition}{Cartesian product}{}
If $A$ and $B$ are two sets, then their \textit{Cartesian product} is
defined as the set $\{(a, b)\mid a\in A,b\in B\}$ denoted by $A\times B$
\end{definition}
\begin{definition}{Relation}{}
If $A$ and $B$ are two sets, then any subset of $A\times B$ is called a
\textit{relation} from $A$ to $B$
\end{definition}
\begin{definition}{Function}{}
If $A$ and $B$ are two sets, then function $f$ from $A$ to $B$ is a relation
from $A$ to $B$ such that $\forall a\in A,\exists b\in B$ such that $(a,
b)\in f$. It is denoted by $f:A\rightarrow B$, the set $A$ is called the
\textit{domain} and $b$ is called the \textit{co-domain} of $f$
\end{definition}
\begin{definition}{Image, Pre-image}{}
If $f:A\rightarrow B$ is a function such that $f(a) = b$, then $b$ is called
the \textbf{image} of $a$ under $f$ and $a$ is called the pre-image of $b$
under $f$
\end{definition}
\begin{definition}{Range}{}
If $f:A\rightarrow B$ is a function then $f(A)$, the set of all images is
called the range of $f$
\end{definition}
\begin{definition}{Injection}{}
A function $f:A\rightarrow B$ is called an
\textbf{injection}/\textbf{one-to-one} if distinct elements of $A$ have
distinct images in $B$
\end{definition}
\begin{definition}{Surjection}{}
A function $f:A\rightarrow B$ is called an
\textbf{surjection}/\textbf{onto} if range is equal to the co-domain
\end{definition}
\begin{definition}{Bijection}{}
A function $f:A\rightarrow B$ is called an \textbf{bijection} if it is both
into and onto
\end{definition}
\begin{definition}{Function equality}{}
Two functions $f$ and $g$ are equal, iff
\begin{enumerate}
\item Both have same domains
\item Images of all elements from the domain are the same, i.e. $f(x) =
g(x), \forall x\in $ domain
\end{enumerate}
\end{definition}
\begin{definition}{Inverse function}{}
If $f:A\rightarrow B$ is a bijection, then the relation $f^{-1} = \{(b,
a)\mid f(a) = b\}$ is defined as the inverse function of $f$
\end{definition}
\begin{definition}{Function composition}{}
If $f : A\rightarrow B$ and $g : B\rightarrow C$ are two functions, then
their composition function $f\circ g$ is defined as the relation $\{(a,
g(f(a)))\mid a\in A\}$
\end{definition}
\chapter{Matrices}
\begin{definition}{Matrix}{}
An ordered rectangular array of elements is called a \textbf{matrix}
\end{definition}
\begin{definition}{Order of a Matrix}{}
A matrix having $m$ rows and $n$ columns is said to be of order $m\times n$,
read a s$m$ cross $n$ or $m$ by $n$
\end{definition}
Some common matrices
\begin{enumerate}
\item\textbf{Square matrix} : $m = n$
\item\textbf{Diagonal matrix} : All non-diagonal elements of a square matrix
are zeroes
\item\textbf{Scalar matrix} : Diagonal matrix where all diagonal elements
are equal
\item\textbf{Unity/Identity matrix} : Diagonal matrix where all diagonal
elements are 1
\item\textbf{Null/Zero matrix} : All elements are zeroes
\item\textbf{Row/Column matrix} : Matrix with only single row/column
\item\textbf{Triangular matrix} : All elements below/above (lower/upper) are
zeroes
\end{enumerate}
\begin{definition}{Equality of matrices}{}
Two matrices are equal if they have same order and corresponding elements
are equal
\end{definition}
\begin{definition}{Sum of two matrices}{}
If two matrices are of equal order then their sum matrix is defined as sum
of corresponding elements
\end{definition}
\begin{definition}{Scalar multiple of a matrix}{}
The scalar multiple of a matrix is defined as the matrix obtained by
multiplying each element by fixed scalar
\end{definition}
\begin{definition}{Product of two matrices}{}
If $A = [a_{ik}]_{m\times n}$ and $B = [b_{kj}]_{n\times p}$ are two
matrices, then their product $C = [c_{ij}]_{m\times p}$ is defined as
$c_{ij} = \sum_{k = 1}^n a_{ik}b_{kj}$
\end{definition}
\begin{definition}{Transpose of a matrix}{}
The matrix obtained by interchanging the rows and columns is called the
transpose matrix. Transpose of a matrix $A$ is denoted by $A^\prime$.
\end{definition}
\begin{definition}{Symmetric matrix}{}
A matrix is Symmetric if it is equal to its transpose, i.e. $A = A^\prime$
\end{definition}
\begin{definition}{Skew-symmetric matrix}{}
A matrix is skew-symmetric if $A^\prime =-A$
\end{definition}
\begin{definition}{Determinant}{}
Since $a_1b_2 - a_2b_1$ determines whether below system of linear equations
has unique solution ($\neq 0$) or not (= 0)
\begin{align*}
a_1x+b_1y = c_1\\
a_2x+b_2y = c_2
\end{align*}
\end{definition}
\begin{definition}{Minor}{}
For a square matrix, the minor of an element is defined as the determinant
of the smaller matrix obtained by deleting the rows and columns of that
element.
\end{definition}
\begin{definition}{Cofactor}{}
Cofactor of element $ij$ is defined as the minor multiplied by $-1^{(i +
j)}$
\end{definition}
\begin{definition}{Singular matrix}{}
A matrix is singular if its determinant is zero
\end{definition}
\begin{definition}{Adjoint}{}
\begin{align*}
\begin{bmatrix}
a_1 & b_1 & c_1\\
a_2 & b_2 & c_2\\
a_3 & b_3 & c_3\\
\end{bmatrix}
=
\begin{bmatrix}
A_1 & A_2 & A_3\\
B_1 & B_2 & B_3\\
C_1 & C_2 & C_3\\
\end{bmatrix}
\end{align*}
uppercase letters are cofactors of corresponding lowercase letters
\end{definition}
\begin{definition}{Inverse matrix}{}
A matrix $A$ is \textbf{\textit{invertible}} if $|A|\neq 0, A^{-1} =
\frac{Adj(A)}{|A|}$
\end{definition}
\begin{definition}{Rank}{}
Rank of a matrix is the maximum order of the non-singular square
submatrices.
\end{definition}
Rank is invariant under
\begin{enumerate}
\item Interchanging two rows/columns
\item Multiplying rows/columns by a non-zero number
\item Adding elements of a row/column to the corresponding elements of
another row/column
\end{enumerate}
\begin{theorem}{Solubility of system of equations}{}
A system of three equations in three unknowns $AX = D$ has
\begin{enumerate}
\item \textbf{\textit{Unique}} solutions if $rank(A) = rank([A\;D]) = 3$
\item \textbf{\textit{Infinite}} solutions if $rank(A) = rank([A\;D]) < 3$
\item \textbf{\textit{Zero}} solutions if $rank(A)\neq rank([A\; D])$
\end{enumerate}
\end{theorem}
\begin{definition}{Cramer's rule}{}
\textbf{\textit{Cramer's rule}} states that
\begin{align*}
\frac{x}{\Delta_1} = \frac{y}{\Delta_2} = \frac{z}{\Delta_2} = \frac{1}{\Delta}
\end{align*}
where
\begin{enumerate}
\item
\begin{align*}
\Delta =
\begin{vmatrix}
a_1 & b_1 & c_1\\
a_2 & b_2 & c_2\\
a_3 & b_3 & c_3\\
\end{vmatrix}
\end{align*}
\item
\begin{align*}
\Delta_1 =
\begin{vmatrix}
d_1 & b_1 & c_1\\
d_2 & b_2 & c_2\\
d_3 & b_3 & c_3\\
\end{vmatrix}
\end{align*}
\item
\begin{align*}
\Delta_2 =
\begin{vmatrix}
a_1 & d_1 & c_1\\
a_2 & d_2 & c_2\\
a_3 & d_3 & c_3\\
\end{vmatrix}
\end{align*}
\item
\begin{align*}
\Delta_3 =
\begin{vmatrix}
a_1 & b_1 & d_1\\
a_2 & b_2 & d_2\\
a_3 & b_3 & d_3\\
\end{vmatrix}
\end{align*}
\end{enumerate}
\end{definition}
\begin{definition}{Matrix inversion method}{}
The matrix inversion method to solve the system of equations $AX = D$ is $X
= A^{-1}D$
\end{definition}
\begin{definition}{Gauss-Jordan method}{}
To solve a system of equations using Gauss-Jordan method, we transform
\begin{align*}
\begin{bmatrix}
a_1 & b_1 & c_1 & d_1\\
a_2 & b_2 & c_2 & d_2\\
a_3 & b_3 & c_3 & d_3\\
a_4 & b_4 & c_4 & d_4\\
\end{bmatrix}
\rightarrow
\begin{bmatrix}
1 & 0 & 0 & \alpha\\
0 & 1 & 0 & \beta\\
0 & 0 & 1 & \gamma\\
\end{bmatrix}
\end{align*}
via a series of rank invariant transformations
\end{definition}
Note
\begin{enumerate}
\item If matrix can be transformed into above form it has unique solution $x
= \alpha, y = \beta, z = \gamma$
\item If one entire row is zeroes, then system has infinite solutions
\item If row of $A$ is zero, but $D$'s element is non-zero, system has no
solutions
\end{enumerate}
\begin{theorem}{}{}
The homogeneous system of equations $AX = O$ has
\begin{enumerate}
\item only the trivial solution, if $rank(A) = 3$
\item infinite solutions, otherwise
\end{enumerate}
\end{theorem}
% TODO : Vectors chapters
\chapter{Trigonometry}
\begin{theorem}{Degrees, gradients and radians}{}
\begin{align*}
\frac{180}{D} = \frac{200}{G} = \frac{\pi}{R}
\end{align*}
\end{theorem}
\begin{definition}{Trigonometric ratios}{}
\begin{enumerate}
\item $sin\theta = \frac{O}{H}$
\item $cos\theta = \frac{A}{H}$
\item $tan\theta = \frac{O}{A}$
\item $cosec\theta = \frac{H}{O}$
\item $sec\theta = \frac{H}{A}$
\item $cot\theta = \frac{A}{O}$
\end{enumerate}
\end{definition}
\begin{theorem}{Identities}{}
\begin{enumerate}
\item $cos^2\theta + sin^2\theta = 1$
\item $1 + tan^2\theta = sec^2\theta$
\item $1 + cot^2\theta = cosec^2\theta$
\end{enumerate}
\end{theorem}
\begin{theorem}{Common angle values}{}
\begin{center}
\begin{tabular}{ |c|c|c|c|c|c| }
\hline
Angle/ratio & 0 & 30 & 45 & 60 & 90 \\
\hline
sin & 0 & $\frac{1}{2}$ & $\frac{1}{\sqrt{2}}$ & $\frac{\sqrt{3}}{2}$ & 1 \\
\hline
cos & 1 & $\frac{\sqrt{3}}{2}$ & $\frac{1}{\sqrt{2}}$ & $\frac{1}{2}$ & 0 \\
\hline
tan & 0 & $\frac{1}{\sqrt{3}}$ & 1 & $\sqrt{3}$ & $\infty$ \\
\hline
\end{tabular}
\end{center}
\end{theorem}
\begin{theorem}{Compound angle identities}{}
\begin{enumerate}
\item cos (A + B) = cos A cos B - sin A sin B
\item sin (A + B) = sin A cos B + cos A sin B
\item tan (A + B) = $\frac{tan A + tan B}{1 - tan A tan B}$
\item cot (A + B) = $\frac{cot A cot B - 1}{cot A + cot B}$
\item sin (A + B) sin (A - B) = sin$^2$ A - sin$^2$ B
\item cos (A + B) cos (A - B) = cos$^2$ A - sin$^2$ B
\item sin (A + B + C) = ($\Sigma$sin A cos B cos C) - sin A sin B sin C
\item cos (A + B + C) = cos A cos B cos C - $\Sigma$ cos A sin B sin C
\item tan (A + B + C) = $\frac{\Sigma tan A - \Pi tan A}{1 - \Sigma tan A tan B}$
\item cot (A + B + C) = $\frac{\Sigma cot A - \Pi cot A}{1 - \Sigma cot A cot B}$
\end{enumerate}
\end{theorem}
\begin{theorem}{Peak points of an expression}{}
The expression $asinx + bcosx + c$ has the maximum value $c +
\sqrt{a^2+b^2}$ and minimum value $c - \sqrt{a^2+b^2}$
\end{theorem}
\begin{theorem}{Multiple angle identities}{}
\begin{enumerate}
\item sin 2A = 2sin A cos A = $\frac{2tan A}{1 + tan^2A}$
\item cos 2A = cos$^2$A - sin$^2$A = $\frac{1 - tan^2 A}{1 + tan^2A}$
\item tan 2A = $\frac{2tanA}{1 - tan^2A}$
\item sin 3A = 3 sin A - 4 sin$^3$ A
\item cos 3A = 4cos$^3$A - 3 cos A
\item tan 3A = $\frac{3tanA - tan^3A}{1 - 3 tan^2A}$
\item cot 3A = $\frac{3cot A - cot^3 A}{1 - 3 cot^2A}$
\end{enumerate}
\end{theorem}
\begin{theorem}{Sum and product transformations}{}
\begin{enumerate}
\item 2 sin A cos B = sin (A + B) + sin (A - B)
\item 2 cos A sin B = sin (A + B) - sin (A - B)
\item 2 cos A cos B = cos (A + B) + cos (A - B)
\item 2 sin A sin B = cos (A + B) - cos (A - B)
\end{enumerate}
\end{theorem}
\chapter{Limits and Continuity}
\begin{definition}{Neighbourhood}{}
If $a\in\mathbb{R}$ and $\delta\in\mathbb{R}, \delta > 0$, then the interval
$(a - \delta, a + \delta)$ is called the $\delta$-neighbourhood of $a$
\end{definition}
\begin{definition}{Limit point}{}
Let $E\subseteq\mathbb{R}$, $f:E\rightarrow\mathbb{R}$ and let $a$ be such
that $((a - r, a + r)\\ \{a\})\cap E$ is nonempty for each $r>0$ (i.e. $f$
is well defined in the deleted $r$ neighbourhood of $a$). Then, if
$\forall\epsilon > 0$, $\exists\delta > 0$ such that $|f(x) - l| <
\epsilon$ whenever $|x - a| < \delta$, $l$ is said to be a limit point of
$f$ at $a$. This is written as
\begin{align*}
\lim_{x\rightarrow a} f(x) = l
\end{align*}
\end{definition}
\begin{theorem}{Sandwich theorem}{}
Let $E\subset\mathbb{R}$, $f,g,h : E\rightarrow\mathbb{R}$ and
$a\in\mathbb{R}$ such that $\lim_{x\rightarrow a}f(x) = l =
\lim_{x\rightarrow a} h(x)$ and $f(x)\leq g(x)\leq h(x)$, for all $x\in E$
then $\lim_{x\rightarrow a}g(x)$ exists and is equal to $l$
\end{theorem}
\begin{definition}{Continuity}{}
A function $f:E(\subset\mathbb{R})\rightarrow\mathbb{R}$ is continuous at
$a$ if for all $\epsilon > 0$ there exists a $\delta > 0$ such that whenever
$|x - a| < \delta$, we have $|f(x) -f(a)| < \epsilon$
\end{definition}
\begin{definition}{Left \& Right Continuity}{}
A function $f:E(\subset\mathbb{R})\rightarrow\mathbb{R}$ that is well
defined in the deleted $r$ neighbourhood of $a, \forall a in E$ is right
continuous at $a$ if $\lim_{x\rightarrow a+}f(x)$ exists and is equal to
$f(a)$ and left continuous at $a$ if $\lim_{x\rightarrow a-}f(x)$ exists and
is equal to $f(a)$.
\end{definition}
A few useful results:
\begin{enumerate}
\item If $f$ and $g$ are continuous at $a$, then $f + g$, $f - g$, $fg$, and
$cf$ are all also continuous at $a$. Additionally, if $g(a)\neq 0$ then
$\frac{f}{g}$ is continuous at $a$.
\item If $f:A\rightarrow R$ and $g:B\rightarrow R$ are two continuous
functions, then their composition $f\circ g$ is also continuous.
\end{enumerate}
\chapter{Differentiation}
If $f:I\rightarrow R$ is a function such that $\lim_{h\rightarrow 0}\frac{f(a +
h) - f(a)}{h}$ exists, then $f$ is said to be differentiable at $a$ and the
limit is called the derivative of $f$ at $a$. In other words,
\begin{align*}
f'(a) &= \lim_{h\rightarrow 0}\frac{f(a + h) - f(a)}{h}
&= \lim_{x\rightarrow a}\frac{f(x) - f(a)}{x - a}
\end{align*}
is the derivative of $f$ at $a$.
\textbf{Note:} If $f$ is differentiable at $a$ (i.e. it is \textit{smooth}),
then it is continuous at $a$. However, if $f$ is continuous at $a$, it need not
be continuous at $a$ (e.g. $f(x) = |x|$ is continuous but not differentiable at
$x = 0$).
\begin{theorem}{Derivative of product of functions}{}
$(f(x)g(x))' = f'(x)g(x) + f(x)g'(x)$.
\end{theorem}
\begin{theorem}{Derivative of quotient of functions}{}
$(f(x)g(x))' = f'(x)g(x) + f(x)g'(x)$.
\end{theorem}
\begin{theorem}{Derivative of composite functions}{}
$(f\circ g(x))' = f'(g(x))g'(x)$.
\end{theorem}
\end{document}