-
Notifications
You must be signed in to change notification settings - Fork 1
/
case.scad
215 lines (184 loc) · 7.29 KB
/
case.scad
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
$fn = 64;
$fs = 0.5;
// the case consists of two parts: box + shelf
// - the box includes mounting points for the arduino and switch. it slots onto the shelf but can be removed.
// - the shelf is fastened to the wall and supports the box.
//
// the two part designs simplifies installation and removing the arduino portion as needed for re-flashing, etc
//
// this file handles both parts of the case via a flag (part)
// part == 0 -> for development, render both with the shelf grayed out
// part == 1 -> render the box only
// part == 2 -> render the shelf only after flipping it for ease of printing
//
// a batch script automatically runs the part == 1/2 conditions to export stl files
//
// all dimensions are in mm
//
// notes
// 1) some cutouts are intentionally oversized so that they render properly with CGAL (quick preview)
// they do not impact the output geometry at all
//
// 2) there is an adjustable parameter (epsInterference) that can increased to make the two pieces fit more loosely
// small offset to reduce interference as needed
epsInterference = 0.15;
// overall case dimensions
w_case = 100;
l_case = 120;
t_case = 40;
// xy offset and diameter of circular cutout for switch
x_switchMount = 80;
y_switchMount= 50;
d_switchMount = 12 + 2*epsInterference;
// xy offset of board mount from case corner
x_boardMount = 12;
y_boardMount = 35;
// board mount details
d_boardSpacer = 8;
t_boardSpacer = 3; // board is 1.5mm thick, so use up to M3x4 or longer if using washers
d_boardScrew = 3;
// board mount hole spacing
w_boardMounts = 44.6;
l_boardMounts = 66.5;
// cavity parameters
t_caseBase = 4; // thickness of base
t_caseWall = 4; // thickness of lateral walls
t_caseHalfWall = 13; // height of half wall to stabilize but not block micro usb
// dimensions of wall mount
t_wallMountLedge = 4;
w_wallMountLedge = 10;
d_wallMounts = 4; // diameter of mounting hole
// slot dimensions
x_slotInset = 20;
w_slot = 4;
w_slotGrip = 3*w_slot;
t_slot = t_case/2;
// render
part = 0;
if (part == 1) {
box();
} else if (part == 2) {
mirror([0,0,1])
wallMount();
} else {
box();
%wallMount();
}
// box to hold the arduino and switch
module box() {
union() {
difference() {
// case cube
roundedcube([w_case, l_case, t_case]);
// switch labels
translate([x_switchMount - d_switchMount, y_switchMount + d_switchMount, -0.3])
mirror([1,0,0])
linear_extrude(height = 0.6)
text("ON", size = 5, font="Helvetica:style=Bold", valign="center");
translate([x_switchMount - d_switchMount, y_switchMount, -0.3])
mirror([1,0,0])
linear_extrude(height = 0.6)
text("PURPLE AIR", size = 5, font="Helvetica:style=Bold", valign="center");
translate([x_switchMount - d_switchMount, y_switchMount - d_switchMount, -0.3])
mirror([1,0,0])
linear_extrude(height = 0.6)
text("OFF", size = 5, font="Helvetica:style=Bold", valign="center");
// cavity
translate([t_caseWall, t_caseWall, t_caseBase])
roundedcube([w_case - 2*t_caseWall, l_case - 2*t_caseWall, t_case]);
// half wall for wires
translate([t_caseWall, 2*t_caseWall, t_caseBase + t_caseHalfWall])
cube([w_case - 2*t_caseWall, l_case, t_case-t_caseHalfWall]);
// switch mount
translate([x_switchMount, y_switchMount, -t_case/2])
cylinder(h = t_case, d = d_switchMount);
// half thickness slots
for (dx = [0, w_case-2*x_slotInset-t_caseWall]) {
translate([dx + x_slotInset, -t_caseWall, t_case - t_slot])
cube([w_slot, 3*t_caseWall, 2*t_slot]);
}
}
// build up board standoffs
for (dx = [0:1]) {
for (dy = [0:1]) {
translate([x_boardMount + dx*w_boardMounts, y_boardMount + dy*l_boardMounts, t_caseBase])
difference() {
cylinder(h = t_boardSpacer, d = d_boardSpacer);
cylinder(h = 2*t_boardSpacer, d = d_boardScrew);
}
}
}
}
}
// stationary portion that mounts to the wall or other surface
module wallMount() {
difference() {
union() {
// full thickness ledge
translate([0, -t_caseWall, 0])
roundedcube([w_case, t_caseWall, t_case]);
// thin wall mount
translate([0, -w_wallMountLedge-t_caseWall, t_case - t_wallMountLedge])
roundedcube([w_case, t_caseWall + w_wallMountLedge, t_wallMountLedge]);
// half thickness slot
for (dx = [0, w_case-2*x_slotInset-t_caseWall]) {
// slot
translate([dx + x_slotInset + epsInterference, 0, t_case - t_slot + epsInterference])
cube([w_slot - 2*epsInterference, t_caseWall + 2*epsInterference, t_slot - epsInterference]);
// grip (rounded)
translate([dx + x_slotInset + epsInterference + w_slot/2 - w_slotGrip/2 - epsInterference, t_caseWall + 2*epsInterference, t_case - t_slot + epsInterference])
roundedcube([w_slotGrip, t_caseWall + 2*epsInterference, t_slot - epsInterference]);
}
}
// screw holes
for (dx = [0, w_case-w_wallMountLedge]) {
translate([dx+w_wallMountLedge/2, -t_caseWall-w_wallMountLedge/2, 0])
cylinder(h = 2*t_case, d = d_wallMounts);
}
}
}
module roundedcube(size = [1, 1, 1], center = false, radius = 1, apply_to = "z") {
// If single value, convert to [x, y, z] vector
size = (size[0] == undef) ? [size, size, size] : size;
translate_min = radius;
translate_xmax = size[0] - radius;
translate_ymax = size[1] - radius;
translate_zmax = size[2] - radius;
diameter = radius * 2;
obj_translate = (center == false) ?
[0, 0, 0] : [
-(size[0] / 2),
-(size[1] / 2),
-(size[2] / 2)
];
translate(v = obj_translate) {
hull() {
for (translate_x = [translate_min, translate_xmax]) {
x_at = (translate_x == translate_min) ? "min" : "max";
for (translate_y = [translate_min, translate_ymax]) {
y_at = (translate_y == translate_min) ? "min" : "max";
for (translate_z = [translate_min, translate_zmax]) {
z_at = (translate_z == translate_min) ? "min" : "max";
translate(v = [translate_x, translate_y, translate_z])
if (
(apply_to == "all") ||
(apply_to == "xmin" && x_at == "min") || (apply_to == "xmax" && x_at == "max") ||
(apply_to == "ymin" && y_at == "min") || (apply_to == "ymax" && y_at == "max") ||
(apply_to == "zmin" && z_at == "min") || (apply_to == "zmax" && z_at == "max")
) {
sphere(r = radius);
} else {
rotate =
(apply_to == "xmin" || apply_to == "xmax" || apply_to == "x") ? [0, 90, 0] : (
(apply_to == "ymin" || apply_to == "ymax" || apply_to == "y") ? [90, 90, 0] :
[0, 0, 0]
);
rotate(a = rotate)
cylinder(h = diameter, r = radius, center = true);
}
}
}
}
}
}
}