-
Notifications
You must be signed in to change notification settings - Fork 0
/
analysis_resnet_default.txt
138 lines (138 loc) · 8.32 KB
/
analysis_resnet_default.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
Loading data
Loading training data
Files already downloaded and verified
Took 1.0570392608642578
Loading validation data
Files already downloaded and verified
Creating data loaders
layer1.0.conv1.lut torch.Size([1])
layer1.0.conv1.thresholds torch.Size([1])
layer1.0.conv2.lut torch.Size([1])
layer1.0.conv2.thresholds torch.Size([1])
layer1.1.conv1.lut torch.Size([1])
layer1.1.conv1.thresholds torch.Size([1])
layer1.1.conv2.lut torch.Size([1])
layer1.1.conv2.thresholds torch.Size([1])
layer2.0.conv1.lut torch.Size([1])
layer2.0.conv1.thresholds torch.Size([1])
layer2.0.conv2.lut torch.Size([1])
layer2.0.conv2.thresholds torch.Size([1])
layer2.0.downsample.0.lut torch.Size([1])
layer2.0.downsample.0.thresholds torch.Size([1])
layer2.1.conv1.lut torch.Size([1])
layer2.1.conv1.thresholds torch.Size([1])
layer2.1.conv2.lut torch.Size([1])
layer2.1.conv2.thresholds torch.Size([1])
layer3.0.conv1.lut torch.Size([1])
layer3.0.conv1.thresholds torch.Size([1])
layer3.0.conv2.lut torch.Size([1])
layer3.0.conv2.thresholds torch.Size([1])
layer3.0.downsample.0.lut torch.Size([1])
layer3.0.downsample.0.thresholds torch.Size([1])
layer3.1.conv1.lut torch.Size([1])
layer3.1.conv1.thresholds torch.Size([1])
layer3.1.conv2.lut torch.Size([1])
layer3.1.conv2.thresholds torch.Size([1])
layer4.0.conv1.lut torch.Size([1])
layer4.0.conv1.thresholds torch.Size([1])
layer4.0.conv2.lut torch.Size([1])
layer4.0.conv2.thresholds torch.Size([1])
layer4.0.downsample.0.lut torch.Size([1])
layer4.0.downsample.0.thresholds torch.Size([1])
layer4.1.conv1.lut torch.Size([1])
layer4.1.conv1.thresholds torch.Size([1])
layer4.1.conv2.lut torch.Size([1])
layer4.1.conv2.thresholds torch.Size([1])
fc.lut torch.Size([1])
fc.thresholds torch.Size([1])
total params 40
==========================================================================================
Layer (type:depth-idx) Output Shape Param #
==========================================================================================
ResNet [1, 10] --
├─Conv2d: 1-1 [1, 64, 32, 32] 1,728
├─BatchNorm2d: 1-2 [1, 64, 32, 32] 128
├─ReLU: 1-3 [1, 64, 32, 32] --
├─Identity: 1-4 [1, 64, 32, 32] --
├─Sequential: 1-5 [1, 64, 32, 32] --
│ └─BasicBlock: 2-1 [1, 64, 32, 32] --
│ │ └─HalutConv2d: 3-1 [1, 64, 32, 32] 36,879
│ │ └─BatchNorm2d: 3-2 [1, 64, 32, 32] 128
│ │ └─ReLU: 3-3 [1, 64, 32, 32] --
│ │ └─HalutConv2d: 3-4 [1, 64, 32, 32] 36,879
│ │ └─BatchNorm2d: 3-5 [1, 64, 32, 32] 128
│ │ └─ReLU: 3-6 [1, 64, 32, 32] --
│ └─BasicBlock: 2-2 [1, 64, 32, 32] --
│ │ └─HalutConv2d: 3-7 [1, 64, 32, 32] 36,879
│ │ └─BatchNorm2d: 3-8 [1, 64, 32, 32] 128
│ │ └─ReLU: 3-9 [1, 64, 32, 32] --
│ │ └─HalutConv2d: 3-10 [1, 64, 32, 32] 36,879
│ │ └─BatchNorm2d: 3-11 [1, 64, 32, 32] 128
│ │ └─ReLU: 3-12 [1, 64, 32, 32] --
├─Sequential: 1-6 [1, 128, 16, 16] --
│ └─BasicBlock: 2-3 [1, 128, 16, 16] --
│ │ └─HalutConv2d: 3-13 [1, 128, 16, 16] 73,743
│ │ └─BatchNorm2d: 3-14 [1, 128, 16, 16] 256
│ │ └─ReLU: 3-15 [1, 128, 16, 16] --
│ │ └─HalutConv2d: 3-16 [1, 128, 16, 16] 147,471
│ │ └─BatchNorm2d: 3-17 [1, 128, 16, 16] 256
│ │ └─Sequential: 3-18 [1, 128, 16, 16] --
│ │ │ └─HalutConv2d: 4-1 [1, 128, 16, 16] 8,207
│ │ │ └─BatchNorm2d: 4-2 [1, 128, 16, 16] 256
│ │ └─ReLU: 3-19 [1, 128, 16, 16] --
│ └─BasicBlock: 2-4 [1, 128, 16, 16] --
│ │ └─HalutConv2d: 3-20 [1, 128, 16, 16] 147,471
│ │ └─BatchNorm2d: 3-21 [1, 128, 16, 16] 256
│ │ └─ReLU: 3-22 [1, 128, 16, 16] --
│ │ └─HalutConv2d: 3-23 [1, 128, 16, 16] 147,471
│ │ └─BatchNorm2d: 3-24 [1, 128, 16, 16] 256
│ │ └─ReLU: 3-25 [1, 128, 16, 16] --
├─Sequential: 1-7 [1, 256, 8, 8] --
│ └─BasicBlock: 2-5 [1, 256, 8, 8] --
│ │ └─HalutConv2d: 3-26 [1, 256, 8, 8] 294,927
│ │ └─BatchNorm2d: 3-27 [1, 256, 8, 8] 512
│ │ └─ReLU: 3-28 [1, 256, 8, 8] --
│ │ └─HalutConv2d: 3-29 [1, 256, 8, 8] 589,839
│ │ └─BatchNorm2d: 3-30 [1, 256, 8, 8] 512
│ │ └─Sequential: 3-31 [1, 256, 8, 8] --
│ │ │ └─HalutConv2d: 4-3 [1, 256, 8, 8] 32,783
│ │ │ └─BatchNorm2d: 4-4 [1, 256, 8, 8] 512
│ │ └─ReLU: 3-32 [1, 256, 8, 8] --
│ └─BasicBlock: 2-6 [1, 256, 8, 8] --
│ │ └─HalutConv2d: 3-33 [1, 256, 8, 8] 589,839
│ │ └─BatchNorm2d: 3-34 [1, 256, 8, 8] 512
│ │ └─ReLU: 3-35 [1, 256, 8, 8] --
│ │ └─HalutConv2d: 3-36 [1, 256, 8, 8] 589,839
│ │ └─BatchNorm2d: 3-37 [1, 256, 8, 8] 512
│ │ └─ReLU: 3-38 [1, 256, 8, 8] --
├─Sequential: 1-8 [1, 512, 4, 4] --
│ └─BasicBlock: 2-7 [1, 512, 4, 4] --
│ │ └─HalutConv2d: 3-39 [1, 512, 4, 4] 1,179,663
│ │ └─BatchNorm2d: 3-40 [1, 512, 4, 4] 1,024
│ │ └─ReLU: 3-41 [1, 512, 4, 4] --
│ │ └─HalutConv2d: 3-42 [1, 512, 4, 4] 2,359,311
│ │ └─BatchNorm2d: 3-43 [1, 512, 4, 4] 1,024
│ │ └─Sequential: 3-44 [1, 512, 4, 4] --
│ │ │ └─HalutConv2d: 4-5 [1, 512, 4, 4] 131,087
│ │ │ └─BatchNorm2d: 4-6 [1, 512, 4, 4] 1,024
│ │ └─ReLU: 3-45 [1, 512, 4, 4] --
│ └─BasicBlock: 2-8 [1, 512, 4, 4] --
│ │ └─HalutConv2d: 3-46 [1, 512, 4, 4] 2,359,311
│ │ └─BatchNorm2d: 3-47 [1, 512, 4, 4] 1,024
│ │ └─ReLU: 3-48 [1, 512, 4, 4] --
│ │ └─HalutConv2d: 3-49 [1, 512, 4, 4] 2,359,311
│ │ └─BatchNorm2d: 3-50 [1, 512, 4, 4] 1,024
│ │ └─ReLU: 3-51 [1, 512, 4, 4] --
├─AdaptiveAvgPool2d: 1-9 [1, 512, 1, 1] --
├─HalutLinear: 1-10 [1, 10] 5,145
==========================================================================================
Total params: 11,174,262
Trainable params: 11,173,962
Non-trainable params: 300
Total mult-adds (M): 555.43
==========================================================================================
Input size (MB): 0.01
Forward/backward pass size (MB): 9.83
Params size (MB): 44.70
Estimated Total Size (MB): 54.54
==========================================================================================