-
Notifications
You must be signed in to change notification settings - Fork 2
/
allemothershadysPMFtoPDF.nb
1373 lines (1352 loc) · 70 KB
/
allemothershadysPMFtoPDF.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 10.0' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 71464, 1364]
NotebookOptionsPosition[ 70880, 1340]
NotebookOutlinePosition[ 71239, 1356]
CellTagsIndexPosition[ 71196, 1353]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"dat", " ", "=", " ",
RowBox[{"RandomVariate", "[",
RowBox[{
RowBox[{"NormalDistribution", "[", "]"}], ",",
RowBox[{"10", "^", "4"}]}], "]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"hl", "=",
RowBox[{"HistogramList", "[",
RowBox[{"dat", ",", "100"}], "]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{"Histogram", "[",
RowBox[{"dat", ",",
RowBox[{"{",
RowBox[{"hl", "[",
RowBox[{"[", "1", "]"}], "]"}], "}"}]}], "]"}], "\[IndentingNewLine]",
RowBox[{"d", "=",
RowBox[{"HistogramDistribution", "[", "dat", "]"}]}], "\[IndentingNewLine]",
RowBox[{"dp1", ":=",
RowBox[{"DiscretePlot", "[",
RowBox[{
RowBox[{"PDF", "[",
RowBox[{"d", ",", "x"}], "]"}], ",",
RowBox[{"{",
RowBox[{"x", ",",
RowBox[{"hl", "[",
RowBox[{"[", "1", "]"}], "]"}]}], "}"}]}],
"]"}]}], "\[IndentingNewLine]",
RowBox[{"dp2", ":=",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"PDF", "[",
RowBox[{
RowBox[{"NormalDistribution", "[", "]"}], ",", "x"}], "]"}], ",",
RowBox[{"{",
RowBox[{"x", ",",
RowBox[{"-", "3"}], ",", "3"}], "}"}], ",",
RowBox[{"Filling", "\[Rule]", "Axis"}], ",",
RowBox[{"PlotTheme", "\[Rule]", "\"\<Web\>\""}]}],
"]"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"x", " ", "=", " ",
RowBox[{"hl", "[",
RowBox[{"[", "1", "]"}], "]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"y", " ", "=", " ",
RowBox[{
RowBox[{"hl", "[",
RowBox[{"[", "2", "]"}], "]"}], "/",
RowBox[{"Total", "[",
RowBox[{
RowBox[{"hl", "[",
RowBox[{"[", "2", "]"}], "]"}], "*",
RowBox[{"Differences", "[",
RowBox[{"hl", "[",
RowBox[{"[", "1", "]"}], "]"}], "]"}]}], "]"}]}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"dp3", " ", ":=", " ",
RowBox[{"ListPlot", "[",
RowBox[{
RowBox[{"Partition", "[",
RowBox[{
RowBox[{"Riffle", "[",
RowBox[{"x", ",", "y"}], "]"}], ",", "2"}], "]"}], ",",
RowBox[{"PlotStyle", "\[Rule]", "Black"}]}], "]"}]}],
"\[IndentingNewLine]"}], "\[IndentingNewLine]",
RowBox[{"Show", "[",
RowBox[{"dp1", ",", "dp3", ",", "dp2"}], "]"}]}], "Input",
CellChangeTimes->{{3.64010679872614*^9, 3.640106805220325*^9}, {
3.640106884757675*^9, 3.6401069135175037`*^9}, {3.640106950692175*^9,
3.6401069801845293`*^9}, {3.640107013905797*^9, 3.6401071456841717`*^9}, {
3.640107291626627*^9, 3.640107307607801*^9}, {3.640107339295507*^9,
3.640107634511386*^9}, {3.640107732268923*^9, 3.640107783674733*^9}, {
3.640107824577284*^9, 3.640107853925972*^9}, {3.6401079163393917`*^9,
3.640107937580761*^9}, {3.640108031922741*^9, 3.640108073975342*^9}, {
3.640115814243146*^9, 3.6401158149668093`*^9}, {3.640116582759973*^9,
3.640116761864079*^9}, {3.640116832001296*^9, 3.640116842709375*^9},
3.640116928883115*^9}],
Cell[BoxData[
GraphicsBox[{
{RGBColor[0.987148, 0.8073604000000001, 0.49470040000000004`], EdgeForm[{
Opacity[0.119], Thickness[Small]}], {},
{RGBColor[0.987148, 0.8073604000000001, 0.49470040000000004`], EdgeForm[{
Opacity[0.119], Thickness[Small]}], RectangleBox[{-3.9, 0}, {-3.8, 1},
RoundingRadius->0], RectangleBox[{-3.8, 0}, {-3.7, 1},
RoundingRadius->0], RectangleBox[{-3.7, 0}, {-3.6, 2},
RoundingRadius->0], RectangleBox[{-3.5, 0}, {-3.4, 3},
RoundingRadius->0], RectangleBox[{-3.4, 0}, {-3.3, 1},
RoundingRadius->0], RectangleBox[{-3.3, 0}, {-3.2, 1},
RoundingRadius->0], RectangleBox[{-3.2, 0}, {-3.1, 5},
RoundingRadius->0], RectangleBox[{-3.1, 0}, {-3., 4},
RoundingRadius->0], RectangleBox[{-3., 0}, {-2.9, 11},
RoundingRadius->0], RectangleBox[{-2.9, 0}, {-2.8, 9},
RoundingRadius->0], RectangleBox[{-2.8, 0}, {-2.7, 11},
RoundingRadius->0], RectangleBox[{-2.7, 0}, {-2.6, 11},
RoundingRadius->0], RectangleBox[{-2.6, 0}, {-2.5, 16},
RoundingRadius->0], RectangleBox[{-2.5, 0}, {-2.4, 27},
RoundingRadius->0], RectangleBox[{-2.4, 0}, {-2.3, 30},
RoundingRadius->0], RectangleBox[{-2.3, 0}, {-2.2, 44},
RoundingRadius->0], RectangleBox[{-2.2, 0}, {-2.1, 37},
RoundingRadius->0], RectangleBox[{-2.1, 0}, {-2., 48},
RoundingRadius->0], RectangleBox[{-2., 0}, {-1.9, 63},
RoundingRadius->0], RectangleBox[{-1.9, 0}, {-1.8, 72},
RoundingRadius->0], RectangleBox[{-1.8, 0}, {-1.7, 80},
RoundingRadius->0], RectangleBox[{-1.7, 0}, {-1.6, 110},
RoundingRadius->0], RectangleBox[{-1.6, 0}, {-1.5, 123},
RoundingRadius->0], RectangleBox[{-1.5, 0}, {-1.4, 130},
RoundingRadius->0], RectangleBox[{-1.4, 0}, {-1.3, 164},
RoundingRadius->0], RectangleBox[{-1.3, 0}, {-1.2, 182},
RoundingRadius->0], RectangleBox[{-1.2, 0}, {-1.1, 208},
RoundingRadius->0], RectangleBox[{-1.1, 0}, {-1., 240},
RoundingRadius->0], RectangleBox[{-1., 0}, {-0.9, 265},
RoundingRadius->0], RectangleBox[{-0.9, 0}, {-0.8, 262},
RoundingRadius->0], RectangleBox[{-0.8, 0}, {-0.7, 286},
RoundingRadius->0], RectangleBox[{-0.7, 0}, {-0.6, 334},
RoundingRadius->0], RectangleBox[{-0.6, 0}, {-0.5, 335},
RoundingRadius->0], RectangleBox[{-0.5, 0}, {-0.4, 356},
RoundingRadius->0], RectangleBox[{-0.4, 0}, {-0.3, 348},
RoundingRadius->0], RectangleBox[{-0.3, 0}, {-0.2, 377},
RoundingRadius->0], RectangleBox[{-0.2, 0}, {-0.1, 390},
RoundingRadius->0], RectangleBox[{-0.1, 0}, {0., 389},
RoundingRadius->0], RectangleBox[{0., 0}, {0.1, 397},
RoundingRadius->0], RectangleBox[{0.1, 0}, {0.2, 373},
RoundingRadius->0], RectangleBox[{0.2, 0}, {0.3, 388},
RoundingRadius->0], RectangleBox[{0.3, 0}, {0.4, 359},
RoundingRadius->0], RectangleBox[{0.4, 0}, {0.5, 341},
RoundingRadius->0], RectangleBox[{0.5, 0}, {0.6, 375},
RoundingRadius->0], RectangleBox[{0.6, 0}, {0.7, 312},
RoundingRadius->0], RectangleBox[{0.7, 0}, {0.8, 323},
RoundingRadius->0], RectangleBox[{0.8, 0}, {0.9, 291},
RoundingRadius->0], RectangleBox[{0.9, 0}, {1., 270},
RoundingRadius->0], RectangleBox[{1., 0}, {1.1, 245},
RoundingRadius->0], RectangleBox[{1.1, 0}, {1.2, 203},
RoundingRadius->0], RectangleBox[{1.2, 0}, {1.3, 184},
RoundingRadius->0], RectangleBox[{1.3, 0}, {1.4, 142},
RoundingRadius->0], RectangleBox[{1.4, 0}, {1.5, 164},
RoundingRadius->0], RectangleBox[{1.5, 0}, {1.6, 123},
RoundingRadius->0], RectangleBox[{1.6, 0}, {1.7, 86},
RoundingRadius->0], RectangleBox[{1.7, 0}, {1.8, 92},
RoundingRadius->0], RectangleBox[{1.8, 0}, {1.9, 66},
RoundingRadius->0], RectangleBox[{1.9, 0}, {2., 54},
RoundingRadius->0], RectangleBox[{2., 0}, {2.1, 52},
RoundingRadius->0], RectangleBox[{2.1, 0}, {2.2, 38},
RoundingRadius->0], RectangleBox[{2.2, 0}, {2.3, 37},
RoundingRadius->0], RectangleBox[{2.3, 0}, {2.4, 25},
RoundingRadius->0], RectangleBox[{2.4, 0}, {2.5, 20},
RoundingRadius->0], RectangleBox[{2.5, 0}, {2.6, 13},
RoundingRadius->0], RectangleBox[{2.6, 0}, {2.7, 12},
RoundingRadius->0], RectangleBox[{2.7, 0}, {2.8, 6},
RoundingRadius->0], RectangleBox[{2.8, 0}, {2.9, 7},
RoundingRadius->0], RectangleBox[{2.9, 0}, {3., 7},
RoundingRadius->0], RectangleBox[{3., 0}, {3.1, 5},
RoundingRadius->0], RectangleBox[{3.1, 0}, {3.2, 6},
RoundingRadius->0], RectangleBox[{3.2, 0}, {3.3, 1},
RoundingRadius->0], RectangleBox[{3.3, 0}, {3.4, 2},
RoundingRadius->0], RectangleBox[{3.4, 0}, {3.5, 1},
RoundingRadius->0], RectangleBox[{3.5, 0}, {3.6, 2},
RoundingRadius->0], RectangleBox[{3.8, 0}, {3.9, 1},
RoundingRadius->0], RectangleBox[{4.3, 0}, {4.4, 1},
RoundingRadius->
0]}, {}, {}}, {{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \
{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \
{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \
{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \
{}, {}, {}, {}, {}}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{-4.066, 0},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
PlotRange->{{-3.9, 4.4}, {All, All}},
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.02],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{{3.640106907371768*^9, 3.64010691390556*^9}, {
3.640106969146347*^9, 3.640106980597625*^9}, 3.640107027356179*^9, {
3.640107078275793*^9, 3.640107145995565*^9}, {3.640107299062042*^9,
3.640107305140436*^9}, 3.640107342948564*^9, {3.64010739656774*^9,
3.640107514648592*^9}, 3.640107551072905*^9, 3.640107634825705*^9, {
3.6401077562543983`*^9, 3.640107783908827*^9}, {3.640107831429352*^9,
3.640107854391612*^9}, {3.6401079173862877`*^9, 3.640107938230809*^9}, {
3.6401080424436007`*^9, 3.640108074374689*^9}, 3.640115815881905*^9,
3.640116691091432*^9, 3.640116725074628*^9, 3.640116762648837*^9, {
3.640116812595167*^9, 3.640116843812291*^9}, 3.640116929350872*^9}],
Cell[BoxData[
InterpretationBox[
RowBox[{
TagBox["DataDistribution",
"SummaryHead"], "[",
DynamicModuleBox[{Typeset`open$$ = True},
PanelBox[
PaneSelectorBox[{False->GridBox[{
{
PaneBox[
ButtonBox[
DynamicBox[FEPrivate`FrontEndResource[
"FEBitmaps", "SquarePlusIconMedium"],
ImageSizeCache->{12., {0., 12.}}],
Appearance->None,
ButtonFunction:>(Typeset`open$$ = True),
Evaluator->Automatic,
Method->"Preemptive"],
Alignment->{Center, Center},
ImageSize->
Dynamic[{
Automatic, 3.5 CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification]}]],
GraphicsBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAwAmIQrbh4+4v//3/vZ4ACN0n3p76rfsH5EVZTuO6Z/4Tz
PR26O37d/Q7ny+Xe/Xm/6xuc/8Dl7WR26a9wfiPj8rbdhz/D+QKZcos2+n+C
85u+f9hQ8OgDnL/86i2DCun3+3fItb4O3LHPXkXIP3CyxRs4P0FCXPl420s4
PyVn6u2eR8/gfCex/qfXWJ7A+fc77yywjHgI569e5hXt+OQOlH/PXv2qh5Ox
8XU4X2H6u+6wJxfh/DmcYh9ZXE/A+U/EbeTruXfD+QLRZo7bOfrg/EdCNpKH
ZDbbH/6qEdN/6Kn9zECGE68sjsD5EU6ltsknz8P5fG1ny/Z4XYXzE88XNy6e
egvOb9g28csBzQf2s2aCwEn7CbtFy6dffwTnH8uSW/Fy31M43+RMwaeVM17A
+U+S87sDHV/D+TuXfrpUovwOzn/BN3GLfdYHe1j4CCzx5fmz+yOc79XnY12m
9RnOXzp5oWBKwxc4X/idxX7+z1/h/EXJaiL6vt/hfN9NO0pbF/yA2nfTnjus
d91MgV9w/iuRHX2KGb/h/Nsaqm7pd/7A+S9FzbmeeP6D88Xl5pdemfcfzl+z
VyXGsYPBAZZ+7v5UCbxkwgjnz1lUfubfXQT/aWm2cddUJjh/XxhX3nkHZjh/
wsXoL///I/gAmJdvuA==
"], {{{},
{GrayLevel[0.85], EdgeForm[None],
GraphicsGroupBox[
PolygonBox[{{9, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34,
33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19,
18, 17, 16, 15, 14, 13, 12, 11, 10}}]]}, {}, {}}, {{}, {},
{GrayLevel[0.55], AbsoluteThickness[1.5], Opacity[1.],
LineBox[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,
33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
48, 49, 50}]}}}],
AspectRatio->1,
Axes->{False, False},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
Background->GrayLevel[0.93],
BaseStyle->{FontFamily -> "Arial"},
DisplayFunction->Identity,
Frame->{{True, True}, {True, True}},
FrameLabel->{{None, None}, {None, None}},
FrameStyle->Directive[
Thickness[Tiny],
GrayLevel[0.7]],
FrameTicks->{{None, None}, {None, None}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImageSize->{Automatic,
Dynamic[
3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])]},
LabelStyle->{FontFamily -> "Arial"},
Method->{"ScalingFunctions" -> None, "AxesInFront" -> True},
PlotRange->{All, All},
PlotRangeClipping->True,
PlotRangePadding->{{0, 0}, {0, 0.1}},
Ticks->{Automatic, Automatic}], GridBox[{
{
RowBox[{
TagBox["\<\"Type: \"\>",
"SummaryItemAnnotation"], "\[InvisibleSpace]",
TagBox["\<\"Histogram\"\>",
"SummaryItem"]}]},
{
RowBox[{
TagBox["\<\"Data points: \"\>",
"SummaryItemAnnotation"], "\[InvisibleSpace]",
TagBox["10000",
"SummaryItem"]}]}
},
AutoDelete->False,
BaseStyle->{
ShowStringCharacters -> False, NumberMarks -> False,
PrintPrecision -> 3, ShowSyntaxStyles -> False},
GridBoxAlignment->{"Columns" -> {{Left}}, "Rows" -> {{Automatic}}},
GridBoxItemSize->{
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings->{"Columns" -> {{2}}, "Rows" -> {{Automatic}}}]}
},
AutoDelete->False,
BaselinePosition->{1, 1},
GridBoxAlignment->{"Rows" -> {{Top}}},
GridBoxItemSize->{
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], True->
GridBox[{
{
PaneBox[
ButtonBox[
DynamicBox[FEPrivate`FrontEndResource[
"FEBitmaps", "SquareMinusIconMedium"],
ImageSizeCache->{12., {0., 12.}}],
Appearance->None,
ButtonFunction:>(Typeset`open$$ = False),
Evaluator->Automatic,
Method->"Preemptive"],
Alignment->{Center, Center},
ImageSize->
Dynamic[{
Automatic, 3.5 CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification]}]],
GraphicsBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAwAmIQrbh4+4v//3/vZ4ACN0n3p76rfsH5EVZTuO6Z/4Tz
PR26O37d/Q7ny+Xe/Xm/6xuc/8Dl7WR26a9wfiPj8rbdhz/D+QKZcos2+n+C
85u+f9hQ8OgDnL/86i2DCun3+3fItb4O3LHPXkXIP3CyxRs4P0FCXPl420s4
PyVn6u2eR8/gfCex/qfXWJ7A+fc77yywjHgI569e5hXt+OQOlH/PXv2qh5Ox
8XU4X2H6u+6wJxfh/DmcYh9ZXE/A+U/EbeTruXfD+QLRZo7bOfrg/EdCNpKH
ZDbbH/6qEdN/6Kn9zECGE68sjsD5EU6ltsknz8P5fG1ny/Z4XYXzE88XNy6e
egvOb9g28csBzQf2s2aCwEn7CbtFy6dffwTnH8uSW/Fy31M43+RMwaeVM17A
+U+S87sDHV/D+TuXfrpUovwOzn/BN3GLfdYHe1j4CCzx5fmz+yOc79XnY12m
9RnOXzp5oWBKwxc4X/idxX7+z1/h/EXJaiL6vt/hfN9NO0pbF/yA2nfTnjus
d91MgV9w/iuRHX2KGb/h/Nsaqm7pd/7A+S9FzbmeeP6D88Xl5pdemfcfzl+z
VyXGsYPBAZZ+7v5UCbxkwgjnz1lUfubfXQT/aWm2cddUJjh/XxhX3nkHZjh/
wsXoL///I/gAmJdvuA==
"], {{{},
{GrayLevel[0.85], EdgeForm[None],
GraphicsGroupBox[
PolygonBox[{{9, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34,
33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19,
18, 17, 16, 15, 14, 13, 12, 11, 10}}]]}, {}, {}}, {{}, {},
{GrayLevel[0.55], AbsoluteThickness[1.5], Opacity[1.],
LineBox[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,
33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
48, 49, 50}]}}}],
AspectRatio->1,
Axes->{False, False},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
Background->GrayLevel[0.93],
BaseStyle->{FontFamily -> "Arial"},
DisplayFunction->Identity,
Frame->{{True, True}, {True, True}},
FrameLabel->{{None, None}, {None, None}},
FrameStyle->Directive[
Thickness[Tiny],
GrayLevel[0.7]],
FrameTicks->{{None, None}, {None, None}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImageSize->{Automatic,
Dynamic[
3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])]},
LabelStyle->{FontFamily -> "Arial"},
Method->{"ScalingFunctions" -> None, "AxesInFront" -> True},
PlotRange->{All, All},
PlotRangeClipping->True,
PlotRangePadding->{{0, 0}, {0, 0.1}},
Ticks->{Automatic, Automatic}], GridBox[{
{
RowBox[{
TagBox["\<\"Type: \"\>",
"SummaryItemAnnotation"], "\[InvisibleSpace]",
TagBox["\<\"Histogram\"\>",
"SummaryItem"]}]},
{
RowBox[{
TagBox["\<\"Data points: \"\>",
"SummaryItemAnnotation"], "\[InvisibleSpace]",
TagBox["10000",
"SummaryItem"]}]},
{
RowBox[{
TagBox["\<\"Input dimension: \"\>",
"SummaryItemAnnotation"], "\[InvisibleSpace]",
TagBox["1",
"SummaryItem"]}]},
{
RowBox[{
TagBox["\<\"Domain: \"\>",
"SummaryItemAnnotation"], "\[InvisibleSpace]",
TagBox[
RowBox[{"{",
RowBox[{
RowBox[{"-", "4.000000000000001`"}], ",",
"4.500000000000001`"}], "}"}],
"SummaryItem"]}]}
},
AutoDelete->False,
BaseStyle->{
ShowStringCharacters -> False, NumberMarks -> False,
PrintPrecision -> 3, ShowSyntaxStyles -> False},
GridBoxAlignment->{"Columns" -> {{Left}}, "Rows" -> {{Automatic}}},
GridBoxItemSize->{
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings->{"Columns" -> {{2}}, "Rows" -> {{Automatic}}}]}
},
AutoDelete->False,
BaselinePosition->{1, 1},
GridBoxAlignment->{"Rows" -> {{Top}}},
GridBoxItemSize->{
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}]}, Dynamic[
Typeset`open$$],
ImageSize->Automatic],
BaselinePosition->Baseline],
DynamicModuleValues:>{}], "]"}],
DataDistribution[
"Histogram", {{0.0008, 0.0028, 0.0116, 0.0372, 0.0896, 0.1848, 0.2964,
0.372, 0.3716, 0.3142, 0.1876, 0.0842, 0.0344, 0.009, 0.003, 0.0006,
0.0002}, {-4., -3.5, -3., -2.5, -2., -1.5, -1., -0.5, 0., 0.5, 1., 1.5,
2., 2.5, 3., 3.5, 4., 4.5}}, 1, 10000],
Editable->False,
SelectWithContents->True,
Selectable->False]], "Output",
CellChangeTimes->{{3.640106907371768*^9, 3.64010691390556*^9}, {
3.640106969146347*^9, 3.640106980597625*^9}, 3.640107027356179*^9, {
3.640107078275793*^9, 3.640107145995565*^9}, {3.640107299062042*^9,
3.640107305140436*^9}, 3.640107342948564*^9, {3.64010739656774*^9,
3.640107514648592*^9}, 3.640107551072905*^9, 3.640107634825705*^9, {
3.6401077562543983`*^9, 3.640107783908827*^9}, {3.640107831429352*^9,
3.640107854391612*^9}, {3.6401079173862877`*^9, 3.640107938230809*^9}, {
3.6401080424436007`*^9, 3.640108074374689*^9}, 3.640115815881905*^9,
3.640116691091432*^9, 3.640116725074628*^9, 3.640116762648837*^9, {
3.640116812595167*^9, 3.640116843812291*^9}, 3.640116929401929*^9}],
Cell[BoxData[
GraphicsBox[{{
{RGBColor[0.368417, 0.506779, 0.709798], PointSize[0.008333333333333333],
AbsoluteThickness[1.6], {
{RGBColor[0.368417, 0.506779, 0.709798], PointSize[
0.008333333333333333], AbsoluteThickness[1.6], Opacity[0.2], LineBox[{},
VertexColors->None]},
{RGBColor[0.368417, 0.506779, 0.709798], PointSize[
0.008333333333333333], AbsoluteThickness[1.6], Opacity[0.2],
LineBox[{{{-3.9, 0.0008}, {-3.9, 0}}, {{-3.8,
0.0008}, {-3.8, 0}}, {{-3.7, 0.0008}, {-3.7, 0}}, {{-3.6,
0.0008}, {-3.6, 0}}, {{-3.5, 0.0028}, {-3.5, 0}}, {{-3.4,
0.0028}, {-3.4, 0}}, {{-3.3, 0.0028}, {-3.3, 0}}, {{-3.2,
0.0028}, {-3.2, 0}}, {{-3.1, 0.0028}, {-3.1, 0}}, {{-3.,
0.0116}, {-3., 0}}, {{-2.9, 0.0116}, {-2.9, 0}}, {{-2.8,
0.0116}, {-2.8, 0}}, {{-2.7, 0.0116}, {-2.7, 0}}, {{-2.6,
0.0116}, {-2.6, 0}}, {{-2.5, 0.0372}, {-2.5, 0}}, {{-2.4,
0.0372}, {-2.4, 0}}, {{-2.3, 0.0372}, {-2.3, 0}}, {{-2.2,
0.0372}, {-2.2, 0}}, {{-2.1, 0.0372}, {-2.1, 0}}, {{-2.,
0.0896}, {-2., 0}}, {{-1.9, 0.0896}, {-1.9, 0}}, {{-1.8,
0.0896}, {-1.8, 0}}, {{-1.7, 0.0896}, {-1.7, 0}}, {{-1.6,
0.0896}, {-1.6, 0}}, {{-1.5, 0.1848}, {-1.5, 0}}, {{-1.4,
0.1848}, {-1.4, 0}}, {{-1.3, 0.1848}, {-1.3, 0}}, {{-1.2,
0.1848}, {-1.2, 0}}, {{-1.1, 0.1848}, {-1.1, 0}}, {{-1.,
0.2964}, {-1., 0}}, {{-0.9, 0.2964}, {-0.9, 0}}, {{-0.8,
0.2964}, {-0.8, 0}}, {{-0.7, 0.2964}, {-0.7, 0}}, {{-0.6,
0.2964}, {-0.6, 0}}, {{-0.5, 0.372}, {-0.5, 0}}, {{-0.4,
0.372}, {-0.4, 0}}, {{-0.3, 0.372}, {-0.3, 0}}, {{-0.2,
0.372}, {-0.2, 0}}, {{-0.1, 0.372}, {-0.1, 0}}, {{0., 0.3716}, {
0., 0}}, {{0.1, 0.3716}, {0.1, 0}}, {{0.2, 0.3716}, {0.2, 0}}, {{
0.3, 0.3716}, {0.3, 0}}, {{0.4, 0.3716}, {0.4, 0}}, {{0.5,
0.3142}, {0.5, 0}}, {{0.6, 0.3142}, {0.6, 0}}, {{0.7, 0.3142}, {
0.7, 0}}, {{0.8, 0.3142}, {0.8, 0}}, {{0.9, 0.3142}, {0.9, 0}}, {{
1., 0.1876}, {1., 0}}, {{1.1, 0.1876}, {1.1, 0}}, {{1.2, 0.1876}, {
1.2, 0}}, {{1.3, 0.1876}, {1.3, 0}}, {{1.4, 0.1876}, {1.4, 0}}, {{
1.5, 0.0842}, {1.5, 0}}, {{1.6, 0.0842}, {1.6, 0}}, {{1.7,
0.0842}, {1.7, 0}}, {{1.8, 0.0842}, {1.8, 0}}, {{1.9, 0.0842}, {
1.9, 0}}, {{2., 0.0344}, {2., 0}}, {{2.1, 0.0344}, {2.1, 0}}, {{2.2,
0.0344}, {2.2, 0}}, {{2.3, 0.0344}, {2.3, 0}}, {{2.4, 0.0344}, {
2.4, 0}}, {{2.5, 0.009}, {2.5, 0}}, {{2.6, 0.009}, {2.6, 0}}, {{2.7,
0.009}, {2.7, 0}}, {{2.8, 0.009}, {2.8, 0}}, {{2.9, 0.009}, {
2.9, 0}}, {{3., 0.003}, {3., 0}}, {{3.1, 0.003}, {3.1, 0}}, {{3.2,
0.003}, {3.2, 0}}, {{3.3, 0.003}, {3.3, 0}}, {{3.4, 0.003}, {
3.4, 0}}, {{3.5, 0.0006}, {3.5, 0}}, {{3.6, 0.0006}, {3.6, 0}}, {{
3.7, 0.0006}, {3.7, 0}}, {{3.8, 0.0006}, {3.8, 0}}, {{3.9,
0.0006}, {3.9, 0}}, {{4., 0.0002}, {4., 0}}, {{4.1, 0.0002}, {
4.1, 0}}, {{4.2, 0.0002}, {4.2, 0}}, {{4.3, 0.0002}, {4.3, 0}}, {{
4.4, 0.0002}, {4.4, 0}}},
VertexColors->None]}}},
{RGBColor[0.368417, 0.506779, 0.709798], PointSize[0.008333333333333333],
AbsoluteThickness[1.6], {}, PointBox[CompressedData["
1:eJxd1E8oBGEYBvCxi8WuP3tR4sLBgZQoDtRMbTlwEHF0YCM5cOEqObCXdVFE
64Akd4RolguKPaC0EhOlxGE32vyP3ff5ns1+tW2/5vuemfnme9/SnqH2Xpum
aR1/v/h/bWLkB6s8JU93dc16X2Lk0fNz8ZFLn57Eh4vWEsMVPNzZ8mdG+nTJ
c9KSl0NLXjYteVm05GUFrYB7ZW9/EnkOWvIyacnLoCUvnZa89GDId3ZjOZeR
Z6clz0ZLXhoteRoteRqedxPrf0xlmf9Fy/0+acl/pyXuzVwYKz+YWD1EXoyW
vFda8l5oyYvSkhcxA7VL6/VvZ1j/TMv8R1ru90BL/j0teZZpq5wsDIcusT5M
y/zzlOvHKd6msX9a1HvS1XLE6/p/H9PIT7kepvF8uiNU1HZVfKGen8b70Xh/
GvtDY/90n7frusl+pPaXxv7T+D40vh+N76s37rXPlE5tqO9P43zQOD80zheN
7TPKvmMjVmBRnU8a55fG+aZx/mnUh9Fw2+qfHRxX9UOjvmjUH436pFG/xsfo
wO7wdL+qbxr1T6M/0OgfNPqL0V3TWV2x5lH9h0Z/otG/aPQ3WvIKDOlfFZif
tOQnLevdtNwv6V+nrWSX
"]], {}}}, {{}, {{},
{GrayLevel[0], PointSize[0.016666666666666666`], AbsoluteThickness[1.6],
PointBox[CompressedData["
1:eJxdlFtIlEEUx7+2rTbbzCLCh4jqIQzpIXqIkJiJkAoTKyMifFiWiiW6bCJR
Jj0UZRekwijsitrNkhARs5BmkKVNK9vW2y4+mCwWUlGLZW5atLPzPyN9A8vH
2Znzmznn/M9Z4j20bY/DsqzC5E99V6XWHDlRFw/ne7ewvamVbuzrVWrNhu1h
b9+o5ZbWf8stf5/Y11pS6WOaN8vGS7PxZsrj859sGCwtAc+FfT/TPJd8vsnt
yC4/A94MmTNQUHHt4Enwppt9zZtmbM1zgncJPKeMdv4qjN27Ad5U2bLo9Oet
LbfBc8D/PnhT5IX9n8br4jXgWYjvIXiW3J6EBRY3wP+v0O9rxPkJoeNrwn3j
YnnRxbafWa3gJ0RDse/y1zIB3pi461+b1lcrwRsVr6tzm0f+BMD7IRpvfXvw
Mi8I3ohY0/TqyIs7HeDFhY6nE7zvYjRLXRiC/xcxpqIPhHB+WKjowvlh3PdR
BPNWn1vn6QE/Jg6r5/h7wPsgvBk7k1f2wj8q5p2SHdW5vTjfJXQ+Ithvx/1k
PxObFX4oQvmzbiaTV+yL0j6rX7hrd85AH/mzGhV+d4T4zDMUWtqfMPezA6kA
zPvwpfMxll2+IFnyLoqPHRtettJV303xM52/MOWHbRwsTVbsPeWPpcpV9I7y
y66uV4pop/wz9dqCiiDVh1VmOnekr2ij+jGqH+rLqN6oP1NqynQ2kz7Ae0r6
YTpfRl9M6/cx5Y/r9z8iffL+hBJoLemXk36hb67/ryL9c63PK9Qf4J2n/uFa
72epv2Afpf7jOp9l1J/GRv9yW38bf/Q/t80HTvMF88PsY75w2/zhpCPMJ2Nj
fhl/zDezr1eG7fykrfmTtvafa3j/AHcJV1k=
"]]}, {}}, {}},
GraphicsComplexBox[CompressedData["
1:eJw1mHc8Vv/7x2/31EAySgMlowghDXQdoyUpDbOMkJKQUfaWmXnb2bJSGVHm
OWUmZXMfUqSEMooQxe98H4/f5/xzHtfjvM/7nHO939fz9brOrmt2FyzJJBLJ
h41E+t/Z/FnUzNoaA2skvXy2S9wBwptaYt5xMrD+STnDhkJXEN42Yq+zjo7d
kHF4dt7CD+yVL+rs5aNhqpLIvxNXQsA0b+HEW1EqZs8qraWKREONtts9kd0U
LOFjwc9ZiwTobtArbJchY6ofOubv9KTB5Xt8W+X2smFW2tPXYu7mgIsDNcVY
nISVLrTeDE4shKcuyUjd7VXUeJ9jcHRtMagF/sAkLf6iktOFcg3i5aAt8+u4
qucyKvutO9lvthJSrA1/T6YvoY6HM43FAAVU0H8bW/ICaltUm7e95zUY2pto
oBXzqErCrYl6/iZ4e/Tv6EThLzRKZzwhY+ANeMWvPMnPn0XxZswwsfQd6Ahd
/SMYM4XmfMvi7cjvgIsUDb9G3wk0VLGIrB/XBRq7Y3hrKr6il/kNk0RP9cCI
nFlMWPIImtDX4GX3qxcobZNv6CKDaI12g7uubj+I5I/4xqd0o9sn15skXWHB
4fbnu4pHm9A/Y9lTCcI4ML9tjHsX9xT1XJ27lOaBg99xq00Zsk+AKX2JI98T
h3k+R9TErxmy7fhl57bhcP1FQuFjnW4wgYs2ey1Z4EpySnMOGITL2Z0DMif7
QY1s7nSvZQRUBSPMNo70gsGbPZssQr4CUw4ZSDbqgYY0S+xeygRU3md7Zx/S
BcgRsFK6MQWipb3j8zUd8JBVcOV71CzoHjwc6z78Dl6nzEVqxf8Cnmq/8EC2
VrB/FVJHc50Hgf3HwvwDm+CUrcm9CwELQJ7lbz609BoKPH0lF22W4E199AkR
HIWWFaScobUMSVVe1vecq4CbDXnz+OJfsPre+ShGuxw+3whj5R1eBVrmmpOo
RAnMSG6o3C5CQthKXJalywuhzTDdXkCUDaGLbiPxP8iBqSpctJ6PjMyXNEZe
qk6H7I/yGRXbKAhzyHGaMykBUuUVtupyUpFtEZGXdmZHwwJQ3CX/URE/H2cX
E/FQ+ML1K0uTREc0GbTo5lQ/4OcOauH7RUeeKEu2b610g/+vB+S/eliqknp1
PYiBVR68SXFOdwbd2R5frnA6xoq8vIu31QtOSW4zU4mkYeLCe6aysgJh/Oce
LbdUKhZ6t8vlfPAD4HQ/bLKYTcGM0vV0+DcxoWXdRNSffDK2cYNoteS3ZOBN
UxzxKWLDijUPhG9qy4Sx+XCDU/kkzALX3cowzYP2pzrVKsZraI/qPFP/yxP4
nKi7yCn1CbXWEs+QftIHPEfHHmmb9KMV4yS2zM/9gHLVxNhytKMPlaZOVLey
YOe6pfsiIXXob+WciRkDHIR3GWqyLuiigwYHc9WDcbj0Lbw+6H0dkJqO7d1J
XDdV0wkd3NwOY3fa/rkS988OBuZsutUPQer61vSRfvAip6qXhn6C3TKxFU0P
+8B0+PwjO1iDazMceOvlp2Cs3svclkNCFMi9m7xc8+BDqPIZ21Q25Clbws10
/ixoaaOPKieSkdj6E71ut1JAeJ3ClftMChJUjxt+tWNCa2XKGyyQityX+ewx
YhMBU3nLnNVeNORb0FeNLTvug2dUzUFZVzrCsUPtn1CSNygPb/iw3pWBRMuc
58jdfBeky431y+oZGG/18QXeLke4M6gdavuOjiXuTO89JewBz7P+3TjZRsMs
dd7Zf533B6ktNe91cCoWfLxsdME0DA5Fb7k48oWCsc2sGcg8iAG1ogMBEV/J
2EJ6SJm0QBI4HWg+LjHNhtWGfI81ickAQcXOw7XjJKxnokr56cgjGD79xMWz
bw3lRdK5lQ4WQQHQg04nDqOizJumn3X6YIP/+It9qjg6NFQ9VJzWD2ys9K9i
0Z3oqYOleenxLBi9mfhLmLcepes87t+E4JD60kTP4lQ6Gp7+MOpwIA7rjw9/
vVVWAT4qIfrptjjsk/qck6r5FkRL7Daa/mbB4zcR4sbGvUCifuweF2WBhy/7
z9igIXD2ZVzXmO+DzD3TdRtqVqEwfmjonUgx5B6aFUsxJyEiqj1UKY4C6Pk1
NaRuxoYIRGytnDqdDQPq9lSSHhnZaNVM2eqfCp/n5L3S9ChIoOb1GpulOHi+
8M1+gyYVWbw4/mCLeRT8mlvVmFOhITdjec/zcwWD7Hk9m1plOpKrXJOqJeEL
BS6nL0QdZCAfb6SZdmm5wGtsee+2MwwsW9ZB8kH0PVCiGbkWa9IxL+vamK5e
H/hQpmggf4GGXVLJunfALghy2h68yTIj9EZk1oynJxK+Whjc4jCnYG+YHD7T
RXHgUJoxHCo+hNLrhJx5qf2w/edorINnLxppZzS/sovIh91hw8ilVjTOUNK1
YYkFTsdQCdpkBdr7UihHhMinqxOv9jqvh3CJqplYS+S7veFhR6dTPRzLTvp3
QAWHM1LDL8Jvd8LU7bvHryazoOJy6itXnIxMKVUcOuKYBMaCCkdtOymI5iX2
ROfVGBj2OLf77isqQoBZIehwOIwbLbD8UBqid/cOzwWtAGjt2LWWVU5HisU2
lR3Z7AkdJ99bBtYwEB1Lfvd9DCc4VbqYjY8wMG5a19U7Sw6w2hHGKThNx+h6
UnsVPrmBtfGMTdskDcvTZ5/j2usP7wsYUSqLVIykEXXa0jAUtHYwzurSqJgW
z5Y0vt5o8P7X+49FoWDxHQs7x5USYY8719IKJxmzs+M7obmUDlW6jvmL7GzY
lUw5i1d7H8HzsCePtdeRMPluP2qyxWM4XlkWbi0wgpocuVRSsLsPgvImsK1y
A6hgXJMUp3s/bMawMuP4LnTLsswBPTcWRDwUCx1faUCv+cqa0g/g8NPMeHht
Rx6qunqRJ9UXh7G5dYtDj0rBdfu3l3N3ceDK3Ffqdf0NwLcNab3sOAQjPBNU
/R4w8tRwQk6wYBmpa6be/wCmN1X2nBfsh9dNNW8N3FaBcst4KjinGFpL/tkZ
qZOQY46aPCkfC6Aj90SetDoborGbS8J7Ihss1vbEmSmSEc6Tp2U4U9JAbUI+
ct8RClK94Cxd2BgPEnwRDbJSVOQc9Q5XBika5gXYTCN30hDb29wLdvwhsL44
hxEgSEfOp+k5Vn3yhWGNGxzdPAwk8NjSOjcPVxiqjXVGbjKwmduNZxpi70LL
csI/k1t0rOhnikqvgA/E2ElcfWlPw1y3bib/DrgPJ0zw0AhvKsYxuN40uCAC
lmdOWfr5UzBvhnGz7CATCh+tfG/b+xGVHLZTkcP7IIHv60NT2z40q/NsxSiZ
BWngtrBKfofm+i56BnxmQUv2oB6zsgqlPl0UIUQErLps3wxuDYPcKiG0NAgH
5YcH8PW2r8C+TsZt7gwOddcDjnm6dwA6Fxu9qYwFwH3hwuBLMjLSHYH73UoG
lEfhzHIpBTl3Zf1Dw+excDnlt3NKNhWhb/c5JKf9ACZ9l+YE02nISWRj25RM
IOTI2iXfTKAjiiOMv83nvIDOOyXcksxAWBK3OE8ynGF2xmvLTFgHKjrWe+12
CQuOHFpvZCD1CqUqHW19fhYH/Sfk6RbdKHSjGuugPfG+MvEVPX+wKlgufh1Y
RHyPEJ71x3lbGcrffaNrK7FfPqEvjbpePIKw/Xn+Fn44XJtitCS6N4KEX0Dg
oBQOye7PCtU+MhBm2tHpCW5H6JNtePNjloFpF0pdr49wgMYzhR3Oq3RsYqeP
jq26GxxXHp/mXKZhqYU/ajoa/UDI8Ym9PJ2GOXt37DozEAJ9I6tvovioWGxP
yB1t92gQFMs/urqZgknLqGfktCfA33T5TkshMtZ6r3XrWct0YLfSGOYVYMMu
fG9Qj23PAf41/WzdrSTMOIKXQlotBJ67oVwrBiNor4SFRtH6Pmg8Yt0YWTiA
OkodSeq50Q/bFDqTl7d2o+paf5JzbxH6UD51uW2mEa00N3FfkcDhdU551XW8
EE2UjN2k6U3o+du0Nf70YsL/Caz4uhF+cvD9YTunFvjAeT6RazMOi+69p1k9
3WCTJSw6epkFVcIC8iq0D/Cjufz3V7l+6Nqyp8vHYBUmlt8ULX8thg+2AUwl
eRJCm591gdOF8J40t2GPAuHHdD8vtxzNAYmr3lc3i5GRErGlnj370uHXaFnC
7F4Koi2tkBQnnQDX9pjZqu+kIo7fjY8f04mG31J+t69y0JCPTvIvi1NDYNHk
zGUrLjpCsevmnlTxg5XCRet5MgMR6TM3EBEg+KZsmnLRheCf/+oxh613IdK5
An3hTsc6Vl3Xb/P0httnd31a9qZhZ5ra+bo234cECe9bARFUzDKmMaVxSwQE
lCOfa2Ip2IGRwbhOJyacECr4OVX4ETUI0RW+VN8HvXmWmf1jfWhMnJfBt1/9
8FQ8pUGR/T3KNCp+3dHHAoe+mzNGmTXosy+yfoEmOKhHiGA+2i5gaepeK074
pzmGx9U8awzEaCHO1ReI/Pr3+TqTib7hmMnr6ToWUO2KtoXnkxFUydL//mQy
2HM+v4hlUxBZ/5PqN7mZEFXYIvSUSUUUa36+t/zwAH4wXdmmImjIM7n29h85
gRA1zDeuFUxH7lTMiv3+5QW73Dy8JkIYyNFJeTQozBmWzCNXQzk70S90dlnF
HIK35zvFVIRfo+yZg81cJ3FYlivJim9PQKPNrn/1uY/Dw9tnhuSqXkK786sM
/CYOrRsORKuQy9EszZgdWg44cHqa+d5ayYSG9WcDVAJw2GpwQeugSwNctf4s
e+QgDuUjx9gt3jEQ3Q79NYUwRxAWYtCTTLPRBNo3jQR/HFx2OE/nFD0HMcTN
4R8xn+Cds1hb50uUvOlYfDrxvL5pyyQlWhx0074/+0K8j/W5fIeFal/Uxm+v
C53Ip1Mu77WnciWozT/dhyGuOBSTNykecSqADTJPCuR8cPDiEz67a4aBBNjw
jSmnOMAO+8Ird5cYmHPFeHiJoQNIhFSWZNIZWLCQ0JOKBVeQe/xFppiNjvls
LFPEmX7Qokcye8pBw/yfBVXTU0IgpcGN/elOKkYW2aGwrB0Nt49y41HbKJje
WBmXQHIC3ChtrE0WJ2M/bL0TUnakg/SMlIfILjbMXJXz3FRWDjS/lE4fECJh
P4c52ITfFoJbz+/z6m4j6JHAjTVxq73wxa/w5NuxAZSSf2RTmkk/CNoaRJwy
7EZtLtjcl7Qg1kutU6nuZhN6+ztHQ88eHCRPjIgnvyhCTRQVT60R/R+fbRfD
6tAzOGqObtxN9IfVS8IeVivNoD/nrhjOj8PTJMVl1dhueJ/xbCT6KguSo5pu
4A2DYFZ/zolXpR8MMb3LvKdXwXy9+9cleglcf9ecKylJQm7qnn3J4V0I7/af
rkuTYkN+bhn68948B9aHF72a3ElG3J3MwdUhHTRH5lIu7qYgtyT+aGSYJwCp
SLO+jY+KzNpy3qO5RcPdCjUnDRoNuXROtf3I5xCYfiH4l8WgI1dJBWVZt/2A
3RgVCFymIzetBPPKbrhBifsJ6SFvBlba3p1WMOgMv0obM0b96djCnczHYiLe
YFizU/hhEA0rJDOdPQYCAeHoMlqLo2L+qj+aX7U/gNOJNcIDKRSM59dqPagx
gfeDt5PX94+ofryAiubLPpiffSTCI9KPWinaXns32Q8VKY8fd4W+Rx9avZDv
6iD0cUa2GuJqUQ8zbu6mKzis0B48aa28BheKn/cgxP5LdVeD750oSA/p7/xz
GQdx0bUTo2HtUP3IuqmugQVjqbiXRQYZ6dc9euL1vhRo2TCvJ/KQgmTL1Zq6
IkzYL1fqdOgBFbFgSMkZ7okAG8Gj7D33aci+MYntysOBcP/wRESdDx1JsD8j
XnjcG6T3a+x382UgJ9/wmFa9d4a/qVt+sc51oh5vzrbdTWXB4aHnG2WSX6Mn
kvHgFHUc2pzZPf+FpaCuD94OfCP86UU8zqy94gUk9XXbnLYh9FF06cquhXJU
YXr2sro9Do8GD/Ie3pkBw1k/i9iJ8fMR9yL8F+qh9PvxI2pHCP1g0l/MNzAQ
o+tC+XiLIwRjco5txx6h+FL2yUeEnsoEow6qBWUg6qAZS3PGwTGUN7y4sRId
VbU/oWSFA62IE+05FQ22D2RwXUKvOXp1xRsUQlChHSquTUTcig7ujxErRZU+
ar74cA+HU2ZfWmjxeaAp6F6sS/i/8JZvKyVjDOS2mNttpM8BDCmhZ+VX8lFX
7sJCL6LeG7QwXs4Mf7DgeWu6RMy3d9agRYaHiS4/+/CUQsR3BR9Mp+HZMFZq
J3yF4M8Lz8FES79MdO1ADrsjwa/8A7WOWa8SIeeDh8YVgjcRsXPuOvedUNbf
3wdkifW2v6afFrXIQKqZrl1Dpg6ARe4UU/rLwM4s/rHDEQcYEFfNerGegRW/
eD2X0+EKBZ+vdfjQ6NgN6oBQkIcf7Gjdi9/ipmEh18YuxbuHwGr5y7yaXVTM
3depYO5wNDAbjksYClIwTrY7yS7eCZBWzalQLknGfOtjepyXCP8pv6t1nygb
ZuRu4VERngMZcQKpD0VIGG2UQ/JtSSE89X98xyp0BHU+/zM6YKkXnPJa2Seo
g+h7lxXLv4b9IBy2M3jGrRv1IBdctDQl/AF7vfSL3Ca0No++o3I3DsP89z6W
5T5BfRwrY3UInrThO8IpCk+hp8fl3DjBE31Ga+poXTMM2yXceL0Vh1AJq667
Dt1gplsWYWrGgtBTqf55OYMwrm0WvketH9KYP/k/IqvwMlfQLGRLCRR6TDwT
ESch5SMXfvMkF4KWhtOWDxIET0pv6Vu75ICHSP1cnwAZOXj9HakvPh0WPvEI
BgpSEKVfbdxnvBLgvR16m3szFekU+3MqKCIaFFeyFg+x0ZC3M8akSmooTJgH
t3NT6UhnQk5EXqAfRB4SuXN2gY4IGOT7vY1yg0splYuZ/gxsmstq1KPWGXJ0
zkb/CaJjpJbUG74LXtA5l4LZhNGwOMNxJZ+6QGB6r3TXJFGxqvHFoYXHD6Ao
ZBkdT6dgFk982QX3MsH96Pfypg2fUOnfo9l1pX0QwNf0RVa1H435/cKzcqwf
qnrl04Xb3qOHn402v3lH+AMP3swDXHXor+nC7qtGOBT1eu9yUz0GaVP76ceJ
/eVSYuV75DwK1Z8t9CL0iP0sn3/D5Fw79NOz/6Y1s0Dv4Gzx+YdkJN+Hf5Lz
TAo4recduJRIQUQr9g2I6DPh728xIY8QKmK0+45N2KkIkDJPDmv2oyHWo+v3
bF0NBL8vF64tetCRSff3w1p23lBOzw9Q82QgsxuKlxNnnWG1avC7t30netq4
Q5aT6FcjsnPXxPtfo+8UZv+xVHFQ2KIwKWudim47G/YvhuCDNFd19s6DL2Dg
rXT6vdtE/ZYMqvHYV6ASLjyGinY4fOZDqpWvpEGY1vVJS2L8572hzwrL66Hp
X5mGihIOp22tOWsxBlL5W9HxxzdHUI5u2Tu2PxfNbpSfFyF4sr7uy/NI8TJY
xxj+ukbwRHDL0p0sqELlNgpFkq7jcJivKVutNwI8mVnMIKK+P255yib5Mxw1
XtsonEbETlooT0BGKWp8MiTnH+H/mVHam3/k5kI4q9R0mOAJT9aZi26fGYjP
SSVd0rwDcPYIUc9OFqBh+1JEvhH+eIyny0m72RsEX77t30ysT0x04EHzn3Ho
oYErmxsJPrw+u3gocDILZJczk9oJntho3znnfScLvZS1fZpB8ASioul2o/EQ
JW+hlk2MPyCQJSu05o5+mareKUjMt6hU81t/joFM7eYYW/J0gAx25w1lvfZw
yrSN+xBx3bznA1frkyS04KOoxCHiftuzR6XYxWPh7f2xcOH/9Wcxa1pXXQLR
YTlt1Qkijo/cMuN0JQhyXofqs4gY05Y2+qsQg1ZN1VQpE3Hf9tAIxnZr9Nzg
2+fKxPyTwfMnWlYYyMzGze7f1R3++5+Jkf7/+O//5n/x/wG6v6ZM
"], {{{},
{RGBColor[0.790588, 0.201176, 0.], Opacity[0.3], EdgeForm[None],
GraphicsGroupBox[PolygonBox[CompressedData["
1:eJwl1Hecz3UcB/A7W6HIXlEhMsrMHmUV7pwZWWfdGXfKKsQRWjSEyi7tQRMV
FS0yKoqitMseyY56vh/3x/Pxfn1en8dvfH+fz+NXMTUzJSNHQkJCIlmJ2XNK
YnauLU82b2Ach6yrmhmslH+nojyECfIL/EAp6750lNOYxxfk1XWI95Pv5nn2
UFLXJ/bkocxlE3l0t3K9fBfPsZsSuttjTx7C42wkt+4WasnjeZbvKa7rHXvy
YObwObl07akpj2M531FM1yv25EE8xmfk1LWjhjyWZ9hFUd1tsScP5FE+JYeu
LdXltqTyCJ/E761vw3VyGwbwMB8nZB9Ga6qJrenPbDbwHzfbq2peSxUqU4lr
uJqr4lyowJWUj9fQj1ms5yI3eZ9yMenLQ3zEBVrZK2uO4Wl2coWuJ63kPjzI
h/xLS30ZcwW/xWdbD2a0vIxvKWLdg5byK/xMOevUOE/5z/j+choPyB9wnhbW
pc2D8czySF6Ta5h38ms8pzko1nItcwz74p6ZlRjGUuuJ8Zszim/inpiF6U4L
63vivjGW/dYTzMoM52XrSXGe3MFPcS/jd2JA3DHrmvHM/BHnYA7lfrmamck6
+RzN5VLmgThDeQSvyr/EeckD4zPkv+Jc5XSWyDu4XO5Gc/kl9lLGun/cW/k+
1nKWZrqS5igWs53LdF1pJr/Ij5S27hf3WJ7J+5yhqa6EmckivqaQrgtN5Z7M
4D1O00Rf3MxgIV9RUJdCE7kH03mXUzTWFzOLxv2KO0LheMb4nvFZ8XoKcCmX
xGvozr2s4SSNvE/+mHRjGqv5h4b28sWkK1NZxQlutJc3Jl3I4h3+poG9POZI
FvBlfA9dZxrIKUzhbY5TX5/bHMFTbIvvrEumvtyZybzFMerpc5nDeZKt8Xy6
JOrJyXEfeZOj1NXnNIfxBFvIr+tEXTkp7idvcIQ6+vhvT2c+m8kX/8vUkTsx
kdc5TG39/0UUong=
"]]]}, {}, {}}, {{}, {},
{RGBColor[0.790588, 0.201176, 0.], AbsoluteThickness[3], Opacity[1.],
CapForm["Butt"], LineBox[CompressedData["
1:eJwl1HfcjWUcBvDX3ntvr71XhZZoUCElUWmRtJHKpilaSjRoaZJKiaK9FCHt
PaxKU4Mmje/16Y/vua77d7/Pec9znvtzCoePHjiqSEFBwTQvyS5efpCPMpkj
2IP+5qVZp9/EmRTNntl2uZQpDGDPXGdehvX6zZxFseyZ/SgfYypHsleuMy/L
6/otnE3x7Jn9JJflM3IUXXOdeTk26PM4hxLZM/tZLuciBtIt15mX5w19PudS
Mntmv8jHuZij6U6ppL0d8gkuYRB7Uzppb6dcwaUcwz6USdr7Va7kMgazL2Up
R3kqUJFKVKYKValGdWrkGu/zm3ySyxnCfrkn8wq8qd/KKGpmz+x3+RTTOZb9
c0/mFXlLv43R1Mqe2R/yaa7gOE42q8tn+iJ65L6tK/G2fjtjqJ09sz/lM8zg
eE4xq8fn+gMckO/GujLv6Hfk7OjN2Kafx6l6QzbrD+VZ6i35Vq+T99D/ks/m
s+ttmKmfLpvwpX6+7MBQfZiszwQ25n/Idkxhcc6WbMEkvrG+UHZiKj3zvGQV
xvNu7le2ZTJ35izL5kzka+sLZEfG6iNkI7boY2V7Hs55k634Tq9LT32XfI4r
OcO6KV/pJzBcb8Am/UF65flbV+U9fUHumdOsG7NVX0K9/K31bvk8V3EiB+Y8
mFfjff2ufG7qZ8/sb/kCV3MSB9Egae8f+SLX5HxwMA1pRGMKaUJTmtGcFrSk
Fa1zjff5V77EtTknHEKbZH54eFnMyvOjN22T+V1ilX5dvhf60C5pXpRX9Otz
jjg059isOh/od+f50j57ZsV4VZ+dZ8VhObdmNfhQv4dxdMieWXFW6zfku+Zw
hprV5CP9XsbTMXtmJVijz2EkffM8zWrxsX4fE+iUPbOSvKbPzXmmX56XWW0+
0e9nIp2zZ1aKtfqNOTP0z/Myq8On+kIm5X9bF/KF/gj5kW/N97k/2bnI/7/5
Xaz/AxkpoXM=
"]]}}}]},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->True,
AxesOrigin->{0, 0},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
Method->{
"MessagesHead" -> DiscretePlot, "AxisPadding" -> Scaled[0.02],
"DefaultBoundaryStyle" -> Automatic, "DefaultPlotStyle" -> {
Directive[
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]],
Directive[
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]],
Directive[
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]],
Directive[
RGBColor[0.922526, 0.385626, 0.209179],
AbsoluteThickness[1.6]],
Directive[
RGBColor[0.528488, 0.470624, 0.701351],
AbsoluteThickness[1.6]],
Directive[
RGBColor[0.772079, 0.431554, 0.102387],
AbsoluteThickness[1.6]],
Directive[
RGBColor[0.363898, 0.618501, 0.782349],
AbsoluteThickness[1.6]],
Directive[
RGBColor[1, 0.75, 0],
AbsoluteThickness[1.6]],
Directive[
RGBColor[0.647624, 0.37816, 0.614037],
AbsoluteThickness[1.6]],
Directive[
RGBColor[0.571589, 0.586483, 0.],
AbsoluteThickness[1.6]],
Directive[
RGBColor[0.915, 0.3325, 0.2125],
AbsoluteThickness[1.6]],
Directive[
RGBColor[0.40082222609352647`, 0.5220066643438841, 0.85],
AbsoluteThickness[1.6]],
Directive[
RGBColor[0.9728288904374106, 0.621644452187053, 0.07336199581899142],
AbsoluteThickness[1.6]],
Directive[
RGBColor[0.736782672705901, 0.358, 0.5030266573755369],
AbsoluteThickness[1.6]],
Directive[
RGBColor[0.28026441037696703`, 0.715, 0.4292089322474965],
AbsoluteThickness[1.6]]}, "DomainPadding" -> Scaled[0.02],
"RangePadding" -> Scaled[0.05]},
PlotRange->NCache[{{
Rational[-39, 10],
Rational[22, 5]}, {0, 0.372}}, {{-3.9, 4.4}, {0, 0.372}}],
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.02],
Scaled[0.02]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{{3.640106907371768*^9, 3.64010691390556*^9}, {
3.640106969146347*^9, 3.640106980597625*^9}, 3.640107027356179*^9, {
3.640107078275793*^9, 3.640107145995565*^9}, {3.640107299062042*^9,
3.640107305140436*^9}, 3.640107342948564*^9, {3.64010739656774*^9,
3.640107514648592*^9}, 3.640107551072905*^9, 3.640107634825705*^9, {
3.6401077562543983`*^9, 3.640107783908827*^9}, {3.640107831429352*^9,
3.640107854391612*^9}, {3.6401079173862877`*^9, 3.640107938230809*^9}, {
3.6401080424436007`*^9, 3.640108074374689*^9}, 3.640115815881905*^9,
3.640116691091432*^9, 3.640116725074628*^9, 3.640116762648837*^9, {
3.640116812595167*^9, 3.640116843812291*^9},
3.64011692950111*^9},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztXQlcVcX3v/J4gIJLuZW2qP2sfpZl/dW03DJNS01Lcyt3fW6IC/7UFAQS
NxAEEcktEFEERVQE2VyzDBeUVHBXUFHcFRdM9Pxn5s7Mvfct7MoDL5/P4zHc
7dxzvufMOWdmznQbMnnUiHFDJo8eNqRep0lDJowaPcyx3tfjJ6F/aSoIQoVR
giBk1RPw34D+pL/Iz2j8izYK8bcN+dKgXzkQMcUdUnJA6Cr7X4KnDnQ6nWBB
fmvQb2dIuU/uICyj5+VkxOCjivOcQ1OB/gjd2P1yU8F5Siigy4Xa4uO15Msa
/cqFjNRDkJSUBIeSdoGngwMEJ6TA3VxGjhY9JoE8Jjgpg9w3NzdXWEGOWRFS
d/kiEqYEQ0YOOYqOQ1d2+9y7kHpIvH3SrlBw0LlDQkoGOgmEWiIlgh2ci/EF
ncMUmDJF/DjoHGDLqWsQit/NPRgSEiLAGf3PNzQBsnLga3KhrYnLRB7lZCaB
O7rcOTiJPGwlucaS0Hso1J2wMykrtxujMycVXa4D9+AYSIgIQH87Q2hCKjpZ
otMWcm5mwrlz5yAjI4N88N837+dSOfhCFnrUlinORJadKINMXGPB6cmC0Ck6
cFhB6PydSizrUCi6owMmkUpRCxkJnqDz3Isa58AdSTNHkqY1vdu5GPRmzgHg
iQF1H7pRGm6e2gt7T90UUZFziNwZHV7OZJh7E/YmJAE9AVICENuDU9hzMcti
3BErVwTAFOdQuGv4XHaKTjcFUqXnZiY4IwGFwk30ZndPbUGH3eFcrvRcyCAy
Ck3BT74LW5zRQ7ac+47dNOcUOaybEoGRW1tPb5DEnEWd4ByC3EyI8HRgOgHB
ezOo4LWIoxFEwuSYeygGq9Cd3uv+qQhCp+zNwukhfDpTpwTxUE16KDExEXx8
fPC3sMjI6T5GzrMw8j9RFavK/0duUIg2upqQVpF82RXqVgMGDNAQc6bBf3Lq
NVQz8nrqbCNv7Up+VyvO23CSLCTitIQ4vZMEdqx+/fpArTL5oDY9ZmNwTO8+
tnJYiU8xfieN/E4IveKT8Z22xcbBggVeelRVM/rkJ7lP4WHOE3j67Bl57fj4
BPBA18bFx5M2/j8+npv71IKqCW7iy9jPo8dP4N8nuexwDmo+/jeXH8Z/5zym
h6vjM9EV0mFGwDNKgD5BT59SAp4+1SdIkFOE75sHRTmmKXr8wih6WgiK8B3y
o+hZoSnSlxqnCKtMHhThK0uGomcFpYhQUHSKcikFhhQ9KxJFFpgYU7RRYsTD
VU3S8vSpcVrwac+HFhsZLWBAi8yambZYSjvTgPy2JLZj465TMGp+HKzffkLs
eGn/K3Yn7Iqq9C5Nmzbl/6tE7zLLfQ44u80lFosTY0Nujl/rfOYduHv/MecZ
bt+6+4i9+QXUvH77IX/zS9fuwZUb99nhqzfvw8Wse/zw9TsP8R0YgG7de0Ru
yIRw78Fj0ma8xEzC7QcUZIwgfJ4eQVxo6VfuwrVbDySKshQUoT/zouh2dk7B
KHr0L5e0yKIcCiNK0T09im7LKLqWDZnXs01SdFtJEeURM/fZD0WKHnOK/tWj
KFdB0VNK0c27DzlFF67cUVCELU/mjWy51DKy7vLDN+4YpSiXUcR49FiUElYT
OUWPC0BR+tW7kCWXGsJRphJHGTIe6VF0h0nNgCKl1O4/1JfaYz2KmNQs9Smy
gMvXs03B2gQ5TGT4scZApE8Ovk4EEeiRo2QQVm039/kQFhHFDuNDGVdNiMwa
NkXFECWPixNdiqjoWNKeM2ee8Ck1Dl1HzIOBbtEwcl4cNSKiw0fgMQL/qiD+
14p8iS4etTIGFgYHntXJ/2xhgZc3OXf//wnk83crO4jt8BbsGN4Jrqz1hZu7
NsOJyFC4EL0eve6t3VvQE05vWQdno8Jxi3zObg2HU5vXiYdrk9uloUvY4Yxt
G0j7+s7NpH0pPoK0s7ZHkvaVxEjSxt+4jf+P2/g83L6BrsP3RPfhJJzctA7O
R6/nzzi9mZDEDmPqEEX88IWY9fiW4uHqnMJ8KUrYSNrXdmwSKYoTKcJMwW05
RfieCoq2hMGZqDCTFEUrKOI8Qk/ChxmFEkUb9SiKVFB0g1KUvk0S04lNoQqK
8D3lFCGpnTTNI32KLjMeUSldRd/4joyirAJQhKV2TsGjdYiicDkL86DoYmxE
nhQxqWXGS1LDtzSkiEnNUp8iCzitZJBcZFQmpsjBjzUGIjk5uI2vE0Ek3lIi
R0PIiZrvDK2q4t4f/7aFsW0+xn+RT2v0GfP+q+D0tgAr3xNg+8ei1uL7NLYV
qFaL2s98CSkys5X5MrIz8omZNDzkw5bFQmZflP9TmB78U7CATyMP8NCtcJyq
YWaKXm1IWiX6vzlz5zHzhc7Dv60h6QtbiP66ASTY94Ib8WGwc9Es8B87ELbM
dRIKKFvVZKkmSzVZBTZZAfaDZSbLEjq8IsC4ugL89q4AO5tQxRQNww81BBrE
FDwTxGyVXiaIOYNGk2OvGOSfqLNUmKSWYDrRlocFrCI/VJg8mphYtDPIaRl7
E9b28PDQZ2XnV0XO7/kEW0PMehv461MBVqAOY3QdAdqgTsSpeztjrhuFrxm7
bhkMwiVoBw0oKpYdvGxAkTnaQTlFJWAH86GoKHbQOEUlYAdrF9sO+k8YD8M6
dAKfcePE9kTc7gy/9OyByBNtYLtqAtgjGxj4voC1z5rawB1NBPBvKODD1L+q
inW4yAMJlag1MhygUFqoikbOszXut+HWK0ZOF1PuNnmaJ/QqltQc4aHXBjYC
sfju9Ymvih4lOmqYC/MbCLBr9iQmK0G1QaoNemlsULVi2SDUe2uImbGGnu/W
5tEh/ox4rzoseEeA3U2YtllCzEcCuNUToDvSxHo2gqUJ1ws7PPWN2AI6wvqu
EZPAfCHcZqGZNfWZ3q8kwPDXBYj8UBaaoVh1W8cGMK1dS2I0ZWISSjL2yle7
VH3X0y5LfX3X0Pkpt6iXeLIgJlpVdmPkVC2yssd4uqCbY01HMUhtAYKQM5H0
KdMnS9Ie/JoA/6lIIif5+FAeTkMrUaE/lCm0fl7lLWsUdqFYIe4j6WGr0MM8
v/k/k5Ze1Ve1f1ZVdpnDEJoH0cDPSGXX/leg+oN/V4KU7v+By8tnwaOLZ/PS
0Q6ijjamzrsxn9vVKwg+7zaKfEvJCiver2MHvGUV1AE3r4yNhoZGIOhP2PP9
h3A8aLHa56o6rOqwRE6ijxv4jR4IS8YMoHG8Br6rLmbOROURNflvpEJ/Dvgc
7vydgCcViNMZhY9MhuK2eYb0+Lu+jeiiozvTp9SC/Z+hF3QZBDeR2EpQQVX9
VPXTLPTTrlD6yWNeDfR+txb8Wo+k1XivhhPcM94WwL53d6GHqI+tyZdW7t8S
vxZpM+2Na8CRbvXh7O8LVN1Sdatc6ZZtgXUr1stVYIrVv5YAUY3Fvs6Ce60V
4M9h7SFgljPWpO9F3WpDvqwM/NKpP3wNyV3eFrWyOuxvbgkpU34i71pM1VL9
SlW3zEO38vcr471FP/LX3p34tJ1Z9QXYJ+uwjg9sDtnH9hM96ikqVVvyZbiE
I2LjFgga8A0kNbekl78CR/t/AtdjQlSNeiEapWZHn5862eSpTjK375tXBQht
JO+dNJDUsiJcDfeHZ0+fCj+KWtSeun3yrulN5PbFtaxMtacaJHeoCedXealu
ntoVlWndsTapOwkL3bhb91NtARI/VipOZOtakJN5gehKb1FxvjQyHmBBxwM0
qB3aty0ewKO3qAoHWljD0fmT1a5H1aDyqEErJw6jSUBrcKhLsg18lUQSCooS
/zeQdDt9ldojHwoXR9pfhS+qkgF5fvn+phXgzJzRarejKk2ZVJpKeXU7JOKZ
+TYZqGa9zd+tq8DJmE14EZXQz3Rvo5WNPuNJK1KHZQdnpvdXdUXVlTKnK3mH
N6Ft32CDSts+rwbZ6WfZYsN+8mhGI49muJq8YinArrbVZWpiC2mTeqhOmKoj
ZUtHTDthaeO+pUG7Fvb2+hieZN+Rr8hlnclXVEsiNkWTpbMeHh5cS6I2RsKh
Hz+SaUkliOz6IcR5u6mdiJogM3/tsDIgJ9bLFTZ/+19RMazgyLjukH1XrKMl
Uw6FbliyYgrkLL5MSixUgQspnEu/BkcHNhfvWZE4cHiRkNp/qP1H6WtIZQMN
iVy4GGaNc4Vo/99I29dhHFmS4zfBgeB2bgM21GINO4Z2gZFzoiEsIY2gf8OO
k6CbGwuh8anKDsQOQmKPk0O4dAv+mT5vJbTsOhJcFgSS9jp0C3zcZf5y+P09
+gQbmPCGQJ6MKdrsu0TtR1RFKR1FsTFQlFnj3MB59Exwd3CTBlPsYPpbsnQU
+sxpIEC34XNIkZFR8+II2HHtIlp0RKEmlfF/xDPni2eaauPpqZYVBFjzX+Z7
2eBBUHBt+3+EKEycqiuqrpSKrlgb6AruTLCe+E8cTwdPKpN17JEfoECb5m89
3hHIaMhQ+xkE7qynYMW+0LeyU6kC4dtPEI1gp65n7Z1ieybqXD7vOgoGjPwf
ifFtLciqKQvafe1rpgWfoaMhapFBx6K6YKq2vCBt0ci1RQzsBFsIchzOlx7i
2WNskGRbY6QpqEvRVhAH4PFc6EGiVnxLvgyXEbNlC9W1AsR+RNFvRYbqr0ev
VrsJNTQ3E9RbkopCGPF4Rkr8x3yq5LpGAthp+AKdwSLevzEy0MGCb7byf8ea
lXDwi0oWNNO1r0t9uLkzUrX0qqUvdcxbkt824PxdGwhrJAUMu5tbwfbw1Wyi
4hAl2OWj4KwGGP4f+3Hq0Z6sdWGqs6bdW+Xfutc2Cq1j64PhAn2icbCvQbJB
1yihBdfjN8ClxE0M7IqqXogiTgLFlmrhC452LZxw+Eaa7NHUAq/0EobnZ8+1
iuVd+Niw1yWI43WXu6YOKt8Q1xrgaY/XZEHc68IOXL2WixAP84VxutHwZzyi
KHopuLA6/7op8Mc2TFEQhDnbi5dZwRRXT0hVzXkJujBaSPf9nyL/kxnsKYyQ
O+iGpfXxGmNWc01m33FdADbP488WFeF4yNJy7LDo2fAoH4TGSRC/HlGUsBJc
ETLDwsPR8RBI27QW2exNEPOLDqbMDSAUHfFzBN0kT9i/3AVd5wSnyCPWgS+6
buHyENWGl1QmB3voa8b0gaQW1hycZ6b1Ye4Hs+VdZLZcWdNGuWwQz7RI/Fjg
Qemh3k0gPUZiDkUUYw6FuCS+qLyr7JkZxpU281KIG9jP9OUU7Xa1B7+gtTKK
wmHpGHuICKUUxfqD4xhXOIj9FplfsnnGaJjqtUy14kUcI46a5wT+YwYSaOMR
LryoKLwRR3dK93cgN5sUGWeG/AcjhvyzKoJsErcW0lyG6aNYKCcwVprqS2vd
wHGmH6foT/cJBjBe6SCDcXwAgvEsSFo1n0DV08MTIjymkb83hIWJFGqJh6I1
BhPD2hovHXJpjgmDVVyIgH9rwaWe5HbgfOGOIH9hpIjYntS9kK+Ay/D5HwPr
/hZWcHXDby8HWHU6NzhMKFoPIWN0EKAA6wZYiWvZLg0mFF0Nm4XOnwUHI/xh
Gvp/4Ap/iFvqD3vD16ixYRGhy5J8GLTiOgArUstSvg5g0GsCxilFb2+a2X76
72M40vVtftY/vT8geClfXoKeJxyLzCUK6cJXhcDFCB8U3tnDrmhlNmPPHHuw
n+4J5+LCIM59NIybsxwdD0begw6WrQpGQlgLe4OW41hPRWyhEWulGIxhy47D
P+AeAq5Ea0HHYihiiUOM3Ofs1GTY39SCI/b83DHlzcAaZiYOBjjxzIT/imDD
5Ft8IPjY08yEw0z4J0GkaI/nZJaZ0OkmwPZINTNRaLBq5eaVfKa/JS1O/PMT
sXQwzjiMUiIV77+3pm87jtSDX9hC2pql5Qmp6piImUH1luTEknJgez+RoLph
6Dcs68ug2ps6sSzswmPgWxvz3MHhwa3LUT5MBWvpgFVJETamS8YOgs1zneTp
gvj2dbmhPNqvCTx78mSMiNEfjSS58KdZZTZtFgW1/m76IBVUlKrzKgoKUQ2n
CBlPXoyA7TyS6jmZG1Hset4/foBgUgFQ5UCyBS1vvOxdKQI71PkNUiBRtaSq
JS0OTJW7riH31HsmHGxfg+Pswtwxgr0SmoZ1MmyghlaApM+sZIHUaBWaKjSL
BU3l7lpa2NrzU46v5K9qwpN7txk0RdfTsCwfbu9xHsGmIhxqVw1uJKxXUami
stgGk2X18a5jcst3LXK5ME4eu1uR2B2vzo3cHEMQaVVBNn1SA2ecf1b9TBWS
JeVqamFdWyn8Se75AanWo4Ckhm9SjiBJ+3Ar6FZdVuinhTWcDF2uWkk19CkM
Hq2NRudbnexxRVxu8E4jubEJKfbGcTlnnifHJc7d0+q85JMytouKS9VUFhKa
RiiKCoMjQ9vwiSQDW8LFrHsEiHlYSzbltW01CZF/ozh+q/M4tfdWIVk8SJ5Y
6YWL5DFIXtgdbxySlhySt+4+kqpa2EBkEy1H5eKGsv1u1aEgFZH5I1JrQNHh
n5rxfvvk+C5w9eZ9DEnBQQ5HGwUc2UIAl1/nwUw3d/jEjs+6wxvI9KwpEM+A
AsC0v6RiUsXkbv3hycxgT/kODQ9OHmGQdDDeZyNE8tn76VfugvscD5IaCmKz
9y1xQRMyh0Q1kiogCw3Io30aMxydmdGfGL+CAlJLALkhcisBJN7LUloaqIHd
TiNUG6kG3foi2+77K9ljI9rDxSAJdGmZG+9q8RY0jy6ekQNSKCAir916wDPp
rvUkRB77uamKyHJoJA035c4PlFv9AkjNr00+S6TiSloSbeBaMri8UYT3Yvjn
h/f49J+4UXwVEqzedgx0c0lhGBORtgRJKw5J5ld6TJ2Ml3KwG59EMZMabJcr
QBruNJQfIHH1IlxYa0KvgQiH4vjMxB8Hkv/5DRomSDWFLGGCy1qORFkBL1NJ
H1NQxD+XUHB+dHx3BsWUoW1VKL7sUGTFtFz7/cih6PB1GxjeoTPEdWzAobi6
V2eI2HmSYwn/zQppKaBoSw7h6otr41LJqbigFrafIduOK9rhy0Lp7euS1fse
ukm8UORGvcKRKhjLHhgNdzfMA4x0ybtyQQ+bS/F9DbJPAc0VVoCH59MERzno
7ORVEAnI8mof7f2hiLs6ENqlBYE/pkZeg7GEMadCzhwhZ0khx2aNSxMlLMH3
P9KAyZ8/t5ysRBsrI8gsosn2jpNwe28MQ9tfza0gxtubELJ1cQBB2nOwcOaK
tnIVGxcOalp6S2zdcPJudt9vCOTwfJw/P+Ex68rpDnyseZIIuWE0GyhfqnjG
eYCWSUntGMu5lbLW6xjd60s5jpXvCXxdi6McL1q4vjVYmn7drhrc3B5BDZ75
gaaoJbeMigiuJ5bLkluFQ40NuUYLLt1aw07Zpmau3dsK/1Mi5emTfyH5K2kS
9fl5Y80WKUWoXEXFsnf+eBg3dzkXy05pfeiM2X4vrXVhODnnPkKaIPJ1HTIL
j+JkOMXJlRBvfsrhznXg5s5N1Gs3P5wUtgCUhJPdc+wlnKzGVUUmwsFE9Iid
QTADXRcSEvpyWhRrihRc8jS5Qy0Ohaz1AcIUJVJyH2TDwVa2/JQM/+lmi5TC
llEyjpTDAU5g7+zDHd3NM8biUmHskWWxAk3R0JHuI1Wsw8senj56yNAxgnqy
F/1+4acc6/9JGQFGvoWJJGD8PV8GjKVOMMl5Eaco2tlBDoyXqq+xpsqR0v0/
HACXlrlNlRsPccHWktkuePdW6ufWgqyNUkUyMwuUC1sSaAukh86GKf9zgWWT
dTDZQ4KJTucKl8gjNsLS0TpYXH5KDRYOJ1bUlmSu9uI4OfB5RXhy+4YwVRkV
y5dQeb3D8XJq8g9lAy8FKchzbUcYbP51AsHAdC/qmYQuhEnourjNG+Hq5kVg
rxsL8ZEvaaxjRe1K2piOHC/nXIdME6EylDol+ovov6gqcLwcbFMZB8jmiJci
VMRhEc+CSTB57lIunCR/JxbxePkufWkjHi1l6424dXCgpTVHTPbRvwUFZKwU
9XPxp4Ig2/SiJqR7O5Y0YtQcnBljxhLOzx4llero+/EvcrgYW2r+Ggx+Tcq9
/NOrkTlaGDXV/1ywcqRrPVmMvOQXueNiuPZb168X7G+mEU1LDbgS5vcywOTl
tipsG4PMVR6KSmm52XeFX5QZFXmpVfxzempvgWEFL3RQsfJSYAX5uKO+knzc
WcOnizARa5rVhrsHdsiQVAkubFmjeiblGhdsp4jrsWvhQAupsMP94wcEPXBg
2/FH66r8lBOzRqvgKGPgKPwEPzbj4I/R30pT43/6lE8zoB3NSOrDMr+kby0W
HVeH5G4NVKCUMaDYFQooTt3bWdCJT1tktQuyIpbOEOGhM5JEqayRF9l8FY4F
zCnP/sdLGtLEerkKFnQe5oDasporLSvicT5BDyD6KRNpRc6rcHj0N+UZIOXN
hBQcI8vHDxWY/VjSUMLIlr6fO5m2H6ySKYPHn5/ZwHZvFxUeZQMeVQpjQsjM
tfbVSIfBvJAdqwK4FzJd7oUo98LBSdftn1jQy16BEa+LhSJUL8T8MVK5sF4I
THhDmt0Y83k1DpAZ8lhG2noGb807ti7HxtJ3xTL1sQtcVGyUK2zg9r6uDTg2
cM5MDxtiTeKaBBd4XwI+ff8TATq8IsCy8UPKHSjKlVNauJW91zYH4upDopib
WsDja5ed5UCQxmM2fsBsSjVwfLNY1sFccVDejEPhwtezLoOZXTgxugO3C9T3
HEu+ahCnok8tyS5sa1lV9TPLGxSOdHmLQQGvgNCDgli/sTpsCV2L55dJdcPX
LSl3XUN5w0HBw9ELQV7cTyDjaQ+yidydlSC4nZ0DR0Z+zUGQNrWvCoIyBwLc
meMKMwnebgqppY7vxkFw1ulnbgmMgCAtLFBaKvX16yoIzBwElgoQ8IouliSA
xAJLjVgDB9u9wsR/Z1+ccfFriPjPXbgKB76oRNFSBY75uZUnf6BchQgaLvrt
Pm60YIUVxCPdP7pgmrQ6qdPr8Cw318VQ1rhEytlZw7msD+s6lCdZlzdNl8Qd
OGkYFbcWVkwYCsmDvuDiTl/oKLgal/Wdg7u5rPcjV+BqXHhpyLqEF7jGl8sF
rsZ0Wwvx86fDftmOFQ9OHlEK25IL+0nuU0juWFuUd2U47zu1VLrwklqjGgRh
zvZsxvYUV0+842450WsTPbhYk+3MfAdpkm2fxoKbcWnnPn0GFwOcmbSPDW1V
KtIumZWmh5e7oOuc4BR5xDrwRdctLD/rfyrm67b/06+J0dyui2nhPzh9lAn/
QAtrslVS2Vw8mha5Bk7L7PjmGaNhqpe04q1s67qh7OUUXY9ZA/ubWXDZP756
0bjstQrZ45/kzmzgxw4yFk0r/YV/RVkfemzVfCJfTw9PiPCYRv7eEBYmcr4s
Lhu2yVPcF+bbM0kfHfgZl7Rr3pI+6+fEJZ2K7HypS7ooSzzTIvxhGpJu4Ap/
iFvqD3vD15Qn7y1vuR/r/wmTe3rQgoLK/frxw1zueHLr5Zh1pei1F3WpZmQw
LEUYWbYqGDF3LewNWo49ufIv98zNq7BpZ3K/feGccblbGcj93oPHcLDTG+KV
tnDWe3IpO/BFXXK5Ryoyo9NNgO2R5cWBtzYp9TNzxvLOPPmn5nD/4b9Eym55
i3zL1m2wun8HJvKjg1uWoiOn4LCajMlX5v/0lZz33wd2gajo2PxkzmZ4vW0j
MJkfQFF+alhgmZZ5uUq2Gh95TV2zDJt1cRLwpwLU0vLdaxXylpJwcfEJdCOy
yrDpQ9l6WHeHMi3s8qbgVkblnTJzBNulYcV7gmL2bmJioqnEq7f3Qi7zobI1
0Mn9m6kyN3uZH/qxMZN531pKmfv4+JiSuVzP37KWZL6/uRYub12jytxMZG6Y
kcmIDCJz6JhNr6kVqCQ1fMkxlvVM09k4vq2fHSS0kEq/nfGcmJ/cVbG/GLFr
DcR+avZogen55lY19TejV/pvNkZ9drxTeExsHFxeOVu8U0U4OqC5qupmK/OU
vmwvd0u4stYHomPiiBCRz/5r3uLGUTlu5/ybC4/STzFx462bcC2dsijucuWu
K2V9PSZElli3hMdZl+BhzhMiQRSTK2RdMU9Z45/D3erTO9lA+sLJqjkvfXEr
x1DPs8S6Fo4N/pzITCZtoZDivvCbGxc3Trir4jYzcR/t14SJ+2Kwd3HFHRu0
jIsbF1rMil+vittcxH11a4iURtdC9qX0vMVdKU9xs7xbdGOBbe10wd+pzHXc
5U3cGojxFCdE7Hb4XmA7tCX3bwo5j3P15a0Qt7VJcSO3XBDL0FUC+7pSOL63
z6eqdj9ncduYooj8zcttVCQpNSaY44tcjYlbKKC8F3h5c3l/aCvd9q8WqBPf
uKYsybts+eXWJoW9c9EsWhihErSrJsAfn0hiOb3/QAGUe218KtlMj+0stS4h
jbRnegbSDE1FSPxYuqvfoCGwycefUBG9WNz3NNLHXzXkz1/YQY7DubB1r0si
2dmultj95iNsG/n+nuRMeRt13BZU3lPfkm6ON7DDG9dhQti2oqityrvk5B3h
7UdYzHZqi6R7U/pPHM/l7SerehLy07dERddvP0GkGJ54grTDEtIU8raVb6JJ
zuRtquyuC4Lg826jwM/RkfsEuz6vRvaOIwpON+9EbVXeJSTvSgb7QMrbeH5y
66oC7GjC3ecZU3wVSjuKKe28ONZzixtgiDst4bKMDClX1voKVqrgSkZwFXE/
p1DUzb5LFO3AQT15mHu4c10IR30pNrHrd4iKihUWt8O3n6CCm0oHOs7M6C+N
aEzvZ64yKytuUyVK7cmJ30lLsOeOma9k+s2E9fzokW71zJXpZUhRGN/l2zfd
2Rev4Lu4e9OBz7RSFcCNy/j+lWa0CKrM7fJXkRzWYqsvLTduWw33CgIVwTQK
/ZPju0pVfn8dVhLcz2tVkpXhqqTYIHDX6Zj90DnMgYORZNM8ocztmleRov70
L30lIz7jJw8ly69tWilNTOrV6DkAvgBLg44E4BUAYyEmPFR66zK7CR3bl4WV
oMXfyJCzmYLYvtMfYZ5cGFr49/Z1Ph8B1/i5tjWYVsAujfU6f/i7EC4vCwwx
stmblf5mb+arCWxrAtmG1/BddT5180BLG8h9eJ/IgBqkX6h2pA5vI/XU8+2f
gywKsX4mfaMfTEc89v99jd7+apb6+6uZ2QoaVvFftsk9+Ux/S6p6h20/U4v5
SrXAU3HCRvbgkjg2oFmJqEVhF7hsgqRl3rBtjZhTvBQyg+xdtq/M7mHGxIKN
lFwsoY0ksVyLXKEvFtFhkmpm17GSTsfLVfCKRHzjkojNC7sWZRNsnKQD+199
IR3x46CPI+rDPeGfMrttmCgiG4XmfP2KAH9/SssRo17i31vXPJUBt3652S0f
MglZwcUlTvwh+EOlw+igwpFYIUqHxZpUOCZZkd+KkSub/MEFKQjmuE7nCLER
4v3K4iZdYrei4d3K+LqSHqQO+ZyrjYdSOPqlosfUlYRzYkzHIgundr7CeamC
PrabItacxM71eeeRGThXWJC3ujS2lSRC9pDftVmVSMlJBO84iKdbMIk8PHuc
SYTF4vqFkP9opuUzNjODF+hLQzAbcZSVVBSLUS4tc+NySOn+jpcyOJRvv3TO
dQiTwOlpvc1XAmVOIZRpj/QFE6gQZlAh3NqxUcoHdq2njniUGN+TO9TknL27
f7uC72JIqMgHIk9Y7QFKwGPSwpXQRYpU4LMnTwTKfbFiqTWcHPeNlAp016m2
pkRYbwlnnH6WsoG/9PVWcj1rfYBUg6hfE/PkelnpYxnLU75/lzP1xra1eizH
E9SlFWPimgKzY3kZAjpLalyLWqXg65N7twXKerEYphWkfNeAn5LhO0W17MXl
uiVOknKWpo38cqGS4ZeWukpHde1Uhhef4ccHNpfmVYR46zH8ftohfvRgazs4
sXGtyvCiMZztOImzm/IdJx9dPCNQrs+k0euh9tVlk1tdVFNeLJZbkpQlH6Ps
+V8fJbfPz5E2Jz8ytqt5cbus+CqM1SfGdpK6xEVT9Vh9e2+MZE46vm5erC5D
wGZTE3Bi8VC7VzhP7x3eK/jI3UNZCiY2Bg60tOYpmFW+spsSzvOHqqF//pzP
DPHiXE/+qiY8e/qUcX6GkRwk/oS2e5PnII9PH6iyv8jsx3NS+nD2n3UZ5Cty
fjodWJTl4+nKDkvoVl2aaXy4ZyPV6hSd+UdkYc/NxA16zJcNT1Hm28CrlgIk
sViqmQXZdVsGfRX5nCIbU8wX32jz72yAMAmFpLn37xGm+5iGv7jWxRr2dXpD
ShEvdDQPw2Nmzk3evF/+VUPG+0UNSZ0POe9n0IBJ3+jj9uUV7qyaAJ4PpAK/
cMwn0+De5yPjP9aUimgpfB2tYrgJ/zw4lSIwzh9sZQs3ERXq9gOFYP2qCYPx
NpCM9a9bSbWsKOvdKO4PfCmFrJdXznnRU2xJzX/BXIv+W5tk8J7J/TlCQxsp
KsTpMfio83DO4FOOPUphQq3Z19o3zeYTYzpyEI+pIxVq8lXy+NTWDZKP2LlO
KUyRVZa0t9QvaV860zKN8xUzB8WenK8rZoxnhlefrxcyrsH+ljactycCFxZj
jmVRprvmWS7eHLBr3Ok+8dtcXhNYDDIJRxcp2Zt+5S4cc+gmDbxN+/kFT2E9
XDZrtP8zqRff6s5lEJ9vZ4S9Z0Olcc3kHxq96OmnZbMU+qEu0pqFxA15sffK
ufOcvXh/0S1ujkX0HIo6f9SMK45rDZh7MsRfmjD9mRXfqNNP5KyrLPXn8us8
2LBpK8S1rMxyT+PqCmTKKUGKyF0pyHoJ8x2G/D02cxjn74mxX3PkUv66mEjw
DXmNTfvUwm/vinOtcfDy4plsZoG1IYeT+0iVz6+u89Pn8EyTiTwbxRb1u5sI