-
Notifications
You must be signed in to change notification settings - Fork 21
/
engine_v3.py
219 lines (180 loc) · 6.8 KB
/
engine_v3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import torch
import numpy as np
from utils.functions import evaluation
from utils.re_ranking import re_ranking, re_ranking_gpu
try:
import wandb
except ImportError:
wandb = None
class Engine:
def __init__(self, args, model, optimizer, scheduler, loss, loader, ckpt):
self.args = args
self.train_loader = loader.train_loader
self.test_loader = loader.test_loader
self.query_loader = loader.query_loader
self.testset = loader.galleryset
self.queryset = loader.queryset
self.ckpt = ckpt
self.model = model
self.optimizer = optimizer
self.scheduler = scheduler
self.loss = loss
self.lr = 0.0
self.device = torch.device("cpu" if args.cpu else "cuda")
if torch.cuda.is_available():
self.ckpt.write_log("[INFO] GPU: " + torch.cuda.get_device_name(0))
self.ckpt.write_log(
"[INFO] Starting from epoch {}".format(self.scheduler.last_epoch + 1)
)
if args.wandb and wandb is not None:
self.wandb = True
wandb.init(project=args.wandb_name)
else:
self.wandb = False
def train(self):
epoch = self.scheduler.last_epoch
lr = self.scheduler.get_last_lr()[0]
if lr != self.lr:
self.ckpt.write_log(
"[INFO] Epoch: {}\tLearning rate: {:.2e} ".format(epoch + 1, lr)
)
self.lr = lr
self.loss.start_log()
self.model.train()
for batch, d in enumerate(self.train_loader):
inputs, labels = self._parse_data_for_train(d)
inputs = inputs.to(self.device)
labels = labels.to(self.device)
self.optimizer.zero_grad()
outputs = self.model(inputs)
loss = self.loss.compute(outputs, labels)
loss.backward()
self.optimizer.step()
self.ckpt.write_log(
"\r[INFO] [{}/{}]\t{}/{}\t{}".format(
epoch + 1,
self.args.epochs,
batch + 1,
len(self.train_loader),
self.loss.display_loss(batch),
),
end="" if batch + 1 != len(self.train_loader) else "\n",
)
if self.wandb is True and wandb is not None:
wandb.log(self.loss.get_loss_dict(batch))
self.scheduler.step()
self.loss.end_log(len(self.train_loader))
# self._save_checkpoint(epoch, 0., self.ckpt.dir, is_best=True)
def test(self):
epoch = self.scheduler.last_epoch
self.ckpt.write_log("\n[INFO] Test:")
self.model.eval()
self.ckpt.add_log(torch.zeros(1, 6))
with torch.no_grad():
qf, query_ids, query_cams = self.extract_feature(
self.query_loader, self.args
)
gf, gallery_ids, gallery_cams = self.extract_feature(
self.test_loader, self.args
)
if self.args.re_rank:
# q_g_dist = np.dot(qf, np.transpose(gf))
# q_q_dist = np.dot(qf, np.transpose(qf))
# g_g_dist = np.dot(gf, np.transpose(gf))
# dist = re_ranking(q_g_dist, q_q_dist, g_g_dist)
dist = re_ranking_gpu(qf, gf, 20, 6, 0.3)
else:
# cosine distance
dist = 1 - torch.mm(qf, gf.t()).cpu().numpy()
r, m_ap = evaluation(dist, query_ids, gallery_ids, query_cams, gallery_cams, 50)
self.ckpt.log[-1, 0] = epoch
self.ckpt.log[-1, 1] = m_ap
self.ckpt.log[-1, 2] = r[0]
self.ckpt.log[-1, 3] = r[2]
self.ckpt.log[-1, 4] = r[4]
self.ckpt.log[-1, 5] = r[9]
best = self.ckpt.log.max(0)
self.ckpt.write_log(
"[INFO] mAP: {:.4f} rank1: {:.4f} rank3: {:.4f} rank5: {:.4f} rank10: {:.4f} (Best: {:.4f} @epoch {})".format(
m_ap, r[0], r[2], r[4], r[9], best[0][1], self.ckpt.log[best[1][1], 0]
),
refresh=True,
)
if not self.args.test_only:
self._save_checkpoint(
epoch,
r[0],
self.ckpt.dir,
is_best=(self.ckpt.log[best[1][1], 0] == epoch),
)
self.ckpt.plot_map_rank(epoch)
if self.wandb is True and wandb is not None:
wandb.log(
{
"mAP": m_ap,
"rank1": r[0],
"rank3": r[2],
"rank5": r[4],
"rank10": r[9],
}
)
def fliphor(self, inputs):
inv_idx = torch.arange(inputs.size(3) - 1, -1, -1).long() # N x C x H x W
return inputs.index_select(3, inv_idx)
def extract_feature(self, loader, args):
features = torch.FloatTensor()
pids, camids = [], []
for d in loader:
inputs, pid, camid = self._parse_data_for_eval(d)
input_img = inputs.to(self.device)
outputs = self.model(input_img)
f1 = outputs.data.cpu()
# flip
inputs = inputs.index_select(3, torch.arange(inputs.size(3) - 1, -1, -1))
input_img = inputs.to(self.device)
outputs = self.model(input_img)
f2 = outputs.data.cpu()
ff = f1 + f2
if ff.dim() == 3:
fnorm = torch.norm(
ff, p=2, dim=1, keepdim=True
) # * np.sqrt(ff.shape[2])
ff = ff.div(fnorm.expand_as(ff))
ff = ff.view(ff.size(0), -1)
else:
fnorm = torch.norm(ff, p=2, dim=1, keepdim=True)
ff = ff.div(fnorm.expand_as(ff))
features = torch.cat((features, ff), 0)
pids.extend(pid)
camids.extend(camid)
return features, np.asarray(pids), np.asarray(camids)
def terminate(self):
if self.args.test_only:
self.test()
return True
else:
epoch = self.scheduler.last_epoch + 1
return epoch > self.args.epochs
# tools for reid datamanager data_v2
def _parse_data_for_train(self, data):
imgs = data[0]
pids = data[1]
return imgs, pids
def _parse_data_for_eval(self, data):
imgs = data[0]
pids = data[1]
camids = data[2]
return imgs, pids, camids
def _save_checkpoint(self, epoch, rank1, save_dir, is_best=False):
self.ckpt.save_checkpoint(
{
"state_dict": self.model.state_dict(),
"epoch": epoch,
"rank1": rank1,
"optimizer": self.optimizer.state_dict(),
"log": self.ckpt.log,
# 'scheduler': self.scheduler.state_dict(),
},
save_dir,
is_best=is_best,
)