-
Notifications
You must be signed in to change notification settings - Fork 3
/
BPS_analytics.pig
executable file
·54 lines (41 loc) · 1.77 KB
/
BPS_analytics.pig
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
-- invoke with two arguments, the input file , and the output file. -input /bps/gen -output /bps/analytics
-- FYI...
-- If you run into errors, you can see them in
-- ./target/failsafe-reports/TEST-org.bigtop.bigpetstore.integration.BigPetStorePigIT.xml
-- First , we load data in from a file, as tuples.
-- in pig, relations like tables in a relational database
-- so each relation is just a bunch of tuples.
-- in this case csvdata will be a relation,
-- where each tuple is a single petstore transaction.
csvdata =
LOAD '$input' using PigStorage()
AS (
dump:chararray,
state:chararray,
transaction:int,
fname:chararray,
lname:chararray,
date:chararray,
price:float,
product:chararray);
-- RESULT:
-- (BigPetStore,storeCode_AK,1,jay,guy,Thu Dec 18 12:17:10 EST 1969,10.5,dog-food)
-- ...
-- Okay! Now lets group our data so we can do some stats.
-- lets create a new relation,
-- where each tuple will contain all transactions for a product in a state.
state_product = group csvdata by ( state, product ) ;
-- RESULT
-- ((storeCode_AK,dog-food) , {(BigPetStore,storeCode_AK,1,jay,guy,Thu Dec 18 12:17:10 EST 1969,10.5,dog-food)}) --
-- ...
-- Okay now lets make some summary stats so that the boss man can
-- decide which products are hottest in which states.
-- Note that for the "groups", we tease out each individual field here for formatting with
-- the BigPetStore visualization app.
summary1 = FOREACH state_product generate STRSPLIT(group.state,'_').$1 as sp, group.product, COUNT($1);
-- Okay, the stats look like this. Lets clean them up.
-- (storeCode_AK,cat-food) 2530
-- (storeCode_AK,dog-food) 2540
-- (storeCode_AK,fuzzy-collar) 2495
dump summary1;
store summary1 into '$output';