forked from nagadomi/waifu2x
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.lua
458 lines (447 loc) · 15.8 KB
/
train.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
require 'pl'
local __FILE__ = (function() return string.gsub(debug.getinfo(2, 'S').source, "^@", "") end)()
package.path = path.join(path.dirname(__FILE__), "lib", "?.lua;") .. package.path
require 'optim'
require 'xlua'
require 'w2nn'
local settings = require 'settings'
local srcnn = require 'srcnn'
local minibatch_adam = require 'minibatch_adam'
local iproc = require 'iproc'
local reconstruct = require 'reconstruct'
local compression = require 'compression'
local pairwise_transform = require 'pairwise_transform'
local image_loader = require 'image_loader'
local function save_test_scale(model, rgb, file)
local up = reconstruct.scale(model, settings.scale, rgb)
image.save(file, up)
end
local function save_test_jpeg(model, rgb, file)
local im, count = reconstruct.image(model, rgb)
image.save(file, im)
end
local function save_test_user(model, rgb, file)
if settings.scale == 1 then
save_test_jpeg(model, rgb, file)
else
save_test_scale(model, rgb, file)
end
end
local function split_data(x, test_size)
local index = torch.randperm(#x)
local train_size = #x - test_size
local train_x = {}
local valid_x = {}
for i = 1, train_size do
train_x[i] = x[index[i]]
end
for i = 1, test_size do
valid_x[i] = x[index[train_size + i]]
end
return train_x, valid_x
end
local function make_validation_set(x, transformer, n, patches)
n = n or 4
local validation_patches = math.min(16, patches or 16)
local data = {}
for i = 1, #x do
for k = 1, math.max(n / validation_patches, 1) do
local xy = transformer(x[i], true, validation_patches)
for j = 1, #xy do
table.insert(data, {x = xy[j][1], y = xy[j][2]})
end
end
xlua.progress(i, #x)
collectgarbage()
end
local new_data = {}
local perm = torch.randperm(#data)
for i = 1, perm:size(1) do
new_data[i] = data[perm[i]]
end
data = new_data
return data
end
local function validate(model, criterion, eval_metric, data, batch_size)
local loss = 0
local mse = 0
local loss_count = 0
local inputs_tmp = torch.Tensor(batch_size,
data[1].x:size(1),
data[1].x:size(2),
data[1].x:size(3)):zero()
local targets_tmp = torch.Tensor(batch_size,
data[1].y:size(1),
data[1].y:size(2),
data[1].y:size(3)):zero()
local inputs = inputs_tmp:clone():cuda()
local targets = targets_tmp:clone():cuda()
for t = 1, #data, batch_size do
if t + batch_size -1 > #data then
break
end
for i = 1, batch_size do
inputs_tmp[i]:copy(data[t + i - 1].x)
targets_tmp[i]:copy(data[t + i - 1].y)
end
inputs:copy(inputs_tmp)
targets:copy(targets_tmp)
local z = model:forward(inputs)
loss = loss + criterion:forward(z, targets)
mse = mse + eval_metric:forward(z, targets)
loss_count = loss_count + 1
if loss_count % 10 == 0 then
xlua.progress(t, #data)
collectgarbage()
end
end
xlua.progress(#data, #data)
return {loss = loss / loss_count, MSE = mse / loss_count, PSNR = 10 * math.log10(1 / (mse / loss_count))}
end
local function create_criterion(model)
if reconstruct.is_rgb(model) then
local offset = reconstruct.offset_size(model)
local output_w = settings.crop_size - offset * 2
local weight = torch.Tensor(3, output_w * output_w)
weight[1]:fill(0.29891 * 3) -- R
weight[2]:fill(0.58661 * 3) -- G
weight[3]:fill(0.11448 * 3) -- B
return w2nn.ClippedWeightedHuberCriterion(weight, 0.1, {0.0, 1.0}):cuda()
else
local offset = reconstruct.offset_size(model)
local output_w = settings.crop_size - offset * 2
local weight = torch.Tensor(1, output_w * output_w)
weight[1]:fill(1.0)
return w2nn.ClippedWeightedHuberCriterion(weight, 0.1, {0.0, 1.0}):cuda()
end
end
local function transformer(model, x, is_validation, n, offset)
local meta = {data = {}}
local y = nil
if type(x) == "table" and type(x[2]) == "table" then
meta = x[2]
if x[1].x and x[1].y then
y = compression.decompress(x[1].y)
x = compression.decompress(x[1].x)
else
x = compression.decompress(x[1])
end
else
x = compression.decompress(x)
end
n = n or settings.patches
if is_validation == nil then is_validation = false end
local random_color_noise_rate = nil
local random_overlay_rate = nil
local active_cropping_rate = nil
local active_cropping_tries = nil
if is_validation then
active_cropping_rate = settings.active_cropping_rate
active_cropping_tries = settings.active_cropping_tries
random_color_noise_rate = 0.0
random_overlay_rate = 0.0
else
active_cropping_rate = settings.active_cropping_rate
active_cropping_tries = settings.active_cropping_tries
random_color_noise_rate = settings.random_color_noise_rate
random_overlay_rate = settings.random_overlay_rate
end
if settings.method == "scale" then
local conf = tablex.update({
downsampling_filters = settings.downsampling_filters,
random_half_rate = settings.random_half_rate,
random_color_noise_rate = random_color_noise_rate,
random_overlay_rate = random_overlay_rate,
random_unsharp_mask_rate = settings.random_unsharp_mask_rate,
max_size = settings.max_size,
active_cropping_rate = active_cropping_rate,
active_cropping_tries = active_cropping_tries,
rgb = (settings.color == "rgb"),
x_upsampling = not reconstruct.has_resize(model),
resize_blur_min = settings.resize_blur_min,
resize_blur_max = settings.resize_blur_max}, meta)
return pairwise_transform.scale(x,
settings.scale,
settings.crop_size, offset,
n, conf)
elseif settings.method == "noise" then
local conf = tablex.update({
random_half_rate = settings.random_half_rate,
random_color_noise_rate = random_color_noise_rate,
random_overlay_rate = random_overlay_rate,
random_unsharp_mask_rate = settings.random_unsharp_mask_rate,
max_size = settings.max_size,
jpeg_chroma_subsampling_rate = settings.jpeg_chroma_subsampling_rate,
active_cropping_rate = active_cropping_rate,
active_cropping_tries = active_cropping_tries,
nr_rate = settings.nr_rate,
rgb = (settings.color == "rgb")}, meta)
return pairwise_transform.jpeg(x,
settings.style,
settings.noise_level,
settings.crop_size, offset,
n, conf)
elseif settings.method == "noise_scale" then
local conf = tablex.update({
downsampling_filters = settings.downsampling_filters,
random_half_rate = settings.random_half_rate,
random_color_noise_rate = random_color_noise_rate,
random_overlay_rate = random_overlay_rate,
random_unsharp_mask_rate = settings.random_unsharp_mask_rate,
max_size = settings.max_size,
jpeg_chroma_subsampling_rate = settings.jpeg_chroma_subsampling_rate,
nr_rate = settings.nr_rate,
active_cropping_rate = active_cropping_rate,
active_cropping_tries = active_cropping_tries,
rgb = (settings.color == "rgb"),
x_upsampling = not reconstruct.has_resize(model),
resize_blur_min = settings.resize_blur_min,
resize_blur_max = settings.resize_blur_max}, meta)
return pairwise_transform.jpeg_scale(x,
settings.scale,
settings.style,
settings.noise_level,
settings.crop_size, offset,
n, conf)
elseif settings.method == "user" then
local conf = tablex.update({
max_size = settings.max_size,
active_cropping_rate = active_cropping_rate,
active_cropping_tries = active_cropping_tries,
rgb = (settings.color == "rgb")}, meta)
return pairwise_transform.user(x, y,
settings.crop_size, offset,
n, conf)
end
end
local function resampling(x, y, train_x, transformer, input_size, target_size)
local c = 1
local shuffle = torch.randperm(#train_x)
for t = 1, #train_x do
xlua.progress(t, #train_x)
local xy = transformer(train_x[shuffle[t]], false, settings.patches)
for i = 1, #xy do
x[c]:copy(xy[i][1])
y[c]:copy(xy[i][2])
c = c + 1
if c > x:size(1) then
break
end
end
if c > x:size(1) then
break
end
if t % 50 == 0 then
collectgarbage()
end
end
xlua.progress(#train_x, #train_x)
end
local function get_oracle_data(x, y, instance_loss, k, samples)
local index = torch.LongTensor(instance_loss:size(1))
local dummy = torch.Tensor(instance_loss:size(1))
torch.topk(dummy, index, instance_loss, k, 1, true)
print("MSE of all data: " ..instance_loss:mean() .. ", MSE of oracle data: " .. dummy:mean())
local shuffle = torch.randperm(k)
local x_s = x:size()
local y_s = y:size()
x_s[1] = samples
y_s[1] = samples
local oracle_x = torch.Tensor(table.unpack(torch.totable(x_s)))
local oracle_y = torch.Tensor(table.unpack(torch.totable(y_s)))
for i = 1, samples do
oracle_x[i]:copy(x[index[shuffle[i]]])
oracle_y[i]:copy(y[index[shuffle[i]]])
end
return oracle_x, oracle_y
end
local function remove_small_image(x)
local new_x = {}
for i = 1, #x do
local xe, meta, x_s
xe = x[i]
if type(x) == "table" and type(x[2]) == "table" then
if xe[1].x and xe[1].y then
x_s = compression.size(xe[1].y) -- y size
else
x_s = compression.size(xe[1])
end
else
x_s = compression.size(xe)
end
if x_s[2] / settings.scale > settings.crop_size + 32 and
x_s[3] / settings.scale > settings.crop_size + 32 then
table.insert(new_x, x[i])
end
if i % 100 == 0 then
collectgarbage()
end
end
print(string.format("%d small images are removed", #x - #new_x))
return new_x
end
local function plot(train, valid)
gnuplot.plot({
{'training', torch.Tensor(train), '-'},
{'validation', torch.Tensor(valid), '-'}})
end
local function train()
local hist_train = {}
local hist_valid = {}
local model
if settings.resume:len() > 0 then
model = torch.load(settings.resume, "ascii")
else
model = srcnn.create(settings.model, settings.backend, settings.color)
end
local offset = reconstruct.offset_size(model)
local pairwise_func = function(x, is_validation, n)
return transformer(model, x, is_validation, n, offset)
end
local criterion = create_criterion(model)
local eval_metric = w2nn.ClippedMSECriterion(0, 1):cuda()
local x = remove_small_image(torch.load(settings.images))
local train_x, valid_x = split_data(x, math.max(math.floor(settings.validation_rate * #x), 1))
local adam_config = {
xLearningRate = settings.learning_rate,
xBatchSize = settings.batch_size,
xLearningRateDecay = settings.learning_rate_decay
}
local ch = nil
if settings.color == "y" then
ch = 1
elseif settings.color == "rgb" then
ch = 3
end
local best_score = 1000.0
print("# make validation-set")
local valid_xy = make_validation_set(valid_x, pairwise_func,
settings.validation_crops,
settings.patches)
valid_x = nil
collectgarbage()
model:cuda()
print("load .. " .. #train_x)
local x = nil
local y = torch.Tensor(settings.patches * #train_x,
ch * (settings.crop_size - offset * 2) * (settings.crop_size - offset * 2)):zero()
if reconstruct.has_resize(model) then
x = torch.Tensor(settings.patches * #train_x,
ch, settings.crop_size / settings.scale, settings.crop_size / settings.scale)
else
x = torch.Tensor(settings.patches * #train_x,
ch, settings.crop_size, settings.crop_size)
end
local instance_loss = nil
for epoch = 1, settings.epoch do
model:training()
print("# " .. epoch)
if adam_config.learningRate then
print("learning rate: " .. adam_config.learningRate)
end
print("## resampling")
if instance_loss then
-- active learning
local oracle_k = math.min(x:size(1) * (settings.oracle_rate * (1 / (1 - settings.oracle_drop_rate))), x:size(1))
local oracle_n = math.min(x:size(1) * settings.oracle_rate, x:size(1))
if oracle_n > 0 then
local oracle_x, oracle_y = get_oracle_data(x, y, instance_loss, oracle_k, oracle_n)
resampling(x:narrow(1, oracle_x:size(1) + 1, x:size(1)-oracle_x:size(1)),
y:narrow(1, oracle_x:size(1) + 1, x:size(1) - oracle_x:size(1)), train_x, pairwise_func)
x:narrow(1, 1, oracle_x:size(1)):copy(oracle_x)
y:narrow(1, 1, oracle_y:size(1)):copy(oracle_y)
local draw_n = math.floor(math.sqrt(oracle_x:size(1), 0.5))
if draw_n > 100 then
draw_n = 100
end
image.save(path.join(settings.model_dir, "oracle_x.png"),
image.toDisplayTensor({
input = oracle_x:narrow(1, 1, draw_n * draw_n),
padding = 2,
nrow = draw_n,
min = 0,
max = 1}))
else
resampling(x, y, train_x, pairwise_func)
end
else
resampling(x, y, train_x, pairwise_func)
end
collectgarbage()
instance_loss = torch.Tensor(x:size(1)):zero()
for i = 1, settings.inner_epoch do
model:training()
local train_score, il = minibatch_adam(model, criterion, eval_metric, x, y, adam_config)
instance_loss:copy(il)
print(train_score)
model:evaluate()
print("# validation")
local score = validate(model, criterion, eval_metric, valid_xy, adam_config.xBatchSize)
table.insert(hist_train, train_score.loss)
table.insert(hist_valid, score.loss)
if settings.plot then
plot(hist_train, hist_valid)
end
if score.MSE < best_score then
local test_image = image_loader.load_float(settings.test) -- reload
best_score = score.MSE
print("* Best model is updated")
if settings.save_history then
torch.save(settings.model_file_best, model:clearState(), "ascii")
torch.save(string.format(settings.model_file, epoch, i), model:clearState(), "ascii")
if settings.method == "noise" then
local log = path.join(settings.model_dir,
("noise%d_best.%d-%d.png"):format(settings.noise_level,
epoch, i))
save_test_jpeg(model, test_image, log)
elseif settings.method == "scale" then
local log = path.join(settings.model_dir,
("scale%.1f_best.%d-%d.png"):format(settings.scale,
epoch, i))
save_test_scale(model, test_image, log)
elseif settings.method == "noise_scale" then
local log = path.join(settings.model_dir,
("noise%d_scale%.1f_best.%d-%d.png"):format(settings.noise_level,
settings.scale,
epoch, i))
save_test_scale(model, test_image, log)
elseif settings.method == "user" then
local log = path.join(settings.model_dir,
("%s_best.%d-%d.png"):format(settings.name,
epoch, i))
save_test_user(model, test_image, log)
end
else
torch.save(settings.model_file, model:clearState(), "ascii")
if settings.method == "noise" then
local log = path.join(settings.model_dir,
("noise%d_best.png"):format(settings.noise_level))
save_test_jpeg(model, test_image, log)
elseif settings.method == "scale" then
local log = path.join(settings.model_dir,
("scale%.1f_best.png"):format(settings.scale))
save_test_scale(model, test_image, log)
elseif settings.method == "noise_scale" then
local log = path.join(settings.model_dir,
("noise%d_scale%.1f_best.png"):format(settings.noise_level,
settings.scale))
save_test_scale(model, test_image, log)
elseif settings.method == "user" then
local log = path.join(settings.model_dir,
("%s_best.png"):format(settings.name))
save_test_user(model, test_image, log)
end
end
end
print("Batch-wise PSNR: " .. score.PSNR .. ", loss: " .. score.loss .. ", MSE: " .. score.MSE .. ", Minimum MSE: " .. best_score)
collectgarbage()
end
end
end
if settings.gpu > 0 then
cutorch.setDevice(settings.gpu)
end
torch.manualSeed(settings.seed)
cutorch.manualSeed(settings.seed)
print(settings)
train()