forked from foamliu/Deep-Image-Matting
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_encoder_decoder.py
90 lines (77 loc) · 3.73 KB
/
train_encoder_decoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import argparse
import keras
import tensorflow as tf
from keras.callbacks import ModelCheckpoint, EarlyStopping, ReduceLROnPlateau
from keras.utils import multi_gpu_model
import migrate
from config import patience, batch_size, epochs, num_train_samples, num_valid_samples
from data_generator import train_gen, valid_gen
from model import build_encoder_decoder
from utils import overall_loss, get_available_cpus, get_available_gpus
if __name__ == '__main__':
# Parse arguments
ap = argparse.ArgumentParser()
ap.add_argument("-c", "--checkpoint", help="path to save checkpoint model files")
ap.add_argument("-p", "--pretrained", help="path to save pretrained model files")
args = vars(ap.parse_args())
checkpoint_path = args["checkpoint"]
pretrained_path = args["pretrained"]
if checkpoint_path is None:
checkpoint_models_path = 'models/'
else:
# python train_encoder_decoder.py -c /mnt/Deep-Image-Matting/models/
checkpoint_models_path = '{}/'.format(checkpoint_path)
# Callbacks
tensor_board = keras.callbacks.TensorBoard(log_dir='./logs', histogram_freq=0, write_graph=True, write_images=True)
model_names = checkpoint_models_path + 'model.{epoch:02d}-{val_loss:.4f}.hdf5'
model_checkpoint = ModelCheckpoint(model_names, monitor='val_loss', verbose=1, save_best_only=True)
early_stop = EarlyStopping('val_loss', patience=patience)
reduce_lr = ReduceLROnPlateau('val_loss', factor=0.1, patience=int(patience / 4), verbose=1)
class MyCbk(keras.callbacks.Callback):
def __init__(self, model):
keras.callbacks.Callback.__init__(self)
self.model_to_save = model
def on_epoch_end(self, epoch, logs=None):
fmt = checkpoint_models_path + 'model.%02d-%.4f.hdf5'
self.model_to_save.save(fmt % (epoch, logs['val_loss']))
# Load our model, added support for Multi-GPUs
num_gpu = len(get_available_gpus())
if num_gpu >= 2:
with tf.device("/cpu:0"):
if pretrained_path is not None:
model = build_encoder_decoder()
model.load_weights(pretrained_path)
else:
model = build_encoder_decoder()
migrate.migrate_model(model)
new_model = multi_gpu_model(model, gpus=num_gpu)
# rewrite the callback: saving through the original model and not the multi-gpu model.
model_checkpoint = MyCbk(model)
else:
if pretrained_path is not None:
new_model = build_encoder_decoder()
new_model.load_weights(pretrained_path)
else:
new_model = build_encoder_decoder()
migrate.migrate_model(new_model)
# sgd = SGD(lr=1e-3, decay=1e-6, momentum=0.9, nesterov=True)
new_model.compile(optimizer='nadam', loss=overall_loss)
print(new_model.summary())
# Summarize then go!
num_cpu = get_available_cpus()
workers = int(round(num_cpu / 2))
print('num_gpu={}\nnum_cpu={}\nworkers={}\ntrained_models_path={}.'.format(num_gpu, num_cpu, workers,
checkpoint_models_path))
# Final callbacks
callbacks = [tensor_board, model_checkpoint, early_stop, reduce_lr]
# Start Fine-tuning
new_model.fit_generator(train_gen(),
steps_per_epoch=num_train_samples // batch_size,
validation_data=valid_gen(),
validation_steps=num_valid_samples // batch_size,
epochs=epochs,
verbose=1,
callbacks=callbacks,
use_multiprocessing=True,
workers=workers
)