-
Notifications
You must be signed in to change notification settings - Fork 0
/
KerrMetric.nb
7126 lines (7107 loc) · 414 KB
/
KerrMetric.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 11.0' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 416863, 7118]
NotebookOptionsPosition[ 416095, 7090]
NotebookOutlinePosition[ 416438, 7105]
CellTagsIndexPosition[ 416395, 7102]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[BoxData[
RowBox[{
RowBox[{"Remove", "[", "\"\<Global`*\>\"", "]"}], ";"}]], "Input",
CellChangeTimes->{{3.653313881513091*^9, 3.653313882377109*^9}, {
3.6534060136370487`*^9, 3.653406034715879*^9}, {3.653406079652287*^9,
3.653406083506588*^9}, {3.6534934637353287`*^9, 3.6534934644829893`*^9},
3.653497442085437*^9, 3.6556921019470654`*^9, 3.6558492630650253`*^9}],
Cell[BoxData[{
RowBox[{
StyleBox[
RowBox[{
RowBox[{"coord", " ", "=", " ",
RowBox[{"{",
RowBox[{"t", ",", "r", ",", "\[Theta]", ",", "\[Phi]"}], "}"}]}], ";"}],
FontWeight->"Bold"], "\[IndentingNewLine]",
RowBox[{"(*",
RowBox[{
RowBox[{
"J", " ", "is", " ", "angular", " ", "momentum", " ", "of", " ", "black",
" ",
RowBox[{"hole", ".", " ", "J"}]}], "\[Rule]",
RowBox[{"0", " ", "means", " ", "the", " ", "metric", " ", "becomes", " ",
RowBox[{"Schwartzchild", "."}]}]}], "*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"G", "=", "1"}], ";",
RowBox[{"M", "=", "1"}], ";",
RowBox[{"J", "=", "10"}], ";"}]}], "Input",
CellChangeTimes->{{3.6852743590920343`*^9, 3.685274361988007*^9},
3.685275047897778*^9, {3.697927298527328*^9, 3.6979273110738163`*^9}, {
3.697929349352841*^9, 3.6979293738709536`*^9}, {3.6979297980985985`*^9,
3.697929840018998*^9}, 3.697933033324092*^9, 3.6979333067476935`*^9,
3.697934448670309*^9, {3.6979347805279922`*^9, 3.69793480351654*^9}, {
3.6981071829049845`*^9, 3.698107183910781*^9}, 3.7033533800773706`*^9}],
Cell[BoxData[{
RowBox[{
RowBox[{"rs", "=",
RowBox[{"2", " ", "G", " ", "M"}]}], ";",
RowBox[{"\[Alpha]", "=",
FractionBox["J", "M"]}], ";",
RowBox[{"\[Rho]", "=",
SqrtBox[
RowBox[{
SuperscriptBox["r", "2"], "+",
RowBox[{
SuperscriptBox["\[Alpha]", "2"],
SuperscriptBox[
RowBox[{"Cos", "[", "\[Theta]", "]"}], "2"]}]}]]}], ";",
RowBox[{"\[CapitalDelta]", "=",
RowBox[{
SuperscriptBox["r", "2"], "-",
RowBox[{"rs", " ", "r"}], "+",
SuperscriptBox["\[Alpha]", "2"]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"metric", "=", " ",
RowBox[{"(", "\[NoBreak]", GridBox[{
{
RowBox[{
FractionBox[
RowBox[{"rs", " ", "r"}],
SuperscriptBox["\[Rho]", "2"]], "-", "1"}], "0", "0",
RowBox[{"-",
FractionBox[
RowBox[{"2", " ", "rs", " ", "r", " ", "\[Alpha]", " ",
SuperscriptBox[
RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}],
SuperscriptBox["\[Rho]", "2"]]}]},
{"0",
FractionBox[
SuperscriptBox["\[Rho]", "2"], "\[CapitalDelta]"], "0", "0"},
{"0", "0",
SuperscriptBox["\[Rho]", "2"], "0"},
{
RowBox[{"-",
FractionBox[
RowBox[{"2", " ", "rs", " ", "r", " ", "\[Alpha]", " ",
SuperscriptBox[
RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}],
SuperscriptBox["\[Rho]", "2"]]}], "0", "0",
RowBox[{
SuperscriptBox[
RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"],
RowBox[{"(",
RowBox[{
SuperscriptBox["r", "2"], "+",
SuperscriptBox["\[Alpha]", "2"], "+",
RowBox[{
FractionBox[
RowBox[{"rs", " ", "r", " ",
SuperscriptBox["\[Alpha]", "2"]}],
SuperscriptBox["\[Rho]", "2"]],
SuperscriptBox[
RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}]}], ")"}]}]}
}], "\[NoBreak]", ")"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"inversemetric", " ", "=", " ",
RowBox[{"Inverse", "[", "metric", "]"}]}], ";"}]}], "Input",
CellChangeTimes->{{3.653222672717952*^9, 3.653222674837865*^9}, {
3.653222716460924*^9, 3.65322272403668*^9}, {3.653315457697488*^9,
3.6533154602100782`*^9}, {3.653315531354373*^9, 3.653315536464682*^9}, {
3.653407258855734*^9, 3.653407271680715*^9}, 3.653407365508541*^9, {
3.65568953539643*^9, 3.655689536072783*^9}, {3.685200324176938*^9,
3.685200411227551*^9}, {3.685200459138736*^9, 3.6852004632963247`*^9}, {
3.685274319974475*^9, 3.685274322277563*^9}, {3.68527442327304*^9,
3.685274432664968*^9}, 3.685274779103743*^9, {3.6852768997836037`*^9,
3.6852769005747147`*^9}, {3.685406147960474*^9, 3.685406148281148*^9}, {
3.687462522396048*^9, 3.687462525074924*^9}, {3.689457917923808*^9,
3.6894580963461227`*^9}, {3.6894581390678053`*^9,
3.6894581424714704`*^9}, {3.689460184915001*^9, 3.6894602211166167`*^9}, {
3.689460343432048*^9, 3.689460361011792*^9}, {3.697927051159851*^9,
3.697927086840375*^9}, 3.6979271199747553`*^9, {3.697927163370124*^9,
3.6979272788407555`*^9}, {3.697927313902916*^9, 3.697927539516049*^9}, {
3.697927706207068*^9, 3.6979277063790264`*^9}, {3.697928335291157*^9,
3.6979283511689806`*^9}, {3.6979283905187893`*^9, 3.697928408977236*^9}, {
3.6979299296452503`*^9, 3.697929930935586*^9}, {3.697930405254774*^9,
3.6979304160830894`*^9}, {3.6979304691810637`*^9, 3.697930529135607*^9},
3.697930597199738*^9, 3.697930705705729*^9, {3.697931309425127*^9,
3.6979313224777946`*^9}, {3.697933252430594*^9, 3.6979332729164357`*^9},
3.7033528945661654`*^9}],
Cell[BoxData[{
RowBox[{
RowBox[{"affine", "=", " ",
RowBox[{"Simplify", "[",
RowBox[{"Table", "[",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"Sum", "[",
RowBox[{
RowBox[{
RowBox[{"inversemetric", "[",
RowBox[{"[",
RowBox[{"i", ",", " ", "m"}], "]"}], "]"}], " ",
RowBox[{"(",
RowBox[{
RowBox[{"D", "[",
RowBox[{
RowBox[{"metric", "[",
RowBox[{"[",
RowBox[{"m", ",", " ", "k"}], "]"}], "]"}], ",", " ",
RowBox[{"coord", "[",
RowBox[{"[", "j", "]"}], "]"}]}], "]"}], " ", "+", " ",
RowBox[{"D", "[",
RowBox[{
RowBox[{"metric", "[",
RowBox[{"[",
RowBox[{"m", ",", " ", "j"}], "]"}], "]"}], ",", " ",
RowBox[{"coord", "[",
RowBox[{"[", "k", "]"}], "]"}]}], "]"}], " ", "-", " ",
RowBox[{"D", "[",
RowBox[{
RowBox[{"metric", "[",
RowBox[{"[",
RowBox[{"j", ",", " ", "k"}], "]"}], "]"}], ",", " ",
RowBox[{"coord", "[",
RowBox[{"[", "m", "]"}], "]"}]}], "]"}]}], ")"}]}], ",",
RowBox[{"{",
RowBox[{"m", ",", " ", "1", ",", " ", "4"}], "}"}]}], "]"}]}], ",",
" ",
RowBox[{"{",
RowBox[{"i", ",", " ", "1", ",", " ", "4"}], "}"}], ",", " ",
RowBox[{"{",
RowBox[{"j", ",", " ", "1", ",", " ", "4"}], "}"}], ",", " ",
RowBox[{"{",
RowBox[{"k", ",", " ", "1", ",", " ", "4"}], "}"}]}], "]"}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"affine", "=",
RowBox[{"affine", "/.",
RowBox[{
StyleBox["{",
FontWeight->"Bold"],
RowBox[{
StyleBox[
RowBox[{"t", "\[Rule]",
RowBox[{"t", "[", "\[Tau]", "]"}]}],
FontWeight->"Bold"],
StyleBox[",",
FontWeight->"Bold"],
StyleBox[
RowBox[{"r", "\[Rule]",
RowBox[{"r", "[", "\[Tau]", "]"}]}],
FontWeight->"Bold"],
StyleBox[",",
FontWeight->"Bold"],
StyleBox[
RowBox[{"\[Theta]", "\[Rule]",
RowBox[{"\[Theta]", "[", "\[Tau]", "]"}]}],
FontWeight->"Bold"],
StyleBox[",",
FontWeight->"Bold"],
RowBox[{
StyleBox["\[Phi]",
FontWeight->"Bold"],
StyleBox["\[Rule]",
FontWeight->"Bold"],
RowBox[{"\[Phi]", "[", "\[Tau]", "]"}]}]}], "}"}]}]}], ";"}],
"\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{"(*",
RowBox[{"pretty", " ", "print", " ", "Christoffel", " ", "symbols"}],
"*)"}]}], "\[IndentingNewLine]",
RowBox[{"listaffine", ":=",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"If", "[",
RowBox[{
RowBox[{"UnsameQ", "[",
RowBox[{
RowBox[{"affine", "[",
RowBox[{"[",
RowBox[{"i", ",", "j", ",", "k"}], "]"}], "]"}], ",", "0"}], "]"}],
",",
RowBox[{"{",
RowBox[{
RowBox[{"ToString", "[",
RowBox[{"\[CapitalGamma]", "[",
RowBox[{"i", ",", "j", ",", "k"}], "]"}], "]"}], ",",
RowBox[{"affine", "[",
RowBox[{"[",
RowBox[{"i", ",", "j", ",", "k"}], "]"}], "]"}]}], "}"}]}], "]"}],
" ", ",",
RowBox[{"{",
RowBox[{"i", ",", "1", ",", "4"}], "}"}], ",",
RowBox[{"{",
RowBox[{"j", ",", "1", ",", "4"}], "}"}], ",",
RowBox[{"{",
RowBox[{"k", ",", "1", ",", "j"}], "}"}]}], "]"}]}], "\n",
RowBox[{
RowBox[{"TableForm", "[",
RowBox[{
RowBox[{"Partition", "[",
RowBox[{
RowBox[{"DeleteCases", "[",
RowBox[{
RowBox[{"Flatten", "[", "listaffine", "]"}], ",", "Null"}], "]"}],
",", "2"}], "]"}], ",",
RowBox[{"TableSpacing", "\[Rule]",
RowBox[{"{",
RowBox[{"2", ",", "2"}], "}"}]}]}], "]"}], ";"}]}], "Input",
CellChangeTimes->{{3.6979283157066393`*^9, 3.697928315972598*^9},
3.6979284166194305`*^9, {3.697928468795847*^9, 3.6979285668528595`*^9},
3.6979286364113884`*^9, {3.697929447537882*^9, 3.6979294545237875`*^9}, {
3.697929510252875*^9, 3.6979295160972214`*^9}, {3.6979295473504543`*^9,
3.6979295586030884`*^9}, {3.69792984556712*^9, 3.697929846488991*^9}, {
3.6979305594718533`*^9, 3.6979307274261246`*^9}, {3.697930870427156*^9,
3.6979308822266183`*^9}, 3.697933038700245*^9, 3.6979333036065793`*^9}],
Cell[BoxData[
RowBox[{
RowBox[{"geod", " ", "=", " ",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{"coord", "[",
RowBox[{"[", "i", "]"}], "]"}], "''"}], "[", "\[Tau]", "]"}], " ",
"\[Equal]",
RowBox[{"-", " ",
RowBox[{"Sum", "[",
RowBox[{
RowBox[{
RowBox[{"affine", "[",
RowBox[{"[",
RowBox[{"i", ",", " ", "j", ",", " ", "k"}], "]"}], "]"}], " ",
RowBox[{
RowBox[{
RowBox[{"coord", "[",
RowBox[{"[", "j", "]"}], "]"}], "'"}], "[", "\[Tau]", "]"}],
" ",
RowBox[{
RowBox[{
RowBox[{"coord", "[",
RowBox[{"[", "k", "]"}], "]"}], "'"}], "[", "\[Tau]", "]"}]}],
",", " ",
RowBox[{"{",
RowBox[{"j", ",", " ", "1", ",", " ", "4"}], "}"}], ",", " ",
RowBox[{"{",
RowBox[{"k", ",", " ", "1", ",", " ", "4"}], "}"}]}], "]"}]}]}],
",",
RowBox[{"{",
RowBox[{"i", ",", " ", "1", ",", " ", "4"}], "}"}]}], "]"}], "//",
"Simplify"}]}], ";"}]], "Input",
CellChangeTimes->{{3.6979275913624625`*^9, 3.6979275975350266`*^9}, {
3.697927796999776*^9, 3.697927963233654*^9}, {3.697927994685272*^9,
3.697928129291238*^9}, 3.697928280230304*^9, {3.6979284248693175`*^9,
3.69792843199439*^9}, 3.6979287130864077`*^9, {3.6979294574773035`*^9,
3.6979294674009743`*^9}, {3.6979295678980117`*^9, 3.69792957394956*^9}, {
3.697929646927909*^9, 3.6979296485530252`*^9}, {3.69793042715142*^9,
3.697930431282364*^9}, {3.6981071981851263`*^9, 3.698107284393819*^9}, {
3.698107320863721*^9, 3.6981073246767035`*^9}, {3.6981075646188035`*^9,
3.698107629885928*^9}, {3.6981076600684814`*^9, 3.6981076614277506`*^9}, {
3.6981077635773215`*^9, 3.6981077663901834`*^9}, 3.6981082200556407`*^9, {
3.6981096281012344`*^9, 3.698109637515388*^9}, 3.6981096900240545`*^9}],
Cell[BoxData[
RowBox[{"(*",
RowBox[{"Flatten", "[",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"Solve", "[",
RowBox[{
RowBox[{"geod", "[",
RowBox[{"[", "i", "]"}], "]"}], ",",
RowBox[{
RowBox[{
RowBox[{"coord", "[",
RowBox[{"[", "i", "]"}], "]"}], "''"}], "[", "\[Tau]", "]"}]}],
"]"}], ",",
RowBox[{"{",
RowBox[{"i", ",", "1", ",", "4"}], "}"}]}], "]"}], "]"}],
"*)"}]], "Input",
CellChangeTimes->{{3.698107666215057*^9, 3.698107827512972*^9},
3.6981081552334433`*^9, 3.698108224118846*^9, 3.6981096860562496`*^9}],
Cell[BoxData[{
RowBox[{
RowBox[{"r0", "=", "50"}], ";",
RowBox[{"\[Theta]0", "=",
RowBox[{"\[Pi]", "/", "2"}]}], ";",
RowBox[{"\[Phi]0", "=",
RowBox[{"\[Pi]", "/", "2"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"dr0", "=", "0"}], ";",
RowBox[{"d\[Theta]0", "=", "0"}], ";",
RowBox[{"d\[Phi]0", "=", "0"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"u", "=",
RowBox[{"{",
RowBox[{"dt0", ",", "dr0", ",", "d\[Theta]0", ",", "d\[Phi]0"}], "}"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{
RowBox[{"We", " ", "use", " ",
SuperscriptBox["u", "\[Mu]"],
SubscriptBox["u", "\[Nu]"]}], "=",
RowBox[{
RowBox[{"-", "1"}], " ", "to", " ", "solve", " ", "for", " ",
RowBox[{
RowBox[{"t", "'"}], "[", "0", "]"}]}]}],
"*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"initCond", "=",
RowBox[{"{", "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"t", "[", "0", "]"}], "\[Equal]", "0"}], ",",
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{"t", "'"}], "[", "0", "]"}], "\[Equal]",
RowBox[{"Abs", "[", "dt0", "]"}]}], "/.",
RowBox[{"(",
RowBox[{"Flatten", "[",
RowBox[{"Solve", "[",
RowBox[{
RowBox[{
RowBox[{"Sum", "[",
RowBox[{
RowBox[{
RowBox[{"metric", "[",
RowBox[{"[",
RowBox[{"\[Mu]", ",", "\[Nu]"}], "]"}], "]"}], " ",
RowBox[{"u", "[",
RowBox[{"[", "\[Mu]", "]"}], "]"}], " ",
RowBox[{"u", "[",
RowBox[{"[", "\[Nu]", "]"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"\[Mu]", ",", "1", ",", "4"}], "}"}], ",", " ",
RowBox[{"{",
RowBox[{"\[Nu]", ",", "1", ",", "4"}], "}"}]}], "]"}],
"\[Equal]",
RowBox[{"-", "1"}]}], ",", "dt0"}], "]"}], "]"}], ")"}]}], "/.",
RowBox[{"{",
RowBox[{
RowBox[{"r", "\[Rule]", "r0"}], ",",
RowBox[{"\[Theta]", "\[Rule]", "\[Theta]0"}], ",",
RowBox[{"\[Phi]", "\[Rule]", "\[Phi]0"}]}], "}"}]}], ",",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"r", "[", "0", "]"}], "\[Equal]", "r0"}], ",",
RowBox[{
RowBox[{
RowBox[{"r", "'"}], "[", "0", "]"}], "\[Equal]", "dr0"}], ",",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"\[Theta]", "[", "0", "]"}], "\[Equal]", "\[Theta]0"}], ",",
RowBox[{
RowBox[{
RowBox[{"\[Theta]", "'"}], "[", "0", "]"}], "\[Equal]", "d\[Theta]0"}],
",", "\[IndentingNewLine]",
RowBox[{
RowBox[{"\[Phi]", "[", "0", "]"}], "\[Equal]", "\[Phi]0"}], ",",
RowBox[{
RowBox[{
RowBox[{"\[Phi]", "'"}], "[", "0", "]"}], "\[Equal]", "d\[Phi]0"}]}],
"\[IndentingNewLine]", "}"}]}], ";"}]}], "Input",
CellChangeTimes->{{3.697928726688138*^9, 3.697928730329548*^9}, {
3.697928760716338*^9, 3.6979288136310143`*^9}, {3.6979288782031126`*^9,
3.6979290750295253`*^9}, {3.6979291136172256`*^9,
3.6979291662009144`*^9}, {3.6979291971412086`*^9, 3.697929260126436*^9}, {
3.6979297099521027`*^9, 3.6979297171478415`*^9}, {3.6979298583139143`*^9,
3.6979299430108013`*^9}, {3.6979304371155863`*^9, 3.697930450067695*^9}, {
3.6979308328888063`*^9, 3.6979308437798357`*^9}, {3.697930905942485*^9,
3.697930906473751*^9}, {3.6979309395446916`*^9, 3.697930973053049*^9}, {
3.697931185652684*^9, 3.697931189716168*^9}, 3.697931269447982*^9, {
3.69793139126567*^9, 3.6979314225294933`*^9}, {3.697931638506744*^9,
3.69793167556785*^9}, {3.69793170911648*^9, 3.697931711241833*^9}, {
3.6979317463930864`*^9, 3.697931753406687*^9}, {3.6979320660246973`*^9,
3.6979320696189003`*^9}, 3.697932435154952*^9, {3.6979325415517435`*^9,
3.697932542817666*^9}, {3.6979326162225327`*^9, 3.697932641721846*^9}, {
3.697932689441216*^9, 3.697932723109486*^9}, 3.6979328189188814`*^9, {
3.6979328665981474`*^9, 3.697932895234397*^9}, {3.6979329884677935`*^9,
3.6979329910000896`*^9}, {3.6979331277258196`*^9, 3.697933169538105*^9}, {
3.6979332133845353`*^9, 3.697933225867586*^9}, {3.6979333608740396`*^9,
3.697933409408716*^9}, {3.697934524088868*^9, 3.697934526778158*^9}, {
3.6979345843812923`*^9, 3.6979345876475058`*^9}, {3.6979347440704145`*^9,
3.697934749868536*^9}, 3.6981074029683123`*^9, {3.698111072166292*^9,
3.6981110725882177`*^9}, 3.6983258810661163`*^9, {3.69832604882343*^9,
3.6983260584398775`*^9}, {3.698326229456686*^9, 3.69832622967247*^9}, {
3.6983263039889593`*^9, 3.6983263047291374`*^9}, {3.7033530673305874`*^9,
3.7033530685805206`*^9}, 3.7033532242064714`*^9, {3.703353358749651*^9,
3.703353373681529*^9}}],
Cell[BoxData[{
RowBox[{
RowBox[{"tmax", "=", "10000"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"soln", "=",
RowBox[{"NDSolveValue", "[",
RowBox[{
RowBox[{"Join", "[",
RowBox[{"geod", ",", "initCond"}], "]"}], ",", " ", "coord", ",", " ",
RowBox[{"{",
RowBox[{"\[Tau]", ",", " ", "0", ",", " ", "tmax"}], "}"}]}], "]"}]}],
";"}]}], "Input",
CellChangeTimes->{{3.697929328480056*^9, 3.697929344643524*^9}, {
3.697929423801961*^9, 3.697929425726116*^9}, {3.6979298739855366`*^9,
3.697929875204302*^9}, {3.697930159524047*^9, 3.697930214672453*^9}, {
3.6979302624921007`*^9, 3.697930279711545*^9}, {3.6979303674119925`*^9,
3.6979303746391826`*^9}, {3.6979305048078437`*^9, 3.697930510403615*^9}, {
3.6979310419696913`*^9, 3.6979310424852886`*^9}, {3.697931442330555*^9,
3.6979315095047846`*^9}, {3.6979315649130573`*^9, 3.6979316026023703`*^9}, {
3.697931724171875*^9, 3.697931731819254*^9}, {3.6979317746461678`*^9,
3.69793178264726*^9}, {3.69793208105661*^9, 3.6979320815254354`*^9}, {
3.697932670188405*^9, 3.69793267049155*^9}, {3.697932981728672*^9,
3.6979329820255365`*^9}, {3.6979346040924034`*^9, 3.697934678094245*^9}, {
3.697934758416625*^9, 3.697934759024131*^9}, {3.698326295988554*^9,
3.6983262965547256`*^9}}],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"reh1", "=",
RowBox[{
FractionBox["1", "2"],
RowBox[{"(",
RowBox[{"rs", "+",
SqrtBox[
RowBox[{
SuperscriptBox["rs", "2"], "-",
RowBox[{"4", " ",
SuperscriptBox["\[Alpha]", "2"]}]}]]}], ")"}]}]}], ";",
RowBox[{"reh2", "=",
RowBox[{
FractionBox["1", "2"],
RowBox[{"(",
RowBox[{"rs", "-",
SqrtBox[
RowBox[{
SuperscriptBox["rs", "2"], "-",
RowBox[{"4", " ",
SuperscriptBox["\[Alpha]", "2"]}]}]]}], ")"}]}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"radTrajRel", "=", " ",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"soln", "[",
RowBox[{"[", "1", "]"}], "]"}], "[", "i", "]"}], ",", " ",
RowBox[{
RowBox[{"soln", "[",
RowBox[{"[", "2", "]"}], "]"}], "[", "i", "]"}]}], "}"}], ",", " ",
RowBox[{"{",
RowBox[{"i", ",", " ", "0", ",", "tmax"}], "}"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"phiTrajRel", "=", " ",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"soln", "[",
RowBox[{"[", "1", "]"}], "]"}], "[", "i", "]"}], ",", " ",
RowBox[{
RowBox[{"soln", "[",
RowBox[{"[", "4", "]"}], "]"}], "[", "i", "]"}]}], "}"}], ",", " ",
RowBox[{"{",
RowBox[{"i", ",", " ", "0", ",", "tmax"}], "}"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{"ListPlot", "[",
RowBox[{
RowBox[{"{",
RowBox[{"radTrajRel", ",", "phiTrajRel"}], "}"}], ",",
RowBox[{"PlotRange", "\[Rule]", "All"}], ",",
RowBox[{"PlotLegends", "\[Rule]", "\"\<Expressions\>\""}]}],
"]"}]}], "Input",
CellChangeTimes->CompressedData["
1:eJwdyE0ow3EAxvHF1HBgNduaWRYjSQ7sMGovDixTG+VlbQdZQ6iZhJ1oJWlN
mlpexlZKrCkvJU3WUvhfVmotUxzQUBzGJCtt/s/v8PTp+YoHLF3mHAaDIaQH
Z+K/13Lnu0p9l0tBt3U4Am+Sk0QNay8GwxJ2HMqlpw/QqKSIBX+uR9iR1j/B
3ujmKzwWJ95gJBT6gi6uIA13E5fFClrfbJTIZB9wYOxinQelQl8ZVO5oRNC+
baqGLxUTxDVBsI70noVGqGtwySBl96vgvcishe2f/UZoW3kehEL3N5HrNYxC
TtUI8WhMPQ6TlvMpuNx2wlHS/uiaubDVyxWQb+WLoZ7idbppDanFbli+JPVA
p7NwC9ZnAn74UTIUgKZwaSpDm81TZOCc052fpXXsU0UwyGqqhLfycC0018zL
4KHHQdRKbAp4xuC3wNWNKx1UM6f74D9zO+UL
"]],
Cell[BoxData[
GraphicsBox[{{}, {{},
{RGBColor[0.368417, 0.506779, 0.709798], PointSize[0.002777777777777778],
AbsoluteThickness[1.6], PointBox[CompressedData["
1:eJxUWnc41e/7t5KZBqFQlChURvZ4cdabSIWssmVk7733PKVJRsrok0pJVgol
tIeW3bBCSrJK/d7fP3/nn3O9rud57ue+X/d8znUknXwPurKxsLCskWFh+d/3
//8Y4qAxMzzE/Lte3XY7+cV/BPLP0y6HmLPge4XfjS8kfrkmze9mDBfu8ovk
tpG4tM3DPtR8NbgjedtPkPjeKP+XUx6CcClQNLMg8dah+x9vxYggQjhYg4fE
I3Gpvt15YtjD7x164y+BuwoBByLMN8P6nBvfXhIbazV18dhLYeV5loW3ywTs
OP2rCjy2Yuv6WQ0LEqfNea1QCNqGnYrXXrb/IRCx/dTQ3RhZpEko3ZUl8a6I
TsMD6TtA9Xv4N/o3gbEH/cZf8uQRYD16on2JwInaW79Ci3biwYo34f8WCbCV
bpZNMd+NlOxDN+VI/J5d49YLa0WcfmmjZbRAYLF9XdlGeyVkj4oI2s4TOPTz
EoubizLij17QspsjoHl78slNDxWYORRXm/0i4LLim8A/nz0QNu7015olMGNT
+XxvkCp8Bl9EC/0kQE8QXXsuXA2rLe1ef/xBnj+u1z8Sow4BVk7/ku8E9n/c
oLYnSQPbOowtDkwTGOaqlk5K18RSfXnM7BQB+27u669ztOB2OmQifZJA0xfN
D1tOauOu+er8NRMk37et/ws6p4PlmcdpmeMECjIiZR8W6aLSaqx2fpTArdha
a5FLevg9E73p0AgBdTaB0lpz4JZV6v3yLwRct42G2L8DOrd8LR7/RODKJ/9r
3Db6WP849qbERwLu91v23urTx+YoiUXaIAGn0bED9vYGMMy+4G/fTyDvOPsD
nk8GGGZ7L3qsl8BTHbmy2y4UjHR6Trt/IKB3OnzBaZSCF5SZaat3BMyPcrUK
eFKxWDsvovWGgNHtGdbmSSq+r5l1E3hNoHvE4q6nLw1fnuzrefOCQM2Tg4si
MzQI3DjsnfOMgNmTVbc7gujYXG0nofGEwKXmW/Mh83QUd8V9fdNF6usY0Lot
goF/R/qeuXT873zQ+nd/GPC4HdU5/IBAK+/4YmosGcfedt1WbQR6bZd9NNgM
4bDgPd18j4CB66ewiSRDZCmkrBdqJrAx+MmGopVGyHvmQ7drJHCwbtbyQIYR
rgr0Rp6rI7F7vvIK/r3gkHCveXiLQNAU642G3L0ILC4cH75BoFPY77XPWmNw
Df/cMH+NwKfz24u2njJG/4Y3lKUrBHjsggR7hU1wObPAYbqSwOZbZzVO5Jsg
+0Ou99syAqlNn1Ybie/DpOro0eulBPhLLhayleyDenErEVFMwHNc6XOTlCla
+WUF1M4TaDs5/SW4zBSfN/DcHj5L5nOihJmI4H4I5elrpJwi8LNFTyjEYj++
hp47KXKCwB/FHM3u0/tR8eDp/fM5pH/tmx8ovd8Ph4CMtrWZBFh+xdceFz0A
iSjPrIhUAsu8J1b9sDkAts9zYt2JBD4Hlb3cf/4A3G6W+W6KI9DIGsJyo/8A
ODk+xB6OIvl7ce/8mk0HIcIxQGSGETDN068McDiIkF8T7VeCCLgN3NnafeEg
2vZsmWn2I3DAZ26d6ueDSNLP6mz1IvUNvB16dqsZ9tevp9a5k/l9u/PAb1cz
RN8+a1/kQmCdzeJFuwozCG97KxTqQPKTI+jXNmaGrs5ER/3DZL25M163bYc5
nDfo6yxbEog7sTc685g50nvPXPzPjMD0oEDb9ypzNE38zjE0JXA7UiDt0Ddz
OG15vPjBiIDD1m0v7+yywDsFkwFbOgEpJ6XiLf4WOOZco/pcn8wXd6HZjJsW
CLoosqysQ+q7cPPlzE8LmO2Ml8tQJ7CC8kPDds8hxMb2NL1UJvCmo37ng5BD
yJH5XcGzi1zXmr2hUH8IOuWl4yo7CDS4MNvPLB5CNDU8Yr80WQ9coo6xaVki
WUnA/MhmAmWUqjLvKEtcMXvva7uRQPwr4ZAPzZbY+n53h9F6AozTDQO0f5Yw
yLI3k1tDoGI05+NNWCFzyyn+ZV4C0UJn4zYnWGFz3MS3e5wExFLfN+fct4Ls
ksv3QFYCpwcOFSxzWEOzYoJHlMybFRvFN3rTrfHown6163MMvGtU1+tPtUbu
/r0+qj8YWD/QyL2vyxrfr4ZVXptg4JZ7fdQ9Hhv45toMCI8w8HKrUb6isQ0E
pg5xBQwxsHI4y+VStg3uy9ZJNPcw0FJ+oV/4uQ3KLSpEF7sZWPx1dWXWals4
5ar8kH7OwPlfvV9YDtpi5LNJIaWLgdzfVqEhebaQWfFY6OB9BsrTLFonu22x
+qDXwQPNDNglrmh3Xn8YyzUfjPTrGDgbUJLUa3kYilEX5iRvMHCg3pHN/Nxh
mOqrmfz8jwH7J2l42nMYb+7M0GovMSATaq3PEDuCvMpV792KSHl8YivbjhyB
5PmKJZ6zDNwtEz+pU3wER742Xio6zkDrkeqvDUNHMBQj/VQqk9yfIcevJmWH
8KZSzzNJpH3zE8u3nO1QavE48E80A5Nbze8pl9nBVU5w8EAoAyzJT8xqRuwg
ovq09IwfA2ZWbc3KsvYovyJT+9SDAZeW8n+3POyx7bQm36wTA+9/f9uodsUe
KVdYi3gOM6BwQ1CocdIesQO2DmssGLgu9nhOQtgBRdPchlz7GDAM/m32Uc0B
an+rTKbpDBy9Yb/lkpUDPEXbnR/qMcAY1z3qFu4AiZfX47LVGWjf8llcLt8B
yw/Lz1EVSX4jz+2dbnRAkN7dixPbGfhJvfm9ptcB1Tc/5yVIMWCqFL8q/I8D
Co702XFvZGBvxJFyXXFH9LyiLMauY8B4RWkDh64j+mgZliO8DDw8ftXwsZ0j
Pjz+6a3NwcChso+WJ2IdIdxZujvhDx3fd5UOW5c4ol+tIK9ulo77zRazkq2O
CHrdktE3SUfjf67JXz86QkfyDfePL3RMW+jm17A54X5aMMevPjrkLUxVorc4
odNV1Gesm44jlbwWDKoTbDau1nz8hA7BqfHlNa5O+Lwt1rbwAR1Lx1129yc7
QVfZod3uDh37eJamKsud0CoX6ylwiw47VgX14A4nWJiG6Vy/QgdbTtJqgzEn
pFJu79a9SMo7mhUmwO2M0zJ+qnfy6ZDZ+ca/f7sz+GrKsf0EHWIGs8tXjJyx
u22bfnI6HT+3JEhEHnPGd8Oz21/E0RHptuGNUZYzvvLGTnCH0XFi0XbLxqvO
2PRTLUzJlw5bt3GeyafOKPObazE8SkeMtEd28zdnmL1vvW16hA77d8lVuQIu
CGkOMKKa02F1+puH024XxJhWe8nspWNB3bJjzwEXVN+e4l/Up0M9P+whd4AL
uv3cJBrU6bgztNpj4IQLRq5uznHbRcfKh5+ra2pc0FU1ZMyxjY6m/sbi9G4X
/BTebZQrRsf+Xlc1h18u0PM7FMy1jo41Ao3hautd8XbMrtmXm47nk0x3ATVX
ZLdtW9P+jwaf+M4VY5auuGhsbc81R8PGdopZa5grbr3xOq0xSUPhu68HC865
4oxrySWrTzSUal/hDGl0hU7oYqjre7Lvi4T5Heh1Rd5N/b/2z2gw9TQ6ofDH
FTblHNLEAxouGEv68IgfxaqE7A/ijTR4KLBxjukcRevzL1wfr9MQxbdo+9Du
KP4oPCs+XkZDSZ1IQFnsUfByPczYVUDDWG6kUXLJUQyVL9U2MmmIr6KMurYe
xfone/mVU2gYcjprxPh0FKHWjlFnI2lgmJWHbGd3w8nW/7599aOhfrzYm2+r
G0xtbUx3HKXh+0Cz4neqG9xrHdIP2ZL6Nui1d7u6gferW6rvfhp6TLx2NKa4
wWLmmXIwjYYt+iecSyrcMLJ4KcxNkwZaGldgaqcbvG5e0qPvoqF7fKet77gb
5Ct2BazZSsPrGB8JKx535DINFztFaPi6T/Oevpw7zracaPbip0HowirIG7vj
2qd9FX9YSX6UfC4Ke7ujrT6mKGyOCn18mmDPcYdI02DG0Fcq3ij+3vjjmjuU
x4fNVAapUKMfUB187o6r+bVDga+p4NBL1nn23R2c+8VFijuo8OXTV7m7xgMJ
iblDtU1UrAhXF7+u5IHFcLHN9depSHiz/XeJmQeq1nndKbtIxalLAy/ygjwg
WViXH3OGipt0+QuppzwwU3y/2CCTCobprE/UbRJf7Lv+I4aKoGlJnYB3Hsgy
/nYtM4CKWurlVR4LHvBJz4xbfZQKe7e0EQdRT4z4Dq+Ms6aCMtvRYa3pibpf
7TI9xlTsPBVZa2bribZbGW0SIOWlt93cF+WJ5mubGk2UqQjc2dlmVOiJodVL
00e3USGW9mCMcdcTp+bX0jxFqYjo+iNDH/TEDqVP5yz5qLBQe5BIYzmGv4KH
nu38RwHvleh/NMlj+O96R+v0DwpKss8UMQyOobd2k1n+FwrWsWS6GDkfA3te
v8POdxSk8Pab70s6hupUvq4rXRSEv94UaFZ2DDO31D3W3iHldf5ss354DA9l
XCScrlGw8z0X4Th6DKFffj/ILyHn6IubOD25vMA980T9zgkKUq/xsAZt90KJ
66L5wyQKRsuua8caeUH1wuTP+hAK9Fo4mzOPecGB33E6z52CPdVCKeeyvGAt
lrvZ0oaCmsjpgsqrXlj3d6cDmzEFHXy32RqeeYGu5JlySoeCrvsFdx9Ne+Hg
qqeeq3dREMc9/Lp/tTc2UtS/BGymwPTjOH1G0RvfnF513llDgXWksBiXmTfp
l8WpKTYK/nv4w3JTkDdk1FRkOWcNMBAg+E/tlDcyOLbvXTFsgLCunesP3vaG
nGHb9ok3BjhLYyv1fueNuVN6p+seGmBVrktFxoI3jEy2OnnWGSDnNuQui/pA
aK+cHXulAYT8zip1afrAqEDTJuGsAfabJLd9tfWB825L6dE0A6xc0Bjij/bB
h3NnsxXDDdBWzn5cqcgHVS82ODh6kOeXjXus7vkg0G/EPcTaAOp1Z1vjhnzg
vmFroJ+hAT4pxBr/x+qLTXJKhqYaBtj+tzrujZQvAgSzbq3dboDBp4vObFRf
0JuroxtFDDAmQPmz29UXJh+5vOhcBijoPG3qmOKLDr+ntNvz+tC2knLJq/DF
n+qp59yj+niiqY6OTl/8PPj3Kd7qQ/4y8fXPuC9kxWLZbNv1sWOlr0r+Cj8s
Vy/vtLpFZuuO/R9V1/tB/NTcOvWL+lhlIB/bvc0PjlY1fkvH9dEvE7EmUM0P
jfdl2Yvj9FHa96BgLeGH9ZxvUqV99bH9wFXJGis/dP4obMg+og9a0tdycw8/
dLM+PfBurz5O5NF2zYf7YQeXLRebpj5eMfPv5mf4IXZ6NI9fVh9UyR4rvQI/
nCjIv7wopI+ITzxsw1f8sG+UfbmdXR+7nxvdzbzjh5lSVgT8AELqXhxXfuqH
MGqJ1N8BwLjqW1xfvx9Yfkwf9HgCDBesYqZ888Pha3ujaxoAcFTfV/znh989
icZ95cD8O8/NAwL+2JZa7vE5D5AvmPkvc7M/eh/fj+yMA2LjRN01Ff3xn+RN
mUxvYGvq68Nf9f2hjVcCcjZA/UbVnIKD/jjcJ9hdQQdiNvmz7nP2B5UtdS2r
MhD85XkTa5A/ODbqu6luAh7JNLfdTvIHpUrEi8ELXF7dsdH7lD8GQi/6uX3T
A+eui0+2lvvjtVtJy692PbQu7u7tv02u3+76ql6oh1uGQSZnO/xxbEMI3+4g
PUhvOLXd/L0/fkX36vQY6SFH4HPwmnF/bP0UfVxVUg9z2e/VXyz6Q8WsfB11
XhdDE+LhTJ4AfOt508X6VBcS/tk6BzcGwEpb4aZPqS78RhWyheQDIJnm+iA9
VBeSn3f79mgHYF3bupkDxrroUFv8WmISgG7uC9IPN+tiV5Mkl4ddAJreq+oP
z+pA5nLiMyXfAPy3sk78WqcOBOSU6X9jAzDDtjdz03kd7CsNCX3MDMA2ga8H
1X11QLv2xDP/QgD4XBz2zOvrIOr2rOyxmwFYrvoybiOoA1OL+Uad+wHQl7wp
5jSije1hMjvWdgdgQ8IzH956bUif3xA39iUAMfSkUIt0bWyavfqw5VcAMrtK
7+vaaMNCgZ+rgDMQTXFq3e07tKFW2bAvVDgQH8xUxceXtJC+M7vMQjYQrtMK
KyoeaeHLq2phVY1AyO7kGl0+pwVGZVm1iFEgBhmxqyfdtXCl/WDUsk0gyizL
7/mqaWG/qEDql2OBeGYoJZm6QgvH75/sfxoVCMOi0wd3v9bEqSyW7IbsQDTW
TTl5lGiCEfiptKIoEG2r6aa7vTVRmm6icPZ6ICpk5v8laGhCY6FbM7MlEBfO
Kxjar9Ak62ZqT9zLQAiZ7Jhse6GBNwL/NoZ/CoR4+4WTVwo0oNPvIRD0MxCv
rzW/WX9UAyvame3+HEE4skV3B9tuDVh/e2YaIBSEgP/+/vJcVIftmGxL8LYg
+EWZxe9rU8eWCsftUWpB4H9bNns5Qx3a26aKkokgjFhX2UYcVMd7xVmVE9ZB
sNvJVXZHVB3mXIEspZ5B8OnzL/AeUkPXdrpwbSS5LvHlU3q5Gp56STEfZwVh
+KrTb34vNbDrX04YLgzCJxkt7bndatjdEbOS/XoQLP95PNP9pQquFTT1rS1B
qOQVvf65XhUtG6/vMnwZhG5DvitDkarIlS3jDvgUBGN/UQtFXVUUaWh+LvoZ
hMvW23le/tsD60N3e55zBEOn6/dkY8sebNMaFVixPhjuo1MfxuP24Kbdi4u6
MsHonHvuboU92LS4uiFKPRhlPDUjLP9UQPX5EHjPMBiJ1cN7+++ogL53YZHT
NhibfEp0RsNVcHyEPdDMKxjflEeWhVVV8DfZk6ssOhi+o7Fu7j+U8dMocfh3
TjBWzcyPv7iijDrHBjWrkmCAZTLA0FUZq66e2Nl4Ixi1n4MCu8SVwXzy+rfk
/WAY6xs+YrxRwoO3+a9zu4Ph2Xn4VmOmErRq/CfZR4Ih8UTmgbC+ErDRNTZm
PhhcfBVPzH4p4jSraOc/rhA0D5987VSpiIZ1rzjSNoSgyNP4p5qNIhbck0OE
5UOQ/uqKSTuPItaqtzhc0yH354x+/t2wG8lxt7lNTEPwRJae9thtN84FzDT8
dAjB6tsNlVKCuxFxcuud0gBy3aTHuS96Fzabdxy2SQrBD60L95Ve7MSFeJvx
DadD8NPj4YaNm3aCmKy9/qUiBD7POfqcPRVwYDL1T11DCP5T33zl7Q152D6/
J3rqMbn/+K6Xar/kcEmvY29UfwgqfOMTaCpycCvWfuY9HYKNz2e21vnswMTO
gWcerKE4IN0aqH1pO/ZtW+nmty4UUpLKBVHdsuDYlXs8XjoUdy/3Ggj9k8H0
6DqJQrVQBPQ4Xz23RQZ6e60K2wxD4Vphw3NCfxvuxY/Rf9iGoux+uVGklTR0
KfRXMj6hUDT6I9DpthVbMj7qucSF4rOh/IPPPlvQ5TKfdvFEKGxtDrNrekvB
+D5V/uOlUMREKevSnSTBXPk1dX1dKIZ6vqfWmGyGSU7ftEZXKCyuDS+q2Uug
8XBfiE5vKNKuSanzrxVD7jaWdP6pUMgrZh++1yAK/8BaNubfUCQ29y9cdxbG
f5b1o2UCYThyTmEqTE4IHAqK5Sqbw9C19pWqKXUd+sdYC7V3h2Fos7zO5J81
MHNvYJ/VC4NkNKcOd8UaPD7H8eeuaRjuHm7I23VkLZa0/DN+2YfBKK3h/qPx
dbgsv1eo3i8M86Pm0flzQthRLlC0GB+GP89615joiqBd++6G83lhyKh6Ght8
ZgPcXzg/jy8LA539eWPtpBjk7Xg58+rCoC6oHsursgl9A5Vud7tI+W/yTf67
tRmVMvUt871huBO+7Hi1XRKHTnReVP0WhuSd2+Rkn0phan/9vmCWcIRL3jmc
8ngLPFeM9l5fG44FRc1589atZN1urf68NRxsY723tl+XRqfyJxEBtXDwccYK
njm1DdY81iyKhuE4LJk7tC1YBro9pvcJ23AkrMzms9oni/PZ1nyHvMOh17ae
USS5HdYxL+5YxYbD5ZSCo9P0djSt3tG3/3g4muWr17PX78C4jWSW7sVwvJfr
XnwTKQfH7XQWqdpw/OUQc5LVksdI/Wzo74fhqP/WY4o5efRE/tV4/D4c6f0P
tY5cVUDRmZzjx7+G43sF5VW9w04EVE0/3vcnHIx9R8+lrt6FysxfquyrIjDM
SEtcvLMLk7n9m65vioBv5JyauPJuENPJrw4qRuBIwBMTjZTdcLry5ew3gwjM
Fm9K+PxuN36tv9qYYB4Bv5HEQXlZRYgeWx8tcDQCp6YOS0mHKuJGXIvUqVBy
/ad7T88DReSYFE+sS4/Am5O702zXKGFGhl0oKz8CdtaSdTWHlbCw7+yH5SsR
kInLE5wuV8JTxWh/j+YILMTtSRL5roRZPbO1z59FoMzZUElTXRlKNZbTO4ci
8G7rlYtHYpXRzRmhkf4jAoenfR9ktitDjwjdNMAWiYcWp2af8KjgFu/MUwXB
SGxO7Vi33VQFrvLZvmHSkRBQLsusOKECHjUOhbuqkeDzlrc2faOC8EGKwj9G
JGqsdgjJCO9B+5qEU1rWkejkbvutYrUHROXB9EDPSLTMXfsZc3YPJnzv7aiI
jAT3XYGTPO/34FKUbf7bLFL+Y98d/etV8bny0DxrUSSu6L2999tcFU3yTPvt
1yMRZZosfuyEKqYHKqaNWyJRaur/ctdzVbDaCNz3ehkJX/q04j5eNUyIis6m
fYqEkNIFx0d0NSy5rDx/4WckDL1yD1bGq2GdzIbXtzmiwPrdv2uiSQ29G89X
dwpFoeKticPZX2rgkZo2erctCvJLiuk3dqqjavBM3Se1KHw+kM3UdCP7bTvB
O0FEYZezT7FqsToS7Satv1tHYfHViebKt+rYt/b67RnPKHAMU1/n8WtAwpZL
ZSYyCpPV8leWKBqQcrj/+VtWFP478+7nYLgGuMxXvhsrjILdqWR9+nUN2K60
lxi6FoUXmnYCu79oQFmtpav7XhRWXStqKRbRxGnLE2MPX0Th5e0tpWeMNbFh
R2367Y9RCK4KmBCN04SpdWrTxZko3Bx6dk+2RhM1tInMHPZoyPJK7no4rImO
j8ZcoYLROCW+oDorrAXtNZU6R6SjkdNTc/+WITkv/cpU11eNxunB79XckVpQ
/7xpxRZGNPq/ujyavaKFlA3br7NZRWND9s8noX1aUGLyGwy5R+Oy/fLRk3za
yPnxrrMpPBqmmrwaxtra+J2vve9URjRWb7/ztuSYNqY3ne/zKoiGeMnajrx8
bWzL4owxqIrG5yMLSdu6tKF0SU97fXM0zKXZ4mzmtdGj1bp57Gk0ni3cFVOU
1gFbX7NK/UA0JNwlaq8c1EFe5tb4lGlSf0Gxc49jdXDvU+kqM5YYsOqsFDhR
pQNKVPmw+JoYvD5QacbyQQfSTx1WjUrGYEF1Ll94hS5SJbuY15TI/Vweqz/s
1oXr3uKgIEoMNnDte0c7rAued96t6uYx8KNJ89qn6iLBJj3mt0sMyvyT7knf
1EXfl3U1d4Jj8HyukKWgTxfMWdajUSnkeQue7nucejjUKFKkeSYGT5jh6qd2
6+HJnSnH+YoY7EsplBaz0cP6dVN1N+tjcG6tfLZFoh6K3W3KvbpikN/HbmtQ
pYcFVlNl6Z4YxPx5HvS5Ww8XLO649H2NQYGaf6PGsh7Y7Mm31e8YfHliyX5x
LUCNFXxC54tFo1PCmaRtAOegPP+SWCw+295lNdAEfpaIcVcpxGI+urqi1wQ4
oCTTflg3Fh4StZMHHAHXLz50PtNY8Am0KpYFAU96fh1vtI/Ff3sD37xJBbI3
lVa5+cXiEPtRlS/5gBKXbsG6+FgYdqlcfnEVKAwLdbp7PBbyll5ZBS1AxOtB
TvfSWCzOpqrQXgNeD6ezVtfEotxLe+7pMNB6j2Ox7n4sDhRStqouAPZJjqZ2
3bG4KuImEMOjj6J+xZPsw7F4+6eTs1yMfF9WZD+u+BWLtYc3W13bqY8Q0aYo
afY4jCokmp75369TMV+ZIbxx0Pc2UnM8qA/bHt2tHevi8DJOw4rPRR8bRs6o
C4vFYcC0aPFssD5Gvj5+fnRrHD6t93JcmaoPCe+KiVr5OPRdk++2PKuPWdmp
bI49cXg8vHQy47I+nE8cqj+oE4cP688MFzfqY4E46VVCi8M+7UjOs4/18Sdy
X9WUSRyyTCZUA/tIeSNbwzUPxUG4bvqW4pQ+7EeudafYxeHWnFXz62V9lHVH
trw6GoeK0ieZ1qsM0GuxTlfCNw4ZES9t7ksYwKHs1z6P0Dg8XdfjvGaXATKL
C2ZrYuMQtoE+SNEzQORgyO6/qXGwz3PlsDU1gCPrDDvBjINHcwK3pb0Bwof9
/I6fjUPw3skt6r4G+Pd1f2hPSRwi1/9N/RtjgIN/xkS3XI7D6RpJj/9yDFBb
mW597EYchr6/XNQqMsC2I9FqNQ1x4Fa5eKzmqgHGi7hql1rjILbSeHp1swHK
bDxf6z+KQ0d+9S3zJwbQ/NGbl/YqDjPbvnyN6TVA/3fm/LOeOExKSrTkfjVA
olHdP8HPJB9zrY6piwZYeyb0qs0EeZ7f448rFwUFh3+xlvwk5Q9ONskJU3DK
zPTvl99xGJv3e/xemoL0/4ovbueIR89LLwtvFQqkWf/MePORmONK4rgBBVIC
wVM3BOMhnq4Va3KAgqoH60/+EouH8Iowv3P2FLyJHRtVl45H4hXe2KfeFMjo
T41HKsTjyu+ll+ORFMgPbSm4uyceN+Ov5H5Lp+CPXuofFt14fD490d97hgK3
mFUCFHo8FOwWP94oo4C9u+p10r542A1Ft/jVUHDG7cDeh4fi4a2ZXCjSSgFP
4GjISvt4oCvx/OVn5HmvQ5aEWzwsPA4PbemjoHNnwlSabzxsa45mpo5ToLdl
r2ZXaDzuqwff656j4K5Hji53XDzMW3oLeTmoeDQr/ZtIi4cpNZAhv4aK/iNj
fmnMePygn+hTlaCCb7CypONsPArv80bLyVGxNVAtk/NCPNpWqhA86lScnnVQ
pF2OR6PO8OHXVCrstafzEm/Eo3g+8UPKASomcbmmtSEeWxrZ+7baUdGnYnb8
X2s8fOIn4q96UqF+/JqCzqN4qG63HNscSkXHbHh6xKt4HJKfkYtNpGJ2p39Z
XU88FDkX3TtzqYCVScLsJ1L/p9pNfwqokP76YLPiRDzSGrbpilVS8e1tZrz3
z3iMXW7ik7lFRf4Fs7LLv0l7/ivWF2+h4mnQ46xh9gTcPyQ6//cxFb83l6hL
8iXAcd8axpN3VCxyR10+LJiANnWBvcmfqVBVXTl0RiwB21i1xXZMU/HWcbTv
1dYEeBS7vG5couL2mpYSfoUEfO/5k6bGSYN3uZI8sScB5/ilLErW0GDsOxCb
oJOAipFC019iNFQ1Opy/Q0uAzIOxXFVZGtKfmCfMmZD3y8oquCjT8Oi9mdLu
Qwl4/khBN0aXBrG1v6o87BJQcDf8Q5IhDTINT2dKjyYg46K2UJg5Dc1y/hx9
Pgm49dZ6pZU9DWtm/T4JhiZA66JH+1ZPGibeHc42iU1AVGCTy0AQDXu+tq1I
SSXtZ1gtJcXS0JC0y/hubgJ4rrMWiGTQ8EJRwXHuTAJOl+20PXeShjP1VNrO
kgRImPGbriymwVRhecG1MgFBR5IznC7T0MHaF1VYnYAdWpqSV2pouCvk+rK7
PgEaKdnbPjbTQOvYMM/bmoBr+y5c5egk9WeP+WbQlQDC26ZL6BUNniar6sNf
JqCy2TFLsI+G+lJD8+oPCah9sYmbdYSG9xFV90c+JuDy5uYDvdM0mL27wSn+
NQGqm7eGXVykocjktbjZTALW3GTLsWang7omnTt9KQERJY8vLfPRseav4aO7
bIm4I1j/NHc9HTqlmQ6zPCRe1SW6ejMdp4i2J9vXJSK4r/NczHY6vrA6Cthv
TIR+sLFdrxIdqhc+yJ7ckgiJjzdDt2nTsXTjvGiXXCI6q7fM2dPoKIgR/bSs
nAibidzx1H10/Cd6N0FJOxEpTjWORZZ0rHOb/32UmogWzvU+Fx3oIKQV9xUY
JyJIi1/ijAcdYXNvwp+bJ2KPXHNceAAd9R6msexHEvFt44Yyo0g6LrBz2qu5
JuLelfFzPEl0FGo4ih7zTkQtT5t3QxYdwh4d14qCE1FwmWuX5Sk6Hg8UbnoV
nQiH/T8nPhfS8ayf8FqRkggfsfSb9uV0BJTLnVLPScS5iIvMR9fokIuuzD92
OhF8ktN5W+voCLmxObqoKBGq3FNd3vfoaLk0q/2yPBE1Hj/1yjvoUHuZ2MN+
neTj6k72Z8/p6H8kf0i1LhFNBRc2D7+jI0jdpNr9XiLsTbeWTQzSMfNWfzy/
g9SnzKXw4ygdBrFHWZ8+T8RlgVGhjmk6JuXWL/59lwgO55Ubz8/T0fT3vxe7
hxLhXbZY7/CPDnd6TJrTGHm+79FvwZUMGCSNbT75PRGyvY7T9asYeOWvn9++
QPpjdVyx8XoGTrAPzc6xJCHqc6vwC3EGnJ03KMpyJ6H6XaEzRZoBuRmaqfWa
JFx44pJTLs/AaeM60wzRJLBUGlxcVGagybRNqUkyCWJ/dK9qazFwX7xxYWJ7
ElZf06nzNWDguNSPC2JKSfhZ8O/xCUMGjoo07DTRTMKywZa5sv0MpPI5F0cb
JKHJVRqXLRk46aQ3e9UoCWfiHW+dt2Pg+4tChYGDSShjrDkS58rAnMPTvats
k+BUZEw192JgKEDMVNc5CS/leYJEAhkobn2v5nMsCSKfNs09CWfg5lFTzqLA
JGyJpnT7xzHwu/9J49PIJGgL8oqsTCXt4S60WE5MwvXzU4+yshm4sof3nXxW
ElwCKHNsJxk4KO6kd/hkEo6xMS565DOgPT2Rk3k+CblHhXpbShhYQ5lpb7yU
hKCJqnKuCgYmRe5+Ga9KAtu/yVX6Vxmo7D8zIVKbhMIHp8U8axjY6tvRw2hO
Qs1lk/eJDQwwN5+8GdKeBPrSGaOcewzU3KUGlj1NQkDwYGR6OwMaJzeJd79J
wuJH/6DgxwwseXtWsw0k4XFpvPbBlwyg2FNBcYTUZ++2vk3vGFjP6XrS/lsS
5PYcsR3oY+Alb9Fw9lwSBnK427I/kfyfs5a88zcJH+/OCO8cY+CNaC/jK2cy
UqseuNybYsAuxtVaRCAZ9P2rq/V/MnBMX+sQXTgZ5euNWWsXGAj1KNIN2pSM
HZRue9G/pD8yX6wtlUmGrtnEKx92Atov1r5+visZ0o6NjrVcBDxmymKX1ZIx
lHJg3RQ/AWP6IxE5JENMv/Kb0DoC+xrvFVkRyZB6Vbi0S4SAVU/7mpT9yTh6
aVFHS5zAnRcbA2qskpHgcuyemhQBN0eWliGHZJwwzEiWliHw3/iN3/weyRBa
8eY0hzyBLicfaS3/ZAwL31zs3k2A6RKo4x6ejNcyfrdO7yEwJvOXcio+GTQL
+lNDTQKe6Xs12tKT8ZRpbvRNl8Av3rPi08eT0f79omIShQCld9OPjfnJ+MYp
k85LEIh6JnGLKE0Gh2rjoSRjAk89XxwN/i8Z9iu3lnzbT6B32Je79GYyhKOE
jhlZEMBW9fPPGpOx/sH25jPWBPJqnTf9bkuGc8VwwdsjBC68lc+TeZyM3Dd1
fCudCKQGPp03e52MRZlFwe1HCdzfHmsS15uMkqHJBm1Pkl+jyJNVn5OxMNbC
YuBDYH/v0pP3E8m4szrnm3oAgcF81XmO2WS0GlulSYYQsGZxW6f4h7Tv16rX
v8NJeboPJI9wpMB5ZfbrjmgCj+kpUul8KSi2O5eTHE8gv/OLUK1gCuR+jHDt
SSb9oyT8Z0gsBRsyBRlv0wiIXDN/wyedgkcpVSYeWQR+b+m+oK6QgiOs0pLf
cgkkaD1xdNmTAgu+oXaXPAJxRwKFmDopeD4gh6enyftq/91poqXgPiflpEw+
ybdKhdWoSQr0840fBhYS4DlRPLb2UAquuB/uuVFCwNBYwlvXLgVzcoHdHy8S
+FhlNeJxNAXDDTH17BUErnYmmp/ySQFtj02G8H8E0uO761pCUpC765mJ+FUC
RUmxqydjUsBuy+QUqiZQZ9hgJ5yaAnogpf7vTQIvBG+XGuSmYJdH6NGeWtI/
85f7vM+kwDjtsmBlPYG+V51854pT4Hme+tCtiYCSFV35QUUKNgpfiBG9S/LP
e2j/9PUUaO5Zod/cQuA8Rc5lQ30K/LaWrTa7T+C6wqIPrSUFLbIXv/e0E3j+
ZMbPrzMFbG0CX8w7CQT+MfIseJEC75fjUy2PCIj7q9g+fJ8CSrnEmk1Pyfi/
/ZHyYygF7vXp+32fExjYnbxVbDwFmddmr914SYBP7MAy/QcpP1p418hr8nxu
6DP/xRRIJJ99zfeWQFbUjrPnWVNhc5mvWPo9gdaaApsO7lS4+s3n7e4h4PPp
j9DMmlRwij++pdBH4P2p2EdiG1IR8WiMXXyAwG5tizCGVCp400oS/w4SGJK+
vilgRypuBCmqvvpI4HvK3ZbzSqlw7+0SP/uZ5DPilm2HZip6j6Vq7x8mYMve
9v2HQSpe8YWeXBohIMAuEie2NxXPQk/KnBkjsE13lJthloofRo/mpb+S8X3Y
IcffNhVTW2Y4KyYIzI7X8J93TsVkY/ehDVME+d5Zm/bwWCoSlrePx34j8Ie7
avl7YCpObj937900gcs6N3w2RqXCeKy+V/IHATaZg720pFT8cxfQs5sh68WX
uxS/rFSIR62dyPpJQC9JpjL/ZCokrsl8vDpLYIn9Dlf7+VR4O12Sav1F6m9e
5Tp9KRWW355WP5wj+bOWvSd6NRU7qj9k3Z0noDtqL0StTcXlnIm6ygWyvtQl
uPs0p+Itp5By8iKBI+Et9WfbU7H/oNU/syUCV54SnPefpoLnbKW40G8Cb/bu
PTBFPuzFG8ZzOkl8JG7+nPBAKs6Kfzfz+UPgyVTUkP5IKqzi47w5lwlo8PNK
e31LxesW0z4miV/ve+l2eo7kr4ztAv9fst5u+FfZ8jcVH24p3Iki8fTz+2Nf
OdPQuWC+c4DEvJ37ZIQE0jD4YmJe8X//Fzd/7qInnIbFO+aiYSTWaA264LEp
DRE7Pp6oJvEzM5/+PJk0nMdLl14Sm5tMiNzdlQYTX7PcBRILTW0wH1NLw1hp
8louFkMcDpTPXYs0ZBwP/cZN4lVSpo+0iTQYXt6x5S+5f43OzRVu+9PwvfF4
9f/+n97Ek6x/3CoNDy8xTzeTWKV7LrrJIQ205d/daSSeHFZtGnZPw8fms8fo
JP6TG7Qo4E/un9poM0fac3rboLpmeBpOGe8oOUtiH7bycJf4NOxYttRRIPG2
+IWmnPQ0HNotq3iL5Kt2BSdLw/E0lD/ni1Qg8duFZdrnc2kQlT264RzJd0CX
QA5/KanfyYRV86Q/Xk57vlf7Lw06cUWHGCTWmNWVdrqZhhcnRn6kk/7s8GwK
ympMw4xW+OBd0t/SPwU6brel4ULQUYkRMh6iNLzEPj5Kw7Lr9av/yHhxmv8X
xPs6DTcE6Fm8JO6cXXqxpzcNjt/4GrjJ+Jriyt7t8DkN60rfKi2R8bh340he
xkQaik+6LvSR8ZqyVfX3rZ9pEC45xnWTjGe7XVePDv5Ow57adMdwMt7zrSPf
cnOkoyPelE35O4Hl7hdGKnzpEBHWGh8g82XXWP99O8F02DHrBaPJfKqdfqWf
LpYO2QbJRP5JAuUOQw9qtqbDb6hZiUnm49knqiYD8unQv3JfcsU4eX8vZy/X
nnR0s9nu8xolULg33kdZJx1K4+dvt5P5fn3m7Uo7WjrOC+VZrflC5us99Yo0
k3R8ZaopmX4i8LPpnXGNRTp+HQjSjx0iwMU/vNB/JB1LH6SSLpD1pu3X8Stc
R9Px9wXvQi1Zj4beCbgq+6RDpXQk/w5Zr4L3MKXtQtLhIGLtWUvWM+ub1Km0
mHToLc05l5D1rljI/k5NSjrGy/WTo7sJsO5dkzeQkw7VmxWPjV+R+eyS7c99
Jh0y8Ukqq14QyD6/wkqlOB15S5uaW8l6u2BdRbevSEfu2mont8cE+KVv6WRc
T4fNDlupf2S9bq4w1amtS8ef32qLaQ/Jfn39Bm3oXjqKZUy+cDwgkLaL35K3
k7y/hTkU0ErOHwan/FVfpMO4b/TrK7Jf7FaIPuX4Ph2uYttYpO+Q/dB+oS1r
KB0mevziHg0EKsM0l+rG0jF7xVi3+DZZv+ihWp+/pyPoX5xDRw3Zfzs/paxa
TIdPvnLcR7KfUZRv9GmwZsB2Z8+5KbLfscys13HlzsCo0dvLE2Q/XFFBVDLX
ZIAxEVTVS/ZLYeVIiTuiGfihO1XYfInAvXufi0clM1Aiax9x/AKBleV18ut2
ZODd8w86lkVkPXWXb9dVysAE75EvqwrIfKoL9fDUzMD7O+896s+Q/cjvuehp
A3L/FvlHZidJ+yo93rYaZWBZS5r1I5NAZllU8dTBDDxbG8fjkE0g46tusKht
Bj5uHvn4Ip3Auj2jljTnDPiWTiUopxA4mlDF8D+WgflpkfHUBHJ+WvuQWhiY
ge63bwSexRD45nHMtCsyA29/RM2siCTnN8tut1+JGRhkPZC1K5SA/6x6jmRW
BiLoMe+NAgmUXH7ZZnKSxG9FX1n6kvoovlsRcT4Dxxc2Bx06RuZ/QYJl+SWS
r8iwBrobgePm/PWvqki+JCfPyzqT/XTLDZl/tzIQel5R9I8d6W+eynK55gwU
mEzJttoQOMOQ32PVngGOHTcfhh4iIGcR9jrpaQb2LrFMbTpI1qfvD+NvvMmA
11nG6QYTsr+Im2Ggn7xPYegO1ZDMD3krAd4Rkk//1batVLJ+Na2ZVvuWAeFR
rmO7QECwuWnQZS4D+zd8GcnRIuVFnfh4/G8GZIbKOgdVSX0vvJq9y5kJ0zxN
HiklMh9VGkQnV2Wi/GBImYUCOR9dTNwvKpwJCz3BkxGyBFwe+p6jb8rEVGPt
c+YWAqGfmmYDZTIRW/bxwFkJMh+ry50u7MrE3QJ2weOiBFbZ+X5+ppaJx8rH
BCIFyXmq0CL0j14mzmQb6RwSIPDw1DmJHUQmFEsaTkvxENjTGPnBcn8mOKbv
CA5xkP3nsXZlslUmTMxp1Tn/yPfloHhmjUMmtP/tdNq5xECCk0PCR/dMbArA
lnuzDHRL0XME/DORGbd9EtMM5Jqtua4TnokYk4TamnEGruZxDB+Lz0S24aNQ
4S8MsM467c5PzwSPopuc1wADJsu+xzuPZ0KW51LnjfcMWN725Zo/l4ltW6oZ
Y68Y4Piv/JR0aSZCVxeVCDxlwG3KWsP8v0yM/uf0WKaDgV7p5z8TbmbiAX/3
vd2tDIjmGrffaMwE16nK4B1NpHxW0WtDbZmI6A3+IljLQPB85DWBx5lYc/06
+/drDBwubX6o+zoTRGvZo6ZKBs482jbv3ZuJE2npu8NK//f+YkHh50zIJITI
S59n4Nb5kxeeTGRCN8q/tu0UA/3P5cX+/MzErT1ubftzyf2X1lXL/clEw/IO
o+dpDNzlOXnEliMLEWbBFN0EBuYjFrdm8mXhWfKnS4WRDGQs53I2CWZh6OAP
l6kgBlarXGKbEMtCTyprhIIPA38dE0U3SmfhRMnBniNuDHgER+7dq5AFFTe2
qBgHUr5A79nIPVn4lsdrkWvNQHzOD9YqnSyc86LaMg8ywCMokNpHy4Kby5Gk
+L0M0JlJsvz7spDTNNjuRGXAv+viiM6hLMxIyAup6DBAON9r9bHLQl9muNuv
PQxEXN/RWHw0CzvP9d8o38nA4ziNFy98sjDIYT7OkCHfwwfBwRaahbCBOrYP
mxhoPXDykHJsFo6It81YizBAcc7scEnNAuMG17VHq8n38Y4oy9O5Wag5sSwr
x82Axaq7nJ1nsmD/esoykpWBbQaX3ywWZ6H5GsuupkU63LpOP5CrzIJ7vmrp
1x907Isden2kOgsFh9zLuL/SMSj2kZ1Zn4XyvzR5kU90qOnNmre1kPaKHtqx
voeOAe+QjtnOLDRdnj3B/opcl2y3lXmZhTqNg9ZDXXTMTeiutfmQhfMXvP2q
WumITKdMZH3MgrDQ2sduDXS88FIevTeehWNHx2zX3iD1uefL+fNHFn7ohApV
VdJh7W9juG0pC2KVm7+qlNBx3fBQtTVbNsIvbnpSdYaO8rmHWtk82Wi8lnx1
XS4dM+JrJlvWZqPmkHqcRwodK7zzW2c3ZMP5wbc916LpML/cdUd2SzbmjHa1
fAyiI7+Fc+CwXDY6fxmv5vCiQ/xDo/Rx5Wx4r3cVFnKmY9Zx/8l2rWxcf3X4
oaANHcZblHcsUbJx5uYAP/sB0j6zF6M7jbNx6rTlwCCDjqa000+dzbNRt2lJ
5oouHSb41Xv2cDbEUp73uOyhI7bn8LpnLtm4f7l+hE+e5PeqbhC7dzb6vnpq
XZQi94vz/1MPzsZ/rN6dMqJ0nLuqdcsnmtTn7brofAE6xDbqnbyUnA2KdSzx
ewUdZr7ZxT3Z2RCwOSNq9IeGqPVFb1efzoaTA9dgygwNCr/GNRhF2bBJROqN
MRpmoie6osuzka3vxfJogIaRhxKpt65l45tVoPqLbhqMi1kDJm6T9hb9Envw
iIZXhesype5lo2SAKChroaGs9c0r645svHFIKQm6TUO77iPD48+z0WOWJ6pY
RcOnq0HfO9+R62YbfvZcoCFUwqaDZSgbgxVpogFnaJiQYX2uPpYNlRLe8Lks
GmqXfqz0/07aN5u97JZAQ6L/7YDLCyR/krUnHobScFiqR+ATSw74uwa2rPWm
4b7v18EN3Dlw55c4b+REQ/+5kM9ma3LIPq8+4mtJw6nnAhuzRXMQWV82GW9M
g5SlYepDyRwsbE0+F6dPw79H9bIsO3LwW6Lg7TFVGrScfv3TUMpB1rh7NkWO
Rs7bZ/iDNHNwqH93xcrNNPjHah68ZpADvZff+eoFaYhmhj8bM8pBavzhCnNu
Gp7J/kzYYpaDn3Pv7PqXqShKZvjZ2eZgbMp/48EZKrq3iZ4555yD0zoDD26O
UDH4i2+h+1gOhPX8DP71UHHa61He6qAc5KkIRao9p0L5zm9P46gcMK/us7C9
T8XJJZOYtKQcHF0lX+dZR8XEbb9nD7JIeyg2Ka5XqLDcL3SY9VQODjC0K/cW
U+G3blpGtzAHDQMjrOJ5VFz2rlGKLMuBl4Zo2IcUKm5u3hBdfzUHFpl7puMi
qHgb3L9yrjYHnZUae9f5UGHn3/ha+W4OdErrfJmOVMyu8P/o/zAHKx2e6S2Y
U8FKPFCsfpaDtbpSRUYEFWsuRLR/e5uDsxVvvFK1qJBisStUGCT9szEh+9pO
KmojtRq9Rkn5b6gf70lS4fXfJ7GqaZKv4XdEkyAVzT+kH07M56DjVNqlkpVU
3L7Vc1uOJRccrru7fZcoyI/6MH2MKxdLnTvrZKcoiJP861+1Ohcqk07yjwcp
mJ6R0Z0SyYWsj/Ray1cUxAxpWOyUzMWAlAH9yQMKgks31Ptuz8WFVz/KdtRR
sH7xltsNxVzksb/kD7hMgbz4gstPjVz0yb2yLi2ggOvS2+o9BrnwKj/q2pRN
gYUO3TjMKBejHqm8zbEU/OWHetPBXGxhr9xW4U/BMG9r8F+bXFz0v8wMd6ag
zPrRCgPnXAhwPJVSsaDApNRxPPlYLm6pVNS+pVOwOfi45KPAXPxNXivpqE7B
kQse11dF5eLDYSnt19sp+HLiX55ZUi4Gc4T65TdSsPe494uzWbk4pRLwwZuP
gm3nX7oOnMxFQ9xuztPLBvhSb2KxtTAXSSXX1cq+GUDtGFeJZ1ku1ltd0i8Y
NECmggLjxtVcTBStnA99YQDv8cm9C7W5ILRX7NBqNcCSb8x1vbu5uOr89cqX
GwawmJEITH2YC9oBQZOgUgOoB6w9+/xZLqK+DfaNnzBA9ZaLm0TekfIW7m6n
JRrgnMNmXsfBXNgUOLKmBBpATnXQ9r9Rkh/ust1VzgaY6dJcNzudi3/vExPr
zAzwqO6kku5CLgzUVrZXUAwwVvffESoLExtF1O9FKRtA0SjknQcHE488Vmup
bjHAnhr31FwuJiydPFm61xpg5WN9n1o+Jkz2Dr+xYDNA8OiDrN7VTBRSJeKb
fujjX2z9Z1YhJg6f7HrI8VEfCnkjgbKiTLiInPJUfKGP4tXiuqbiTPC5c+/S
v6ePzZSdlBBJJt7+8nyjfE0fdzR/JBZKM7FZsUCcu1AfT9QNWNu3M7FqaqG9
JVMfEtVsdyYVmEgJss+0idBHC59IraASE+vsk7a/dddH0aVjU9qqTFj7LNso
W+rjqd6Eq6smE7tURD740/RxqDR9U44uEzf0btgeV9YH93q9jXUGTJgb8Z47
LqkP6iy3zRCdiTmXclqAgD6khKb7uPcyMeUmIai8DPzkWLykbMpE2hWX2tdf
gZkstZojZkx0XZ98b/Ye4NNr4UqzZCIyM0m+ph0gPl4rv2nLxFKe4uEfN4G0
99I5/fakfEX+tatKgEMn97VwuTAh6C45x5UNUHVsdFXcmbh1Z8+1j+FAtUI8
t4MXyb8I68CZo4DPNOuWLD8mZP+EyMiZAY9ZpbLqg5hI583cUaAHzHfspA+H
MXH/zVjSqBzgHxpzcG00aW/xlZcCIkAvh/9NvXiSb8H1l9dxAE3jvm7eyUw4
r6fpDw/qoUttMqAgnQl/YYMzVnV6eMRv/7Yrm4nbwnIhcTl6uNpplLdwnIn4
4zeWbF31wNijfUXmNBN9vf5aX7X0INXyeJNlPhNssXuIHWv1oH6pcCaliAmm
1LPtG8d0wWHkIF1XysRvR4XPTc26+Dj8pGG0nIkjPuL+vHm6mA6ovCFyhdRv
88kuLnddzBQ9WGV0nYkDk7y9N7V1ITPK8jqyholrX+9ncq3Rxed2I5ZrdUwc
v36/gWtYB+6PCs4ONTEhzy2tfbNeByKflgrXtTDxnaH1iT1LB7WHY9YyHjDJ
9xcl4I+dDvZ+M1mI6GSi5OX6ynxFHXDwXzxw/QkTymmfVfrZdTC40L75ywsm
fuXRW9veaIN5ZpW76Bsm5Fa3TxpWaMPg98h20w9Mcq4WMvYP00bC+FP35H4m
WC96uKkZauPZDUuZOx+ZOCb3rCFfVBu7v8m5/xxmQq1j9Oa5cS3otnPulPvK
xNVjuK3UoIWT042Rzt+YcNesE3VJ08LXfmXz8zNMzL/p2yJvqQVnhZDGN3NM
nA3r402X1sKAe+ENgd9MdNyg/w77qYkCtkFto39MKJSM8C61aKIqJMc+mf04
DPPuUXlyNDGxJCHeuvI4nHs7zlb8HwVXHg7l24VTqYSSJSXKviXZ9+XGbKSI
oigllUTRJv3sShtijFnMjJkRFSFaREqkSFS0yNJCCKlUlgot3/v9ea7nfc9z
n/vc5zzPua53xs8GGnErjv2RpGNnmcFwi7YNjgrtjtrI0DH38q95iaPWqKsm
L4uSp+PjBb3Sympr5NCMQm4uoWPbDZm4w6etMWqosGtCmY7W8pIZ17ysIZtl
ImeuRgfdofLyfmVrLHn/9egRLTrGeZMvL32wAruvh31Tj473Cs1VflesMG/z
/aO/VtGhOtUWcyLSCo1pScq2JnR8N1q4XN3BCrWlDilxFnQcC9wYayRuhU/e
7o/qbOi4arrMp7jZEvM3mLyZ60jH4weLXTLpljBrvPporQsdffqvbr7zsYRh
bjM7i0rHz/k7f6Qts4R9zF33N2voKLxyTJnfbYH6/ZJfNT2J9eqZCuJ5FqAc
j0nev4GI580v5oNdFnBX1FS8tYmOymvX1F7pWMBTdkfR7K10XPglEjP/aA6r
HV9c1wfSUXt+o+2bQnMoJT6bEuyiw/eID7MhxBzqk4cbvoTQ0bizLX1E1xxp
8nnl9vvp+Hfsne+6QTMsl0x9du4gHX5ZE4+6881gfPexxvtIOrg3BnfzA82Q
EHv4plk0wb9eoHusihkaH83LOhNPx4rjm0yiO0zhKp7xsPs4HdkUkc+5TFPk
7mdssTxNR139k/gra0xxf0xnW0YqHZYWz4eezzKFfuT46+EMOtwvfjIbrTKB
YaZFD4VJRzguh808YIIR26Zj+dl0lFBvv/mlZYLrqoYVswR0OA3vXdTUaQzf
zpOXdp6n4/pdn9shqcbg2Ob7PbxIh/KCK+eb7I1Buv6nZ2URHaImesK7L0a4
+PLmmsxSOlbfK/7O5BvhaMK54qnrhB6jZ5J7XI0wGPNeYVclHZdpt1/5fFoN
YcZJ7rM7dDTsajzw0HE1PqVUrMU9OuIulCYNZhhC22TQ+Wo9HY84tU6n363C
/OVH0jSb6FBqzD4QqbsKV6e3g/uUjm92p3uO7TeAXlLVPtkXRL48u6s2lK2E
n82EVlo7HYd/73lb90Ufk99fR85/QwfTRGv2MW19bHhK2nu2h45PUWNjGn56
kO1QnC39gY77to2ngk/rImN9rmPmRzruvNzz4G2ZDj5yKiWVRujw7rwttviF
NqYzosj5o0T+xddtyxrRwubY5DKjn3SI7zX69GymFlqtVn2+O01HWaqhrsNC
TXz9lRK0bkYmMj627nOR08B42AuLd7MzkXhbM8dzgTokxdYo7ZPIhMtRhwNf
/qnifq+jzqR0JuZLzznV0LICvJFSbrxsJtz7anYpp6kgeOa+xN+LM8F9MKz+
22YZmhXbA/cuy0RF7zLOzvdLsMovR7tuRSZ8Tea96KEvRoWdv+RvDcL/238/
94bL42TSlVlyupmI2HfxzqkKWdjErdkjaZCJ8FHGCuWaRbgSrfr55+pMZNsc
eCndvAjH4uUPjppmgs3exxS2y6JIeD1ayioTa0dDEmby5SGzctzF1S4TysyM
zn0PFqPaP4Gah0w0/fBwHVBYCtmh1ipZcibkAq6S/cOXwY36pSDDNROUhBQd
/1oVzN739Y7iukwUH2q9cWeGKiIj36vle2Wif7Pf3a+KatiaorzS1JeIh2/r
FKOljkMHHond98+ER6e3fK6eBrLrnHd5bc/Ep4pNA52amjg+sju2Z2cmHu02
elmpqAW73tKqsJBM/L0SG/Bipja0J5bX/tiXCbsRP9dbA9pYfvCHd9zBTDRY
bM/+dl8HK6WWb5x1NBOBpd3G41xdeB27dT05OhPB2Wr1pmF6iP0wFiqekIk8
cELkrfRhPOaZlHQiE+3jmw59/6uPzvAFYn9OZ4IjxQhSubcSzknkH4fTMuH0
X8TL3jgDLOlmHBymZ2Kqf3BjstUqyEprnd7KysRdX10L55FVMN040+0pNxPX
NYzN14sMif6Q1WwnzIRed73Gh3Wr4XzLVbUwLxPVi5eGG0ytxuMcH3+5gkwc
3vX0ie56I2yZezY9ujgTX++4dVTnGeFI5OqW92WZ2Hbefs3guBGcXkyvpJRn
wr+p90Y5yRgqz8UqCm4R+RVrC7RiGCPFpjhB4m4mFEL/xsT2GKNf6jZnT10m
7tE+rsw0MIH9TNKChgYCf3LZpaSjJmjvqviq1pwJM6uXXn73TLCxuM8tpiUT
nvKWTzTmmyKr8pdB24tM6PZNzP643hQa+hnnDTqIelARUq5zTFEweK0i6U0m
Hr8lu6W8M8XBp++OtvdkYrkzH8c0zFDzTXpE/0Mm1LLZb08Em6Ew+I5m7MdM
UBPad5RfNsP31hGtp18ysU5qXcGiL2ZQ0LCaVhnNxGWDMk2RoTnsCmtKwn5k
QieIP7473Byrd1MoVVOZcFAPfx9aag6VeIMnc/5lwvuPafCNEXMo2ES6ec1i
oK/YvIq8ygIqD1rr+XMZyIHYY81QC2JuYFEGJBkQDlp4+hRYQEHi5QtDGQYM
vXRq3/VbwHnjmsOR8gzs3ETbVqdqibkmUYbVSxg4OOnpIL7FEssyGPNmqTCw
XeqSQxHLEsKfrHk0NQZCP4YoVLZa4vhzR7NULQaG5r9fu3q+FTbvkqW36DEw
WbDZXd7FCvzzWzRlDRkQvYTn3mgrePRajXmbMDCj/ECk2XUr4r6QMZNpwUD7
s5W3jwxboaxRxbfNhoH7GW3TRmrWWKYdPiHvyICcW9evPb7W8Fk/9N7bhQHV
eg1f1TRrLH/6QDWTysAc9dLczXXW6Lq29GbLGgZ8c/rcFH9aE/XXfkHKk4Gb
HztL/FfaYGVK8xhtAwOrhIKFettssFb5fN6JTQw0d5uKEjNtMHhwsLJmCwNd
Ps+jg+ttkHhUwnJqOwPjc3uK3vy0wa8vm9TMdjFA0mPp9OnZIubp/Oh9IQy4
pCm0xfjbQvqINfXiPgYWvqWcLUq1Bb3lw+l3Bxj4tTJR+kC1LSQSfzkvjmQg
fMRzccsXW8wqcI5a+x8D4rdnrHuoYofqmfErT8QxENe3ydN/rR1Ulnlvq0pi
QNJ9f3FqjB2WNHgs/naSgTUP3vVvKbLDi8nvXlopDCRT/CKedNqh8Wueol86
wW/94aruufZQqqzefY7BwFGXCQ2muT2mbiU717EZuPRZYdbXHfaovGRcMsFj
oOyEaf5Iuj2CTQcLdEUMzE5ycmPescfkjjuW/vkM7C8YMuwfsocOrdI/rYCB
9IKZx9/IO8D6zovFNcUMjMUtCY+HA45fn9z7rYyB4KlTck9DHbC0aq6fWjkD
Pn1PTz9iOWDRhacf1t8i8JbM7Dl4zwHjM+VkkqoZ6J4rq9H8yQEj5mldV+8R
/qUfbHih4Aj6wmHK+3oG9qauOJDq6IhNJ5t9ZJoYSKQM7Pu5xxHjPxolHZ8y
ENZzw0Yh0xEfzYn54TkDak7/ageqHBEr7RTKe8VAwYYd/WF9jki7V7HkURcD
fyVinV6KAzI7XQ78eMeA+ptHNk+WAlv63CI1+hiwrHv5MHcV0L/TQM9zkIFl
h554eDkBxlX2KTGfGPCajrHs3gCEXX2cU/CVgZf9W9/T9gByqit2vBxjYDO4
JenRgLLeoc5/PxnYKKE2df0cwMz+N3vlbway1O6r38wFlpqNf9g4IwvPnd0S
WTeAvXXHYhNmZ+FMQPS+jQ8BVeq1x5fnZcHwjKb9WCeQ7nbr5UupLNTPNidF
fAa0V+Sz/spkwdrg+cvHf4GdPxLldBWy0LPT31FikROaZm9xX780CxWjh55r
aTgR9x5z5/9UsuBts/i1urkTelWlf5xXy8LMNxfyZ1CdcLisa0+zVhZ62yei
ajY5IaOEzhvTy8IFYw/Rtr3EvGurmr7MMAvjaQmB76OdkMQPJ7mYZOHLom9i
5DQnbNu7885eiyycaLpcf1bghE/B737SbbIwcmXj12ulTmCLKn9WOmShar5F
bXWtE8YuPrrT7ZxFnK+kqKJnTsh90UedQ81C1yL4xPQ6wfFEW7bBmiz0a91j
G405ocIx5LqXB/G8GulY4yxnzIzbxYzyzkLkmsUWJHlnJJWkQuCbBX8nn3n5
ms74sDOn/L5/FuYqzNIbMnOGLtNrYmgbEU+SZKsM2RnZt4NmLNiZhf1aW82W
b3TGCtnkdpM9hH+9sRSZXc5wPBcc7RuWBb2wNsmhw85Yeavyc3REFr6/kBjK
P+GM1MfqBqLDWfjmwfemZjmjqtPd5kFUFn4sKUpoyXNG6bcuxaGYLFR+OCiy
v+4MCer+esnELBit8O+j1zmD5nvBZXVyFkje/6IeP3PGgkfLGF5nshB9VSvj
S48zVu3de+NIWhZ0LO74THx1hoO7TgGHnoWzNe8n+/46E/30w/7bzCzMnhy5
cEvaBYLllhLvsrNgTok/GansAq2MwqMzBIReco81KK10wZ7wR1Xq57NwUks+
46K1C96dVn1BupiFxMOPpZRoLrhDs7i3+3IWbN7u3XXExwWez9OTT1/JwspN
EnWVO10gpVimevlaFpIPKLn1H3RB1hdFRvNNgg+TCM1fCS44qkN5+7kqC+A5
Hx0/54KO9Ip/0jVZ+JBluKeT74IFvQNThveJ59NMlC9ddsHTTvcWj4dZ8HK6
XrG1kvBH3h4b0UzwpZ4Y8KfeBdJLWeL0liwkPHxrevKFCw7GB+65+iIL6R6J
fr96XBD00fTis/YsfN4qGPceccHx2bE1319nYYt2t0b2tAu+V1++sagnC39/
7pJonEfClKfeSeP+LLw7+ay+R4GE9xuDzNYPZcHdwulYnzoJnNZ7NRGfs2AS
tNmldTXxvGOxbsa3LCg8pbpcsiOhtux0eOl4Fk4NNbL3uJJwueh21tNfWRiI
UN8m70NCo14B58vvLCxfrFpxeQcJwfml0VJiTBjNW1K9MpwERW0Th5XiTCS2
fU1jR5Nwwf9cj6sEE+o0NcrIKRLULqgF7ZFmYolLjZhRFgmvtWkNJxcxUSz8
780WEQn/vdwy/4ICE7kBF74fLiaBuvHW6vtLmfh3VX9LVCUJHTNuWrxXYcKk
LM0i+AEJ9V8KV/xTY+JF/BeuUysJbr+Hh5W1mdgSMS9v7hsSenqecGz0mQiR
ddxza5CEd4YX9TYZMjHmwZ7lO0aCXFBDzhETJvgnatJ6/pKwcSR+ItOCwJ+5
aIXPfDK2WGsYl9kwUf6X0VKhQIYd+5/nEwcmLlyduCmuRoYfJWjjsDMT32ec
++xoQAbnGM9hLpVJ3G+2ndptSUZO4LiU5hombqxSEhxzJkPO4lYtPJho8VpB
PbaWjK8OZn5bvZmIWHGcs2sTGTfeXuk85suE9eTCAocgMjYxDziy/JmgFNNS
Zu8nAzMfpFzbxoTezV2+FVFkuL78fPdpEBMWx7zVfI+T4fvKuHM4mIl3STf+
9KWRYTjR3jUnjIn6pL4ZARwynCkaD9QjmBh3nHCoP08GfYEv0+EwE/POVTUv
LSEj8lH5Or8oJoKd66r8K8g4ujrx25EYJp7o+q9IuUdGmvXUf/QEJi79yJIq
aCaDvzRwpPgEEwGLHJjX2shosp1wazxN+Gvqa77cTcTrPpHRl8rEnOkXdRkf
yXhgK6z9m0GsC5en7hwj4zPFqGspkwmZPWxr7T9kvJ7sf2uWzcRhn/Y3bXMo
SLeYbPbIYaLfw+HUIRkKeqwL8vfmEnrIGXf9t5QCW67BnuQLTGSHD5sf06Dg
gEvtYlEhEzaZr/zfG1CQ+h+/rKqE4Jth+djSggLH3knztqtM7Jm7kR3jSMH6