-
Notifications
You must be signed in to change notification settings - Fork 2
/
DEwithDriving force.nb
executable file
·549 lines (539 loc) · 25.2 KB
/
DEwithDriving force.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 8.0' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 157, 7]
NotebookDataLength[ 25012, 540]
NotebookOptionsPosition[ 24612, 522]
NotebookOutlinePosition[ 24955, 537]
CellTagsIndexPosition[ 24912, 534]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"Remove", "[", "\"\<Global`*\>\"", "]"}], ";"}], "\n",
RowBox[{
RowBox[{"soln1", "=",
RowBox[{"DSolve", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{"x1", "''"}], "[", "t", "]"}], "+",
RowBox[{"2", " ", "\[Beta]", " ",
RowBox[{
RowBox[{"x1", "'"}], "[", "t", "]"}]}], "+",
RowBox[{
RowBox[{"\[Omega]", "^", "2"}], " ",
RowBox[{"x1", "[", "t", "]"}]}]}], "\[Equal]", "a"}], ",",
RowBox[{
RowBox[{"x1", "[", "0", "]"}], "\[Equal]", "0"}], ",",
RowBox[{
RowBox[{
RowBox[{"x1", "'"}], "[", "0", "]"}], "\[Equal]", "0"}]}], "}"}],
",",
RowBox[{"x1", "[", "t", "]"}], ",", "t"}], "]"}]}], ";"}], "\n",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"x1", "[", "t_", "]"}], "=",
RowBox[{
RowBox[{"x1", "[", "t", "]"}], "/.", "soln1"}]}], ";"}], "\n",
RowBox[{"(*",
RowBox[{"Parameter", " ", "Block"}], "*)"}]}], "\n",
RowBox[{"\[Tau]", "=", "2"}], "\n",
RowBox[{
RowBox[{"a", "=",
RowBox[{"\[Beta]", "/", "\[Tau]"}]}], ";"}], "\n",
RowBox[{
RowBox[{"\[Omega]", "=", "1"}], ";"}], "\n",
RowBox[{
RowBox[{
RowBox[{"\[Beta]", "=",
RowBox[{
RowBox[{"Sqrt", "[", "5", "]"}], " ", "\[Omega]"}]}], ";"}], "\n",
RowBox[{"(*",
RowBox[{"**", "**", "**", "**"}], "*****)"}]}], "\n",
RowBox[{"soln2", "=",
RowBox[{"DSolve", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{"x2", "''"}], "[", "t", "]"}], "+",
RowBox[{"2", " ", "\[Beta]", " ",
RowBox[{
RowBox[{"x2", "'"}], "[", "t", "]"}]}], "+",
RowBox[{
RowBox[{"\[Omega]", "^", "2"}], " ",
RowBox[{"x2", "[", "t", "]"}]}]}], "\[Equal]", "0"}], ",",
RowBox[{
RowBox[{"x2", "[", "\[Tau]", "]"}], "\[Equal]",
RowBox[{"x1", "[", "\[Tau]", "]"}]}], ",",
RowBox[{
RowBox[{
RowBox[{"x2", "'"}], "[", "\[Tau]", "]"}], "\[Equal]",
RowBox[{
RowBox[{"x1", "'"}], "[", "\[Tau]", "]"}]}]}], "}"}], ",",
RowBox[{"x2", "[", "t", "]"}], ",", "t"}], "]"}]}], "\n",
RowBox[{
RowBox[{
RowBox[{"x2", "[", "t_", "]"}], "=",
RowBox[{
RowBox[{"x2", "[", "t", "]"}], "/.", "soln2"}]}], ";"}], "\n",
RowBox[{
RowBox[{
RowBox[{"plot1", "[", "\[Tau]_", "]"}], ":=",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"x1", "[", "t", "]"}], ",",
RowBox[{"{",
RowBox[{"t", ",", "0", ",", "\[Tau]"}], "}"}], ",",
RowBox[{"PlotStyle", "\[Rule]", "Red"}]}], "]"}]}],
RowBox[{"(*", "Driven", "*)"}]}], "\n",
RowBox[{
RowBox[{
RowBox[{"plot2", "[", "\[Tau]_", "]"}], ":=",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"x2", "[", "t", "]"}], ",",
RowBox[{"{",
RowBox[{"t", ",", "\[Tau]", ",",
RowBox[{"5", "\[Tau]"}]}], "}"}], ",",
RowBox[{"PlotStyle", "\[Rule]", "Blue"}]}], "]"}]}], " ",
RowBox[{"(*",
RowBox[{"Not", " ", "Driven"}], "*)"}]}], "\n",
RowBox[{"Show", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"plot1", "[", "1", "]"}], ",",
RowBox[{"plot2", "[", "1", "]"}], ",",
RowBox[{"plot1", "[", "2", "]"}], ",",
RowBox[{"plot2", "[", "2", "]"}]}], "}"}], ",",
RowBox[{"PlotRange", "\[Rule]", "All"}]}], "]"}]}], "Input",
CellChangeTimes->CompressedData["
1:eJwdz0EogwEAxfGPdjBGKCsZ2WRJK5S4LEZtMU3aQtlaJpuYmrKibGmaNoc5
zGGkOMhsk5pMkdHKqI1Q2AFRK41pSxmtTfK9HV6/26s/c0gjVmYTBFFGDso2
m7/upNE2+paZck86ke8rgJSevlIY0hO1UGVk8SCbUS2AQv62GDYt58lgo+BT
DotylcOwTsZXwcKG+Bh0J9Y1UL7B0cKnQ2PGYltKn/mJjMxCY3+vCQYnf62Q
J7StwFbDjx1WXr24YOKgxg13qIse6InR9+G59+gYct+8JzAQ6/LDb2HwDEad
jgBMc+wXcE4UeYB7lr9n6K8KhuEubfodWqe4MdhZ4U9lvGVlhUhLdOPl8FLn
Y8KOnDU2/Ehec2C7aEEC1UnnIBxgUBVwlHCooFka1sLuJdMMbHFLDNB+k56H
tLhrFb6qFY/pU7Kr3hKB/5NB7ng=
"]],
Cell[BoxData["2"], "Output",
CellChangeTimes->{{3.5378092621974306`*^9, 3.5378093665975213`*^9},
3.537809426653014*^9, {3.537809461334632*^9, 3.5378096442795944`*^9}, {
3.5378097681611843`*^9, 3.5378098655537276`*^9}, {3.537809905730468*^9,
3.5378099742223835`*^9}, 3.5378100796572657`*^9, {3.5378103103954268`*^9,
3.537810344087328*^9}, 3.5378104085320063`*^9, 3.5378104443451567`*^9, {
3.5378104807942705`*^9, 3.537810501479603*^9}, 3.537810550813693*^9, {
3.5378106052937527`*^9, 3.537810654643827*^9}, 3.592412856912655*^9, {
3.592412892530763*^9, 3.5924129215459175`*^9}, {3.592412953103364*^9,
3.5924129625078435`*^9}}],
Cell[BoxData[
RowBox[{"{",
RowBox[{"{",
RowBox[{
RowBox[{"x2", "[", "t", "]"}], "\[Rule]",
FractionBox[
RowBox[{
RowBox[{"5", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"4", "+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-", "2"}], "-",
SqrtBox["5"]}], ")"}], " ", "t"}]}]]}], "-",
RowBox[{"2", " ",
SqrtBox["5"], " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"4", "+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-", "2"}], "-",
SqrtBox["5"]}], ")"}], " ", "t"}]}]]}], "-",
RowBox[{"5", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"8", "+",
RowBox[{"2", " ",
SqrtBox["5"]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-", "2"}], "-",
SqrtBox["5"]}], ")"}], " ", "t"}]}]]}], "+",
RowBox[{"2", " ",
SqrtBox["5"], " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"8", "+",
RowBox[{"2", " ",
SqrtBox["5"]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-", "2"}], "-",
SqrtBox["5"]}], ")"}], " ", "t"}]}]]}], "-",
RowBox[{"5", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"4", "+",
RowBox[{
RowBox[{"(",
RowBox[{"2", "-",
SqrtBox["5"]}], ")"}], " ", "t"}]}]]}], "-",
RowBox[{"2", " ",
SqrtBox["5"], " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"4", "+",
RowBox[{
RowBox[{"(",
RowBox[{"2", "-",
SqrtBox["5"]}], ")"}], " ", "t"}]}]]}], "+",
RowBox[{"5", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"2", " ",
SqrtBox["5"]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{"2", "-",
SqrtBox["5"]}], ")"}], " ", "t"}]}]]}], "+",
RowBox[{"2", " ",
SqrtBox["5"], " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"2", " ",
SqrtBox["5"]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{"2", "-",
SqrtBox["5"]}], ")"}], " ", "t"}]}]]}]}],
RowBox[{"8", " ",
SuperscriptBox["\[ExponentialE]", "4"]}]]}], "}"}], "}"}]], "Output",
CellChangeTimes->{{3.5378092621974306`*^9, 3.5378093665975213`*^9},
3.537809426653014*^9, {3.537809461334632*^9, 3.5378096442795944`*^9}, {
3.5378097681611843`*^9, 3.5378098655537276`*^9}, {3.537809905730468*^9,
3.5378099742223835`*^9}, 3.5378100796572657`*^9, {3.5378103103954268`*^9,
3.537810344087328*^9}, 3.5378104085320063`*^9, 3.5378104443451567`*^9, {
3.5378104807942705`*^9, 3.537810501479603*^9}, 3.537810550813693*^9, {
3.5378106052937527`*^9, 3.537810654643827*^9}, 3.592412856912655*^9, {
3.592412892530763*^9, 3.5924129215459175`*^9}, {3.592412953103364*^9,
3.5924129625438757`*^9}}],
Cell[BoxData[
GraphicsBox[{{{}, {},
{RGBColor[1, 0, 0], LineBox[CompressedData["
1:eJwVkXk81AkDh1HtTgnRhXLl1phUSI7fV6WIKAySGmfkqNTqQJLWlbuci3Lf
x7iGRIjJbDkqx4pCTRLCrzYK+8bu+8fzef5/HhmnixZn+Xh4eO79x/9tfHbi
VcukFVE4l5x27UOl7upD4t6jYuq4s/XaUrqWF7E3IyW9WswA7TrufX3qUcTY
drmgawpm6KKaa0XWZRAmXQNV98XoaMixG1pWLSXkoiTyVqRsERCxN9mCt5b4
n7FzsqMCA3lGCplEaTMxFdzHdkxyxMdEfUp85FPCxuXH43tiLqiSaOxhSXcS
7EPidW3prgg3kE1If/6KUJPVq5iTcgeVb9jUba6fSOdzKJLP8YRWvsRMfPQQ
QeHezrZWuID4ZB+rfxJHiUfverra6N7wjGbrNIRyCe8TLsanky5hxPmGEun7
kRjeFXYoWswHebodal6/TBMJGaIt8nZXMOB/2yMmgySMhYp1m9Kvonts44Pp
uq9E7WynBinlC4svVoldQ/OEF4NRFeboh2K/us4rmxeIHd0kTTrHHytnP2dF
ei4RMWUiSuYKN+E3J5k26L5CHJbIzZ10C4T7wY/6KxRe3GxP3fCEfgvk8svD
LA8+qGtSo22TgqBo8fD1gvUaZG4+HhohFoxqaT3jkz388O9KZls/CsblglBX
3ngBWIe845O1C8GJ/RfHFR2FsH7+UmBDeigUtymtn7knjOt9Cdenpe7A1fWe
m2LhZlhGDdc+bLmDWJqwwa6mLaAZKMwHO0ZgrejGWe7QVoxV112SyIkEGXbO
0EBJHObxQx5mCjEQMUgPLhORAtVEtkicE4PyDn/JSZo0KKu8Po27xcJR2Jby
54A07OuXK5vpcSiP/TnquncHNivH0U4m3cVN2XtqFBF5BFGqFe+IJYCpkqU4
4LkTKoZ3w6u8E2B15sOfUiep6Am5OPmGk4CcqQ9H9hqpQm4VtYR2NRG2Q7cF
WHt3of1nLq2vJwkLt9IKf6btxvpvSRpSUX+gyfWbs9KSBli7ryQZffgDxmd8
NU1jNMHwtvxxSTsVjC/myyZy+8CcEapnT6QCGU9S+qy0YDERrutxOB2im+z2
LHdrI2XY7xBr+QGO8ah0R6zXx4HttrkjVhkIbKcVHDyrj6lT+9ZQyjLg8kll
9H2TPiSnfZ3LVDNBZ4et7fc5gIvumvI8bzPBL2B8P/jzQYi4MAvztLJxn0vr
b1h1BCdts5hfvuZCOys/W3n4GMg39HXZ4nmYCJMrOm1silAG5azloTyYPdZZ
PP7QFNXOF8VrE/Kg1U93uppkBsELeiH++/KhtyjkPqx6Ak9vD576JaAAAs3t
Mt9WW2BPqfAv2ynFOKA2FHh10QrPaE8dutSKwfnJl9+jYw2HyusNN22L0fnF
ri7ipjWia0e93xcXI2/ScavgGhtMtJS9yTctAb0wfDdjy0k86D9auTu+FClh
a8R+NT4F/pWg04aSTFy2UjJNmWMgxd2GQT3CxMLlMeFSfXvI9VEdhC8wceN7
hcmmaHsQRQPObx4zcVrk917vjQ6oL0pi1dEqsDbF5Iwm0wEzltONJt0VKJXL
35M46wirwuSO3wSqsDxyT04nygXy5rMTbZE1sPm4boJX3wPigYbablk1WK5N
sCd8PLChLDNyXV0NsmZ1zAoLPbBEsaSZc2uQ6vTQeLWIJ1621P02osVCSGz2
X0PjnvBTC1pe+MjCqWeJPN9SzqNbaNMmmn4dzI4vReyM9ca17v1Imav/78cP
fikrH2ytER7h5W1G2tWORm3tG6jlHup8oduKLj4bo/MLt9HqcX+b7TQbTfa9
1vsPh2NeQU+o7DwHWh3SOzTyosG3WLJhm/xzxMUzm3W/3YXmikOtZXknwrnD
AvsFEtEZrN7drvIC9fsOHldBCqTiPi8Wzb7E0USZ5q6RNHz+MTrSr9YDe96K
/ECnDORONTwXjOmFmPdmneyiLAhKFJBjY33obFM8IVSYgyh3lmum3F//dRAQ
osfl4bt+ydi5wAGcne5e976sAD572DVb2l5j9pgV1auyCKPl7MhXMkMYK+im
9k2W4B+PvjRlvzc4z1p0KZEux84Dvy67NryFfqBjmMb2Chhmy7hVbh2B399L
mYsHKnFNwn7H+9OjkFQX9OK1qQJ12op/wPQdbvlLXhk8V42NQl8o7KV3WHdr
Y6ZkQg1WN6cxZdPfY2mW8kKljAVP9YbBtSZcxEz4v3EbrUXJUafMpu9cVCyf
b7oo8BDzn8U3jCd9wFSdl5qyUj1YloarEgzGwCpW+pRn9wiBRiEZNeNjML3a
6ET3b4DMsPHrnJCPUPUP4+1IbIT2vuAEsT3j8KfKbsv+8zFOS75Y5O0dRxP6
vcQ+NWH+eTTXO+gT1CeFzQcFW5CymuFjITeB30/SFnszWrBxhJXNx56AbnlO
0HvVJ1gTEETff2kSb5Xt8l5xnoCniMHkikxhG6uSa2bTisupzGiR1iksuAS/
jvm7FY93hlOEL3yGqEmfQ0VEG4SNL1NvC04jsYWud1yUjbeqL3t9G6ehLS2l
ElzJRsUDyI0xZuBtzFOtpv8UZ5iawhLLM9Cm04arOp7iVkhW0NviWQRYu+pm
ObWjbEIiTfAYibtGS6n8ZDvC74c4jJiR0KjVyg742g4Xixn5cnMSzN7vmeS3
dmxvbKwwtSHxVHE6uHehHRGxdu1RTiREH9wdT+Xj4JzmH1/X+ZJYoxogpLSF
gx3Bm4x+zSfR2pkzo6PHwbLWDYGBQhK2O3i5peBgcOZDT34JiQAms0viIAdx
NtVnjlSSKOlYilg5wsGKisVvIY0k3Mpk7ree4ODtq9gHq3pJhKv4Shq6cPAw
9Idzbz+Jwb8PhNW5cpCgY6+c85oEo+DwJ0V3DkzyaDUHR0gU2yxEUS5w8Oh6
17OgSRKWd8YuPLvGQZKqRqz5NIldzoy7+/04uMRNp8uQJJQJSknRDQ6UjnmN
tsyRcI8eb7sTxMFq3r7cuB8kpMxE2xZ/5+AdS8fDYYlEb6FPvXsoB40eObvU
fpKwOryUPxjOQbIU//zKComejoLIo5Ec/AuVeWDv
"]]}}, {{}, {},
{RGBColor[0, 0, 1], LineBox[CompressedData["
1:eJwV1nk4VO0bB/A5xy5ZZpIkiV5rqKxJue9kS0qRSJYQitcSJbQqWqVNG4VK
Sbss2VIoW2NfZk5EUd6oLBWNZczv/P6a63Ndzzzn3Od+7u85qr5hTv4kg8GQ
JhiM//9uE/fTrbfiAbZURUxGnXptsLRVf0sYD1xejA5PKx8Hq3vn2Oy9PLgU
tNu3ds8pcFGyC7KO5cHyNPfbka/OQbTYq3smCTyoeKi43m5hMrzqub9AMZUH
B+fYyt0ISQO7C7GS3VU8+FrxoZPUzgbPUdX+wIUTcMRXX1OuIx9CM9/wqhZP
QGK39WqNHQVw2NV7lob2BAh02EpBAwWQ9urmsi+GE7DVLpFzbOIldJ9WOLBj
3QRkPK2LnCdbDF5qs2W37Z2A8MJyqyaFMtjhzDOzr5sAfaUnW4+yKyBc9JpD
duMElNY+jDslUglHi4y9xdsnQCYqX9vMohIyVCLjq3omoNumqvfK00r4/P1n
g+XYBFgNLg2zP/sWfOP7/MwXTUKWtkmIhHEV7MxvOKcbNQlPWyvvim+oha4/
+cZLD0yC2LFnw93RteBidOvj8qOTYLTxTvy+zFqwyQ3WMz0zCXMnZbu+TNaC
Zo54/Zq0SegV7djdnlkHg48tpVyrJmEtR77H+ud72JNZcCZu7hTc5n12OefU
AIN9twzilaYgTqWgRHx/A/guTvhwYtEUCMzXGm5MbQCnO846iTpTYB23JmpF
XwMYZYzUXrWYgsDlBtKXwhuBl6oj8ThgCr6xCKP32ASHL6ed7CiYgkKHKn0P
aAa1Pbf9rEunoCfxW2GFYzNUbcyEvPIpCIYb4dI7mkFa8uHfi+wpsLvmI7T1
aDOkH80P3NA7BcsGrn3Nft0Mb0LYtm9nTwNvb6VvglkLkHaTYi92ToPmvP5n
okqtcF+d37coaBokQpnD27RawV6I8eZ82DQUGB+tv2rcCpfKRKJDYqdBkOg7
UO/YCouN5b5pXZgGt8MTSsbHW8FKTasmvWQaRo5tqSf7WyFh2uXUOSYfjock
BYfcbINLAbcn0hX4IJpeGRlzvw3Smn4EvVjABwmLceN9z9ugIPP4Bo4GH95U
rMJVb9vgm0MOU9WcDxFSa+slv7eBwy2pW3l+fPjwRTei1LgdmBaVOZ15fLjV
2bqXeNMOCx9ILx4q4sO+H2fN9GraYQnTPZnxmg8bEw0t1ze1g1X/SJR6LR9c
pe7u9vrUDvuSFq4K+8iH54ubWX2CduB2x1SRojPgqN6Sum9VB6QfWdap7ToD
pS8/ta943AEPNXaUq3nMgJz2EsunLzqgoP58lpLPDHDlFp2dV9QBbKXhyNnB
M/BXf/XQ+3cdwHv5RGr08AzkDkVcftbdAU4jOhaF92fgyMqCH1HSHBDxUb9t
Mz4DNfVJDwICOCAr7nISpmZAb5fc2KVgDix4Fh+ygiGAIoObbfnhHDDg95np
SApAk8840hPLAa8bd1pmLxTAQMrPrsokDhQ2qwi3Wwug7Ul0YGceB4It5wf6
XRFAboxFy7VJDtw56R9XkyKAS8o6+qICDnDZz1P1MgSw3cdUK1iICzautk1/
HwpAVoGppyjFBbV/95olvhFAQY/0L1FlLnCvNMzK/y4A7ZPaP41Wc0GmU1Fj
/qgAVCVjfFlr6P8v8scj4wJYt7DGZsCKC+7th4ozGQysy5mfdMCBCzXec4ZD
ZzGwYeuTMPPtXLi7d42bkCoDDUISRA33c8FCIfBr/mIGLubNVkqK5cKHosSI
XRoMHGy57vn5EBdkBZzE+iUMHDFYkhIez4XDp0PLr5kwMGDw1xLDi/T10lJ1
dB0YWJZ6xtkpmwtyNWPTW/YzcJfEwRTLNi58ev56CxXDwCg1c++kDi48v3H6
sedBBt7+mbS/jcuFTcHKHgFxDOQFdJU7fuRCkrR1yf6zDFz6TvOyUD8XJF2S
Y1LSGZgxx7QwYJy+v9VezQvvMDDQKga387iQraGlfTeTgVb6vpftJ7lgxyvh
Pspm4MZ3V/MVZ7hwMrXP9FUuA0tN4p7HilAg3Gsw3lPNwOtWt09vYFHQVje9
YWcdA/9TEvBH51BwN7fq3jc2A7fwzj28OJcCywR3l9FmBtYXB1RVKFIQp3Us
j+xioP9Fk7IfKhTMhDZHqI8wMKu8z9x/CQUNrql12b/o+lRsDN7oUnAL/dX0
x+j9mOnv5upTsIo50WwyycCI+1adBcsoiM1ftNxOmEDbtTK7K40p+DsVNhw0
j8DIvEAdFlDQlWvro65E4GCR6dQapKAiWKW1R5lAsyNjcv+uoSCxs6Fgy2IC
H6kG6L1YS4Faid5hC30CR5oVekTtKBCPFBnhLSPw2PCNO7LrKPip89En15DA
twyPPnl7CgpTEq21zAi8+znxL9OBgo2x36WYVgTK8fn/cB0pMDKoPMy2IXDx
30XnyjZRoDiYMnJiHYGKxX5ZGZsp+LLNvm1qI4HvbwlLuTnT9Zhlp37dRmCr
aItt8lYKdowenZ3hQeAfG+ffbq4UWGe7HXH3JvBwyKHjim4UyCqK+zXuJDBQ
1D8oaRsF93gBOkVhBBbEl03belBw5rnFzcgI+vqkUPQP2uG75krr7yPQdeVq
8XOeFKzkvhu9E0vgzv45Ryq8KGh6+U9RYgKBK9aJ7hbsoKAgbFrH9hSBzt0D
+gk+FKRqtt0kzhI4h//DVMyXgoBrx49GXSCw63atNsOPgumoXtsdqQQql3tp
Ve2koFe/uGh+GoFN2ybv6PtTUN1/cUl7BoFUcFviZdqXtq6Rsb9PYIjNq0qn
AAqipRXjhLMJ9Nq6T+kJbc+qkV9ljwhsiy/7KxRIgZZJRodhDoH/niCds2hL
D+23G8olUPL87q7ftH/fcyx+UEDgN5OVglW7KCiTF9xSLiXQJDhN/R3tu/Ud
MtwyAlWjfQ2Fd1NwKuFp3KVyAtNWjg4BbecxT3+xarr/zkeOP6Fd+D5LLr+W
wL3/+Md3015wZ/SVL5tAJ33SXyqIPs/R5kGyjQRWyU5rm9Lu35gwt6yZQJW2
UY4X7fXqjRXBbQRyfx2IPE77+dS8MEUOgUO+usQ92vItvkrVFIGa6UkJlbRj
Hzyu3ttFoN5zTZEe2j2HxyPVeuh+GkfF/6Vt5YKLmj4TmBD2S2x2MAUPlpxh
H/pCYIyNdLIK7dlkW/SS/wi84GKst5R2BFdZnRogsPkXm2NOu+NpYPOJHwSK
rjC6bk3bPCHnkNEwgQ9nvY1woJ2xfUq7d5TASu3G4E20RQysO87/IXC/7p2T
m2kHiZ8/tvovXW/y8TpH2o3dXP3vEwRqtOauWE/bKF+t8/o0ff+bQjrW0r5x
9t+TNgICB/Z+yTKjPeNTYPiHIDE91zZHl7bvCsan28Ikzpx/Pb6AdrW0faKj
GInXskIPStLW/Xp5BV+CRMfiPTZjdP0XSj5+eShF4ukXPW4faY9d1LzoJkPi
nie1Lytou+/as1qUSeIqIfPA/z/f1xYlA7lzSFzhaBacQPsfeZGrPgokzot+
W+1Le6j8+lDpAhLv3d2ZIk/b+XpvSpAKiaFGnvO+/7//obq289RIXNCQPfOK
dpzSm/RITRLn/KlhedDuH5VwUNUh8UmWk70mbfsaZ16DLolRFWm8Yfq8zdn3
3yYdAxKrzj9/H0M7Zv1yPseIROY0wVtJu1v1QHaCKYnbnPQeTdDn90GDNPl5
FYnKyUN5YbTNtUxyr9mSmGQpKLWg5yFj5oi3tT2Jpcu1T/6g50e4vXbWbwcS
GXLeY9doN8R57tzoRPuvOvs/ev58O+PlRTxJ/LLvzLtgej6rcxrKX3iTaF50
mylGW/fUvNAdviQ6t+WoZNDzPGb0uKokkET+FZeT7+l5P5XUuj8igkS3dfWD
YnQeqD4qHxrdS6KeekHGDW8Kiquf+e/ZT+KF8axobdo/GInO4QdJPCswurGW
zpNNkVZLQ0+Q2O2u0O9D5888t/z+3SkkFs3r+GFH51fO3rueAzfp/mf18V7R
+WZ/8WLbrnQSz6954Lic9sG6kIrATBK7umb/x6Tz8NMqjTT/pyQmmKQwKui8
fKB6zcWngu6/QedQ80YK1lgksD+9JdF7vU2lLu0P7pFrd1STKCXgip3YQIFU
suNybzaJam4Bg4Z0XoeLis/27CBx4CDL+RCd7yu+R791GySx703V9Rr6fVCd
5264iSmEnx+FXnI0pSAqY+tbEXkh/FN1LyPIhD5PiU4uJQpCKD+YoBFPv3+O
+dnv11AWQi/RgTsvDCmwYK4smdYUwvkmMrf5SynIC1Ncm71aCMX9PMo2aFFw
R4frRO4WwiHnet1+BbreDJeIvNdCODgjvD74Nxe8W8bqzSuEkJk98XvdLy5Y
Cl/VrnwrhEWKhws1R7kgvqvjU3OtEJ6wen7j0xAXkpe6Og63CmHAqwe9toNc
eFzmpqvzTQi1rkcV/vzEha6u7f3pssK4y3b5zvR6Lpgr+rqf9RHGzNr5n7sy
uRDu2vvum6wIRruNXmmkv4cOGw/Wz3klgq9uqKv828OBqxlCR3I9RZHRf31c
cJAD/zRfyOXOEsPEtxwbgQwHSpOWXgx/Kobsr8vM12d3gN4Pl1mcDeIYyJgf
dtqqA+bIjIi/nRRH6oDpgipOO4i8Tn22+KYEjg5rSiyPbId/jUooifWSaGEW
nXFQrB0er/PNKBuXxB2DgRW26W0w/n2+bP/VWVidWvznEtDf3862QslWUqi4
OvfjIaoVjtolpOf1S6F75+ut3AOtoPbRnns3YTYqfx7kp6i2grlpfLKigTR2
nu+031PeAp4LGyeIVmm8Hzu23nN3C4zXnesNj5PB1aSkXvasFnAgl67UZspi
X4zd9ab8ZpAcdt9M+Mpiec2sufp+zXC8DB/eLJTFDXL3PMxnNUPclmeueyTk
0CTp1K+84iZYWc+xkfCRw9Qs9swC/ybokbeKF38ph6cnjXilzCaQUDebu0aM
iVX9l11ykxphaO63gVVeTFzgOSi9ZagB3BpVmBHPmLhvNYcXs70BnrmmnpIW
MHHthkQdzYZ6KK9owlAXFqbFX7EvNq0Htz9JG8Tus/Cekv56iadsqGqwXBaW
xcLzDY/WPnjEBqPscSbnAQsXvckOtc1mg4yXF/f+IxYWlch7nMik11fr+dnk
sPDNE7Nk0VQ2GKeyoxNKWfjVUiZK9hQbmJaSmUKtLCy0Ge5d58uGowvKTgS3
sXC/Z/DiYW82DI3v2d3azkKPJX1Xkj3ZUPuI0r/LZaFMeL7sJzd6vXx2kWU3
vd5mj2eMIxuGv9k2xg2wMCHysWP+KjZ4VE7lDAyykC06/sRzJRvqbj1L3vyD
hTeOTawWXcGG+04K7qrDLPxcp/zb1ZANXqX9X978YeF4064cvjYb2FdTqrXG
WahFSd/K0mTDyj0bH174y0IJxsbizepskNcoCNsxyUKO/cnT9xex4RgjyKlm
ioUMjDHfvJANIx+UjZfxWegw/nvhtBK9f36zwvUZFuq5/jbMUqT3P58wKRCw
cKtDZKyTAhv+By6a6LY=
"]]}}, {{}, {},
{RGBColor[1, 0, 0], LineBox[CompressedData["
1:eJwVy2k41AsDh2HRooRGOUUka8qYNilhfhVSyL6EGpTKvpUoWxwjishxJluR
rZDdkAgxEVmyziQiFKKkmpTi/573w3Pdnx7pM56m53h5eHiu/9f/1Ts32VU/
dY6qMHPcmGTYqbFcS9xrWEwbJDm/JqN90dS9aYmpZWLmyLz6t6YG5RF1XEIu
1E+Bhr7kQ8luj+qo+u3s0rtijsj+WuPRu7WNKhctmU1IOWNjTI7T1e991D96
Z+84KHjgXcvJgyKMYerH8F6WA8MbOkp5wX+uvKdaOc4/jRe7BNdX9s4BK2eo
LC3xysbUy6iiT+zgVs5Rd8lqFn+XuoLfXQIi7AEuNZXXPlc+MwDxCgOCDNcF
Kv9oWIalQjBWZqZyx50J6pOR7vZG82uo4Cx3qXbhhZexo94pRih2msdcJCxX
YGjnda0YsXCU8Np02XULICFtU728LR0ac3vHdjoIQ084T6M2NQLHRlR05uJJ
qPjctm9WKgryRv6i5IeicKPRSq873ECsgmL/xMBGyHTMUrZm3sTz7L+djyuK
41aBiKKJwi3IhRwXLxORgo5kVtbUhVhsiufOtrK3Irgped0z8zgU9OiPO++V
gYoqOcaacRsvj67yEBCRR7qoUcQNsQRIJl/sH3BVQkD7HZblkwQMOOa6VMgo
w5I+witr+y88ffesvvyBgrVc75DqVAbkuB03qHq74d+b4D8jlYTD/gYv+rX3
wSx6qOJxfRLO3Wk+YGmmCoq2AjfcIRmZ8UIFsk77MV5W6S2ZmQJ/RYnXjCw1
mPwz4GKocA+8LbHuZ5yoIOvL5oo338PVFZOi/Q8Bfj63iQ8X0hBwyBdP/A7B
rmqppM48HQGpwRvimg9DdHsc5STjPoyfzbcN3tRGKH/ZtiixLKx2Vdwqnq2H
Hbq3I0u9slB7RFrI4ro+uumeU2+as/Ast/T0KncDyPGR8ymXs/EqLT24+Ygh
mhazKL3dOaBYrBlmCphg7TfGPqnoXCj+CiYF7bYAc7cv49hYLrS6+JY9fmoB
mpfZvPfBPFwfp7Uk6Vui6JNwFWsyDxVrDTsN3KxgOhmp4aLzCOl/2RmeeGaN
xKGrWsylQuRGVKxMf0zDYQnrrLcWRfjCcpkoodnho83+FfwFRdCfDrJR4rPH
lpkrZwuUixFyOVByR4E9PJ1V5XkGi2FVkBMXvOYMRByLHmYfKIWw63rzxSlH
nLS+X/Rlrhya/SY/1Q64YvaN+ZoMcSZI1i3XKKmuiKDxnzPTYsKzXSaggccN
ZWc9xSsSmIiNHf3R9NINQh6a9ID9FVBs8PHd5+yB52GvbVYGVeKner53xogX
9jwirZTgf4IxcaHhWO9LECBCT+luqUPBwDE3OddAJDpb0chH6zDk9+LDisJA
yPWS7Ukedagb0ty7bS4Q1Fz22TdP69BW8CtK0T8IVbkMZiWlHol802TpqGB8
Mpup0e+oh8PpUkMH22uweHjn5UXBBuivLPRpTguDvMnnycabLNxwViv8GXwd
fh1qSPzegpKtR5UfVt3GxnLS22XLOlEyESlvy5+IilGttk6NbnxeNN0RFZ6G
Bpe7m61nehGZmUk2LssEV0FTuMCdDcWFQN+J2w/A+yt/3Wb5AYy1KVrvnc2H
KmFfYVY4iKFaw3dUUjHawlU6mnYMg97q8WI7uRRScdO/cj+PYJju1L45pBzT
88Nv+3aNolGnpNC9pAJZH6tbhW6NwcMzdWPkpioIST6YHR8fh56J/ZiEfzWi
nZnn0+U+gPVVd8WD4qf4cSh/3ClkAmbPF86uEazHpT2s8r8aJ+G7WrtSWPkZ
hgtZN7ukP+J8k55DjGMDfrv0pmy/Og0fxyRj+38boXR41dL56hmsN7rrEV/M
gm6G9IWSjZ+xU1Ynav3oc/hJ2sm8OzWL1uzWZ48Wm0CesRBgn/gC0ZIZm+Ui
L7Be+As/a+ELTqtJS7xQb8HyupQi2dQ5tE1XieQYtcJVpfr1av2veHrHELb+
L5F//Ex67Y+vMLIjJ2gltYE7Lb7uA+MbjLjM+JisdjDNdPkStL/D/U3i9GJj
B0KO0dPKP3yHhWhk3LKOTkgP6XEy6VyY5KxhGTi9wsH94Qlie34gnHyzh/bt
FU5t6fy1rOcHqqM94+cvdoHbGjPqFToPC5/+9M1LXUhcTrtkKvcTrDJHn6mg
bqx/y8zgZf2Eyp+I7WIL3VgRFGqu5v0Lua/5G2JDesCTSysaFVmAaZ6/+4+F
HvgkF8WINCzAp4xb5B7Si6dKkfwkj9+wE7/npcrTB5KeDzlM6A+Gwm70HvDr
w6Dyq54rNX9gxjj5j8B8H4rvQW6ctgji/eRVqns/ThepkiSXFiF7K40jPNKP
a/T7oYN5S4itXWvqa8tGwaRkipABAXqeBsLa2Yi8S7d/a0jA9wRjS1AnG46m
n+QLTQhQZgWn/LrYkKipKT5hRWBazQbufWzciLVtij5DYK964JzlEBtOqklz
a64QyI+Kc1P4xIZM+IZjq3IIVN42aWSu5WDpQKAg+yGBW8rvVxUKcfD601h3
Tj6BBZWi/TnrOIizKjt9tITAb8bUScYGDogdphfpNQQGJQQzfCU4GOyKvcfX
Q+DUwhOjXWQOHkfMn+3p++83Jh3bRuEgQd1ueyaHgJ11ntKWXRzoZ1PKj7wl
4BD/oFxAhYMn/u0toVMELJXG29+rc8BQ3hdrMkNgLePc1kFNDrxHU82lZwmo
vt5J6wYHigZuw/XfCXz8cz+lVouD5ct6s+LmCURd0E8p1+FghKnuYr9AoK32
UESeLgc1Lpk7dy0S6GkOO5V+nIM7UgJcgiDwXFdkC0Ofg/8B6HkVBQ==
"]]}}, {{}, {},
{RGBColor[0, 0, 1], LineBox[CompressedData["
1:eJwVlHk4Vukbx99z3ihMSHayvRKTkEilum/SKhWR7JJlUpZeI6ZGlpCyFEqi
ZBKipNdWSgbZi+zOGcqUGFshoSh+5/fHcz3X5zrPdT/fc9/f76Ps4mPhRrJY
rIfM+v/eVjEswWz486uRSZIpBfH8vQH8fCy8WaS69JIFBYf2N9O/CLIwzvtu
p6MNBc3dBbdlxFk4Zf57U5E7BQ2fz63eoM7CVYulF8RCKIjS8764eR0LFzrC
l6hFUrDrrPMw6LLQ8IXTmEIMBdV8O/P2b2WhpZiTaNUNCirkhfXdD7FQTmLU
pjOPgmAX1o1TVizUqxmvlyukYPv9L9+4tizc9GRn496nFJRt6C4LdmWh5lWR
GIcqCp7sSze5GcjCxcEdiic7KXgUqGv5Op2FUfKSM5azFHiVq5a0ZbLQ+dVx
Jd15CjSXSEnTuSxU2/GTN7dAQe6V+Z6BIhZSoU9GDvDTkJlVfXyxnoVthcn5
AuI0uI6V1PA1s9DFu1RijxQNKro5a35pZ/TLPEj0k6Uh/UXsqPRbFp4/XHsv
QYmGWx1H/HQnWZjWeS9tZi0NdrJ7OzfNsFBDa3BvhhYNss6GBjDPwkSnTynb
19NwY1Rx3pSPwJ9R6aNGG2lIIIfD3GQIbDK/axMCNJjv6fl4UoHAvKDbe7KN
aBCNa9rF5RBooBthWr6DhjiZAsHgdQSeDDc1fLGbhks65xKSjQg8rzN/in2Q
ht/FL6kL7SbQXUqB3X6IBsdvSeVB+wkMkY7hxlvQoFdRMOJiTeB8ilZOjxUN
CvcqQjrtCfTmH+rwsKZBIKpZco8LgV5Z3+/2H6Xh3cER43VeBO4IERjOtaOh
fsM36g6XwDNr5Ctn7GkolOL3EQsk8PBiwbyuIw1Rfcqps2EE6twttghypoH7
Unu9ZxSBpv6zjdHHaHDI3lbXG0ug/8VTDtEuNOj62ExVJhOof3AhzNGVBvnD
Hpf00ggUvvzBS9eNhqUG/orZGQTWjkSrfGP4i+yFYpkcAiO1Ml/lu9PQu3DV
NOYRgX3HHBNtPGio/ZD2fqGQwEL0zphmmFf7MOB0KaMvYeXq8N+YeeU+W/6x
nMDQUEkjvhM0RMbVZxypJrB5okHxD4Z9uV2bGxqY/jT+MtzHsN2Rj28M3xBY
dtC0erMnDbu2fHF71EHgLfsQKpJhHQXWD6V/CNxTsHF/HcOypHBCYh+BJhsv
75xnmG9QTp1/gMB6HY0RlZM0TDRolAeOEOh00cppO8P/5BlYjo4TWDU10GDG
cHX8zhGHaQItDXYfMGc43/9wSMscgStNg0T3Mpxic0xyB4tEqxhVPX2Gw7f5
PCzmI/HdALdXgmFv5SBjdSESP05v0hxl7rfhi6ZSREm8ptO/s5hhk+Fk7+WS
JEYtnjX9nWGtpqwlIXIkvn2b7ajOsDSvKOWLEokipx+ntzL/z75epeOmRuLn
tHO6vgx/Dmyp7V5L4rb0eL0lDFP27+z3rSdxl+iqulimvy9x7EvZRhKjv48K
LGf4kepclPZWEuX7fOXDmHlcGJMoFt9NIrU2Q/MAMz/vFo7pxf0kuij7e2Qy
8z1atP79d3MSI7T2jH1h/KD1p9nyPnsSE5T+3Hf6OKPP2S7D3IVEDQ8zx7uM
f9gmJzZXezD1fMn1jYy/KKEItxwuiaE7XcMXnGioGk+YlwskUb1+dKsQw3nt
6fFxQSQOHxRWFWH8GpZa9sIvikSLGa+RH4y/Ndd+ldiexujJ5W31Y/IQnLrP
yDKDxJj/steaH6GhTeivU573SSyMUFRUZ/ITOGb2MqmAxE1Zeq6VTL5e5mX7
jteSOOV0+0qGGQ22Onav0sdJvGzRx2dgzNyfzpsp+UrigjLseIQ0sFYsU2n6
zvSbNnisyOQ/a7Io8Dubjb+6CzpMGtIwWSCsZiHNxmyvdx3m+ky+9KtC2EZs
dN9gaiyxhoaeTOmHMrvYqCYpLG2wmumXpE+3tikbM8unZSw5NHTMyGnZW7HR
X+ZxT7AiDYpP/XuKTrBR1bDt3zvM+1ayRWOjewIbf1gP1S1fSkM/XB2t72fj
+3T5698+UKD3qTG6ZoiNHhMfxDL/pSAyhU+z6hMbeQmX3A+8o+DX6bOnns8y
eg3ES27QFPjmun3KE1qC5CV6ga+Fgp/ihuMJG5Zg4jZfTZsyCqRGBr7YX2C+
L14dEk+kwPSa4dyECh+yeb2Pz2yhIN2vWUQtiB97Y03CuCe6YZlXeABWLEXP
zNIm/rQucJhUHvRQEMA3prbjgZWd4FrcHKt5RhBLrpwpVf/UAecT0y52lQhh
+t6AK7maHRDxwyoqVmw5xgS0u71yaYc7wTo9GtbCqK0fk8vOa4OTxrIex6+L
oNmk6IwI0QYr6qd/WAaIYt5NG669WSvMzvuMe0qvwJ7FgZSpBy1weNrBbWnd
CjRpD7VIZrdAVFx7AJcrhtFdgvcjG5qhrsh2wyGxldh6cLO93cMm+DPdilv0
90rktT0rLAp7DYYyLrbRx8QxJixKzTPgFfhaf6gZEpVA/b+i7NqcG+G8/kiT
+AsJXO+mkSxo2wBJ6ezgQgdJnJiyea7gXQ+qrVcLKSEpXPPGmI8dWAdlcdrx
vo+kUKx/bdFcSi2sG7MS6jaTRn1b7NJqrAFxkYll1XPSWDDSr601UQ18f6fm
c27JoN1g1ntvzWo4pfecFjCVxQQ5lUFr55fwcK9LevmMLN48GfS8/U4VzIzK
ig4myWHbrd+GWFOVUHJ4N/uaiTyG+f3rdH97JYTsibhTNCiPHvHuLoW3KkDl
7T4qI2IVaj+veVzIrgBDg/BrMroKaCmsENVcVw4OCm++E+0KKE+u8uu9/wJm
GmM/+IYqYkzz6kNJQWWwn9TeoiGmhEff8nobfZ+D4LitOeGihO6CUzUfuM/g
Qjnm3nqqhOm+eU1dJ0oh1DLf+rSAMhrm6HG7zj2FLU3duwSOKWPt6VTH8gtP
oE/CJHzZE2XUKHVY+exmCQis3ixptFQFL1eunL5bVwyfJYeGtzqqYOG3P7jc
sSI4+kZRjJuvgkeirrQkrymCfOvUKOFFFTR/QPPf8yqEyqoW9LbioISBYb//
gwI4+jXObGkWB+XuC83J/eRBbbOxjk82B5vGt0sqzfFAL2dGrPs+BwNq1Hmq
szwQcXSksh5wsEHwtYv2JHO+bt3xXTwOnjvEV7hvgAf6qa8DI8o4uNA48TW5
iQdixoL32O0cfHS89VRiGg9C5MsjT3ZwcP1mZ4PsVB58njl9or2Tg6ufCJ1/
nsyDhge0VgbF6DviHjyQwJyXyCk1fsfB1gsjB+EiD8aHdr8JHebg5H9bJQV9
eWD/cp43PMLBWwazyau9eNB4O/+a+RgHy45FJhl58iDLQspWeZyD8fWtxDlX
HjiWDX6s+MrBs3r9SVNHefA6KaVOfYaDY4mCn8WO8GDL6QO5V2c5uFzT9W/d
wzyQUCvxcZ7jYOy0fYufGQ/CWJ4W9fMc/JjVLnJ9Hw8m/lmlr/OTg11X1zaU
7GbqF7dKJS9wsPncoR+UCVP/SsTc4iIHL2/Qypk34sH/AFr75qQ=
"]]}}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->True,
AxesLabel->{None, None},
AxesOrigin->{0, 0},
Method->{},
PlotRange->All,
PlotRangeClipping->True,
PlotRangePadding->{
Scaled[0.02],
Scaled[0.02]}]], "Output",
CellChangeTimes->{{3.5378092621974306`*^9, 3.5378093665975213`*^9},
3.537809426653014*^9, {3.537809461334632*^9, 3.5378096442795944`*^9}, {
3.5378097681611843`*^9, 3.5378098655537276`*^9}, {3.537809905730468*^9,
3.5378099742223835`*^9}, 3.5378100796572657`*^9, {3.5378103103954268`*^9,
3.537810344087328*^9}, 3.5378104085320063`*^9, 3.5378104443451567`*^9, {
3.5378104807942705`*^9, 3.537810501479603*^9}, 3.537810550813693*^9, {
3.5378106052937527`*^9, 3.537810654643827*^9}, 3.592412856912655*^9, {
3.592412892530763*^9, 3.5924129215459175`*^9}, {3.592412953103364*^9,
3.5924129626599784`*^9}}]
}, Open ]]
},
WindowSize->{1264, 673},
WindowMargins->{{0, Automatic}, {Automatic, 0}},
FrontEndVersion->"9.0 for Microsoft Windows (64-bit) (January 25, 2013)",
StyleDefinitions->"Default.nb"
]
(* End of Notebook Content *)
(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[CellGroupData[{
Cell[579, 22, 3943, 116, 292, "Input"],
Cell[4525, 140, 654, 9, 31, "Output"],
Cell[5182, 151, 3089, 89, 62, "Output"],
Cell[8274, 242, 16322, 277, 240, "Output"]
}, Open ]]
}
]
*)
(* End of internal cache information *)