forked from gpleiss/temperature_scaling
-
Notifications
You must be signed in to change notification settings - Fork 0
/
demo.py
87 lines (72 loc) · 3.32 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import fire
import os
import torch
import torchvision as tv
from torch.utils.data.sampler import SubsetRandomSampler
from models import DenseNet
from temperature_scaling import ModelWithTemperature
def demo(data, save, depth=40, growth_rate=12, batch_size=256):
"""
Applies temperature scaling to a trained model.
Takes a pretrained DenseNet-CIFAR100 model, and a validation set
(parameterized by indices on train set).
Applies temperature scaling, and saves a temperature scaled version.
NB: the "save" parameter references a DIRECTORY, not a file.
In that directory, there should be two files:
- model.pth (model state dict)
- valid_indices.pth (a list of indices corresponding to the validation set).
data (str) - path to directory where data should be loaded from/downloaded
save (str) - directory with necessary files (see above)
"""
# Load model state dict
model_filename = os.path.join(save, 'model.pth')
if not os.path.exists(model_filename):
raise RuntimeError('Cannot find file %s to load' % model_filename)
state_dict = torch.load(model_filename)
# Load validation indices
valid_indices_filename = os.path.join(save, 'valid_indices.pth')
if not os.path.exists(valid_indices_filename):
raise RuntimeError('Cannot find file %s to load' % valid_indices_filename)
valid_indices = torch.load(valid_indices_filename)
# Regenerate validation set loader
mean = [0.5071, 0.4867, 0.4408]
stdv = [0.2675, 0.2565, 0.2761]
test_transforms = tv.transforms.Compose([
tv.transforms.ToTensor(),
tv.transforms.Normalize(mean=mean, std=stdv),
])
valid_set = tv.datasets.CIFAR100(data, train=True, transform=test_transforms, download=True)
valid_loader = torch.utils.data.DataLoader(valid_set, pin_memory=True, batch_size=batch_size,
sampler=SubsetRandomSampler(valid_indices))
# Load original model
if (depth - 4) % 3:
raise Exception('Invalid depth')
block_config = [(depth - 4) // 6 for _ in range(3)]
orig_model = DenseNet(
growth_rate=growth_rate,
block_config=block_config,
num_classes=100
).cuda()
orig_model.load_state_dict(state_dict)
# Now we're going to wrap the model with a decorator that adds temperature scaling
model = ModelWithTemperature(orig_model)
# Tune the model temperature, and save the results
model.set_temperature(valid_loader)
model_filename = os.path.join(save, 'model_with_temperature.pth')
torch.save(model.state_dict(), model_filename)
print('Temperature scaled model sved to %s' % model_filename)
print('Done!')
if __name__ == '__main__':
"""
Applies temperature scaling to a trained model.
Takes a pretrained DenseNet-CIFAR100 model, and a validation set
(parameterized by indices on train set).
Applies temperature scaling, and saves a temperature scaled version.
NB: the "save" parameter references a DIRECTORY, not a file.
In that directory, there should be two files:
- model.pth (model state dict)
- valid_indices.pth (a list of indices corresponding to the validation set).
--data (str) - path to directory where data should be loaded from/downloaded
--save (str) - directory with necessary files (see above)
"""
fire.Fire(demo)