diff --git a/CHANGELOG.md b/CHANGELOG.md index df616303..cd40ee7f 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -2,6 +2,51 @@ +## v4.3.0 (2024-11-10) + +### Chore + +* chore: updating training docs with tips / jumprelu (#366) + +* chore: updating training docs with tips / jumprelu + +* fixing missing space char ([`f739500`](https://github.com/jbloomAus/SAELens/commit/f73950052fe96e4cd07453b3393722b3f0c5da62)) + +### Feature + +* feat: Support arbitrary huggingface causal LM models (#226) + +* adding load_model helper for huggingface causal LM models + +* polishing huggingface integration + +* adding more tests + +* updating docs + +* tweaking docstrings + +* perf fix: dont calculate loss by default + +* better handling of HF tuple outputs + +* fixing test + +* changes from CR + +* fixing default model params for huggingface models + +* move hf model to device on load ([`044d4be`](https://github.com/jbloomAus/SAELens/commit/044d4be8b75f487da6f278adda657a6dcb7dbe7c)) + +### Performance + +* perf: faster cleanup of datasets when caching activations (#367) + +previously I used dataset.save_to_disk to write the final dataset, but +this can be slow. Instead I manually move the shards to the standard hf +format which allows us not to resave the entire dataset ([`a3663b7`](https://github.com/jbloomAus/SAELens/commit/a3663b79b4889f58e402790afb5701879392279c)) + + ## v4.2.0 (2024-11-09) ### Chore diff --git a/pyproject.toml b/pyproject.toml index 8c92569b..70013ab8 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -1,6 +1,6 @@ [tool.poetry] name = "sae-lens" -version = "4.2.0" +version = "4.3.0" description = "Training and Analyzing Sparse Autoencoders (SAEs)" authors = ["Joseph Bloom"] readme = "README.md" diff --git a/sae_lens/__init__.py b/sae_lens/__init__.py index 1c8c633a..0b068c21 100644 --- a/sae_lens/__init__.py +++ b/sae_lens/__init__.py @@ -1,4 +1,4 @@ -__version__ = "4.2.0" +__version__ = "4.3.0" from .analysis.hooked_sae_transformer import HookedSAETransformer