-
Notifications
You must be signed in to change notification settings - Fork 2
/
SED and Bnu Ay218Moran.nb
executable file
·977 lines (946 loc) · 40.5 KB
/
SED and Bnu Ay218Moran.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 9.0' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 157, 7]
NotebookDataLength[ 40263, 967]
NotebookOptionsPosition[ 39035, 925]
NotebookOutlinePosition[ 39378, 940]
CellTagsIndexPosition[ 39335, 937]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"sed", "=",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Log", "[",
RowBox[{"10", ",",
RowBox[{"80", " ", "*",
RowBox[{"10", "^", "6"}]}]}], "]"}], ",", "30"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"Log", "[",
RowBox[{"10", ",",
RowBox[{"1", "*",
RowBox[{"10", "^", "9"}]}]}], "]"}], ",", "5"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"Log", "[",
RowBox[{"10", ",",
RowBox[{"10", "*",
RowBox[{"10", "^", "9"}]}]}], "]"}], ",", "1"}], "}"}]}], "}"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"sed2", "=",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"80", " ", "*",
RowBox[{"10", "^", "6"}]}], ",", "30"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"1", "*",
RowBox[{"10", "^", "9"}]}], ",", "5"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"10", "*",
RowBox[{"10", "^", "9"}]}], ",", "1"}], "}"}]}], "}"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{"p1", "=",
RowBox[{"ListLinePlot", "[",
RowBox[{"sed", ",",
RowBox[{"PlotStyle", "\[Rule]", "Thick"}]}],
"]"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"s", "[", "Log\[Nu]_", "]"}], "=",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"-", "\[Alpha]"}], " ", "Log\[Nu]"}], " ", "+", " ", "b"}], " ",
"/.",
RowBox[{"FindFit", "[",
RowBox[{"sed", ",",
RowBox[{
RowBox[{
RowBox[{"-", "\[Alpha]"}], " ", "Log\[Nu]"}], " ", "+", " ", "b"}],
",",
RowBox[{"{",
RowBox[{"\[Alpha]", ",", "b"}], "}"}], ",", "Log\[Nu]"}],
"]"}]}]}], "\[IndentingNewLine]",
RowBox[{"p2", "=",
RowBox[{"ListLinePlot", "[",
RowBox[{
RowBox[{"s", "[",
RowBox[{"{",
RowBox[{
RowBox[{"Log10", "[",
RowBox[{"80", "*",
RowBox[{"10", "^", "6"}]}], "]"}], ",", "9", ",", "10"}], "}"}],
"]"}], ",",
RowBox[{"PlotStyle", "\[Rule]", "Red"}]}], "]"}]}], "\[IndentingNewLine]",
RowBox[{"Show", "[",
RowBox[{"p1", ",", "p2"}], "]"}], "\[IndentingNewLine]",
RowBox[{"ListLinePlot", "[",
RowBox[{"sed2", ",",
RowBox[{"PlotStyle", "\[Rule]", "Thick"}]}], "]"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"FindFit", "[",
RowBox[{"sed2", ",",
RowBox[{"b", "+",
RowBox[{"\[Nu]", "^",
RowBox[{"-", "\[Alpha]"}]}]}], ",",
RowBox[{"{",
RowBox[{"\[Alpha]", ",", "b"}], "}"}], ",", "\[Nu]"}], "]"}],
"\[IndentingNewLine]",
"\[IndentingNewLine]"}], "\[IndentingNewLine]"}], "Input",
CellChangeTimes->{{3.5879068564204755`*^9, 3.5879070159511876`*^9}, {
3.58790705561736*^9, 3.5879070655836325`*^9}, {3.5879072428136683`*^9,
3.587907495298437*^9}, 3.5879076400172253`*^9, {3.587907670364185*^9,
3.5879077680828753`*^9}, {3.5879078025613546`*^9, 3.587908091532875*^9}, {
3.587908139114056*^9, 3.587908141028307*^9}}],
Cell[BoxData[
GraphicsBox[{{}, {{}, {},
{RGBColor[0.24720000000000014`, 0.24, 0.6], Thickness[Large],
LineBox[{{7.903089986991942, 30.}, {9., 5.}, {10., 1.}}]}}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->True,
AxesLabel->{None, None},
AxesOrigin->{7.903089986991942, 0},
Method->{},
PlotRange->{{7.903089986991942, 10.}, {0, 30.}},
PlotRangeClipping->True,
PlotRangePadding->{{0.04193820026016116, 0.04193820026016116}, {0.6,
0.6}}]], "Output",
CellChangeTimes->{{3.587906938134103*^9, 3.5879069463711557`*^9}, {
3.587906986402356*^9, 3.5879070163662424`*^9}, {3.587907057951642*^9,
3.5879070664437513`*^9}, 3.587907319073557*^9, 3.5879073525128984`*^9, {
3.587907430013956*^9, 3.587907434839589*^9}, 3.587907477079069*^9, {
3.5879076655735483`*^9, 3.587907671185275*^9}, {3.587907746830097*^9,
3.587907755081168*^9}, {3.5879078463370237`*^9, 3.5879079094522147`*^9}, {
3.5879080138337684`*^9, 3.5879080386699934`*^9}, {3.587908070953186*^9,
3.587908091942917*^9},
3.587908141727378*^9},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztnAu0VUUZx+fe87j38hJf+CK74vuB4iOTq8jj3stTQFQCQtIrdbq3VAix
TLMwE5avOEvzgZlUKqZoYuRBEh+JqZiJmaR5LMLSayVSkCllns5/Zvbes2e+
b+ZQrpZrqQvO2Wfv+f2/2d83e2a+2YPjO+Z2fuasjrldMzuaR83pmN3ZNfOc
5pGz5lRPZeqEqOsUQrzaLHBcqR7qj0r1T6ULHzhDH/eTX72qn2VRbBH6v4Io
SbpUPYqOK6JUUFdbiuU2eaIpiJWrF+vltYwolJQM/o7QZssR3FIU5Up0nTXb
rs2GMM7scPnZN5Y0ecNMqBr1pu9yooJLhZL8BctQyBDXSoUWUSxXRKuHy8tf
mWrZxHKbPlcpF0VB186nP5IoT+kOTwUxOU9p+uzVWe6A42QRODCN4zbjgFSl
cMutHi6qdrlYkL+TtqPLR02vBjttHo6yw7mH0vbZ1e7ZJYqKbkgoltWYcipV
3XT5qJqIbItum62G6bjtWtXi9WkuR9gZwbiD0vbZpVqLNhE1zppbC8lldbXj
HqnNU5taGgzPOaZa39s2EzsJVuKnTtWmph6G4LJRT1BM+r42QytqC7XY8XGU
Hc49/3OPY4xCukuPzRvdeluwvBlQaao1Om0ihVKOUG/3FXWEhzulpTvqCWHK
mB6CzKG8tyqmx37tWHxO+/9cb8AXDsRpFTnystSH5+hzfd5HdWn4MHwfoPCN
r/HchBrLeczPIM69sW0SNfVKY5XKrhs3vjls7dOvnHfrLWsXL5j/8EOzzl5e
GTpk0YJF168RjYaGlJCkGibyjVu3vgNy9tI7nl149VWPgdw0bsziPHCRue7K
K1bHFvOBygyVh7lj1j332ukrSi/MW3zTU5DrnjTxZqH0cjjGOVxDGZgWPQK6
g5XuoPKLr5+4+pH1YFecO7f0/Izpt2vd/FvtrTdCF7eAW4Eubm27gPSRSrq5
u3szEEjfdtG8VY93dS4TDarKkIVP4VuUga/FzgHdgUq375YtW6O4wJXQinTX
zjzjTtiCzdFrnnj5gA0bNok9Arr7p6PWec+ydYhxOmq59VMmL4GHID31gVUv
wXNir4D0gCR6YKLoQcuOHkzG0dufbF79lRpuKorZ3Recv5KKGRwTxQwOOyRQ
0X5uzBAfM2Y4xjlci2N2REC3r/JtFDNUKYoZqppPwoY7gTTuTIbtmIB0T1Vl
O2TmkwE/R08G/I84iOMDurnkyYhihrgbMcujWUQxg+3oyWjlpd9NYoeGGcUO
d24+FHBO9FDAaWIML/m2kqT6KTNm0fOAMoivmGg3rs18t2UECc3MDJJ8ACbz
1duYxAftmoqP3XPJ+EznJbvDnVYUGtyAGZrTedUNSduPQgOf2aFx+qsCL1l2
QxPqqmRozuQl17m9lDu2yCA5vdQcO+DP0INKsFs6j6/ek7X3TeZ4gjZ+Ia/6
aHgoIbuli3nJB9M9khkapkeKB5JLedWVdGeEyAhmAJGNfaGSjFK9crIkilQ4
S1haHh5SqO5JXKMsqYlLejmvnjBzl6e/Cow1N6QtmStj0lIOhu5QV6ENHamY
9XRa31WiDVrUXF/KENVfKj8bTPnI9/EAsyTte2tBhvK9qnTWVIWiOp2slBrr
FpTK7eoK6mGqLDVVnKyfuskfqKJ4PCESCd3JN9PbaOIunlhCEz+0u5Rb6XJ3
88q30MQynrjZJdDu7uGJ77sEjn/EE99TBB4bk1jOE6plZlF3k/gxTyymiXtt
n95Elyvxyt+hiRU8cSNN3McT304TaMJoyit54gaXwCP0E55YpAh0YCZxP09c
rwiMBCaxyvbpdXS5B3jla2niQZ64hiYe4olv0cTDPHF1mkCXjyHhpzxxlUtg
dvAITxTlZw5TDpsSq23HLkwKo6dNFX6Ut/FND/YzHrvSgz3GY1d4sMd57HIP
9oTC5Np0Jfh+kBoPLnPVMZrLMWqNVu+hSwdXv6lx4lLagBxXn/QaIN4wSANy
CJ+vZDHkR2sjsezPvbLEexGq3gsSA5h3pAw89V/V2zIw32PgF++F5y/xGHha
G6hpJZ9qN9/wiK/lG/PFHuwZHvu6i+FbJqm/tDuDizyFn+VtzFMYquJgv+Kx
ryUY7iSFPcdjX/Vg63jsQg/2ax77igd7nscu8GAv2G4/3y2MBx4PvvgNb+PL
HuxFHlPZoMzGHazMY19KMHSiKewlHvuiB/stj53rwX7HY3M92Hrb7ed4Cv+e
t6HS8qyJYZh9mSe+QBN/4InZisBkwiT+yBOzEiLKTkC8whNn08SrPHEWTXTb
jj2TLvcar/x5l0B6+iee+JxLYKL6Z57ooom/KEIncPZEoDoiUfuKqNS7U+lj
Gm7qv671s7pgPCAlL6z9Kf1nE10z4doY0nUSeEu3QOu+wenqgdLN4eWsYiat
tkmrNdlq6nc6dyeHy0/Twn/lqhkPw4F0nqgwFpX+ZugSw3tNCf4ZrjSON/Nt
s4MmtvCEWhjNosom8XeeOE0Rdsr4pv30foou9w9eeQZNvMUTp9LE2zwxPU3g
CQOxlSc+6RJ49v/JE9No4l88MVUR6KtM4h3bp1NUOTtR/Dev/AmaeJcnJtNE
hSdO8RB1PHZyGsMAhfU+ebGex05yMYyI8qJn78gkD5a1/azekdAZnyRyvKEJ
Idbzznd8iPW83D4hxDby7LgQ28SzY10W88GE9byLHkOzMhmRJXrakRkdInrx
1kYplkx9ZInePDsyxPbh2fYQq1+pV0e3UrLBVI1npdoWEdpCJvpqEyoYyd7N
kijiu7Z8tjVkZXtlRT29jVUzxW3NyUe4JvCdmNghbSLZ/MuvK8iJxVBaWGZS
EtlRCatKNcRbBvkdmOmKDwvp7xRHIHFLsmG5xgjouyDzQVlC76KQjSTZrhzv
PQ8vKxwfstCPb+hDQuwuPHtciN2VZ48NsbvZ3UiLS2ARKyF2560Ndtk435Ml
PDtO1K4G+V6NZvvz7McVS+aZssRHePboELsnz34sxH7U9u5RIaKZt3ZkiPVs
ujnCZTHeJ+wAnj1cfjrJtby4D48NUhgW3x1sXx47TGF2aisv7sdjh3owZ9PQ
QE/hA3gbh3iwA3nsYA92EI8d5GLytQ9OH8xjB7qYnG7jtGezk7pt592rvDiQ
x5RrndxRXjzUdvt+nsKH8Tb29WCDeGwfD3Y4j+3twTybuga4mHxVitPqwcUC
CDWJ2YYFkL1cI/IYp4/SRtT8257GREsLoaUQ1f04b3nlRdXbRVhqCpOJz1Fb
GlTv6+SistjRaVFz0hKfC2xp2NMjr0YGjeXjqUsNWxp8ldY78FLzOGPCUv2t
10ZyhHB/j/BgLczMUWpaG9nDo9/CN+Dd01gqVT2Wx3bzYMfZHYCaqGSxz8kp
PIS3oeZGdBbt2bTYz4MN5bGdPdgwHtvJgw3nsR092Age2yGNpXJ2c7OlpLb3
FG7jbajcSyaU2HXkpr7tPNsnYem0eSTP9g6xo3i2V4gdzbM9Q6xny2mPEDvW
DkqTS6QzxnG8tcYQewLPqnUS+uW0LDGeZ/MJS2e5E3g2F2In8mw2xJ7Is5kQ
O8mOTL1LYLdmQpxkWmtKWav+5fPck02u0eQoRl44xUQaIgRVQZVcE3rbcdVj
yVRDjhR8kptHeSpBlIJqldRYVCiLYkGv+3OJuRz06XRzii2X/hfm1nKCjgQq
B0lXbqq+3WTtRk+rdKWcVQ/tBjWRFupf9WfUEVG76mBb1Lx/kUbVCJfwOS2p
VbmsX5FU77Ml4LZ0u00pmQP/Nq1ZmCrU02Fel8fE/9BA1P0HkbKxnQ==\
\>"]],
Cell[BoxData[
RowBox[{"137.31641722364142`", "\[VeryThinSpace]", "-",
RowBox[{"13.974203403872998`", " ", "Log\[Nu]"}]}]], "Output",
CellChangeTimes->{{3.587906938134103*^9, 3.5879069463711557`*^9}, {
3.587906986402356*^9, 3.5879070163662424`*^9}, {3.587907057951642*^9,
3.5879070664437513`*^9}, 3.587907319073557*^9, 3.5879073525128984`*^9, {
3.587907430013956*^9, 3.587907434839589*^9}, 3.587907477079069*^9, {
3.5879076655735483`*^9, 3.587907671185275*^9}, {3.587907746830097*^9,
3.587907755081168*^9}, {3.5879078463370237`*^9, 3.5879079094522147`*^9}, {
3.5879080138337684`*^9, 3.5879080386699934`*^9}, {3.587908070953186*^9,
3.587908091942917*^9}, 3.5879081417363787`*^9}],
Cell[BoxData[
GraphicsBox[{{}, {{}, {},
{RGBColor[1, 0, 0],
LineBox[{{1., 26.877030226304015`}, {2., 11.548586588784445`}, {
3., -2.4256168150885458`}}]}}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->True,
AxesLabel->{None, None},
AxesOrigin->{1., 0.},
Method->{},
PlotRange->{{1., 3.}, {-2.4256168150885458`, 26.877030226304015`}},
PlotRangeClipping->True,
PlotRangePadding->{{0.04, 0.04}, {0.5860529408278512,
0.5860529408278512}}]], "Output",
CellChangeTimes->{{3.587906938134103*^9, 3.5879069463711557`*^9}, {
3.587906986402356*^9, 3.5879070163662424`*^9}, {3.587907057951642*^9,
3.5879070664437513`*^9}, 3.587907319073557*^9, 3.5879073525128984`*^9, {
3.587907430013956*^9, 3.587907434839589*^9}, 3.587907477079069*^9, {
3.5879076655735483`*^9, 3.587907671185275*^9}, {3.587907746830097*^9,
3.587907755081168*^9}, {3.5879078463370237`*^9, 3.5879079094522147`*^9}, {
3.5879080138337684`*^9, 3.5879080386699934`*^9}, {3.587908070953186*^9,
3.587908091942917*^9}, 3.5879081417393785`*^9}],
Cell[BoxData[
GraphicsBox[{{{}, {{}, {},
{RGBColor[0.24720000000000014`, 0.24, 0.6], Thickness[Large],
LineBox[{{7.903089986991942, 30.}, {9., 5.}, {10.,
1.}}]}}, {}}, {{}, {{}, {},
{RGBColor[1, 0, 0],
LineBox[{{1., 26.877030226304015`}, {2., 11.548586588784445`}, {
3., -2.4256168150885458`}}]}}, {}}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->True,
AxesLabel->{None, None},
AxesOrigin->{7.903089986991942, 0},
Method->{},
PlotRange->{{7.903089986991942, 10.}, {0, 30.}},
PlotRangeClipping->True,
PlotRangePadding->{{0.04193820026016116, 0.04193820026016116}, {0.6,
0.6}}]], "Output",
CellChangeTimes->{{3.587906938134103*^9, 3.5879069463711557`*^9}, {
3.587906986402356*^9, 3.5879070163662424`*^9}, {3.587907057951642*^9,
3.5879070664437513`*^9}, 3.587907319073557*^9, 3.5879073525128984`*^9, {
3.587907430013956*^9, 3.587907434839589*^9}, 3.587907477079069*^9, {
3.5879076655735483`*^9, 3.587907671185275*^9}, {3.587907746830097*^9,
3.587907755081168*^9}, {3.5879078463370237`*^9, 3.5879079094522147`*^9}, {
3.5879080138337684`*^9, 3.5879080386699934`*^9}, {3.587908070953186*^9,
3.587908091942917*^9}, 3.58790814175038*^9}],
Cell[BoxData[
GraphicsBox[{{}, {{}, {},
{RGBColor[0.24720000000000014`, 0.24, 0.6], Thickness[Large],
LineBox[{{8.*^7, 30.}, {1.*^9, 5.}, {1.*^10, 1.}}]}}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->True,
AxesLabel->{None, None},
AxesOrigin->{0, 0},
Method->{},
PlotRange->{{0, 1.*^10}, {0, 30.}},
PlotRangeClipping->True,
PlotRangePadding->{{2.*^8, 2.*^8}, {0.6, 0.6}}]], "Output",
CellChangeTimes->{{3.587906938134103*^9, 3.5879069463711557`*^9}, {
3.587906986402356*^9, 3.5879070163662424`*^9}, {3.587907057951642*^9,
3.5879070664437513`*^9}, 3.587907319073557*^9, 3.5879073525128984`*^9, {
3.587907430013956*^9, 3.587907434839589*^9}, 3.587907477079069*^9, {
3.5879076655735483`*^9, 3.587907671185275*^9}, {3.587907746830097*^9,
3.587907755081168*^9}, {3.5879078463370237`*^9, 3.5879079094522147`*^9}, {
3.5879080138337684`*^9, 3.5879080386699934`*^9}, {3.587908070953186*^9,
3.587908091942917*^9}, 3.5879081417593827`*^9}],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"\[Alpha]", "\[Rule]", "0.049422749707696764`"}], ",",
RowBox[{"b", "\[Rule]", "11.637877571012217`"}]}], "}"}]], "Output",
CellChangeTimes->{{3.587906938134103*^9, 3.5879069463711557`*^9}, {
3.587906986402356*^9, 3.5879070163662424`*^9}, {3.587907057951642*^9,
3.5879070664437513`*^9}, 3.587907319073557*^9, 3.5879073525128984`*^9, {
3.587907430013956*^9, 3.587907434839589*^9}, 3.587907477079069*^9, {
3.5879076655735483`*^9, 3.587907671185275*^9}, {3.587907746830097*^9,
3.587907755081168*^9}, {3.5879078463370237`*^9, 3.5879079094522147`*^9}, {
3.5879080138337684`*^9, 3.5879080386699934`*^9}, {3.587908070953186*^9,
3.587908091942917*^9}, 3.587908141767387*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{"Remove", "[", "\"\<Global`*\>\"", "]"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"h", "=",
RowBox[{
RowBox[{"6.6260755", "*",
RowBox[{"(",
RowBox[{"10", "^",
RowBox[{"-", "34"}]}], ")"}]}], " ", "//", "N"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"k", "=",
RowBox[{
RowBox[{"1.380658", "*",
RowBox[{"(",
RowBox[{"10", "^",
RowBox[{"-", "23"}]}], ")"}]}], " ", "//", "N"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"c", "=",
RowBox[{
RowBox[{"2.99792458", "*",
RowBox[{"10", "^", "8"}]}], " ", "//", "N"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"tcmb", "=", "2.725"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Mhz", "=",
RowBox[{"10", "^", "6"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Ghz", "=",
RowBox[{"10", "^", "9"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Thz", "=",
RowBox[{"10", "^", "12"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"tb", "[", "nu_", "]"}], "=",
RowBox[{"180",
RowBox[{"(",
RowBox[{
RowBox[{"(",
FractionBox["nu",
RowBox[{"180", " ", "Mhz"}]], ")"}], "^",
RowBox[{"-", "2.6"}]}], ")"}]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"B", "[", "T_", "]"}], "=",
RowBox[{
FractionBox[
RowBox[{"2", " ", "h", " ",
RowBox[{"nu", "^", "3"}]}],
RowBox[{"c", "^", "2"}]],
FractionBox["1",
RowBox[{
RowBox[{"Exp", "[",
RowBox[{"h", " ",
RowBox[{"nu", "/",
RowBox[{"(",
RowBox[{"k", " ", "T"}], ")"}]}]}], "]"}], "-", "1"}]]}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"Int", "[", "nu_", "]"}], "=",
RowBox[{
RowBox[{"B", "[", "tcmb", "]"}], "+",
RowBox[{"B", "[",
RowBox[{"tb", "[", "nu", "]"}], "]"}]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"Dint", "[", "nu_", "]"}], "=",
RowBox[{"D", "[",
RowBox[{
RowBox[{"Int", "[", "nu", "]"}], ",", "nu"}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{"NMinimize", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Int", "[", "x", "]"}], ",",
RowBox[{"x", ">",
RowBox[{"10", "^", "7"}]}]}], "}"}], ",", "x"}],
"]"}], "\[IndentingNewLine]",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"B", "[", "tcmb", "]"}], ",",
RowBox[{"B", "[",
RowBox[{"tb", "[", "nu", "]"}], "]"}], ",",
RowBox[{"Int", "[", "nu", "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"nu", ",",
RowBox[{"6", "Mhz"}], ",",
RowBox[{"2", " ", "Ghz"}]}], "}"}], ",",
RowBox[{"ImageSize", "\[Rule]", "Large"}], ",",
RowBox[{"PlotStyle", "\[Rule]", "Thick"}], ",",
RowBox[{"AxesStyle", "\[Rule]", "Thick"}], ",",
RowBox[{"PlotLegends", "\[Rule]",
RowBox[{"{",
RowBox[{
"\"\<B(Tcmb)\>\"", ",", "\"\<B[Tb(\[Nu])]\>\"", ",",
"\"\<B(Tcmb) + B[Tb(\[Nu])]\>\""}], "}"}]}], ",",
RowBox[{"GridLines", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"x", "/.",
RowBox[{"%", "[",
RowBox[{"[", "2", "]"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"%", "[",
RowBox[{"[", "1", "]"}], "]"}], "}"}]}], "}"}]}]}],
"]"}], "\[IndentingNewLine]",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"Dint", "[", "nu", "]"}], ",",
RowBox[{"{",
RowBox[{"nu", ",",
RowBox[{"6", "Mhz"}], ",",
RowBox[{"2", " ", "Ghz"}]}], "}"}], ",",
RowBox[{"ImageSize", "\[Rule]", "Large"}], ",",
RowBox[{"PlotStyle", "\[Rule]", "Thick"}], ",",
RowBox[{"AxesStyle", "\[Rule]", "Thick"}], ",",
RowBox[{"PlotLegends", "\[Rule]",
RowBox[{"{", "\"\<D[Int[\[Nu]],\[Nu]]\>\"", "}"}]}]}],
"]"}], "\[IndentingNewLine]"}], "Input",
CellChangeTimes->{{3.587991106355161*^9, 3.5879915265447416`*^9}, {
3.5879915583578825`*^9, 3.5879915661888704`*^9}, {3.5879915964238153`*^9,
3.587991782854005*^9}, {3.587997173133114*^9, 3.587997389623191*^9}, {
3.5879976525973372`*^9, 3.5879979544355326`*^9}, {3.5879980439001503`*^9,
3.587998090964283*^9}, {3.58799850141556*^9, 3.5879985018136325`*^9}, {
3.587998573919976*^9, 3.5879986558236275`*^9}, {3.587999214384143*^9,
3.587999272077639*^9}, {3.5879995383532453`*^9, 3.5879995442369757`*^9}}],
Cell[BoxData[
RowBox[{"{",
RowBox[{"1.1665696307960817`*^-21", ",",
RowBox[{"{",
RowBox[{"x", "\[Rule]", "5.710364976487695`*^8"}], "}"}]}],
"}"}]], "Output",
CellChangeTimes->{{3.5879978025558176`*^9, 3.587997825730826*^9},
3.5879979179668016`*^9, 3.587997956966866*^9, 3.587998502716735*^9, {
3.5879986292191577`*^9, 3.5879986566507196`*^9}, {3.5879992469753942`*^9,
3.5879992731567807`*^9}, 3.587999544813057*^9}],
Cell[BoxData[
TemplateBox[{GraphicsBox[{{}, {}, {
Hue[0.67, 0.6, 0.6],
Thickness[Large],
LineBox[CompressedData["
1:eJwVxX040wkcAPCdUmq5yi7dFdaJPV3TpRce9iX37bwlpkdxT42SvKRCq6W8
xFF6FTkd6i5s5KXab95P03gaMsvK+7B+TIjSihzH1c7d/fF5Pt8GRHgF6VAo
FI///P+R80ctjg35YHBf40RJoYAVHMF4JbDZj72qzpSWggLWscPDmaobHKS3
2NPpSx6wqk1LEhhG/lgSy31UHlPGql1kocl8GogOVdPldpJalvz5+oboteG4
/Hheh+v6VhZXtMQ2N+AcGvCmw/qYI6zGnNiprZeSsHbwC9rH8xT4ytCYolHf
Qh/9nQGfdelgs5DzYd3ebByJUyupHEtI4pwXfZTnYXhW+vJTLwEoFRQHRWsR
pgRvju0ccgJe7pROz89CpG+k1zLfs0Gr65EqdCvF5PGKfKW9N4w/tLGnNZej
0IhDSls40G3sq5tmVIWlzM5yyYHD4MbeP+cmqMai+pGmNVeCQOyasthYK8bX
VmvT57pCwadCZUVzl6DM4KnaNCIcYgZ0bjop6tBQYc87/o4Lnm8tdWQrn6C6
zfxZ/T0e5Dt6eFF9pDiSNHJdv+0spCrPlPnfqsdAxYGl8eYxcM5TTN8paUCr
zDufwk7FAaNwXIDzjXgxP2JZnkkCtA/ZbFMwm9DP8SzfXpsIP1JO90ZyZci6
Gx3FpyfBLu9HqVtLm9F6YLhuw77LwE5duzdaJcfmyQvBAzFXYXXxMQu1SQu2
6l3126+5Dv2FXQbt7gq09rX5eoqdAjDgvqSb9xz9tWVRrgdvgt9MyarZyhd4
3ct9SP04DRyislZ3nGzFJv30P/gr0mHLKHuzLa0NQz+5uKem3IJwLtWzqKwN
B/cEZvvSMmDje+8zfi7tuOXMP8mca5nQ3JdRwB9rR3ZHyJWY72/D6KOgfmZ8
B9pxw1p31d+BPZUskzqDTrQNqGNOcn6H39YtCh0s68TW8fGXWWbZEBR3SLzL
tQvLKfOTy1U5sNJdZIhvu3Db6KcXk4O5YLfsRlRcQjdWUPkdCS18KBs7Odyw
SonUvcXikGoBUK12H7hTpUS5kdPm8do8GDpd3l3p3oNV1opsc3E+3DU1OOj/
oQetfPOPMtvugUATqaGl9qLykuPZP98UAONB6AV9sz70V+ZItdOFkNzjZZbR
2Id/GzXLXOjFwJ1tfhboq8K6Ya7UAO4Df7tLjN2ECr90dg41/ekBVKjFVnk3
X2IpQ9VCpj0E5/jHM54MEucdgreJJEIoVFW7vdtA4qFvLI/8JRWCnk1l9hUm
iYvHhvV+kAlBPiF0fmJJYq+5flV7uxDYATkZW4HElhDXTO2oELydEq1X7SHx
s/k7XqgBAYFU18i+KBKT789l3Q4hoDHEUR4ZS+JsNDVp4gQBjIYfTGjxJK5x
nnntcoqAsVjbp7svkuiVvG/ZbCwBJ95vNJSkkDhpYkb6/UIAr02/KiePxMZL
aRkOEgK6Ni1daldAYsmvHwbuSgmwvrboYE8RiTSBcc7nJgJmd87rriRIjOCN
xtW0ExBbMeGdWE1ijaNpw44xAsgVmmKTGhIrkiZqcjUE7Ah7oxVLSFQ7Xftu
wRQBFMare1NSEq8uNAlu1hJwOLF/LrWRxMtDhlabFohA2t/nYSEjMUqnNypN
TwSmoOTL5CTy245sn9EXwYXMjulABYkxT6oCOTQR/AuyYWU/
"]]}, {
Hue[0.9060679774997897, 0.6, 0.6],
Thickness[Large],
LineBox[CompressedData["
1:eJwVxX041AccAPDrkq1UGzdqq2S0q7lUq/Swb+Ir8tI5YmcpWhmzapYm5vr9
cO6czOG8t/SgQ6UXHeeYuzJLXbiceQnXXT/0soiUhxKate2Pz/P5NPSYfzid
RqN5/Of/6aHW05FTiThfaXeOY1EP6hJycnOKCD/guZKciBr4yGIVbWwwD4v5
z7kujMvgYLT/pVVAMbLO/Z403FcOov3xsglNGW4omNsZcksKNAXNWdtRgfav
cq8KjUrgxLlJuo5fiSFpMSkur8/C3AIfSaV3NTaPNuVYHTkDo1cdnBitNZgq
izA+GnUaelcFL8heWYcrDZcPyp7ngzcnaMa7tB437nVkS8V5oPLMfG/VnArz
9P2VQT/lQqDCYM9gN2BH82jOUkEOEAP0LHdtI4oiZMqVRdngO7KJ3mJ6E+2e
uiy/M5AF5W4+/iaBTZjdvK/Ka10WSPpi5AfzbmHcXcbkm8USiPNVrXZtuI2T
tdIB5WwGMC+OluI7Ne5wqjr8YCQduh47bNGympE1qH6inpcOO2nR92OPt+CA
j3SydLkYvLhKyebqVtwazZ/tdksDjmRFwEmDBp14cZid/gssu3Rk/aBlG2Zo
+k7mdKZC/8Uesy62FoPSG+cV2qUCDLAX9p5oR9bXfker809ByFSV+XTtn8hY
+i2vfiYFnHm/LuuO6kDm6XZB7rEU+GKIs9GR0Ykq/WuR6UMR/HjcxLdC3omy
MPF3NftFYPuCGxPi0YXXAswl4ifJ0KovuCAd7sJmM50+9vtkGFKG97MSu3G0
fYn072kh+NV+adlodg8j6QEFoRIhnLUyPvxQfg9/Dh5yE1kJITzhG5WXZw96
+K3ucLohAFO2zAJHerDZWPxxmb8Ati/O4CUk9eLUmbaIiokkkA9HPblt3odh
y9bZtBYkgYn97n2FdX3IM3JdeMg+CR5H1/TWsnXIqn50/sADPhRZmx04+FKH
mWXca+p4PpSOxY4xJPfxLd00Jt+aD8wrh4VL1uhRxC4VXy9KhHSd/5oCtR6v
aJPfaEcS4Ph0692wYAOWBHoNvnJPAOlWD2L7uAEVaTHxGy/Eg2JQZV+W9QD/
mottuTJLwq7EG1O+TAonDFvdmcEkXDTUez9fRyFT4yIMDyLhfYfa4lQWhdYv
bQ3lgSRoxit33dxEoe3eUJ3NHhI4oSUFm4HCuEi9sc0uErjugm3mfhSOW4+u
ZW4iIczEM1bPo5A/c2OFsxEJ6gg3TSxJ4efunxFJ80hg3naxZCRS+PDp9Ylb
/xAwTDre2Z1M4YDB2dZrhoAfXthaNGRSqFbaK796QcCJziV1JWUUmgee2h2l
I6DHbtGi7RcovFf4x1pFDwHb0owP6CoobG0LWjHdRcC067sFptco3OLI8+Rr
CSAV41xBPYUV3EXK7CYCqA/HLllep5A7O8jpbSRgR+SzOVUDhQEy+dtPGgig
MR+dn2yiMGePeWH5bwQcEvTPSNQUDu3JED9TENDUr/dZ30JhbWp77gY5AdbQ
J23RUDiX2SaPlhEgPN39OkxLYed8Yrj+KgH/Avg5Mic=
"]]}, {
Hue[0.1421359549995791, 0.6, 0.6],
Thickness[Large],
LineBox[CompressedData["
1:eJwVy3k4lAkcwPGJUlHbILK7TPLUPIQnOzUMPx0/Jk3uJRUy1KPdx1qVx/Ek
auRoe3rUtK0dRq5hnIX3de1Qkw2TI1ORc+wrwqbDkWRZ0bZ/fJ/PX99tp856
nVaj0WiHvvS/O68EKI4tClC9zjLXXV8Gipy4D6wryegykGTHD6mCzfpGtMnh
VCyQGB1pMikFzmr/aWPvbDQ7eUacvSCFZP+LFbPt+RgoNzTVX5IArZq2X/ms
GEPORnnmVeVAZO4Htf74MixP/GGMfJcJy2vchGXOJMbbfbVxRZ4Bb+9y9uq2
VaH3yb17bCzF0Gt0Ys2vhrV4K2jHlrUG6eDs7rvonCdDKd26QGqfBvW8G2uN
luvxe3QYNigTwdHqQbauqxzNrq2envUQQewLtZsHlQ3YrnogsjEQgccbK7VW
7YdY4KepZbNeBFKum5fW0UbUNDuie91QBMK+qMqg1CbUExvfH/zyn/eo3+og
b8aW+D/OLIhFwCx6m4efFTgys+lew+o06Brl7FaatyD3FqPpsiANHGkRA9Hh
rZjy8bq1iWE6HPapE7LINmSXsAIudaSDu/Bb7wuD7ZjIXvHmJIlhS8lPFsOM
DiwPsXoXFZgBQ0U9Ol2uSuTNLaU47bsN8MJ1fW/kE5w39d+1zSwTAuYJvYWa
p5g6sLxVbpsF+2PStzw/9wz9fP89H8rLhu9eue+y1e3ERxMOmwwEOXAmXMuj
uLITM1f1mN4OyoWdUz5RAYe6MEnILfVcyYU2lahQMtGFvlOvL/iTEnhVd3rI
XPAcfS0u0McC88Czxo7RoNONsvBI6NTOh9vGGiEjld2ooaxoCFPlw+lLgfWH
eT0YemRtWFqmFLRdK/TxTQ+OF/NFGdEFYL/hesyly73IYqVOmh8uhMqJc2PN
en04djxC/RtGEWixXfwyavtwIuv3cMcNxTAaUdVb49qPq0YP8va+L4YsEx1+
0HQ/GihsuzNnSiBvMnpSVziAopar3eLZUmDeCUncuF2F740376l5fQdS+r22
ixQqrKit+0Xy6S6EL7Q9Dj4xiL9tiuV3qpeDZM+hWPuZQQz+Z+74hFYFVA/X
s/Nv/oU26h/zxAYEOAnuz3swKWwI01gRSwkoGpQ5vzOl0OvrjvU6RQSs49Rk
XzWncN5kh9e1EgLaZ8qcHlpReFaWkh5bToD7qRwRCyh8oNL+FCQjwOdggrWe
J4UWijlDmw4CgrV40aoYCoeknAf0OQIUP3Lbo+MofKrN8bs5TwCz+QBDV0Bh
7Eghi75IwESc7SOXJApfOT5Jp68Q8PPUTn35DQr1QnfYbV5HQmTnxtqcfAqb
OaueMQ1J6LHU1LQvpDC5O4JVyiDB+poGv7+Ywt4wbqflNhIWHD6v0S6n8LHb
UhObSUJc9YxPgoxCWYvkIs+KBIo+WcK4R6HA6+9GJYuEfWGvl+vlFI67xXO9
2STQmC8LPjRSyD9GfOLbkXAyYWhRqKDwpRN397g9CY1DKjeLVgpbQ8wKQ/eT
YAJ9ktZ2Cv8k+T6zSEJi2vOPwUoKl+ijB2K4JPwH10QkUA==
"]]}}, AspectRatio -> NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes -> True, AxesLabel -> {None, None}, AxesOrigin -> {0, 0}, AxesStyle ->
Thickness[Large],
GridLines -> {{5.710364976487695*^8}, {1.1665696307960817`*^-21}},
ImageSize -> Large, Method -> {},
PlotRange -> {{6000000, 2000000000}, {0., 5.1006497103330765`*^-21}},
PlotRangeClipping -> True, PlotRangePadding -> {
Scaled[0.02],
Scaled[0.02]}],
TemplateBox[{
"\"B(Tcmb)\"", "\"B[Tb(\[Nu])]\"", "\"B(Tcmb) + B[Tb(\[Nu])]\""},
"LineLegend", DisplayFunction -> (StyleBox[
StyleBox[
PaneBox[
TagBox[
GridBox[{{
TagBox[
GridBox[{{
GraphicsBox[{{
Directive[
EdgeForm[{
Opacity[0.3],
GrayLevel[0]}],
Hue[0.67, 0.6, 0.6],
Thickness[Large]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[{
Opacity[0.3],
GrayLevel[0]}],
Hue[0.67, 0.6, 0.6],
Thickness[Large]], {}}}, AspectRatio -> Full,
ImageSize -> {20, 10}, PlotRangePadding -> None,
ImagePadding -> 1,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #}, {
GraphicsBox[{{
Directive[
EdgeForm[{
Opacity[0.3],
GrayLevel[0]}],
Hue[0.9060679774997897, 0.6, 0.6],
Thickness[Large]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[{
Opacity[0.3],
GrayLevel[0]}],
Hue[0.9060679774997897, 0.6, 0.6],
Thickness[Large]], {}}}, AspectRatio -> Full,
ImageSize -> {20, 10}, PlotRangePadding -> None,
ImagePadding -> 1,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #2}, {
GraphicsBox[{{
Directive[
EdgeForm[{
Opacity[0.3],
GrayLevel[0]}],
Hue[0.1421359549995791, 0.6, 0.6],
Thickness[Large]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[{
Opacity[0.3],
GrayLevel[0]}],
Hue[0.1421359549995791, 0.6, 0.6],
Thickness[Large]], {}}}, AspectRatio -> Full,
ImageSize -> {20, 10}, PlotRangePadding -> None,
ImagePadding -> 1,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #3}},
GridBoxAlignment -> {
"Columns" -> {Center, Left}, "Rows" -> {{Baseline}}},
AutoDelete -> False,
GridBoxDividers -> {
"Columns" -> {{False}}, "Rows" -> {{False}}},
GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}},
GridBoxSpacings -> {"Columns" -> {{0.5}}, "Rows" -> {{0.8}}}],
"Grid"]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}], "Grid"],
Alignment -> Left, AppearanceElements -> None,
ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction -> "ResizeToFit"],
LineIndent -> 0, StripOnInput -> False], {FontFamily -> "Times"},
Background -> Automatic, StripOnInput -> False]& ), Editable -> True,
InterpretationFunction :> (RowBox[{"LineLegend", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Hue", "[",
RowBox[{"0.67`", ",", "0.6`", ",", "0.6`"}], "]"}], ",",
RowBox[{"Thickness", "[", "Large", "]"}]}], "]"}], ",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Hue", "[",
RowBox[{"0.9060679774997897`", ",", "0.6`", ",", "0.6`"}],
"]"}], ",",
RowBox[{"Thickness", "[", "Large", "]"}]}], "]"}], ",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Hue", "[",
RowBox[{"0.1421359549995791`", ",", "0.6`", ",", "0.6`"}],
"]"}], ",",
RowBox[{"Thickness", "[", "Large", "]"}]}], "]"}]}], "}"}],
",",
RowBox[{"{",
RowBox[{#, ",", #2, ",", #3}], "}"}], ",",
RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& )]},
"Legended",
DisplayFunction->(GridBox[{{
TagBox[
ItemBox[
PaneBox[
TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline},
BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"],
"SkipImageSizeLevel"],
ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}},
GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}},
AutoDelete -> False, GridBoxItemSize -> Automatic,
BaselinePosition -> {1, 1}]& ),
Editable->True,
InterpretationFunction->(RowBox[{"Legended", "[",
RowBox[{#, ",",
RowBox[{"Placed", "[",
RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output",
CellChangeTimes->{{3.5879978025558176`*^9, 3.587997825730826*^9},
3.5879979179668016`*^9, 3.587997956966866*^9, 3.587998502716735*^9, {
3.5879986292191577`*^9, 3.5879986566507196`*^9}, {3.5879992469753942`*^9,
3.5879992731567807`*^9}, 3.5879995448770676`*^9}],
Cell[BoxData[
TemplateBox[{GraphicsBox[{{}, {}, {
Hue[0.67, 0.6, 0.6],
Thickness[Large],
LineBox[CompressedData["
1:eJwVzn0w1HkcwPEdd1xRjceYq1BTOx5qTh3GB8VnT9G2HlKUjkjbuRqkUUpE
qEuXWpdSEbLKUimWdfvbGA+hte1+s6td2+rnoXZKacv1YBhc1/3xnte/7+Xx
B8P3GTEYjIBv/W97DjGsSapCwmUePxowSp3+9cT9j7IqLMj8bVHpmRGK0cTw
U/TVYNDagyf16zXU4RufjLQn65Ab6JBSv6SPmjMO5tWxG9AxSs7iRzyixu96
rbfqbURzfe3ZHucOSrMs2vivpc1op59Xc/86RbFDoqbZfDHmO44nUE5CShJ0
4YdlcxK8caGqnD9bQ0U2DXpYcVqx/eN2m2nPCipj2Khwo6INGXKRpizpHBX6
1s1IatGBjHv+OfUzLLgZEBxuFtmJjie+dqQ9LQDewBFh3KWH6LZRXySvLoFj
oRIHVmsX2k0mPQ/l8YEpGOfj124szCtftlMlANVLr58Vro8wTpx9eWT/XfiF
kfos7ZAU47K3xy09Xw+bIyjeuoZe5OatvLX3gRBCeEu2HR+U4ewlntRwtwls
aw+sHrGXo3XOHbVM2AxDArWliqPAsc/XPF+dEoPPMGe+5jDBi1vHClr8JBAz
WW8zJXqC1uklxbGWLeCXftW2P6UP4wOW87IkrbD2dchPYKVE/xFrW05GGyQf
MgutESrx7xna2u5yO7i8jzgSE6jCBUKnHW67OqBXV1xdOaZCab7JlOvqTnhN
7Rtyze7HVtMz3t8bOiFM5G3fZvkUe6w/cPcIHkKpo8n+UeFT9HXtSR1N7oJ9
WbGSzUFqtF+ljGxgdoMF5/5ifKvGH1Uz3tXj3eC74Hx6Vo4Ghzz4Dpcre0A4
lqLvshlAUtZyzS/8EZh5bNlV0jyAyYmsF47mUniZ2qgRcbRYLXB1VrdJoWyF
5e64D1rUH7n3hzizF/iGNIMV7xnKNi+83u4uA+ad/XkLV+pwxWSoHWtYBgXa
8JXF3Tqc3WaimSx+DIemeh9zowfRPfz36lSUQ6V7YIbvxCDGsU0WNb2WQ9OI
xKOq8DlOiBO2OpcqYFN2y2Qok8bcvM8vVEhAMChmv3OisShGfYAKIDDPS1Se
70pj561yfUUgAdlE3aYONxoZGf/WJQYTCImvKF7nQ2OtIuuqcRSBiI25njZh
NM4T6/rcUwhwzYLSdOk0JlKn/8kvJ9CdECBLy6SxUGnanlRJgNnlb2+VTWPU
qE1O+E0CY5nQs+UUjaZspW7JbQKJ710Wt16gUdHINdSJCBxWLmyuqKJRSzyK
nsgJqNeYmvpW0xh9Laag8QkBzz9NdmtraDy6d+exKyoCU6yvxhb3aNRY6Jxi
tQQymyYicsU0Ru4oemd4SYA2N9TaP6BxvUCbqXxFYEPSmzlJK423zW0ZojcE
GMwXtz510shxujic8YHAntyhaV73t78wrU/sRwKdQ7rg1VIaN5xyOcf6QmCF
z0ClVEajIeu8YtUUgbwr/V+4ChqDp42/mz9D4D+lKSwl
"]]}}, AspectRatio -> NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes -> True, AxesLabel -> {None, None}, AxesOrigin -> {0, 0}, AxesStyle ->
Thickness[Large], ImageSize -> Large, Method -> {},
PlotRange -> {{6000000, 2000000000}, {-6.810807360283462*^-30,
3.0549236372515227`*^-30}}, PlotRangeClipping -> True, PlotRangePadding -> {
Scaled[0.02],
Scaled[0.02]}],
TemplateBox[{"\"D[Int[\[Nu]],\[Nu]]\""}, "LineLegend",
DisplayFunction -> (StyleBox[
StyleBox[
PaneBox[
TagBox[
GridBox[{{
TagBox[
GridBox[{{
GraphicsBox[{{
Directive[
EdgeForm[{
Opacity[0.3],
GrayLevel[0]}],
Hue[0.67, 0.6, 0.6],
Thickness[Large]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[{
Opacity[0.3],
GrayLevel[0]}],
Hue[0.67, 0.6, 0.6],
Thickness[Large]], {}}}, AspectRatio -> Full,
ImageSize -> {20, 10}, PlotRangePadding -> None,
ImagePadding -> 1,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #}},
GridBoxAlignment -> {
"Columns" -> {Center, Left}, "Rows" -> {{Baseline}}},
AutoDelete -> False,
GridBoxDividers -> {
"Columns" -> {{False}}, "Rows" -> {{False}}},
GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}},
GridBoxSpacings -> {"Columns" -> {{0.5}}, "Rows" -> {{0.8}}}],
"Grid"]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}], "Grid"],
Alignment -> Left, AppearanceElements -> None,
ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction -> "ResizeToFit"],
LineIndent -> 0, StripOnInput -> False], {FontFamily -> "Times"},
Background -> Automatic, StripOnInput -> False]& ), Editable -> True,
InterpretationFunction :> (RowBox[{"LineLegend", "[",
RowBox[{
RowBox[{"{",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Hue", "[",
RowBox[{"0.67`", ",", "0.6`", ",", "0.6`"}], "]"}], ",",
RowBox[{"Thickness", "[", "Large", "]"}]}], "]"}], "}"}], ",",
RowBox[{"{", #, "}"}], ",",
RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& )]},
"Legended",
DisplayFunction->(GridBox[{{
TagBox[
ItemBox[
PaneBox[
TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline},
BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"],
"SkipImageSizeLevel"],
ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}},
GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}},
AutoDelete -> False, GridBoxItemSize -> Automatic,
BaselinePosition -> {1, 1}]& ),
Editable->True,
InterpretationFunction->(RowBox[{"Legended", "[",
RowBox[{#, ",",
RowBox[{"Placed", "[",
RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output",
CellChangeTimes->{{3.5879978025558176`*^9, 3.587997825730826*^9},
3.5879979179668016`*^9, 3.587997956966866*^9, 3.587998502716735*^9, {
3.5879986292191577`*^9, 3.5879986566507196`*^9}, {3.5879992469753942`*^9,
3.5879992731567807`*^9}, 3.5879995449100647`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"NIntegrate", "[",
RowBox[{
RowBox[{"Int", "[", "nu", "]"}], ",",
RowBox[{"{",
RowBox[{"nu", ",",
RowBox[{"10", " ", "Mhz"}], ",", "Thz"}], "}"}]}], "]"}], "*", "4",
"\[Pi]", " ",
RowBox[{"6361", "^", "2"}]}], "\[IndentingNewLine]"}]], "Input",
CellChangeTimes->{{3.5880011867762675`*^9, 3.5880012676987762`*^9}, {
3.5880013082120457`*^9, 3.5880013176682835`*^9}, {3.5880013854420767`*^9,
3.5880013954333925`*^9}}],
Cell[BoxData["506.0458798797448`"], "Output",
CellChangeTimes->{{3.588001246033969*^9, 3.588001268455892*^9},
3.588001396134457*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
FractionBox[
RowBox[{"h", " ", "c"}],
RowBox[{
RowBox[{"10", "^",
RowBox[{"-", "3"}]}], " ", "k"}]]], "Input",
CellChangeTimes->{{3.5880022419083023`*^9, 3.5880022597065935`*^9}}],
Cell[BoxData["14.387686603333911`"], "Output",
CellChangeTimes->{3.588002260165655*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{"Remove", "[", "\"\<Global`*\>\"", "]"}], "\[IndentingNewLine]",
RowBox[{"f", "=",
RowBox[{
RowBox[{"Cos", "[", "tp", "]"}], "\[Equal]",
FractionBox["b",
RowBox[{"D", "+",
RowBox[{"R", " ",
RowBox[{"Cos", "[", "t", "]"}]}]}]]}]}], "\[IndentingNewLine]",
RowBox[{"g", "=",
RowBox[{
RowBox[{"Cos", "[", "t", "]"}], "\[Equal]",
SqrtBox[
RowBox[{"1", "-",
SuperscriptBox[
RowBox[{"(",
FractionBox["b", "R"], ")"}], "2"]}]]}]}], "\[IndentingNewLine]",
RowBox[{"h", "=",
RowBox[{"b", "\[Equal]",
RowBox[{"R", " ",
RowBox[{"Sin", "[", "t", "]"}]}]}]}], "\[IndentingNewLine]",
RowBox[{"Solve", "[",
RowBox[{"{",
RowBox[{"f", ",", "g", ",", "h"}], "}"}], "]"}]}], "Input",
CellChangeTimes->{{3.588003807389589*^9, 3.5880039298674717`*^9}, {
3.5880039645349736`*^9, 3.5880040145384874`*^9}, {3.5880040974312363`*^9,
3.5880041150905237`*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"Cos", "[", "tp", "]"}], "\[Equal]",
FractionBox["b",
RowBox[{"D", "+",
RowBox[{"R", " ",
RowBox[{"Cos", "[", "t", "]"}]}]}]]}]], "Output",
CellChangeTimes->{{3.588003882028303*^9, 3.5880039309146085`*^9},
3.588004116447701*^9}],
Cell[BoxData[
RowBox[{
RowBox[{"Cos", "[", "t", "]"}], "\[Equal]",
SqrtBox[
RowBox[{"1", "-",
FractionBox[
SuperscriptBox["b", "2"],
SuperscriptBox["R", "2"]]}]]}]], "Output",
CellChangeTimes->{{3.588003882028303*^9, 3.5880039309146085`*^9},
3.5880041164507008`*^9}],
Cell[BoxData[
RowBox[{"b", "\[Equal]",
RowBox[{"R", " ",
RowBox[{"Sin", "[", "t", "]"}]}]}]], "Output",
CellChangeTimes->{{3.588003882028303*^9, 3.5880039309146085`*^9},
3.5880041164537005`*^9}],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"Sin", "[", "t", "]"}], "\[Rule]",
FractionBox["b", "R"]}], ",",
RowBox[{"D", "\[Rule]",
RowBox[{
RowBox[{
RowBox[{"-", "R"}], " ",
SqrtBox[
FractionBox[
RowBox[{
RowBox[{"-",
SuperscriptBox["b", "2"]}], "+",
SuperscriptBox["R", "2"]}],
SuperscriptBox["R", "2"]]]}], "+",
RowBox[{"b", " ",
RowBox[{"Sec", "[", "tp", "]"}]}]}]}], ",",
RowBox[{
RowBox[{"Cos", "[", "t", "]"}], "\[Rule]",
SqrtBox[
FractionBox[
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-", "b"}], "+", "R"}], ")"}], " ",
RowBox[{"(",
RowBox[{"b", "+", "R"}], ")"}]}],
SuperscriptBox["R", "2"]]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"Sin", "[", "t", "]"}], "\[Rule]", "0"}], ",",
RowBox[{
RowBox[{"Cos", "[", "tp", "]"}], "\[Rule]", "0"}], ",",
RowBox[{
RowBox[{"Cos", "[", "t", "]"}], "\[Rule]", "1"}], ",",
RowBox[{"b", "\[Rule]", "0"}]}], "}"}]}], "}"}]], "Output",
CellChangeTimes->{{3.588003882028303*^9, 3.5880039309146085`*^9},
3.588004116503713*^9}]
}, Open ]]
},
WindowSize->{1053, 731},
WindowMargins->{{0, Automatic}, {0, Automatic}},
FrontEndVersion->"9.0 for Microsoft Windows (64-bit) (January 25, 2013)",
StyleDefinitions->"Default.nb"
]
(* End of Notebook Content *)
(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[CellGroupData[{
Cell[579, 22, 3050, 92, 232, "Input"],
Cell[3632, 116, 4971, 85, 245, 504, 12, "CachedBoxData", "BoxData", "Output"],
Cell[8606, 203, 706, 10, 31, "Output"],
Cell[9315, 215, 1079, 21, 234, "Output"],
Cell[10397, 238, 1238, 24, 245, "Output"],
Cell[11638, 264, 1007, 19, 242, "Output"],
Cell[12648, 285, 746, 12, 31, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[13431, 302, 4444, 133, 387, "Input"],
Cell[17878, 437, 444, 9, 33, "Output"],
Cell[18325, 448, 11191, 224, 355, "Output"],
Cell[29519, 674, 5383, 109, 341, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[34939, 788, 505, 13, 52, "Input"],
Cell[35447, 803, 137, 2, 31, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[35621, 810, 208, 6, 47, "Input"],
Cell[35832, 818, 88, 1, 31, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[35957, 824, 950, 26, 158, "Input"],
Cell[36910, 852, 285, 8, 48, "Output"],
Cell[37198, 862, 296, 9, 56, "Output"],
Cell[37497, 873, 207, 5, 31, "Output"],
Cell[37707, 880, 1312, 42, 59, "Output"]
}, Open ]]
}
]
*)
(* End of internal cache information *)