Data source: ImageNet
Image resolution: 709 x 510
Model | Parameters | Python API |
---|---|---|
densenet-121-tf | - | - |
efficientnet-b0 | - | - |
googlenet-v1-tf | - | - |
googlenet-v2-tf | - | - |
googlenet-v3 | - | - |
googlenet-v4-tf | - | - |
inception-resnet-v2-tf | Channel order is RGB. Mean values - [127.5, 127.5, 127.5], scale value - 127.5. |
9.1747866 Granny Smith 4.0729303 pomegranate 3.7423978 orange 3.7375512 bell pepper 3.6937847 piggy bank, penny bank |
mixnet-l | - | - |
mobilenet-v1-1.0-224-tf | Channel order is RGB. Mean values - [127.5, 127.5, 127.5], scale value - 127.5. |
0.1775393 necklace 0.1625960 saltshaker, salt shaker 0.0680758 pitcher, ewer 0.0600448 syringe 0.0574061 Granny Smith |
mobilenet-v2-1.0-224 | Channel order is RGB. Mean values - [127.5, 127.5, 127.5], scale value - 127.5. |
0.8931151 Granny Smith 0.0335338 piggy bank, penny bank 0.0027360 saltshaker, salt shaker 0.0021255 vase 0.0016607 pitcher, ewer |
mobilenet-v2-1.4-224 | Channel order is RGB. Mean values - [127.5, 127.5, 127.5], scale value - 127.5. |
0.7240402 Granny Smith 0.0312107 vase 0.0237109 fig 0.0122461 piggy bank, penny bank 0.0118888 saltshaker, salt shaker |
mobilenet-v3-small-1.0-224-tf | - | - |
mobilenet-v3-large-1.0-224-tf | - | - |
resnet-50-tf | Channel order is RGB. Mean values - [123.68, 116.78, 103.94] |
0.9553044 Granny Smith 0.0052123 lemon 0.0047184 piggy bank, penny bank 0.0045875 orange 0.0044232 necklace |
Data source: ImageNet
Image resolution: 500 x 500
Model | Parameters | Python API |
---|---|---|
densenet-121-tf | - | - |
efficientnet-b0 | - | - |
googlenet-v1-tf | - | - |
googlenet-v2-tf | - | - |
googlenet-v3 | - | - |
googlenet-v4-tf | - | - |
inception-resnet-v2-tf | Channel order is RGB. Mean values - [127.5, 127.5, 127.5], scale value - 127.5. |
10.2994785 junco, snowbird 5.9667974 brambling, Fringilla montifringilla 3.8809638 indigo bunting, indigo finch, indigo bird, Passerina cyanea 3.7881403 house finch, linnet, Carpodacus mexicanus 3.4699843 goldfinch, Carduelis carduelis |
mixnet-l | - | - |
mobilenet-v1-1.0-224-tf | Channel order is RGB. Mean values - [127.5, 127.5, 127.5], scale value - 127.5. |
0.9818491 junco, snowbird 0.0097170 house finch, linnet, Carpodacus mexicanus 0.0029993 brambling, Fringilla montifringilla 0.0022394 goldfinch, Carduelis carduelis 0.0022212 chickadee |
mobilenet-v2-1.0-224 | Channel order is RGB. Mean values - [127.5, 127.5, 127.5], scale value - 127.5. |
0.8770270 junco, snowbird 0.0143872 water ouzel, dipper 0.0103318 chickadee 0.0063065 brambling, Fringilla montifringilla 0.0013868 red-backed sandpiper, dunlin, Erolia alpina |
mobilenet-v2-1.4-224 | Channel order is RGB. Mean values - [127.5, 127.5, 127.5], scale value - 127.5. |
0.6637316 junco, snowbird 0.0811651 chickadee 0.0119593 water ouzel, dipper 0.0038528 brambling, Fringilla montifringilla 0.0022498 goldfinch, Carduelis carduelis |
mobilenet-v3-small-1.0-224-tf | - | - |
mobilenet-v3-large-1.0-224-tf | - | - |
resnet-50-tf | Channel order is RGB. Mean values - [123.68, 116.78, 103.94] |
0.9983400 junco, snowbird 0.0004680 brambling, Fringilla montifringilla 0.0003848 chickadee 0.0003656 water ouzel, dipper 0.0003383 goldfinch, Carduelis carduelis |
Data source: ImageNet
Image resolution: 333 x 500
Model | Parameters | Python API |
---|---|---|
densenet-121-tf | - | - |
efficientnet-b0 | - | - |
googlenet-v1-tf | - | - |
googlenet-v2-tf | - | - |
googlenet-v3 | - | - |
googlenet-v4-tf | - | - |
inception-resnet-v2-tf | Channel order is RGB. Mean values - [127.5, 127.5, 127.5], scale value - 127.5. |
6.6930799 fireboat 6.1025167 breakwater, groin, groyne, mole, bulwark, seawall, jetty 6.0896273 lifeboat 5.7389712 container ship, containership, container vessel 5.4940562 dock, dockage, docking facility |
mixnet-l | - | - |
mobilenet-v1-1.0-224-tf | Channel order is RGB. Mean values - [127.5, 127.5, 127.5], scale value - 127.5. |
0.3759801 liner, ocean liner 0.1252522 lifeboat 0.1200093 breakwater, groin, groyne, mole, bulwark, seawall, jetty 0.0882490 beacon, lighthouse, beacon light, pharos 0.0568063 fireboat |
mobilenet-v2-1.0-224 | Channel order is RGB. Mean values - [127.5, 127.5, 127.5], scale value - 127.5. |
0.1885883 beacon, lighthouse, beacon light, pharos 0.1434043 liner, ocean liner 0.0768170 breakwater, groin, groyne, mole, bulwark, seawall, jetty 0.0497303 drilling platform, offshore rig 0.0225758 container ship, containership, container vessel |
mobilenet-v2-1.4-224 | Channel order is RGB. Mean values - [127.5, 127.5, 127.5], scale value - 127.5. |
0.1300134 container ship, containership, container vessel 0.0765783 lifeboat 0.0406071 dock, dockage, docking facility 0.0393021 drilling platform, offshore rig 0.0381023 liner, ocean liner |
mobilenet-v3-small-1.0-224-tf | Channel order is RGB. | - |
mobilenet-v3-large-1.0-224-tf | Channel order is RGB. | - |
resnet-50-tf | Channel order is RGB. Mean values - [123.68, 116.78, 103.94] |
0.2357705 breakwater, groin, groyne, mole, bulwark, seawall, jetty 0.1480758 liner, ocean liner 0.1104694 container ship, containership, container vessel 0.1095414 drilling platform, offshore rig 0.0915567 beacon, lighthouse, beacon light, pharos |
Data source: ImageNet
Image resolution: 709 x 510
Bounding boxes (upper left and bottom right corners):(55, 155), (236, 375)
(190, 190), (380, 400)
(374, 209), (588, 422)
(289, 111), (440, 255)
(435, 160), (615, 310)
Model | Python API |
---|---|
ctpn | - |
efficientdet-d0 | - |
efficientdet-d1 | - |
faster_rcnn_inception_resnet_v2_atrous_coco | - |
faster_rcnn_resnet50_coco | - |
retinanet | - |
rfcn-resnet101-coco | - |
ssd_mobilenet_v1_coco | - |
ssd_mobilenet_v1_fpn_coco | - |
ssdlite_mobilenet_v2 | - |
Data source: ImageNet
Image resolution: 500 x 500
Bounding box (upper left and bottom right corners):(117, 86), (365, 465)
Model | Python API |
---|---|
ctpn | - |
efficientdet-d0 | - |
efficientdet-d1 | - |
faster_rcnn_inception_resnet_v2_atrous_coco | - |
faster_rcnn_resnet50_coco | - |
retinanet | - |
rfcn-resnet101-coco | - |
ssd_mobilenet_v1_coco | - |
ssd_mobilenet_v1_fpn_coco | - |
ssdlite_mobilenet_v2 | - |
Data source: ImageNet
Image resolution: 333 x 500
Bounding box (upper left and bottom right corners):(82, 262), (269, 376)
Model | Python API |
---|---|
ctpn | - |
efficientdet-d0 | - |
efficientdet-d1 | - |
faster_rcnn_inception_resnet_v2_atrous_coco | - |
faster_rcnn_resnet50_coco | - |
retinanet | - |
rfcn-resnet101-coco | - |
ssd_mobilenet_v1_coco | - |
ssd_mobilenet_v1_fpn_coco | - |
ssdlite_mobilenet_v2 | - |
Data source: MS COCO
Image resolution: 640 x 480
Bounding boxes (upper left and bottom right corners):TV (110, 41), (397, 304)
MOUSE (508, 337), (559, 374)
KEYBOARD (241, 342), (496, 461)
Model | Python API |
---|---|
ctpn | - |
efficientdet-d0 | - |
efficientdet-d1 | - |
faster_rcnn_inception_resnet_v2_atrous_coco | - |
faster_rcnn_resnet50_coco | - |
retinanet | - |
rfcn-resnet101-coco | - |
ssd_mobilenet_v1_coco | - |
ssd_mobilenet_v1_fpn_coco | - |
ssdlite_mobilenet_v2 | - |
Data source: Pascal VOC
Image resolution: 500 x 375
Bounding box (upper left and bottom right corners):AEROPLANE (131, 21), (248, 414)
Model | Python API |
---|---|
ctpn | - |
efficientdet-d0 | - |
efficientdet-d1 | - |
faster_rcnn_inception_resnet_v2_atrous_coco | - |
faster_rcnn_resnet50_coco | - |
retinanet | - |
rfcn-resnet101-coco | - |
ssd_mobilenet_v1_coco | - |
ssd_mobilenet_v1_fpn_coco | - |
ssdlite_mobilenet_v2 | - |
Data source: MS COCO
Image resolution: 640 x 427
Bounding boxes (upper left and bottom right corners):
PERSON (86, 84), (394, 188)
HORSE (44, 108), (397, 565)
Model | Python API |
---|---|
ctpn | - |
efficientdet-d0 | - |
efficientdet-d1 | - |
faster_rcnn_inception_resnet_v2_atrous_coco | - |
faster_rcnn_resnet50_coco | - |
retinanet | - |
rfcn-resnet101-coco | - |
ssd_mobilenet_v1_coco | - |
ssd_mobilenet_v1_fpn_coco | - |
ssdlite_mobilenet_v2 | - |
Data source: -
Image resolution: -
Image: -
Segmented images are identical.
Model | Python API |
---|---|
deeplabv3 | - |
Data source: MS COCO
Image resolution: 640 x 480
Image:
Segmented images are identical.
Model | Python API |
---|---|
mask_rcnn_resnet50_atrous_coco | - |
mask_rcnn_inception_resnet_v2_atrous_coco | - |
Color map: